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Abstract

In this work we introduce the use of powerful tools from geometric measure theory (GMT)
to study problems related to the size and structure of sets of mutual absolute continuity for
the harmonic measure w' of a domain = QF C R" and the harmonic measure w™ of 7,
7 = int(Q2°), in dimension n > 3. AMS Subject Classification: 28A33, 31A15.

1 Introduction

In this work we introduce the use of powerful tools from geometric measure theory (GMT) to study
problems related to the size and structure of sets of mutual absolute continuity for the harmonic
measure wt of a domain @ = QT C R™ and the harmonic measure w™ of O, O~ = int(Q°),
in dimension n > 3. These tools come mainly from Preiss’ work (see [19]), in which he proved
that if the m-density of a Radon measure p in R", exists and is positive and finite, for u-almost
every point of R", then p is m-rectifiable, see [18] for all the relevant definitions. These techniques
are combined with the blow-up analysis developed by Kenig-Toro [14], the properties of harmonic
functions on non-tangentially accessible (NTA) domains [11] and the monotonicity formula of Alt-
Caffarelli-Friedman [1] to obtain analogs for n > 3 of some well-known results when n = 2.

Let us first briefly describe some of the 2-dimensional results. Thus, let Q C R? be a simply-
connected domain, bounded by a Jordan curve and let w be the harmonic measure associated to €2
(see [9]). Then we can write 092 as a disjoint union, with the following properties:

(1.1) 90 =GUSUN

i) w(N)=0.

ii) In G, w < H! < w, where H® denotes s dimensional Hausdorff measure.
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iii) Every point of G is the vertex of a cone in Q. Moreover if C' denotes the set of “cone points”
of 99, then H!(C\G) = 0 and w(C\G) = 0.

iv) HY(S) = 0.

v) S consists (w a.e.) of “twist points” (a geometrical characterization of S). See [9] for the
definition of twist point.

vi) For w a.e. @ € G we have that

lil% =L existsand 0< L < 0.
r—

w(B(Q,r)NoN)

vii) At w a.e. point Q € S we have

w(B(Q,r)NoN)

lim sup = 400
r—0 r

limi(r)lf w(B(Q,r) N 0%) =0
r— T

These results are a combination of work of Makarov, McMillan, Pommerenke and Choi. See [9] for
the precise references.

Recall that the Hausdorff dimension of w (denote by H — dimw) is defined by

(1.2) H—dimw = inf{k: there exists £ C 9 with H*(E) =0 and
w(FNK)=w(02NK) for all compact sets K C R"}

Important work of Makarov [17] shows that for simply connected domains in R?, H — dimw = 1,
establishing Oksendal’s conjecture in dimension 2. Carleson [6], and Jones and Wolff [12] proved
in general for domains in R? with a well defined harmonic measure w, H —dimw < 1. T. Wolff [21]
showed, by a deep example, that, for n > 3, Oksendal’s conjecture (H — dimw = n — 1) fails. He
constructed what we will call “Wolff snowflakes”, domains in R3, for which H — dimw > 2 and
others for which H—dimw < 2. In Wolff’s construction, the domains have a certain weak regularity
property, they are non-tangentially accessible domains (NTA), in the sense of [11], in fact, they are
2-sided NTA domains (i.e. 2 and int(2¢) are both NTA) and this plays an important role in his
estimates. Here, whenever we refer to a “Wolff snowflake,” we will mean a 2-sided NTA domain in
R™, for which H—dimw # n—1. In [16], Lewis, Verchota and Vogel reexamined Wolff’s construction
and were able to produce “Wolff snowflakes” in R, n > 3, for which both H —dimw® > n—1, and
others for which H — dimw® < n — 1. They also observed, as a consequence of the monotonicity
formula in [1], that if vt < W™ < w* then H — dimw* > n — 1.

Returning to the case of n = 2, when 2 is again simply connected, bounded by a Jordan curve,
wt =w and w™ equals the harmonic measure for int(Q°), Bishop, Carleson, Garnett and Jones [4]
showed that, if £ C 99, wt(E) > 0, w™(E) > 0, then w 1 w™ on E if and only if H!(Tn(02) N
E) =0, where Q € Tn(092) C 09 if 992 has a unique tangent line at ). Recall that 02 admits a



decomposition relative to w®, 9Q = GFUSTUNT (see (1.1)). Let £ C 99 be such that w™ < w™ <
wt on E and w*(E) > 0, then, because of [4], modulo sets of w® measure 0, E C Tn(99). Using
Beurling’s inequality, i.e. the fact that for Q € 9Q and r > 0, w*(B(Q,7))w (B(Q,r)) < Cr?, and
the characterization above for G* and ST (see ii), vi) and vii)) we conclude that w* < H! < w™ <
wT on E. Thus, sets of mutual absolute continuity of w™, w™ are “regular” and hence obviously of
dimension 1.

In (3], motivated by this last result, Bishop asked whether in the case of R", n > 3, if w™,w™ are
mutually absolutely continuous on a set £ C 99, wt(E) > 0, then w® are mutually absolutely
continuous with H"~! on E (modulo a set of w* measure zero) and hence dimy(E) = n — 1. On
the other hand, Lewis, Verchota and Vogel [16] conjectured that there are “Wolff snowflakes” in
R”, n > 3 with H — dimw® > n — 1, for which w*, w™ are not mutually singular. In this paper we
study these issues, for domains which verify the weak regularity hypothesis of being 2-sided locally
NTA, (a condition which, of course, Wolff snowflakes verify). This condition ensures that we have
scale invariant estimates for harmonic measures. In the n = 2 case, the condition is equivalent to
locally being a quasi-circle, but it is weaker than that when n > 2. We expect that versions of our
results will still be valid under even weaker regularity assumptions. We would like to stress though
that no flatness assumption is made in this work, and that has been one of the main point that
we wanted to address here, as well as the new introduction of the techniques from GMT ( [19]),
combined with the blow-up analysis in [14].

Our main result is that, for n > 3, 9Q = I* USUN, where wt L w™ on S, wT(N) =0, and on I'*,
wh € w” < wt, dimyI'* <n —1 and if wF(I*) > 0, dimy I'* = n — 1, where dimy; denotes the
Hausdorff dimension of a set. As a consequence there can be no “Wolff snowflake” for which w™,
w™ are mutually absolutely continuous. We also show that I'* = I'; UT; U Z, w(Z) = 0, where
in I, H" ! is o-finite, w~ < H" ! <« wt < w™, while on I}, for a Borel set E we have that
if wﬁ(FZ N E) > 0 then H" }(T; N E) = +oo. If we further assume that H"~! L 99 is a Radon
measure, then we show that I'* is (n — 1) rectifiable. In this case, we must have w*(T}) = 0, and

hence 00 =T7USU N, w5(N) =0 and I'; is rectifiable.

Our approach is the following. Using the blow-up analysis developed in [14], at w® a.e point on
the set where w* and w™ are mutually absolutely continuous, the tangent measures to w™® (in the
sense of [19], [18]) are harmonic measures associated to the zero set of a harmonic polynomial (see
Theorem 3.4). Using the fact that for almost every point a tangent measure to a tangent measure
is a tangent measure, (see [18]) and the fact that the zero set of a harmonic polynomial is smooth
except for a set of Hausdorff dimension n — 2 (see [10]), one shows that at w® a.e. point on this
set, (n — 1) flat measures always arise as tangent measures to wt. They correspond to linear
harmonic polynomials. We then show, and this is the crucial step, that if one tangent measure is
flat, on the set of mutual absolute continuity, then all tangent measures are flat (see Theorem 4.1).
To accomplish this we use a connectivity argument from [19]. The key point is that if a tangent
measure is not flat, being the harmonic measure associated to the zero set of a harmonic polynomial
of degree higher than 1, its tangent measure at infinity is far from flat ( see Lemma 4.1), and a
connectivity argument in d-cones of measures, in the metric introduced by Preiss in [19], gives a
contradiction. Modulo a set of w® measure 0, let I'* be the points in the set of mutual absolute
continuity for which one (and hence all) tangent measures are (n — 1) flat. An easy argument



(see Lemma 2.4 and the proof of Theorem 4.1) shows that dimy I'* < n — 1. To conclude that if
wE(T*) > 0, dimy I'* = n — 1, one uses the Alt-Caffarelli-Friedman monotonicity formula, of [1] as
n [16] . If H"1 L 99 is a Radon measure, one can show that its density on I'* is 1, H"~! L 9Q
a.e., which shows that I'* is (n — 1) rectifiable (see [18]).

The results in Theorem 2.1 and Corollary 2.1 are very general. We believe they should be useful
in other situations where questions of size and structure of the support of a measure arise.

Acknowledgment: We are grateful to J. Garnett for his detailed explanation of the 2 dimensional
results mentioned here.

2 Some results in geometric measure theory

We start this section with some basic definitions in GMT. Then we recall two families of “distances”
between Radon measures in Euclidean space which are compatible with weak convergence. They
were initially introduced in [19]. We finish the section with a general theorem which can be used
to derive geometric properties of two domains’ common boundary from comparisons between their
harmonic measures.

Recall that if ® is a Radon measure in R"
(2.1) spt ® = {x € R": ®(B(x,r)) >0 Vr >0}

Definition 2.1. Let & and ¥ be Radon measures in R". Let K be a compact set in R™ define

0) Fr(®) = / dist (2, K¢) d®(z).

ii) If FK(@) + FK(\II) < 00, let

(2.2) Fr(®,0) = sup{'/fdfb - /fd\I/‘ :spt f C K, f >0,Lipf <1}.
We denote by F.(®) = Fp(o,)(®). Note that F(®) = Fx(®,0).

Remark 2.1. Let ® be a Radon measure in R". For z € R" and r > 0 define 7}, , : R — R" by
the formula 7T}, ,(2) = (2 — «)/r. Note that:

i) Tpr[®)(B(0, 5)) := (T, }(B(0,s)) = ®(B(x, sr)) for every s > 0.

/ f(2)dTy [ P](2) = / f <Z — 1;) d®(z) whenever at least one of these integrals is defined

r

i) Fp(pr(®) = rFi(Ter[®])



V) Fpzm)(®,¥) = rF(Te, [®], Te r [V])
Definition 2.2. Let u, u1, o, . .. be Radon measures on R™. We say that p; — por lim; oo 1 = p
if

i) limsup;_,., Fr(1i) < oo for every compact set K C R”

i) lim;— oo Fr (i, ) = 0 for every compact set K C R™.

Definition 2.3. Let p, u1, po, ... be Radon measures on R™. We say that {u;} converges weakly
to p, p — p if

(2.3) rlgrolo fdu = /fd/,t Vo e C.(R"™).

Lemma 2.1 ( [19], Proposition 1.11) Let p, po ... and p be Radon measures on R™ such that
limsup;_, ., pi(K) < 0o for each compact set K in R™. Then p; — p if and only if p; — .

Lemma 2.2 ( [18], Lemma 14.13) Let u1, pa, ... and u be Radon measures on R™. Then u; —
if and only if

(2.4) lim F.(pi,p) =0 Vr>D0.
71— 00

We now introduce a scale invariant relative of F)., which behaves well under weak convergence and
scaling,.

Definition 2.4 ( [19], §2) i) A set M of non-zero Radon measures in R" will be called a cone
if c¥ € M whenever ¥ € M and ¢ > 0.

ii) A cone M will be called a d-cone if Tp [¥] € M whenever ¥ € M and r > 0.

iii) Let M be a d-cone, and ® a Radon measure in R” such that for s > 0, 0 < F5(P) < co then
we define the distance between ® and M by

. P
(2.5) ds(®, M) = inf {Fs <FS(®)’W> ¥ e M and Fy(V) = 1} .
We also define
(2.6) ds(P, M) =11if Fg(®) =0 or Fs(P) = +00.

Remark 2.2. Note that if M is a d-cone and ® is a Radon measure



i) ds(®, M) <1
ii) ds(®, M) = di(Tos[¢], M)
iii) if p= lim p; and Fy(p) > 0 then ds(p, M) = lim ds(pi, M).

In fact if = 1lim Wi then by Lemma 2.1 p; — p and for s > 0
1—00

(2.7) Fulp) = [ s~ 1al) s = [ (s~ [2l)du = P

Thus without loss of generality we may assume that Fs(u;) > 0 (at least for i large enough). Since
lim; oo pt; = p then lim sup Fy(u;) < oo and therefore Fy(p) < co. Let ¥ € M such that F5(¥) =1

1—00

then

(2.8) F, (F:(Lu) , qx)

s (F/fm F:m) o (Fil)’ F/fm) i <Fl€u) ’ q’)
1
(

< @st,wm(ui)

Fy(p)  Fy(u)
Thus for any ¥ € M with Fs(¥) = 1 we have

(29) ds(p, M) < Fj#) Fulo ) - Fo(w) Fstu) B Fs(lm) s <FELM \I])

which implies

(2.10) ds(p, M) < Mﬂz(u) CE < |+ ds(pi, M).
Fs(p) Fs(p)  Fs(pa)

Letting ¢ — oo and combining (2.4) and (2.7) we have that
(2.11) ds(p, M) < liminf dg (i, M).
1—00
A similar calculation done reversing the roles of  and u; yields the inequality

(2.12) lim sup ds (i, M) < dg(p, M)

1—00
which proves the statement iii) in Remark 2.2.

Definition 2.5. i) Let n be a Radon measure in R". Let x € R", a non-zero Radon measure v
in R™ is said to be a tangent measure of 1 at z if there are sequences 7 \, 0 and ¢ > 0 such
that v = klim &Ly, 0]
—00

ii) The set of all tangent measures to n at = is denoted by Tan (n, z).

Remark 2.3. For 7 a non-zero Radon measure and z € R"™, Tan (n,z) is a d-cone. Moreover
{v € Tan (n,z) : F1(v) = 1} is closed under weak convergence (see [19] 2.3).



Definition 2.6. The basis of a d-cone M of Radon measures is the set {¥ € M : F}(¥) = 1}. We
say that M has a closed (respectively compact) basis, if its basis is closed (respectively compact)
in the topology induced by the metric

> 2 Pmin{l, F,(®, ¥)}
p=0

defined for Radon measures ¥ and .

Proposition 2.1 ( [19] Proposition 1.12) The set of Radon measures on R™ with the metric
above is a complete separable metric space.

Remark 2.4. i) Asindicated in [19] 1.9(4), Proposition 1.12 and Proposition 1.11 the notion of
convergence in this metric coincides with the notion of weak convergence of Radon measures.

ii) A d-cone of Radon measures in R™ has a closed basis if and only if it is a relatively closed
subset of the set of Radon measures in R".

Proposition 2.2 ( [19] Proposition 2.2) Let M be a d-cone of Radon measures. M has a
compact basis if and only if for every A > 1 there is 7 > 1 such that Fr.(¥) < AEF,.(¥) for every
U e M and every r > 0. In this case 0 € spt ® for all ¥ € M.

The following theorem is in the same vein as Theorem 2.6 in [19].

Theorem 2.1 Let F and M be d-cones. Assume that F C M, that F is relatively closed with
respect to the weak convergence of Radon measures and that M has a compact basis. Furthermore
suppose that the following property holds:

(P) { Jeg > 0 such that Ve € (0,€y) there exists no p € M satisfying

dy(p, F) <€ Vr>1r9 >0 and dp, (1, F) = €.
Then for a Radon measure nn and x € spt n if

(2.13) Tan (n,z) C M and Tan (n,z) N F # O then Tan (n,z) C F.

Corollary 2.1 Let F and M be d-cones. Assume that F C M, that F is relatively closed with
respect to the weak convergence of Radon measures and that M has a compact basis. Furthermore
suppose that there exists g > 0 such that if d.(u, F) < €y for all v > ro > 0, then p € F. Then for
a Radon measure n and x € spt n if

(2.14) Tan (n,2) C M and Tan (n,z) NF # 0 then Tan (n,z) C F.

Note that the condition stated in Corollary 2.1 is stronger than condition (P) and a simple argument
shows it.

Proof of Theorem 2.1: We proceed by contradiction; i.e. assume that Tan(n,z) C M,
Tan (n,z) N F # 0 but there exists v € Tan(n,z)\F. Since F is closed there exists € €



(0,2 min{eo, 1}) such that dy(n,F) > 2€;. Moreover there exist s; \, 0 and ¢; > 0 such that
¢iTy ;[n] — v. Since Tan (n,z) N F # () there also exist ¢; > 0 and r; \, 0 such that 6;T; ,,[n] —
v € F. Thus for i large enough

(2.15) dl(Tm,” [n],f) =d; (5iTx,n [n],f) < €1, and d; (Tx,si [n],f) > €1

Without loss of generality we may assume that s; < r;. Let 7; € (%, 1) be the largest number such

that 7;7; = p; satisfies
(2.16) dl(Tx,Pi [77},7'") = €1.
Hence for all « € (7;,1)

(2.17) A1 (T ar, 0], F) = dojr,(Tep; (0], F) < €1

We claim that 7, — 0 as i — oo. In fact, otherwise there exists a subsequence 7;, — 7 € (0,1),
and 6;, To p,, [n] = 05, To7,, vy, ) — To,r[V] € F, which implies that di(T5,p, [n], F) — 0 as i — oo
which contradicts (2.16). Therefore (2.16) and (2.17) yield

(2.18) lim di (T p,[n], F) = €1

1— 00

and for every r > 1,

(2.19) limsup d,(T%,p; 1], F) < €1.
1—00

Note that F.(T% p,[n]) = iFB(m,rm)(n) € (0,00) for x € spt . Moreover a simple calculation shows
that for ¢ large enough

r Tp;
(2.20) 0< 30 <B (w, %)) < Fo(Typn)) < rp(B(z,rpi)) < rp(B(x,r)) < oc.
Since ¢1 < 1, A = ﬁ > 1 and by Proposition 2.2 there is 7 > 1 so that F,.(¥) < AF,.(¥) for
every ¥ € M and every r > 0. For r > 1 and i large enough there is ¥ € M so that Fr,. (V) =1
and

_ Toplnl _ Toplnl .
(2.21) fr (FTT(TQJ,M [77])’\1}> = o <FTT<T$7:0¢ [77])7\11) =
Hence

(2.22) Eaplt) o gy o> 9 ) =129

Frr (Tx,m [n]) 2

Thus for p =1,2,... (2.22) yields

. FTP(TI, 1[77]) L—e\ "
(2.23) limsup ) ( ) |




Combining (2.20), (2.23) and i) in Remark 2.1 we conclude that for p =1,2,---, 7 > 1 (as above),
and 7 large enough

I (2 ()

Thus for any s > 0, (2.24) ensures that

(2.25) lim sup
imoo F1(Top,[n])

Tap;
By the compactness theorem for Radon measures there exists a subsequence 4y, such that M%%

converges to a Radon measure ® € M (as M has a closed basis), satisfying F;(®) = 1. Therefore
F.(®) >0 for r > 1.

Combining iii) in Remark 2.2 with (2.18) and (2.19) we have that

(2.26) di(®,F) =€
and
(2.27) dy(®,F) < ¢ forall r > 1.

Since €; < €p/2 (2.26) and (2.24) contradict condition (P). This concludes the proof of Theorem
2.1. |

We next recall a couple of results from [19] and [18]. They provide additional information about
Tan (@, z) for a Radon measure ® and x € spt ®. The first result yields conditions that ensure
that Tan (®,z) has a compact basis. As we will see these conditions are satisfied by the harmonic
measures considered in this paper. The second result states that tangent measures to tangent
measures of ® are tangent measures of ®.

Theorem 2.2 ( [19] Corollary 2.7) Let ® be a Radon measure in R™, and x € spt ®. Tan (P, x)
has a compact basis if and only if

' ®(B(x,2r))
(2.28) S G (B(e, )

Theorem 2.3 ( [18], Theorem 14.16) Let ® be a Radon measure in R", ® a.e. a € R", if
U € Tan (P, a) then

i) Ty p|¥] € Tan (®,a) for all x € spt ¥ and all p > 0

it) Tan (¥, x) C Tan (®,a) for all x € spt V.

Finally we present a couple of results which will be used later in the paper.



Definition 2.7. A Radon measure w in R" is said to be locally doubling if for every compact set
K C spt w there exists C' = Cy, > 1 and Rg = R > 0 such that for @ € K, and s € (0, R)

(2.29) w(B(Q,2s)) < Cw(B(Q,s))

Lemma 2.3 Let w be a locally doubling measure in R™. Let W be a non-zero Radon measure with
U € Tan (w,Q). There ezists a sequence of positive numbers {r;}i>1 with lim r; = 0 such that
1— 00

r; " L(spt w — Q) converges to spt U in the Hausdorff distance sense uniformly on compact sets.

Proof. Since ¥ € Tan (w, @), and w is locally doubling by Remark (3) in 14.4 [18] we have that
there are a sequence r; | 0 and a positive constant ¢ such that ¥ = ¢ lim w(B(Q,7;)) ' Tg -, [w].
1— 00
Let X = lim X; € B(0, Ry) where X; = r; }(Z; — Q) with Z; € spt w. For r € (0,1) there exists
71— 00

ip > 1 such that for i > g, [X — X;| < § and |Z; — Q| < r| Xs| < (| X| +1) < Ry + 1. Since w
is locally doubling there exists Cy > 1 and R > 0 such that for P € B(Q,2(Ry+ 1)) and s < R,
w(B(P,2s)) < Cow(B(P,s)). Thus for r < min{R, 1} and i large enough so that r;(Ry + 1) < R
we have

T, |w]|(B(z, 7)) w(B(@Q+riX,rry))
(230 ABQr) T w(B@n)
> w(B(Q—i—T'iXZ‘,’I“i(?”— ’X—XZD)
- w(B(Q, 1))

w(B(Zi, 5))

= S(B(Zi.ri(Ro+2))

>CF>0.

where k € N is such that 27%(Ry 4+ 2) < £ < 2-(E=1(Ry +2). Thus

(2.31) V(B(x,2r)) > VY(B(z,7))

. T, [wW](B(z,7))
= s e B Q)

Thus (2.31) ensures that = € spt W. This shows that lim ri_l(spt w— Q) C spt ¥. To show the
11— 00

>CF>0.

opposite inclusion assume that X ¢ lim r !(spt w — Q) there exists {r;, } < {r;}, ri, \, 0 such
i—00 7 k k

that d(X, r;}cl(spt w—Q)) > €. Thus B(z, g)N r;kl(spt w—Q)=0. For p € CX(B(X, D)) we
have

. 1 Y -Q B
(232 Jote = m Sty [+ (57) =0

which ensures that X ¢ spt W. |

The following lemma is a simple geometric measure theory fact which allows us to give an estimate
on the Hausdorff dimension of sets which approach (n — 1)-planes locally.

10



Lemma 2.4 Let X C R™ be such that VQ € X

, , d(y, L)
2.33 lim Oy (Q,r) =0 where Bx(Q,r) = inf sup .
( ) r—0 ( ) ( ) LeG(n,n—1) yEB(Q,r)NS r
Then
(2.34) dimy ¥ <n—1.

The following proof is an adaptation of the argument used in [20] to prove Lemma 3 in Chapter 3,
84.

Proof. Let @ € ¥. Given € > 0 there exists rg . > 0 such that for r < rg ¢ there exists an (n — 1)
plane L(Q,r) through @ so that

(2.35) YNB(Q,r) C (L(Q,r)NB(Q,r) : er).
Note that for € > 0
10

(2.36) S =|J3%; where I; = {Q € £ : rq,c > 5

J=1

Without loss of generality we may assume that 0 € ¥. Let k € N. For jo > 1 cover ¥, N B(0, k)
by sets {Cs}s>1 of diameter less than § > 0. Choosing 0 < 2]% we can ensure that each such set is
contained in a ball of center () € X, and radius rg = diam Cy for some s with @) € C; less than ¢,
i.e. rg < 757¢.. Note that B(Q,rg) N L(Q,rq) can be covered by Ne="! balls {B;}; centered in
L(Q,rq) with radius 5erg and such that the balls of same center and radius erg are disjoint. Here

N > 0 is an absolute constant that only depends on n. Thus for v > 0

(2.37) > (diam B)" 7 = (Berg)" Y Ne " = 5" N T
l
Note that if v > —% then
. n— 1 n—1
(2.38) Z(dlam B,)" 1 < 1o +7,
!

1

Thus for § < 55
~ 1.

(2.39) He (25, N B(0,k)) < M (%5, N B(0, k).
Letting 6 — 0 we conclude that Vj € N, and v > — In(4N5""1)/In(5¢)
(2.40) H (251 B(0,k)) = 0.
Thus (2.36) ensures that
(2.41) H (2N B(0,k) =0
for v > —% and € > 0. Letting ¢ — 0 we conclude that H"~1*7(X N B(0,k)) = 0,for all
7 > 0 and hence H"~!177(X) = 0 also. This implies that dimy ¥ <n — 1. [ |

11



3 Two sided locally non-tangentially accessible domains

Definition 3.1. A domain Q C R" is admissible if

e 0T =Qand O = int Q° are regular for the Dirichlet problem.
e IOt =00 = 90N.

e There exist points X* € QF such that for every point Q € 9Q there exists 0 < R <
min{d(XT),5(X )} satisfying u € C°(B(Q, R))NW2(B(Q, R)), where §(X) = dist (X, 92)),

(3.1) w(X) = Gi(X,XT) for X € Q"
u(X) = —G_(X,X7)for X € Q

and G4(—, X*) denote the Green function of QF with pole at X*.

Notation: If Q is admissible so is int Q¢. Let Q be an admissible domain we denote by w® the
harmonic measure of QF with pole X*. Note that in this case u* = G4 (—, XT).

The monotonicity formula of Alt, Caffarelli and Freidman plays a role in this work. We recall
several of the results which will be used later.

Theorem 3.1 [1] Let Q be an admissible domain. Then Q € 0N there exists 0 < R < min{§(X1),5(X )}
such that the quantity

1 |Vut|? 1 |Vu~|?
3.2 +(Q,r) = / VR gx ) / VYT gx
(3:2) (@) (7‘2 B 1X — Q"2 2 g |X — Q"2
is an increasing function of v for r € (0, R) and v(Q, R) < co.

Note that the ACF-monotonicity formula ensures that

(3-3) (@) = lim ¥(Q,7)

exists and it is a non-negative finite quantity. A combination of the results of Alt-Caffarelli-
Friedman, Beckner-Kenig-Pipher and Brothers-Ziemer asserts that if v(Q) > 0 then all blow-ups
of the boundary at @ are (n — 1)-planes (see [1], [2] and [5]). This last fact will not be used here.

Our immediate goal is to estimate v(Q,r) in terms of w* and u*. Let ¢ € C2°(R™). The harmonic
extension v, of ¢ to 2 (i.e Av, =0 in 2 and v, = ¢ in 0N) satisfies

(3.4 0a(Y) = = [(VG(Y.X), Tox) dx
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Let R < min{6(X*),6(X7)}, 2r < R, Q € 02 and ¢ = 1 on B(Q, %), ¢ = 0 on B(Q,2r)°,
0 <¢<1and Vgl < % By the maximum principle U;E(Xi) > wt(B(Q,r)). Here Uf; denotes
the harmonic extension of ¢ to Q. Hence by (3.4) we have

(3.5) w*(B(Q, 7)) V|

IN

)
T JB(Q2r)\B(Q,r)

1/2 1/2
9 (/ ‘vui‘Z ) (/ ’X _ Q|n—2>
r \UB@a2n\B@n X — Q" BQ2r)\B(Qr)

IN

which yields

- B _ (1 / W') :
1 = r2 B(Q.2r\B(Q.r) X — Q=

and

(3.7) WHB@Qr) @ (B@I) _ o o1/

,r.nfl rnfl

Note that A(u*)? = 2|Vu*|? > 0 because u™ is zero on the support of the measure Au®. Using
Cacciopoli’s inequality as well as the fact that (u®)? is subharmonic (and therefore the averages
over spheres are increasing as a function of the radius) we have for @ € 99 that

(3.8) / B ATl 1/ A
' BQr) | X — Q"2 2 Jpgm X = Q"2
1 our n-—2
412 + 12
= (u)*(Q)+ / U —|—/ u
(u™)%(Q) 2 Jopon or T2l 8B(QM( )
— [ P [y
7 JB@Qur) 2r"= JaB(@Q.r)
1 n—2
Cﬁ (u:t)2+ 5 nl/ (U:I:)Z
B(Q,2r) r dB(Q,r)

o 2r
ot () + 2/ / (wh)? ) ds
™ JB(Q.2r) 2 J, 9B(Q,5)

Cin (ui)Q
" JB(Q,2r)

IN

IN

IN

We have proved the following result:

Lemma 3.1 Given Q C R™ an admissible domain. Let R < min{6(X1),5(X ")}, 4r < R, Q € 99,
then

1/2 1/2
WwE(B(Q, 7)) 1/ [Vt ] 1 / +

39) L%l oo ~—omnz) =Clm wr)

(3.9) =1 r? J@ar 1X — Q"2 i B(Q,4r)( )

13



Therefore

SB@N) BRI g oy

1 1
C / 'LL+ 2 . / u” 2
(7””2 b )> (T"H s@an )

Remark 3.1. For Qg € 092, rg < % and Q € B (Qo, %0) N 0R, we have for r < 2,

(3.11) Q1) < 7 (@)

N

(3.10)

(@, 2r)

IN

1 1
< C n/ @) - | = / (u™)?
(7'0+2 B(Qro) 6" JB@uro)
Moreover
wT(B(Q,r)) w (B(Q,r 1 C
(3.12) (Tn(_l ). (r"(_1 ) < Cy(Q,2r)z < TnJrQHUH%P(B(QOATO))'
0

Here C only depends on n. Thus Beurling’s inequality (see [9] Chapter IV, Theorem 6.2 and
Chapter VI, proof of Theorem 6.3) holds in higher dimensions.

Definition 3.2. A domain 2 C R" satisfies the corkscrew condition if for each compact set K C R"™
there exists R > 0 such that for Q € 9QNK and r € (0, R] there exists there exists A = A(Q,r) € Q
such that M~1r < |A — Q| < r and d(4,9Q) > M~1r. If Q is unbounded we require that R = oc.

Definition 3.3. A domain Q C R" is locally non-tangentially accessible (NTA) if

1. OQF satisfy the corkscrew condition.

2. Harnack Chain Condition. Given a compact set K C R™ there exists R = R > 0 and M =
Mpc > 1such that if e > 0, and X1, Xo € QNB(Q, ) for some Q € 0QNK, r < R, d(X;,00Q) >
e and | X1 — X3| < 2F¢, then there exists a Harnack chain from X7 to Xs of length Mk and such
that the diameter of each ball is bounded below by M ~!min{ dist (X1, 99), dist (X2,0)}.
If © is unbounded we require that R = oo.

If © is bounded and locally NTA then 2 is NTA as defined in [11].

In particular since most of the results concerning the behaviour of non negative harmonic mea-
sures on NTA domains are local, suitable modifications hold for locally NTA domains. We briefly
summarize the most important ones in the current context.

Lemma 3.2 ( [11], Lemma 4.1) Let Q be a locally NTA domain. Given a compact set K C R"
there exists B > 0 such that for all Q € O0QNK, 0 < 2r < Rk, and every positive harmonic function
w in QN B(Q,2r), which vanishes continuously on B(Q,2r) then for X € QN B(Q,r)

(3.13) u(X)<C (X;Q’>Bsup{u(Y) 'Y € 9B(Q,2r) N Q).

here C' only depends on K.
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Lemma 3.3 ( [11], Lemma 4.4) Let Q be a locally NTA domain. Given a compact set K C R"
forQ € 9ONK and 0 < 2r < Rg. Ifu > 0 is a harmonic function in QN B(Q,4r) and u vanishes
continuously on B(Q,2r) N OQ then

(3.14) u(Y) < Cu(A(Q,r)),
for allY € B(Q,r) N Q. Here C only depends on K.

Lemma 3.4 ( [11], Lemma 4.8) Let 2 be a locally NTA domain. Given a compact set K C R™
for Q € 0QNK, 0<2r < Rg and X € Q\B(Q,2r). Then

Wt (B(Q.7))
r2GAQ, ), X)

(3.15) c < <C,

where G(A(Q, 1), X) is the Green function of 0 with pole X .

Lemma 3.5 ( [11], Lemma 4.8, 4.11) Let Q be a locally NTA domain. Given a compact set
K CR" i M >1and R > 0, are as in Definition 3.3, for Q@ € 00N K, 0 < 2r < R, and
X € Q\B(Q,2Mr), then for s € [0,7]

(3.16) W (B(Q,25)) < Cw™ (B(Q, 5)),
where C > 1 only depends on K.

Definition 3.4. A domain Q C R” is 2-sided locally non-tangentially accessible if QF are both
locally NTA.

Lemma 3.6 Let Q2 C R™ be a 2-sided locally NTA domain, then 2 is an admissible domain.

Proof. Lemmas 3.2 and 3.3 ensure that there exists M > 1 depending on the NTA constants of
Q% such that for X* € O*, and for r < 57 min{6(X™),5(X )} if X € QF N B(Q,r) then

(3.17) 626,32 < cas (@, x5 ()

where 3 and C depend on n and the NTA constants of QF.
Thus u = G (=, X1) - G_(—,X7) € CO%B(Q, R)). Recall that for X € B(Q,r) N Q*

Gi(X,X%)

(3.18) IVGL(X, X5 <C, 5%

We claim that there exist 7 > 0 and R € (0, Rp) so that

£\ 2+7
(3.19) / (Gi(X’X)> dX < o0 for r < R.
B(Q.r) 6(X)

15



Note that

(3.20) / (Gi(X’Xi))m dX = i / (Gi(X’ Xi)>2+n
B(Q.r) §(X) e er<a(0<ain 6(X)

cover {X € B(Q,r);277 7 Ir < §(X) < 279} NQF = A;E by balls {B* (X-j = )}f\fzj1 such that

17 2]7—2
Xij € A;.t, |Xf - X l] | > 5= for i # [. These balls have finite overlaps bounded by a number which

only depends on n. Moreover dist (BjE (Xij, 2]_2) N A;L, 89) > 5772- Note that for X € A;-“
(3.13) yields

(3.21) G (X, XH) <CGL(AT(Q,r); XT)2798

and

G(X, X))\t B ‘ B
— X < (14n) 93 (14n) 9—3B(1+n) A+ P
/2j1rS6(X)<2jr ( 0(X) > d < COr GL(AT(Q,r), )

G(X,XF)

. ——dX.
/2—f—1r<5(X)<2—jr 6(X)

(3.22)

For X € B+ (X{ : W) [11, Lemma 4.8] yields
GL(X, X") W' (B(Qx,4(X))

where Qx € 99 is such that | X — Qx| = d(X). The notation a ~ b means that there exists a
constant, C' > 1 such that C~! < a/b < c¢. By Harnack’s principle for X € B+ (X.j L ) N A;r

79 272

(3.24) G (X, XF) ~ Go(XT, XT).

79 9272
the doubling property of w* (see [11], 4.9 & 4.11), (3.23) and (3.24) we obtain that for X €
B+ (X, 5= ) N AF
J

REDY ]

Note also that for X € BT (Xj L ) N Aj, 0(X) ~ 55 ~ §(X7). Combining this remark with

Go(X,X*) Gyx[.xt) ¢ (B(el5))

6(X) 5(X7) (&)™

(3.25) -
2l

where Qf € 09 is such that 5(Xf) = |ij - Qf| In particular

Q- @il = X =X/ - 1X] - @il - 1X] - Q
oy TS
X7 =X 5 = 572 97 = 9

Y
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. N;
Thus {B ( 7 L) } '71 is a disjoint family of balls in B(Q, 2r). Hence the doubling property of w™
(2

i) 27

and (3.25) yield

N;j

G(X, XT) G(X, XT)
3.26 ————dX = ————dX
(3.26) /z—j—1<6(X)<2—jr 6(X) Z/A*ﬂfﬁ (=) O
Nj
< CZWJF T2CQJ“T2 ))Hn(A;—mB+(Xg)
9—J

< WWWB(Q,T))

< C277rwt(B(Q,r)).
Combining (3.20), (3.22) and (3.26) we obtain

G+(X,X+)>2+17 S (L) () o
3.27 TR S — dX < C 27T =d oI
o [ (%5 =0y
1+
| <G+<A*<§vr>aX*>> L (BQ)).

Ifn < % the series in the r.h.s. in (3.27) converges. The estimate for G_(—, X ™) is identical.
Thus using (3.18), (3.15) and (3.27) we conclude that

+ 240 - 241
24n w (B(Q7T)) w (B(QaT))
(3:28) / o VTS < B (e e N 1 [(ET R
Hence u € W2(B(Q,r)) and Q is admissible. |

Theorem 3.2 Let Q C R™ be a 2-sided locally NTA domain. Given a compact set K C R™ there
exists Ry € (0, min{d(X™),0(X ™)} such that for 4r < Rk and Q € 90N K

ABQr) (1 verp
(3.29) e <r2 /B(Q’T) |X_Q|nQdX>

and

(3.30) Q. r) +(i(_Q177')> W(TB;(_C%T))

NI

The proof is a straightforward combination of the doubling property of w™ (see (3.16)), (3.9), (3.14)
and (3.15). The constants that appear (3.29) and (3.30) depend on the set K.

We turn our attention to the tangent structure of 2-sided locally NTA domains.

17



Let Q@ C R™ be a 2-sided locally NTA domain. Let {r;};>1 be a sequence of positive numbers such
that lim;_, r; = 0. Consider the domains

1 1
(3.31) 0= 7(5# — Q) with 99 = 7(89* -Q),
j j
the functions
ut(r; X + Q)

(3.32) uH(X) = ——2 - 2

! wE(B(Q,r5)) 7
and the measures

+

E

(3.33) wi(E) = w B+ Q) g C R™ a Borel set.

J

- wEBQ. 1))

Note that Lemma 3.4 ensures that given a compact set K C R™ containing @), for j large enough
(depending only on K)

ut(AF(Q, 1)) n

—1 —2
(3.34) Ccil < EBQ.r) " < Ck.

Here Ck is a constant that only depends on K and Ai(Q,rj) denote the non-tangential points
associated to @ at radius r; in 0.

The boundary Harnack principle (see Lemma 3.3) yields that for N > 1, X € B(0,N) and j large
enough depending only on NV

(3.35) uF(ri X + Q) < Cnxu™(A¥(Q,1))).

Thus combining (3.32) and (3.34) we obtain that

(3.36) sup  sup u;t(X) < Cpn,g < 0.
j>1 XeB(0O,N)

Furthermore since w* are locally doubling (see Lemma 3.5)

(3.37) ililfwji(B(O,N)) < Cng < 0.

Theorem 3.3 Let Q) C R™ be a 2-sided locally NTA domain. Using the notation above, we have
that there exists a sequence (which we relabel), satisfying as j — oo

(3.38) jS — 0 in the Hausdorff distance sense
uniformly on compact sets
(3.39) BQ;E — 00E in the Hausdorff distance sense

uniformly on compact sets

18



where QX are unbounded NTA domains with 0QL, = 0Q. Moreover, there exist ut, € C(R™)
such that

(3.40) u]i — uL uniformly on compact sets
and

Aut =0 in QL
(3.41) uf =0 on 0L,

uL >0 in QF .
Furthermore
(3.42) wj-c — w weakly as Radon measures.
Here wL are the harmonic measures of QL with pole at infinity, corresponding to uL,, i.e. Yo €
Ce(R™),
(3.43) /i ut Ag :/ . @ dwE .

(973 0%

For the proof of this theorem see [14] section 4.

When € is a 2-sided locally NTA domain, by the differentiation theory of Radon measures (see [7])
we know that

(3‘44) 0 =AUAyUA3U Ay,

where

(345) A= {Q €000 < h(Q) = §2(Q) = Dori (@) = ling O < OO}
(3.46) Ay = {Q €00 Dyrw™ (@) = }%fm - OO}

(3.47) As = {Q €00: Dorw (@) = lﬂm B 0}

(3.48) Ay = {Q € 90 : lim “_B@:1))

S m does not exist } .

Note that:
e wh(A2) =0, w (A3) =0 and wi(A4) =0.
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e wm L w  in Ao U Ag.
e w™ L Aj and w™ L A; are mutually absolutely continuous.

e By the Radon-Nikodym theorem h € L}, (w") and ¢ € L}, .(w™).

loc loc

Define
(3.49) [={Q e Av: hQ) = lim fponhdo™, im fpqmn h(P) — h(Q)ldw™(P) = 0}.
Note that w*(A;\I') = 0.

Theorem 3.4 Let Q C R” be a 2-sided locally NTA domain. For QQ € I' (defined in (3.49)) the
blow up procedure in Theorem 3.3 yields

3.50) wh = wy
(3.51) Uoo = UL —ug, is a harmonic polynomial in R™.

Furthermore there exists n = n(n) > 0 such that if Q is a n-Reifenberg flat domain (i.e for each
compact set K C R"™ there exists ri > 0 so that for P € OQNK, andr € (0,7x), Boo(P,7) < n(n)),
then us 1s linear. Here

.
(3.52) Boo(P,1) = - LeGl(Irfn—l) DjoQenN B(P,r); LN B(P, )],

and D denotes the Hausdorff distance between sets.

Proof. Let Q € I', and {r;};>1 a sequence of positive numbers such that lim; .., 7; = 0. Suppose
that (3.38), (3.39), (3.40), (3.41) and (3.42) hold. Let ¢ € C.(R™) then

(3.53) /89?[ pdwt = méQiSO(PmQ) duw™(P).

In particular if spt ¢ € B(0, M) then

(3‘54)/89,_ pey = w(B(lQ,Tj)) /69 v (PT_J Q) h(P)du (P)

_ 1 _ 1 P_Q .
B OLB(Q,rj)hdwﬂL W+(B(Q,rj))/90< r >h(P)d (P)
_ Q) 1 PoQy
= /JDB(Q77~j)hdw+ wt(B(Q,rj)) /an)( v )d (P)
1 ‘ 1 P_g

hdw™ wH(B(Q, 1)) /Bgz(p( v

_|_
FB@r)

) (h(P) - h(Q))dw (P).
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Thus using the fact that w* is locally doubling (3.54) yields

/ pdu; hQ) / du? llolloo

09; FB(Qrjy hdw™ /0] FB@Qryhdwt

wh (B(Q, Mr))
wH(B(Q,75))

Cr,mllello
A P~ QU (P
B(Q,r;)taw

IN

S I1P) = HQ)dr (P)

IN

Since @ € I letting j — oo we obtain

(3.55) / pdwy, = / odwd
o0k, 005

for every ¢ € C.(R™). Since 9Q} = 905 to show that us = ul, — uy, is harmonic in R™ let
v € CX(R) by (3.55) we have

(3.56) /uooAap = / Uso ApdY — Uso ApdY
" oL Q5%

= / pdwl — / pdw, =0
2% 905

Since uq, is continuous in R™, it is weakly harmonic and therefore harmonic in R™. Note that
Uso(0) = 0. An argument similar to the one that appears in the proof of Theorem 4.4 in [14] shows
that u~ is a harmonic polynomial. Theorem 4.1 in [13] shows that given § > 0 there exists n > 0
such that if Q is 7-Reifenberg flat then w™ is §-doubling as in Definition 4.4 in [14]. The same
argument as in the proof of Theorem 4.4 in [14] shows in this case that if w* is § doubling with
nd < 1 then us is linear. [ ]

Corollary 3.1 There exists n > 0 such that if Q0 is a n-Reifenberg flat domain then

(3.57) dimy I' <n—1.

Proof. Theorem 3.1 in [13] shows that if 7 is small enough depending only on n then © is a 2-sided
locally NTA domain. Thus by Theorem 3.4 for @) € T all blow-ups of 92 at ) are the zero set of
linear polynomial that is an (n—1)-plane. For Q € 99, the last remark in Theorem 3.4 ensures that
lim, 0 B0 (@, 7) = 0. Thus given € > 0 there exists rg . > 0 such that for r < 7q¢; foo(Q,7) < €,
which implies that there exists an (n — 1) plane L(Q,r) through @ so that

(3.58) NN B(Q,r) CONNB(Q,r) C (L(Q,r)NB(Q,r) : er).

Thus for @ € 99, lim,_,g B9a(Q,r) = 0. Lemma 2.4 yields the conclusion of the corollary. |
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4 Tangent structure and size of I

Let F be the set of (n — 1) flat measures in R”, i.e.
(4.1) F={cH" 'LV :c€(0,00);V € G(nn—1)}.

Note that since G(n,n — 1) is compact, F has a compact basis, and it is closed under weak
convergence of Radon measure.

Lemma 4.1 Let h be a harmonic polynomial in R™ such that h(0) = 0 and {h > 0} and {h < 0}
are unbounded NTA domains. Let w be the corresponding harmonic measure, i.e. Yo € C°(R")

(4.2) / hAg :/ h™Ap :/ wdw.
{(h>0} {h<0} {(h=0}

There exists eg > 0 (depending on the NTA constant of {h > 0} and on n) such that if for some
ro >0

(4.3) dy(w,F) <€ forr>ry, thenw e F.

Remark 4.1. Note that h is the Green’s function with pole at infinity for {h > 0} and w is its
corresponding harmonic measure.

Proof. Let 7 > 1 and r > ry there exists ¥ € F such that F,,.(¥) =1 and

Thus
(4.5) F(¥) - e < jj}f(“:j) < F,(¥) + e,

Since U = ¢cH" 'LV, Fr (V) = 1 = ¢4 (7r)" and Fp(¥) = 77" Thus given § > 0 (small

1
-1\ 7
enough) for 7 € (1,7, 5) with 7, 5 = (563 ) for r > rg (4.5) yields

(4.6) (1+6)r < ?M < (140"

r(w)

Applying (4.6) to 7/r for j = 1,--- ,¢ with £ € N and r > rg, then multiplying the outcomes we
obtain

Fr(w)

(&7 O

<1487 "
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Since w is a doubling measure with doubling constant depending only on the NTA constant of
{h > 0} and on n (see [15] Lemma 3.1 or [11] Lemma 4.9, 4.11) from the definition of F, (see
Definition 2.1) we have that there is C' > 1 such that for » > 0

(4.8) C~lrw(B(0,1)) < Lw (B (o, %)) < Fp(w) < rw(B(0,7)).

Combining (4.7) and (4.8) we obtain

_ 1 -n w(B(0,r n
(4.9) CHA+6) 7 < M <Cl1+8)7""
Thus
(4.10) cl 1+ 6)”%%’[8:)) < X8O < oa 4 6)“‘%

By Lemma 3.4 in [15] (see also Lemma 4.8 in [11]) we know that there exists C' > 1 depending only
on n and on the NTA constant of {h > 0} such that

(4.11) o< m <.

Here A(0,7) € {h > 0} denotes a nontangential point for 0 at radius > 0. Combining (4.10) and
(4.11) we have

¢ ¢
(4.12) cl 1+ 5)éh(f4(7(_)ev: 7)) < h(A(0,7)) <cay 5)6;4142’:7“))‘
If 146 = 77 with 3 € (0,1) then (4.12) becomes

¢ ¢
(4.13) C—lT—mh(A(fé: r) . h(A(TO,r)) <ot W |

Note that by choosing § = 4ey (with €9 > 0 to still be determined) then 7,5 = 79 = 9 and
1+6 =144 = 7%/ for some 7 € (1,2'/") and § € (0,1) provided ¢y < i(21/” —1). For
s € (0,77g) there is ¢ > 1 such that 777y < s < 7. For such s, the boundary Harnack’s
inequality (for NTA domains (see Lemma 3.3 [15], also Lemma 4.4 [11])), combined with (4.13)
yields

h(A(0, s)) h(A(0,7r¢))
Ti=1p,
03" (A(0,70))
To
s\ h(A(0,0))
COr2+8 <> A

7o To

h(A(0,7"r¢))
7lro

C <Cr

(4.14)

Crr

IN

IN
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Since h is harmonic using its Poisson integral formula and computing its second derivatives (as in
the proof of Theorem 4.4 in [14]) from (4.14) we obtain that for X € B(0, s)

h(i);s) < C(r, ro)sﬁ_lh(ASZ’ TO)).

(4.15) e Doy h(X) | <

Since 3 < 1 letting s — oo we conclude that & is a polynomial of degree 1, and therefore w is an
(n — 1) flat measure. |

We will now return to the question of the extent to which the relative behavior of the interior and
exterior harmonic measures determines the size of the boundary of a domain.

Remark 4.2. Note that for Q € T’

(4.16) Tan (w", Q) = Tan (W™, Q)

Theorem 4.1 Let Q be a 2-sided locally NTA domain. Let T be as in (3.49), and
(4.17) I*={Qel: Tan(w*, Q)NF #0}.

Then for Q € T*, Tan (w*, Q) C F. In particular, all blow-ups of O at Q € T'* are (n — 1)-planes,
and dimy; T* < n — 1. Furthermore Tg = T\I'* satisfies w*(T'y) = 0.

Proof. For Q € I' the blow-up procedure described in Theorem 3.3 always yields a harmonic
polynomial (see Theorem 3.4). Let h be a tangent harmonic polynomial of u at @, with {h > 0}
{h < 0} (unbounded NTA domains) and v the corresponding harmonic measures to h*. By [10]
the zero set of h, i.e. d{h > 0} decomposes into a disjoint union of the embedded C! submanifold
h=t{0} N {|Dh| > 0}, together with a closed set h=1{0} N |Dh|~!|0| which is countably (n — 2)-
rectifiable. Furthermore by Lemma 2.3, spt v = h=1{0}. For Y € h=1{0} N {|Dh| > 0} and
X eR”

(4.18) by o () = PUXEY) vy, x)

r r—0

uniformly on compact sets. Thus 7~ *(0{h >0} -Y) — <£282|)J- =V as r — 0, in the Hausdorff

distance sense and r~(""VTy,.[v] — |DA(Y)|H"~' L V. Therefore, for Y € h='{0}N{|Dh| > 0} all
non-zero tangent measures of v at Y are flat, i.e. Tan (v,Y) C F. By Theorem 2.3 for w = w® a.e.
Q €T if v € Tan (w, Q), then for all Y € spt v, Tan (v,Y) C Tan (w, Q). Thus, for w a.e. Q €T,
F N Tan (w, Q) # (), which proves that w®(Tg) = 0. Our goal is to use Corollary 2.1 combined with
Lemma 4.1 to show that for @Q € I'*, Tan (w,Q) C F. Let M = F U Tan (w, Q). Recall that F
the set of all (n — 1) flat measures is a d-cone with compact basis. Since w is a doubling Radon
measure Theorem 2.2 ensures that for @ € I', Tan (w, Q) is a d-cone with compact basis. Hence M
is also a d-cone with compact basis. Moreover F C M, and F is relatively closed with respect to
weak convergence of Radon measures. By Lemma 4.1 there exists ¢y > 0 such that if d,.(u, F) < €
for all > rg, then p € F. Corollary 2.1 ensures then that for @ € I'*, Tan (w, Q) C F. Lemma 2.3
guarantees that all blow ups of 99 at @) converge in the Hausdorff distance sense to an (n—1)-plane.
Thus for @ € T', lim, o0 Boo(Q,7) = 0. As in the proof of Corollary (3.1) this implies that for
Q € I' lim, o B{:(Q,7) = 0. By Lemma 2.4 we conclude that dimy I'™* <n — 1. [ |
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Corollary 4.1 Let Q) be a 2-sided locally NTA domain. Then the boundary of (2 can be decomposed
as follows:

(4.19) N=T"USUN,

(4.20) WLl IM<w LIF<wh LT wt Lw™ in S, and wT(N)=w (N) =0.
Moreover

(4.21) dimy I <n— 1.

Furthermore, if w®(T'*) > 0 then
(4.22) dimy '™ =n—1.

Here T is as in Theorem 4.1, S = Ao U A3 (see (3.46) and (3.47)), and N = Aj\I'™* U A4.

Proof. We only need to show that that (4.22) holds whenever w®(I'*) > 0. By (3.12) for Qg € 09,
ro < 1/8min{d(XT),6(X7)}, Q eT* N B(Qo, %) and 0 <7 < 1o

WHBQ.) w(BQ.r)

(423) yn—1 yn—1 < C(QOaT(J)
+ 2
<ﬁ(w)hdw+) <W(fn(?’r))> < C(Qo,r0)
Thus
1/2
(121 o5 (o) gt 5@, 80

logr log r log r
Letting r tend ot 0 in (4.24) we obtain that

. logw ' (B(Q,r))

(4.25) lim inf >n—1
r—0 log r
By Proposition 2.3 in [8] from (4.25) we conclude that, since wt(I'*) > 0, dimy T™* > n — 1. |

Theorem 4.2 Let Q be a 2-sided locally NTA domain such that H"~' L 09 is a Radon measure.
Then as in Theorem 4.1, 0Q =T*USUN and T'* is (n — 1)-rectifiable.

Proof. Our strategy consists in proving that the density of H"~! L I'* exists and is 1 a.e.. Then
we appeal to Theorem 17.6 in [18], which provides a rectifiability criteria.

First we prove that for Q € T'* (see (4.17) for the definition)
H 1 (B(Q,r) N oN)

wp—17"1 =

(4.26) or (" L a9, Q) = lim inf
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For Q € I'* and 0 > 0 by Theorem 4.1 there exists rg > 0 so that for r < rg there exists L(Q, ) an
(n — 1) plane containing @ so that

(4.27) %D[&Q N B(Q, ) L(Q,7) N B(Q,r)] < 6.

Since QF satisfy the corckscrew condition, we may assume that for r < rq there exist AT (Q,r) C QF
so that

r

M

(4.28) B (Ai(Q,r), ) c OFNBQ, 7).

If 7(Q, r) denotes the unit normal to L(Q,r) (4.27) and (4.28) ensure that for § small (§ < 51)

2M
(AE(Q,7) — Q,7(Q,r))| > 20

We may assume that (AT(Q,r) — Q,7(Q,r)) > 26r. If Z € B(Q,r) and (Z — Q,7(Q,r)) > 26r
then Z € QF, otherwise Z € Q™ (since Z &€ 99 by (4.27)) and by connectivity there would be a
point P € 99 in the segment joining AT (Q,r) to Z. Such P would satisfy (P — Q,7(Q,r)) > 26r
which contradicts (4.27). This proves that

(4.29) {Z € B(Q,r): (Z - Q,7(Q,r)) >26r} Cc QT NB(Q,r)
and
(4.30) {Z e B(Q,r): (Z - Q;7i(Q,r)) < —=2ir} C Q" NB(Q,r).

Thus for z € L(Q,r) N B (Q, rv1— 4(52> a simple connectivity argument shows that there exists
P € 0 such that P = (z,t) with [t| < ér. Hence P € 02N B(Q, ). If 7o, denotes the orthogonal
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projection onto L(Q,r) we have for § small enough

(4.31) HHOQNB(Q,r)) > H" (g, (02N B(Q,r))
> wpor" (1 - 452)%1
> wn—lrnil(l - 5)7

which ensures that (4.26) holds. Since H"~! L 99 is a Radon measure for H" ! L 9§ -a.e. Q

HH(B(Q,7) NoN) <1

Tnfl —

(4.32) O " L (H" 1 L 00, Q) = limsup

r—0 Wn—1

)

see [18] Theorem 6.2. Thus combining (4.26) and (4.32) we conclude that for @ € T'*,

H 1 (B(Q,r) N oY)

rnfl

(4.33) " I (H" 1 L 99, Q) = lim

r—0 Wn—1

=1.

Thus since H" ! L 92 is a Radon measure by Corollary 6.3 in [18] for H" !-a.e. Q € I'*
(4.34) O Y H" LA, Q) =0 Y H LT, Q) = 1.

Therefore Theorem 17.6 in [18] ensures that I'* is (n — 1)-rectifiable. |

The following theorem proves that there are no Wolff snowflakes for which w™ and w™ are mutually
absolutely continuous, answering a question in [16].

Theorem 4.3 Let Q be a 2-sided locally NTA domain. Assume that w™ and w™ are mutually
absolutely continuous, then

(4.35) H—dimw" =H —dimw™ =n— 1.

Here the Hausdorff dimension of w®, H — dimw™ is defined as in (1.2).

Proof. Since wt and w™ are mutually absolutely continuous it is easy to see that H — dimw™ =
H — dimw~. For each compact set K C R?, w™(I' N K) = w® (002 N K), hence by for I'* = I'\Ty
with T as in Theorem 4.1, w*(T* N K) = w(0Q N K), and dimy T* < n —1,ie. Vk >n —1,
H*(I'*) = 0 which implies that H — dimw® < n — 1 and H — dimw™ < n — 1. Since in this case
wE(T*) > 0 (by (4.19) and (4.20)), (4.22) yields (4.35). |

We conclude by having a second look at I' motivated by the 2-dimensional results in Chapter VI
of [9]. Denote by w = w*, and define

. w(B(Q,r . N
(4.36) FQZ{QEF:O<IH:1_S)51p(TSLQl))<oo}, Iy=TgNnTI,
(4.37) Iy = {Q el: limsupw(i(fi’r)) :0} Iy =T,nI™.
r—0
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Since w™ L Ay and w™ L A; are mutually absolutely continuous, and I' C Ay, see (3.49), I'y and T,
are well defined.

By (3.12) for Qg € 09, ro < 1/8min{d(X"),6(X )}, Q e TNB(Qo, %) and 0 < r < rg

(4.38) (ﬁw)hdw) (“W)Q < C(Qo, 70).

Thus for @ € I, limsup,_,, @B@r) ~ 5 which ensures that T = Ly UTy.

rn—1

Lemma 4.2 Let Q be a 2-sided locally NTA domain. Then H™ ' L Iy and w T’y are mutually
absolutely continuous. In particular H™ 1 L Ly is o-finite. Furthermore I'" = I'y UT'y U Z with
w(Z) = 0. Moreover if for E C R™ Borel, w(I'; N E) > 0, then H" (T} N E) = .

Proof. Let

> i > —i 7 w(B(Q,r)) i
(4.39) Fg:HFg:U{QEFg;Q §hmsupT§2 .

i=1 r—0
By Proposition 2.2 in [8] for any Borel set £ C I and i, k € N
(4.40) 27'w(ENT, NB(0, k) <H" YENT,NB(0,k)) < 2" w(ENT, N B(0,k)),

which proves the statements that H"* ! L I'y and w L I'y are mutually absolutely continuous. The
statement about I'y is a simple consequence of Proposition 2.2 in [8]. [ |

Corollary 4.2 Let Q) be a 2-sided locally NTA domain. Then the boundary of () can be decomposed
as follows:

(4.41) 90 =T;UT;USUN,
where
(4.42) wh <wT <wh in TyUTy, W' Lw™ in S, and wh(N) =w™ (N) =0.

On T, H" 1 is o-finite, and w and H" ! are mutually absolutely continuous. On Iy for any Borel
set E, if (T3 N E) >0, then H" (T} N E) = oo.
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