ABELIAN THEORY

Garth Warner

Department of Mathematics University of Washington

CONTENTS

§1. GROUP SCHEMES

§2. <u>SCH/k</u>

- §3. AFFINE GROUP k-SCHEMES
- §4. ALGEBRAIC TORI
- §5. THE LLC
- **§6.** TAMAGAWA MEASURES

§1. GROUP SCHEMES

<u>1:</u> NOTATION <u>SCH</u> is the category of schemes, <u>RNG</u> is the category of commutative rings with unit.

Fix a scheme S -- then the category <u>SCH</u>/S of <u>schemes over S</u> (or of <u>S-schemes</u>) is the category whose objects are the morphisms $X \rightarrow S$ of schemes and whose morphisms

```
Mor (X \rightarrow S, Y \rightarrow S)
```

are the morphisms $X \rightarrow Y$ of schemes with the property that the diagram

$$\begin{array}{c} x \longrightarrow Y \\ \downarrow & \downarrow \\ s \underbrace{\qquad} s \end{array}$$

commutes.

[Note: Take S = Spec(Z) -- then

$$SCH/S = SCH.$$
]

<u>2:</u> <u>N.B.</u> If S = Spec(A) (A in <u>RNG</u>) is an affine scheme, then the terminology is "schemes over A" (or "A-schemes") and one writes <u>SCH</u>/A in place of SCH/Spec(A).

3: NOTATION Abbreviate Mor($X \rightarrow S, Y \rightarrow S$) to Mor_S(X,Y) (or to Mor_A(X,Y) if S = Spec(A)).

4: REMARK The S-scheme $id_S: S \rightarrow S$ is a final object in SCH/S.

[Note: Every diagram

 $(f \circ u = g \circ v)$

admits a unique filler

$$(u,v)_{S}: \mathbb{Z} \to \mathbb{X} \times_{S} \mathbb{Y}$$

such that

$$p \circ (u,v)_{S} = u$$

$$q \circ (u,v)_{S} = v.]$$

$$X \times_{S} S \approx X,$$

 $X \times_{S} Y \approx Y \times_{S} X,$

and

$$(X \times_{S} Y) \times_{S} Z \approx X \times_{S} (Y \times_{S} Z)$$
.

<u>7:</u> REMARK If X,Y,X',Y' are objects in <u>SCH</u>/S and if $u:X \rightarrow X'$, $v:Y \rightarrow Y'$ are S-morphisms, then there is a unique morphism $u \times_S v$ (or just $u \times v$) rendering the diagram

commutative.

[Spelled out,

$$u \times_{S} v = (u \circ p, v \circ q)_{S}$$
.]

8: BASE CHANCE Let u:S' \rightarrow S be a morphism in SCH.

• If $X \rightarrow S$ is an S-object, then $X \times_S S'$ is an S'-object via the projection

$$X \times_{c} S' \rightarrow S',$$

denoted $u^{*}(X)$ or $X_{(S^{*})}$ and called the base change of X by u.

• If $X \rightarrow S$, $Y \rightarrow S$ are S-objects and if $f:(X \rightarrow S) \rightarrow (Y \rightarrow S)$ is an S-morphism,

then

These considerations thus lead to a functor

$$u^*:SCH/S \rightarrow SCH/S'$$

called the base change by u.

<u>9:</u> <u>N.B.</u> If u':S'' \rightarrow S' is another morphism in <u>SCH</u>, then the functors $(u \circ u') *$ and $(u') * \circ u$ from <u>SCH</u>/S to <u>SCH</u>/S'' are isomorphic.

<u>10:</u> LEMMA Let u:S' \rightarrow S be a morphism in <u>SCH</u>. Suppose that T' \rightarrow S' is an S'-object -- then T' can be viewed as an S-object T via postcomposition with u and there are canonical mutually inverse bijections

$$Mor_{S'}(T', X_{(S')}) \stackrel{\rightarrow}{\leftarrow} Mor_{S}(T, X)$$

functorial in T' and X.

11: NOTATION Each S-scheme $X \rightarrow S$ determines a functor

$$(\underline{\mathrm{SCH}}/\mathrm{S})^{\mathrm{OP}} \rightarrow \underline{\mathrm{SET}},$$

viz. the assignment

$$T \rightarrow Mor_{S}(T,X) \equiv X_{S}(T)$$
,

the set of T-valued points of X.

[Note: In terms of category theory,

$$X_{S}(T) = h_{X \rightarrow S}(T \rightarrow S).]$$

<u>12:</u> LEMMA To give a morphism $(X \rightarrow S) \xrightarrow{f} (Y \rightarrow S)$ in <u>SCH</u>/S is equivalent to giving for all S-schemes T a map

$$f(T): X_{S}(T) \rightarrow Y_{S}(T)$$

which is functorial in T, i.e., for all morphisms $u:T' \rightarrow T$ of S-schemes the diagram

commutes.

<u>13:</u> DEFINITION A group scheme over S (or an <u>S-group</u>) is an object G of <u>SCH/S</u> and S-morphisms

 $m:G \times_{S} G \rightarrow G \quad ("multiplication")$ $e:S \rightarrow G \quad ("unit")$ $i:G \rightarrow G \quad ("inversion")$

such that the diagrams

commute.

<u>14:</u> REMARK To say that (G;m,e,i) is a group scheme over S amounts to saying that G is a group object in SCH/S.

<u>15:</u> LEMMA Let G be an S-scheme -- then G gives rise to a group scheme over S iff for all S-schemes T, the set $G_S(T)$ carries the structure of a group which is functorial in T (i.e., for all S-morphisms T' \rightarrow T, the induced map $G_S(T) \rightarrow G_S(T')$ is a homomorphism of groups).

<u>16:</u> REMARK It suffices to define functorial group structures on the $G_{S}(A)$, where Spec(A) \rightarrow S is an affine S-scheme.

[This is because morphisms of schemes can be "glued".]

17: LEMMA Let $u:S^* \rightarrow S$ be a morphism in SCH. Suppose that (G;m,e,i) is

a group scheme over S -- then

is a group scheme over S'.

[Note: For every S'-object $T' \rightarrow S'$,

$$(G \times_{S} S')_{S'}(T') = G_{S}(T),$$

where T is the S-object $T' \rightarrow S' \xrightarrow{u} S.$]

<u>18:</u> THEOREM If $(X, 0_X)$ is a locally ringed space and if A is a commutative ring with unit, then there is a functorial set-theoretic bijection

Mor(S,Spec(A))
$$\approx$$
 Mor(A, $\Gamma(X, O_X)$).

[Note: The "Mor" on the LHS is in the category of locally ringed spaces and the "Mor" on the RHS is in the category of commutative rings with unit.]

19: EXAMPLE Take S = Spec(Z) and let

$$A^{n} = \operatorname{Spec}(Z[t_{1}, \dots, t_{n}]).$$

Then for every scheme X,

$$Mor(X,A^{n}) \approx Mor(Z[t_{1},...,t_{n}],\Gamma(X,O_{X}))$$
$$\approx \Gamma(X,O_{X})^{n} \quad (\varphi \neq (\varphi(t_{1}),...,\varphi(t_{n})))$$

Therefore A^n is a group object in <u>SCH</u> called <u>affine</u> n-space.

[Note: Here $\Gamma(X, O_X)$ is being viewed as an additive group, hence the underlying multiplicative structure is being ignored.] 20: N.B. Given any scheme S,

$$A_{s}^{n} = A^{n} \times_{Z} s \rightarrow s$$

is an S-scheme and for every morphism $S' \rightarrow S$,

$$A_{S}^{n} \times_{S} S' \approx A^{n} \times_{Z} S \times_{S} S' \approx A_{S'}^{n}$$
.

21: NOTATION Write G_a in place of A^1 .

22: NOTATION Given A in RNG, denote

$$G_a \times_7 Spec(A)$$

by G_a @ A or still, by G_{a,A}.

23: N.B.

 $G_{a,A} = \operatorname{Spec}(Z[t]) \times_Z \operatorname{Spec}(A)$ = $\operatorname{Spec}(Z[t] \otimes A) = \operatorname{Spec}(A[t]).$

24: LEMMA $G_{a,A}$ is a group object in <u>SCH</u>/A.

There are two other "canonical" examples of group objects in SCH/A.

• $G_{m,A} = \operatorname{Spec}(A[u,v]/(uv-1))$

which assigns to an A-scheme X the multiplicative group $\Gamma(X, O_X)^{\times}$ of invertible elements in the ring $\Gamma(X, O_X)$.

•
$$GL_{n,A} = Spec(A[t_{11},...,t_{nn}, det(t_{1j})^{-1}])$$

which assigns to an A-scheme X the group

$$GL_n(\Gamma(X, O_X))$$

of invertible n \times n-matrices with entries in the ring $\Gamma(X, \mathcal{O}_X)$.

<u>25:</u> DEFINITION If G and H are S-groups, then a <u>homomorphism from G to H</u> is a morphism f:G \rightarrow H of S-schemes such that for all S-schemes T the induced map $f(T):G_S(T) \rightarrow H_S(T)$ is a group homomorphism.

26: EXAMPLE Take S = Spec(A) -- then

$$\det_{A}: GL_{n,A} \neq G_{m,A}$$

is a homomorphism.

<u>27:</u> DEFINITION Let G be a group scheme over S -- then a subscheme (resp. an open subscheme, resp. a closed subscheme) $H \subset G$ is called an S-subgroup scheme (resp. an open S-subgroup scheme, resp. a closed S-subgroup scheme) if for every S-scheme T, $H_{\rm S}(T)$ is a subgroup of $G_{\rm S}(T)$.

<u>28:</u> EXAMPLE Given a positive integer n, $\underline{\mu}_{n,A}$ is the group object in <u>SCH</u>/A which assigns to an A-scheme X the multiplicative subgroup of $\Gamma(X, \mathcal{O}_X)^{\times}$ consisting of those ϕ such that $\phi^n = 1$, thus

$$\underline{\mu}_{n,A} = \operatorname{Spec}(A[t]/(t^{n}-1))$$

and $\underline{\mu}_{n,A}$ is a closed A-subgroup of $G_{m,A}$.

29: EXAMPLE Fix a prime number p and suppose that A has characteristic p.

Given a positive integer n, $\underline{\alpha}_{n,A}$ is the group object in <u>SCH</u>/A which assigns to an A-scheme X the additive subgroup of $\Gamma(X, \mathcal{O}_X)$ consisting of those ϕ such that $\phi^{p} = 0$, thus

$$\underline{\alpha}_{n,A} = \operatorname{Spec}(A[t]/(t^{p^n}))$$

and $\underline{\alpha}_{n,A}$ is a closed A-subgroup of $G_{a,A}$.

<u>30:</u> CONSTRUCTION Let $f:G \rightarrow H$ be a homomorphism of S-groups. Define Ker(f) by the pullback square

Then for all S-schemes T,

 $Mor_{S}(T, Ker(f)) = Ker(G_{S}(T) \xrightarrow{f(T)} H_{S}(T)),$

so Ker(f) is an S-group.

<u>31:</u> EXAMPLE The kernel of $det_A is SL_{n,A}$.

<u>32:</u> <u>N.B.</u> Other kernels are $\underline{\mu}_{n,A}$ and $\underline{\alpha}_{n,A}$.

<u>33:</u> CONVENTION If P is a property of morphisms of schemes, then an S-group G has property P if this is the case of its structural morphism $G \rightarrow S$.

E.g.: The property of morphisms of schemes being quasi-compact, locally of finite type, separated, étale etc.

34: LEMMA Let

be a pullback square in <u>SCH</u>. Suppose that f is a closed immersion -- then the same holds for f'.

<u>35:</u> APPLICATION Let $g:Y \rightarrow X$ be a morphism of schemes that has a section $s:X \rightarrow Y$. Assume: g is separated -- then s is a closed immersion.

[The commutative diagram

is a pullback square in <u>SCH</u>. But g is separated, hence the diagonal morphism $\Delta_{Y/X}$ is a closed immersion. Now quote the preceding lemma.]

If $G \rightarrow S$ is a group scheme over S, then the composition

$$e$$

S \longrightarrow G \longrightarrow S

is id_s. Proof: e is an S-morphism and the diagram

commutes. Therefore e is a section for the structural morphism $G \rightarrow S$:

 $G \longrightarrow S \longrightarrow G.$

<u>36:</u> LEMMA Let $G \rightarrow S$ be a group scheme over S -- then the structural morphism $G \rightarrow S$ is separated iff $e:S \rightarrow G$ is a closed immersion.

[To see that "closed immersion" => "separated", consider the pullback square

37: LEMMA If S is a discrete scheme, then every S-group is separated.

<u>38:</u> APPLICATION Take S = Spec(k), where k is a field -- then the structural morphism $X \rightarrow Spec(k)$ of a k-scheme X is separated.

§2. SCH/k

Fix a field k.

<u>1</u>: DEFINITION A <u>k-algebra</u> is an object in <u>RNG</u> and a ring homomorphism $k \rightarrow A$.

<u>2:</u> NOTATION <u>ALG</u>/k is the category whose objects are the k-algebras $k \rightarrow A$ and whose morphisms

$$(k \rightarrow A) \rightarrow (k \rightarrow B)$$

are the ring homomorphisms $A \rightarrow B$ with the property that the diagram

commutes.

<u>3:</u> DEFINITION Let A be a k-algebra -- then A is <u>finitely generated</u> if there exists a surjective homomorphism $k[t_1, \ldots, t_n] \rightarrow A$ of k-algebras.

<u>4:</u> DEFINITION Let A be a k-algebra -- then A is <u>finite</u> if there exists a surjective homomorphism $k^n \rightarrow A$ of k-modules.

5: N.B. A finite k-algebra is finitely generated.

Recall now that SCH/k stands for SCH/Spec(k).

6: LEMMA The functor

 $A \rightarrow \text{Spec}(A)$

from $(ALG/k)^{OP}$ to SCH/k is fully faithful.

<u>7</u>: DEFINITION Let $X \rightarrow \text{Spec}(k)$ be a k-scheme --- then X is <u>locally of</u> <u>finite type</u> if there exists an affine open covering $X = \bigcup \bigcup_{i \in I} \bigcup_{i \in I} u_i$ such that for all i, $\bigcup_i = \text{Spec}(A_i)$, where A_i is a finitely generated k-algebra.

<u>8:</u> DEFINITION Let $X \rightarrow \text{Spec}(k)$ be a k-scheme -- then X is of <u>finite type</u> if X is locally of finite type and quasi-compact.

<u>9:</u> LEMMA If a k-scheme $X \rightarrow \text{Spec}(k)$ is locally of finite type and if $U \subset X$ is an open affine subset, then $\Gamma(U, 0_X)$ is a finitely generated k-algebra.

<u>10:</u> APPLICATION If A is a finitely generated k-algebra, then the k-scheme Spec(A) \rightarrow Spec(k) is of finite type.

<u>ll:</u> LEMMA If $X \rightarrow$ Spec(k) is a k-scheme of finite type, then all subschemes of X are of finite type.

<u>12:</u> RAPPEL Let $(X, 0_X)$ be a locally ringed space. Given $x \in X$, denote the stalk of 0_X at x by $0_{X,X}$ -- then $0_{X,X}$ is a local ring. And:

- m_x is the maximal ideal in $\theta_{X,x}$.
- $\kappa(\mathbf{x}) = \theta_{\mathbf{X},\mathbf{x}}/\mathfrak{m}_{\mathbf{x}}$ is the residue field of $\theta_{\mathbf{X},\mathbf{x}}$.

<u>13:</u> CONSTRUCTION Let $(X, 0_X)$ be a scheme. Given $x \in X$, let U = Spec(A) be an affine open neighborhood of x. Denote by p the prime ideal of A corresponding

to x, hence $0_{X,x} = 0_{U,x} = A_{\mu}$ (the localization of A at μ) and the canonical homomorphism $A \rightarrow A_{\mu}$ leads to a morphism

$$\operatorname{Spec}(\mathcal{O}_{X,X}) = \operatorname{Spec}(A_{\mathfrak{n}}) \rightarrow \operatorname{Spec}(A) = U \subset X$$

of schemes (which is independent of the choice of U).

<u>14:</u> <u>N.B.</u> There is an arrow $0_{X,X} \rightarrow \kappa(x)$, thus an arrow Spec($\kappa(x)$) \rightarrow Spec($0_{X,X}$), thus an arrow

$$i_x: Spec(\kappa(x)) \to X$$

whose image is x.

Let K be any field, let $f:Spec(K) \rightarrow X$ be a morphism of schemes, and let x be the image of the unique point p of Spec(K). Since f is a morphism of locally ringed spaces, at the stalk level there is a homomorphism

$$\theta_{X,x} \neq \theta_{Spec(K),p} = K$$

of local rings meaning that the image of the maximal ideal $m_x \subset 0_{X,x}$ is contained in the maximal ideal {1} of K, so there is an induced homomorphism

$$\iota:\kappa(\mathbf{x}) \rightarrow \mathbf{K}.$$

Consequently,

$$f = i_v \circ Spec(\iota)$$
.

15: SCHOLIUM There is a bijection

Mor (Spec (K), X)
$$\rightarrow$$
 { (x, 1) : x \in X, 1: κ (x) \rightarrow K}.

If $X \rightarrow \text{Spec}(k)$ is a k-scheme, then for any $x \in X$, there is an arrow

Spec($\kappa(\mathbf{x})$) $\rightarrow X_{\mu}$

from which an arrow

$$\operatorname{Spec}(\kappa(\mathbf{x})) \rightarrow \operatorname{Spec}(\mathbf{k}),$$

or still, an arrow $k \rightarrow \kappa(x)$.

<u>16:</u> LEMMA Let $X \rightarrow$ Spec(k) be a k-scheme locally of finite type -- then $x \in X$ is closed iff the field extension $\kappa(x)/k$ is finite.

<u>17:</u> APPLICATION Let $X \rightarrow \text{Spec}(k)$ be a k-scheme locally of finite type. Assume: k is algebraically closed -- then

 $\{\mathbf{x} \in \mathbf{X}: \mathbf{x} \text{ closed}\} = \{\mathbf{x} \in \mathbf{X}: \mathbf{k} = \kappa(\mathbf{x})\}$

$$= Mor_k(Spec(k), X) \equiv X(k).$$

18: DEFINITION A subset Y of a topological space X is dense in X if $\overline{Y} = X$.

<u>19:</u> DEFINITION A subset Y of a topological space X is very dense in X if for every closed subset $F \subset X$, $\overline{F \cap Y} = F$.

<u>20:</u> N.B. If Y is very dense in X, then Y is dense in X. [Take $F = X:\overline{X \cap Y} = \overline{Y} = X.$]

<u>21:</u> LEMMA Let $X \rightarrow$ Spec(k) be a k-scheme locally of finite type -- then

 $\{x \in X: x \text{ closed}\}$

is very dense in X.

22: DEFINITION Let $X \rightarrow \text{Spec}(k)$ be a k-scheme -- then a point $x \in X$ is

called k-rational if the arrow $k \rightarrow \kappa(x)$ is an isomorphism.

23: N.B. Sending a k-morphism Spec(k) \rightarrow X to its image sets up a bijection between the set

$$X(k) = Mor_{k}(Spec(k), X)$$

and the set of k-rational points of X.

24: REMARK X(k) may very well be empty.

[Consider what happens if k'/k is a proper field extension.]

Given a k-scheme $X \rightarrow \text{Spec}(k)$ and a field extension K/k, let

$$X(K) = Mor_{V}(Spec(K), X)$$

be the set of K-valued points of X. If $x:Spec(K) \rightarrow X$ is a K-valued point with image $x \in X$, then there are field extensions

$$k \neq \kappa(\mathbf{x}) \neq K$$
.

25: N.B. Spec(K) is a k-scheme, the structural morphism Spec(K) \rightarrow Spec(k) being derived from the arrow of inclusion j:k \rightarrow K.]

Let G = Gal(K/k). Given $\sigma: K \to K$ in G,

Spec(
$$\sigma$$
):Spec(K) \rightarrow Spec(K),

hence

 $Spec(K) \xrightarrow{Spec(\sigma)} Spec(K) \xrightarrow{X} X,$

and we put

$$\sigma \cdot \mathbf{x} = \mathbf{x} \circ \operatorname{Spec}(\sigma)$$
.

• $\sigma \cdot \mathbf{x}$ is a K-valued point.

[There is a commutative diagram

so $\sigma \circ j = j \circ id_k = j$, and if $\pi: X \to Spec(k)$ is the structural morphism, there is a commutative diagram

so $\pi \circ x = \text{Spec}(j)$. The claim then is that the diagram

commutes. But

$$\pi \circ \mathbf{x} \circ \operatorname{Spec}(\sigma) = \operatorname{Spec}(j) \circ \operatorname{Spec}(\sigma)$$
$$= \operatorname{Spec}(\sigma \circ j)$$
$$= \operatorname{Spec}(j).]$$

• The operation

$$\begin{bmatrix} G \times X(K) \rightarrow X(K) \\ (\sigma, x) \longrightarrow \sigma \cdot x \end{bmatrix}$$

is a left action of G on X(K).

[Given $\sigma, \tau \in G: K \longrightarrow K \longrightarrow K$, it is a question of checking that

 $(\sigma \circ \tau) \cdot \mathbf{x} = \sigma \cdot (\tau \cdot \mathbf{x}).$

But the LHS equals

 $\mathbf{x} \circ \operatorname{Spec}(\sigma \circ \tau) = \mathbf{x} \circ \operatorname{Spec}(\tau) \circ \operatorname{Spec}(\sigma)$

while the RHS equals

$$\tau \cdot \mathbf{x} \circ \operatorname{Spec}(\sigma) = \mathbf{x} \circ \operatorname{Spec}(\tau) \circ \operatorname{Spec}(\sigma)$$

26: NOTATION Let

 $K^{G} = Inv(G)$

be the invariant field associated with G.

<u>27:</u> LEMMA The set $X(K)^G$ of fixed points in X(K) for the left action of G on X(K) coincides with the set $X(K^G)$.

28: APPLICATION If K is a Galois extension of k, then $X(K)^{G} = X(k)$.

Take $K = k^{\text{Sep}}$, thus now $G = \text{Gal}(k^{\text{Sep}}/k)$.

<u>29:</u> DEFINITION Suppose given a left action $G \times S \rightarrow S$ of G on a set S -then S is called a <u>G-set</u> if $\forall s \in S$, the G-orbit G \cdot s is finite or, equivalently, the stabilizer $G_s \subset G$ is an open subgroup of G.

30: EXAMPLE Let $X \rightarrow \text{Spec}(k)$ be a k-scheme locally of finite type -- then

 $\forall \ x \in X(k^{sep})$, the G-orbit G $\cdot \ x$ of x in $X(k^{sep})$ is finite, hence $X(k^{sep})$ is a G-set.

<u>31:</u> DEFINITION Let $X \rightarrow \text{Spec}(k)$ be a k-scheme -- then X is <u>étale</u> if it is of the form

$$X = \prod_{i \in I} \operatorname{Spec}(K_i),$$

where I is some index set and where K_i/k is a finite separable field extension.

There is a category $\underline{\text{fr}}/k$ whose objects are the étale k-schemes and there is a category G-SET whose objects are the G-sets.

Define a functor

$$\Phi: \tilde{ET}/k \rightarrow G-SET$$

by associating with each X in ÉT/k the set $X(k^{Sep})$ equipped with its left G-action.

32: LEMMA Φ is an equivalence of categories.

PROOF To construct a functor

$$\Psi: \underline{G-SET} \rightarrow \underline{\hat{ET}/k}$$

such that

$$\begin{array}{ccc} \Psi \circ \Phi \approx \operatorname{id} & \text{and} \ \Phi \circ \Psi \approx \operatorname{id}_{\underline{G-SET}'} \\ & \underbrace{\operatorname{\acute{ET}}/k} \end{array}$$

take a G-set S and write it as a union of G-orbits, say

$$S = \coprod_{i \in I} G \cdot s_i$$
.

Let $K_i > k$ be the finite separable field extension inside k^{sep} corresponding to

the open subgroup $G_{s_i} \subset G$ and assign to S the étale k-scheme $\coprod_{i \in I} Spec(K_i)$. Proceed...

The foregoing equivalence of categories induces an equivalence between the corresponding categories of group objects:

$$\acute{e}$$
tale group k-schemes \approx G-groups,

where a G-group is a group which is a G-set, the underlying left action being by group automorphisms.

33: CONSTRUCTION Given a group M, let M_k be the disjoint union

$$\prod_{M}$$
 Spec(k),

the constant group k-scheme, thus for any k-scheme $X \rightarrow \text{Spec}(k)$,

$$Mor_{k}(X, M_{k})$$

is the set of locally constant maps $X \rightarrow M$ whose group structure is multiplication of functions.

[The terminology is standard but not the best since if M is nontrivial, then

$$Mor_k(X, M_k) \approx M$$

only if X is connected.]

34: EXAMPLE For any étale group k-scheme X,

$$X \times_k \text{Spec}(k^{\text{sep}}) \approx X(k^{\text{sep}})_k \times_k \text{Spec}(k^{\text{sep}})$$

[Note: Here (and elsewhere),

$$k = x$$
 Spec (k).

35: RAPPEL An A in RNG is reduced if it has no nilpotent elements $\neq 0$ (i.e., $\not \equiv a \neq 0:a^n = 0 \ (\exists n)$).

<u>36:</u> DEFINITION A scheme X is <u>reduced</u> if for any nonempty open subset $U \in X$, the ring $\Gamma(U, 0_X)$ is reduced.

[Note: This is equivalent to the demand that all the local rings $\mathcal{O}_{X,x}$ (x \in X) are reduced.]

<u>37:</u> DEFINITION Let X be a k-scheme -- then X is geometrically reduced if for every field extension $K \supset k$, the K-scheme X \times_k Spec(K) is reduced.

38: LEMMA If X is a reduced k-scheme, then for every separable field extension K/k, the K-scheme X \times_k Spec(K) is reduced.

<u>39:</u> APPLICATION Assume: k is a perfect field -- then every reduced k-scheme X is geometrically reduced.

<u>40:</u> THEOREM Assume: k is of characteristic zero. Suppose that X is a group k-scheme which is locally of finite type -- then X is reduced, hence is geometrically reduced.

\$3. AFFINE GROUP K-SCHEMES

Fix a perfect field k.

[Recall that a field k is perfect if every field extension of k is separable (equivalently, char(k) = 0 or char(k) = p > 0 and the arrow $x \rightarrow x^p$ is surjective).]

<u>1:</u> DEFINITION An <u>affine group k-scheme</u> is a group k-scheme of the form Spec(A), where A is a k-algebra.

2: EXAMPLE

$$G_{a,k} = Spec(k[t])$$

is an affine group k-scheme.

3: EXAMPLE

$$G_{m,k} = \operatorname{Spec}(k[t,t^{-1}])$$

is an affine group k-scheme.

4: EXAMPLE

$$\underline{\mu}_{n,k} = \operatorname{Spec}(k[t]/(t^{11} - 1)) \quad (n \in \mathbb{N})$$

is an affine group k-scheme.

There is a category <u>GRP</u>/k whose objects are the group k-schemes and whose morphisms are the morphisms $f:X \rightarrow Y$ of k-schemes such that for all k-schemes T the induced map

$$f(T)$$
: Mor_b $(T,X) \rightarrow Mor_{b}(T,Y)$

is a group homomorphism.

5: NOTATION

AFF-GRP/k

is the full subcategory of GRP/k whose objects are the affine group k-schemes.

6: NOTATION

GRP-ALG/k

is the category of group objects in ALG/k and

is the category of group objects in $(ALG/k)^{OP}$.

7: LEMMA The functor

 $A \rightarrow \text{Spec}(A)$

from $(ALG/k)^{OP}$ to SCH/k is fully faithful and restricts to an equivalence

$$\underline{\text{GRP}}-(\underline{\text{ALG}/k})^{\text{OP}} \rightarrow \underline{\text{AFF}}-\underline{\text{GRP}/k}.$$

8: REMARK An object in $\underline{GRP}-(\underline{ALG}/k)^{OP}$ is a k-algebra A which carries the structure of a commutative Hopf algebra over k: $\exists k$ -algebra homomorphisms

$$\Delta: \mathbf{A} \to \mathbf{A} \, \mathbf{Q}_{\mathbf{k}} \, \mathbf{A}, \, \varepsilon: \mathbf{A} \to \mathbf{k}, \, \mathbf{S}: \mathbf{A} \to \mathbf{A}$$

satisfying the "usual" conditions.

<u>9:</u> N.B. There is another way to view matters, viz. any functor <u>ALG/k \rightarrow <u>GRP</u> which is representable by a k-algebra serves to determine an affine group k-scheme (and vice versa). From this perspective, a morphism G \rightarrow H of affine group k-schemes is a natural transformation of functors, i.e., a collection of group homomorphisms</u>

 $G(A) \rightarrow H(A)$ such that if $A \rightarrow B$ is a k-algebra homomorphism, then the diagram

commutes.

[Note: Suppose that

$$G = h^{X} = Mor(X, -)$$

H = h^Y = Mor(Y, -).

Then from Yoneda theory,

Mor(G,H) \approx Mor(Y,X).]

<u>10:</u> EXAMPLE $k[t,t^{-1}]$ represents $G_{m,k}$ and

$$k[t_{11},...,t_{nn}, det(t_{ij})^{-1}]$$

represents GL_{n,k}. Given any k-algebra A, the determinant is a group homomorphism

$$GL_{n,k}(A) \rightarrow G_{m,k}(A)$$

and

$$\det_{k} \in Mor(GL_{n,k}, G_{m,k}).$$

[Note: There is a homomorphism

$$k[t,t^{-1}] \rightarrow k[t_{11},\ldots,t_{nn},\det(t_{ij})^{-1}]$$

of k-algebras that defines det_k . E.g.: If n = 2, then the homomorphism in question sends t to $t_{11}t_{22} - t_{12}t_{21}$.

11: PRODUCTS Let

$$G = h^{X} \quad (X \text{ in } \underline{ALG}/k)$$
$$H = h^{Y} \quad (Y \text{ in } ALG/k)$$

be affine group k-schemes. Consider the functor

$$G \times H:ALG/k \rightarrow GRP$$

defined on objects by

$$A \rightarrow G(A) \times H(A)$$
.

Then this functor is represented by the k-algebra X \underline{a}_{k} Y:

Mor
$$(X \otimes_{k} Y, A) \approx Mor (X, A) \times Mor (Y, A)$$

= G(A) × H(A).

12: EXAMPLE Take

$$G = G_{m,R}$$
$$H = G_{m,R}$$

Then

$$(G_{m,R} \times G_{m,R}) (R) = R^{\times} \times R^{\times} = C^{\times}$$

and

$$(G_{m,R} \times G_{m,R}) (C) = C^{\times} \times C^{\times}.$$

Let k'/k be a field extension -- then for any k-algebra A, the tensor product A $\underline{\omega}_k$ k' is a k'-algebra, hence there is a functor

$$ALG/k' \rightarrow ALG/k$$

termed restriction of the scalars.

13: LEMMA For all k-algebras A and for all k'-algebras B',

$$Mor_{k'}(A \otimes_{k} k', B') \approx Mor_{k}(A, B).$$

<u>14:</u> SCHOLIUM The functor "extension of the scalars" is a left adjoint for the functor "restriction of the scalars".

Let G be an affine group k-scheme. Abusing the notation, denote still by G the associated functor

$$ALG/k \rightarrow GRP$$
.

Then there is a functor

$$G_{k'}: \underline{ALG}/k' \rightarrow \underline{GRP},$$

namely

$$G_{k'}(A') = G(A),$$

where A is A' viewed as a k-algebra.

<u>15:</u> LEMMA G_k is an affine group k'-scheme and the assignment $G \neq G_k$ is functorial:

$$\underline{\text{AFF-GRP}/k} \rightarrow \underline{\text{AFF-GRP}/k'}.$$

[Note: Suppose that $G = h^X$ -- then

$$Mor_{k'}(X \otimes_k k', A') \approx Mor_k(X, A)$$

$$= G(A) = G_{k'}(A').$$

Therefore G_k , is represented by X $\underline{\omega}_k$ k':

$$G_{k'} = h^{X \otimes_k k'}$$

Matters can also be interpreted "on the other side";

<u>16:</u> DEFINITION G_k , is said to have been obtained from G by <u>extension</u> of the scalars.

17: NOTATION Given an affine group k'-scheme G', let $G_{k'/k}$ be the functor <u>ALG</u>/k \rightarrow <u>GRP</u>

defined by the rule

 $A \rightarrow G' (A \otimes_k k')$.

[Note: If k' = k, then $G_{k'/k} = G$.]

<u>18:</u> THEOREM Assume that k'/k is a finite field extension -- then $G_{k'/k}$ is an affine group k-scheme and the assignment $G' \rightarrow G_{k'/k}$ is functorial:

$$AFF-GRP/k' \rightarrow AFF-GRP/k.$$

<u>19:</u> DEFINITION $G_{k'/k}$ is said to have been obtained from G' by restriction of the scalars.

<u>20:</u> LEMMA Assume that k'/k is a finite field extension -- then for all affine group k-schemes H,

$$Mor_k(H,G_{k'/k}) \approx Mor_k(H_{k'},G').$$

<u>21:</u> SCHOLIUM The functor "restriction of the scalars" is a right adjoint for the functor "extension of the scalars".

[Accordingly, there are arrows of adjunction

$$\begin{array}{c} G \rightarrow (G_{k'})_{k'/k} \\ (G_{k'/k})_{k'} \rightarrow G'. \end{array}$$

22: NOTATION

$$\operatorname{Res}_{k'/k}: \underline{\operatorname{AFF}} - \underline{\operatorname{GRP}}/k' \rightarrow \underline{\operatorname{AFF}} - \underline{\operatorname{GRP}}/k$$

is the functor defined by setting

$$\operatorname{Res}_{k'/k}(G') = G_{k'/k}.$$

So, by definition,

$$\operatorname{Res}_{k'/k}(G')(A) = G'(A \otimes_k k').$$

And in particular:

$$\operatorname{Res}_{k'/k}(G')(k) = G'(k \otimes_k k') = G'(k').$$

23: EXAMPLE Take G' =
$$A_{k'}^{n}$$
 -- then

$$\operatorname{Res}_{k'/k}(A_{k'}^{n}) \approx A_{k}^{nd} \quad (d = [k':k]).$$

24: EXAMPLE Take
$$k = R$$
, $k' = C$, $G' = G_{m,C}$, and consider

$$\operatorname{Res}_{C/R}(G_m, C)$$
.

Then

$$\operatorname{Res}_{C/R}(G_{m,C})(R) = C^{\times}$$

and

$$\operatorname{Res}_{C/R}(G_{m,C})(C) = C^{\times} \times C^{\times}.$$

[Note:

Res_{C/R} (G_{m,C})

is not isomorphic to $G_{m,R}$ (its group of real points is R^{\times}).]

25: LEMMA Let k' be a finite Galois extension of k -- then

$$(\operatorname{Res}_{k'/k}(G'))_{k'} \approx \prod_{\sigma \in \operatorname{Gal}(k'/k)} \sigma G'.$$

[Note: $\forall \sigma \in Gal(k'/k)$, there is a pullback square

$$\begin{array}{c} \sigma G' & \longrightarrow & \operatorname{Spec} (k') \\ & & & \downarrow \\ G' & \longrightarrow & \operatorname{Spec} (\sigma) \\ G' & \longrightarrow & \operatorname{Spec} (k') \\ \end{array}$$

26: EXAMPLE Take k = R, k' = C, $G' = G_{m,C}$ -- then $(\operatorname{Res}_{C/R}(G_{m,C}))_{C} \approx G_{m,C} \times \sigma G_{m,C}$ $\approx G_{m,C} \times G_{m,C}.$

Let G be an affine group k-scheme.

27: DEFINITION A character of G is an element of

$$X(G) = Mor_k(G, G_{m,k}).$$

Given $\chi \in X(G)$, for every k-algebra A, there is a homomorphism

$$\chi$$
 (A) : G (A) \rightarrow G_{m,k} (A) = A[×].

Given $\chi_1,\chi_2 \,\in\, X\,(\!\mathrm{G}\!)\,,$ define

$$(\chi_1 + \chi_2)$$
 (A) : G(A) $\rightarrow G_{m,k}(A) = A^{\times}$

by the stipulation

$$(\chi_1 + \chi_2)$$
 (A) (t) = χ_1 (A) (t) χ_2 (A) (t),

from which a character $\chi_1 + \chi_2$ of G, hence X(G) is an abelian group.

28: EXAMPLE Take G = G _ , k -- then the characters of G are the morphisms G + G _ , k of the form

$$t
ightarrow t^n$$
 (n \in Z),

i.e.,

 $X(G) \approx Z.$

<u>29:</u> EXAMPLE Take $G = G_{m,k} \times \cdots \times G_{m,k}$ (d factors) -- then the characters of G are the morphisms $G \rightarrow G_{m,k}$ of the form

$$(t_1,\ldots,t_d) \rightarrow t_1^{n_1} \ldots t_d^{n_d} (n_1,\ldots,n_d \in Z),$$

i.e.,

 $X(G) \approx Z^{d}$.

<u>30:</u> EXAMPLE Given an abelian group M, its group algebra k[M] is canonically a k-algebra. Consider the functor $D(M) : \underline{ALG}/k \rightarrow \underline{GRP}$ defined on objects by the rule

$$A \rightarrow Mor(M, A^{\times})$$
.

Then $\forall A$,

Mor
$$(M, A^{\times}) \approx Mor (k[M], A)$$
,

so k[M] represents D(M) which is therefore an affine group k-scheme. And

```
X(D(M)) \approx M
```

the character of D(M) corresponding to $m \in M$ being the assignment

$$D(M) (A) = Mor(M, A^{\times})$$

$$f \rightarrow f(m)$$

$$\longrightarrow A^{\times} = G_{m,k}(A)$$

31: NOTATION Given $\chi' \in X(G')$, let $N_{k'/k}(\chi')$ stand for the rule that assigns to each k-algebra A the homomorphism

$$G_{k'/k}(A) \rightarrow G_{m,k}(A) = A^{\times}$$

defined by the composition

$$G_{k'/k}(A) \longrightarrow G'(A \otimes_{k} k')$$

$$G'(A \otimes_{k} k') \longrightarrow G_{m,k'}(A \otimes_{k} k') = (A \otimes_{k} k')^{\times}$$

$$(A \otimes_{k} k')^{\times} \longrightarrow A^{\times}.$$

Here the first arrow is the canonical isomorphism, the second arrow is χ' (A $\underline{\omega}_k$ k'), and the third arrow is the norm map.

$$\chi' \rightarrow N_{k'/k}(\chi')$$

is a homomorphism

$$X(G') \rightarrow X(G_{k'/k})$$

of abelian groups.

33: THEOREM The arrow

$$\chi' \rightarrow N_{k'/k}(\chi')$$

is bijective, hence defines an isomorphism

of abelian groups.

34: APPLICATION Consider

$$\operatorname{Res}_{C/R}(G_m, c)$$
.

Then its character group is isomorphic to the character group of $G_{m,C}$, i.e., to Z. Therefore

$$\operatorname{Res}_{C/R}(G_m, C)$$

is not isomorphic to $G_{m,R} \times G_{m,R}$.

54. ALGEBRAIC TORI

Fix a field k of characteristic zero.

<u>1:</u> DEFINITION Let G be an affine group k-scheme --- then G is <u>algebraic</u> if its associated representing k-algebra A is finitely generated.

<u>2:</u> REMARK It can be shown that every algebraic affine group k-scheme is isomorphic to a closed subgroup of some $GL_{n,k}$ (3 n).

<u>3:</u> CONVENTION The term <u>algebraic k-group</u> means "algebraic affine group k-scheme".

<u>4:</u> <u>N.B.</u> It is automatic that an algebraic k-group is reduced (cf. $\S2$, #40), hence is geometrically reduced (cf. $\S2$, #39).

5: LEMMA Assume that k'/k is a finite field extension -- then the functor $\frac{\text{Res}_{k'/k}: \underline{\text{AFF}} - \underline{\text{GRP}}/k' \rightarrow \underline{\text{AFF}} - \underline{\text{GRP}}/k}{\underline{\text{AFF}} - \underline{\text{GRP}}/k}$

sends algebraic k'-groups to algebraic k-groups.

Given a finite field extension k'/k, let Σ be the set of k-embeddings of k' into k^{sep} and identify k' $\mathfrak{A}_{k} k^{\text{sep}}$ with $(k^{\text{sep}})^{\Sigma}$ via the bijection which takes x \mathfrak{A} y to the string $(\sigma(\mathbf{x})\mathbf{y})_{\sigma\in\Sigma}$.

6: LEMMA Let G' be an algebraic k'-group -- then

$$(G_{k'/k}) \times_k \text{Spec}(k^{\text{sep}}) \approx \prod_{\sigma \in \Sigma} \sigma G',$$

where of' is the algebraic k^{sep}-group defined by the pullback square

[Note: To review, the LHS is

$$(\operatorname{Res}_{k'/k}(G'))_{k}$$
sep

and the Galois group Gal(k^{Sep}/k) operates on it through the second factor. On the other hand, to each pair $(\tau, \sigma) \in \text{Gal}(k^{\text{Sep}}/k) \times \Sigma$, there corresponds a bijection $\sigma G' \rightarrow (\tau \circ \sigma) G'$ leading thereby to an action of Gal(k^{Sep}/k) on

The point then is that the identification

$$(\operatorname{Res}_{k'/k}(G'))_{k} \approx \prod_{\sigma \in \Sigma} \sigma G'$$

respects the actions, i.e., is $Gal(k^{Sep}/k)$ -equivariant.]

7: N.B. Consider the commutative diagram

Then the "big" square is a pullback. Since this is also the case of the "small" bottom square, it follows that the "small" upper square is a pullback.

8: DEFINITION A split k-torus is an algebraic k-group T which is isomorphic to a finite product of copies of $G_{m,k}$.

9: EXAMPLE The algebraic R-group

is not a split R-torus (cf. §3, #24 and #34).

<u>10:</u> LEMMA If T is a split k-torus, then X(T) is a finitely generated free abelian group.

11: THEOREM The functor

$T \rightarrow X(T)$

from the category of split k-tori to the category of finitely generated free abelian groups is a contravariant equivalence of categories.

12: N.B. \forall k-algebra A,

 $T(A) \approx Mor(X(T), A^{\times}).$

[Note: Explicated,

 $T \approx Spec(k[X(T)])$ (cf. §3, #30).

Therefore

$$T(A) \approx Mor(Spec(A), T)$$

$$\approx Mor(Spec(A), Spec(k[X(T)]))$$

$$\approx Mor(k[X(T)], A)$$

$$\approx Mor(X(T), A^{X}).]$$

13: DEFINITION A k-torus is an algebraic k-group T such that

$$T_{k} = T \times_{k} Spec(k^{sep})$$

is a split k^{sep}-torus.

14: N.B. A split k-torus is a k-torus.

<u>15:</u> EXAMPLE Let k'/k be a finite field extension and take G' = $G_{m,k'}$ -then the algebraic k-group $G_{k'/k}$ is a k-torus (cf. #6).

<u>16:</u> DEFINITION Let T be a k-torus -- then a <u>splitting field</u> for T is a finite field extension K/k such that T_{K} is a split K-torus.

<u>17:</u> THEOREM Every k-torus T admits a splitting field which is minimal (i.e., contained in any other splitting field) and Galois.

<u>18:</u> NOTATION Given a k-scheme X and a Galois extension K/k, the Galois group Gal(K/k) operates on

$$X_{k} = X \times_{k} \text{Spec}(K)$$

via the second term, hence $\sigma \rightarrow 1 \otimes \sigma$.

[Note: $1 \otimes \sigma$ is a k-automorphism of X_{K} .]

<u>19:</u> NOTATION Given k-schemes X,Y and a Galois extension K/k, the Galois group Gal(K/k) operates on $Mor_{K}(X_{K},Y_{K})$ by the prescription

$$\sigma f = (1 \ Q \ \sigma) f (1 \ Q \ \sigma)^{-1}.$$

[Note: If $f \in Mor_{K}(X_{K}, Y_{K})$, then the condition $\sigma f = f$ for all $\sigma \in Gal(K/k)$

is equivalent to the condition that f is the lift of a k-morphism $\phi: X \rightarrow Y$, i.e., $f = \phi \otimes 1$.

<u>20:</u> LEMMA Let K/k be a Galois extension and let G = Gal(K/k) -- then for any k-algebra A and for any k-scheme X,

$$X(A \otimes_{k} K)^{G} = X(A)$$
.

[Note: This generalizes $\S2$, #28 to which it reduces if A = k.]

<u>21:</u> DEFINITION Let G be a finite group -- then a <u>G-module</u> is an abelian group M supplied with a homomorphism $G \rightarrow Aut(M)$.

<u>22:</u> <u>N.B.</u> A G-module is the same thing as a Z[G]-module (in the usual sense when Z[G] is viewed as a ring).

<u>23:</u> DEFINITION Let G be a finite group -- then a <u>G-lattice</u> is a Z-free G-module M of finite rank.

24: LEMMA If T is a k-torus split by a finite Galois extension K/k, then

$$X(T_K) = Mor_K(T_K, G_{m,K})$$

is a Gal(K/k)-lattice.

25: THEOREM Fix a finite Galois extension K/k -- then the functor

$$T \rightarrow X(T_K)$$

from the category of k-tori split by K/k to the category of Gal(K/k)-lattices is a contravariant equivalence of categories.

26: N.B. Suppose that T is a k-torus split by a finite Galois extension

5.

K/k. Form K[X(T_K)], thus operationally, $\forall \ \sigma \in \text{Gal}(K/k)$,

$$\begin{array}{ccc} \sigma(\Sigma & a_{i}\chi_{i}) &= \Sigma & \sigma(a_{i})\sigma(\chi_{i}) & (a_{i} \in K, \ \chi_{i} \in X(T_{K})) \\ i & i \end{array}$$

Pass now to the invariants

$$K[X(T_{K})]$$
 (G = Gal(K/k)).

Then

$$T \approx \text{Spec}(K[X(T_K)]^G).$$

And

$$T(A \ \mathfrak{A}_{K} \ K)^{G} = T(A)$$

$$\approx Mor(Spec(A), T)$$

$$\approx Mor(Spec(A), Spec(K[X(T_{K})]^{G}))$$

$$\approx Mor_{k}(K[X(T_{K})]^{G}, A)$$

$$\approx Mor_{K}(K[X(T_{K})], A \ \mathfrak{A}_{k} \ K)^{G}$$

$$\approx Mor_{Z}(X(T_{K}), (A \ \mathfrak{A}_{k} \ K)^{\times})^{G}$$

$$\approx Mor_{Z[G]}(X(T_{K}), (A \ \mathfrak{A}_{k} \ K)^{\times}).$$

[Note: Let $T = \operatorname{Res}_{K/k}(G_{m,K})$ -- then on the one hand,

$$Mor_{Z[G]}(Z[G], (A \otimes_{k} K)^{\times}) \approx (A \otimes_{k} K)^{\times},$$

while on the other,

$$\operatorname{Res}_{K/k}(G_{m,K})(A) = (A \otimes_{K} K)^{\times}$$
$$\approx \operatorname{Mor}_{Z[G]}(X(T_{K}), (A \otimes_{K} K)^{\times}).$$

Therefore

$$X(T_K) \approx Z[G].]$$

Take k = R, K = C, and let σ be the nontrivial element of Gal(C/R) -- then every R-torus T gives rise to a Z-free module of finite rank supplied with an involution corresponding to σ . And conversely....

There are three "basic" R-tori.

1. $T = G_{m,R}$. In this case,

$$X(T_C) = X(G_m, C) \approx Z$$

and the Galois action is trivial.

2.
$$T = \operatorname{Res}_{C/R}(G_{m,C})$$
. In this case,

$$X(T_C) \approx X(G_{m,C} \times G_{m,C})$$
 (cf. §3, #26)

and the Galois action swaps coordinates.

3. $T = SO_2$. In this case,

$$x((SO_2)_C) \approx x(G_m, C)$$

 $\approx Z$

and the Galois action is multiplication by -1.

[Note:

$$SO_2: \underline{ALG}/R \rightarrow \underline{GRP}$$

is the functor defined by the rule

$$SO_2(A) = \{ \begin{vmatrix} a & b \\ -b & a \end{vmatrix} : a, b \in A \& a^2 + b^2 = 1 \}.$$

Then SO_2 is an algebraic R-group such that

$$(SO_2)_C \approx G_{m,C'}$$

so SO₂ is an R-torus and SO₂(R) can be identified with S (= { $z \in C: z\overline{z} = 1$ }).

<u>27:</u> THEOREM Every R-torus is isomorphic to a finite product of copies of the three basic tori described above.

Here is the procedure. Fix a Z-free module M of finite rank and an involution $1:M \rightarrow M$ -- then M can be decomposed as a direct sum

$$M_{+} \oplus M_{SW} \oplus M_{-}$$
,

where $\iota = 1$ on M_+ , ι is a sum of 2-dimensional swaps on M_{SW} (or still, $M_{SW} = \bigoplus Z[Gal(C/R)]$), and $\iota = -1$ on M_- .

<u>28:</u> SCHOLIUM If T is an R-torus, then there exist unique nonnegative integers a,b,c such that

$$T(R) \approx (R^{\times})^{a} \times (C^{\times})^{b} \times S^{C}.$$

29: REMARK The classification of C-tori is trivial: Any such is a finite product of the ${\tt G}_{\rm m.C}.$

<u>30:</u> RAPPEL Let K/k be a finite Galois extension and let A be a k-algebra -- then there is a norm map

$$(A \otimes_{k} K)^{\times} \rightarrow A^{\times} (\approx (A \otimes_{k} k)^{\times}).$$

<u>31:</u> CONSTRUCTION Let K/k be a finite Galois extension -- then there is a norm map

$$N_{K/k}: \operatorname{Res}_{K/k}(G_{m,K}) \rightarrow G_{m,k}.$$

[For any k-algebra A,

$$\operatorname{Res}_{K/k}(G_{m,K}) (A)$$
$$= G_{m,K}(A \otimes_{k} K)$$

=
$$(A \otimes_{K} K)^{\times} \rightarrow A^{\times} = G_{m,k}(A)$$
.

[Note: $N_{K/k}$ is not to be confused with the arrow of adjunction

$$G_{m,k} \rightarrow \text{Res}_{K/k}(G_{m,K})$$
.]

32: N.B.

$$N_{K/k} \in X(\operatorname{Res}_{K/k}(G_{m,K})).$$

33: NOTATION Let $\operatorname{Res}_{K/k}^{(1)}(G_{m,K})$ be the kernel of $N_{K/k}$.

<u>34:</u> LEMMA $\operatorname{Res}_{K/k}^{(1)}(G_{m,K})$ is a k-torus and there is a short exact sequence $1 \rightarrow \operatorname{Res}_{K/k}^{(1)}(G_{m,K}) \rightarrow \operatorname{Res}_{K/k}^{(G_{m,K})} \rightarrow G_{m,k} \rightarrow 1.$

35: EXAMPLE Take k = R, K = C -- then

$$\operatorname{Res}_{C/R}^{(1)}(G_{m,C}) \approx SO_2$$

and there is a short exact sequence

$$1 \rightarrow SO_2 \rightarrow \operatorname{Res}_{C/R}(G_{m,C}) \rightarrow G_{m,R} \rightarrow 1.$$

[Note: On R-points, this becomes

$$1 \rightarrow S \rightarrow C^{\times} \rightarrow R^{\times} \rightarrow 1.$$
]

<u>36:</u> DEFINITION Let T be a k-torus -- then T is <u>k-anisotropic</u> if $X(T) = \{0\}$. <u>37:</u> EXAMPLE SO₂ is R-anisotropic.

<u>38:</u> THEOREM Every k-torus T has a unique maximal k-split subtorus T_s and a unique maximal k-anisotropic subtorus T_a . The intersection $T_s \cap T_a$ is finite and $T_s \cdot T_a = T$.

<u>39:</u> LEMMA $\operatorname{Res}_{K/k}^{(1)}(G_{m,K})$ is k-anisotropic.

PROOF Setting G = Gal(K/k), under the functoriality of #25, the norm map

$$N_{K/k}: \operatorname{Res}_{K/k}(G_{m,K}) \to G_{m,k}$$

corresponds to the homomorphism $Z \rightarrow Z[G]$ of G-modules that sends n to n($\Sigma\sigma$), G the quotient $Z[G]/Z(\Sigma\sigma)$ being $X(T_K)$, where

$$T = \operatorname{Res}_{K/k}^{(1)}(G_{m,K}).$$

And

$$Z[G]^{G} = Z(\Sigma\sigma).$$

<u>40:</u> <u>N.B.</u> $\operatorname{Res}_{K/k}^{(1)}(G_{m,K})$ is the maximal k-anisotropic subtorus of $\operatorname{Res}_{K/k}(G_{m,K})$.

<u>41:</u> DEFINITION Let G,H be algebraic k-groups -- then a homomorphism $\phi: G \rightarrow H$ is an isogengy if it is surjective with a finite kernel.

<u>42:</u> DEFINITION Let G,H be algebraic k-groups --- then G,H are said to be isogeneous if there is an isogengy between them.

43: THEOREM Two k-tori T', T'' per #25 are isogeneous iff the Q[Gal(k/k)]-modules

$$= x(T_K') \otimes_Z Q$$
$$= x(T_K'') \otimes_Z Q$$

are isomorphic.

§5. THE LLC

<u>1</u>: <u>N.B.</u> The term "LLC" means "local Langlands correspondence" (cf. #26). Let K be a non-archimedean local field -- then the image of $\operatorname{rec}_{K}: K^{\times} \to \operatorname{G}_{K}^{ab}$ is W_{K}^{ab} and the induced map $K^{\times} \to W_{K}^{ab}$ is an isomorphism of topological groups.

<u>2:</u> SCHOLIUM There is a bijective correspondence between the characters of $W_{\!_{\rm K}}$ and the characters of $K^{\!\times}\!:$

Mor(
$$W_{K}^{\times}, C^{\times}$$
) \approx Mor(K^{\times}, C^{\times}).

[Note: "Character" means continuous homomorphism. So, if $\chi:W_K \to C^{\times}$ is a character, then χ must be trivial on W_K^* (C^{\times} being abelian), hence by continuity, trivial on $\overline{W_K^*}$, thus χ factors through $W_K^*/\overline{W_K^*} = W_K^{ab}$.]

Let T be a K-torus -- then T is isomorphic to a closed subgroup of some $GL_{n,K}$ (3 n). But $GL_{n,K}(K)$ is a locally compact topological group, thus T(K) is a locally compact topological group (which, moreover, is abelian).

3: N.B. For the record,

$$G_{m,K}(K) = K^{\times} = GL_{1,K}(K)$$
.

Roughly speaking, the objective now is to describe Mor(T(K), C^{\times}) in terms of data attached to W_{K} but to even state the result requires some preparation.

6: EXAMPLE Suppose that T is K-split:

$$T \approx G_{m,K} \times \cdots \times G_{m,K}$$
 (d factors).

Then

$$\stackrel{d}{\underset{i=1}{\longrightarrow}} \operatorname{Mor}(W_{K}, C^{\times}) \approx \stackrel{d}{\underset{i=1}{\longrightarrow}} \operatorname{Mor}(K^{\times}, C^{\times})$$
$$\approx \operatorname{Mor}(\stackrel{d}{\underset{i=1}{\longrightarrow}} K^{\times}, C^{\times})$$
$$\approx \operatorname{Mor}(T(K), C^{\times}).$$

Given a K-torus T, put

$$\begin{array}{c} X^{\star}(T) = Mor_{K} sep^{(T}_{K} sep^{,G}_{m,K} sep^{,K} \\ X_{\star}(T) = Mor_{K} sep^{,(G}_{m,K} sep^{,T}_{K} sep^{,K} \end{array} \right) . \end{array}$$

7: LEMMA Canonically,

$$X_*(T) \otimes_Z C^{\times} \approx Mor(X^*(T), C^{\times}).$$

PROOF Bearing in mind that

$$\underset{K^{\mathrm{sep}}(G_{m,K}^{\mathrm{sep}},G_{m,K}^{\mathrm{sep}}) \approx \mathbb{Z},$$

define a pairing

$$X^{*}(T) \times X_{*}(T) \xrightarrow{<} Z$$

by sending (χ^*, χ_*) to $\chi^* \circ \chi_* \in Z$. This done, given $\chi_* \otimes z$, assign to it the homomorphism

$$\langle \chi^*, \chi_* \rangle$$

 $\chi^* \rightarrow z$

3: NOTATION Given a K-torus T, put

$$\hat{\mathbf{T}} = \operatorname{Spec}(C[\mathbf{X}_{\star}(\mathbf{T})]).$$

<u>9:</u> LETMA \hat{T} is a split C-torus such that

$$\begin{array}{rcl} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Therefore

Mor
$$(X_{\star}(T), C^{\times}) \approx Mor (X^{\star}(\hat{T}), C^{\times})$$

 $\approx X_{\star}(\hat{T}) \otimes_{Z} C^{\times}$
 $\approx X^{\star}(T) \otimes_{Z} C^{\times}$.

10: LEMMA

$$\hat{T}(C) \approx X^*(T) \otimes_Z C^*.$$

PROOF In fact,

$$\hat{T}(C) \approx Mor(X^{*}(\hat{T}), C^{X}) \quad (cf. §4, #12)$$
$$\approx Mor(X_{*}(T), C^{X})$$
$$\approx X^{*}(T) \otimes_{Z} C^{X}.$$

12: EXAMPLE Under the assumptions of #6,

$$\hat{\mathbf{T}}(\mathbf{C}) \approx \mathbf{X}^{*}(\mathbf{T}) \ \mathbf{\omega}_{\mathsf{Z}} \ \mathbf{C}^{\times}$$

 $\approx \mathsf{Z}^{\mathsf{d}} \ \mathbf{\omega}_{\mathsf{T}} \ \mathbf{C} \ \approx \ (\mathsf{C}^{\times})^{\mathsf{d}}$

Therefore

Mor
$$(W_{K}, \hat{T}(C)) \approx Mor (W_{K}, (C^{\times})^{d})$$

$$\approx \stackrel{d}{\underset{i=1}{\longrightarrow}} Mor (W_{K}, C^{\times})$$

$$\approx Mor (T(K), C^{\times}).$$

13: RAPPEL If G is a group and if A is a G-module, then

$$H^{1}(G,A) = \frac{Z^{1}(G,A)}{B^{1}(G,A)}$$
.

• $Z^{1}(G,A)$ (the <u>l-cocycles</u>) consists of those maps $f:G \to A$ such that $\forall \sigma, \tau \in G$,

$$f(\sigma\tau) = f(\sigma) + \sigma(f(\tau)).$$

• $B^1(G,A)$ (the <u>1-coboundaries</u>) consists of those maps $f:G \rightarrow A$ for which \exists an $a \in A$ such that $\forall \sigma \in G$,

$$f(\sigma) = \sigma a - a.$$

[Note:

$$H^{\perp}(G,A) = Mor(G,A)$$

if the action is trivial.]

<u>14:</u> NOTATION If G is a topological group and if A is a topological G-module, then

is the group of continuous group homomorphisms from G to A. Analogously,

$$Z_{C}^{1}(G,A) = "continuous l-cocycles"$$
$$B_{C}^{1}(G,A) = "continuous l-coboundaries"$$

and

$$H_{C}^{1}(G,A) = \frac{Z_{C}^{1}(G,A)}{B_{C}^{1}(G,A)}$$

Let T be a K-torus -- then G_{K} (= Gal(K^{Sep}/K)) operates on X*(G), thus $W_{K} \subset G_{K}$ operates on X*(G) by restriction. Therefore $\hat{T}(C)$ is a W_{K} -module, so it makes sense to form

$$H^1_{C}(W_{K'}, \hat{T}(C))$$
.

15: NOTATION TOR, is the category of K-tori.

16: LEMMA The assignment

$$\mathtt{T} \neq \mathtt{H}^{1}_{\mathtt{C}}(\mathtt{W}_{K}, \overset{\wedge}{\mathtt{T}}(\mathtt{C}))$$

defines a functor

$$\underline{\operatorname{TOR}}_{K}^{\operatorname{OP}} \xrightarrow{} \underline{\operatorname{AB}}.$$

[Note: Suppose that $T_1 \rightarrow T_2$ -- then

=>

=>

=>

$$(\mathbf{T}_{1})_{K} \operatorname{sep} \neq (\mathbf{T}_{2})_{K} \operatorname{sep}$$
$$\mathbf{X}^{*}(\mathbf{T}_{2}) \neq \mathbf{X}^{*}(\mathbf{T}_{1})$$
$$\hat{\mathbf{T}}_{2}(\mathbf{C}) \neq \hat{\mathbf{T}}_{1}(\mathbf{C})$$

$$H_{C}^{1}(W_{K}, \hat{T}_{2}(C)) \rightarrow H_{C}^{1}(W_{K}, \hat{T}_{1}(C)).$$

$$T \rightarrow Mor_{C}(T(K), C^{\times})$$

defines a functor

$$\underline{\operatorname{TOR}}_{K}^{\operatorname{OP}} \to \underline{\operatorname{AB}}.$$

18: THEOREM The functors

$$T \rightarrow H_{C}^{1}(W_{K}, \hat{T}(C))$$

and

 $T \rightarrow Mor_{C}(T(K), C^{\times})$

are naturally isomorphic.

19: SCHOLIUM There exist isomorphisms

$$\iota_{\mathrm{T}}: \mathrm{H}^{1}_{\mathrm{C}}(\mathbf{W}_{\mathrm{K}}, \mathbf{\hat{\mathrm{T}}}(\mathsf{C})) \rightarrow \mathrm{Mor}_{\mathrm{C}}(\mathrm{T}(\mathrm{K}), \mathsf{C}^{\times})$$

such that if $T_1 \rightarrow T_2$, then the diagram

$$\begin{array}{c} H^{1}_{c}(W_{K}, \hat{T}_{1}(C)) \xrightarrow{}^{i}T_{1} \rightarrow Mor_{c}(T_{1}(K), C^{\times}) \\ \uparrow & \uparrow \\ H^{1}_{c}(W_{K}, \hat{T}_{2}(C)) \xrightarrow{}^{i}T_{2} \rightarrow Mor_{c}(T_{2}(K), C^{\times}) \end{array}$$

commutes.

<u>20:</u> EXAMPLE Under the assumptions of #12, the action of G_{K} is trivial, hence the action of W_{K} is trivial. Therefore

$$H_{C}^{1}(W_{K}, \hat{T}(C)) = Mor_{C}(W_{K}, \hat{T}(C))$$
$$\approx Mor_{C}(T(K), C^{\times}).$$

[Note: The earlier use of the symbol Mor tacitly incorporated "continuity".]

There is a special case that can be dealt with directly, viz. when L/K is a finite Galois extension and

$$T = \operatorname{Res}_{L/K}(G_{m,L}).$$

The discussion requires some elementary cohomological generalities which have been collected in the Appendix below.

<u>21:</u> RAPPEL W_L is a normal subgroup of W_K of finite index:

$$W_{K}/W_{L} \approx G_{K}/G_{L} \approx Gal(L/K)$$
.

Proceeding,

$$T_{K} \operatorname{sep} \approx \prod_{\sigma \in \operatorname{Gal}(L/K)} \sigma G_{m,L} \quad (cf. \#6),$$

 $X^{\star}\left(\mathrm{T}\right) ~\approx~ Z\left[\mathrm{W}_{K}^{\prime} / \mathrm{W}_{L}^{\prime} \right]$,

so

where

$$Z[W_{K}^{W}W_{L}] \approx Ind_{W_{L}}^{W}Z$$

$$\equiv Z[W_{K}] \otimes_{Z[W_{L}]} Z.$$

It therefore follows that

$$\hat{\mathbf{T}}(\mathbf{C}) \approx \mathbf{X}^{*}(\mathbf{T}) \ \mathbf{\omega}_{\mathbf{Z}} \ \mathbf{C}^{\times}$$
$$\approx \mathbf{Z}[\mathbf{W}_{\mathbf{K}}] \ \mathbf{\omega}_{\mathbf{Z}}[\mathbf{W}_{\mathbf{L}}] \ \mathbf{Z} \ \mathbf{\omega}_{\mathbf{Z}} \ \mathbf{C}^{\times}$$
$$\approx \mathbf{Z}[\mathbf{W}_{\mathbf{K}}] \ \mathbf{\omega}_{\mathbf{Z}}[\mathbf{W}_{\mathbf{L}}] \ \mathbf{C}^{\times}$$
$$\equiv \mathbf{Ind}_{\mathbf{W}_{\mathbf{L}}}^{\mathbf{W}_{\mathbf{K}}} \mathbf{C}^{\times}.$$

Consequently

$$\begin{split} H^{1}(W_{K},\hat{T}(C)) &\approx H^{1}(W_{K},Ind_{W_{L}}^{W_{K}}C^{\times}) \\ &\approx H^{1}(W_{L},C^{\times}) \quad (Shapiro's lemma) \\ &\approx Mor(W_{L},C^{\times}) \\ &\approx Mor(L^{\times},C^{\times}) \\ &\approx Mor(L^{\times},C^{\times}) \\ &\approx Mor(T(K),C^{\times}), \end{split}$$

which completes the proof modulo "continuity details" that we shall not stop to sort out.

22: DEFINITION The L-group of T is the semidirect product

$$\mathbf{L}_{\mathbf{T}} = \hat{\mathbf{T}}(\mathbf{C}) \times | \mathbf{W}_{\mathbf{K}}.$$

Because of this, it will be best to first recall "semidirect product theory".

<u>23:</u> RAPPEL If G is a group and if A is a G-module, then there is a canonical extension of G by A, namely

$$0 \rightarrow A \xrightarrow{i} A \times | G \xrightarrow{\pi} G \rightarrow 1,$$

where $A \times | G$ is the semidirect product.

24: DEFINITION A splitting of the extension

 $0 \rightarrow A \xrightarrow{i} A \times | G \xrightarrow{\pi} G \rightarrow 1$

is a homomorphism $s: G \to A \times | G$ such that $\pi \circ s = id_{G}$.

25: FACT The splittings of the extension

$$0 \rightarrow A \xrightarrow{i} A \times | G \xrightarrow{\pi} G \rightarrow 1$$

determine and are determined by the elements of $Z^{1}(G,A)$.

Two splittings s_1, s_2 are said to be equivalent if there is an element $a \in A$ such that

$$s_1(\sigma) = i(a)s_2(\sigma)i(a)^{-\perp}$$
 ($\sigma \in G$).

If

$$\begin{array}{c} - & f_1 & \longleftrightarrow & s_1 \\ & f_2 & \longleftrightarrow & s_2 \end{array}$$

are the 1-cocycles corresponding to
$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$
, then their difference $f_2 - f_1$ is a $\begin{bmatrix} s_2 \\ s_2 \end{bmatrix}$

26: SCHOLIUM The equivalence classes of splittings of the extension

$$0 \rightarrow A \xrightarrow{i} A \times | G \xrightarrow{\pi} G \rightarrow 1$$

are in a bijective correspondence with the elements of $H^{1}(G,A)$.

Return now to the extension

$$0 \rightarrow \tilde{T}(C) \rightarrow \tilde{T}(C) \times | W_{K} \rightarrow W_{K} \rightarrow 1$$

$$||$$

$$L_{t_{T}}$$

but to reflect the underlying topologies, work with continuous splittings and call them <u>admissible homomorphisms</u>. Introducing the obvious notion of equivalence, denote by $\Phi_{K}(T)$ the set of equivalence classes of admissible homomorphisms, hence

$$\Phi_{K}(\mathbf{T}) \approx H_{C}^{1}(W_{K}, \hat{\mathbf{T}}(C)).$$

On the other hand, denote by $A_{K}(T)$ the group of characters of T(K), i.e.,

$$A_{K}(T) \approx Mor_{C}(T(K), C^{\times}).$$

27: THEOREM There is a canonical isomorphism

$$\Phi_{K}(\mathbf{T}) \rightarrow A_{K}(\mathbf{T}).$$

[This statement is just a rephrasing of #18 and is the LLC for tori.]

<u>28:</u> HEURISTICES To each admissible homomorphism of W_{K} into ^LT, it is possible to associate an irreducible automorphic representation of T(K) (a.k.a. a character of T(K)) and all such arise in this fashion. It remains to consider the archimedean case: C or R.

• If T is a C-torus, then T is isomorphic to a finite product

$$G_{m,C} \times \cdots \times G_{m,C}$$

and

$$T(C) \approx Mor(X^{*}(T), C^{\times})$$
$$\approx X_{*}(T) \otimes_{Z} C^{\times}.$$

Furthermore, $W_{C} = C^{\times}$ and the claim is that

$$H_{c}^{1}(W_{C},\hat{T}(C)) \equiv Mor_{c}(C^{\times},\hat{T}(C))$$

is isomorphic to

 $Mor_{C}(T(C), C^{\times}).$

But

$$Mor_{C}(C^{\times}, \hat{T}(C))$$

$$\approx Mor_{C}(C^{\times}, X^{\star}(T) \otimes_{Z} C^{\times})$$

$$\approx Mor_{C}(C^{\times}, Mor(X_{\star}(T), C^{\times}))$$

$$\approx Mor_{C}(X_{\star}(T) \otimes_{Z} C^{\times}, C^{\times})$$

$$\approx Mor_{C}(T(C), C^{\times}).$$

• If T is an R-torus, then T is isomorphic to a finite product

$$(G_{m,R})^{a} \times (\operatorname{Res}_{C/R}(G_{m,C}))^{b} \times (SO_{2})^{c}$$

and it is enough to look at the three irreducible possibilities.

1. $T = G_{m,R}$. The point here is that $W_R^{ab} \approx R^{\times} \equiv T(R)$.

2. $T = \operatorname{Res}_{C/R}(G_{m,C})$. One can imitate the argument used above for its non-archimedean analog.

3. $T = SO_2$. The initial observation is that X(T) = Z with action $n \rightarrow -n$, so $\hat{T}(C) = C^{\times}$ with action $z \rightarrow \frac{1}{z}$. And

APPENDIX

Let G be a group (written multiplicatively).

<u>1:</u> DEFINITION A left (right) G-module is an abelian group A equipped with a left (right) action of G, i.e., with a homomorphism $G \rightarrow Aut(A)$.

<u>2:</u> <u>N.B.</u> Spelled out, to say that A is a left G-module means that there is a map

$$\begin{array}{c} G \times A \rightarrow A \\ (\sigma, a) \rightarrow \sigma a \end{array}$$

such that

$$\tau(\sigma a) = (\tau \sigma) a, la = a,$$

thus A is first of all a left G-set. To say that A is a left G-module then means in addition that

$$\sigma(a + b) = \sigma a + \sigma b$$
.

[Note: For the most part, the formalities are worked out from the left, the agreement being that

<u>3:</u> NOTATION The group ring Z[G] is the ring whose additive group is the free abelian group with basis G and whose multiplication is determined by the multiplication in G and the distributive law.

A typical element of Z[G] is

where $m_{\sigma} \in Z$ and $m_{\sigma} = 0$ for all but finitely many σ .

4: N.B. A G-module is the same thing as a Z[G]-module.

5: LEMMA Given a ring R, there is a canonical bijection

 $Mor(Z[G], R) \approx Mor(G, R^{\times}).$

<u>6:</u> CONSTRUCTION Given a G-set X, form the free abelian group Z[X] generated by X and extend the action of G on X to a Z-linear action of G on Z[X] -- then the resulting G-module is called a permutation module.

<u>7:</u> EXAMPLE Let H be a subgroup of G and take X = G/H (here G operates on G/H by left translation), from which Z[G/H].

8: DEFINITION A G-module homomorphism is a Z[G]-module homomorphism.

9: NOTATION \underline{MOD}_{C} is the category of G-modules.

<u>10:</u> NOTATION Given A,B in \underline{MOD}_{G} , write $Hom_{G}(A,B)$ in place of Mor(A,B).

<u>11:</u> LEMMA Let $A, B \in \underline{MOD}_G$ -- then $A \otimes_Z B$ carries the G-module structure

defined by $\sigma(a \ a \ a') = \sigma a \ a \ \sigma a'$ and $Hom_{Z}(A,B)$ carries the G-module structure defined by $(\sigma\phi)(a) = \sigma\phi(\sigma^{-1}a)$.

<u>12:</u> LEMMA If G' is a subgroup of G, then there is a homomorphism $Z[G] \rightarrow Z[G]$ of rings and a functor

$$\operatorname{Res}_{G'}^{G} : \underline{\operatorname{MOD}}_{G} \to \underline{\operatorname{MOD}}_{G'}$$

of restriction.

13: DEFINITION Let G' be a subgroup of G — then the functor of induction $Ind_{G'}^{G}: \underline{MOD}_{G'} \rightarrow \underline{MOD}_{G}$

sends A' to

$$Z[G] \otimes_{Z[G']} A'$$
.

[Note: Z[G] is a right Z[G']-module and A' is a left Z[G']-module. Therefore the tensor product

is an abelian group. And it becomes a left G-module under the operation $\sigma(r \ a \ a') = \sigma r \ a \ a'$.]

<u>14:</u> EXAMPLE Let H be a subgroup of G. Suppose that H operates trivially on Z -- then

$$Z[G/H] \approx Ind_{H}^{G}Z.$$

15: FROBENIUS RECIPROCITY
$$\forall$$
 A in MOD_c, \forall A' in MOD_c,

$$\operatorname{Hom}_{G}^{G}$$
, (A', $\operatorname{Res}_{G}^{G}$, A) \approx $\operatorname{Hom}_{G}^{G}$ ($\operatorname{Ind}_{G}^{G}$, A', A).

16: REMARK \forall A in MOD_C,

$$\operatorname{Ind}_{G}^{G}$$
, $\operatorname{Res}_{G}^{G}$, $\mathbb{A} \approx \mathbb{Z}[G/G'] \otimes_{\mathbb{Z}[G]} \mathbb{A}$.

[G operates on the right hand side diagonally: $\sigma(r \otimes a) = \sigma r \otimes \sigma a$.]

17: LEMMA There is an arrow of inclusion

$$Z[G] \otimes_{\mathcal{T}[G']} A' \rightarrow \operatorname{Hom}_{G'}(Z[G], A')$$

which is an isomorphism if $[G:G'] < \infty$.

18: NOTATION Given a G-module A, put

$$\mathbf{A}^{\mathbf{G}} = \{ \mathbf{a} \in \mathbf{A} : \sigma \mathbf{a} = \mathbf{a} \forall \sigma \in \mathbf{G} \}.$$

[Note: A^G is a subgroup of A, termed the invariants in A.]

<u>19:</u> LEMMA $A^{G} = Hom_{G}(Z,A)$ (trivial G-action on Z). [Note: By comparison,

$$A = Hom_{C}(Z[G], A).]$$

20: LEMMA
$$\operatorname{Hom}_{Z}(A,B)^{G} = \operatorname{Hom}_{G}(A,B)$$
.

 \underline{MOD}_{G} is an abelian category. As such, it has enough injectives (i.e., every G-module can be embedded in an injective G-module).

<u>21:</u> DEFINITION The group cohomology functor $H^{q}(G, -): \underline{MOD}_{G} \rightarrow \underline{AB}$ is the right derived functor of $(--)^{G}$.

[Note: Recall the procedure: To compute Hq(G,A), choose an injective

resolution

$$0 \rightarrow A \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$$

Then $H^*(G,A)$ is the cohomology of the complex (I)^G. In particular: $H^0(G,A) = A^G$.] <u>22:</u> LEMMA $H^q(G,A)$ is independent of the choice of injective resolutions. <u>23:</u> LEMMA $H^q(G,A)$ is a covariant functor of A.

24: LEMMA If

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is a short exact sequence of G-modules, then there is a functorial long exact sequence

$$0 \rightarrow H^{0}(G,A) \rightarrow H^{0}(G,B) \rightarrow H^{0}(G,C)$$

$$\rightarrow H^{1}(G,A) \rightarrow H^{1}(G,B) \rightarrow H^{1}(G,C) \rightarrow H^{2}(G,A) \rightarrow \cdots$$

$$\cdots \rightarrow H^{q}(G,A) \rightarrow H^{q}(G,B) \rightarrow H^{q}(G,C) \rightarrow H^{q+1}(G,A) \rightarrow \cdots$$

in cohomology.

25: N.B. If $G = \{1\}$ is the trivial group, then

$$H^{0}(G,A) = A, H^{q}(G,A) = 0$$
 (q > 0).

[Note: Another point is that for any G, every injective G-module A is cohomologically acyclic:

$$\forall q > 0, H^{q}(G,A) = 0.]$$

26: THEOREM (SHAPIRO'S LEMMA) If $[G:G'] < \infty$, then $\forall q$,

$$\operatorname{H}^{q}(\operatorname{G}',\operatorname{A}') \approx \operatorname{H}^{q}(\operatorname{G},\operatorname{Ind}_{\operatorname{G}'}^{\operatorname{G}}\operatorname{A}').$$

27: EXAMPLE Take A' = Z[G'] -- then

$$\mathrm{H}^{\mathrm{q}}(\mathrm{G}^{\prime},\mathrm{Z}[\mathrm{G}^{\prime}]) \approx \mathrm{H}^{\mathrm{q}}(\mathrm{G},\mathrm{Z}[\mathrm{G}] \ \boldsymbol{\otimes}_{\mathrm{Z}[\mathrm{G}^{\prime}]}\mathrm{Z}[\mathrm{G}^{\prime}])$$

 $\approx H^{q}(G,Z[G])$,

28: EXAMPLE Take G' = {1} (so G is finite) -- then
$$Z[G'] = Z$$
 and
 $H^{q}({1}, Z) \approx H^{q}(G, Z[G]).$

But the LHS vanishes if q > 0, thus the same is true of the RHS. However this fails if G is infinite. E.g.: Take for G the infinite cyclic group: $H^{1}(G,Z[G]) \approx Z$.

[Note: If G is finite, then $H^0(G,Z[G]) \approx Z$ while if G is infinite, then $H^0(G,Z[G]) = 0.$]

29: EXAMPLE Take A' = Z -- then

 $H^{q}(G',Z) \approx H^{q}(G,Ind_{G}^{G},Z)$ $\approx H^{q}(G,Z[G/G']).$

56. TAMAGAWA MEASURES

Suppose given a Q-torus T of dimension d - then one can introduce

$$T(Q) \subset T(R), T(Q) \subset T(Q_p)$$

 \cup
 $T(Z_p)$

and

$$T(Q) \subset T(A)$$
.

1: EXAMPLE Take T =
$$G_{m,Q}$$
 -- then the above data becomes
 $Q^{\times} \subset R^{\times}, Q^{\times} \subset Q_{p}^{\times}$
 \cup
 Z_{p}^{\times}

and

$$Q^{\times} \subset A^{\times} = I.$$

2: LEMMA T(Q) is a discrete subgroup of T(A).

3: RAPPEL
$$I^1 = Ker |.|_A$$
, where for $x \in I$,
 $|x|_A = \prod_{p \le \infty} |x_p|_p$.

And the quotient I^{1}/Q^{\times} is a compact Hausdorff space.

Each $\chi \in X(T)$ generates continuous homomorphisms

$$\begin{bmatrix} \chi_{p}: \mathbb{T}(\mathbb{Q}_{p}) \to \mathbb{Q}_{p}^{\times} & \xrightarrow{|\cdot|_{p}} & \mathbb{R}_{>0}^{\times} \\ \chi_{\infty}: \mathbb{T}(\mathbb{R}) \to \mathbb{R}^{\times} & \xrightarrow{|\cdot|_{\infty}} & \mathbb{R}_{>0}^{\times} \end{bmatrix}$$

from which an arrow

$$\chi_{A}: \mathbf{T}(A) \rightarrow \mathbb{R}_{>0}^{\times}$$
$$\mathbf{x} \rightarrow \prod_{p \leq \infty} \chi_{p}(\mathbf{x}_{p}).$$

4: NOTATION

$$\mathbf{T}^{\perp}(\mathbf{A}) = \bigcap_{\substack{\chi \in \mathbf{X}(\mathbf{T})}} \operatorname{Ker} \chi_{\mathbf{A}}.$$

5: <u>N.B.</u> The infinite intersection can be replaced by a finite intersection since if χ_1, \ldots, χ_d is a basis for X(T), then

$$\mathbf{T}^{\mathbf{l}}(\mathbf{A}) = \bigcap_{i=1}^{\mathbf{d}} \operatorname{Ker}(\chi_{i})_{\mathbf{A}}.$$

6: THEOREM The quotient $T^{1}(A)/T(Q)$ is a compact Hausdorff space.

<u>7</u>: CONSTRUCTION Let Ω_{T} denote the collection of all left invariant d-forms on T, thus Ω_{T} is a 1-dimensional vector space over Q. Choose a nonzero element $\omega \in \Omega_{T}$ — then ω determines a left invariant differential form of top degree on the T(Q_p) and T(R), which in turn determines a Haar measure $\mu_{Q_{p},\omega}$ on the T(Q_p) and a Haar measure $\mu_{R,\omega}$ on T(R).

The product

$$\prod_{p} \mu_{Q_{p},\omega}(\mathbb{T}(Z_{p}))$$

may or may not converge.

<u>8:</u> DEFINITION A sequence $\Lambda = \{\Lambda_p\}$ of positive real numbers is said to be a system of <u>convergence coefficients</u> if the product

$$\prod_{p} \Lambda_{p^{\mu}Q_{p'}\omega}(T(Z_{p}))$$

is convergent.

9: N.B. Convergence coefficients always exist, e.g.,

$$\Lambda_{\rm p} = \frac{1}{\mu_{\rm Q_{\rm p},\omega}({\rm T}({\rm Z_{\rm p}}))} \ . \label{eq:phi}$$

<u>10:</u> LEMMA If the sequence $\Lambda = \{\Lambda_p\}$ is a system of convergence coefficients, then

$$\mu_{\omega,\Lambda} \equiv \prod_{p} \Lambda_{p} \mu_{Q_{p},\omega} \times \mu_{R,\omega}$$

is a Haar measure on T(A).

<u>11:</u> <u>N.B.</u> Let λ be a nonzero rational number -- then

$$\mu_{Q_{\mathbf{p}},\lambda\omega} = |\lambda|_{\mathbf{p}}\mu_{Q_{\mathbf{p}},\omega}, \ \mu_{\mathbf{R},\lambda\omega} = |\lambda|_{\omega}\mu_{\mathbf{R},\omega}.$$

Therefore

$$\begin{split} \mu_{\lambda\omega,\Lambda} &\equiv \prod_{p} \Lambda_{p} \mu_{Q_{p},\lambda\omega} \times \mu_{R,\lambda\omega} \\ &= (\prod_{p} |\lambda|_{p}) \prod_{p} \Lambda_{p} \mu_{Q_{p},\omega} \times |\lambda|_{\omega} \mu_{R,\omega} \\ &= \prod_{p \leq \infty} |\lambda|_{p} \prod_{\rho} \Lambda_{p} \mu_{Q_{p},\omega} \times \mu_{R,\omega} \\ &= \mu_{\omega,\Lambda}. \end{split}$$

And this means that the Haar measure $\mu_{\omega,\lambda}$ is independent of the choice of the rational density ω .

Let $K \supset Q$ be a Galois extension relative to which T splits -- then

$$X(T_K) = Mor_K(T_K, G_{m,K})$$

is a Gal(K/Q) lattice. Call Π the representation thereby determined and denote its character by $\chi_{\Pi}.$ Let

$$\mathbf{L}(\mathbf{s}, \chi_{\Pi}, \mathbf{K}/\mathbf{Q}) = \prod_{p} \mathbf{L}_{p}(\mathbf{s}, \chi_{\Pi}, \mathbf{K}/\mathbf{Q})$$

be the associated Artin L-function and denote by S the set of primes that ramify in K plus the "prime at infinity".

12: LEMMA ∀ p ∉ S,

$$\mu_{\mathbb{Q}_{p'}^{\omega}}(\mathbb{T}(\mathbb{Z}_{p})) = \mathbb{L}_{p}(1,\chi_{\Pi},K/\mathbb{Q})^{-1}.$$

13: SCHOLIUM The sequence $\Lambda = \{\Lambda_p\}$ defined by the prescription

$$\Lambda_{p} = L_{p}(1,\chi_{\Pi},K/Q) \text{ if } p \notin S$$

and

$$\Lambda_p = 1 \text{ if } p \in S$$

is a system of convergence coefficients termed canonical.

<u>14:</u> LEMMA The Haar measure $\mu_{\omega,\Lambda}$ on T(A) corresponding to a canonical system of convergence coefficients is independent of the choice of K, denote it by $\mu_{\rm T}$.

15: DEFINITION μ_{m} is the Tamagawa measure on T(A).

Owing to Brauer theory, there is a decomposition of the character χ_{II} of II as a finite sum

$$\chi_{\Pi} = d\chi_0 + \sum_{j=1}^{M} m_j \chi_j,$$

where χ_0 is the principal character of Gal(K/Q) ($\chi_0(\sigma) = 1$ for all $\sigma \in \text{Gal}(K/Q)$), the m_j are positive integers, and the χ_j are irreducible characters of Gal(K/Q). Standard properties of Artin L-functions then imply that

$$L(\mathbf{s},\chi_{II},K/Q) = \zeta(\mathbf{s})^{d} \prod_{j=1}^{M} L(\mathbf{s},\chi_{j},K/Q)^{m_{j}}.$$

16: FACT

$$L(1,\chi_{j},K/Q)^{m_{j}} \neq 0$$
 ($1 \le j \le M$).

Therefore

$$\lim_{s \to 1} (s-1)^{d} L(s, \chi_{\Pi}, K/Q) = \prod_{j=1}^{M} L(1, \chi_{j}, K/Q)^{m_{j}}$$

$$\neq 0.$$

<u>17:</u> LEMMA The limit on the left is positive and independent of the choice of K, denote it by $\rho_{\rm T}.$

18: DEFINITION $\rho_{_{\rm T}}$ is the residue of T.

Define a map

$$T:T(A) \rightarrow (R_{>0}^{\times})^d$$

by the rule

$$T(x) = ((\chi_1)_A(x), \dots, (\chi_d)_A(x)).$$

Then the kernel of T is $T^{1}(A)$, hence T drops to an isomorphism

$$T^{1}:T(A)/T^{1}(A) \rightarrow (R_{>0}^{\times})^{d}.$$

<u>19:</u> DEFINITION The standard measure on $T(A)/T^{1}(A)$ is the pullback via T^{1} of the product measure

$$\frac{d}{\prod_{i=1}^{dt} \frac{dt_i}{t_i}}$$

on $(R_{>0}^{\times})^{d}$.

Consider now the formalism

$$d(T(A)) = d(T(A)/T^{1}(A))d(T^{1}(A)/T(Q))d(T(Q))$$

in which:

- d(T(A)) is the Tamagawa measure on T(A) multiplied by $\frac{1}{\rho_{\rm T}}$.
- $d(T(A)/T^{1}(A))$ is the standard measure on $T(A)/T^{1}(A)$.
- d(T(Q)) is the counting measure on T(Q).

20: DEFINITION The Tamagawa number $\tau(T)$ is the volume

$$\tau(\mathbf{T}) = \int_{\mathbf{T}^{\perp}(\mathbf{A})/\mathbf{T}(\mathbf{Q})} \mathbf{1}$$

of the compact Hausdorff space $T^{1}(A)/T(Q)$ per the invariant measure

 $d(T^{1}(A)/T(Q))$

such that

$$\frac{\mu_{\mathbf{T}}}{\rho_{\mathbf{T}}} = \mathbf{d}(\mathbf{T}(\mathbf{A})\mathbf{T}^{\mathbf{1}}(\mathbf{A}))\mathbf{d}(\mathbf{T}^{\mathbf{1}}(\mathbf{A})/\mathbf{T}(\mathbf{Q}))\mathbf{d}(\mathbf{T}(\mathbf{Q})).$$

21: N.B. To be completely precise, the integral formula

$$\int_{\mathbf{T}(A)} = \int_{\mathbf{T}(A)/\mathbf{T}^{\mathbf{1}}(A)} \int_{\mathbf{T}^{\mathbf{1}}(A)} \int_{\mathbf{T}^{\mathbf{1}}(A)}$$

fixes the invariant measure on $T^{1}(A)$ and from there the integral formula

$$\int_{\mathbf{T}^{\mathbf{1}}(\mathsf{A})} = \int_{\mathbf{T}^{\mathbf{1}}(\mathsf{A})/\mathbf{T}(\mathsf{Q})} \int_{\mathbf{T}(\mathsf{Q})}$$

fixes the invariant measure on $T^1(A)/T(Q)$, its volume then being the Tamagawa number $\tau\left(T\right)$.

[Note: If T is Q-anisotropic, then $T(A) = T^{1}(A)$.]

<u>22:</u> EXAMPLE Take $T = G_{m,Q}$ and $\omega = \frac{dx}{x}$ -- then $vol_{\frac{dx}{|x|_p}} (Z_p^x) = \frac{p-1}{p} = 1 - \frac{1}{p}$

and the canonical convergence coefficients are the

$$(1 - \frac{1}{p})^{-1}$$
.

Here d = 1 and

$$\lim_{s \to 1} (s-1)\zeta(s) = 1 \Longrightarrow \rho_{T} = 1.$$

Working through the definitions, one concludes that $\tau(T) = 1$ or still,

$$\operatorname{vol}(\mathrm{I}^{1}/\mathrm{Q}^{\times}) = 1.$$

23: REMARK Take $T = \operatorname{Res}_{K/Q}(G_{m,K})$ -- then it turns out that $\tau(T)$ is the Tamagawa number of $G_{m,K}$ computed relative to K (and not relative to Q...). From this, it follows that $\tau(T) = 1$, matters hinging on the "famous formula"

$$\lim_{s \to 1} (s-1)\zeta_{K}(s) = \frac{2^{1}(2\pi)^{2}}{w_{K}|d_{K}|^{1/2}} h_{K}^{R}R_{K}$$

24: LEMMA Let F be an integrable function on $(R_{>0}^{\times})^{d}$ -- then

$$\tau(\mathbf{T}) = \frac{\frac{1}{\rho_{\mathbf{T}}} \int_{\mathbf{T}} (\mathbf{A}) / \mathbf{T}(\mathbf{Q}) F(\mathbf{T}(\mathbf{x})) d\mu_{\mathbf{T}}(\mathbf{x})}{\int_{(\mathbf{R}_{>0}^{\mathsf{X}})^{\mathsf{d}}} F(\mathbf{t}_{1}, \dots, \mathbf{t}_{\mathsf{d}}) \frac{d\mathbf{t}_{1}}{\mathbf{t}_{1}} \cdots \frac{d\mathbf{t}_{\mathsf{d}}}{\mathbf{t}_{\mathsf{d}}}}.$$

25: EXAMPLE Take $T = G_{m,Q}$ -- then

$$\tau(\mathbf{T}) = \frac{\int_{I/Q^{\times}} \mathbf{F}(|\mathbf{x}|_{A}) d\mu_{\mathbf{T}}(\mathbf{x})}{\int_{0}^{\infty} \frac{\mathbf{F}(\mathbf{t})}{\mathbf{t}} d\mathbf{t}},$$

 $\boldsymbol{\rho}_{T}$ being 1 in this case. To see that $\tau(T)$ = 1, make the calculation by choosing

$$F(t) = 2te^{-\pi t^2}.$$

[Note: Recall that

$$\prod_{p} Z_{p}^{x} \times R_{>0}^{x}$$

is a fundamental domain for I/Q^{\times} .]

26: NOTATION Put

$$H^{1}(Q,T) = H^{1}(Gal(Q^{sep}/Q), T(Q^{sep}))$$

and for $p \leq \infty$,

$$H^{1}(Q_{p},T) = H^{1}(Gal(Q_{p}^{sep}/Q_{p}), T(Q_{p}^{sep})).$$

27: LEMMA There is a canonical arrow

$$H^{1}(Q,T) \rightarrow H^{1}(Q_{p},T).$$

9.

PROOF Put

$$G = Gal(\overline{Q}/Q)$$
 $(\overline{Q} = Q^{sep})$

and

$$G_p = Gal(\overline{Q}_p/Q_p) \quad (\overline{Q}_p = Q_p^{sep}).$$

Then schematically

1. There is an arrow of restriction

and a morphism $T(Q) \rightarrow T(\overline{Q}_p)$ of G_p -modules, T(Q) being viewed as a G_p -module via ρ .

2. The canonical arrow

$$H^{1}(Q,T) \rightarrow H^{1}(Q_{p},T)$$

is then the result of composing the map

$$\operatorname{H}^{1}(\operatorname{G},\operatorname{T}(\operatorname{Q})) \ \rightarrow \ \operatorname{H}^{1}(\operatorname{G}_{p},\operatorname{T}(\operatorname{Q}))$$

with the map

$$\mathrm{H}^{1}(\mathrm{G}_{\mathrm{p}}, \mathbb{T}(\mathbb{Q})) \rightarrow \mathrm{H}^{1}(\mathrm{G}_{\mathrm{p}}, \mathbb{T}(\overline{\mathbb{Q}}_{\mathrm{p}})).$$

28: NOTATION Put

$$\mathbb{II}(\mathbf{T}) = \operatorname{Ker}(\operatorname{H}^{1}(\mathbb{Q},\mathbf{T}) \rightarrow \coprod_{p \leq \infty} \operatorname{H}^{1}(\mathbb{Q}_{p},\mathbf{T})).$$

<u>29:</u> DEFINITION III(T) is the <u>Tate-Shafarevich</u> group of T.

30: THEOREM III(T) is a finite group.

<u>31:</u> EXAMPLE If K is a finite extension of Q, then

$$H^{1}(Q, \operatorname{Res}_{K/Q}(G_{m,K})) = 1.$$

Therefore in this case

$$#(II(T)) = 1.$$

32: REMARK By comparison,

$$H^{1}(Q, \operatorname{Res}_{K/Q}^{(1)}(G_{m,K})) \approx Q^{\times}/N_{K/Q}(K^{\times}).$$

[Consider the short exact sequence

$$1 \rightarrow \operatorname{Res}_{K/Q}^{(1)}(G_{m,K}) \rightarrow \operatorname{Res}_{K/Q}(G_{m,K}) \xrightarrow{N_{K/Q}} G_{m,Q} \rightarrow 1.]$$

33: NOTATION Put

$$\Psi(\mathbf{T}) = \operatorname{CoKer}(\operatorname{H}^{1}(\mathbb{Q}, \mathbf{T}) \rightarrow \coprod_{p \leq \infty} \operatorname{H}^{1}(\mathbb{Q}_{p}, \mathbf{T})).$$

34: THEOREM 4(T) is a finite group.

35: MAIN THEOREM The Tamagawa number $\tau(T)$ is given by the formula

$$\tau (T) = \frac{\# (\Psi (T))}{\# (\Pi (T))} .$$

36: EXAMPLE If K is a finite extension of Q, then

$$H^{1}(Q_{p}, \text{Res}_{K/Q}(G_{m,K})) = 1.$$

Therefore in this case

$$#(Y(T)) = 1.$$

It follows from the main theorem that $\tau(T)$ is a positive rational number. Still, there are examples of finite abelian extensions K > Q such that

$$\tau (\operatorname{Res}_{K/Q}^{(1)} G_{m,K})$$

is not a positive integer.