Second-Order Linear Differential Equations

We consider the general second-order linear differential equation

N(z)y" + P(z)y’ + Q(z)y = G(). (1)

We shall say that an equation of this sort is in standard form if the coefficient of y” is 1:

y"' 4+ p(x)y + q(z)y = g(z). (2)

(1) can be put into the form (2) by dividing through by N(x), and for the purposes of this
discussion we shall assume that this has been done. The equation (1) (or (2)) is said to be
homogeneous or reduced if G = 0 (or g = 0), inhomogeneous if not.

We assume that the functions p, q, and g in (2) are continuous on an interval I = («, )
(which might be the whole line), and we seek solutions y on this interval. (If the equation is
given in the form (1), this means that we need the functions N, P, @), and G to be continuous
on I and N to be non-vanishing on I. Points where N vanishes, or where p and/or ¢ have
singularities, are called singular points of the equation (1) or (2). The general theory does
not apply on an interval that contains singular points—but there is more to be said about
them, as we shall see later.)

It is convenient to denote the left hand side of (2) by L[y|; thus L is the differential operator
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L is a linear operator; that is,
Llciyr + cayo] = e1L{y1] + caLlya]  (c1, co constants). (3)

In particular, if L[y;] = Lys] = 0 then L[ciy; + coy2] = 0 for all constants ¢; and cp. (This
fact is often called the superposition principle in the physics literature.)

The fundamental existence and uniqueness theorem is as follows:

Theorem 1 Suppose p, q, and g are continuous on the interval I, and xo € I. For any
numbers a and b there is a unique solution y of the equation (2) that satisfies y(xo) = a and

y'(zo) = b.

The proof of this theorem is beyond the scope of this course. It can be found, for example,
in Appendix 5 of Fourier Analysis and its Applications by G. B. Folland, or (usually in a
more general form) in many advanced books on ordinary differential equations.

Theorem 1 tells us that a solution y of (2) is completely determined by the two constants
y(zo) and y'(zg), which may be freely chosen. We say that the solution space for (2) is
two-dimensional.



We begin by analyzing the homogeneous equation L[y] = 0; we shall return to the general
case later. As we observed above, if y; and ys are solutions of L]y] = 0 then so is ¢1y; + c2ys
for any constants ¢; and cy. Thus, if we can find two solutions that are genuinely different
(one is not a constant multiple of the other), we obtain a two-parameter family of solutions
this way, and according to the preceding paragraph, there is hope that all solutions will
belong to this family. More precisely, the question is whether we can find ¢; and ¢y so that

c1y1 (o) + c2y2(z0) = @, (4)
iy (wo) + caya(z0) = b,

for any given numbers a and b. This is a system of two linear equations for the two unknowns
c1 and ¢y, and it has a unique solution for any a and b if and only if the determinant of the
coefficient matrix, y;(zo)yh(xo) — y2(xo)y (o), is nonzero. This determinant plays a central
role in the theory; it is called the Wronskian of y; and y, at zo:

W (y1,y2) (@) = y1(2)ya(x) — y2(2)yi (2)- (5)
We are now ready for the main theorem about solutions of L[y] = 0.

Theorem 2 Suppose p and q are continuous on the interval I, and y; and ys are solutions
of Lly] =0 on I. The following conditions are equivalent:

(a) W(y1,y2)(x0) # 0 for every point zy € I.

(b) W(y1,y2)(xo) # 0 for some point xo € I.

(c) Every solution of Lly] =0 on I is of the form c1y; + coyo.
(d) y1 and yo are not constant multiples of each other.

Proof.

(a) = (b): This is trivial.

(b) = (c¢): Suppose L[y] = 0. If (b) holds, we can solve the equations (4) with a = y(z() and
b = y'(xp). But then y and c1y; + coye both solve the differential equation and both have
the same value and the same slope at xy. By the uniqueness in Theorem 1, they are equal.

(c) = (a): By Theorem 1, if zy € I there is a solution of L[y] = 0 with any specified values
of y(xo) and y'(z¢). If (c) holds, so that y = c¢1y1 + ca¥yo, this means that we can always solve
(4) for arbitrary a and b. Hence the determinant W (yy, y2)(x¢) is nonzero.

(d) < (a): We shall show that (d) is false (i.e., yo = cy;) precisely when (a) is false (i.e.,
W (y1,y2)(xo) = 0 for some xg). Clearly, if yo = cy; then W(yr,y2) = yicy| — cy1y; = 0.
On the other hand, if W (yy, y2)(xo) = 0 then yo(x0)/y1(z0) = y5(20)/y}(z0). Denoting this
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common value by ¢, we have y — 2(zo) = cy1(x9) and yh(zo) = cy(x9). By the uniqueness
in Theorem 1, yo = cy;. (The little extra argument to dispose of the case where y;(z) =0
or yi(zg) = 0 is left to the reader.) [

A pair y;, yo of solutions of L[y] = 0 that satisfies the conditions in Theorem 2 is called a
fundamental set of solutions, and condition (c) says that if we know a fundamental set
of solutions then we know all solutions.

Reduction of Order.

If we can just find one nontrivial solution ¥, there is a simple device that reduces the search
for a second one to the calculation of a couple of integrals. The idea is to look for a second
solution in the form y, = vy;, where v is a nonconstant function. Indeed, we have

Livyi] = (vy1)" + ployr) + quyr = 0"y1 + 20'ys + vyl + po'ys + poy; + quin
= L[y + 0"y + ' (2y] + py1).

Since L[y1] = 0, we will have L[vy;] = 0 provided that
y1v" + (291 + pyr)o’ = 0. (6)

This is a separable (and linear) first-order equation for v', so we can solve it and integrate to
find v. v will be non-constant provided we don’t take v' = 0. This device is called reduction of
order, since it reduces finding a second solution of L[y] = 0 to solving a first-order equation.

Example. It is easy to check that y;(z) = 2? satisfies

z2y" — 3zy’ + 4y = 0. (7)

To find a second solution for a fundamental set, try y,(z) = 2?v(x). Plugging this into (7)
yields

(2% + dzv’ + 20) — 3x(22v + 2%') + 4(2?v),

which simplifies to

n

1
zh" + 23 = 0, or —=——.
v T

Integrating both sides gives log|v'| = —log |z|, or v' = z7!; then v = log |z| and the second
solution is y» = z?log|z|. We omitted the constants of integration because we only need
one v. Alternatively, if we keep both constants of integration in this calculation, we get
v = ¢; + ¢ log |z|. The corresponding solution on (7) is 2?v = c1y; + ca¥po.



The Inhomogeneous Equation.

Once we have found a fundamental set of solutions (and hence all solutions) to the ho-
mogeneous equation L[y] = 0, there is a straightforward procedure, called variation of
parameters, for finding a solution of the inhomogeneous equation L[y] = g. It is described
in Section 18.4 of Salas-Hille. The book considers only equations with constant coefficients,
but the technique and the results work perfectly well in the general case. There is just one
possible source of error: to apply variation of parameters, the equation needs to be in the
standard form (2). (If it is in the form (1), the input for the variation-of-parameters machine
is not G(x) but G(z)/N(z).)

More precisely assume that the general solution of the homogeneous equation associated
with equation (2) is

y(x) = cryr () + caya(z). (8)

To find a particular solution of the inhomogeneous equation the crucial idea is to replace the
constants ¢; and ¢y by functions u(x) and ug(z), respectively, this gives

Yp(®) = ur(2)y1(2) + uz(2)ya(2)- )

Then we try to determine u(x) and uq(z) so that (9) is a solution of the inhomogeneous
equation (2). Proceeding exactly as in Section 18.4 of Salas-Hille we impose that

uy (x)y1(x) + uy(z)y2(z) = 0. (10)

Differentiating y, and using the fact that it satisfies (2) we obtain that u(r) and uy(x) satisfy

uy (7)Y () + uy(7)ys(2) = g(x). (11)

Equations (10) and (11) form a system of two linear equations in the derivatives v} (z) and
ub(z) of the unknown functions. Solving the system we obtain
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where W (y;,y2) is the Wronskian of y; and y,. Note that the division by W (y,ys) is
permissible since y; and y, are a fundamental set of solutions, and therefore the Wronskian
is nonzero. By integrating (12), we obtain that
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Finally, substituting from (13) in (9) gives the general solution of (2).

ui(z) = dz + C. (13)



Theorem 3 If the functions p, q, and g are continuous on an open interval I, and if the
functions y, and yo form a fundamental set of solutions for the homogeneous equation cor-
responding to the inhomogeneous equation

y' +p@)y +q(2)y = g(z),
then a particular solution of (2) is

y2(2)g(x)

@)
W (Y1, y2) () - 14

dx + yo(x) —W(y1, 1) (@)

v(2) = —41(x)
and the general solution of (2) is

y(z) = ay@) + caya(x) + yp() (15)

How to find solutions? By using reduction of order and variation of parameters, one can
reduce the problem by finding the general solution L[y] = ¢ to finding one nonzero solution
of Lly] = 0. But in contrast to the situation for first-order linear equations, there is no
general procedure for solving L[y] = 0 in elementary terms. We shall concentrate only on
some types of equations—fortunately, the most important ones—where solution methods are
available. First, if the coefficients p and ¢ are constant, the solution is easy; it is described
in Section 18.3 of Salas-Hille. Second, if the coefficients p and ¢ can be expanded in power
series, one can obtain solutions in the form of power series; we shall say more about this
later.

Euler Equations. There is one other case of (1) that can be solved easily, the Fuler
equation

2%y +axy +by=0  (a,b constants). (16)
The idea is similar to the constant-coefficient case. Namely, try y = 2". Plugging this into
(16) yields [r(r — 1) + ar + b]z" = 0, so 2" will be a solution of (16) if

r? +(a—1)r+b=0. (17)

(17) generally has two roots 7 and 79, in which case 2™ and z" are a fundamental set of
solutions for (16) on the intervals (0,00) and (—oc,0). (Note that = 0 is a singular point
of (16).) If there is only one root 7o, then z™ is a solution, and reduction of order yields
the second solution z™ log |z|. (The case ry = 2 was worked out in the Example above; the
general case is similar.)

Note 1: If r is not an integer, the expression " may make you nervous when z < 0. But in
this case you can write 27 = (—|z|)" = (=1)"|z|" - |z|" is OK, and (—1)" is just a constant
(probably complex) that can be discarded since a constant multiple of a solution is a solution.
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Thus on (—o0,0) (as well as on (0,00)) you can take |z|™ and |z|™ as a fundamental set of
solutions if (17) has two roots 7, and 79, or |z|™ and |z|™ log |z| if (17) has only one root 7.
Note 2: If the roots of (17) are complex, say r; = o + i3 and 7o = o — i3, the solutions are

|0+ = elei sl — || (cos[S log |«|] + isin[B log |« |]).

If you want real solutions, you can add and subtract these to get |z|*cos[flog|z|] and
|| sin[ log |z|].

Note 3: The similarity of the solution methods for constant coefficient equations and Euler
equations is not just an accident. Each of these types of equations can be transformed into
the other by a change of independent variable. See Exercise 36 in Section 18.3 of Salas-Hille.



