Power Series Methods for Differential Equations

We consider the second-order homogeneous linear equation

N(z)y" + P(z)y + Q(z)y = 0, (1)

or, in standard form,

y" +p(@)y' + q(x)y = 0. (2)

For an equation in the standard form (2), we assume that p(z) and ¢(x) can be expanded in power
series about a point zg (i.e., series in powers of z — xg), convergent in some interval I centered at
xg. For an equation in form (1), we assume that N(z), P(z), and Q(z) can be expanded in power
series about z, convergent in I, and that N(zy) # 0. Our object is to construct the solutions in
the form of power series about ;.

For the purposes of the general theoretical discussion it is more convenient to use the standard form
(2). However, in specific problems it is often simpler to use the form (1), as the examples below will
show. Also, by making the change of variable z — = + zy, we may and shall assume that zy = 0.
We assume, then, that p(z) = Y 0" pxa® and ¢(z) = Y 7" gxz® on some interval {z : |z| < 7}, and
we look for solutions to (2) of the form y = Y ;¢ axz®. Observe that ag = y(0) and a; = 3'(0), so
from the general theory we expect to be able to prescribe ay and a; arbitrarily.

Substituting these series expansions into (2) yields

i E(k — 1agz* 2 + ipkxk] [i ka1 + i quk] [i akxk] =0.
k=0 k=0 k=0 k=0 k=0

This may be clearer if we write out the first few terms:
2-lag + 3+ 2a3z + 4 - 3a4x” + -+ - + (o + P17 + pox® + -+ ) (a1 + 2a07 + 3azx® + )
+(go + 17 + @2 + -+ )(ag + a1 + axx® +---) = 0.

Multiplying out the left side gives a new power series. Since its sum is zero, the coefficients of all
the powers of z must vanish:

(constant term) :  2ag + poa; + goao = 0, (3.0)
(COBHiCiGIlt of $) : 3-2a3+ 2p0a2 + p1a1 + Qo1 + q1ap = 0, (31)
(coefﬁcient of .’L‘2) : 4-3a4 + 3p0a3 + 2p1a2 + p2a1 + Qo2 + q1Q1 + @209 = 0, (32)

and, in general, for the coefficient of z*,
k k
(k+2)(k+1)agse + Z(k —J+Dpjar i1+ Z qjak—j = 0. (3.k)
j=0 j=0

This is called the recursion formula for the a;’s. As we observed above, ay and a; can be given
whatever values we like. Once we have chosen them, equation (3.0) determines ag; then (3.1)

1



determines as; then (3.2) determines a4, and so forth. In this way we determine the whole sequence
of coefficients ay recursively.

The remaining question is whether the resulting series Y az2* converges, for if it does, equations (3)
guarantee that it satisfies the differential equation (2). We won’t go through the whole argument,
but the idea is simple: use (3.k) to estimate the a;’s in terms of the py’s and g;’s, and then do a
comparison test. Here is the result, stated with a general base point xg:

Theorem 1 Let r, and r, be the radii of convergence of the series p(xz) = Y. pr(z — z0)* and
q(z) =Y. qu(z — m0)*. If the sequence {ay} is determined by the recursion formulas (3), then the
radius of convergence of the series y = > ax(x — xo)* is at least min(ry,7,), and y satisfies (2) on
its interval of convergence.

Many of the important examples of second-order equations are of the form (1) where N, P, and @
are polynomials. In the standard form of such an equation the coefficients p = P/N and ¢ = Q/N
are rational functions. It is known from complex function theory that the radius of convergence of
the Taylor series of such a function about z = z; is the distance from z, to its nearest singularity—
namely, the nearest point where N(x) = 0—in the complex plane. Combining this with Theorem 1,
we have:

Theorem 2 Suppose N(z), P(z),, and Q(x) are polynomials. The radius of convergence of any
power series y = > ay(z — x0)¥ that satisfies (1) is at least the distance from xq to the nearest zero
of N in the complex plane.

We turn to some examples.

Example 1. Solve the initial value problem

(z+2)y" +zy' —y=0, (4)
y(0)=1,  y'(0)=-L (5)
Solution: In standard form, (4) becomes y" + z(z + 2)™'y' + (z + 2) "'y = 0. We could expand

p(z) = z(z + 2)~! and ¢(z) = (z + 2)~' into Taylor series without much difficulty, but it’s a lot
easier to work directly with (4). With y = >"° a,z¥, (4) becomes

o0

Z k(k — Dagz™ " + 2 i k(k — 1)aps* 2 + f: kapz® — i arz® = 0.
0 0 0

0

Shifting the index of summation on the first two sums so that the exponent of x is k, we get

Z(k + 1)kag12" + Z 2(k 4 2)(k + Daggoz® + Z kapz® — Z arz® = 0.
-1 -2 0 0
(Note that the terms with £ = —1 and ¥ = —2 in the first two sums aren’t really there—their

coefficients are zero.) It follows that for all £ > 0,

(k‘ + 1)kak+1 + Q(k + 2)(]{3 + 1)ak+2 + (k — 1)0,k; = O, or
(]{3 + 1)kak+1 + (k — l)ak
2(k +2)(k + 1)

Qgy2 = —



From (5) we know that ap = 1 and a; = —1. The recursion formula (6) then shows that

CL2:_1-0a1—f—(—1)ao :_1 CL?):_2-1ag-i-0al :_2(—3 :l
2-2-1 4’ 2-3.2 12 24’
a4:_3-2a3+1a2:_%—i:0 a52_4-3a4+2a3:_0+%:_i
2-4-3 24 ’ 2-5-4 40 480’

and so forth, so that

1 1 1
g2 m3 S5
Y z 490 + 5 496 480$ +
We could continue to compute the a;’s forever, but there’s probably no neat formula for them. Of
course, just the first few terms give a good approximation to the solution near x = 0. Moreover,
without computing the a;,’s at all, Theorem 2 tells us that the radius of convergence of >~ a,z* is at
least 2, the distance from 0 to the singular point —2.

Example 2. Suppose we want to look at solutions of the preceding equation (4) near x = 5. The
series expansions of the solutions about x = 0, as in Example 1, are useless here; they probably
don’t converge beyond z = 2. Instead, we look for solutions in the form y = Y ¢° by(z — 5)*. These
will have radius of convergence > 7 (the distance from 5 to the singular point —2). To find them,
the easiest way is to make the substitution ¢ = x — 5, which turns (4) into

t+7)y" +t+5)y —y=0,
where y is now regarded as a function of ¢, and turns >_ by (z — 5)* into Y byt*. We then proceed
as in Example 1.
Example 3. Without calculating any coefficients, what can we say about the radius of convergence
of a series solution Y axz* to the equation

(x+2)(z* — 22+ 2)y" + (x — 4)y' + 32y = 0?

Solution: The leading coefficient vanishes at + = —2 and at x = 1 £ 4. The distance from the latter
two points to 0 is v/2, which is less than the distance from —2 to 0. By Theorem 2, the radius of
convergence is at least V2.

For certain special kinds of equations, including (fortunately) many of the most important equations
of applied mathematics, it is possible to find a reasonably simple formula for the general coefficient
ag, so that one can write out the whole power series for the solutions rather than just the first few
terms. Here is one example; others will be presented in class.

Example 4. The Hermite equation is
y" —2xy' +2 y=0 (A= constant). (7)

If we set y = > o° axz®, (7) becomes

oo

Z k(k — 1)akxk*2 — QxZ kapz® 1 + 2\ Z apz® = 0.
0 0

0
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Replacing k£ by k£ + 2 in the first sum and noting that its first two terms vanish, we get

o0

Z(k +2)(k + 1)ag 492" — Z 2kapz® + Z 2\apz® = 0.
0 0

0
Hence, for all £ > 0, (k +2)(k + 1)agro — 2(A — k)ax, =0, or

2(k — \)

WEZ k) k+2) ™

Once qy is fixed, the recursion formula (8) determines all the a; with & even:

. -2\ . 2(2-)) _ 22)\(2 - A)
©=T0  MT g @S
A2 — A)(4—A)---(2n— 2 — )
Aop = — agp.
(2n)!

Likewise, (8) determines all the a; with k& odd in terms of a:

2(1 =X 23— A 22(1 = M) (3=
= (2 3 o, - (4. 5 oy - 2 53( o,
_2M1=XN)(B=A)(2n—-1-2])
Qon4+1 = (2n—|—1)! Q.

Thus the general solution is y = agyg + a1y, where

Z2PA2—A) - (2n—2— )
Yo = 1—21: ( )(2n§! L ’
21— NB=A) - (2n—1—=X) 4y
(2n +1)! S

o= T+
1

yo and y; are particular solutions of (7): yy (resp. y1) is obtained by taking ag = 1, a; = 0 (resp.

ag =0, a; = 1). Clearly they are a fundamental set of solutions.

By Theorem 2, these series converge everywhere, as the equation (7) has no singular points. You

can also verify this easily via the ratio test.

An important feature of the Hermite equation is that when A is a nonnegative integer, one of the
solutions is a polynomial of degree A. Indeed, when A = 2m, the terms with n > m in y, vanish
because they contain a factor (2m — A), and when A = 2m + 1, the terms with n > m in y; vanish
because they contain a factor (2m+ 1 — X). These polynomials, multiplied by constants so that the
coefficient of 2 is 2%, are called Hermite polynomials. They arise in a number of basic problems

in quantum mechanics.



