Math 135 - Winter 2000

Homework to be done by January 6th:

Section 10.1: Problems 1, 3, 5, 7, 9, 11, 27, 28.

Section 10.2: Problems 1, 3, 7, 11, 13, 17, 18, 21, 47, 55, 57, 59, 61.

Section 10.3: Problems 6, 9, 12, 17, 23, 31, 33, 47.

Problems to be handed in on January 6th

1. Prove that if a and b are any two positive numbers with a < b, then there exists a rational number r such that a < r < b. (Hint: Show that there is a positive integer n such that na > 1 and n(b-a) > 1. The show that there is a positive integer m such that $m-1 \le na < m$. Let $r = \frac{m}{n}$.

2. Let $\{a_n\}$ and $\{b_n\}$ be sequences such that $a_n \to 0$ and $\{b_n\}$ is bounded. Prove that $a_nb_n \to 0$.

3. Suppose that f is a differentiable function on $(0,\infty)$ such that $f'(x) \to 0$ as $x \to \infty$. Show that

$$\lim_{n \to \infty} [f(n+1) - f(n)] = 0$$

For example $\sqrt{n+1} - \sqrt{n} \to 0$ as $n \to 0$ even though $\sqrt{n} \to \infty$ as $n \to \infty$. Hint: You have already done this problem.