ABELIAN TEORY

Garth Warner

Department of Mathematics
University of Washington

CONIENTS

§1. GROUP SCHEMES
§2. $\mathrm{SCH} / \mathrm{k}$
§3. AFFINE GROUP k -SCHEMES
§4. ALGEBRAIC TORI
85. THE LLC
§6. TAMAGAWA MEASURES
§1. GROUP SCHEMES

1: NOTATION SCH is the category of schemes, RNG is the category of commutative rings with unit.

Fix a scheme S - then the category $\mathrm{SCH} / \mathrm{S}$ of schemes over S (or of S -schemes) is the category whose objects are the morphisms $X \rightarrow S$ of schemes and whose morphisms

$$
\operatorname{Mor}(X \rightarrow S, Y \rightarrow S)
$$

are the morphisms $X \rightarrow Y$ of schemes with the property that the diagram

commutes.
[Note: Take $S=\operatorname{Spec}(Z)$-- then

$$
\underline{\mathrm{SCH}} / \mathrm{S}=\underline{\mathrm{SCH}} .]
$$

2: N.B. If $S=\operatorname{Spec}(A)$ (A in RNG) is an affine scheme, then the terminology is "schemes over A" (or "A-schemes") and one writes SCH/A in place of $\underline{\mathrm{SCH}} / \mathrm{Spec}(\mathrm{A})$.

3: NOTATION Abbreviate $\operatorname{Mor}\left(\mathrm{X} \rightarrow \mathrm{S}, \mathrm{Y} \rightarrow \mathrm{S}\right.$) to $\operatorname{Mor}_{\mathrm{S}}(\mathrm{X}, \mathrm{Y})$ (or to $\mathrm{Mor}_{\mathrm{A}}(\mathrm{X}, \mathrm{Y})$ if $S=\operatorname{Spec}(A))$.

4: REMARK The S-scheme $\mathrm{id}_{\mathrm{S}}: \mathrm{S} \rightarrow \mathrm{S}$ is a final object in $\mathrm{SCH} / \mathrm{S}$.

5: THEOREM SCH/S has pullbacks:

[Note: Every diagram

admits a unique filler

$$
(u, v)_{S}: Z \rightarrow X \times_{S} Y
$$

such that

$$
\left[\begin{array}{l}
p \circ(u, v)_{S}=u \\
\left.q \circ(u, v)_{S}=v .\right]
\end{array}\right.
$$

6: FORMALITIES Let X, Y, Z be objects in SCH/S -- then

$$
\begin{aligned}
& \mathrm{X} \times_{\mathrm{S}} \mathrm{~S} \approx \mathrm{X}, \\
& \mathrm{X} \times_{\mathrm{S}} \mathrm{Y} \approx \mathrm{Y} \times_{\mathrm{S}} \mathrm{X}
\end{aligned}
$$

and

$$
\left(X \times_{S} Y\right) \times_{S} Z \approx X \times_{S}\left(Y \times_{S} Z\right)
$$

7: REMARK If $X, Y, X^{\prime}, Y^{\prime}$ are objects in $\underline{S C H / S}$ and if $u: X \rightarrow X^{\prime}, v: Y \rightarrow Y^{\prime}$ are S-morphisms, then there is a unique morphism $u \times{ }_{S} v$ (or just $u \times v$) rendering the diagram

commutative.
[Spelled out,

$$
\left.u \times \times_{S} v=(u \circ p, v \circ q)_{S} \cdot\right]
$$

8: BASE CHANGE Let $u: S^{\prime} \rightarrow S$ be a morphism in SCH.

- If $X \rightarrow S$ is an S-object, then $X \times{ }_{S} S^{\prime}$ is an S^{\prime}-object via the projection

$$
x \times_{S} S^{\prime} \rightarrow S^{\prime},
$$

denoted $u^{*}(X)$ or $X_{\left(S^{\prime}\right)}$ and called the base change of X by u.

- If $X \rightarrow S, Y \rightarrow S$ are S-objects and if $f:(X \rightarrow S) \rightarrow(Y \rightarrow S)$ is an S-morphism, then

is a morphism of $S^{\prime \prime}$-objects, denoted $u^{*}(f)$ or $f_{\left(S^{\prime}\right)}$ and called the base change of f by u.

These considerations thus lead to a functor

$$
\mathrm{u}^{*}: \underline{\mathrm{SCH} / \mathrm{S} \rightarrow \mathrm{SCH} / \mathrm{S}^{\dagger}}
$$

called the base change by u.

9: N.B. If $u^{\prime}: S^{\prime \prime} \rightarrow S^{\prime}$ is another morphism in $\underline{S C H}$, then the functors

10: LEMMA Let $u: S^{\prime} \rightarrow$ be a morphism in SCH. Suppose that $T^{\prime} \rightarrow S^{\prime}$ is an S^{\prime}-object -- then T^{\prime} can be viewed as an S-object T via postcomposition with u and there are canonical mutually inverse bijections

$$
\operatorname{Mor}_{S^{\prime}}\left(T^{\prime}, X_{\left(S^{\prime}\right)}\right) \underset{\leftarrow}{\operatorname{Mor}_{S}}(T, X)
$$

functorial in T ' and X.

11: NOTATION Each S-scheme $\mathrm{X} \rightarrow \mathrm{S}$ determines a functor

$$
(\underline{(\mathrm{SCH} / \mathrm{S}})^{\mathrm{OP}} \rightarrow \underline{\mathrm{SET}},
$$

viz. the assignment

$$
T \rightarrow \operatorname{Mor}_{S}(T, X) \equiv X_{S}(T),
$$

the set of T-valued points of X.
[Note: In terms of category theory,

$$
\left.X_{S}(T)=h_{X \rightarrow S}(T \rightarrow S) .\right]
$$

12: LEMMA To give a morphism $(X \rightarrow S) \xrightarrow{f}(Y \rightarrow S)$ in $\underline{S C H} / S$ is equivalent to giving for all S-schemes T a map

$$
f(T): X_{S}(T) \rightarrow Y_{S}(T)
$$

which is functorial in T, i.e., for all morphisms $u: T^{\prime} \rightarrow T$ of S-schemes the diagram

$$
\begin{aligned}
& X_{S}(T) \xrightarrow{f(T)} Y_{S}(T) \\
& x_{S}(u) \downarrow \mid Y_{S}(u) \\
& X_{S}\left(T^{\prime}\right) \xrightarrow[f\left(T^{\prime}\right)]{ } Y_{S}\left(T^{\prime}\right)
\end{aligned}
$$

commutes.

13: DEFINITION A group scheme over S (or an S-group) is an object G of SCH/S and S-morphisms

$$
\begin{aligned}
& \mathrm{m}: \mathrm{G} \times_{\mathrm{S}} \mathrm{G} \rightarrow \mathrm{G} \quad \text { ("multiplication") } \\
& \mathrm{e}: \mathrm{S} \rightarrow \mathrm{G} \quad \text { ("unit") } \\
& \mathrm{i}: \mathrm{G} \rightarrow \mathrm{G} \quad \text { ("inversion") }
\end{aligned}
$$

such that the diagrams

commute.

14: REMARK To say that (G; m, e, i) is a group scheme over S amounts to saying that G is a group object in $\mathrm{SCH} / \mathrm{S}$.

15: LEMMA Let G be an S -scheme -- then G gives rise to a group scheme over S iff for all S-schemes T, the set $G_{S}(T)$ carries the structure of a group which is functorial in T (i.e., for all S-morphisms $T^{\prime} \rightarrow T$, the induced map $G_{S}(T) \rightarrow G_{S}\left(T^{\prime}\right)$ is a homomorphism of groups).

16: REMARK It suffices to define functorial group structures on the $G_{S}(A)$, where $\operatorname{Spec}(A) \rightarrow S$ is an affine S-scheme.
[This is because morphisms of schemes can be "glued".]

17: LEMMA Let $u: S^{\prime \prime} \rightarrow S$ be a morphism in SCH. Suppose that ($G ; m, e, i$) is
a group scheme over S -- then

$$
\left(G \times_{S} S^{\prime} ; m_{\left(S^{\prime}\right)}, e_{\left(S^{\prime}\right)} i_{\left(S^{\prime}\right)}\right)
$$

is a group scheme over S^{\prime}.
[Note: For every S^{\prime}-object $T^{\prime} \rightarrow S^{\prime}$,

$$
\left(G \times{ }_{S} S^{\prime}\right)_{S^{\prime}}\left(T^{\prime}\right)=G_{S}(T),
$$

where T is the S-object $\left.T^{\prime} \rightarrow S^{\prime} \xrightarrow{u} S.\right]$

18: THEOREM If $\left(X, O_{X}\right)$ is a locally ringed space and if A is a commatative ring with unit, then there is a functorial set-theoretic bijection

$$
\operatorname{Mor}(S, \operatorname{Spec}(A)) \approx \operatorname{Mor}\left(A, \Gamma\left(X, O_{X}\right)\right)
$$

[Note: The "Mor" on the LHS is in the category of locally ringed spaces and the "Mor" on the RHS is in the category of commutative rings with unit.]

19: EXAMPIE Take $S=\operatorname{Spec}(Z)$ and let

$$
A^{n}=\operatorname{spec}\left(Z\left[t_{1}, \ldots, t_{n}\right]\right)
$$

Then for every scheme X,

$$
\begin{aligned}
\operatorname{Mor}\left(X, A^{n}\right) & \approx \operatorname{Mor}\left(Z\left[t_{1}, \ldots, t_{n}\right], \Gamma\left(x, O_{X}\right)\right) \\
& \approx \Gamma\left(x, 0_{X}\right)^{n} \quad\left(\varphi \rightarrow\left(\varphi\left(t_{1}\right), \ldots, \varphi\left(t_{n}\right)\right)\right)
\end{aligned}
$$

Therefore A^{n} is a group object in SCH called affine n-space.
[Note: Here $\Gamma\left(X, O_{X}\right)$ is being viewed as an additive group, hence the underlying multiplicative structure is being ignored.]

8.

20: N.B. Given any scheme S,

$$
A_{S}^{n}=A^{n} \times{ }_{Z} S \rightarrow S
$$

is an S-scheme and for every morphism $S^{\prime} \rightarrow S$,

$$
A_{S}^{n} \times_{S} S^{\prime} \approx A^{n} \times_{Z} S \times_{S} S^{\prime} \approx A_{S^{\prime}}^{n}
$$

21: NOTATION Write G_{a} in place of A^{1}.

22: NOTATION Given A in RNG, denote

$$
G_{a} \times{ }_{Z} \operatorname{Spec}(A)
$$

by $G_{a} \otimes A$ or still, by $G_{a, A}$

23: N.B.

$$
\begin{aligned}
G_{a, A} & =\operatorname{Spec}(Z[t]) \times{ }_{Z} \operatorname{Spec}(A) \\
& =\operatorname{Spec}(Z[t] \otimes A)=\operatorname{Spec}(A[t]) .
\end{aligned}
$$

24: LEMMA $G_{a, A}$ is a group object in SCH/A.

There are two other "canonical" examples of group objects in SCH/A.

- $G_{m, A}=\operatorname{Spec}(A[u, v] /(u v-1))$
which assigns to an A-scheme X the multiplicative group $\Gamma\left(X, O_{X}\right)^{x}$ of invertible elements in the ring $\Gamma\left(\mathrm{X}, \mathrm{O}_{\mathrm{X}}\right)$.
- $G L_{n, A}=\operatorname{Spec}\left(A\left[t_{11}, \ldots, t_{n n}, \operatorname{det}\left(t_{i j}\right)^{-1}\right]\right)$
which assigns to an A-scheme X the group

$$
G L_{n}\left(\Gamma\left(x, 0_{x}\right)\right)
$$

of invertible $n \times n$-matrices with entries in the ring $\Gamma\left(x, 0_{X}\right)$.

25: DEFINITION If G and H are S-groups, then a hamamorphism from G to H is a morphism $f: G \rightarrow H$ of S-schemes such that for all S-schemes T the induced map $f(T): G_{S}(T) \rightarrow H_{S}(T)$ is a group homomorphism.

26: EXAMPIE Take $S=\operatorname{Spec}(A)$ - then

$$
\operatorname{det}_{A}: G L_{\mathrm{n}, \mathrm{~A}} \rightarrow G_{\mathrm{m}, \mathrm{~A}}
$$

is a homamorphism.

27: DEFINITION Let G be a group scheme over S-- then a subscheme (resp. an open subscheme, resp. a closed subscheme) $H \subset G$ is called an S -subgroup scheme (resp. an open S-subgroup scheme, resp. a closed S-subgroup scheme) if for every S-scheme $T, H_{S}(T)$ is a subgroup of $G_{S}(T)$.

28: EXAMPLE Given a positive integer $n, \mu_{n, A}$ is the group object in SCH/A which assigns to an A-scheme X the multiplicative subgroup of $\Gamma\left(X, O_{X}\right)^{x}$ consisting of those ϕ such that $\phi^{n}=1$, thus

$$
\mu_{n, A}=\operatorname{spec}\left(A[t] /\left(t^{n}-1\right)\right)
$$

and $\mu_{n, A}$ is a closed A-subgroup of $G_{m, A}$.

29: EXAMPLE Fix a prime number p and suppose that A has characteristic p.

Given a positive integer $n,{\underset{n}{n, A}}$ is the group object in $\underline{S C H} / \mathrm{A}$ which assigns to an A-scheme X the additive subgroup of $\Gamma\left(X, O_{X}\right)$ consisting of those ϕ such that $\phi^{p^{n}}=0$, thus

$$
\alpha_{-\mathrm{n}, \mathrm{~A}}=\operatorname{spec}\left(\mathrm{A}[t] /\left(t^{\mathrm{P}^{\mathrm{n}}}\right)\right)
$$

and $\alpha_{n, A}$ is a closed A-subgroup of $G_{a, A}$.

30: CONSTRUCITON Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ be a hamomorphism of S -groups. Define Ker (f) by the pullback square

$$
\operatorname{Ker}(f)=S \times_{\mathrm{H}} \mathrm{G} \longrightarrow \mathrm{G}
$$

Then for all S-schemes T,

$$
\operatorname{Mor}_{S}(T, \operatorname{Ker}(f))=\operatorname{Ker}\left(G_{S}(T) \xrightarrow{f(T)} H_{S}(T)\right),
$$

so $\operatorname{Ker}(f)$ is an S-group.

31: EXAMPLE The kernel of det_{A} is $\mathrm{SL}_{\mathrm{n}, \mathrm{A}}$.

32: N.B. Other kernels are $\mu_{n, A}$ and $\alpha_{n, A}$.

33: CONVENTION If P is a property of morphisms of schemes, then an S-group G has property P if this is the case of its structural morphism $G \rightarrow S$.
E.g.: The property of morphisms of schemes being quasi-compact, locally of finite type, separated, étale etc.

34: LEMMA Let

be a pullback square in SCH. Suppose that f is a closed immersion -- then the same holds for f'.

35: APPLICATION Let $g: Y \rightarrow X$ be a morphism of schemes that has a section $s: X \rightarrow Y$. Assume: g is separated -- then s is a closed immersion.
[The commutative diagram

is a pullback square in SCH. But g is separated, hence the diagonal morphism $\Delta_{Y / X}$ is a closed immersion. Now quote the preceding lemma.]

If $G \rightarrow S$ is a group scheme over S, then the composition

$$
\mathrm{S} \xrightarrow{\mathrm{e}} \mathrm{G} \longrightarrow \mathrm{~S}
$$

is $i d_{S}$. Proof: e is an S-morphism and the diagram

commutes. Therefore e is a section for the structural morphism $G \rightarrow S$:

$$
\mathrm{G} \longrightarrow \mathrm{~S} \xrightarrow{\mathrm{e}} \mathrm{G} .
$$

36: LEMMA Let $G \rightarrow S$ be a group scheme over S-- then the structural morphism $G \rightarrow S$ is separated iff $e: S \rightarrow G$ is a closed immersion.
[To see that "closed immersion" => "separated", consider the pullback square

37: LEMMA If S is a discrete scheme, then every S -group is separated.

38: APPLICATION Take $S=\operatorname{Spec}(k)$, where k is a field - then the structural morphism $X \rightarrow$ Spec (k) of a k-scheme X is separated.

§2. $\mathrm{SCH} / \mathrm{k}$

Fix a field k.

1: DEFINITION A k-algebra is an object in RNG and a ring homomorphism $\mathrm{k} \rightarrow \mathrm{A}$.

2: NOTATION ALG/k is the category whose objects are the k-algebras $k \rightarrow A$ and whose morphisms

$$
(\mathrm{k} \rightarrow \mathrm{~A}) \rightarrow(\mathrm{k} \rightarrow \mathrm{~B})
$$

are the ring hamomorphisms $A \rightarrow B$ with the property that the diagram

commutes.

3: DEFINITION Let A be a k-algebra -- then A is finitely generated if there exists a surjective hamomorphism $k\left[t_{1}, \ldots, t_{n}\right] \rightarrow A$ of k-algebras.

4: DEFINITION Let A be a k-algebra -- then A is finite if there exists a surjective hamomorphism $\mathrm{k}^{\mathrm{n}} \rightarrow \mathrm{A}$ of k -modules.

5: N.B. A finite k-algebra is finitely generated.

Recall now that $\underline{\mathrm{SCH}} / \mathrm{k}$ stands for $\mathrm{SCH} / \mathrm{Spec}(k)$.

6: LEMMA The functor

$$
A \rightarrow \operatorname{Spec}(A)
$$

from ($\underline{\text { ALG } / k)}$) ${ }^{\text {OP }}$ to $\underline{S C H} / \mathrm{k}$ is fully faithful.

7: DEFINITION Let $X \rightarrow \operatorname{Spec}(k)$ be a k-scheme - then X is locally of finite type if there exists an affine open covering $x=\underset{i \in I}{U} U_{i}$ such that for all i, $U_{i}=\operatorname{Spec}\left(A_{i}\right)$, where A_{i} is a finitely generated k-algebra.

8: DEFINITION Let $X \rightarrow \operatorname{Spec}(k)$ be a k-scheme - then X is of finite type if X is locally of finite type and quasi-compact.

9: LEMMA If a k-scheme $\mathrm{X} \rightarrow \operatorname{Spec}(\mathrm{k})$ is locally of finite type and if $\mathrm{U} \subset \mathrm{X}$ is an open affine subset, then $\Gamma\left(\mathrm{U}, \mathrm{O}_{\mathrm{X}}\right)$ is a finitely generated k-algebra.

10: APPLICATION If A is a finitely generated k-algebra, then the k-scheme $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}(k)$ is of finite type.

11: LEMMA If $\mathrm{X} \rightarrow \operatorname{Spec}(\mathrm{k})$ is a k-scheme of finite type, then all subschemes of X are of finite type.

12: RAPPEL Let $\left(X, O_{X}\right)$ be a locally ringed space. Given $x \in X$, denote the stalk of O_{X} at x by $O_{X, x}$ - then $O_{X, X}$ is a local ring. And:

- m_{x} is the maximal ideal in $0_{\mathrm{X}, \mathrm{x}}$.
- $k(x)=0_{x, x} / m_{x}$ is the residue field of $0_{x, x}$.

13: CONSTRUCIION Let $\left(X, 0_{X}\right)$ be a scheme. Given $x \in X$, let $U=\operatorname{Spec}(A)$ be an affine open neighborhood of x. Denote by \mathfrak{p} the prime ideal of A corresponding
to x, hence $O_{X, x}=O_{U, X}=A_{p}$ (the localization of A at \mathfrak{p}) and the canonical homomorphism $A \rightarrow A_{p}$ leads to a morphism

$$
\operatorname{Spec}\left(O_{X, X}\right)=\operatorname{Spec}\left(A_{p}\right) \rightarrow \operatorname{Spec}(A)=U \subset X
$$

of schemes (which is independent of the choice of U).

14: N.B. There is an arrow $0_{X, X} \rightarrow K(x)$, thus an arrow $\operatorname{Spec}(K(x)) \rightarrow$ $\operatorname{spec}\left(O_{X, X}\right)$, thus an arrow

$$
i_{x}: \operatorname{Spec}(k(x)) \rightarrow x
$$

whose image is x .

Let K be any field, let $f: \operatorname{Spec}(K) \rightarrow X$ be a morphism of schemes, and let x be the image of the unique point p of $\operatorname{Spec}(K)$. Since f is a morphism of locally ringed spaces, at the stalk level there is a homomorphism

$$
o_{x, x} \rightarrow o_{\operatorname{Spec}(K), p}=k
$$

of local rings meaning that the image of the maximal ideal $m_{x} \subset 0_{X, x}$ is contained in the maximal ideal $\{1\}$ of K, so there is an induced homomorphism

$$
\mathrm{l}: K(\mathrm{x}) \rightarrow \mathrm{K} .
$$

Consequently,

$$
f=i_{x} \circ \operatorname{spec}(1)
$$

15: SCHOLIUM There is a bijection

$$
\operatorname{Mor}(\operatorname{Spec}(K), x) \rightarrow\{(x, 1): x \in X, l: K(x) \rightarrow K\}
$$

If $X \rightarrow \operatorname{Spec}(k)$ is a k-scheme, then for any $x \in X$, there is an arrow

$$
\operatorname{Spec}(\kappa(x)) \rightarrow X
$$

from which an arrow

$$
\operatorname{Spec}(\kappa(x)) \rightarrow \operatorname{Spec}(k),
$$

or still, an arrow $k \rightarrow k(x)$.

16: LEMMA Let $\mathrm{X} \rightarrow \operatorname{Spec}(\mathrm{k})$ be a k-scheme locally of finite type -- then $\mathrm{x} \in \mathrm{X}$ is closed iff the field extension $\mathrm{K}(\mathrm{x}) / \mathrm{k}$ is finite.

17: APPLICATION Let $\mathrm{X} \rightarrow \operatorname{Spec}(\mathrm{k})$ be a k-scheme locally of finite type. Assume: k is algebraically closed - then

$$
\begin{aligned}
\{x \in X: x \text { closed }\} & =\{x \in X: k=k(x)\} \\
& =\operatorname{Mor}_{k}(\operatorname{Spec}(k), X) \equiv X(k) .
\end{aligned}
$$

18: DEFINITION A subset Y of a topological space X is dense in X if $\bar{Y}=X$.

19: DEFINITION A subset Y of a topological space X is very dense in X if for every closed subset $F \subset X, \overline{F \cap Y}=F$.

20: N.B. If Y is very dense in X, then Y is dense in X.
[Take $\mathrm{F}=\mathrm{X}: \overline{\mathrm{X} \cap \mathrm{Y}}=\overline{\mathrm{Y}}=\mathrm{X}$.]

21: LemMA Let $X \rightarrow \operatorname{Spec}(k)$ be a k-scheme locally of finite type -- then $\{x \in X: x$ closed $\}$
is very dense in X .

22: DEFINITION Let $\mathrm{X} \rightarrow \operatorname{Spec}(\mathrm{k})$ be a k -scheme -- then a point $\mathrm{x} \in \mathrm{X}$ is
called k-rational if the arrow $k \rightarrow \kappa(x)$ is an isomorphism.

23: N.B. Sending a k-morphism $\operatorname{Spec}(k) \rightarrow X$ to its image sets up a bijection between the set

$$
X(k)=\operatorname{Mor}_{k}(\operatorname{Spec}(k), X)
$$

and the set of k-rational points of X .

24: REMARK $X(k)$ may very well be empty.
[Consider what happens if $\mathrm{k} / / \mathrm{k}$ is a proper field extension.]

Given a k-scheme $X \rightarrow \operatorname{Spec}(k)$ and a field extension K / k, let

$$
X(K)=\operatorname{Mor}_{k}(\operatorname{Spec}(K), X)
$$

be the set of K-valued points of X. If $x ; \operatorname{Spec}(K) \rightarrow X$ is a K-valued point with image $x \in X$, then there are field extensions

$$
k \rightarrow k(x) \rightarrow K
$$

25: N.B. Spec (K) is a k-scheme, the structural morphism $\operatorname{Spec}(K) \rightarrow \operatorname{Spec}(k)$ being derived from the arrow of inclusion $j: k \rightarrow K$.]

Let $G=\operatorname{Gal}(K / k)$. Given $\sigma: K \rightarrow K$ in G,

$$
\operatorname{Spec}(\sigma): \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(K)
$$

hence

$$
\operatorname{Spec}(K) \xrightarrow{\operatorname{spec}(\sigma)} \operatorname{Spec}(K) \xrightarrow{x} x,
$$

and we put

$$
\sigma \cdot \mathbf{x}=\mathbf{x} \circ \operatorname{Spec}(\sigma)
$$

- $\sigma \cdot \mathrm{x}$ is a K-valued point.
[There is a commutative diagram

so $\sigma^{\circ} j=j \circ i d_{k}=j$, and if $\pi: X \rightarrow \operatorname{Spec}(k)$ is the structural morphism, there is a commutative diagram

so $\pi \circ x=\operatorname{Spec}(j)$. The claim then is that the diagram

commutes. But

$$
\begin{aligned}
\pi \circ x \circ \operatorname{Spec}(\sigma) & =\operatorname{Spec}(j) \circ \operatorname{Spec}(\sigma) \\
& =\operatorname{Spec}(\sigma \circ j) \\
& =\operatorname{Spec}(j) \cdot]
\end{aligned}
$$

- The operation

$$
\left[\begin{array}{rl}
-G \times X(K) & \rightarrow X(K) \\
\quad(\sigma, x) & \rightarrow \sigma \cdot x
\end{array}\right.
$$

is a left action of G on $X(K)$.
[Given $\sigma, \tau \in \mathrm{G}: \mathrm{K} \xrightarrow{\tau} \mathrm{K} \xrightarrow{\sigma} \mathrm{K}$, it is a question of checking that $(\sigma \circ \tau) \cdot \mathbf{x}=\sigma \cdot(\tau \cdot \mathbf{x})$.

But the LHS equals

$$
\mathbf{x} \circ \operatorname{Spec}(\sigma \circ \tau)=\mathbf{x} \circ \operatorname{Spec}(\tau) \circ \operatorname{Spec}(\sigma)
$$

while the RHS equals

$$
\tau \cdot x \circ \operatorname{Spec}(\sigma)=x \circ \operatorname{Spec}(\tau) \circ \operatorname{Spec}(\sigma) .]
$$

26: NOTATION Let

$$
\mathrm{K}^{\mathrm{G}}=\operatorname{Inv}(\mathrm{G})
$$

be the invariant field associated with G.

27: LEMMA The set $X(K){ }^{G}$ of fixed points in $X(K)$ for the left action of G on $X(K)$ coincides with the set $X\left(K^{G}\right)$.

28: APPLICATION If k is a Galois extension of k, then

$$
x(K)^{G}=x(k)
$$

Take $K=k^{\text {sep }}$, thus now $G=\operatorname{Gal}\left(k^{\operatorname{sep}} / k\right)$.

29: DEFINITION Suppose given a left action $G \times S \rightarrow S$ of G on a set S then S is called a G-set if $\forall s \in S$, the G-orbit G • s is finite or, equivalently, the stabilizer $G_{S} \subset G$ is an open subgroup of G.

30: EXAMPLE Let $X \rightarrow \operatorname{Spec}(k)$ be a k-scheme locally of finite type - then
$\forall x \in X\left(k^{\text {sep }}\right)$, the G-orbit $G \cdot x$ of x in $X\left(k^{\text {sep }}\right)$ is finite, hence $X\left(k^{\text {sep }}\right)$ is a G-set.

31: DEFTNITION Let $X \rightarrow \operatorname{Spec}(k)$ be a k-scheme - then X is etale if it is of the form

$$
x=\prod_{i \in I} \operatorname{spec}\left(K_{i}\right),
$$

where I is some index set and where K_{i} / k is a finite separable field extension.

There is a category ET/ k whose objects are the étale k-schemes and there is a category G-SET whose objects are the G-sets.

Define a functor

$$
\Phi: \underline{E T} / \mathrm{k} \rightarrow \underline{\mathrm{G}-\mathrm{SET}}
$$

by associating with each X in ET/ k the set $X\left(k^{\operatorname{sep}}\right)$ equipped with its left G-action.

32: LEMMA Φ is an equivalence of categor ies.
PROOF To construct a functor

$$
\Psi: \underline{\text { G-SET }} \rightarrow \text { ETT } / k
$$

such that

$$
\Psi \circ \Phi \approx \mathrm{id}_{\underline{\mathrm{ET} / \mathrm{k}}} \text { and } \Phi \circ \Psi \approx \mathrm{id}_{\underline{\mathrm{G}-\mathrm{SET}}}
$$

take a G-set S and write it as a union of G-orbits, say

$$
S=\prod_{i \in I} G \cdot s_{i} \cdot
$$

Let $K_{i} \supset k$ be the finite separable field extension inside $k^{\text {sep }}$ corresponding to

9.

the open subgroup $G_{\mathbf{S}_{i}} \subset G$ and assign to S the étale k-scheme $\underset{i \in I}{ } \operatorname{Spec}\left(K_{i}\right)$. Proceed... .

The foregoing equivalence of categories induces an equivalence between the corresponding categories of group objects:
étale group k-schemes \approx G-groups,
where a G-group is a group which is a G-set, the underlying left action being by group autamorphisms.

33: CONSTRUCIION Given a group M, let M_{k} be the disjoint union

$$
\frac{1}{M} \operatorname{spec}(\mathrm{k}),
$$

the constant group k-scheme, thus for any k-scheme $X \rightarrow \operatorname{Spec}(k)$,

$$
\operatorname{Mor}_{k}\left(X, M_{k}\right)
$$

is the set of locally constant maps $X \rightarrow M$ whose group structure is multiplication of functions.
[The terminology is standard but not the best since if M is nontrivial, then

$$
\operatorname{Mor}_{\mathrm{k}}\left(\mathrm{X}, \mathrm{M}_{\mathrm{k}}\right) \approx \mathrm{M}
$$

only if X is connected.]

34: EXAMPLE For any étale group k-scheme X,

$$
x x_{k} \operatorname{spec}\left(k^{\operatorname{sep}}\right) \approx x\left(k^{\operatorname{sep}}\right)_{k} x_{k} \operatorname{spec}\left(k^{\operatorname{sep}}\right)
$$

[Note: Here (and elsewhere),

$$
\left.x_{k}=x_{\operatorname{Spec}(k)} \cdot\right]
$$

35: RAPPEL An A in RNG is reduced if it has no nilpotent elements $\neq 0$ (i.e., $\nexists a \neq 0: a^{n}=0$ ((n)).

36: DEFINITION A scheme X is reduced if for any nonempty open subset $U \subset X$, the ring $\Gamma\left(U, O_{X}\right)$ is reduced.
[Note: This is equivalent to the demand that all the local rings $0_{X, X}(x \in X)$ are reduced.]

37: DEFINITION Let X be a k -scheme - then X is geometrically reduced if for every field extension $K \supset k$, the K-scheme $X x_{k} \operatorname{Spec}(K)$ is reduced.

38: LEMMA If X is a reduced k -scheme, then for every separable field extension K / k, the K -scheme $\mathrm{X} \times_{\mathrm{k}}$ Spec (K) is reduced.

39: APPLICATION Assume: k is a perfect field -- then every reduced k-scheme X is geometrically reduced.

40: THEOREM Assume: k is of characteristic zero. Suppose that X is a group k -scheme which is locally of finite type -- then X is reduced, hence is geometrically reduced.

§3. AFFINE GROUP k -SCHEMES

Fix a perfect field k.
[Recall that a field k is perfect if every field extension of k is separable (equivalently, char $(k)=0$ or $\operatorname{char}(k)=p>0$ and the arrow $x \rightarrow x^{p}$ is surjective).]

1: DEFINITION An affine group k-scheme is a group k-scheme of the form $\operatorname{spec}(A)$, where A is a k-algebra.

2: EXAMPLE

$$
G_{a, k}=\operatorname{Spec}(k[t])
$$

is an affine group k-scheme.

3: EXAMPLE

$$
G_{m, k}=\operatorname{Spec}\left(k\left[t, t^{-1}\right]\right)
$$

is an affine group k-scheme.

4: EXAMPLE

$$
\underline{\mu}_{n, k}=\operatorname{spec}\left(k[t] /\left(t^{n}-1\right)\right) \quad(n \in N)
$$

is an affine group k-scheme,

There is a category GRP/k whose objects are the group k-schemes and whose morphisms are the morphisms $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ of k -schemes such that for all k -schemes T the induced map

$$
\mathrm{f}(\mathrm{~T}): \operatorname{Mor}_{\mathrm{k}}(\mathrm{~T}, \mathrm{X}) \rightarrow \operatorname{Mor}_{\mathrm{k}}(\mathrm{~T}, \mathrm{Y})
$$

is a group homomorphism.

5: NOTATION

$$
\text { AFF-GRP } / \mathrm{k}
$$

is the full subcategory of GRP/ k whose objects are the affine group k-schemes.

6: NOTATION
GRP-ALG/k
is the category of group objects in ALG/k and

$$
\text { GRP- }(\underline{A L G /} / \mathrm{k})^{\mathrm{OP}}
$$

is the category of group objects in (ALG/k) ${ }^{\mathrm{OP} \text {. }}$

7: LEMMA The functor

$$
A \rightarrow \operatorname{Spec}(A)
$$

from ($\underline{A L G / k)})^{O P}$ to $\underline{S C H} / k$ is fully faithful and restricts to an equivalence

$$
\text { GRP- }(\underline{\text { ALG } / k})^{\mathrm{OP}} \rightarrow \text { AFF-GRP } / k .
$$

8: REMARK An object in GRP-(ALG/k) ${ }^{O P}$ is a k-algebra A which carries the structure of a commatative Hopf algebra over k : $\exists \mathrm{k}$-algebra homomorphisms

$$
\Delta: A \rightarrow A \otimes_{k} A, \varepsilon: A \rightarrow k, S: A \rightarrow A
$$

satisfying the "usual" conditions,

9: N.B. There is another way to view matters, viz. any functor ALG/k GRP which is representable by a k-algebra serves to determine an affine group k -scheme (and vice versa). From this perspective, a morphism $G \rightarrow H$ of affine group k-schemes is a natural transformation of functors, i.e., a collection of group homomorphisms
$G(A) \rightarrow H(A)$ such that if $A \rightarrow B$ is a k-algebra homomorphism, then the diagram

commutes.
[Note: Suppose that

$$
\left[\begin{array}{l}
G=h^{X}=\operatorname{Mor}(X,-) \\
H=h^{Y}=\operatorname{Mor}(Y,-)
\end{array}\right.
$$

Then from Yoneda theory,

$$
\operatorname{Mor}(\mathrm{G}, \mathrm{H}) \approx \operatorname{Mor}(\mathrm{Y}, \mathrm{X}) .]
$$

10: EXAMPLE $k\left[t, t^{-1}\right]$ represents $G_{m, k}$ and

$$
k\left[t_{11}, \ldots, t_{n n^{\prime}} \operatorname{det}\left(t_{i j}\right)^{-1}\right]
$$

represents $\mathrm{GL}_{\mathrm{n}, \mathrm{k}^{-}}$Given any k-algebra A , the determinant is a group homomorphism

$$
G L_{n, k}(A) \rightarrow G_{m, k}(A)
$$

and

$$
\operatorname{det}_{k} \in \operatorname{Mor}\left(G L_{n, k^{\prime}} G_{m, k}\right) .
$$

[Note: There is a homomorphism

$$
k\left[t, t^{-1}\right] \rightarrow k\left[t_{11}, \ldots, t_{n n^{\prime}} \operatorname{det}\left(t_{i j}\right)^{-1}\right]
$$

of k -algebras that defines $\operatorname{det}_{\mathrm{k}^{\prime}}$ E.g.: If $\mathrm{n}=2$, then the homomorphism in question sends t to $t_{11} t_{22}-t_{12} t_{21}$.]

11: PRODUCTS Let

$$
\begin{cases}G=h^{X} & (X \text { in } \underline{A L G / k}) \\ H=h^{Y} & (Y \text { in } A L G / k)\end{cases}
$$

be aff ine group k-schemes. Consider the functor

$$
\mathrm{G} \times \mathrm{H}: \underline{\mathrm{ALG} / \mathrm{k} \rightarrow \mathrm{GRP}}
$$

defined on objects by

$$
A \rightarrow G(A) \times H(A) .
$$

Then this functor is represented by the k-algebra $X \otimes_{k} Y$:

$$
\begin{aligned}
\operatorname{Mor}\left(X \otimes_{k} Y, A\right) & \approx \operatorname{Mor}(X, A) \times \operatorname{Mor}(Y, A) \\
& =G(A) \times H(A) .
\end{aligned}
$$

12: EXAMPLE Take

$$
\left[\begin{array}{l}
G=G_{m, R} \\
H=G_{m, R}
\end{array}\right.
$$

Then

$$
\left(G_{m, R} \times G_{m, R}\right)(R)=R^{\times} \times R^{\times}=C^{\times}
$$

and

$$
\left(G_{m, R} \times G_{m, R}\right)(C)=c^{x} \times c^{x}
$$

Let k^{\prime} / k be a field extension -- then for any k-algebra A, the tensor product $A \otimes_{k} k^{\prime}$ is a k^{\prime}-algebra, hence there is a functor

$$
\underline{A L G} / k \rightarrow \underline{A L G} / k^{\prime}
$$

termed extension of the scalars. On the other hand, every k '-algebra B^{\prime} can be regarded as a k-algebra B, from which a functor

$$
\underline{\text { ALG } /} / k^{\prime} \rightarrow \underline{\text { ALG } / k}
$$

termed restriction of the scalars.

13: LEMMA For all k-algebras A and for all k '-algebras B^{\prime},

$$
\operatorname{Mor}_{k^{\prime}}\left(A \otimes_{k} k^{\prime}, B^{\prime}\right) \approx \operatorname{Mor}_{k}(A, B)
$$

14: SCHOLIUM The functor "extension of the scalars" is a left adjoint for the functor "restriction of the scalars".

Let G be an affine group k -scheme. Abusing the notation, denote still by G the associated functor

$$
\underline{A L G /} / k \rightarrow \text { GRP. }
$$

Then there is a functor

$$
\mathrm{G}_{\mathrm{k}},: \underline{\mathrm{ALG} / \mathrm{k}^{\prime}} \rightarrow \underline{\mathrm{GRP}},
$$

namely

$$
G_{k^{\prime}}\left(A^{\prime}\right)=G(A),
$$

where A is A^{\prime} viewed as a k-algebra.

15: LEMMA G_{k}, is an affine group k^{\prime}-scheme and the assignment $\mathrm{G} \rightarrow \mathrm{G}_{\mathrm{k}}$, is functorial:

$$
\underline{\text { AFF-GRP } / k \rightarrow \text { AFF }-G R P / k ' . ~}
$$

[Note: Suppose that $G=h^{X}$ - then

$$
\operatorname{Mor}_{k},\left(X \otimes_{k} k^{\prime}, A^{\prime}\right) \approx \operatorname{Mor}_{k}(X, A)
$$

$$
=G(A)=G_{k^{\prime}}\left(A^{\prime}\right) .
$$

Therefore G_{k}, is represented by $X \otimes_{k} k^{\prime}$:

$$
G_{k^{\prime}}=h^{X \otimes_{k} k^{\prime}} .
$$

Matters can also be interpreted "on the other side":

16: DEFINITION G_{k}, is said to have been obtained from G by extension of the scalars.

$$
\underline{\text { ALG } / k} \rightarrow \underline{\mathrm{GRP}}
$$

defined by the rule

$$
A \rightarrow G^{\prime}\left(A \otimes_{k} k^{\prime}\right) .
$$

[Note: If $k^{\prime}=k$, then $\left.G_{k^{\prime} / k}=G.\right]$

18: THEOREM Assume that k^{\prime} / k is a finite field extension -- then $G_{k^{\prime} / k}$ is an affine group k-scheme and the assignment $G^{\prime} \rightarrow G_{k^{\prime} / k}$ is functorial:

$$
\text { AFF-GRP } / \mathrm{k}^{\prime} \rightarrow \text { AFF-GRP/ } \mathrm{k}
$$

19: DEFINITION $G_{k^{\prime} / k}$ is said to have been obtained from G^{\prime} by restriction of the scalars.

20: LEMMA Assume that k^{\prime} / k is a finite field extension -- then for all affine group k -schemes H ,

$$
\operatorname{Mor}_{k}\left(\mathrm{H}_{1} \mathrm{G}_{\mathrm{k}^{\prime} / \mathrm{k}}\right) \approx \operatorname{Mor}_{\mathrm{k}^{\prime}}\left(\mathrm{H}_{\mathrm{k}^{\prime}}, \mathrm{G}^{\prime}\right) .
$$

21: SCHOLIUM The functor "restriction of the scalars" is a right adjoint for the functor "extension of the scalars".
[Accordingly, there are arrows of adjunction

$$
\left[\begin{array}{l}
G \rightarrow\left(G_{k^{\prime}}\right)_{k^{\prime} / k} \\
\left.\left(G_{k^{\prime} / k}\right)_{k^{\prime}} \rightarrow G^{\prime} \cdot\right]
\end{array}\right.
$$

22: NOTATION

$$
\operatorname{Res}_{k^{\prime} / k}: \text { AFF-GRP } / k^{\prime} \rightarrow \text { AFF-GRP } / k
$$

is the functor defined by setting

$$
\operatorname{Res}_{k^{\prime} / k}\left(G^{\prime}\right)=G_{k^{\prime} / k^{*}}
$$

So, by definition,

$$
\operatorname{Res}_{k^{\prime} / k}\left(G^{\prime}\right)(A)=G^{\prime}\left(A \otimes_{k} k^{\prime}\right)
$$

And in particular:

$$
\operatorname{Res}_{k^{\prime} / k}\left(G^{\prime}\right)(k)=G^{\prime}\left(k \otimes_{k} k^{\prime}\right)=G^{\prime}\left(k^{\prime}\right)
$$

23: EXAMPLE Take $G^{\prime}=A_{k^{\prime}}^{n}$-- then

$$
\operatorname{Res}_{k^{\prime} / k}\left(A_{k^{\prime}}^{n}\right) \approx A_{k}^{n d} \quad\left(d=\left[k^{\prime}: k\right]\right)
$$

$$
\begin{aligned}
& \text { 24: EXAMPLE Take } k=R, k^{\prime}=C, G^{\prime}=G_{m, C} \text { and consider } \\
& \operatorname{Res}_{C / R}\left(G_{m, C}\right) .
\end{aligned}
$$

Then

$$
\operatorname{Res}_{C / R}\left(G_{m, C}\right)(R)=C^{x}
$$

and

$$
\operatorname{Res}_{C / R}\left(G_{m, C}\right)(C)=C^{x} \times C^{x}
$$

[Note:

$$
\operatorname{Res}_{C / R}\left(G_{m, C}\right)
$$

is not isomorphic to $G_{m, R}$ (its group of real points is R^{\times}).]

25: LEMMA Let k^{\prime} be a finite Galois extension of k -- then

$$
\left(\operatorname{Res}_{k^{\prime} / k}\left(G^{\prime}\right)\right)_{k^{\prime}} \approx \prod_{\sigma \in G a l\left(k^{\prime} / k\right)} \sigma G^{\prime}
$$

[Note: $\forall \sigma \in \operatorname{Gal}\left(k^{\prime} / k\right)$, there is a pullback square

26: EXAMPLE Take $k=R, k^{\prime}=C, G^{\prime}=G_{m, C}$-- then

$$
\begin{aligned}
\left(\operatorname{Res}_{C / R}\left(G_{m, C}\right)\right)_{C} & \approx G_{m, C} \times \sigma G_{m, C} \\
& \approx G_{m, C} \times G_{m, C} .
\end{aligned}
$$

Let G be an affine group k-scheme.

27: DEFINITION A character of G is an element of

$$
X(G)=\operatorname{Mor}_{k}\left(G, G_{m, k}\right)
$$

Given $X \in X(G)$, for every k-algebra A, there is a homomorphism

$$
x(A): G(A) \rightarrow G_{m, k}(A)=A^{x}
$$

Given $X_{1}, X_{2} \in X(G)$, define

$$
\left(x_{1}+x_{2}\right)(A): G(A) \rightarrow G_{m, k}(A)=A^{x}
$$

by the stipulation

$$
\left(x_{1}+x_{2}\right)(A)(t)=x_{1}(A)(t) x_{2}(A)(t)
$$

from which a character $X_{1}+X_{2}$ of G, hence $X(G)$ is an abelian group.

28: EXAMPLE Take $G=G_{m, k}$ - then the characters of G are the morphisms $G \rightarrow G_{m, k}$ of the form

$$
t \rightarrow t^{n} \quad(n \in Z)
$$

i.e.,

$$
X(G) \approx Z
$$

29: EXAMPLE Take $G=G_{m, k} \times \cdots \times G_{m, k}$ (d factors) -- then the characters of G are the morphisms $G \rightarrow G_{m, k}$ of the form

$$
\left(t_{1}, \ldots, t_{d}\right) \rightarrow t_{1}^{n_{1}} \ldots t_{d}^{n_{d}} \quad\left(n_{1}, \ldots, n_{d} \in z\right)
$$

i.e.,

$$
x(G) \approx Z^{d} .
$$

30: EXAMPLE Given an abelian group M, its group algebra k [M] is canonically a k-algebra. Consider the functor $D(M): \underline{A L G} / k \rightarrow \underline{G R P}$ defined on objects by the rule

$$
A \rightarrow \operatorname{Mor}\left(M, A^{x}\right)
$$

Then \forall A,

$$
\operatorname{Mor}\left(M, A^{x}\right) \approx \operatorname{Mor}(k[M], A)
$$

so k [M] represents $D(M)$ which is therefore an affine group k-scheme. And

$$
X(D(M)) \approx M,
$$

the character of $D(M)$ corresponding to $m \in M$ being the assignment

$$
\begin{aligned}
D(M)(A)= & \operatorname{Mor}\left(M, A^{x}\right) \\
& f \rightarrow f(m) \\
& \longrightarrow A^{x}=G_{m, k}(A) .
\end{aligned}
$$

31: NOTATION Given $X^{\prime} \in X\left(G^{\prime}\right)$, let $\left.N_{k^{\prime}} / k^{(} X^{\prime}\right)$ stand for the rule that assigns to each k-algebra A the homomorphism

$$
G_{k^{\prime} / k}(A) \rightarrow G_{m, k}(A)=A^{X}
$$

defined by the composition

$$
\begin{aligned}
& G_{k} / k^{(A)} \longrightarrow G^{\prime}\left(A \otimes_{k} k^{\prime}\right) \\
& G^{\prime}\left(A \otimes_{k} k^{\prime}\right) \longrightarrow G_{m, k^{\prime}}\left(A \otimes_{k} k^{\prime}\right)=\left(A \otimes_{k} k^{\prime}\right)^{x} \\
& \left(A \otimes_{k} k^{\prime}\right)^{x} \longrightarrow A^{x} .
\end{aligned}
$$

Here the first arrow is the canonical isomorphism, the second arrow is $X^{\prime}\left(A \otimes_{k} k^{\prime}\right)$, and the third arrow is the norm map.

32: LEMMA The arrow

$$
x^{\prime} \rightarrow \mathbb{N}_{k^{\prime} / k}\left(x^{\prime}\right)
$$

is a homomorphism

$$
X\left(G^{\prime}\right) \rightarrow X\left(G_{k^{\prime}} / k\right)
$$

of abelian groups.

33: THEOREM The arrow

$$
x^{\prime} \rightarrow N_{k^{\prime} / k}\left(x^{\prime}\right)
$$

is bijective, hence defines an isomorphism

$$
X\left(G^{\prime}\right) \rightarrow X\left(G_{k} / / k\right)
$$

of abelian groups.

34: APPLICATION Consider

$$
\operatorname{Res}_{C / R}\left(G_{m, C}\right)
$$

Then its character group is isomorphic to the character group of $G_{m, C}$, i.e., to Z. Therefore

$$
\operatorname{Res}_{C / R}\left(G_{m, C}\right)
$$

is not isomorphic to $G_{m, R} \times G_{m, R}$.

Fix a field k of characteristic zero.

1: DEFINITION Let G be an affine group k-scheme -- then G is algebraic if its associated representing k-algebra A is finitely generated.

2: REMARK It can be shown that every algebraic affine group k-scheme is isomorphic to a closed subgroup of some $\mathrm{GL}_{\mathrm{n}, \mathrm{k}}(\exists \mathrm{n})$.

3: CONVENTION The term algebraic k-group means "algebraic affine group k-scheme".

4: N.B. It is automatic that an algebraic k-group is reduced (cf. §2, \#40), hence is geometrically reduced (cf. §2, \#39).

5: LEMMA Assume that $\mathrm{k}^{\prime} / \mathrm{k}$ is a finite field extension -- then the functor

$$
\operatorname{Res}_{k^{\prime} / \mathrm{k}}: \mathrm{AFF}-\mathrm{GRP} / \mathrm{k}^{\prime} \rightarrow \mathrm{AFF}-\mathrm{GRP} / \mathrm{k}
$$

sends algebraic k '-groups to algebraic k-groups.

Given a finite field extension $\mathrm{k}^{\prime} / \mathrm{k}$, let Σ be the set of k -embeddings of k^{\prime} into $k^{\text {sep }}$ and identify $k^{\prime} \mathbb{\otimes}_{k} k^{\operatorname{sep}}$ with $\left(k^{\operatorname{sep}}\right)^{\Sigma}$ via the bijection which takes $\mathrm{x} \otimes \mathrm{y}$ to the string $(\sigma(x) y){ }_{\sigma \in \Sigma^{*}}$

6: LEMMA Let G^{\prime} be an algebraic k '-group -- then

$$
\left(\mathrm{G}_{\mathrm{k}^{\prime} / \mathrm{k}}\right) \times_{k} \operatorname{spec}\left(\mathrm{k}^{\operatorname{sep}}\right) \approx \prod_{\sigma \in \Sigma} \sigma G^{\prime},
$$

where σG^{\prime} is the algebraic $k^{\text {sep }}$-group defined by the pullback square

[Note: To review, the LHS is

$$
\left.\operatorname{Res}_{k^{\prime} / k^{\prime}}\left(G^{\prime}\right)\right)_{k^{\operatorname{sep}}}
$$

and the Galois group Gal $\left(k^{s e p} / k\right)$ operates on it through the second factor. On the other hand, to each pair $(\tau, \sigma) \in \operatorname{Gal}\left(k^{\operatorname{sep}} / k\right) \times \Sigma$, there corresponds a bijection $\sigma G^{\prime} \rightarrow(\tau \circ \sigma) G^{\prime}$ leading thereby to an action of $\mathrm{Gal}\left(\mathrm{k}^{\mathrm{sep}} / \mathrm{k}\right)$ on

$$
\prod_{\sigma \in \Sigma} \sigma G^{\prime} .
$$

The point then is that the identification

$$
\operatorname{Res}_{k^{\prime} / k}{ }^{\left.\left(G^{\prime}\right)\right)}{ }_{k} \text { sep } \approx \prod_{\sigma \in \Sigma} \sigma G^{\prime}
$$

respects the actions, i.e., is $\operatorname{Gal}\left(k^{\mathrm{sep}} / \mathrm{k}\right)$-equivariant.]

7: N.B. Consider the commutative diagram

Then the "big" square is a pullback. Since this is also the case of the "small" bottom square, it follows that the "small" upper square is a pullback.

8: DEFINITION A split k-torus is an algebraic k-group T which is isomorphic to a finite product of copies of $G_{m, k}$.

9: EXAMPIE The algebraic R-group

$$
\operatorname{Res}_{C / R} \quad\left(G_{m, C}\right)
$$

is not a split R-torus (cf. §3, \#24 and \#34).

10: LEMMA If T is a split k-torus, then $X(T)$ is a finitely generated free abelian group.

11: THEOREM The functor

$$
T \rightarrow X(T)
$$

from the category of split k-tori to the category of finitely generated free abelian groups is a contravariant equivalence of categories.

12: N.B. \forall k-algebra A,

$$
T(A) \approx \operatorname{Mor}\left(X(T), A^{X}\right)
$$

[Note: Explicated,

$$
T \approx \operatorname{Spec}(k[X(T)]) \quad \text { (cf. } \S 3, \# 30) .
$$

Therefore

$$
\begin{aligned}
T(A) & \approx \operatorname{Mor}(\operatorname{Spec}(A), T) \\
& \approx \operatorname{Mor}(\operatorname{Spec}(A), \operatorname{Spec}(k[X(T)]) \\
& \approx \operatorname{Mor}(k[X(T)], A) \\
& \left.\approx \operatorname{Mor}\left(X(T), A^{X}\right) \cdot\right]
\end{aligned}
$$

13: DEFINITION A k-torus is an algebraic k-group T such that

$$
\mathrm{T}_{\mathrm{k}} \operatorname{sep}=\mathrm{T} \times_{k} \operatorname{Spec}\left(\mathrm{k}^{\operatorname{sep}}\right)
$$

is a split $\mathrm{k}^{\text {sep }}$-torus.

14: N.B. A split k-torus is a k-torus.

15: EXAMPLE Let $\mathrm{k}^{\prime} / \mathrm{k}$ be a finite field extension and take $\mathrm{G}^{\prime}=G_{\mathrm{m}, \mathrm{k}^{\prime}}$ then the algebraic k-group G_{k} / k is a k-torus (cf. \#6).

16: DEFINITION Let T be a k-torus -- then a splitting field for T is a finite field extension K / k such that T_{K} is a split K-torus.

17: THEOREM Every k-torus T admits a splitting field which is minimal (i.e., contained in any other splitting field) and Galois.

18: NOTATION Given a k -scheme X and a Galois extension K / k, the Galois group Gal (K / k) operates on

$$
X_{K}=X \times_{k} \operatorname{spec}(K)
$$

via the second term, hence $\sigma \rightarrow 1 \otimes \sigma$.
[Note: $1 \otimes \sigma$ is a k-autamorphism of X_{K}.]

19: NOTATION Given k -schemes X, Y and a Galois extension K / k, the Galois group $\operatorname{Gal}(\mathrm{K} / \mathrm{k})$ operates on $\operatorname{Mor}_{\mathrm{K}}\left(\mathrm{X}_{\mathrm{K}}, \mathrm{Y}_{\mathrm{K}}\right)$ by the prescription

$$
\sigma f=(1 \otimes \sigma) f(1 \otimes \sigma)^{-1} .
$$

[Note: If $f \in \operatorname{Mor}_{K}\left(X_{K}, Y_{K}\right)$, then the condition $\sigma f=f$ for all $\sigma \in \operatorname{Gal}(K / k)$
is equivalent to the condition that f is the lift of a k-morphism $\phi: X \rightarrow Y$, i.e., $\mathrm{f}=\phi$ (1.]

20: LEMMA Let K / k be a Galois extension and let $\mathrm{G}=\mathrm{Gal}(\mathrm{K} / \mathrm{k})$-- then for any k-algebra A and for any k-scheme X,

$$
X\left(A \otimes_{k} K\right)^{G}=X(A)
$$

[Note: This generalizes $\$ 2$, \#28 to which it reduces if $\mathrm{A}=\mathrm{k}$.]

2l: DEFINITION Let G be a finite group -- then a G-module is an abelian group M supplied with a homomorphism $G \rightarrow$ Aut (M) .

22: N.B. A G-module is the same thing as a $Z[G]$-module (in the usual sense when $\mathrm{Z}[\mathrm{G}]$ is viewed as a ring).

23: DEFINITION Let G be a finite group -- then a G-lattice is a Z-free G-module M of finite rank.

24: LEMMA If T is a k-torus split by a finite Galois extension K / k, then

$$
X\left(T_{K}\right)=\operatorname{Mor}_{K}\left(T_{K}, G_{m, K}\right)
$$

is a $\operatorname{Gal}(\mathrm{K} / \mathrm{k})$-lattice.

25: THEOREM Fix a finite Galois extension K / k-- then the functor

$$
T \rightarrow X\left(T_{K}\right)
$$

from the category of k-tori split by K / k to the category of $\mathrm{Gal}(\mathrm{K} / \mathrm{k})$-lattices is a contravariant equivalence of categories.

26: N.B. Suppose that T is a k-torus split by a finite Galois extension
K / k. Form $\mathrm{K}\left[\mathrm{X}\left(\mathrm{T}_{\mathrm{K}}\right)\right]$, thus operationally, $\forall \sigma \in \operatorname{Gal}(\mathrm{K} / \mathrm{k})$,

$$
\underset{i}{\sigma\left(a_{i} x_{i}\right)}=\underset{i}{\sum_{i} \sigma\left(a_{i}\right) \sigma\left(x_{i}\right) \quad\left(a_{i} \in K, x_{i} \in X\left(T_{K}\right)\right) .}
$$

Pass now to the invariants

$$
K\left[X\left(T_{K}\right)\right] \quad(G=\operatorname{Gal}(K / k))
$$

Then

$$
T \approx \operatorname{Spec}\left(\mathrm{~K}\left[\mathrm{X}\left(\mathrm{~T}_{\mathrm{K}}\right)\right]^{\mathrm{G}}\right)
$$

And

$$
\begin{aligned}
T\left(A \otimes_{K} K\right) & =T(A) \\
& \approx \operatorname{Mor}(\operatorname{Spec}(A), T) \\
& \approx \operatorname{Mor}\left(\operatorname{Spec}(A), \operatorname{Spec}\left(K\left[X\left(T_{K}\right)\right]^{G}\right)\right. \\
& \approx \operatorname{Mor}_{k}\left(K\left[X\left(T_{K}\right)\right]^{G}, A\right) \\
& \approx \operatorname{Mor}_{K}\left(K\left[X\left(T_{K}\right)\right], A \otimes_{K} K\right) G \\
& \approx \operatorname{Mor}_{Z}\left(X\left(T_{K}\right),\left(A \otimes_{K} K\right)^{\times}\right)^{G} \\
& \approx \operatorname{Mor}_{Z[G]}\left(X\left(T_{K}\right),\left(A \otimes_{K} K\right)^{\times}\right)
\end{aligned}
$$

[Note: Let $T=\operatorname{Res}_{K / k}\left(G_{m, K}\right)$-- then on the one hand,

$$
\operatorname{Mor}_{Z[G]}\left(Z[G],\left(A \otimes_{k} K\right)^{X}\right) \approx\left(A \theta_{k} K\right)^{\times},
$$

while on the other,

$$
\begin{aligned}
& \operatorname{Res}_{K / k}\left(G_{m, K}\right)(A)=\left(A \otimes_{k} K\right)^{\times} \\
& \quad \approx \operatorname{Mor}_{Z[G]}\left(X\left(T_{K}\right),\left(A \otimes_{k} K\right)^{\times}\right) .
\end{aligned}
$$

Therefore

$$
\left.X\left(T_{K}\right) \approx Z[G] .\right]
$$

Take $k=R, K=C$, and let σ be the nontrivial element of $G a l(C / R)$-- then every R-torus T gives rise to a Z-free module of finite rank supplied with an involution corresponding to σ. And conversely... .

There are three "basic" R-tori.

1. $T=G_{m, R^{*}}$ In this case,

$$
X\left(T_{C}\right)=X\left(G_{m}, C\right) \approx Z
$$

and the Galois action is trivial.
2. $T=\operatorname{Res}_{C / R}\left(G_{m, C}\right)$. In this case,

$$
\begin{aligned}
X\left(T_{C}\right) & \approx X\left(G_{m, C} \times G_{m, C}\right) \quad(c f . \S 3, \# 26) \\
& \approx Z \times Z
\end{aligned}
$$

and the Galois action swaps coordinates.

$$
\begin{aligned}
& \text { 3. } \mathrm{T}=\mathrm{SO}_{2} \text {. In this case, } \\
& X\left(\left(\mathrm{SO}_{2}\right) \mathrm{C}\right) \approx \mathrm{X}\left(\mathrm{G}_{\mathrm{m}, \mathrm{C}}\right) \\
& \approx \text { Z }
\end{aligned}
$$

and the Galois action is multiplication by -1 .
[Note:

$$
\mathrm{SO}_{2}: \underline{\mathrm{ALG} / \mathrm{R}} \rightarrow \underline{\mathrm{GRP}}
$$

is the functor defined by the rule

$$
S O_{2}(A)=\left\{\left|\begin{array}{cc}
a & b \\
-b & a
\end{array}\right|: a, b \in A \& a^{2}+b^{2}=1\right\}
$$

Then SO_{2} is an algebraic R -group such that

$$
\left(\mathrm{SO}_{2}\right)_{\mathrm{C}} \approx \mathrm{G}_{\mathrm{m}, \mathrm{C}^{\prime}}
$$

8.

so SO_{2} is an R -torus and $\mathrm{SO}_{2}(\mathrm{R})$ can be identified with $\mathrm{S}(=\{\mathrm{z} \in \mathrm{C}: \mathrm{z} \overline{\mathrm{z}}=1\}$).

27: THEOREM Every R-torus is isomorphic to a finite product of copies of the three basic tori described above.

Here is the procedure. Fix a Z-free module M of finite rank and an involution $1: M \rightarrow M-$ then M can be decomposed as a direct sum

$$
\mathrm{M}_{+} \oplus \mathrm{M}_{\mathrm{SW}} \oplus \mathrm{M}_{-}
$$

where $\mathfrak{l}=1$ on M_{+}, \mathfrak{i} is a sum of 2 -dimensional swaps on $M_{S W}$ (or still, $M_{S W}=$ $\oplus Z[\operatorname{Gal}(C / R)])$, and $1=-1$ on M_{-}.

28: SCHOLIUM If T is an R-torus, then there exist unique nonnegative integers a, b, c such that

$$
T(R) \approx\left(R^{\times}\right)^{a} \times\left(C^{\times}\right)^{b} \times S^{c}
$$

29: REMARK The classification of C-tori is trivial: Any such is a finite product of the $G_{m, C}$.

30: RAPPEL Let K / k be a finite Galois extension and let A be a k-algebra -then there is a norm map

$$
\left(A \otimes_{k} K\right)^{x} \rightarrow A^{X}\left(\approx\left(A \otimes_{k} k\right)^{X}\right)
$$

31: CONSTRUCIION Let K / k be a finite Galois extension -- then there is a norm map

$$
N_{\mathrm{K} / \mathrm{k}}: \operatorname{Res}_{\mathrm{K} / \mathrm{k}}\left(G_{\mathrm{m}, \mathrm{~K}}\right) \rightarrow G_{\mathrm{m}, \mathrm{k}}
$$

[For any k-algebra A,

$$
\begin{aligned}
\operatorname{Res}_{K / k} & \left(G_{m, K}\right)(A) \\
& =G_{m, K}\left(A \otimes_{k} K\right) \\
& =\left(A \otimes_{k} K\right)^{\times} \rightarrow A^{\times}=G_{m, k}(A) .
\end{aligned}
$$

[Note: $\mathrm{N}_{\mathrm{K} / \mathrm{k}}$ is not to be confused with the arrow of adjunction

$$
\left.G_{m, k} \rightarrow \operatorname{Res}_{K / k}\left(G_{m, K}\right) \cdot\right]
$$

32: N.B.

$$
N_{K / k} \in X\left(\operatorname{Res}_{K / k}\left(G_{m, K}\right)\right)
$$

33: NOTATION Let $\operatorname{Res}_{K / k}^{(1)}\left(G_{m, K}\right)$ be the kernel of $N_{K / k}$.

34: LEMMA $\operatorname{Res}_{K / k}^{(1)}\left(G_{m, K}\right)$ is a k-torus and there is a short exact sequence

$$
1 \rightarrow \operatorname{Res}_{K / k}^{(1)}\left(G_{m, K}\right) \rightarrow \operatorname{Res}_{K / k}\left(G_{m, K}\right) \rightarrow G_{m, k} \rightarrow 1
$$

35: EXAMPLE Take $k=R, K=C-$ then

$$
\operatorname{Res}_{C / R}^{(1)}\left(G_{\mathrm{m}, \mathrm{C}}\right) \approx \mathrm{SO}_{2}
$$

and there is a short exact sequence

$$
I \rightarrow \mathrm{SO}_{2} \rightarrow \operatorname{Res}_{C / R}\left(G_{m, C}\right) \rightarrow G_{m, R} \rightarrow 1
$$

[Note: On R-points, this becomes

$$
\left.I \rightarrow S \rightarrow C^{\times} \rightarrow R^{X} \rightarrow 1 .\right]
$$

36: DEFTNITION Let T be a k-torus -- then T is k-anisotropic if $X(T)=\{0\}$.

37: EXAMPLE SO_{2} is R-anisotropic.

38: THEOREM Every k-torus T has a unique maximal k-split subtorus T_{S} and a unique maximal k-anisotropic subtorus T_{a}. The intersection $T_{s} \cap T_{a}$ is finite and $T_{S} \cdot T_{a}=T$.

39: LEMMA $\operatorname{Res}_{K / k}^{(1)}\left(G_{m, K}\right)$ is k-anisotropic.
PROOF Setting $G=G a l(K / k)$, under the functoriality of \#25, the norm map

$$
N_{K / k}: \operatorname{Res}_{K / k}\left(G_{m, K}\right) \rightarrow G_{m, k}
$$

corresponds to the homomorphism $Z \rightarrow Z[G]$ of G-modules that sends n to $n(\Sigma \sigma)$, G the quotient $Z[G] / Z(\underset{G}{\Sigma \sigma})$ being $X\left(T_{K}\right)$, where

$$
T=\operatorname{Res}_{K / k}^{(l)}\left(G_{m, K}\right)
$$

And

$$
Z[G]^{G}=Z(\underset{G}{\Sigma \sigma}) .
$$

40: N.B. $\operatorname{Res}_{K / k}^{(1)}\left(G_{m, K}\right)$ is the maximal k-anisotropic subtorus of $\operatorname{Res}_{K / k}\left(G_{m, K}\right)$.

41: DEFINITION Let G, H be algebraic k -groups -- then a homomorphism $\phi: \mathrm{G} \rightarrow \mathrm{H}$ is an isogengy if it is surjective with a finite kernel.

42: DEFINITION Let G,H be algebraic k-groups -- then G, H are said to be isogeneous if there is an isogengy between them.

43: THEOREM Two k-tori T^{\prime}, $T^{\prime \prime}$ per \#25 are isogeneous iff the $Q[G a l(k / k)]-$ modules

$$
\left[\begin{array}{l}
x\left(T_{K}^{\prime}\right) \otimes_{Z} Q \\
x\left(T_{K}^{\prime \prime}\right) \otimes_{Z} Q
\end{array}\right.
$$

are isomorphic.

§5. THE LIC

1: N.B. The term "LLC" means "local Langlands correspondence" (cf. \#26).
Let K be a non-archimedean local field -- then the image of rec ${ }_{K}: K^{\times} \rightarrow G_{K}^{a b}$ is $W_{K}^{a b}$ and the induced map $K^{\times} \rightarrow W_{K}^{a b}$ is an isomorphism of topological groups.

2: SCHOLIUM There is a bijective correspondence between the characters of W_{K} and the characters of K^{\times}:

$$
\operatorname{Mor}\left(W_{K}, C^{x}\right) \approx \operatorname{Mor}\left(K^{x}, C^{x}\right)
$$

[Note: "Character" means continuous homomorphism. So, if $X: W_{\mathrm{K}} \rightarrow C^{\times}$is a character, then X must be trivial on W_{K}^{*} (C^{x} being abelian), hence by continuity, trivial on $\overline{W_{K}^{\star}}$, thus X factors through $\left.W_{K} / W_{K}^{\star}=W_{K}^{a b}.\right]$

Let T be a K-torus -- then T is isomorphic to a closed subgroup of some $G L_{n, K}(\exists \mathrm{n})$. But $G L_{n, K}(K)$ is a locally compact topological group, thus $T(K)$ is a locally compact topological group (which, moreover, is abelian).

3: N.B. For the record,

$$
G_{m, K}(K)=K^{\times}=G L_{1, K}(K) .
$$

4: EXAMPLE Let I / K be a finite extension and consider $T=\operatorname{Res}_{L / K}\left(G_{m, L}\right)-$ then $T(K)=L^{x}$.

Roughly speaking, the objective now is to describe $\operatorname{Mor}\left(T(K), C^{x}\right)$ in terms of data attached to W_{K} but to even state the result requires some preparation.

5: N.B. The case when $T=G_{m, K}$ is local class field theory... .

6: EXAMPLE Suppose that T is $\mathrm{K}-\mathrm{spl}$ it:

$$
T \approx G_{m, K} \times \cdots \times G_{m, K} \quad \text { (d factors) }
$$

Then

$$
\begin{aligned}
\prod_{i=1}^{d} \operatorname{Mor}\left(W_{K}, C^{x}\right) & \approx \prod_{i=1}^{d} \operatorname{Mor}\left(K^{x}, C^{x}\right) \\
& \approx \operatorname{Mor}\left(\prod_{i=1}^{d} K^{x}, C^{x}\right) \\
& \approx \operatorname{Mor}\left(T(K), C^{x}\right)
\end{aligned}
$$

Given a K-torus T, put

7: LEMMA Canonically,

$$
X_{*}(T) \otimes_{Z} C^{x} \approx \operatorname{Mor}\left(X^{*}(T), C^{x}\right)
$$

PROOF Bearing in mind that

$$
\left.\operatorname{Mor}_{K} \operatorname{sep}^{\left(G, K^{\operatorname{sep}}\right.}{ }_{m, K} \operatorname{sep}^{\prime}\right) \approx Z,
$$

define a pairing

$$
X^{*}(T) \times X_{*}(T) \xrightarrow{\langle,>} Z
$$

by sending $\left(\chi^{*}, X_{*}\right)$ to $\chi^{*} \circ X_{*} \in Z$. This done, given $X_{*} \otimes$, assign to it the homomorphism

$$
x^{* \rightarrow z^{\left\langle x^{*}, x_{*}\right\rangle}} .
$$

3: NOTATION Given a K-torus T, put

$$
\hat{T}=\operatorname{spec}\left(C\left[X_{*}(T)\right]\right) .
$$

9: LEMMA \hat{T} is a split C-torus such that

$$
\left[\begin{array}{l}
X^{*}(\hat{T}) \equiv \operatorname{Mor}_{C}\left(\hat{T}, G_{m}, C\right) \approx X_{*}(T) \\
X_{*}(\hat{T}) \equiv \operatorname{Mor}_{C}\left(G_{m, C}, \hat{T}\right) \approx X^{*}(T)
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
\operatorname{Mor}\left(X_{*}(T), C^{x}\right) & \approx \operatorname{Mor}\left(X^{*}(\hat{T}), C^{x}\right) \\
& \approx X_{*}(\hat{T}) \otimes_{Z} C^{x} \\
& \approx X^{*}(T) \otimes_{Z} C^{x}
\end{aligned}
$$

10: LEMMA

$$
\hat{T}(C) \approx X^{*}(T) \otimes_{Z} C^{x}
$$

PROOF In fact,

$$
\begin{aligned}
\hat{T}(C) & \left.\approx \operatorname{Mor}\left(X^{*}(\hat{T}), C^{\times}\right) \quad \text { (cf. } \S 4, ~ \# 12\right) \\
& \approx \operatorname{Mor}\left(X_{*}(T), C^{x}\right) \\
& \approx X^{*}(T) \otimes_{Z} C^{x} .
\end{aligned}
$$

11: DEFINITION $\hat{\mathrm{T}}$ is the complex dual torus of T .

12: EXAMPLE Under the assumptions of \#6,

$$
\begin{aligned}
\hat{T}(C) & \approx X^{*}(T) \otimes_{Z} C^{x} \\
& \approx Z^{d} \otimes_{Z} C \approx\left(C^{x}\right)^{d}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\operatorname{Mor}\left(W_{K^{\prime}}, \hat{T}(C)\right) & \approx \operatorname{Mor}\left(W_{K^{\prime}},\left(C^{x}\right)^{d}\right) \\
& \approx \prod_{i=1}^{d} \operatorname{Mor}\left(W_{K^{\prime}} C^{x}\right) \\
& \approx \operatorname{Mor}\left(T(K), C^{x}\right)
\end{aligned}
$$

13: RAPPEL If G is a group and if A is a G-module, then

$$
H^{I}(G, A)=\frac{z^{1}(G, A)}{B^{I}(G, A)}
$$

- $Z^{I}(G, A)$ (the 1-cocycles) consists of those maps $f: G \rightarrow A$ such that $\forall \sigma, \tau \in G$,

$$
f(\sigma \tau)=f(\sigma)+\sigma(f(\tau))
$$

- $B^{l}(G, A)$ (the 1-coboundaries) consists of those maps $f: G \rightarrow A$ for which \exists an $a \in A$ such that $\forall \sigma \in G$,

$$
f(\sigma)=\sigma a-a
$$

[Note:

$$
H^{I}(G, A)=\operatorname{Mor}(G, A)
$$

if the action is trivial.]

14: NOTATION If G is a topological group and if A is a topological G-module, then

$$
\operatorname{Mor}_{C}(G, A)
$$

is the group of continuous group homomorphisms from G to A. Analogously,

$$
\left[\begin{array}{l}
\mathrm{Z}_{\mathrm{C}}^{1}(\mathrm{G}, \mathrm{~A})=\text { "continuous 1-cocycles" } \\
\mathrm{B}_{\mathrm{C}}^{1}(\mathrm{G}, \mathrm{~A})=\text { "continuous 1-coboundaries" }
\end{array}\right.
$$

and

$$
H_{C}^{I}(G, A)=\frac{Z_{C}^{I}(G, A)}{B_{C}^{I}(G, A)}
$$

Let T be a K-torus -- then $G_{K}\left(=\operatorname{Gal}\left(K^{\operatorname{sep}} / K\right)\right)$ operates on $X^{*}(G)$, thus $W_{K} \subset G_{K}$ operates on $X^{*}(G)$ by restriction. Therefore $\hat{T}(C)$ is a W_{K}-module, so it makes sense to form

$$
H_{C}^{I}\left(W_{K}, \hat{T}(C)\right)
$$

15: NOTATION $\mathrm{TOR}_{\mathrm{K}}$ is the category of K-tori.

16: Lद्यMMA The assignment

$$
T \rightarrow H_{C}^{I}\left(W_{K}, \hat{T}(C)\right)
$$

defines a functor

$$
\mathrm{TOR}_{\mathrm{K}}^{\mathrm{OP}} \rightarrow \underline{\mathrm{AB}}
$$

[Note: Suppose that $\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$-- then

$$
\begin{aligned}
& \left(\mathrm{T}_{1}\right)_{\mathrm{K}}{ }^{\text {sep }} \rightarrow\left(\mathrm{T}_{2}\right)_{K} \operatorname{sep} \\
& \text { => } \\
& X^{*}\left(T_{2}\right) \rightarrow X^{*}\left(T_{1}\right) \\
& \text { => } \\
& \hat{T}_{2}(C) \rightarrow \hat{T}_{1}(C) \\
& \text { => } \\
& \left.H_{C}^{1}\left(W_{K}, \hat{T}_{2}(C)\right) \rightarrow H_{C}^{1}\left(W_{K}, \hat{T}_{1}(C)\right) .\right]
\end{aligned}
$$

17: LEMMA The assignment

$$
T \rightarrow \operatorname{Mor}_{C}\left(T(K), C^{x}\right)
$$

defines a functor

$$
{\underset{\mathrm{TOR}}{\mathrm{~K}}}_{\mathrm{OP}}^{\mathrm{AB}}
$$

18: THEOREM The functors

$$
T \rightarrow H_{C}^{l}\left(W_{K}, \hat{T}(C)\right)
$$

and

$$
T \rightarrow \operatorname{Mor}_{C}\left(T(K), C^{x}\right)
$$

are naturally isomorphic.

19: SCHOLIUM There exist isomorphisms

$$
{ }^{1} T: H_{C}^{l}\left(W_{K}, \hat{T}(C)\right) \rightarrow \operatorname{Mor}_{C}\left(T(K), C^{X}\right)
$$

such that if $T_{1} \rightarrow T_{2}$, then the diagram

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{C}}^{1}\left(\mathrm{~W}_{\mathrm{K}}, \hat{\mathrm{~T}}_{1}(\mathrm{C})\right) \xrightarrow{\mathrm{l}_{1}} \operatorname{Mor}_{\mathrm{C}}\left(\mathrm{~T}_{1}(\mathrm{~K}), \mathrm{C}^{\times}\right) \\
& \mathrm{H}_{\mathrm{C}}^{1}\left(\mathrm{~W}_{\mathrm{K}}, \hat{\mathrm{~T}}_{2}(\mathrm{C})\right) \xrightarrow{{ }^{\imath} \mathrm{T}_{2}} \operatorname{Mor}_{\mathrm{C}}\left(\mathrm{~T}_{2}(\mathrm{~K}), \mathrm{C}^{\times}\right)
\end{aligned}
$$

commutes.

20: EXAMPLE Under the assumptions of \#12, the action of G_{K} is trivial, hence the action of W_{K} is trivial. Therefore

$$
\begin{aligned}
H_{C}^{1}\left(W_{K}, \hat{T}(C)\right) & =\operatorname{Mor}_{C}\left(W_{K}, \hat{T}(C)\right) \\
& \approx \operatorname{Mor}_{C}\left(T(K), C^{x}\right)
\end{aligned}
$$

[Note: The earlier use of the symbol Mor tacitly incorporated "continuity".]

There is a special case that can be dealt with directly, viz. when L / K is a finite Galois extension and

$$
T=\operatorname{Res}_{\mathrm{L} / \mathrm{K}}\left(G_{\mathrm{m}, \mathrm{~L}}\right)
$$

The discussion requires some elementary cohomological generalities which have been collected in the Appendix below.

21: RAPPEL W_{L} is a normal subgroup of W_{K} of finite index:

$$
T_{K} / W_{L} \approx G_{K} / G_{L} \approx \operatorname{Gal}(L / K) .
$$

Proceeding,

$$
T_{K} \operatorname{sep} \approx \prod_{\sigma \in G a 1(L / K)} \sigma G_{m, L} \quad \text { (cf. \#6) }
$$

so

$$
\mathrm{X}^{*}(\mathrm{~T}) \approx \mathrm{Z}\left[\mathrm{~W}_{\mathrm{K}} / \mathrm{W}_{\mathrm{L}}\right],
$$

where

$$
\begin{aligned}
& \mathrm{Z}\left[\mathrm{~W}_{\mathrm{K}} / \mathrm{W}_{\mathrm{L}}\right] \approx \operatorname{Ind}_{\mathrm{W}_{\mathrm{L}}}^{\mathrm{W}_{\mathrm{K}}} \\
& \equiv \mathrm{Z}\left[\mathrm{~W}_{\mathrm{K}}\right] \otimes_{\mathrm{Z}\left[\mathrm{~W}_{\mathrm{L}}\right]} \mathrm{Z}
\end{aligned}
$$

It therefore follows that

$$
\begin{aligned}
\hat{T}(C) & \approx X^{*}(T) \otimes_{Z} C^{x} \\
& \approx Z\left[W_{K}\right] \otimes_{Z\left[W_{L}\right]} Z \otimes_{Z} c^{x} \\
& \approx Z\left[W_{K}\right] \otimes_{Z\left[W_{L}\right]} c^{x} \\
& \equiv \operatorname{Ind}_{W_{L}}^{W_{K}} C^{x}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
H^{I}\left(W_{K}, \hat{T}(C)\right) & \approx H^{I}\left(W_{K}, I n{ }_{W}^{W_{L}} C^{W_{K}}\right) \\
& \approx H^{I}\left(W_{L^{\prime}}, C^{x}\right) \quad \text { (Shapiro's lema) } \\
& \approx \operatorname{Mor}\left(W_{L}, C^{x}\right) \\
& \approx \operatorname{Mor}\left(L^{x}, C^{x}\right) \\
& \approx \operatorname{Mor}\left(T(K), C^{x}\right)
\end{aligned}
$$

which completes the proof modulo "continuity details" that we shall not stop to sort out.

22: DEFINITION The L-group of T is the semidirect product

$$
\mathrm{I}_{\mathrm{T}}=\hat{\mathrm{T}}(\mathrm{C}) \times \mid \mathrm{W}_{\mathrm{K}} .
$$

Because of this, it will be best to first recall "semidirect product theory".

23: RAPPEL If G is a group and if A is a G-module, then there is a canonical extension of G by A, namely

$$
0 \rightarrow A \xrightarrow{i} A \times \mid G \xrightarrow{\pi} G \rightarrow 1,
$$

where $\mathrm{A} \times \mid \mathrm{G}$ is the semidirect product.

24: DEFINITION A splitting of the extension

$$
0 \rightarrow A \xrightarrow{i} A \times \mid G \xrightarrow{\pi} G \rightarrow 1
$$

is a homomorphism $s: G \rightarrow A \times \mid G$ such that $\pi \circ s=i d_{G}$.

25: FACT The splittings of the extension

$$
0 \rightarrow \mathrm{~A} \xrightarrow{\mathrm{i}} \mathrm{~A} \times \mid \mathrm{G} \xrightarrow{\pi} \mathrm{G} \rightarrow 1
$$

determine and are determined by the elements of $z^{l}(G, A)$.

Two splittings s_{1}, s_{2} are said to be equivalent if there is an element $a \in A$ such that

$$
s_{1}(\sigma)=i(a) s_{2}(\sigma) i(a)^{-1} \quad(\sigma \in G) .
$$

If

$$
\left[\begin{array}{l}
f_{1} \longleftrightarrow s_{1} \\
f_{2} \longleftrightarrow s_{2}
\end{array}\right.
$$

are the 1-cocycles corresponding to $\int_{s_{2}}^{s_{1}}$, then their difference $f_{2}-f_{1}$ is a 1-coboundary.

26: SCHOLIUM The equivalence classes of splittings of the extension

$$
0 \rightarrow A \xrightarrow{i} A \times \mid G \xrightarrow{\pi} G \rightarrow 1
$$

are in a bijective correspondence with the elements of $H^{l}(G, A)$.

Return now to the extension

$$
0 \rightarrow \hat{T}(C) \rightarrow \hat{T}(C) \times W_{K} \rightarrow W_{K} \rightarrow 1
$$

but to reflect the underlying topologies, work with continuous splittings and call them admissible hamamorphisms. Introducing the obvious notion of equivalence, denote by $\Phi_{\mathrm{K}}(T)$ the set of equivalence classes of admissible homamorphisms, hence

$$
\Phi_{K}(T) \approx H_{C}^{1}\left(W_{K}, \hat{T}(C)\right)
$$

On the other hand, denote by $A_{K}(T)$ the group of characters of $T(K)$, i.e.,

$$
A_{K}(T) \approx \operatorname{Mor}_{C}\left(T(K), C^{x}\right)
$$

27: THEOREM There is a canonical isomorphism

$$
\Phi_{K}(T) \rightarrow A_{K}(T) .
$$

[This statement is just a rephrasing of \#18 and is the LLC for tori.]
28: HEURISTICES To each admissible hamomorphism of W_{K} into I_{T}, it is possible to associate an irreducible automorphic representation of $T(K)$ (a.k.a. a character of $T(K)$) and all such arise in this fashion.

It remains to consider the archimedean case: C or R.

- If T is a C-torus, then T is isomorphic to a finite product

$$
G_{m, C} \times \cdots \times G_{m, C}
$$

and

$$
\begin{aligned}
T(C) & \approx \operatorname{Mor}\left(X^{*}(T), C^{x}\right) \\
& \approx X_{\star}(T) \otimes_{Z} C^{\times} .
\end{aligned}
$$

Furthermore, $W_{C}=C^{\times}$and the claim is that

$$
H_{C}^{1}\left(W_{C}, \hat{T}(C)\right) \equiv \operatorname{Mor}_{C}\left(C^{\times}, \hat{T}(C)\right)
$$

is isomorphic to

$$
\operatorname{Mor}_{C}\left(T(C), C^{x}\right)
$$

But

$$
\begin{aligned}
& \operatorname{Mor}_{C}\left(C^{x}, \hat{T}(C)\right) \\
& \quad \approx \operatorname{Mor}_{C}\left(C^{x}, X^{*}(T) \otimes_{Z} C^{x}\right) \\
& \quad \approx \operatorname{Mor}_{C}\left(C^{x}, \operatorname{Mor}\left(X_{*}(T), C^{x}\right)\right) \\
& \quad \approx \operatorname{Mor}_{C}\left(X_{*}(T) \otimes_{Z} C^{x}, C^{x}\right) \\
& \quad \approx \operatorname{Mor}_{C}\left(T(C), C^{x}\right)
\end{aligned}
$$

- If T is an R-torus, then T is isomorphic to a finite product

$$
\left(G_{m, R}\right)^{a} \times\left(\operatorname{Res}_{C / R}\left(G_{m, C}\right)\right)^{b} \times\left(S O_{2}\right)^{c}
$$

and it is enough to look at the three irreducible possibilities.

1. $T=G_{m}, R^{.}$The point here is that $W_{R}^{a b} \approx R^{\times} \equiv T(R)$.
2. $T=\operatorname{Res}_{C / R}\left(G_{m, C}\right)$. One can imitate the argument used above for its nonarchimedean analog.
3. $T=\mathrm{SO}_{2}$. The initial observation is that $X(T)=Z$ with action $n \rightarrow-n$, so $\hat{T}(C)=C^{\times}$with action $z \rightarrow \frac{1}{z}$. And \ldots.

APPENDIX

Let G be a group (written multiplicatively).

1: DEFINITION A left (right) G-module is an abelian group A equipped with a left (right) action of G, i.e., with a homomorphism $G \rightarrow \operatorname{Aut}(A)$.

2: N.B. Spelled out, to say that A is a left G-module means that there is a map

$$
\left[\begin{array}{rl}
G \times A & \rightarrow A \\
(\sigma, a) & \rightarrow \sigma a
\end{array}\right.
$$

such that

$$
\tau(\sigma a)=(\tau \sigma) a, 1 a=a,
$$

thus A is first of all a left G-set. To say that A is a left G-module then means in addition that

$$
\sigma(\mathrm{a}+\mathrm{b})=\sigma \mathrm{a}+\sigma \mathrm{b}
$$

[Note: For the most part, the formalities are worked out from the left, the agreement being that
"left G-module" = "G-module".]

3: NOIATION The group ring $Z[G]$ is the ring whose additive group is the free abelian group with basis G and whose multiplication is determined by the multiplication in G and the distributive law.

A typical element of $Z[G]$ is

$$
\sum_{\sigma \in G} m_{\sigma} \sigma,
$$

where $m_{\sigma} \in Z$ and $m_{\sigma}=0$ for all but finitely many σ.

4: N.B. A G-module is the same thing as a $Z[G]$-module.

5: LENMA Given a ring R, there is a canonical bijection $\operatorname{Mor}(\mathrm{Z}[\mathrm{G}], \mathrm{R}) \approx \operatorname{Mor}\left(\mathrm{G}, \mathrm{R}^{\times}\right)$.

6: CONSTRUCTION Given a G-set X, form the free abelian group $Z[X]$ generated by X and extend the action of G on X to a Z-linear action of G on $\mathrm{Z}[\mathrm{X}]$ - then the resulting G-module is called a permutation module.

7: EXAMPIE Let H be a subgroup of G and take $X=G / H$ (here G operates on G / H by left translation), from which $\mathrm{Z}[\mathrm{G} / \mathrm{H}]$.

8: DEFINITION A G-module hamamorphism is a $Z[\mathrm{G}]$-module hanomorphism.

9: NOTATION $\underline{M O D}_{G}$ is the category of G-modules.

10: NOTATION Given A, B in M_{G}, write $\operatorname{Hom}_{G}(A, B)$ in place of Mor (A,B).

11: LEMMA Let $A, B \in{\underset{\mathrm{MOD}}{\mathrm{G}}}$ - then $\mathrm{A} \otimes_{Z} B$ carries the G-module structure
defined by $\sigma\left(a \otimes a^{\prime}\right)=\sigma a \otimes \sigma a^{\prime}$ and $\operatorname{Hom}_{Z}(A, B)$ carries the G-module structure defined by $(\sigma \phi)(a)=\sigma \phi\left(\sigma^{-1} a\right)$.

12: LENMA If G^{\prime} is a subgroup of G , then there is a homomorphism $\mathrm{Z}\left[\mathrm{G}^{\prime}\right] \rightarrow$ $\mathrm{Z}[\mathrm{G}]$ of rings and a functor

$$
\operatorname{Res}_{G}^{G},:_{M O D_{G}} \rightarrow \underbrace{M O D}_{G}
$$

of restriction.

13: DEFINITION Let G^{\prime} be a subgroup of G - then the functor of induction

$$
\mathrm{Ind}_{\mathrm{G}^{\prime}}^{\mathrm{G}}:{\underset{\mathrm{MOD}}{\mathrm{G}^{\prime}}} \rightarrow \underline{M O D}_{\mathrm{G}}
$$

sends A ' to

$$
Z[G] \otimes_{Z\left[G^{\prime}\right]} A^{\prime}
$$

[Note: $Z[G]$ is a right $Z\left[G^{\prime}\right]$-module and A^{\prime} is a left $Z\left[G^{\prime}\right]$-module. Therefore the tensor product

$$
Z[G] \otimes_{Z\left[G^{\prime}\right]} A^{\prime}
$$

is an abelian group. And it becomes a left G-module under the operation $\sigma\left(r \otimes a^{\prime}\right)=$ or $\otimes \mathrm{a}^{\prime}$.]

14: EXAMPLE Let H be a subgroup of G . Suppose that H operates trivially on Z-- then

$$
\mathrm{Z}[\mathrm{G} / \mathrm{H}] \approx \operatorname{In}{\underset{H}{H}}_{\mathrm{G}}^{\mathrm{Z}} .
$$

15: FROBENIUS RECIPROCITY $\forall \mathrm{A}$ in $\mathrm{MOD}_{G^{\prime}} \forall \mathrm{A}^{\prime}$ in $\mathrm{MOD}_{\mathrm{G}}{ }^{\prime \prime}$,

$$
\operatorname{Hom}_{G^{\prime}}\left(A^{\prime}, \operatorname{Res}_{G}^{G}, A\right) \approx \operatorname{Hom}_{G}\left(\operatorname{Ind}_{G^{\prime}}^{G}, A^{\prime}, A\right) .
$$

16: REMARK $\forall \mathrm{A}$ in $\underline{\text { MOD }}_{\mathrm{G}^{\prime}}$

$$
\operatorname{Ind}_{G^{\prime}}^{G}{ }^{\circ} \operatorname{Res}_{G}^{G} \cdot A \approx Z[G / G '] \otimes_{Z[G]} A
$$

[G operates on the right hand side diagonally: $\sigma(r \otimes a)=\sigma r \otimes \sigma$.

17: LEMMA There is an arrow of inclusion

$$
Z[G] \otimes_{Z\left[G^{\prime}\right]} A^{\prime} \rightarrow \operatorname{Hom}_{G^{\prime}}\left(Z[G], A^{\prime}\right)
$$

which is an isamorphism if [G:G'] < .

18: NOTATION Given a G-module A, put

$$
A^{G}=\{a \in A: \sigma a=a \forall \sigma \in G\} .
$$

[Note: A^{G} is a subgroup of A, termed the invariants in A.]
19: LEMMA $A^{G}=\operatorname{Hom}_{G}(Z, A)$ (trivial G-action on Z).
[Note: By comparison,

$$
\left.A=\operatorname{Hom}_{G}(Z[G], A) .\right]
$$

20: LEMMA $\operatorname{Hom}_{Z}(A, B)^{G}=\operatorname{Hom}_{G}(A, B)$.
$\underline{M O D}_{\mathrm{G}}$ is an abelian category. As such, it has enough injectives (i.e., every G-module can be embedded in an injective G-module).

21: DEFINITION The group cohomology functor $H^{q}(G,-):$ MOD $_{G} \rightarrow$ AB is the right derived functor of $(\longrightarrow)^{G}$.
[Note: Recall the procedure: To compute $\mathrm{H}^{\mathrm{q}}(\mathrm{G}, \mathrm{A})$, choose an injective
resolution

$$
0 \rightarrow A \rightarrow I^{0} \rightarrow I^{I} \rightarrow \ldots
$$

Then $H^{*}(G, A)$ is the cohomology of the complex (I) ${ }^{G}$. In particular: $H^{0}(G, A)=A^{G}$.]

22: IEMMA $H^{q}(G, A)$ is independent of the choice of injective resolutions.

23: LEMMA $H^{q}(G, A)$ is a covariant functor of A.

24: LEMMA If

$$
0 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C} \rightarrow 0
$$

is a short exact sequence of G-modules, then there is a functorial long exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}(G, A) \rightarrow H^{0}(G, B) \rightarrow H^{0}(G, C) \\
& \rightarrow H^{1}(G, A) \rightarrow H^{1}(G, B) \rightarrow H^{1}(G, C) \rightarrow H^{2}(G, A) \rightarrow \ldots \\
\ldots \rightarrow & H^{q}(G, A) \rightarrow H^{q}(G, B) \rightarrow H^{q}(G, C) \rightarrow H^{q+1}(G, A) \rightarrow \ldots
\end{aligned}
$$

in cohomology.

25: N.B. If $G=\{I\}$ is the trivial group, then

$$
H^{0}(G, A)=A, H^{q}(G, A)=0 \quad(q>0) .
$$

[Note: Another point is that for any G, every injective G-module A is cohomologically acyclic:

$$
\left.\forall \mathrm{q}>0, \mathrm{H}^{\mathrm{q}}(\mathrm{G}, \mathrm{~A})=0 .\right]
$$

26: THEOREM (SHAPIRO'S LEMMA) If [G:G'] < ∞, then $\forall q$,

$$
H^{q}\left(G^{\prime}, A^{\prime}\right) \approx H^{q}\left(G, I n d_{G}^{G} A^{\prime}\right) .
$$

27: EXAMPLE Take $A^{\prime}=Z\left[G^{\prime}\right]$-- then

$$
\begin{aligned}
H^{\mathrm{q}}\left(\mathrm{G}^{\prime}, \mathrm{Z}\left[\mathrm{G}^{\prime}\right]\right) & \approx H^{\mathrm{q}}\left(\mathrm{G}, \mathrm{Z}[\mathrm{G}] \otimes_{Z\left[G^{\prime}\right]} \mathrm{Z}\left[\mathrm{G}^{\prime}\right]\right) \\
& \approx H^{\mathrm{q}}(\mathrm{G}, \mathrm{Z}[\mathrm{G}]) .
\end{aligned}
$$

28: EXAMPLE Take $G^{\prime}=\{1\}$ (so G is finite) -- then $Z\left[G^{\prime}\right]=Z$ and

$$
H^{q}(\{I\}, Z) \approx H^{q}(G, Z[G]) .
$$

But the LHS vanishes if $q>0$, thus the same is true of the RHS. However this fails if G is infinite. E.g.: Take for G the infinite cyclic group: $H^{1}(G, Z[G])$ $\approx \mathrm{Z}$.
[Note: If G is finite, then $H^{0}(G, Z[G]) \approx Z$ while if G is infinite, then $\left.\mathrm{H}^{0}(\mathrm{G}, \mathrm{Z}[\mathrm{G}])=0.\right]$

29: EXAMPLE Take $A^{\prime}=\mathrm{Z}$-- then

$$
\begin{aligned}
H^{q}\left(G^{\prime}, Z\right) & \approx H^{q}\left(G, I n d_{G^{\prime}}^{G} Z\right) \\
& \approx H^{q}\left(G, Z\left[G / G^{\prime}\right]\right) .
\end{aligned}
$$

§6. TAMAGAWA MEASURES

Suppose given a Q-torus T of dimension d - then one can introduce

$$
T(Q) \subset T(R), T(Q) \subset T\left(Q_{p}\right)
$$

u

$$
T\left(Z_{p}\right)
$$

and

$$
T(Q) \subset T(A) .
$$

1: EXAMPLE Take $T=G_{m, Q}-$ then the above data becomes

$$
\begin{aligned}
Q^{x} \subset R^{x}, Q^{x} \subset & Q_{p}^{x} \\
& U \\
& Z_{p}^{x}
\end{aligned}
$$

and

$$
Q^{x} \subset A^{x}=I .
$$

2: LEMMA $T(Q)$ is a discrete subgroup of $T(A)$.

3: RAPPEU $I^{1}=\operatorname{Ker}|\cdot|_{A}$, where for $x \in I$,

$$
|x|_{A}=\prod_{p \leq \infty}\left|x_{p}\right|_{p}
$$

And the quotient I^{l} / Q^{\times}is a compact Hausdorff space.

Each $X \in X(T)$ generates continuous homomorphisms

$$
\left[\begin{array}{l}
x_{p}: T\left(Q_{p}\right) \rightarrow Q_{p}^{\times} \xrightarrow{|\cdot|_{p}} R_{>0}^{\times} \\
x_{\infty}: T(R) \rightarrow R^{\times} \xrightarrow{|\cdot|_{\infty}} R_{>0}^{\times}
\end{array}\right.
$$

from which an arrow

$$
\left[\begin{array}{rl}
x_{A}: T(A) & \rightarrow R_{>0}^{x} \\
x & \rightarrow \prod_{p \leq \infty} x_{p}\left(x_{p}\right) .
\end{array}\right.
$$

4: NOTATION

$$
T^{I}(A)=\cap_{X \in X(T)}^{\cap} \text { Ker } X_{A}
$$

5: N.B. The infinite intersection can be replaced by a finite intersection since if X_{1}, \ldots, x_{d} is a basis for $X(T)$, then

$$
T^{T}(A)=\bigcap_{i=1}^{d} \operatorname{Ker}\left(x_{i}\right)_{A^{-}}
$$

6: THEOREM The quotient $T^{1}(A) / T(Q)$ is a compact Hausdorff space.

7: CONSTRUCTION Let Ω_{T} denote the collection of all left invariant d-forms on T, thus Ω_{T} is a 1-dimensional vector space over Q. Choose a nonzero element $\omega \in \Omega_{T}$ - then ω determines a left invariant differential form of top degree on the $T\left(Q_{p}\right)$ and $T(R)$, which in turn determines a Haar measure $\mu_{Q_{p}, \omega}$ on the $T\left(Q_{p}\right)$ and a Haar measure $\mu_{R, \omega}$ on $T(R)$.

The product

$$
\prod_{p} \mu_{Q_{p}, \omega}\left(T\left(Z_{p}\right)\right)
$$

may or may not converge.

8: DEFINITION A sequence $\Lambda=\left\{\Lambda_{p}\right\}$ of positive real numbers is said to be a system of convergence coefficients if the product

$$
\prod_{p} \Lambda_{p} \mu_{Q_{p}, \omega}\left(T\left(Z_{p}\right)\right)
$$

is convergent.

9: N.B. Convergence coefficients always exist, e.g.,

$$
\Lambda_{p}=\frac{1}{\mu_{Q_{p}, \omega}\left(T\left(Z_{p}\right)\right)}
$$

10: IEMMA If the sequence $\Lambda=\left\{\Lambda_{p}\right\}$ is a system of convergence coefficients, then

$$
\mu_{\omega, \Lambda} \equiv \prod_{p} \Lambda_{p} \mu_{Q_{p}, \omega} \times \mu_{R, \omega}
$$

is a Haar measure on $T(A)$.

11: N.B. Let λ be a nonzero rational number -- then

$$
\mu_{Q_{p}, \lambda \omega}=|\lambda|_{p} u_{Q^{\prime}}, \omega^{\prime} u_{R, \lambda \omega}=|\lambda|_{\infty} \mu_{R, \omega} .
$$

Therefore

$$
\begin{aligned}
\mu_{\lambda \omega, \Lambda} & \equiv \prod_{p} \Lambda_{p} \mu_{Q_{p}} \lambda \omega \\
& =\left(\prod_{p}|\lambda|_{p}\right) \prod_{p} \Lambda_{R} \Lambda_{p} \mu_{Q_{p}, \omega} \times|\lambda|_{\infty} \mu_{R, \omega} \\
& =\prod_{p \leq \infty}|\lambda|_{p} \prod_{\rho} \Lambda_{p} \mu_{Q_{p}, \omega} \times \mu_{R, \omega} \\
& =\mu_{\omega, \Lambda} .
\end{aligned}
$$

And this means that the Haar measure $\mu_{\omega, \lambda}$ is independent of the choice of the rational density ω.

Let $K \supset Q$ be a Galois extension relative to which T splits -- then

$$
X\left(T_{K}\right)=\operatorname{Mor}_{K}\left(T_{K}, G_{m, K}\right)
$$

is a $\mathrm{Gal}(\mathrm{K} / \mathrm{Q})$ lattice. Call II the representation thereby determined and denote its character by X_{Π}. Let

$$
L\left(s, x_{\Pi}, K / Q\right)=\prod_{p} L_{p}\left(s, \chi_{\Pi}, K / Q\right)
$$

be the associated Artin L-function and denote by S the set of primes that ramify in K plus the "prime at infinity".

12: LEMMA $\forall \mathrm{p} \notin \mathrm{S}$,

$$
\mu_{Q_{p},}\left(T\left(Z_{p}\right)\right)=L_{p}\left(1, X_{\Pi}, K / Q\right)^{-1}
$$

13: ScHolulu The sequence $\Lambda=\left\{\Lambda_{\mathrm{p}}\right\}$ defined by the prescription

$$
\Lambda_{\mathrm{p}}=I_{\mathrm{p}}\left(1, X_{\Pi}, K / Q\right) \text { if } p \notin S
$$

and

$$
\Lambda_{\mathrm{p}}=1 \text { if } \mathrm{p} \in \mathrm{~s}
$$

is a system of convergence coefficients termed canonical.

14: LEMMA The Haar measure $\mu_{\omega, \Lambda}$ on $T(A)$ corresponding to a canonical system of convergence coefficients is independent of the choice of k , denote it by μ_{T}.

15: DEFINITION μ_{T} is the Tamagawa measure on $T(A)$.

Owing to Brauer theory, there is a decomposition of the character $X_{I I}$ of Π as a finite sum

$$
x_{\Pi I}=d x_{0}+\sum_{j=1}^{M} m_{j} x_{j}
$$

where X_{0} is the principal character of $\operatorname{Gal}(\mathrm{K} / \mathrm{Q})\left(\mathrm{X}_{0}(\sigma)=1\right.$ for all $\left.\sigma \in \operatorname{Gal}(\mathrm{K} / \mathrm{Q})\right)$, the m_{j} are positive integers, and the X_{j} are irreducible characters of $G a l(K / Q)$. Standard properties of Artin I-functions then imply that

$$
L\left(s, \chi_{\Pi}, K / Q\right)=\zeta(s)^{d} \prod_{j=1}^{M} L\left(s, \chi_{j}, K / Q\right)^{m_{j}}
$$

16: FACT

$$
L\left(1, X_{j}, K / Q\right)^{m_{j}} \neq 0 \quad(1 \leq j \leq M) .
$$

Therefore

$$
\begin{aligned}
\lim _{s \rightarrow 1}(s-1)^{d} L\left(s, x_{\Pi}, K / Q\right) & =\prod_{j=1}^{M} L\left(1, x_{j}, K / Q\right)^{m_{j}} \\
& \neq 0 .
\end{aligned}
$$

17: LEMMA The limit on the left is positive and independent of the choice of K, denote it by ρ_{T}.

18: DEFINITION ρ_{T} is the residue of T.

Define a map

$$
T: T(A) \rightarrow\left(R_{>0}^{x}\right)^{d}
$$

by the rule

$$
T(x)=\left(\left(x_{1}\right)_{A}(x), \ldots,\left(x_{d}\right)_{A}(x)\right)
$$

Then the kernel of T is $T^{1}(A)$, hence T drops to an isomorphism

$$
\mathrm{T}^{I}: T(A) / T^{1}(A) \rightarrow\left(R_{>0}^{\times}\right)^{\mathrm{d}}
$$

19: DEFINITION The standard measure on $T(A) / T^{1}(A)$ is the pullback via T^{1} of the product measure

$$
\prod_{i=1}^{d} \frac{d t_{i}}{t_{i}}
$$

on $\left(R_{>0}^{x}\right)$.

Consider now the formalism

$$
d(T(A))=d\left(T(A) / T^{1}(A)\right) d\left(T^{1}(A) / T(Q)\right) d(T(Q))
$$

in which:

- $d(T(A))$ is the Tamagawa measure on $T(A)$ multiplied by $\frac{1}{\rho_{T}}$.
- $d\left(T(A) / T^{1}(A)\right)$ is the standard measure on $T(A) / T^{1}(A)$.
- $d(T(Q))$ is the counting measure on $T(Q)$.

20: DEFINITION The Tamagawa number $\tau(T)$ is the volume

$$
\tau(T)=\int_{T^{1}(A) / T(Q)}{ }^{1}
$$

of the compact Hausdorff space $T^{1}(A) / T(Q)$ per the invariant measure

$$
d\left(T^{1}(A) / T(Q)\right)
$$

such that

$$
\frac{\mu_{T}}{\rho_{T}}=d\left(T(A) T^{1}(A)\right) d\left(T^{1}(A) / T(Q)\right) d(T(Q)) .
$$

21: N.B. To be completely precise, the integral formula

$$
\delta_{T(A)}=\int_{T(A) / T^{1}(A)} \int_{T^{1}(A)}
$$

fixes the invariant measure on $\mathrm{T}^{1}(\mathrm{~A})$ and from there the integral formula

$$
\int_{T^{1}(A)}=\int_{T^{1}(A) / T(Q)} \int_{T(Q)}
$$

fixes the invariant measure on $T^{l}(A) / T(Q)$, its volume then being the Tamagawa number $\tau(T)$.
[Note: If T is Q-anisotropic, then $\left.T(A)=T^{1}(A).\right]$

22: EXAMPIE Take $T=G_{m, Q}$ and $\omega=\frac{d x}{x}$-- then

$$
\frac{\operatorname{vol} \frac{d x}{|x|_{p}}}{}\left(Z_{p}^{\times}\right)=\frac{p-1}{p}=1-\frac{1}{p}
$$

and the canonical convergence coefficients are the

$$
\left(1-\frac{1}{p}\right)^{-1} \text {. }
$$

Here $d=1$ and

$$
\lim _{s \rightarrow 1}(s-1) \zeta(s)=1 \Rightarrow \rho_{T}=1
$$

Working through the definitions, one concludes that $\tau(T)=1$ or still,

$$
\operatorname{vol}\left(I^{1} / Q^{\times}\right)=1
$$

23: REMARK Take $T=\operatorname{Res}_{K / Q}\left(G_{m, K}\right)$ - then it turns out that $\tau(T)$ is the Tamagawa number of $G_{m, K}$ computed relative to K (and not relative to Q...). From this, it follows that $\tau(T)=1$, matters hinging on the "famous formula"

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}}}{w_{K}\left|d_{K}\right|^{1 / 2}} h_{K} R_{K} .
$$

24: LEMMA Let F be an integrable function on $\left(R_{>0}^{\times}\right)^{d}$-- then

$$
\tau(T)=\frac{\frac{1}{\rho_{T}} \delta_{T(A) / T(Q)} F(T(x)) d \mu_{T}(x)}{\int_{\left(R_{>0} \times\right.} d}{ }^{d}\left(t_{1}, \ldots, t_{d}\right) \frac{d t_{1}}{t_{1}} \ldots \frac{d t_{d}}{t_{d}} .
$$

25: EXAMPLE Take $T=G_{m, Q}$ - then

$$
\tau(T)=\frac{\int I / Q^{x} F\left(|x|_{A}\right) d \mu_{T}(x)}{\int_{0}^{\infty} \frac{F(t)}{t} d t}
$$

ρ_{T} being 1 in this case. To see that $\tau(T)=1$, make the calculation by choosing

$$
F(t)=2 t e^{-\pi t^{2}}
$$

[Note: Recall that

$$
\prod_{p} Z_{p}^{x} \times R_{>0}^{x}
$$

is a fundamental domain for I / Q^{\times}.]

26: NOTATION Put

$$
H^{l}(Q, T)=H^{l}\left(\operatorname{Gal}\left(Q^{\operatorname{sep}} / Q\right), T\left(Q^{\operatorname{sep}}\right)\right)
$$

and for $p \leq \infty$,

$$
H^{I}\left(Q_{p}, T\right)=H^{I}\left(\operatorname{Gal}\left(Q_{p}^{\operatorname{sep}} / Q_{p}\right), T\left(Q_{p}^{\operatorname{sep}}\right)\right)
$$

27: LEMMA There is a canonical arrow

$$
H^{I}(Q, T) \rightarrow H^{l}\left(Q_{p}, T\right)
$$

PROOF Put

$$
\mathrm{G}=\operatorname{Gal}(\bar{Q} / Q) \quad\left(\bar{Q}=Q^{\operatorname{sep}}\right)
$$

and

$$
G_{p}=\operatorname{Gal}\left(\bar{Q}_{p} / Q_{p}\right) \quad\left(\bar{Q}_{p}=Q_{p}^{s e p}\right)
$$

Then schematically

1. There is an arrow of restriction

$$
\rho: G_{p} \rightarrow G
$$

and a morphism $T(Q) \rightarrow T\left(\bar{Q}_{p}\right)$ of G_{p}-modules, $T(Q)$ being viewed as a G_{p}-module via ρ.
2. The canonical arrow

$$
H^{l}(Q, T) \rightarrow H^{l}\left(Q_{p}, T\right)
$$

is then the result of composing the map

$$
H^{l}(G, T(Q)) \rightarrow H^{l}\left(G_{p}, T(Q)\right)
$$

with the map

$$
H^{l}\left(G_{p}, T(Q)\right) \rightarrow H^{l}\left(G_{p}, T\left(\bar{Q}_{p}\right)\right) .
$$

28: NOTATION Put

$$
\text { III }(T)=\operatorname{Ker}\left(H^{1}(Q, T) \rightarrow \prod_{p \leq \infty} H^{l}\left(Q_{p}, T\right)\right) .
$$

29: DEFINITION $I I(T)$ is the Tate-Shafarevich group of T.

30: THEOREM III(T) is a finite group.

31: EXAMPLE If K is a finite extension of Q, then

$$
\mathrm{H}^{l}\left(\mathrm{Q}, \operatorname{Res}_{\mathrm{K} / \mathrm{Q}}\left(\mathrm{G}_{\mathrm{m}, \mathrm{~K}}\right)\right)=1 .
$$

Therefore in this case

$$
\#(\amalg(T))=1 .
$$

32: REMARK By comparison,

$$
H^{1}\left(Q, \operatorname{Res}_{K / Q}^{(l)}\left(G_{m, K}\right)\right) \approx Q^{\times} / N_{K / Q}\left(K^{\times}\right) .
$$

[Consider the short exact sequence

$$
\left.1 \rightarrow \operatorname{Res}_{K / Q}^{(1)}\left(G_{m, K}\right) \rightarrow \operatorname{Res}_{K / Q}\left(G_{m, K}\right) \xrightarrow{N_{k / Q}} G_{m, Q} \rightarrow 1 .\right]
$$

33: NOTATION Put

$$
Y(T)=\operatorname{CoKer}\left(H^{l}(Q, T) \rightarrow \underset{p \leq \infty}{ } H^{l}\left(Q_{p}, T\right)\right) .
$$

34: THEOREM $Ч(T)$ is a finite group.

35: MAIN THEOREM The Tamagawa number $\tau(T)$ is given by the formula

$$
\tau(T)=\frac{\#(\mathrm{Y}(\mathrm{~T}))}{\#(\mathrm{III}(\mathrm{~T}))}
$$

36: EXAMPLE If K is a finite extension of Q, then

$$
H^{l}\left(Q_{p^{\prime}}, \operatorname{Res}_{K / Q}\left(G_{m, K}\right)\right)=1
$$

Therefore in this case

$$
\#(\Psi(T))=1
$$

It follows from the main theorem that $\tau(T)$ is a positive rational number. Still, there are examples of finite abelian extensions $K \supset Q$ such that

$$
\tau\left(\operatorname{Res}_{K / Q}^{(1)} G_{m, K}\right)
$$

is not a positive integer.

