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§1. GROUP SCHEMES 

1: NOI'ATICN SCH is the category of sclanes, RNG is the cata:pry of 

ccmnutative rings with unit. 

Fix a schane s - then the category SCH/S of schanes over s (or of s-schanes) 

is the category whose objects are the rrorphisns X -+ s of schemes and wl::ose rrorphisns 

M::lr(X-+ S, Y-+ S) 

are the rroqhisns X -+ Y of schemes with the property that the diagram 

x > y 

1 l 
s s 

conmutes. 

[Note: Take S = Spec { Z) -- then 

srn/s = srn. J 

2: N.B. If S = Spec(A) {A in RNG) is an affine sch:me, then tle tenninol-

ogy is "schanes over A" (or "A-serenes") and.one writes srn/A in place of 

SCH/Spec {A) • 

3: NOI'ATICN Abbreviate ~r{X-+ s, Y-+ S) to ~rs{X,Y) (or to ~rA {X,Y) if 

S = Spec (A)) • 

4: REMARK Tle s-sche:ne ids:S ..... s is a final object in SCH/S. 
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5: THEDREM SCH/S has pullbacks: 

x XS y > y 

l l 
x > s. 

[Note: Every diagram 

z l v q 
x XS y > y 

pl lg (f o u = g o v) 

~ x > s 
u f 

admits a unique filler 

such that 

p 0 (u,v)s = u 

q 0 (u, v) S = v. ] 

6: FORMALITIES I.et X, Y, Z be objects in SCH/S -- then 

and 
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7: REMARK If X, y ,x•, Y' are objects in SCH/S and if u:X -+ X', v:Y -+ Y' 

are S-mJrphisms, then there is a unique norphisn u xs v (or just u x v) rendering 

the diagram 

u 
x > x•· > s 

p r 
u XS v l 

x XS y > X' x Y' s 

q l l 
y > Y' > s 

v 

camn.itative. 

[SpellErl out, 

u xs v = (u o p, v 0 q)s.] 

8: BASE CHANGE Let u: s' -+ S be a norphism in SCH. 

• If X -+ s is an S-object, then X xs S' is an S'-object via the projection 

x XS S' -+ s I, 

denoted u* (X) or X (S, ) and called the base change of X by u. 

then 

e If X-+ S, Y-+ Sare S-objects and if f:(X-+ S)-+ (Y-+ S) is an S-nnrphism, 

Xx. S' s 

1 
S' 

--------> y XS s I 

l 



4. 

is a m:>rphisn of S ~..-objects, denoted u* (f} or f (S,} and callerl the base change of 

f by u. 

These considerations thus lre.d to a functor 

u*:SOI/S + SCH/S' 

callai the base change by u. 

9: N. B. If u' : S' ' + S' is another m:>rphisn m SOI, then the functors 

(u o u' } * arrl (u'} * o u fran SCH/S to SCH/S' ' are is:norphic. 

10: LEM-1A Let u:S' + S be a norphisn m SQI. Suppose that T' + S' is 

an S'-object -- then T' can be viewerl as an S-object T via J_X)stccmp::>sition with u 

and there are canonical mutually inverse bijections 

M:>rs' (T'' x (S' » : M:>r s {T ,X} 

· functor .ial m T' and X. 

11: NOI'ATION F.ach S-schane X + S detennines a functor 

(SCH/S}OP + SEI', 

viz. the assignment 

T +M::>rs(T,X} = Xg(T}, 

the set of T-valued pomts of x. · 

[Note: In tenns of category theory, 

~ (T} ;::: 11x + S (T + S} • ] 
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12: f 
LEMMA 'lb give a norphism (X -+ S) --> (Y -+ S) in SCH/S is equivalent 

to giving for all S-schanes T a map 

which is functorial .in T, i.e., for all norphisn.s u:T' -+ T of s-schanes tre diagram 

f (T) 
Xg(T) > Y

8
(T) 

XgCul l l Ys(u) 

~(Tt) 
f (T') 

> YS (T') 

carmutes. 

13: DEFINITION A ·group schane· over S (or an S-group) is an object G of 

SCH/S and S-m:>rphisns 

rn:G x
8 

G -+ G (''multiplication") 

e:S -+ G ("unit") 

i:G -+ G ("inversion") 

such that the diagrams 

-------> G 
rn 
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(idG1 e) 8 
G XS s > G XS G 

lm 
G > G 

id 
G 

{id.G,i)S 

G > G XS G 

l lm 
s > G 

e 

ccmrute. 

14: REMARK 'lb say that (G;m,e, i) is a group schane over s arcounts to 

say:ing that G is a group object in SCH/S. 

15: LEMMA Let G be an s-schane -- then G gives rise to a group s:::hare 

over s iff for all S-schanes T, the set G8 (T} carries the structure of a group 

which is functorial in T (i.e., for all S-m::>rphisns T' -+ T, the irxluced. map 

Gs{T) -+ Gs(T') is a h:m:m:>rphisn of groups). 

16: REMARK It suffices to define functor ial group structures on the Gs {A) , 

where Spec(A) -+ s is an affine s-scheme. 

['!'his is because rrorphisns of schanes can be "glued".) 

17: LEMMA Let u:S 1' -+ s be a norphisn in SClI. SuPJ.X>se that (G;m,e, i) is 
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a group schane over S -- then 

is a group schane over S' . 

[Note: For every S'-object T' -+ S', 

where T is the S-obj ect T' -+ S • __3_>S. ] 

18: 'IHEDREM If (X, Ox> is a locally ringed space and if A is a carmutative 

ring with unit, then there is a functorial s~t-theoretic bijection 

M:>r(S,Spec(A}} ~ M:>r(A,r(x,Ox>>. 

[Note: The "M:>r" on the I.RS is in the category of locally ringai spaces and 

the 11.M:>r" on the RHS is in the category of carmutative rings with unit.] 

19: EXAMPLE Take S = Spec(Z} and let 

Then for every scheme X, 

Therefore An is a group object in Sal called affine n...;.space. 

[Note: Here r(X,OX} is being viewed as an additive group, hence the under

lying multiplicative structure is being ignorerl.] 



8. 

20: N.B. Given any scheme S, 

is an s-schane arrl for every nnrphisn s' -+ s, 

21: NO'mTICN Write Ga in place of A 
1

• 

22: NOI'ATICN Given A in RNG, daiote 

by G Q A or still, by G A. a a, 

23: N.B. 

Ga,A = spec(Z[t]) xz spec(A) 

= Spec(Z[t] 9 A)= Spec(A[t]). 

24: LEMMA G A is a group object in SCH/A. a, -

There are tv,o other "canonical" examples of group objects in Sm/A. 

• G A= Spec(A[u,v]/(uv-1)) m, 

which assigns to an A-scheme x the IlR.lltiplicative group rcx,Ox> x Of invertible 

elatelts in the ring rcx,Ox> . 

-1 
• Gln,A = Spec(A[t11 , .•• ,tnn' det(tij) ]) 
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which assigns to an A-schane X the group 

of invertible n x n-matrices with entries in the ring rcx,Ox>. 

25: DEFINITICN If G and H are S-groups, then a h~rphis:n fran G to H 

is a rrorphis:n f :G -+ H of S-schanes such that for all S-scha:nes T the induced map 

f(T):Gs(T)-+ Hs(T) is a group hc:m::m:>rphian. 

26: EXAMPLE Take S = Spec (A) -'!"' then 

detA:GL A-+ G A n, m, 

is a hcm:m:>rphian. 

27: DEFINITIOO I.et G be a group schane over S -- then a subsche:ne (resp. 

an open subsche:ne, resp. a closed subscha:re) H c G is called an S-subgroup schane 

(resp. an open S-subg:roup schane, resp. a closed S-subgroup schane) if for every 

s-schane T, ffsCT) is a subgroup of G5 (T). 

28: EXAMPLE Given a i;x:>sitive integer n, µ A is the group object in SOI/A - .:.....n, -

which assigns to an A-schane X the multiplicative subgroup of r(X,OX)x consisting 

of· those <f> such that <f>n = 1, thus 

Hn,A = Spec(A[t]/(t
0
-l)) 

and µ A is a closed A-subgroup of G A • .:.....n, m, 

29: EXAMPLE Fix a prime number p and supi;x:>se that A has characteristic p. 
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Given a i;nsitive integer n, ct A is the group object in·SCH/A which assigns to 
-n, -

an A-scheme x the additive subgroup of r (X, Ox) consist:ing of those <P such that 

n 
<PP = O, thus 

n 
ct A = Spec (A[ t] I (tp )) 
-;1, 

and ~,A is a closecl A-subgroup of Ga,A· 

30: cn~STRUCI'ICN Let f:G + H be a hatDoorphisn of S-g.roups. Def:ine 

Ker (f) by the p.illback square 

Ker(f) 

Then for all S-schernes T, 

so Ker(f) is an S-group. 

= S x G 
H 

l 

----::> G 

s -----> H • 
e 

f (T) 

31: EXAMPIE The kernel of detA is SLn,A. 

32: N .B. other kernels are µ A and a. A. 
~- :...n, -n, 

33: cnwENTICN If P is a property of norphisms of schanes, then an S-group 

G has property P if this is the case of its structural rrorphism G + S. 
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E.g.: The property of nnrphisns of schenes being quasi-canpact, locally of 

finite type, separated, eta.le etc. 

34 : . LEMMA. I.et 

x•· ---> x 

yt: ---> y 

be a pullback square in sa.r. Suppose that f is a closed :i.nmersion -- then the 

sane h:::>lds for f ' • 

35: APPLICATICN I.et g :Y + X be a nnrphism of schemes tha.t has a section 

s:X + Y. Assurre: g is separated -- then s is a closed :i.nmersion. 

[The ccmnutative diagram 

s 
X >Y 

s 1 l ~/X 

is a pullback square in sa.r. But g is separated, hence the diagonal nnrphism 

'1y;x is a closed :imnersion. Now quote the preceding lama.] 

If G + S is a group sclane over S, then the cattX>sition 

e 
S-->G->S 

is id.8 • Proof: e is an S-i1Drphism and the diagram 
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e 
S-----> G 

j 
S-----S 

ccmnutes. 'Iherefore e is a sect.ion for the structural nnrphi.sm G -+ S: 

e 
G -> S > G. 

36: LEM-1A Let G -+ S be a group scheme over S -- then the structural 

nnrphisn G -+ S is separated iff e:S -+ G is a closoo .inmersion. 

[To see that "closed .inmersion" => "separated", consider the pullback square 

G > s 

/iG/S 1 l e 

G XS G > G . ] 
mo Cidc x i) 

37: LEM-1A If S is a discrete sclane, then every S-group is separated. 

38: APPLICATION Take s = Spec (k) , where k is a field -- then the structural 

nnrphism X -+ Spec(k) of a k-schane X is separated. 
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§2. SOI/k 

Fix a field k. 

1: DEFINITICN A k~gebra is an object in RNG and a ring hatmnrphisn 

k-+ A. 

2: NOI'ATICN ~ is· the category whose objects are the k-algebras 

k -+ A and whose norphisms 

(k -+ A) -+ (k -+ B) 

are the ring h<m:m:>rph.isns A -+ B with the property that the diagram 

A :>B 

r r 
k k 

ccmnutes. 

3: DEFINITION I.et A be a k-algebra -- then A is finitely generaterl if 

there exists a surjective hatmnrphisn k[t1, ... ,tn] -+A of k-algebras. 

4: DEFrnITICN I.et A be a k-algebra -- then A is finite if there exists 

a surjective h<m:m:>rphisn kn -+A of k-m:x:lules. 

5: N.B. A finite k-algebra is finitely generaterl. 

Recall nCM that SCH/k stands for SClI/Spec(k). 

6: ~ The functor 

A-+ Spec(A) 
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fran (AIG/k)OP to SOl/k is fully faithful. 

7: DEFlNITIOO Let X + Spec (k) be a k-schane -- then X is ·locally of 

finite type if there exists an aff :ine o:p:m cover:ing X = u U. such that for all 
iEI 1 

i, U. = Spec (A.), where A. is a finitely generated. k-algebra. 
]. 1 ]. 

8: DEFINITIOO Iet X + Spec(k) be a k-scha:ne -. then X is of finite type 

if X is locally of f:inite type and quasi~ct. 

9: LEMMA If a k-schane X + Spa:: (k) is loca.11 y of finite type and if u c X - , 

is an open affine subset, then r(u,Ox> is a f:initely generated. k-algebra. 

10: APPLICATia~ If A is a finitely generated. k-algebra, then the k-schane 

Spec (A) + Spec (k) is of finite type. 

11: LE.:MMA If X + Spec(k) is a k-schane of f:inite type, then all subschemes 

of x are of finite type. 

12: RAPPEL Let (X,Ox> be a locally ringed space. Given x E x, denote tm 

stalk of OX at x by OX - then OX is a local ring. And: ,x ,x 

• m is tm maxfual ideal in OX • x ,x 

e K{X) = 0x,x"M,c is the resU3.ue field Of 0X,x• 

13: CDNSTRUCTIOO Let (X,Ox> be a schane.. Given x E x, let u = Spec(A) 

be an affine open neighborhcx:>d of x. Denote by p the prime ideal of A corresponding 
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to x, hmce OX = Ou =A (tte localization of A at p} and the canonical ,x ,x p 

lmmorphisn A + AP leads to a norphisn 

Spec(Ox,x> = Spec(Ap} -+ Spe:!(A} = u c x 

of schemes (which is independent of the choice of U}. 

14: N.B. There is an arrow OX,x + K(x} r thus an arrow Spec(K(x}} + 

Spec COX } , thus an arrow ,x 

whose image is x. 

Let K be any field, let f :Spec (K) + X be a rrorphism of schemes, and let x J:e 

the image of the unique point p of Spec (K} • Since f is a rrorphism of locally ringed 

spaces, at tte stalk level there is a hcm::norphisn 

0 + 0 = K X,x Spec(K},p 

of local rings meaning that the :image of the maximal ideal m c OX is rontained x ,x 

.in the max:imal ideal {l} of K, so th.ere is an Wuced hanarorphism 

consequently, 

l :K (x} -+ K. 

f = i o Spec(l}. 
x 

15: SOIOLIUM Ttere is a bijection 

.M:>r(Spec(K),X} + {(x,l}:x EX, l:K(X} + K}. 
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If X -+ Spec(k) is a k-sche:ne, then for any x E X, there is an arrow 

spa:: ( K (x)) -+ x~ 

fran which an arrow 

Spec (K (x)) -+ Spec (k), 

or still, an arrow k-+ K(x). 

16: LEMMA Let X -+ Spec (k) be a k-schene locally of f :inite type -- than 

x E X is closa:i iff the field ertens:ion K(x)/k is finite. 

17: APPLICATION Let X -+ Spec (k) be a k-schene locally of finite type. 

AsSl.mte: k is algebraically closed -- then 

· {x E X:x close::l} = {x E X:k = K(x)} 

= M:>rk (Spec (k} ,X) :: X(k). 

18: DEFINITICN A subset Y of a top:>logical si;:a.ce X is dense in X if Y = x. 

19: DEFINITICN A subset Y of a top:>logical space X is very 'da1se in X if 

for every closed subset F c x, F n Y = F. 

20: N.B. If Y is very dense in X, then Y is dense .in x. 

[Take F = X:X n y = y = x.] 

21: LEMMA Let X-+ Spec (k) be a k-schane locally of finite type -- then 

{x E X:x closed} 

is very dense :in x. 

22: DEFINITICN Let X -+ Spec{k) be a k-schane -- then a :r;oint x E x is 
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called k-ratiDnal if the arrow k + K (x) is an isarorphism. 

23: N.B. Sending a k-norphism Spec(k) + X to its image sets up a bijection 

between the set 

X (k} = M::>rk (Spec (k) ,X) 

and the set of k-rational points of x. 

24: REMARK X (k) may very well be aapty. 

[Consider what happens if k ~/k is a proper field extension.] 

Given a k-scheme X + Spec(k) and a field extension K/k, let 

X (K} = M:>rk (Spec (K} ,X} 

be the set of K~valued i;:x:>ints of X. If x;Spec(K} + X is a K-valued p:>int with 

.image x E X, then there are field extensions 

k + K(X) + K. 

25: N.B. Spec(K) is a k-schane, the structural norphism Spec(K} + Spec(k} 

being derive:i fran the arrow of inclusion j :k + K.] 

let G = Gal(K/k.). Given cr;K +Kin G, 

Spec(cr}:Spec(K} + Spec(K}, 

hence 

Spec(cr} x 
Spec(K} ----> Spec (K} --:> x, 

and we put 

a • x = x o Spec (cr). 
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• a • x is a K-valued point. 

[There is a ccmm.itative diagram 

a 
K > K 

r j 
k > k ' 
~ 

so a e j = j 0 idk = j, and if 1T :X -+ Spec (k) is the structural :rrorphisn, there is 

a ccmnutative diagram 

Spec(K) 

Spec(j) l 
Spec(k) 

x 
--->X 

Spec(k) , 

f:D 1T o x = Spec (j) • The cla.lln then is that the d:iagram 

ccmnutes. But 

Spec(K) 

Spec(j) l 
Spec(k) 

x o Spec(o) 
-------> x 

l TI 

Spec(k) 

7T o x o Spec { o) = Spec { j) o Spec { o) 

= Spoc{O o j) 

= Spec (j).] 

• Th.e operation 

G x X{K) -+ X{K) 

(o,x) -> a • x 
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is a left action of G on X (K) • 

T CJ 

[Given cr,T E G:K --> K --> K, it is a question of checking that 

(CJ o T) • X = CJ • ( T • X) • 

But the IRS equals 

x o Spec (CJ o T) = x o Spec {T) o Spec (cr) 

while the RHS equals 

T. x 0 Spec(cr) = x 0 Spec(T) 0 Spec(cr).] 

26: NCYI'ATION Let 

KG = Inv(G) 

be the invariant field associated with G. 

27: LEM1A The set X(K)G of fixed };X)mts .in X(K) for the left action of 

G on X(K) co.incides with the set X(KG). 

28: APPLICATICN If K is a Galois extension of k, then 

X(K)G = X(k). 

Take K = ksep, thus now G = Gal (ksep /k) . 

29: DEFINITICN Supi;ose given a left action G x s + S of G on a set S --

then S is calle:i a G-set i£ v s E s, the G-orbit G • s is f.inite or, equivalently, 

the stabilizer G c G is an open subgroup of G. s 

30: EXAMPLE Let X + Spec (k) be a k-schane locally of finite type - then 
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v x E X(ksep), the G-orbit G · x of x in X(ksep) is finite, hence X(ksep) is 

a G-set. 

31: DEFINITION Let X + Spec(k) be a k-schane -- then X is ~e if it 

is of the f o:rm 

X = Jl Spec(K.), 
1EI 

1 

where I is sane index set and where K./k is a finite separable field extension. 
i: 

There is a category ET/k whose objects are the etal.e k~anes and there is a 

category G-SET whose objects are the G-sets. 

Define a functor 

<P :ET/k + G-SRr 

by ass:x:iating with each X in Er/k the set X (ksep) equipped with its left G-action. 

32: LEMMA <P is an eq.iivalence of categories. 

PRX>F 'lb construct a functor 

such that 

'!' o <P :::: id,.. and <I> o '!' :::: idG-SET' 
ET/k --

take a G-set S arrl write it as a union of G-orbits, say 

S = lL G • s .. 
.i.EI i 

Let K. => k be the finite sef.Eil"able field extension insme ksep corresp:mding to 
1 
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the op::n subgroup G c G am ass :ign to s the etale k-schene I I Spec (K.) • 
Si M 1 

Proceerl •••• 

The for030ing equivalence of categories induces an equivalence between the 

corresp::>rx:Ung categories of group objects: 

eta.J.e group k.,...schanes ::::: G-groups, 

where a G-group is a group wh:ich is a G-set, the underlying left act:ion. being by 

group autarorphians. 

33: c:x:NSTRIJCTION Given a group M, let ~ be the disjoint union 

_Ll Spec(k), 
M 

the constant group k-schane, tills for any k-schane X + Spec (k) , 

is tre set of locally constant maps X + M whose group structure is multipl.icat.ion 

of functions. 

[The tenninology is standard but not the best since if Mis nontrivial, then 

only if X is connected. J 

34: EX.AMPLE For any et.ale group k-scha:ne X, 

sep sep sep 
X xk Spec(k ) ::::: X(k )k xk Spec(k: ) • 

[Note: Here (and else;vhere), 
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3 5: RAPPEL An A .in RNG is reduca:l if it has no nil!.X'tent elements ~ O 

n 
(i.e.,~ a~ O:a = 0 (3 n)). 

36: DEFINITION A scheme X is reduced. if for any nonenpty open subset 

u c x, the ring r(u,Oxl is reduced.. 

[Note: This is equivalent to the danand that all the local r.ings OX (x E X) ,x 
are red.uced. ] 

37: DEFINITION Iet X be a k-scha:ne - thm X is geanetrically red.uce:i if 

for every field extension I<=> k, the K-schane X ~ Spec(K) is red.uced. 

38: LEHJJA. If X is a red.uced k-schane, then for every separable field 

extension K/k, the K-schane X xk Spec(K) is red.uced.. 

39: APPLICATICN Assume: k is a perfect field -- then every reduced. k-schane 

X is gecmetr ically reduced. 

40: THFDREM Assume: k is of characteristic zero. Supp:>se that X is a 

group k-schane which is locally of finite type -- then X is red.uced., hence is 

gecmetrically reduced. 
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§3. AFFTNE GROUP k-SCHEMES 

Fix a perfect field k. 

[Recall that a field k is perfect if every field extension of k is sep:rrable 

(equivalently, char (k) = 0 or char (k) = p > 0 and the arrow x -+ if' is surjective) • ] 

1: DEFINITION An affine group k""'schene is a group k-schane of the fonn 

S~ (A) , where A is a k..-algebra .. 

2: EXAMPLE 

Ga k = Spec(k[t]) 

' 
is an affine group k-~:tene. 

3: EXAMPLE 

-1 G k = Spec (k[t, t ]) m,, 

is an affine group k-schane. 

4: EXAMPLE 

n 
~ k = Spec(k[t]/(t - 1)) -n, (n E N) 

is an affine group k-s:h:me, 

There is a category GRP/k wmse objects are tre group k-sc:tanes and whose 

norphisns are the norphisns f:X -+Y of k-s:::hanes such that for all k-schares T 

the induced reap 

is a group hcm:m:>rphisn. 
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5: NO'Il\TION 

is the full sul:category of GRP/k whose objects are the affine group k-schanes. 

6: NO'JATION 

is the category of group objects in AI.G/k and 

GRP- (AIG/k) OP 

is the category of group objects in (AIG/k) OP. 

7: LEMMA The functor 

A+ Spec(A) 

fran (AI.G/k)OP to SOI/k is fully faithful and restricts to an equivalence 

GRP- (AI.G/k) OP + AFF-GRP /k .. 

8: REMARK An object in GRJ?.,..,(AI.G/k)OP is a k-algebra A which carries the 

structure of a a:mnutative Hopf algebra over k: 3 · k-algebra hararorphisms 

D. :A + A ~ A, e: :A + k, S :A + A 

satisfying the "usual" conditions .. 

9: N.B. There is another way to view' matters, viz. any functor ALG/k + GRP 

wh:ich is representable by a k-algebra serves to detennine an affine group k-scheme 

(and vice versa) • Fran this perspactive, a norphisn G + H of affine group k-schemes 

is a natural transfonaation of functors, i.e., a collection of group hcm:m:>rphisms 
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G (A) -+ H (A) such trat if A -+ B is a k.,-algebra ho.rconorphisn, then the diagram 

G(A) ----> H(A) 

l l 
G(B) ----> H(B) 

COilmltes. 

[N:>te: Supµ:>se that 

Then from Yoneda theory, 

[ 

G = hx = Ivbr (X,-) 

H = hy = ~r(Y,-). 

M:>r(G,H) ~ M:>r(Y,X).] 

10: EXAMPLE k[t,t-1 ] represents G k and m, 

represents GL k. Given any k.-algebra A, the detenninant is a group l:ononorphisn n, 

GL k(A) -+ G k(A) n, m, 

[N::>te: There is a l:onarorphian 

-1 -1 
k[t,t ] -+ k[tll' ••• ,t ,det(t .. ) ] nn 1] 

of k-algebras tmt defines d~. E.g.: If n = 2, then the hononorphism in question 

sends t to t 11t 22 - t 12t 21 .J 
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11: PRODUCTS Let 

G = hX (X in Affi/k) 

H = hy (Y .in Affi/k) 

be aff :ine group k-s::::hanes. Consider the functor 

def inerl on objects by 

A + G (A) x H (A) • 

Then this functor is representErl by the k-algebra X ~ Y: 

'!hen 

and 

12: EXAMPLE Take 

= G(A) x H(A). 

G = G m,R 

x x x 
<6m,R x 6m,R> CR) = R x R = C 

x x 
CG R x G R) (C) = C x C • m, m, 

Let k'/k be a field extension -- then for any k-algebra A, the tens:>r product 

A Qk k• is a kt-algebra, heme there is a functor 

Affi/k ~·AIGjk• - -
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tenned extension of the ~ars. On the other harrl, every k' -algebra B' can be 

regarda:i as a k-algebra B, fran which a functor 

AI.G/k' -+ AI.G/k 

tenned restrict.ion of the scalars. 

13: LEMMA Fbr all k-algebras A and for all k' -algebras B' , 

~rk, (A'\ k' ,B') = ~rk(A,B). 

14: . SCHOLIUM The functor "extension of the scalars" is a left adjoint 

for the functor "restriction of the scalars". 

let G be an affine group k-schane. Abusing the notation, denote still by G 

the associated functor 

'Ihen there is a functor 

nanely 

C\_1 (A') = G(A}, 

where A is A' viewed as a k-algebra. 

15: LEMMA Gk' is an affine group k' -scheme and the assignment G -+ C\., 
is functorial: 

[Note: 

AFF--ORP /k -+ AFF-GRP /k' . 

x 
Supp::>se that G = h · - then 
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= G (A) = ~, (A' ) • 

Therefore ~· is representei by X ~ k': 

x ~ k' 
~t = h • 

Matters can als:> be interpreted "on the other side" : 

~· = Spec (X xk k') = Spec (X) xk Spec (k') 

l 
--> Spec (k') 

1 
G = Si;ec(X) -----> Spec (k).] 

16: DEFINrrION ~· is said to have been obtainei from G by extension 

of the scalars. 

17: NO'mTION Given an affine group k'-s:::hane G', let Gk'/k be the functor 

defined by the rule 

A -+ G' (A ~ k'). 

[lt>te: If k' = k, th.en Gk, /k = G.] 

18: THEDREM Ass.nne that k' /k is a finite field eKtension -- then Gk, /k 

is an affine group k-schane arrl the ass:ignment G' -+ Gk'/k is functorial: 

AFF-GRP /k' -+ AFF-GRP /k. 

19: DEFINITION Gk, /k is sa. .id to have been obta .ined from G' by restriction 

of the s:::alars. 
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20: LEMMA Assume that k'/k is a finite field extens.ion -- then for all 

affine group k-~hanes H, 

21: SCHOLIUM The functor "restrict.ion of the ~ars" is a right adjoint 

for the functor "extens.ion of the ~lars". 

[Accordingly, thare are arrows of adjunctmn 

22: 00'12\TION 

is tre functor def inerl by setting 

So, by def initmn, 

Re~, ;k (G') (A) = G' (A ~k k'). 

And in i;:articular: 

Re~ I /k (GI ) (k) = GI (k ~ k I ) = GI (k I ) • 

23: EXAMPLE Take G' = A~, -- th:m 
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24: EXAMPLE Take k = R, k' = C, G' = G and consider rn, C' 

Then 

and 

x x 
Resc;R<~,c> CC> = c x c . 

[Note: 

is not iSJrCOrphic to G R (its group of real p:> :ints is Rx) • ] rn, 

2 5: LEMMA Let k' be a finite Galois extension of k -- then 

(Re5k•fk(G'))k' :::: TI oG'. 
oEGal (k '/k) 

[Note: v cr E Gal (k '/k) , there is a p.illback square 

oG' ----> Spec (k') 

l l Spec (cr) 

G' ----> Spec (k') • ] 

26: EXAMPLE Take k = R, k' = C, G' = G -- then rn,C 

:::: G C x G c· rn, rn, 

I.et G be an affine group k-schane. 
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27: DEFINITION A character of G is an elanent of 

Given x E X (G) , for every k-algebra A, there is a lononorphisn 

x 
X (A) : G (A) + ~' k (A) = A • 

Given Xl'X
2 

E X (G), define 

by the stip.tl.ation 

Cx
1 

+ x
2

> (A) (t) = x
1 

(A) (t) x
2 

(A) (t) , 

from wh.ich a character x1 + x2 of G, hence X(G) is an abelian group. 

28 : EXAMPLE Take G = G k - then the characters of G are the norphisns - m, 

G + G k of the fonn m, 

i.e.' 

t + tn (n E Z), 

X(G) ~ Z. 

29: EXAMPLE Take G = ~' k x • • • x ~' k (d factors) -- then the characters 

of G are the norphisms G + ~' k of the fonn 

i.e., 

X (G) ~ -fl. 
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30: EXAMPLE Given an abelian group M, its group algebra k[M] is 

canonically a k-algebra. Consider the functor D(M) :ALG/k -+ G:RP defined on objects 

by the rule 

Then Y A, 

x 
A-+ M:Jr(M,A ). 

x 
MJr(M,A) z l\Dr(k[M],A), 

&> k[M] represents D(M) which is therefore an affine group k-sc:tla'te. And 

X(D(M)) z M, 

tiE character of D(M) correspnding to m E M being the assignment 

x 
D(M) (A) = M:>r(M,A ) 

f -+ f (m) 
x 

---->A = G k(A). m, 

31: NO'mTION Given x' E x (G') , let ~, /k Cx') stand for the rule that 

assigns to each k-algebra A the hararorphisn 

defined by the canp:>sition 

~'/k(A) -> G' (A 6\ k') 

G' (A~ k') -> Gm,k' (A 6\ k') = (A 6\ k')x 

Here the first arrow is the canonical isom::>rphisn, the second arrow is x' (A ~ k') , 

and the third arrow is the nonn nap. 
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32: LEMMA The arrow 

is a hcm:loorphisn 

X(G') ~ X(~ 1 /k) 

of abelian groups. 

33: THEOREM The arrow 

is bijective, hence defines an isarorphism 

X(G') ~ X(~, /k) 

of abelian groups. 

34: APPLICATICN Consider 

'!hen its character group is isarorphic to the character group of G C, i.e. , to Z. m, 

Therefore 

is not isarnrphic to G R x G R. m, m, 
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§4. ALGEBRAIC TORI 

Fix a field k of characteristic zero. 

1: DEFINITION I.et G be an affine group k-scl'ane - .... then G is algebraic 

if its assxiata:l representing k-algebra A is finitely generated. 

2: REMARK It can be shown that every algebraic affine group k-schane is 

isarorphic to a closed subgroup of s:xne GL k (3 n). n, 

3: OONVENTION The tenn algebraic k-group means "algebraic affine group 

k-schane". 

4: N.B. It is automatic that an algebraic k-group is reduced (cf. §2, 

#40), hence is geanetrically reduced (cf. §2, #39). 

5: LEMMA Assume that k'/k is a finite field extension -- then the functor 

sends algebraic k'-groups to algebraic k-groups. 

Given a finite field extension k'/k, let 2: be the set of k-embeddings of k' 

.into kSep and identify k I ~ ksep With (kSep) 2: Via the bijection which takes X 9 Y 

to the string ( a:(x) y) aEl:. 

6: LEMMA I.et G' be an algebraic k' -group -- then 
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where c:G' is the algebraic ksep-group defmerl by the p.Ill.ba.ck square 

crG' 

l 
G' 

----> Spec (ksep} 

l Spec(o) 

----> Spec (k I} 

[Note: 'lb review, the IRS is 

and the Galois group Gal (ksep /k} operates on it through tre second factor. On the 

other hand, to each pair (T,cr} E Gal(ksep/k} x l:, there corres};X)nds a bijection 

oG' -+ (T o cr}G' leading thereby to an action of Gal(ksep/k} on 

TI oG'. 
crEl: 

The FO:int then is that the identification 

(Re8k, (G'}} :::: TT crG' 
/k k~p oEl: 

respocts the actions, i.e., is Gal (ksep /k}-equivariant.] 

7: N .B. Consider the camru.tat ive diagram 

(T o cr}G' > Spec(ksep) 

l l Spec(T) 

crG' > Spec (ksep) 

1 1 Spec(o) 

G' > Spec(k'} 
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Then the "big" square is a pullback. Smee this is also the case of the "sma.11" 

bottan square, it follows that the "sma.11" upper square is a pullback. 

8: DEFINITION A split k-torus is an algebraic k-group T which is is:xrorphic 

to a finite prcxluct of oopies of G k. m, 

9: EXAMPLE The algebraic R-:-group 

is not a split R-torus (cf. §3, #24 and #34). 

10: LEMMA If T is a split k-torus, then X(T) is a fmitely generated free 

abelian group. 

11: THEOREM The functor 

T -+ X(T) 

fran the category of split k-tor i to the category of finitely generated free 

abelian groups is a contravariant equivalence of categories. 

12: N .B. v k-algebra A, 

[Nbte: Explicated, 

Therefore 

T(A) ~ M:>r(X(T),Ax). 

T ~ Spec(k[X(T)]) (cf. §3, #30). 

T(A) ~ M:>r(Spec(A),T) 

~ M:>r(Spec(A),Spec(k[X(T)]) 

z M:>r(k[X(T)],A) 

x z M:>r(X(T) ,A ) • ] 
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13 : DEFINITICN A k-torus is an algebraic k-group T such that 

is a split ksep_torus. 

T = T xk Spec(ksep) 
ksep 

14: N.B. A split k-torus is a k-torus. 

15: EXAMPLE I.et k'/k be a finite field extension and take G' = G --m,k' 

~en the algebraic k-group ~'/k is a k-torus (cf. #6). 

16: DEFINITICN I.et T be a k-torus -- then a splitting field for T is a 

finite field extension K/k such that TK is a split K-torus. 

17: THEOREM Every k-torus T admits a splitting field which is m]nimal 

(i.e. , contained in any other splitting field) and Ga.lois. 

18: NOI'ATICN Given a k-schane X and a Galois extension K/k, the Galois 

group Gal (K/k) operates an 

~ = X xk Spec(K) 

via the second teon, hence a -+ 1 9 o. 

[Note: 1 9 o is a k-autacorphism of ~·] 

19: NOrATICN Given k-schanes X,Y and a Ga.lois extension K/k, the Ga.lois 

group Gal (K/k) operates an M:>rKCXK, YK) by the prescription 

of= (1 Q cr)f(l Q cr)-1 • 

[Note: If f E Z..t::>rKCXK, YK) , then the condition of = f for all o E Gal (K/k) 
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is equivalent to the condition that f is the lift of a k-rcorphisn <P: X -+ Y, i.e. , 

f = <P ~ l.] 

20: LEMMA Let K/k be a Galois extension and let G = Gal(K/k) -- then 

for any k-algebra A and for any k-scherre X, 

X(A ~ K)G = X(A). 

[:Note: This generalizes §2, #28 to which it reduces if A= k.] 

21: DEFINITION Let G be a finite group -- then a G;oodule is an abelian 

group M s..ippl ied with a hcm:m:>rphisn G -+ Aut (M) . 

22: N .B. A G-m:rlule is the same thing as a Z [G] -nodule (in the usual 

sense when Z [G] is viewed as a ring) • 

23: DEFINITION Let G be a finite group -- then a G-lattice is a Z-free 

G-nodule M of finite rank. 

24: LEMMA If T is a k-torus split by a finite Galois extension K/k, then 

is a Gal(K/k)-lattice. 

25: THEOREM Fix a finite Galois extension K/k -- then the functor 

from the category of k-tori split by K/k to the category of Gal(K/k}-lattices is 

a contravariant equivalence of categories. 

26: N.B. Supp::>se that T is a k-torus split by a finite Galois extension 
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K/k. Fonn K[X(TK)], thus operationally, v a E Gal(K/k), 

cr(2: a.x.) = 2: cr(a.)crCx·> (a. EK, X· E X(TK)). 
. i i . i i i i 
i i 

Pass now to the invariants 

Then 

And 

(G = Gal (K/k)) • 

G T ~ Spec(K[X(TK)] ). 

T(A ~ K)G = T(A) 

~ !·br (Spec (A) , T) 

~ ~r(Spec(A),Spec(K[X(TK)]G) 

G 
~ Mork(K[X(TK)] ,A) 

[Note: Iet T = Re5J</k (Gm,K) -- then on the one hand, 

x x 
M:)rZ[G] (Z[G], (A~ K) ) ~(A~ K) , 

'#bile on the other, 

Therefore 
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Take k = R, K = C, and let cr be the nontrivial element of Gal (C/R) -- then 

every R-torus T gives rise to a Z-free m::xlule of finite rank supplied with an 

involution corresp:>nding to cr. And converse! y. . • . 

There are three "basic" R-tori. 

1. T = G • m,R In this case, 

and the Galois action is trivial. 

2. T = ResC/R C~, c>. In this ca~, 

(cf. §3, #26) 

:::: z x z 
and the Galois action swaps coordinates. 

3. T = S02• In this case, 

xc C502> c> z xc~,c> 

~ z 
and the Galois action is multiplication by -1. 

[Note: 

is the functor defined by the rule 

a b 

50
2

(A) = { 2 2 a,b E A & a + b ~ l}. 

:...b a 

Then 502 is an algebraic R-group such tha.t 
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so S0
2 

is an R-torus and S0
2 

(R) can be identifiai with S (= {z E C:zz = l}). 

27: THEOREM Every R-torus is isar:orphic to a finite prcrluct of· copies 

of tre three basic tori described above. 

Here is the procaiure. Fix a Z-free rrodule M of finite rank and an involution 

t :M + M -- then M can be deca.np:>sed as a direct sum 

M_,_ E9 M E9 M I 
I SfN -

where t = 1 on M+' t is a SLm:l of 2-d.imensional swaps on MS'W (or still, MS'W = 

$ Z[Gal(C/R)]),and l = -1 on M. 

28: SCHOLilM If T is an R-torus, then there exist unique nonnegative 

integ-ers a,b,c such that 

29: REMARK The classification of C-tori is trivial: "Any such is a finite 

prcrluct of the G c· m, 

30: RAPPEL I.et K/k be a finite Galois extension and let A be a k-algebra --

then there is a norm map 

31: C'CNST.RlJCI'IOO I.et K/k be a finite Galois extension -- then there is a 

nonn map 
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[For any k-algebra A, 

= Gm,K(A ~ K) 

x x 
= (A ~ K) -+ A = Gm,k (A) • 

[Note: NK/k is not to be confused with the arrow of adjunction 

32: N.B. 

33: N<YrATION Let Res~ (Gm,K) be the kernel of ~/k. 

34: LEM-1A Re~~(Gm,K) is a k-torus and trere is a short exact se:;ruence 

35: EXAMPLE Take k = R, K = C -- then 

and there is a short exact sequence 

[Note: On R-p:>ints, this becanes 

x x 
1 -+ S -+ C -+ R + l.J 
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36: DEFINITICN Let T be a k-torus -- then T is k-anisotropic if X(T) = {O}. 

37: EXAMPLE so2 is R-anisotropic. 

38: THEOREM Every k-torus T has a unique rnaxhnal k-split subtorus T - s 

and a unique maximal k-anisotropic subtorus T . The .intersection T n T is a s a 

finite and Ts • Ta = T. 

39: LEMMA Res(!) (G ) is k-anisotropic. - . K/k m,K 

PRJOF Setting G = ·Gal (K/k) , under the functoriality of #25, the nonn map 

corresporrls to the hcm::norphisn Z-+ Z[G] of G-m:xlules that sends n ton( Ecr), 
G 

the quotient Z [G] /Z ( Ecr) being X (TK) , where 
G 

And 

40: N.B. 

T = Rea~!) (G ) • 
K/k m,K 

Z [G] G = Z ( I:cr) • 
G 

(1) 
ResK/k(Gm,K) is the max.imal k-anisotropic subtorus of 

41: DEFINITION Let G,H be algebraic k-groups -- then a h.cm::m:::>rphisn ¢:G -+ H 

is an isogengy if it is surjective with a finite kernel. 
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42: DEFINITION Let G,H be algebraic k-groups -- then G,H are said to be 

isogeneous if there is an ioogengy between them. 

43: THEOREM 'IW:> k-tori T' , T' ' per #25 are ioogenoous iff the Q [Gal (k/k)] -

nodules 

are iSJnOrphic. 
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§5. THE LIC 

1: N.B. The tenn "LLC" means "local Langlands corresp:>ndence" (cf. #26). 

Let K be a non-archlmaiean local field -- th:m the image of recK:Kx + ~~ 

is vfi> and the inducai nap Kx + r,fi' is an isarorphis:n of tornlogical groups. 

2: SCHOLIUM There a bijective corresrnndence between the characters 

x 
of i'\c and the characters of K : 

[Note: "Character" means continuous h::lrrarorphian. So, if X :Wi< + Cx is a 

character, then x nn.ist be trivial on WK (Cx being abelian), hence by continuity, 

trivial on ~, thus x factors through ~~ = vfi>.] 

Let T be a K-torus -- then T is isorrorphic to a closed subgroup of some 

GL K (3 n). But GL K(K) is a locally compa.ct tor:x>logical group, thus T(K) is n, n, 

a locally canpact tor:x>logical group (which, rroreover, is abelian). 

3: N.B. For the record, 

4: EXAMPLE Let I/K be a finite extension and consider T = ResL/K (Gm,L) 

x 
then T(K) = L • 

Ibughly speaking, the objective now is to describe r.br (T (K) , Cx) in terms of 

data attached to WK but to even state the result requires sane preparation. 
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2. 

5: N.B. The case when T = G K is local class field theory •.•• m, 

6: EXAMPLE Su:J?IX)se that T is K-split: 

T ~ G K x ••• x G K m, m, 

Given a K-torus T, put 

d x x 
:::: TI MJr(K ,C ) 

i=l 

d x x 
:::: M:>rCTI K ,C ) 

i=l 

x 
:::: lt>r (T (K) , C ) • 

X*(T) = M:>r sep(T sep'G sep) 
K K m,K 

7: LEMMA Canonically, 

PIIDF Bearing in mind that 

(d factors) • 

M:>r sep (G sep' G sep) ::::: Z' 
K m,K m,K 

define a pairing 

< ' > 
X*(T) x X*(T) ----> z 
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by sending (X* ,x*) to X* o X* E Z. This done, given X* 9 z, assign to it the 

honon:orphisn 

x* ~ z 

3: NO'm.TION Given a K-torus T, p.it 

" T = Spec(C[X*(T}]). 

,..., 

9: LEMMA T is a split C-torus such trat 

/\ " 
x* (T) = I-brc (T,Gm,c> ~ x* (T) 

" " X*(T) = M:>rc<Gm,C'T) ~ X*(T). 

Therefore 

X A X 
I'vbr(X*(T),C) ~ l't>r(X*(T),C) 

10: LEMMA 

A X 
T(C) ~ X*(T) 9z C • 

PROOF In fact, 

" " x T(C} ~ M:>r(X*(T),C) (cf. §4, #12) 
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A 

11: DEFilITTION T is the complex dual torus of T. 

12: EXAMPLE Under the assumptions of #6, 

A x 
T(C) ~ X*(T) ~z C 

_a x d 
:::: L- ~z C ~ (C ) . 

Therefore 

A x d 
l"br (WK, T ( C)) ~ lt>r (WK, ( C ) ) 

d x 
:::: TI r.br (WK' C ) 

i=l 

x 
:::: lt>r (T (K) , C ) • 

13: RAPPEL If G is a group and j£ A is a G-nodule, then 

1 
• Z (G,A) (the 1-cocycles) consists of tIDS:! maps f:G -+A such that 

V cr,T E G, 

f(crT) = f(cr) + cr(f(T)). 

• B
1 (G,A) (the 1-coooundaries) consists of th::>se ma.ps f:G -+A for which 

3 an a E A sue h tmt v a E G, 

f (cr) = aa - a. 

[Note: 

1 H (G,A) = M:>r(G,A) 

j£ the action is trivial. ] 
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14: NOI'ATION If G is a to:r;ological group and if A is a top::>logical 

G-m:xlule, then 

t-br (G,A) 
c 

is the group of continuous group lntorrorphis:ns from G to A. Analogously, 

and 

z1
(G,A) = "continuous 1-cocycles" c 

B~(G,A) = "continuous 1-coboundaries" 

Hl (G,A) 
c 

Z~ (G,A) 

=B ....... ~...--(G-,-A-) • 

Let T be a K-torus -- then ~ (= Gal (Ksep /K) ) operates on X* (G) , thus 

A 

WK c ~operates on X* (G) by restriction. Therefore T(C) is a WK-nodule, so it 

makes sense to fonn 

tt1 (WT,,., T (C)) • c .L'"\. 

15: NOI'ATION 'IO~ is the category of K-tori. 

16: ~The assigrunent 

defines a functor 
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[Note: supp:>se that T
1 

-+ T
2 

-- tren 

=> 

=> 

=> 

17: LEMMA The assignment 

x 
T -+ M:>r (T(K) ,C ) 

c 

defines a functor 

and 

18: THEOREM The functors 

x 
T -+ M:)r (T(K) ,C ) 

c 

are natural! y is::xrorphic .. 

19 : SCHOLIUM There exist iSJITOrphisns 
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such that if T1 + T 2 , then the d.iagram 

lT 
1 x 

---> M:>r c (Tl (K) , C ) 
1 A 

He (WK, T1 (C)) 

1T 1 2 x 
-----'> fur c (T 2 (K) , C ) ~(~k(C)) 

conmutes. 

20: EXAMPLE Under tie assumptions of #12, the action of ~ is trivial, 

hence the action of WK is trivial. Therefore 

[Note: The earlier use of the symbol .MJr tacitly incoq:orated "continuity".] 

There is a si;::ecial case that can be dealt with directly, viz. when L/K is a 

finite Galois extension and 

The discussion requires s:::rt11a elanentary cohonological generalities vlf:dch have been 

collected in the Appendix below. 

21: RAPPEL WL is a nonoal subgroup of WK of finite index: 

Proceeding, 

T ~ TT crG L (cf. #6) , 
Ksep crEGal(L/K} m, 
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so 

X*(T) ~ Z[W!<1'WLJ' 

where 

It therefore follows that 

T(C) z X*(T) ~z ex 

Consequently 

1 x 
~ H (WL,C ) (Slapiro's lem:na.) 

x x 
~ M:>r (L , C ) 

x 
~ l't:>r(T(K),C), 

wh.ich completes the proof :rrodulo "continuity details" that -we shall not stop to 

sort out. 
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22: DEFINITICN The L-group of T is the semi.direct product 

Because of this, it will be best to first recall "sanidirect product thoory". 

23: RAPPEL If G is a group and if A is a G-mxlule, then there is a 

canonical extension of G by A, namely 

i 1T 

0 -+A--> A x I G -> G -+ 1, 

where Ax I G is the semidirect product. 

24: DEFINITICN A splitting of the extension 

i 1T 

0-+A->Axl G->G-+l 

is a hatarorphisn s:G -+A x I G such tl"a.t 1T o s = idG. 

25: FACI' The splittings of tre extension 

i 1T 

0-+A-->Axl G->G-+l 

deterrn.ine and are detenninerl by tba elanents of z1 ( G ,A) • · 

'IWo splittings s1 , 8i" are said to be equivalent if there is an elanent_~E~_lL __ _ 

such trat 

If 
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are the 1-cocycles corresponding to , then their difference f 2 - f1 is a 

1-col:x:>undary. 

26: SCHOLIUM The equivalence classes of splittings of the extension 

i 1T 
0-+ A--> A xi G --> G-+ 1 

are .in a bijective oorrespondence with the elanents of J-cG,A). 

Return nCM to the extension 

"' A 

0-+ T(C) -+ T(C) xi WK-+ WK-+ 1 

II 
~ 

but to reflect the underlying topologies, work with continuous splittings and call 

than admissible hcm:m:>rphisns. Introducing the obvious notion of equivalence, denote 

by ~K(T) the set of equivalence classes of admissible hcm:m:>rphisms, hence 

~K(T) ~ ~(WK,T{C)). 

Q1 the other hand, denote by ~ (T) the g:roup of characters of T (K) , i.e. , 

27: THIDREM There is a canonical isaoorphisn 

~K(T)-+ '\CT). 

[This statanent is just a rephrasing of #18 and is the LIC for tori.] 

28: HEURISTICE:S 'lb each admissible lmatorphisn of WK into ~, it is 

fX>SSible to ass:>ciate an irreducible aut.aIOrphic representation of T(K) (a.k.a. a 

character of T(K)) and all such arise in this fashion. 
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It rema.ins to consider the archimedean case: C or R. 

• If T is a C-torus, then T is isarorphic to a finite product 

Gm,C x ••• x 6m,c 

and 

Furthernore, WC = Cx and the cla.im is that 

is iscm:>rphic to 

But 

x 
M:>r (T(C) , C ) • c . 

x x 
~ lvbr ( C ,M:>r (~ (T) , C )) c 

x 
~ M:>r (T(C),C ). 

c 

• If T is an R-torus, then T is isonorphic to a finite product 

and it is enough to look at the three irreducible :p:>ssibilities. 
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1. T = ~,R· The tx>int here is that~ ~ Rx ::: T(R). 

2. T = ResC/R (Gm, c> • One can imitate the argument used alx>ve for its non-

arcltlmedean analog. 

3. T = S0
2

• The initial observation is that X(T) = Z with action n + -n, 

"' so T(C) ex 'th . 1 = wi action z + -. z .Atld. • • • • 

APPENDIX 

Iet G be a group (written multiplicatively) • 

1: DEFINITICN A left (right) G-module is an abelian group A equipped with 

a left (right) action of G, i.e., with a h:nn:1orphisn G + Aut{A). 

2: N.B. Spelled out, to say that A is a left G-m:.Xlule means that there 

is a nap 

GxA+A 

(cr,a) + aa 

such that 

T(cra) = (Tcr)a, la= a, 

thus A is first of all a left G-set. 'lb say that A is a left G-module then means 

in addition that 

cr(a + b) = cra + crb. 

[Note: For the :nPSt part, the fonna.lities are w:>rked out fran the left, the 

agree.neut being that 

"left G-module" = "G-module".] 
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3: NOI'ATICN The group ring Z[G] is the ring whose additive group is the 

free abelian group with basis G and whose :multiplication is detennined by the 

:multiplication in G and the distributive law. 

A typiccil element of Z[G] is 

r m cr, 
crEG cr 

where mcr E Z and mcr = O for all but finitely many cr. 

4 : N. B. A G-rrodule is the sarre thing as a Z [ G] -m:rlule. 

5: ~Given a ring R, there is a canonical bijection 

x 
!vbr(Z[G],R) ~ .M:>r(G,R ). 

6: (ll::ISTRUCTICN Given a G-set X, fonn the free abelian group Z [X] generated 

by X and extend the action of G on X to a Z-linear action of G on Z[X] -- then the 

resulting G-rrodule is called a pennutation roodule. 

7: EXl-\MPIE I.et H be a subgroup of G and take X = G/H (here G operates on 

G/H by left translation), fran 'Which Z[G/H]. 

8: DEFINITIOO' A G-rrodule ha:ratorphism is a Z 1G] ;ocxiule haratnrphism. 

9: NOI'ATICN MJDG is the category of G-rrodules. 

10: NOI'ATICN Given A,B in M::>DG' write HanG(A,B) in place of .M:>r(A,B). 

11: LEMMA I.et A,B E M:>DG - then A ez B carries the G-m:x:lule structure 
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def:ined by cr(a 9 a') = cra 9 cra• and Harnz(A,B) carries the G-m:xlule structure 

def:ined by (cr~) (a) = cr~(cr~1a). 

12: LEMMA If G • is a subgroup of G, then there is a haron:orphisn Z [G' ] + - ' 

Z[G] of rings and a flmctor 

of restriction. 

13: DEFINITICN I.et G' be a subgroup of G - then the functor of blduction 

G 
IndG' :M)DG' + MJDG 

sends A' to 

[Note: Z[G] is a right Z[G']-m:Xlule and A' is a left Z[G']-nodule. Therefore 

the.tensor product 

Z [ G] 9z [ G, ] A' 

is an abelian group. And it bea:mes a left G-m:xlule under the operation cr(r g a') = 

area'.] 

14: EXAMPLE I.et H be a subgroup of G. Suppose tm.t H operates trivially 

on Z -- then 

G Z [ G/H] :::: InaHZ. 

15: FROBENIUS RECIP:Ra:ITY V A in J.VDDG' V A' in M:>DG', 
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16: REMARK V A in IDDG, 

Ind~ 1°Res~,A ~ Z[G/G'] 9Z[G] A. 

[G operates on the right hand side diagonally: cr (r s a) = crr s cra.] 

17 : LEMMA There is an arJ:'OW' of inclusion 

Z[GJ 9Z[G•] A' + lialU• (Z(G] ,A') 

which is an isarorphism if [G:G'] < oo. 

18: NOI'ATICN Given a G-rrodule A, put 

G A = {a E A: cra = a V cr E G}. 

[Note: AG is a subgroup of A, tenned the invariants :in A. ] 

G 
19: LEMMA A = ~(Z,A) (trivial G-action on Z). 

[Note: By canparison, 

A= HalU(Z[G] ,A).] 

G 
20: LEMMA Hanz(A,B) = lialU(A,B). 

IDDG is an abelian category. As such, it has enough injectives (i.e., every 

G-nodule can be embedded in an injective G-rrodule}. 

21: DEFINITICN '!he grC>Up oohom::>logy fnnctor Hq(G,-) :M)DG + AB is the right 

derived functor of (-)G. 

[Note: Recall the proced.ure: 'lb canpute Hq(G,A), choose an injective 
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resolution 

0 1 
0 + A +I + I -+ . . . . 

Then H* (G ,A) is the coharology of the ccmplex (I) G. In particular: Ho (G ,A) = AG. ] 

22: LEMMA Hq(G,A) is independent of the choice of injective resolutions. 

23: LEMMA Hq(G,A) is a covariant functor of A. 

24: LEMMA If 

O+A+B+C+O 

is a short exact sequence of G-m::xiules, then there is a functorial long exact 

sequence 

+ ~(G,A) + ~(G,B) + ~(G,C) + ~(G,A) + ••• 

+ ••• 

in colxm::>logy. 

25: N.B. If G = {l} is the trivial group, then· 

[Note: Another µ:>int is that for any G, every injective G-m::xiule A is 

colDnologically acyclic: 

V q > 0, Hq(G,A) = O.] 

26: THEOREM (SHAPIOO '· S LEMMA) If [ G: G ~ ] < 00 , th.en V q, 
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27: EXAi.""v!PLE Take A' = Z [G'] -- then 

28: EXAMPLE Take G• = {l} (so G is finite) -- then Z[G'] = Z and 

But the IHS vanishes if q > 0, thus the sane is true of the RHS. However this 

fails if G is infinite. E.g.: Take for G the infinite cyclic group: H1 (G,Z[G]) 

z z. 
[Note: If G is finite, then Ho (G, Z [G]) z Z while if G is infinite, then 

HO(G,Z[G]) = O.] 

29: EXAMPLE Take A' = Z -- then 

q q G H (G' ,Z) z H (G,IndG 1 Z) 

z Hq(G,Z[G/G']). 



and 

and 

1. 

§6~ TAMAGAWA MEASURES 

Suptx>se given a Q-torus T of dimension d - then one can intrcxluce 

T(Q) c T(R), T(Q) c T(Qp) 

u 

T(Q) c T(A)~ 

T(Z ) 
p 

1: EXAMPLE Take T = G Q -- then the above data becomes m, 

2: ~ T(Q) is a discrete subgroup of T(A). 

1 3 : RAPPEL I = Ker I • I A, where for x E I , 

Ix IA = TT Ix I • 
p~oo p p 

Airl the quotient r1/Qx is a canpact Hausdorff space. 

Each x E X(T) generates oonti.nuous hanonprphisns 

I· I x 
Q ) __._ Qx P Xp:T( p ~ p ~ R>O 



fran which an arrow 

4: NOTATICN 

2. 

x -+ 1T x (x_) • 
psoo P P 

ir1cA> = n Ker XA· 
XEX(T) 

5: N.B. The infinite intersection can be replaced by a finite intersection 

since if x1 , ••• ,Xa. is a basis for X(T), then 

d 
ir1cA> = n Ker<x·>A· . 1 J. 1= 

6: THEOREM The quotient if CA)/T(Q) is a ca:npact Hausdorff space. 

7: CXNSTRIJCrICN Let ~ denote the collection of all left invariant d-fo:rms 

on T, thus ~ is a 1-d:imensional vector space over Q. Choose a nonzero element 

w E ~ - then w detemtines a left invariant differential fonn of top degree on 

the T(Q ) and T(R), which in turn detennines a Haar measure µQ on the T(Q ) 
p ,w p 

p 

and a ~ measure µR,w on T(R) • 

The prcxluct 

may or may not converge. 

TT µQ w (T(Zp)) 
p p' 
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8: DEFINITICN A sequence /\. = {/\. } of i;x::>sitive real nunbers is said to 
- P· 

be a system of ·convergence·coefficients if the product 

is convergent. 

9: N .B. Convergence coefficients always exist, e.g. , 

10: LEM-1A If the sequence A = {AP} is a systan of oonvergence coefficients, 

then 

= lT A x µw A - pµQ w µR w 
I p p' I 

is a Haar measure on T {A) • 

11: N.B.· Let A. be a nonzero rational number - then 

Therefore 

µAW /\. = TI ApµQ AW x µR AW , p p' , 

= TI IA.Ip Tr ApµQ w x µR w 
p~oo p p' ' 

= µ A. w, 
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And this means that the Haar measure µ , is independent of the cmice of the 
W1A 

rational density w. 

I.et K => Q be a Galois ex.tension relative to which T splits -- th.en 

is a Gal(K/Q) lattice. call IT the representation thereby detennined and denote 

its character by Xrr· I.et 

L(s,xrr,K/Q) = lT LP(s,xrr,K/Q) 
p 

be the associated Art:i.n L-nmction and denote by s the set of primes that ramify 

in K plus~ "prime at infinity". 

12 : LE[l.f.'JA v P ¢ st 

13: SCHOLIUM The sequence A = {AP} defined by the prescription 

and 

1\> = 1 if p E ~ 

is a systan of convergence coefficients tern:ai canonical. 

14: LEMMA The Haar measure µ A on T (A) corresy;ond:i.ng to a canonical 
- w, 

systan of convergence coefficients is independent of the choice of K, denote it 

15: DEFINITIGI µT is the Tamagawa measure on T{A). 
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OW'ing to Brauer throry, there is a decc:mp:>sition of the character Xrr of II 

as a finite sum 

where x0 is the principal craracter of Ga.l(K/Q) ~x0 Ccr) = 1 for all a E Gal(K/Q)), 

them. are i;x:>sitive integers, and the X· are irreduc:ible characters of Ga.l(K/Q). 
J J 

Standard properties of Artin L-.functions then imply that 

d M m. 
L(s,xII'K/Q) = ?; (s) TI L(s,x. ,K/Q) J. 

j=l J 

16: FACI' 

m. 
L(l,Xj'K/Q) J ~ 0 (1 ~ j ~ M). 

Therefore 

;1! o. 

17: ~ The limit on the left is p::>sitive and independent of the choice 

of K, denote it by pT. 

18: DEFINITION PT is the residue of T. 

Define a map 

T:T(A) + (Rx )d 
>0 
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by the rule 

T (x) = ( <x1> A (x) ' ••• , (Xa) A (x) ) • 

Then the kernel of Tis ~(A), hence T drops to an isarorphisn 

19: DEFINITICN Tre standard measure on T (A)/~ (A) is the pullback via 

1 T of the product measure 

d dt. 
1T -2 
. 1 t. 
i= 1. 

Consider now the formc:tlis:n 

d(T(A)) = d(T(A)/~(A))d(~(A)/T(Q))d(T(Q)) 

.in whwh: 

• d (T (A) ) is the Tarnagawa measure on T (A) mu1 tiplied by _!_ • 
PT 

• d (T (A)/~ (A) ) is the standard measure on T (A)/~ (A) • 

• d(T(Q)) is the counting measure on T(Q). 

20: DEFINITICN The Tamagawa number T (T) is the volume 

T(T) = f l 
~(A)/T(Q) 

of the canpact Haus:lorff space ~(A)/T(Q) per the invariant measure 

d(~(A)/T(Q)) 



such that 

7. 

~ = d(T(A)~(A))d(~(A)/T(Q))d(T(Q)). 
PT 

21: N.B. 'lb be completely precise, ~ integral fonmila 

f = f f 
T(A) T(A)tr1CA) ir1CA) 

f bces the invariant measure on ~(A) and fran there the integral fonnula 

f = f f 
~(A) ~(A)/T(Q) T(Q) 

fixes the invariant measure on ~(A)/T(Q), its volume then being the Tamagawa 

number T(T). 

[Note: If T is Q-aniootropic, then T (A) = ~ (A) • J 

22: EXAi.'1PLE Take T = G and w = dx -- then m,Q x 

vol~ cz;i = ~1 
= i - ~ 

lxlp 

and the canonical convergence coefficients are the 

Here d = 1 and 

lim (s-l)s(S) = 1 =>PT= 1. 
s -+ 1 

W:>rking through the definitions, one concludes that T(T) = 1 or still, 

1 x 
vol CI IQ ) = 1. 
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23: REMARK Take T = ~Q(Gm,K} -- then it turns out that T(T} is the 

Tamagawa number of G K canputed relative to K (and not relative to Q ••• } • Fran rn, 

this, it follows that T (T} = 1, natters hinging on the "fanous fonnula" 

x d 
24: LEMMA Let F be an integrable function on (R>O} -- then 

1 
PT JT(A}/T(Q} F(T(x}}dlJrr(x} 

T(T} = 

25: EXAMPLE Take T = G Q - th=n m, 

T (T} 

Joo F(t} dt 
0 t 

PT be.ing 1 in this case. 'lb see that T (T} = 1, nake tre calculation by ctnosing 

-7Tt2 
F(t} = 2te . 

[Note: Recall that 

TTZx x Rx 
P P ~o 

is a fundamental domain for I/Qx. ] 

2 6: NOI'ATION Put 
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and for p ~ oo, 

~(Q ,T) = ~(Gal(Qsep/Q ) , T(Osep)). 
p p p ·p 

27: LEMMA There is a canonical arrow 

PRCX>F Put 

G = Gal (Q/Q) (Q = Qsep) 

and 

G = Gal(Q IQ) (Q = Qsep). 
p p p p p 

Then schematically 

1. There is an arrow of restriction 

p:G -+ G p 

and a rrorphian T ( Q) + T ( QP) of GP -nodules, T ( Q) being viewed as a GP -nodule via ~. 

2. The canonical arrow 

~ (QI T) -+ ~ (Q IT) 
p 

is then the result of CO!np)SIDg the map 

Jt- (G, T (Q)) -+ ~ ( G , T (Q)) 
p 
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with the ma.p 

28 : NarATION Put 

fil(T) = Ker(e1(Q,T) -+ Jl e1cQ ,T)). 
psoo P 

29: DEFINITION IIl(T) is the Tate-Shafarevich group of T. 

30: THEOREM IIl{T) is a finite group. 

31: EXAMPLE If K is a finite extension. of Q, then 

Therefore in this case 

# (Ill (T)) = 1. 

32: REMARK By canparisan, 

1 (1) x x 
ll(Q,Re5K/Q(Gm,K)) ~ Q !Nivq(K ). 

[Consider the short exact sequence 

N 
k/Q> G -+ l.] 

m,Q 

33: NOTATION Put 

q (T) = CoKer (rt- (Q, T) -+ Jl if- (Q , T)) • 
psoo P 



11. 

34: THFDREM q (T) is a finite group. 

35: MAIN 'IHEOREM The Tamagawa number T (T) is given by t:te formula 

- # (q(T)) 
T (T) - # (Ill {T)) • 

36: EXAMPLE If K is a finite extension of Q, th:m 

Therefore in this case 

# (q(T)) = 1. 

It follows fran the main theoran that -r(T) is a positive rational number. 

Still, there are examples of finite a.belian extensions K => Q such that 

T (Re~~~) G ) 
iyQ m,K 

is not a positive integer. 


