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ABSTRAcr 

This Jxx:)k is addressed to those readers who are already familiar with the 

elements of the theory but wish to go further. vmle sorre aspects, e.g. tensor 

products, are sun:marized without proof, others are dealt with in all detail. 

Numerous examples have been included and I have also app:nded an ext9lSive list 

of referen:es. 
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§1. BASIC FACTS 

ret A be a complex Banach algebra, *:A -+ A an involution -- then the pair 

(A, *) is s:tid tn be a C*-algebra if V A E A, 

.... 
I IA *A II == IIA II'" . 

N.B. It is automatic tJ:at IIA* II IIAII I tlms the involution *:A -+ A is 

continuous. 

1.1 ~ V A E A, 

r the spectral radius. 

1. 2 REMARK If (A I II· Il> is a C*-algebra and if II· II' is a alhnul tipli-

cative nonn s:ttisfying tIE C*-condition , viz., 

(A E A), 

tJ1E!1 I I· I I' == I I· I I· 
[tbte: It is not ass.tmed tJ:at (A, II· II') is complete, i. e. I (A, II· III) is 

nerelya pre-C*-algebra.] 

1. 3 EXAMPLE Given a complex Hilbert s:p3.ce H, denote by B (H) tIE ret of 

l:oundErl linear operatnrs on H -- then B (H) is a C*-algebra. Furtherrrore , any 

*-SJbalgebra A of B (H) which is closed in tIE nonn tOIDlogy is a C*-algebra. E.g.: 

This is tIE case of A == L (H), the nonn closed *-ideal in B (H) consisting of the 
-x> 

compact op:;!ratnrs. 
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1. 4 EXAMPIE Take H ::: c? and identify B (c?) with M (e), the algebra of 
- - n -

n-by-n ma.trices over e. Equip M (e) with t:h:! induced operator nonn and let the 
- n -

involution *:M (e) -+ M (e) be "conjugate transr:ose" -- then with t:h:!re stipulations, n - n -

Mn (~) is a e*-algebra. M:>re generally, if n = (nl , ••• ,np ) is a p-tuple of p:>sitive 

integer s, tl:en 

is a e*-algebra. Here 

or still, 

p 

M (e) n-

p 
= e M (e) 

k=l ~-

II e "KII = ffi3X \:, 
k=l l$k~p 

where ~ is the largest eigenvalue of ~"K' 

[NOte: Every finite d.imensional e*-algebra A is *-isorrorphic to an M (e) 
n -

for some !! and !! is uniquely detennined by A up to a penrutation. If B is another 

finite dinensional e*-algebra with associated q-tuple m = (m., ••• ,m ), tl"l:m. A and 
- .1. q 

B are *-isorrorphic iff p = q and :I a pen:rRltation cr of {I, •.• ,p} such that ~ = ncr (k) 

(k::: 1, •.• ,p).] 

1. 5 EXAMPIE Fix a e*-algebra A and let X be a compact Hausdorff space. Equip 

e(x,A) with p:>intwise operations and define the involution by f*(x) = f(x)* (x E X). 

Put 

II f II = sup II f (x) II. 
xEX 
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Then C(x,A) is a C*-algebra. 

1.6 N'Ol'ATION C*AIG is the cate;pIY whose obja:::ts are the C*-algebras and 

whose :n:oqilisns are the *-hom:m:Jq:hisns. 

[Note: An isom:::>qilisn is a bija:::tive :n:oq:hl.sm.] 

N.B. Let A,B be C*-algebras -- then a linear map 4l:A -+ B is a *-h.c:m:Jtrorfhism 

iff 

1. 7 LEMMA A *-hom:m:Jrfhisn <I>: A -+ B is na:::essaril y norm da:::reasing, L e. , 

V A E A, II <I> (A) I I ~ I IA I I· 

loB LEMMA An injective *-hc:ro:::norfhism 4l:A -+ B is necessarily isanetric, Le., 

V A E A, II ¢ (A) II = I IA I I· 

Supp:>se tbat I c A is a closErl ideal -- then I is a *-ideal. Equip All 

with the quotient norm, thus 

and let 

IIA + I II = inf IIA + I II , 
lEI 

(A + I)* = A* + I. 

Then All is a C*-algebra and the projection 'IT:A -+ All is a *-horrorrorfhism with 

kernel I. 

N.B. If <I>:A -+ B is a *-harrpnprJ?h,ism, then the kernel of <I> is a closErl ideal 
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in A and the image of <P is a C*-subalgebra of B:A/Ker- <P :::: <p(A). 

[Note: The term "C*-subalgebra" means a nonn close:l subalgebra which is 

invariant under- the *-operation.] 

1.9 EXAMPLE If X is a compact Hausdorff space and if I c C(X) is a close:l 

idool, then :3 a unique close:l subset Y c X such that 

I = {f E C(X) :fly = oJ. 

M::>reover-, the C*-algebra C (X) /1 is *-isarorphic to C (Y) via the map inducErl by the 

arrCM of restriction C (X) -+ C (Y) . 

A C*-algebra A is simple if it has no nontrivial close:l idools. .E.g.: ~(H) 

is simple (but B (H) is not simple if H is infinite dimensional) • 

A C*-algebra A is unital if A has a unit 1 A i otherwise, A is nonunital. 

1.10 I...Elf1A If A is unital, then eJ'ery maximal idool in A is closErl. 

A simple unital C*-algebra has no nontrivial idools. On the other hand, a 

non unital simple C*-algEiJra may very well have nontrivial idools (e.g., !!oo(H) if 

H is infinite dimensional) • 

A close:l ideal I in a C*-algebra A is essential if AI = 0 => A = 0 (8:llliv

alently, IA = 0 => A = 0). In particular: A is essential in itself. 

1.11 ~ A closErl idool I c A is essential iff I n J 7 0 for all nonzero 

close:1 ideals J in A. 
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1.12 EXAMPLE Sup:r;nse that H is a canplex Hilbert sp;l.ce -- then L (H) 
-00 

is an essential ideal in B (H) • 

A unitization of a C*-algebra A is a pair (U,i) , where U is a unital C*-

algebra and. i:A -+ U is an injective *-hcm:xroq::hism such that the image i(A) is an 

essential ideal in U. 

1.13 REMARK If A is unital to be:rin with, then the only unitization of A is 

A itself. Proof: Identify A and. i(A) and. , assuming that U ~ A, fix U E U - A -

then UIA E A and. U - UIA ~ O. Heanwhile, V A E A, 

+ 1.14 CONSTRUGrION Given a nonunital C*-algebra A, }?Jt A = A (9 g (vector 

space direct sum) - then with the operations 

(A,A) (B,~) = (AB + AB + ~,A~) 

and. 

-(A,A) * = (A* ,A), 

A+ acquires the structure of a unital *-algebra (1 = (0,1». tbreover-, the 
A+ 

prescri ption 

II (A,A) II == sul? I lAX + xxii 
Ilxll~l 

is a C*-norm on A+. Proof: It suffices to observe that 

II (.1\, A) * (A, A) II = II (A*A + ~ + AA* SA) II 

= sul? {\\A*AX + AAx + AA*X + ~AX\\} 
Ilxllsl 
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;::: sup {IIX*A*AX + 'Uc*AX + AX*A*X + );:AX*xll} 
I [XI lsI 

= sup { II (AX + AX) * (AX + AX) II 
IIXllsl 

= sup { I lAX + XX 112} 
IIXllsl 

Denote now by i the arrow A ...,.. A+ that sends A to (A,O) -- then the :pa.ir (A+,i) is 

a unitization of A. IndeErl, i (A) is a closed ideal in A+, thus one only has to 

che::k that it is essential. So suppose that (A,X)i{A) = 0, Le., AB + XB = 0 

V B EA. Claim: A = 0 and X = O. This being obvious if A = 0, assume that A ;t 0: 

V B E A, 

=> 

=> 

=> 

=> 

AB+AB=O 

(~A)B + B = 0 
A 

B(~ A)* + B = 0 

(1 A) (1 A) * + (~ A) * = 0 A A 1\ 

=> 
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Therefore - 1 A is an idmtity for A. But A is nonunital, from which a contra-

diction. 

[Note: The quotient A+ Ii (A) is *-is::m::>r:r;:hic to C «A, A) -+ A) .] 

1.15 EXA.1I@LE Let X be a noncoup3.ct locally canpict Hausdorff spice, C <xJX) 

the algebra of coupleK valued continuous functions on X that vanish at infinity. 

Equip C (X) with the sup nonn and let the involution be canplex conjugation - then 00 

C (X) is a nonuni tal C*-algebra and C (X) + :::: C (X +), X + ( = X U {oo}) the one mint 00 00 ~ 

CaTIp3.ctification of X. 

[Note: Explicata:l, the rele\Tant arrOW' 

is the assignmmt 

(f,A) -+ f + A, 

where 

(f + A) (00) = A.] 

Given C*-algebras A and B, their dirECt sum A ED B is the ordinary *-algebra 

dirECt sum with nonn 

II (A,B) II = nax{ I IA II, liB II }. 
This is a C*-nonn. Proof: 

II (A,B) * (A,B) II = II (A.*A,B*B II 

= max{ IIA*A II I IIB*B II } 
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N.B. A tD B contains A and. B as nonessential ideals and. 

(A tD B)/A :::: B 

{A tD B)/B :::: A. 

In addition, A tD B is unital iff A and. B are unital {in '\Nhich case lAtDB = (lA,lB)). 

1.16 REMARK Take A unital -- then one can fonn A+ exactly as in 1.14 and. 

+ the arrow I;;:A -+ A tD ~ that sE!1ds (A,A) to (A + AlA,A) is a unital *-isarorphism. 

1.17 LEMMA Let A,B be C*-algebras and let <P:A -+ B be a *-hom:m::>rphism -

then <P admits a unique extension to a unital *-'h.aocxrorphism <p+ :A+ -+ B+, viz. 

<P+(A,A) = (<P(A) ,A). 

1.18 NOl'ATION UNC*AIG is the catBJory whose objects are the unital C*-alge

bras and. whose norphisms are the unital *-ham::rnorphisms. 

[Note: An isarorphism is a bijective norphism.] 

N.B. The assignment 

+ A-+A 

is functorial, L e., defines a functor 
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C*AI.G -+ UNC*AI.G. 

1.19 RAPPEL Let A be a Banach algebra - thm an approximate unit per A 

is a nonn bounded net {ei : i E I} such that 'if A E A, 

lim II eiA - All = 0 
iEI 

lim IIAe.; -All = O. 
iEI .... 

1.20 LEMMA Every C*-algrora A has an appr:oxiluate unit {ei:i E I} such that 

'if i, 

lie. II ::; 1 
~ 

and 'if i ::; j, e. ::; e .. 
~ J 

C*-algEbras having a countable app:oximate unit are said to be a-unital. 

1.21 REMA.~ Every unital C*-algEbra is a-unital. Every sep:rrable C*-algebra 

is a-unital but there are nonsep:rrable nonunital a-unital C*-algEbras. 

[Note: Not all C*-algroras are a-unital.] 

1.22 EXA.~LE Take H sep:rrable and infinite dimffiSional. Fix an ort.."'lonorIlli3.l 

basis {e :n E N} and let P be the orthogonal pr:oja::tion onto Ce.. + .•. + Ce --n - n -.1 -n 

thm the se:}Uence {Pn } is an approximate unit per 1x,(H), hmce 1x,(H) is a-unital. 

[Note: !:oo (H) is sep:rrable (but B (H) is not seprrable).] 
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1. 23 EXA'MPLE Let X be a noncam:r:act locally cam:r:act Hausdorff sIECe - thm 

C (X) is a-unital iff X is a-camp3.ct. 
00 

Let A be a C*-algebra • 

• ASA is the colla:::tion of all selfadjoint elemmts in A, i. e., 

ASA {A E A:A* = A}. 

• A+ is the collection of all p:Jsi ti ve elemmts in A, i. e. , 

or still, 

A+ = {A*A:A E A}. 

1. 24 LEMrv1A The set A+ is a closa:l convex: cone in A with t.~e p:operty that 

A+ n (- A+) = {OJ. 

Given A,B E A
SA

' one writes .A. ?:! B (or B :s; A) iff A - B E A+. 

1. 25 I.£M.1A If A ?:! B ?:! 0, then I I A I I ?:! I I B I ! • 

1. 26 I..a1MA. If.?\. ~ B 2: 0, t.~en V X E A, 

X*AX ~ X*BX ?:! O. 

PRCX:>F Since A - B E A+, :3 C E A:A - B = C*C. Therefore 

X*AX - X*BX = X*(A -B)X 
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= X*C*CX 

= (CX)*CX E A+" 

N" B. If A is unital, then 

If A is nonunital, thEn 

and 

A E A+ => 0 :;;; A:;;; IIA III +. 
A 

So, in either situation, V X E A, 

o :;;; X*A..,{:;;; IIA Ilx*x. 

1 27 . t . ha . . . 1/2 th • RH1AR.K Every p:>S1 J.ve A s a unJ.que p:>sJ.tJ.ve square root A , us 

A+ = <lAI ± A)/2. 

ThEn 

M:>rEDVer, A+ are the unique p)sitive elemmts with these p::operties. 
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N.B. Every A E A is the sum of two selfadjoint elenmts: 

where 

and 

A = Re A + r-r Irn A, 

Re A = A + A* , Do. A = A - A* I 

2 r-r 

I I Re A I I , I I Irn A I I s I IA I I· 

Therefore eJ'ery A E A can be writtm as a linear combination of four :pJsitive 

elenmts. 

SUp:pJse that A is unital -- then an elenent U E A is unitary if U*U = UU* = IA' 

If A E ASA and I IA II s I I then 

A = (U+ + UJ/2. 

Here 

are unitary. Therefore eJ'ery A E A can be written as a line:rr combination of four 

unitary elenmts. 

1. 29 REMARK If IIAII < I - ~, then t.."'lere are unitaries Ul"" 'Un such that 

U + .•. + U 
A = In. 

n 

Conse:;ruently, the conV€!K hull of the set of unitary elenmts includes the oFEfl unit 

ball in A, thus its closure is the close::l unit ball in A. 
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Put 

1.30 LEMMA A C*-algebra A is unital iff Al has an extrema point. 

1. 31 EXAMPLE If A is unital, then 1 A is an extrema point of AI
. 
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§2. THE COMMUTATIVE CASE 

A character of a camutative C*-algEbra A is a nonzero oom::noq::hisn w:A -)- ~ 

of algebras. The set of all characters of A is called the structure sp9.ce of A 

am is deroted by !J. (A) • 

N.B. We have 

!J.(A) = ~ (A = {OJ) 

!J. (A) "/! ~ (A"/! {O}). 

2.1 W,1M..l>,. Let w E MA) - tha:l w is ne::=essrrily rounded am, in fact, 

llw II = 1. t'breovEr, if A is unital, tha:l 

1 = w(lA) 

am if A is nonunital, tha:l 

1 = l:im w(e.). 
iEI 3. 

Given A E A, define 
A 

A:MAl -)- C 

by stip.llating tlat 

'" A(w) = weAl. 

A 

Equip !J.(A) with the initial top:>logy determined by the A, i. e. I equip !J.(A) with 

the relativiserl-we3.k* to};Ology. 

2.2 LEM1A !J. (Al is a locally camf8ct Haus:lorff Sf8ce. Furthernore,!J. (A) 

is camf8ct iff A is unital. 
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2.3 LEMMA Fix a ccmnutative C* algebra A. 

"-

• If A is unital, thal A E C (l\ (A» and. the arrow 

A -+ C (.t, (A» 

A -+A 

is a unital *-isom:::>rp}:risn. 

A 

• If A is norn.mital, thal A E C (l\(A)) and. the arrow 
00 

A -+ C (l\(A)) 
co 

A-+A 

is a *-is::rrorp}:risn. 

N.B. If A = {O}, then l\ (A) = ~ and b"1.ere edsts exactly one ma.p ~ -+ £, 
A 

namely the anp:y function (t' = ~ x C), which we shall take to be O. 

2.4 REMARK It suffices to establis."1. 2.3 in the unital case. Tlrus supp:>se 

that A is nonunital - ... then Each W E l\ (A) extelds to an element w + E l\(A+) via the 

'lillhere w (A, :AJ = It, so l\ fA +) is hamEDlTOrpric to fdA) +, the one roint COInp:l.ctification 
00 

of /::,.(A). But A+ is unital, hence 

=> 
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2.5 LEMMA Fix a locally COInp3.ct Haus:lorff Sp3.ce X • 

• If X is COInp3.ct, thm V x E X, the Dirac me.sure 0 E {). (C (X» and the 
x 

arrow 

is a hane:::m:nqilisn • 

X + /)'(C(X» 

x + 0 x 

• If X is nonca:np3..ct, thm V x E X, the Dirac mea.sure 0 E {). (C (X» and x 00 

the arrow 

is a hcma:xroq::hi su. 

X + {)'(C (X» 
00 

x+o x 

2.6 REMARK It Slffices to establifh 2.5 in the COInp3.ct case. Thus sup:tOse 

that X is nonca:np3.ct -- then x+ is COInp3.ct, hence 

or still, 

or still, 

Therefore 

X :: {). (C (X». 
00 

2.7 RAPPEL Let g and Q be catSJOries --- then a functor F:g + E is an 
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equivalence if thEre ed.sts a functor G:~ -+ S ruch that G 0 F :::: ide and 

FOG ;:; i~, the &yml:x:>l ;:; standing for natural isorrorpusm. 

[Note: The term coe.g,uivalence is userl when F is a cofunctor: V f E }\Dr (X, Y) , 

Ff E }\Dr (FY ,FX) .] 

N.B. A functor F;S -+ Q is an equivalence iff it is full, faithful, and has 

a repr-esEntative image (i.e., for any Y E Ob Dr there edsts an X E Ob e such that ,.... 

FX is is'JIIOrp:ric to Y) • 

2.8 RAPPEL cate::;ories S and ~ are said to be equivalent (co equivalent} pr-o

viderl there is an equivalEnce (coa:pivalence) F:S -+ Q. The obja:::t is::morpusn types 

of e::ruivalent (coequivalEnt) catS30ries are in a one-to-one corresIDndence. 

Let X and Y be contact Hausdorff sp3ces. SU:ppJse that <P:X -+ Y is a continuous 

function - then <p induces a unital *-h.cm:m:>rpusm 

<p*:e(Y} -+ e(X}, 

viz. <P* (f) = f 0 <p. Therefore the association e that sends X to e (X) is a cofunctor 

from the catS3Qry of contact Hausdorff sp3ces and continuous functions to the cat-

egory of unital corrmutative e*-algebras and unital *-hcm::nDr:r;flisms. 

Let A and B be unital conmutative e*-algebras. Sup{DSe that <1>: A -+ B is a 

unital *-haronor:r;flism - then <1> induces a continuous function 

<1>*: fl (B) -+ fleA), 

viz. <1>* (w) = w 0 <1>. Therefore the association fl that sends A to ileA) is a cofunctor 
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from the cat~ory of unital conmutative e*,...algebras and unital *-hon:ororpus:ns 

to the cat~ry of comp3.ct Haus:1orff sp3.ces and continuous functions. 

2.9 THFDREt·l The cat~ory of CClffip3.ct Hausdorff Sp3.ces and continuous 

functions is coequivalent to the cat~ry of unital conmutative e*-algebras and 

unital *-hOlI'Oll'Orpu s:ns. 

PRCX)F Define 

:::x:X -+ t:. (e (X) ) 

by the rule ~(x) = 0 -- then 3v i.s a homeorrorlirlsm and there is a com:nutati ve x A -

diagram 

x 
~x 

----;.-;. Me (X) 

~ 1 1 ~** 
y ----;:,----+ t:. (e (Y» • 

Define 

"-

by the rule ~A (A) = A -- then ~A is a unital *-isarorpus:n and there is a coomutative 

diagram 

Therefore 

A 

~ i 
'" B 

r e (MA» 

1 ~** 
--;::,-----;.-;. e (t:. (B» • 

::B 

id :::: t:. 0 e 

id :::: e 0 t:.. 
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The situation for noncompact locally compact Hausd.orff spaces and nonuni tal 

carmutative C*-algebras is slightly rrore canplicata:i. One inmediate and obvious 

difficulty is that a continuous 4>:X -+ Y neal not induce a map 4>*:C (Y) -+ C (X). 
00 00 

E. g. : Take X = Y = R and let 

4>(t) 27TH t 
= e 

However, the resolution turns out to be simple enough: I:rrq;lose the restriction that 

4>:X -+ Y be proper. 

[Note: Let 4>:X -+ Y be continuous -- then 4> is proper iff its canonical 

t . ~+ + + (~+() )' t' ex: ens10n 't' :X -+ Y 't' oox = ooY 1S con muous. 

2.10 LEMMA. A proper 4>:X -+ Y induces a *-homamorphism 

4>*:C (y) -+ C (X). 
00 co 

There is also a problem on the algebraic side, namely if A and B are non unital 

carmutative C*-algebras, then a *-hanarorphism <»:A -+ B neal not induce a map 

<»*:[\(B) -+ [\(A), the point being that w 0 <» might very well be zero. To get around 

this, call <» proper if for any approximate unit {ei : i E I} per A, {<» (ei ) : i E I} is 

an approximate unit per B (cf. 1. 20) . 

[Note: A surjective <» is proper. To see this, ch::x>se an approximate unit 

{ei:i E I} per A - then V A E A, 

2.11 LEMMA A proper <»: A -+ B induces a continuous function 
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<1>*:6 (B) -+ 6(A) • 

[v A E A, 

<I>*(w) (A*A) = w(<I>{A)*<I>(A» ~ o. 

Therefore <I>*{w) is a p::>sitive linear filllctional , hence V w E 6(B) I 

II <1>* (w) II = lim <1>* (w) (e.) 
iEI 1 

= lim w(¢(e.» 
iEI 1 

= I lw II ;I! 0.] 

N.B. The ¢* figuring in 2.10 is proper and the <1>* figuring in 2.11 is pro};X:'!r. 

2.12 THEOREM The category of noncanract locally canract Hausdorff spaces 

and pro};X:'!r continuous functions is coequi valent to the catepry of nonillli tal 

ccmnutative C*-algebras and proper *-hcm::xoc>rphisms. 

PROOF Replace the canmutative diagrams in 2.9 by 

x -x ) 6(e (X» 
00 

¢ 1 1 ¢** 

Y ) 6 (C (Y» 
M 00 -y 

and 

A 
=A 

) e (6 (A) ) 
00 

¢ t 1 ¢** 

B e (6(B». 
00 
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§3. CATEGORICAL CONSIVERATIONS 

We shall first review s::me standard terminology. 

3.1 RAPPEL Let g be a cat6:JOry . 

• A rource in C_ is a collection of IIDq:hisms f.:X + X. indexEd by a set 
]. ]. 

I ana. having a ca:mon domain. An n-source is a source for which #: (I) = n. 

• A sink in C is a collection of IIDq:hisms f. :X. + X indexEd by a set I -- - ]. ]. 

ana. having a com:ron codomain. An n-sink is a sink for which #: (I) = n. 

A diagram in a cat810ry g is a functor !J.:! + £, where ! is a small cat81ory, 

the indexing cat81ory. To facilitate the introduction of sources and sinks associ

ated with !J., we shall write !J.. for the image in Ob C of i E Ob 1. 
]. -

3.2 LIMITS Let!J.: I + C be a diagram - then a source {f.:X + !J..} is said - - ]. ]. 

8 
to be natural if for each 8 E M:>r !, say i + j, !J.8 0 f. ::: f.. A limit of !J. is a 

]. J 

natural rource {t.:L + !J..} with the property that if {f.:X + !J..} is a natural 
]. ]. ]. ]. 

source, then there exists a unique IIDrI;his:n <p:X + L such that f. = L 0 <p for all 
]. ]. 

i E Ob 1. Limits are essentially unique. Notation: L = l~ !J. (or lim M . 

3.3 COLIMITS Let!J.: I + C be a diagram -- then a sink {f.:!J.. + X} is said - - ]. ]. 

8 
to be natural if for each 8 E )\Ibr !, say i + j, = fj 0 !J.8. A colimit of !J. is 
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a natural sink te.:6.. -+ L} with the property that if {f.:6.. -+ x} is a natural sink, 
1 1 1 1 

then there exists a unique rrorphism <p:L -+ X such that f. = <p 0 t. for all i E Ob I. 
11-

Colimits are essentially unique. Notation: L = colirrI 6. (or colim 6.) • 

There are a number of basic constructions that can be viewed as a limit or 

colimit of a suitable diagram. 

3.4 PRODUcrS Let I be a set; let f be the discrete category with Ob ! = 1. 

Given a collection {X.:i E I} of objects in C, define a diagram 6.:1 -+ C by 6.. = X. 
1 - - -- 11 

(i E I) -- then a limit te.:L -+ 6..} of 6. is said to be a, product of the X .• 
1 1 1 

Notation: L = IT X. {or xr if x. = X for all i}, t. = pr., the projection fran 
. 1 1. 1 1 
1 

IT x. to x .. 
. 1 1 
1 

3.5 L'EM'1A C*AI.G has products. 

PRCOF Let {A.:i E I} be a collection of objects in C*AI.G. Consider the set 
1 

A of all functions A fran I to u A. such that ViE I, ~(i) E A. and 
- - iEI 1.. 1.. 

II~II = sup 11~(i) II < 00. 

iEI 

Take the sum, product, and involution pointwise - then ~ is a C*-a.lgebra and 

ViE I, t."1.ere is an arrow pri:~ -+ Ai' viz. 
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We claim that the natural source {pr.: A -+ A.} is the product of the A.. For supp:>se 
1 - 1 1 

that {<p.: A -+ A.} is another natural s::rurce - then Vi, 
1 J. 

thus the fLmction 

<p (A) : I -+ U A . 
iEI 1 

(cf. 1.7), 

that sends i to <Pi (A) belongs to ~. M::>reover, the diagram 

A 

A 

A 

---...,.A. 
1 

obviously carmutes, from which the claim. 

[Note: A is not the cartesian product of the A. if I is infinite.] 
- 1 

E.g.: Take Ai = g V i-then the pr:oduct in this case is simply .too (I) . 

3.6 COPIDDUCTS Let I be a set; let ]; be the discrete category with Qb ! = I. 

Given a colla::::tion {x.:i E I} of objects in C, define a diagram 11:1 -+ C by 
1 - - -

~i = Xi (i E I) - then a colimit {Ii :~i -+ L} of ~ is said to be a copr:oduct of 

the Xi. Notation: 

from X. to lL X .• 
1 . 1 

1 

L = lL X. (or I·X if X. = X for all i), f... = in., t..'1e inja::::tion 
. 1 1 1 1 
1 

. 3. 7 LEMMA C*ALG has coproducts '" 
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PP!X>F Let {Ai;i E I} be a collection of objects in C*ALG -- then their 

coproduct can be reliza:1 as t.."'1e free product C*-algebra *A., i.e., the canpletion 
~ 

of the free *-algebra generatEd by the Ai \v.r.t. the largest C*-nonn whose 

restriction to ech A. is the original nann. 
~ . 

3.8 REMARK Let Q be the cateqOr'l..! with no objects and no arrows - then the 

limit of a diagram having Q for its indexing category is a final object in g and 

the colimit of a diagram having Q for its indexing cateqory is an initial object 

in C. 

[Note: The zero C*-algebra is both a final and initial object in C*ALG.] 

a 
3.9 PULLBACKS Let! be the cateqory 1 • ---+ 

f g 

b 
• '*- .2. Given a 
3 

2-sink X -+ Z + Y in g, define a diagram f::..:! -+ g by 

Then a conmutati ve diagram 

f::.. = X 1 

f::..a = f 

f::.. = Y & 2 

f::.. - Z 3 -

f::..b = g. 

n 
P-+Y 

X-+Z 
f 
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is said to be a p.lllbacksgpare if for any 2-source X r p' .2.' Y with f 0 s' = 

g 0 n' there exists a unique JIDqilism ¢:P f -+ P such that s' = s 0 ¢ and n' = n 0 ¢. 

'lhe 2-source X £ P .2. Y is called a pullback of the 2-sink X ! z 2- Y. Notation: 

P = X Xz Y. Limits of ./J. are pullback squares and conversely. 

3.10 LEMMA C*ALG has pullbacks. 

PROOF Given a 2-sink A ! C ! B, let 

P = {(A,B) E A $ B:~(A) = ~(B)}. 

a b 
3.11 PUSHOIJrS Let! be the category 1. +-- • 

3 

2-source X ! z <.I Y in g, define a diagram 1::.:! -+ £; by 

Then a carmutati ve diagram 

/J. = X 
1 

/J. = y & 2 

/J. - Z 3 -

g 
z-----+Y 

t:.a = f 

Llli = g. 

---+ .2. Given a 

Sf I' 
is said to be a pushOut square if for: any 2 .... sink X -+ p' !! Y with 
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~ , 0 f = n' 0 g there exist..c:; a unique rrorp:ri.sm ¢: P -+ P' such that ~' = ¢ 0 ~ and 

n' = ¢ 0 n. rrhe 2-sink X ~ P ~ Y is callErl a pushout of the 2-source X ! z ~ Y. 

Notation: P = X J1 Y. Colimits of !:J. are pushout squares and conversely. 
Z 

3.12 LEMMA C*AIJ3 has p.1Shouts. 

. ~ ~ 
PROOF G~ven a 2-source A +- C -+ B, let 

P = A *C B, 

the amalgamatErl free product. 

[Note: SpellErl out, P is the quotient of t.1Le free product C*-algebra A * B 

by the closErl ideal generatErl by the set 

{~(C) ,... ~(c) :C E C}.] 

A cate:JOry g is said to be complete if for eac..l1. small cate;rory !, ellery 

diagram !:J.:! -+ g has a limit. 

3.13 CRITERION C is canplete iff C has nroducts and pullbacks. ,... - ~ 

A category g is said to be cocomplete if for each small cate;rory !, every 

diagram !:J.:! -+ g has a colimit. 

3.14 CRITERION g is cocornplete iff g has coproducts and plshouts. 

'What has been. said above can thus be SllllIllB.rizErl as follows. 
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3.15 THEOREM C*AI1'} is both complete and cocomplete. 

Let (I,::;) be an up-directErl p:::>set - then the pair (I,::;) gives rise to a 

small category: 

ob ! = I, Mor(i,j) = 

canposi tion being 

(j,k)o(i,j) = (i,k) 

- (i,j) if i ::; j 

~ othe.rw.i.se 

(i ::; j ::; k). 

id. = (i,i), 
1 

This said, let s: be a category -- then by definition, a filterErl colimit is the 

colimi t of a diagram t.:! + s:. 

3.16 LEMMA C*AI1'} has filterErl colimits. 

[On the basis of 3.15, this is clear. However, it is not difficult to proceErl 

directly. IndeErl, to specify a diagram t.:! + C*AI..G arrounts to specifying a 

collection 

{ (A. ,!P. .) : i, j E I, i ::; j}, 
1 1J 

where the A. are C*-algebras and !P •• is a *-hancm::>rphism fran A. to A. with 
1 1J 1 J 

!Pik = !P'k 0 !P • • for i ::; j ::; k. 
J 1) 

Each !P •• is norm decreasing, so on the algebraic filterErl colimit, the prescription 
1J 

I I·A.I I = inf 11!p·· (A) I I 
'>' 1J J 1 

(A E A.) 
1 

is a C*-serninorm. Dividing out the elenents of serninorm 0 and completing then leads 



to a C*-algebra, written 

lim (A. , Il>, .) , 
-- 1 1J 

8. 

which in fact is a realization of the filtered colimit.] 

[Note: Put 

A = lim(A. ,Il> •• ) • 
-- 1 1J 

Then strictly speaking, the filtere:1 colimit is the natural sink {<p. :A. -+ A}, 
1 1 

where <P. : A. -+ A is the *-h.om::m:>r.....h; sm define:1 h", 1 1 ~~ ~l 

and 

<p. (A) (i) = A/<P. (A) (j) = <P. , (A) 
1· 1 ~ 

<p, (A) (j) = 0 otherwise.] 
1 

(i < j), 

3.17 EXAMPLE Let I = ~ - then a filtere:1 colimit of a sa:;ruence of finite 

dimensional C*-algebras is calle:1 an AF-algebra. E.g.: Take A = ~1 (C) and let 
n n-

Il> +k:M (C) -+ M +k(C) n,n n - n-

be the *-h.arorroqhism obtaine:1 by adding k rows and colUITIllS of zeros -- then 

3.18 LEMMA Let 

lim(M (C),<p +k) 
--r n - n,n 

A = lim(A. ,<P, .) • 
--r 1 1J 

AsSL:J:Ire: Vi, A. is simple - then A is simple. 
1 
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3.19 REMARK let I be a set and let {A.:i E I} be a collection of objects 
1 

in C*AI.G. Fonn the categorical product A as in 3.5 and denote by e A. the closure 
- i 1 

in A of the algebraic direct sum - then A E $ A. iff V E: > 0, 
- - 1 1 

#{i: 11~(i) II ~ d < 00. 

'Ib realize e A. as a filtered col:L-rnit, let F be the set of finite subsets of I 
i 1 

directed by inclusion and for each F E F, put 

A = e A. (= 1T A.). 
'F iEF 1 iEF 1 

If PeG, define 

by setting the additional coordinates equal to zero - then 

[Note: 

lim(A '¢p G) ~ ~ A .• --+ 'F, 1 1 

Take A. = C V i -- then $ C can be identified with Co(I).] 
1 - 1 -

The setting for filtered colimits is an up-directed p:lset I. Dually, the 

setting for cofiltered limits is a down-directed p:lset I. E.g.: If I = ~OP, then 

a diagram f::.:! -+ ~ is essentially a sequence 

of rrorphisms in ~, where 

f 
···-+X 1 nX-+ n+ -+ n 
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3.20 LEMMA C*AIG has cofil tered limits. 

Let g, ~ be categories and let F:g -+ ~ be a ftmctor. 

-F is S3.id to preeerve a limit {l.:L -+ 6.} (colimit {t.:6. -+ L}) of a 
1 1 1 1 

diagram 6:I -+ C if {Ft.:FL -+ F6.} ({Ft.:F6. -+ FL}) is a limit (colimit) of the 
- - 1 111 

diagram F 0 £I,:! -+ ~. 

- F is S3.id to preserve limits (colimits) over an indexing category! if 

F preserves all limits (colimits) of diagrams £I,:! -+ g . 

• F is S3.id to prererve limits (colimits) if F preserves limits (colimits) 

over all .indexing categories I. 

C 
3.21 ADJOINTS Given categories , ftmctors 

an adj?int fS.ir if the ftmctors 

D 

OP 
rvk>r 0 (F x i~) 

rvk>r 0 (id OP x G) 
C 

F:C -+ D 
are said to be 

G:D -+ C 

from cOP x ~ to SET are naturally iSJIIDrphic, Le., if it is possible to assign to 

each ordered piir 
X E Ob g 

Y E Ob D 
a bijective rrap 

3X,y:Mbr(FX,Y) -+ rvk>r(X,GY) 
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which is functorial in X and Y. wten this is SJ, F is a left adjoint for G and 

G is a right adjoint for F. 

Write [!.,g] for the category whore objects are tIE diagrams t.:!. -+ g and whose 

norphisns are the nabJral transfonrations Nat (t.,t.') fram t. to t.'. 

3.22 EXAMPLE let K:g -+ [!.,g] be the diagonal functor, thus V X E Ob g, 

o 
(KX) (i) = X, (KX) (i -+ j) = i~ 

and V f E Mbr(X,Y), 

Kf E Nat(KX,KY) 

is the na bJral transfonration 

(KX) (i) 

(KX) (0) 1 
~(KY) (i) 

1 (KY) (0) 

(KX) (j) ~(KY) (j) 
-j 

defined by the comnuta.tive diagram 

f 
X ---+) Y 

X -.""'-+ Y 

Assurre now that g is l::x:>th complete and cocomplete - then K has a left Cldjoint, viz. 

and a right ad joint, viz. 
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3.23 REMARK If g is roth complete and cocoroplete, 1:ta1 the sarre holds for 

[Note: Limits and colimits in [!,gl are computed "object by object". 1 

3.24 THEOREM left adjoints prererJe colimits and right adjoints prererve 

limits. 

3.25 RAPPEL Let g be a category -- then a m::>rphism f:X -+ Y is said to be 

u 
a m::>nooorphism if for any pair of m::>rphisms A : X such that f 0 u = f 0 v, there 

v 
follows u = v. 

3.26 lEMMA In C*ALG, a *-hcm:m:>rphism ~:A -+ B is a nonooorphism iff it is 

injective. 

PRCX)F An injective *-hcm::Inorphism ~:A -+ B is trivially a m::>nooorphism. As 

for the converse, consider 

i ~ 
Ker ~ --> A --> B 

o ~ 
Ker ~ --> A --> B. 

Then 

~ 0 i = ~ 0 0 => i = 0 => Ker ~ = {oJ. 

3.27 RAPPEL Let g be a category -- then a m::>rphism f:X -+ Y is said to be 

u 
an epi.norphism if for any pair of m::>rphisms Y : B such that u 0 f = v 0 f, there 

v 
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follows u = v. 

3.28 LEMMA In C*AI.G, a *-hcm:::nlorphism <l'>:A -)- B is an epinnrphism 

. ti' t surJec ve. 

it is 

t Archiv d. Math. 20 (1969), 48-53; see alro Inventiones Math. 9 (l970), 

295-307. 
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§4. HILBERT ,",-MODULES 

let A be a complex Banach algebra - the."1 a left BaTlach A-mJdule is a complex 

Bmach space E equipped with a left action (A,x) -+ Ax such that for SJme constant 

K > 0, 

(A E A,x E E). 

[Note: Right Banach A-nodules are defined analogously.] 

N.B. If A is nonunital, fonn A+ as in §l (but with ,,(A,A), I = I 'All + II.. \) --

then E becoJ:'l'eS a left Banach A+ -m:xiule via the pres:rriptiClTl 

[No te: w= have 

(A + A)x = Ax + Ax «A,A) A + A). 

Ix = x (I = I = (0,1».] 
A+ 

4.1 RAPPEL A left approximate unit per A is a nonn bounded net {ei:i E 11 

in A such that e.A -+ A for all A E A. 
]. 

4.2 'lHEOREM Suppose that A has a left approximate unit {e.:i E I} and let 
]. 

E be a left B:m.ach A-nodule -- then the set 

AE = {Ax:A E A,x E E} 

is a closed. linear Slbspace of E. 

Tre assertion is trivial if A is unital SJ take A nonunital and fix M > 0: 

I!ei II ~ M (i E I). 
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4.3 LEMMA let EO be the cloEEd linear span of AE -- then 

EO = {x E E:lim e.x = x}. 
iEI 1 

PRCOF The RHS is certainly contained in the IRS. en the ot.ler hand, AE 

is contained l.."l the RHS as is its linear sfml [AE]. With this in mind, take an 

arbitrary x E EO and given E: > 0, cmose y E [AE]: Ilx - y II < E:. Next, choose 

and write 

Ile.y - y II < E: 
1 

e.x - x = e. (x - y) + (y - x) + (e.y - y) • 
111 

$; (K"4 + 2) E:. 

4.4 RAPPEL let X E A+ and supp:>se that 'Ix! I < 1 -- then (I - X) -1 exists 

and there is a norm convergent exp.:msion 

(I - X) -1 = I + X + -2- + 

let 11 = l/M -- then ViE I, 

I - -~e. 
1 + 11 1 

is invertible, hence the same is true of 

as well. And 
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for s:rre Ai E A. 

tint 

A+ = «1 + 11) I - 11e )-1 n n 

+ + -1 
converges in A to a limit A E A and xn = (.1)) Xo converges in EO to an elemant x. 

Admit 4.5 for the :rrorrent -- then 

IIA~xn - Axil 

= IIA~~ - Axn + Axn - Axil 

+ 
:s; I I (A - A) x II + IIA (x - x) II -n n n 

-+ 0 (n -+ (0) • 

Therefore 

Turning to the proof of 4.5, set AO = 0, A~ = I and ch::x:>re the en inductively 
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subject to 

and 

Since 

to prove that {A~} is convergent, it suffices to prove that {An} is Cauchy. 

First 

But 

~ M, 

and 

II A lin I! :$ (l + 11 )--n-l. 
fJen+1 n - '~n '"' 
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Therefore 

IIA - A II :::; 2M(1 + ) -n-l. 
n+1 n ~ 

So, for m > n, 

:::; IIA -A II + IIA -A II + ••• + IIA -A' I n n+1 n+1 n+2 m-1 m 

-n-1 -1 n~l 
:::; 2M(1 + ~) (1 + (1 +~) + ••• + (1 + ~) ) 

-n-1 :::; 2M(M + 1) (1 +~) + 0 (n + 00), 

which implies that {An} is Cauchy. 

thus 

+ -1 
It rema.ins to deal with xn = (An) xO. For this purp:::>se, note that 

-n-1 :::; (1 + ~) . 

Proceeding as above, 1Ne t1:En conclude that {~} is Cauchy, thereby finishing the 

proof of 4.5. 
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4.6 EXAMPLE let A E A -- then M is a left Banach A-mxlule. Since A E M, 

it follows from 4.2 that :I B E A, C E AA such that A = BC. 

Maintain the ass..nnption that A has a left approxirna te unit {e.: i E I}. 
1. 

4. 7 LEMMA let X be a corrpact subset of EO -- then :I A E A and a continuous 

function f:X -+ EO such that 

Then 

x = Af (x) V x E X. 

PRCXlF Define a left action of A on the Banach space C(X,E
O

) (sup norm) by 

(Af) (x) = Af (x) (x E X) • 

IIAf II = sup II (Af) (x) II 
xEX 

= sup I\Af{x} II 
xEX 

:0; IIAII Ilfll. 

'lllerefore C{X,E
O

} is a left Banach A-m::rlule. And here 

.Accordingly, thanks to 4.2, V fO E C(X,EO) I 3 A E A and f E C{X,EO): 

Conclude by applying this to the particular choice fO (x) = x (x E X) • 
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4.8 EXAMPLE Supp::>re that {xn } is a sequence in EO which converges to O. 

In 4.7, take X = {O,xl,x..., ••• }, and put y. = f (x ) -- then Ay, = x , Ai (0) = 0, 
L. n n n n 

and Yn -+ f (0) • So, letting xn' = y.n - f (0), we have Ax' = x and Xl -+ O. n n n 

4. 9 SCHOLItM Let A, B be complex Banach algebras. Let Q?: A -+ B be a h:Jrro-

rrorphian. AsSJJre: 

1. 3 K > 0: V A E A, II Q? (A) II :s: K IIA II. 
2. {e.:i E I} is a left approximate unit per A. 

1 

3. {Q?(ei):i E I} is a left approximate unit per B. 

Define a left action of A on B by 

AB = Q?(A)B. 

T:ten B is a left Banach A-roc:>d.ule and 

B = AB. 

[In 4.2, take E = B -- then 

But BO = AB.] 

Let A be a C*-algebra. Let E be a right A-roc:>d.ule - then an A-valued 

pre-inner product on E is a function < , >:E x E -+ A such that V x,y,z E E, 

V A E A, V A E £: 

(i) <x,y + z> :: <x,y> + <x,z>j 

(ii) <X,AY> = A<X,Y>i 
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(iii) <x,yA> = <X,y>Ai 

(iv) <x,y>* = <y,x>: 

(v) <x,x> 2: 0 (=> <x,x> E A+) . 

If 

<x,x> = 0 => x = 0, 

then < , > is called an A-valued inner product. 

[Note: <, > is "conjugatel:inear" :in the first variable: <xA,y> = A*<x,y>.] 

A pre-Hilbert A-rrodule is a right A-rrodule E e::JUipped with an A-valued pre-

inner product < , >. 

N.B. Tacitly E is a complex vector space with compatible scalar IIU.1ltipli-

cation: A (xA) = (Ax) A = x (A.A.) • 

4.10 LEMMA Suppose that E is a pre-Hilbert A-m:::>dule -- then V x, Y E E, 

<x,y>*<x,y> $ I I <x,x>I I<y,y>· 

PRCx:>F As9..llIe that II <x,x> II = 1 and let A E A: 

o $ <xA - y,xA - y> 

= A*<x,x>A - <y,x>A - A*<x,y> + <y,y> 

$ II<x,x>IIA*A - <y,x>A - A*<x,y> + <y,y> 

= A*A - <y,x>A - A*<x,y> + <y,y>. 

rbw take A = <x, y> in get I 
I 

o $ <x,y>*<x,y> - <y,x><x,y> - <x,y>*<x,y> + <y,y> 
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or still, 

<y,x><x,y> ~ <y,y> 

or still, 

<x,y>*<x,y> ~ <y,y>. 

Put 

I Ixll = I I <x,x> 111/2 

Then 4.10 implies that II. II is a saninonn on E: 

(x E E) • 

Ilx + yll ::; Ilx II + II yll 

I lAx II ::; I>-I!lxll· 

M:>reover, II. II is a nonn if the pre-inner product is actllally an inner product. 

Definition: E is s:Lid to be a Hilbert A-nodule 

E is mrnplete (hence is a Banach space) • 

the saninonn is a nonn and 

4.11 EXAMPIE Take A = g -- then the Hilbert g-rrodules are the complex 

Hilbert spaces. 

4.12 EXAMPIE let 1! be a hennitian vector bundle over a compact space X. 

Denote by r (1!) thte space of continuous S3ctions of E: -- then r (E:) is a right 

C(X)-rnodule and the rule 

<a,a'>(x) = <a(x) ,a' (x» x 

equips r (E:) with the structure of a Hilbert C (X) -nodule. 
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let 

NE = {x E E: I I x I r = O}. 

Thm NE is a sub A-nodule of E and t.1:"e pre-inner product and serninonn drop to an 

inner product and nann on tre quotient A-m:x1ule E/NE' 

4.13 lEMMA The completion of E/NE is a Hilbert A-m:x1ule. 

A Hilbert A-nodule E is a right Banach A-module. Proof: 

IlxAll = I I <xA,xA> I 11/2 

= IIA*<X,X>AI1 1
/

2 

= Ilxll IIAII· 

4.14 lEMMA let E be a Hilbert A-m:x1ule -- then E = EA. 

PR<X>F Q:1e ha.s only to show that EA is dens: in E (cf. 4.2). But 

<x - xe. ,x - xe.> 
1. 1. 

= <x,x> - e.<x,x> - <x,x>e. + e.<x,x>e. 
1. 1. 1. 1. 

-+ O. 

[Note: If A is unital, thm x = xlA.] 

Here are three examples of Hilbert A-modules which are "internal" to A. 
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4.15 EXAMPLE View A i trelf as a right A-m:Xlule and put 

<A,B> = A*B (A,B E A). 

Than A is a Hilbert A-rrodule. 

4.16 EXAMPLE Given n E ~, let An = A @ ••• @ A. View An as a right 

A-nodule in the obvious way and put 

Then An is a Hilbert A-nodule. 

••• @ A , 
n 

n 
B

1 
@ ••• @ B > = L: A*R • 

n k=l -K".-k 

00 

4.17 EXAMPLE Let H A stand for tl'E subEet of TT A con si sting of tm re ~ 
·k=l 

8.1ch that L: Ak1\: (1\: = ~(k» converges in A. View HA as a right A-nodule in trn 
k=l 

obvious way and p.lt 

Then H A is a Hilbert A-nodule. 

2 
4.18 REMARK let H A stand for the subret of TT A consisting of tho::e ~ 

00 

1<=1 
00 2 

SJ.Ch t.rat L II1\: II < 00 (1\: = ~ (k) -- than 
k=l 

and 
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iff A is finite dirrEnsional. E.g.: 

Let H be a complex Hilbert space, E a Hilbert A-nodule -- then their algebraic 

lbenror product H ~ E carries an A-valued inner product given on elerren.tary tenrors 

by 

<~ ~ x,n ~ y> = <~,n><x,y>. 

Its completion H ! E is therefore a Hilbert A-m::x'lule (cf. 4.13). 

4.19 :EXAMPLE SUPfOse that H is ::eparable and infinite dirrensional -- then 

H ! A and H A are isan:orphic as Hilbert A-nodules. 

4.20 :EXAMPLE Let X be a campact Haus:::1orff space -- then C(X,H) is a Hilbert 

C (X) -nodule and 

H! C(X) = C(X,H). 

[Consider the map 

H ~ C(X) + C(X,H) 

that sands ~ 9 f to the f1IDction x + f (x) ~. It pre::erves C (X) -valued inner products 

and has a den::e range.] 

4.21 crnsTRUcrIrn Suppo::e that E and F are HilJ::Ert A-nodules -- tten E $ F 

is a right A-nodule in the obvious way and the prescription 

< (x,y) ,(x' ,y'» = <x,x'> + <y,y'> 

is an A-valued inner product on E $ F. Since the completeness of E and F implies 
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tha.t of E ED F, it follows that E ED F is a Hilbert A-m:xlule. 

One difference between Hilbert A-m:xlules and Hilbert Epaces lies ill the 

properties of ortlogonal complerrents. Thus let FeE be a closed Slb A-m::xiule 

of the Hilbert A-m:xlule E. Put 

Flo = {x E E:<F,x> = O}. 

Then Flo is alSJ a clos:rl Slb A-m::xiule but ill general, E is not equal to F ED Fl.. 

4.22 EXAMPIE Take A = C[O,l] = E and let F ::::: {g E E:g (0) = O} -- then 

IJat E and F be Hilbert A-m:xlules -- then by Hom
A 

(E,F) we shall understand 

the Slbs=t of B (E,F) wlDs= elements are the T:E -+ F which are A-lillear: 

T (xA) = (Tx) A (x E E, A E A). 

N. B. HomA (E,F) is a clos:rl Slbspace of B (E,F), hence is a Banach Epace. 

4.23 LEMMA V T E HomA (E,F), we have 

2 
<Tx,Tx> ~ liT II <x,x> (x E E) • 

let T E Hom
A 

(E,F) -- then T is said to be adjoilltable if :3 an operator 

T* E HomA (F ,E) such that 

<Tx,y> = <x,T*y> 

for all x E E, Y E F. 
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[Note: T* is mique and T** = T.] 

Write HomA (E,F) for the subret of HOID
A 

(E,F) consisting of tlDre T which are 

adjo.intable -- then Hom
A 

(E,F) is a P.anach space. 

[Note: Too conta:inma1t 

HomA(E,F} c HarnA(E,F) 

is, .in general, proper (cf. .infra).] 

4.24 EXAMPLE Take A = C[O,l] = E and let F = {g E E:g(O) = O} (cf. 4.22). 

Def.ine T:E (& F -+ E (& F by T(f,g) ::::< (g,O) -- tien 

TEHamA (E (& F ,E (& F) but T ¢ Harn
A 

(E (& F ,E (& F) • 

4.25 LEMMA HarnA(E,E} is a mital C*-algebra. 

[Note: Hom
A 

(E,E) is a mital P.anach algebra.] 

<'!'x,x> ;:: O. 

4.27 NOl'ATICN H*M:DA is 1:.l'e category wtore objects are the Hilbert A;rod.ules 

with 

N.B. H*MODA is a *-category .in too sense that it comes equipped with an 

.involutive, identity-on-objects, cofmctDr 

*:H*MODj -+ H*MODj • 
,'\ Tlo 
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4.28 EXAMPLE ret HILB be the category whose objects are the corrplex 

Hilbert Epaces and whose rrorphisns are too bounded linear operators - then 

and 

4.29 LEMMA BarnA (E,F) is a Hilbert HomA(E,E)-module. 

PRCX)F The right action 

BarnA (E,F) x BarnA (E,E) -+ HOItlA (E,F) 

is precomfX) sition and the BarnA (E,E) -valued inner prcx:luct 

is 

<T,S> = T*S. 

[Note: The induced norm an HOItl
A 

(E,F) is tJ::e operator norm. J 

A 

ret E be a Hilbert A-m:xiule. Given x E E, define x:E -+ A by 

and define L :A -+ E by x 

Then 
A 

A 

x(y) = <x,y> 

L (A) = xA. x 

X E BarnA (E,A) 



And 

Therefore 

=> 

Put 

Th:m E is a right A-nodule: 

4. 30 LEMMA The arrow 
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<~(y),A> = «x,y>,A> 

A 

= <X,y>*A 

= <y,x>A 

<y,xA> 

= <y,L (A) >. 
x 

(x) * = L x 

A 1- x E Hom~(E.A) 

1_ Lx E Homl (A,E). 

E = Hom
A 

(E,A) • 

(TA) x = A *Tx. 

E+E 

x+x 

is an is::metric conjugate linear map of right A-itDdules. 

One tJ:en calls E ~lfdua1 if this arrow is surjective, thus 
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4.31 EXAMPIE A is relfdual iff A is unital. 

4.32 EXAMPIE HA is selfdual iff A is finite dimensional. 

4.33 LEMMA Supp:>re tmt E is relfdual -- then V Hilbert A-rrodule F, 

HamA (E,F) = Homl{E,F). 

4.34 REMARK SUppJSE tmt A is a W*-algebra and let E be a selfdual Hilbert 

A-rrodule -- then it can be Ehown tmt tm unital C*-algebra fbml (E,E) is a W*-algebra. 

TlEn. 

and 

Let E and F be Hilbert A-m::xlule s. Gi veIl 

8 (Xl) = y<X,XI>. 
y,x 

yEF 

, define 8 :E -+ F by y,x 

8 (x'A) = y<x,x'A> = y<x,x'>A = 8 (x')A. y,x y,x 

E.g.: Take E = F = A and suPFOse tmt A is unital -- then 
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4.35 LEMMA 8 E Hom*(E F): 
y,x A' 

8* = 8 • y,x x,y 

Write L (E,F) for the clos=d linear SJbspace of HomA* (E,F) sparmed by the 8 • 
-00 y,x 

4.36 EXA.T\1PLE Tte image of tte arrow in 4.30 is L (E,A). In fact, 
-IX> 

I\. 
8 = xA*. A,x 

Accordingly, when E is selfdual, 

~ (E,A) = Horn
A 

(E,A) • 

So, e.g., if A is unital, tl:En 

~(A,A) = HomA(A,A), 

but if A is nonunital, then Hom
A 

(A,A) is in general much larger than ~ (A,A) 

(cf. §5). 

4.37 REMARK If A is unital and if E is a Hilbert A-rrodule, then 

~ (E, A) = Hom
A 

(E, A) • 

Thus let T E HomA(E,A) and put x = T*(lA) -- then 

x(y) = <x,y> 

= Ty. 



and 

Take E = F -- then 

19. 

o 8 =8 =8 x,y u,v x<y,u>,v x,v<u,y> 

T0 =8 x,y Tx,y 

8 T = 8 * x,y x,T y. 

4.38 LEMMA ~ (E,E) is a cloood ideal in Homl (E,E). 

[Note: Therefore L (E,E) is a C*-algebra.] 
-co 

M:>re is true: ~ (E,E) is an esrential ideal in Homl (E,E). 'Ib prove this, 

we shall need a teclnical preliminary. 

4.39 LEMMA V x E E, 

-1 x = Inn x<x,x> «x,x> + £) • 
£+0 

Bearing in mind 1.11, let J c HomA (E ,E) be a clo ood ideal such that 

J n L (E,E) = {OJ. Fix J E J -- then V x E E, J8 = 0 and 
-00 x,x 

Jx = J (lnn x<x,x> «x,x> + £) -1) 
£+0 

= Inn J(x<x,x> «x,x> + £)-1) 
£+0 

= Inn J8 (x) «x,x> + £)-1 
£+0 x,x 



I.e.: J = {OJ. 
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-1 = lim O«x,x> + E) 
E-+O 

= O. 

4.40 EXArJIPLE The C*-algebra L (A,A) is *-is::morphic to A. 'lb see this, 
-00 

define LA:A -+ A by ~B = AB -- th:m 

But 

Tl"Erefore the range of 

is a C*-subalgebra of HomA (A,A). On the otler hand, 

from which it follows that 

[No te: The pa.ir 

0A,B(C) = A<B,C> 

LA = ~(A,A). 

(HomA (A,A) ,L) 

AB*C ::;; L C, 
AB* 

is a 1.IDitization of A. Indeed, tle image LA is L (A,A), which is an ess:mtial 
-co 

ideal in HomA (A,A) .] 

4.41 REMARK Let ~ (A) .be the set of n-by-n matrices with entries from A --
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then M (A) is a *-a1gebra but it is not a priori obvious that M (A) is a C*-algebra 
n n 

(if n > 1). Here is one way to proceed. 
n 

Introduce A per 4.16 -- then the map 

:imp1enents a *-isClITOrphisn 

n n L (A ,A ) + M (A). 
-00 n 

rrherefore Mn (A) becorres a C*-a1gebra via transp:>rt of structure. 

[Note: The involution *:Mn (A) + Mn (A) is 

fA .. ] * = [A~.].] 
1J J1 
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§5. MULTIPLIERS a~d VOUBLE CENTRALIZERS 

Given a C*-algebra A, put 

M(A) = HomA(A,A). 

Then M (A) is a mital C*-algebra, tha multiplier algebra of A. Abbreviate L (A,A) 
....cD 

to L (A), thus L (A) is an eSEErltial ideal in M (A) and there is a *-iSJITDrphian 
....cD ....cD 

L:A -+ L (A) (cf. 4.40) • 
....cD 

(Note: Recall that 

L (A) = M(A) 
....cD 

if A ismital (cf. 4.37).] 

let E be a left Banach A-m:::xlule -- then according to 4.2, the ret 

AE = {Ax:A E A,x E E} 

is a clored linear Slbspace of E, which can be characterized as 

denoted by EO in 4.3. 

{x E E:l:im e.x = x}, 
iEI 1 

N.B. E can, of course, be viewed as a left Banach L (A) -m:::xlule by writing 
-00 

Y = Ax. 

5.1 THEOREM AsS1.lI'£'e: E = AE - than the prescription 

iw welldefined and serves to equip E with tha strucblre of a left Banach M (A) -nodule. 
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PRCX)F Observe first that 

MLA E !:oo (A) , 

s::> th= RHS rrakes a:mse. 'Ib check that matters are welldefined, sup}';X)s:: that 

(MLA )xl = (M lim L A.. )xl 1 iEI e~_~ 

= lim (ML A..) xl 
iEI ei--~ 

= lim (ML ~ )x
l iEI e i ~ 

= lim (MLe ) A.. xl 
iEI i --~ 

= lim (ML )A...x... 
iEI e i -"2 .L. 

And 

11M (Ax) II = II (~) x II 

= I I lim (ML )Ax II 
iEI e i 

= ~im II (MLe)AxII· 
~EI ~ 

But 

II (MLe. )Axll ~ KIIMLe. II IIAxII 
~ ~ 

~ KIIMII 11Le. II \lAx I I 
~ 
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Therefore E is a left Banach M(A) -nodule. 

Given C*-algebras A and B, a *-harrorrorphisn tP:A -+- B is 5:lid to be proper 

if for any awroxima.te unit {e.:i E I} per A, {<p(e.):i E I} is an approxirna.te unit 
1 	 1 

per B. 

5.2 THEOREM SUH?Qse tha.t tP:A -+- B is proper -- then Uere is a unique unital 

*-harrorrorphisn ¢:M{A) -+- M(B) extending 	tPO'.): 

tP 
A B 

L (A) L (B)
-00 	 -00 

1 1 

M(A) ) M(B) • 

PROOF It is a question of applying 5.1. Thus view B as a left Banach 


A-m:xlule per 4.9 -- then B = AB. This said, given M E M(A), define ¢ (M) E M(B) by 


Then 

In fact, V AI E A, 

¢(L ) (tP{A)B) = tP {L LA)B 
A' 	 ex> A' 

= tP {L )B 
ex> AlA 

http:approxirna.te
http:awroxima.te
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= L B 
<P (A'A) 

= L L B 
<P (AI) <P (A) 

= L (<P (A) B) 
<P (A' ) 

= <P (L ) (<P(A)B). 
00 A' 

5.3 NarATICN PRC*AIG is the category whose objects are the C*-algebras 

and wlDse :rcorphisms are the proper *-h.am:::morphisms. 

N.B. 	 The assignment 


A ~ M(A) 


is functorial, i.e., defines a fmctor 

PRC*AIG ~ UNC*AIG. 

SUPfOse that (U,i) is a mitization of A -- then (U,i) is said to be maximal 

if for every embedding j:A ~ V as an essential ideal of a C*-algebra V, there exists 

a *-ho.rronorphism 1;;: V ~ U such that 1;; 0 j = i: 

A A 

V --+ U 
1;; 
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5.4 REMARK s is necessarily injective (j (A) being essential) and, in fact, 

is 	unique. 

[Note: If 

(Ul,il ) 

(U
2 

, i )
2

are maximal unitizations of A, then t.~re exists a *-isanorphism <P: U -+ U suchl 2 

that <P 	 0 i = i 2.]l 

5.5 LEMMA The pair (M(A),L) is a:max:ima.l unitization of A. 

5.6 EXAMPLE Let X be a nonccropact locally ccropact Hausdorff space and let 

BC(X) be the C*-algebra of complex valued bounded continuous functions on X -- then 

Coo (X) sits inside BC (X) as an essential ideal, hence there is a conmutative diagram 

BC(X) 

where, as pointed out above, s is injective. But here s is also surjective, Le., 

is a *-isanorphism. 

Given a Hilbert A-nodule E, denote by <E,E> the linear span of the set 

{<x,y>:x,y E E} -- then the closure <E,E> of <E,E> is an ideal in A. Working with 

an approximate unit fran <E,E>, one finds that E<E,E> is dense in E. 
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Abbreviate 

L (E,E) to L (E).
-00 _00 

Then HornA(E) is a unital C*-algebra containing !:oo (E) as an essential ideal. 

L 

5.7 LEMMA View E as a left Banach L
_00 
(E)~ule -- then 


_00 
(E)E = E. 


PR(X)F Let {ei:i E I} be an approximate unit per !:oo(E) -- then it need only 

be shown that e.x -)- x V x E E (cf. 4.2 and 4.3). And for this, it suffices to prove
1. 

that e.x -+- x V x E E<E,E>. So suppose that 
1. 

x = y<u,v>. 

Then 

e. e -)- e in L (E)
1. y,u y,u _00 

=> 

(e. e ) (v) -)- e (v) in E 
1. y,u y,u 

=> 

e. (0 (v)) -)- e (v) in E 
1. y,u y,u 

=> 

5. 8 THEOREM We have 

M(!:oo (E» ::: Homl (E) • 
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PIroF let 

i:L (E) -+ Han*{E)
_00 A 

be the inclusion -- then the pair 

(Han (E) ,i)
A 

is a unitization of L
_00 

(E), which we claim is maximal. To see this, consider an 

embedding j :!:oo (E) -+ V as an essential ideal of a C*-algebra V. Imitating the 

procedure utilized in 5.1, define l;;: V -+ HanA (E) by 

l;;(v)Tx = {vj{T»x (x E E, T E (E) ) • 

And so forth•... 

5.9 EXAMPLE Take A = S -- then the Hilbert S-m::xlules are the complex Hilbert 

spaces H, thus 

5.10 	 REMARK The relation 

M(A) = HanA (A) 

is 	a definition. On the other hand, 

L (A) :::: A 
-00 

=> 

5.11 EXAMPIE 'r/ n E ~, 

(cf. 4.41) 
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=> 


[Note: 1;/ n E ~, 

5.12 EXAMPLE Suppose that H is separable and infinite dimensional -- then 

(cf. 4.19) 

=> 


:::: L (H) 2. A,
_00 nun 

the symbol 2. standing for the minimal tensor product (cf. §6).
nun 

[Note: L (H) is nuclear I so there is only one C*-no:rm on L (H) 2 A.]
_00 _00 

There is another approach to M(A) based on purely algebraic tenets. 

Assurre for the m::ment that A is just a complex algebra -- then a 

left centralizer 

of A 

right centralizer 
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is a linear ma.p 

such that V A,B E A, 

L:A -+ A 

R:A -+ A 

L(AB) == L(A)B 


R(AB) = AR(B) 


and a double centralizer of A is a pair (L, R), where 

L is a left centralizer 


R is a right centralizer 


such that V A,B E A, 

AL(B) = R(A)B. 

Write De(A) for the set of double centralizers of A -- then De(A) is a complex 

algebra under pointwise linear operations, multiplication being defined by 

Since 

it follows that De(A) is unital. 

Given A E A, define 

L ·A -+ A'A. 

~:A -+ A 

by 

LA (B) = AB 

~ (B) = EA. 
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Then the pair 

and the map 

- A -+ Dt(A) 

is a h:m:::m:>rphism whose kernel is called the annihilator of A: Arm A. 

5.13 LEMMA 	 1A is surjective iff A is unital. 

N.B. Therefore lA is an isom:::>rphism iff A is unital. 

5.14 LEMMA 	 V A,B E A and V (L,R) E Dt(A) , -we have 

LAL(B} = AL(B) = R(A)B = ~(A)B 

~ (B) = R(BA) = BR(A) = ~(A)B 

LLA(B) = L(AS) = L(A)B = ~(A)B 

~R(B) = R(B)A = BL(A) = ~(A)B. 

Oonsequently, 	 lA(A) is an ideal in Dt(A) and 

(L,R) (LA'~) = (~(A) '~(A» 

(LA'~) (L,R) = 	(~(A) '~(A»' 
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Put 

TJ::en 

~A ::: {A E A:AB ::: 0 V B E A} 

~A ::: {A E A:BA ::: 0 V B E A}. 

Now sp=cialize and asSl.lIIE that A is a complex Banach algebra. 

5.15 lEMMA SUpfXJEe that 

let (L,R) E DC (A) -- then L and R are bounded: 

L,R E B(A). 

PRCX)F Let {An} be a sequence which converges to 0 with {L(A )} convergingn

to B (say) -- then veE A, 

CB = C( lim L(A}) 
n-+ oo n 

= lim CL(A) 
n-+ oo n 

= o. 

Therefore 

So, by the closed graph theorem, L is bounded. The argument for R is analogous. 
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5.16 REMARK The existence of a 

right approximate unit per A => A.n!T,A = {O} 

left approxima.te unit per A => ~A = {O}. 

[Note: In particular, 	these conditions are met by a C*-algebra.] 

Maintaining the suppositions of 5.15, place a nonn on PC (A) by stipulating 

that 

II (L, R) II = max{II L II, I I R II }. 
Then PC (A) is a unital Banach algebra and 

is contractive. 

5.17 	 EXAMPLE Let G be a locally compact topological group (Hausdorff is 

1 1assurred) . Take A =L 	 (G) (left Haar measure) -- then V f,g E L (G), 

II f II = sup{ II f*Q> II : II Q> 1\ s; l} 

II g II = sup{ II Q>*g II : II Q> II s; I}. 

Therefore 

Given l.I E M (G), define 

L 
l.I 

R 
l.I 

http:approxima.te
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by 

Then 

R f = f*fl. 
fl 

, (L ,R) E Dt(Ll(G»,
fl fl 

and a classical theorem due to Wendel says that the arrow 

11 -+ (L ,R )
fl fl 

is an isanetric isarorphism. 

Assume henceforth that Ais a C*-algebra. 

5. 18 W1MA Let (L t R) E Dt (A) -  then 

IILII = \\RII· 
PROOF Since 

we have 

IIL(B)II= sup IIAL(B) II ~ IIRIIIIBIi 
IIAII~l 

=> 

IlL II IIRII·:0; 
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Ditto: 

[Note: V X E A, 


Ilxll = sup IIXYII = sUI? Ilyxll.]

Ilyll:51 Ilyll:51 

Define an involution 

*:DC(A) -+ DC(A) 

by 

(L,R)* = (R*,L*), 

where T*(A) = T(A*)*. 

5.19 	 THEOREM Under the multiplication, nann, and involution defined above, 

DC(A) 	 is a unital C*-algebra. 

PRCX)F To check that 

2II (L,R) * (L,R) II II (L,R) II , 

note that V A E A of nonn :5 I, 

I I L (A) I 12 = II (L (A» *L (A) I I 

= IIL*(A*)L(A) II 

= IIA*R* (L(A» II 

:5 I I A * I I I IR* (L (A» I I 

:5 I I (R*L) (A) I I 
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::; IIR*LII 

= II (L,R) * (L,R) II 

=> 

= 

$ II (L,R) * (L,R) II 

It is clear that V A E A, 

(LA'~)* = (L ,R ). 
A* A* 

Therefore 

A + DC(A) 

an isonetric *-hononnrphism. 

5.20 LEMMA The ideal l A(A) is essential in DC(A). 



16. 

PROOF If V A E A, 

so 

L{A) :::: 0 :::: R{A) 

=> 

(L,R) :::: (O,O). 

[Note: The quotient 

is called the corona algebra of A.] 

The pair (DC (A) ,1 A) is thus a unitization of A, which -we claim is maxiroa.l. 

To see this, consider an embedding j:A + V as an essential ideal of a C*-algebra 

V -- then the problem is to construct a *-horrorrorphism r;;: V + DC (A) such that 

r;; j = l A:0 

A A 

1 l1A 

V • DC(A). 
r;; 

Definition: 

r;; (v) = (Lv,R ) , v

where 

LV (A) = j-l (vj (A» 

R (A) = j-l(j(A)V). 
v 
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'rhe ccmputation 

L (AB) = j-l(vj(AB»
v 

= j-l(vj(A)j(B» 

= j-l(vj (A» B 

= L (A)B
V 

shows that LV is a left centralizer of A. Analogously, R is a right centralizer 
V 

of A. And 

ALV(B) = Aj-l(vj(B» = j-l(j(A»j-l(vj(B» = j-l(j (A)vj (B» 

Rv(A)B = j-l(j(A)V)B = j-l(j (A)V)j-l(j (B» = j-l(j(A)vj(B». 

'rherefore the pair (L ,R ) is a double centralizer of A. That l: is a *-hancJ:rorphismv v 

is likevrise immediate. Finally, 

But 

=> 

(Lj (A) ,Rj (A» = (LA'~) = 1A(A) • 

I.e. : 

[Note: The construction of l: uses only the fact that j (A) is a closed ideal 

in V.] 
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5.21 THEOREM The C*-algebras M(A) am DC(A) are *-isarorphic. f\breover, 

there is a ccmnutative diagram 

A A 

M(A) ---+-~ DC (A) • 

[This is because maximal illlitizations are illlique up to *-isarorphism.] 

[Note: one can therefore realize the corona algebra of A as the quotient 

M(A)/L(A). ] 

5. 22 REMARK Let E be a Hilbert A-rrodule -- then according to 5. 8, 

M(~ (E» :: HomA(E) , 

so by 5.21, 

This can be explicated, viz. define 

by assigning to T E HomA(E) the pair (~,R.r)' where 

~(tP) = T 0 tP 

(tP E ~ (E» • 

Then 4> is a *-isarorphism. 
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[Note: V x,y, z E E, 

- Toe (z) = Tx<y,z> 	= e (z)
x,y 	 Tx,y 

1 

e 0 T(z} = x<T*y,z> = e (z).] 
x,y x,T*y\ 

I2t A, B be C*-algebras then an extension of Aby B is a C*-algebra E and 

a short exact sequence 
i 'IT 

o -+ A -+ E -+ B -+ O. 

So: 1 is injective, 'IT is 	surjective, and Im 1 = Ker 'IT. 

N.B. 	 There is a ccmnutative diagram 


A A 


E DC (A) 
cr 

but cr need oot be injective (since the closed ideal 1 (A) need not be essential) • 

5.23 EXAMPLE The unitization extension is 

1 'IT 

o -+ A -+ A+ -+ C -+ 0, 

"Where 1 (A) = (A, O) and 'IT (A,:>") = :>... 

'IWo extensions 
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of A by B are said to 1:Je iscm:::>rphic if 3 a *-isarorphism y: El -+ E2 rendering the 

diagram 

'lT
l 

o ~ A B ~O 

o ~ A B -----)-> 0 

ca:nmutative. 

[Note: This notion of "isarorphic" is an equivalence relation and we write 

Ext (A, B) for the corresponding set of equivalence classes.] 

Suppose that 

1 'IT 

o -+ A --+ E --+ B -+ 0 

is an extension of A by B. Postcompose o:E -+ DC{A) with the projection pr:· 

DC (A) -+ C (A) to get a *-hon:rm::>rphism T from Ell (A) :::: B to C(A), the so-called 

Busby invariant of the extension. 

N.B. 	 The diagram 


1 'IT 


o ~ A ---+ E ---+ B ) 0 

1\ 

o ---+ A ---+ PC{A) --+ C{A) --+ 0 
lA 

is comnutative. 

5. 24 LEMMA There is a pullback square 

B 

pr 



21. 


a *-isarorphism 1;;:E -+ DC{A) xC(A~ , am a conmutative diagram 

'lWo extensions 

l 1T 

o ---+ A ---+ E ---..,\» B --+) 0 

II II 


of A by B with respective Busby invariants Tl arrl T2 are isarrorphic iff Tl = T •2

Therefore the Busby invariant determirns the isarorphism class of an extension, 

thus there is an injection 

Ext (A,B) -+ Mor{B,C(A», 

that, in fact, is a bijection. Proof: Let T E Mor(B,C{A» -- then the Busby 

invariant of the extension 

is T itself. 

S. 2S EXAMPLE Take A = Coo (] 0,1 [), B = ~ -- then up to ison:orphism there are 

four extensions of A by B: 

1. E = C ([O,l[)
00 

3. E = C([O,l]) 

4. E = Coo(]O,l[) ~ c. 
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5.26 	 m.f.1A Let T:B -+- C (A) be the Busby invariant of the extension 

1 if 
o -+- A ~ E -__ B -+- o. 

Then T = 0 iff E is *-iSCItDrphic to A (9 B. 

5.27 REMARK If A is unital, then C(A) is trivial and, up to iSCItDrphism, 

there is only one extension of Aby B, viz. 

o -+- A -+- A(9 B -+- B -+- o. 
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§6. TENSOR PROVUCTS 

A nonoidal category is a category C equipped with a functor ~:C x C -+ C 

(the multiplication) and an object e E Ob s: (the unit), together with natural 

iscmorphisrns R, L, and A, where 

~:X ~ e -+ X 

Ix:e ~ X -+ X 

and 

A_ Y Z:X e (Y ~ Z) -+ (X e Y) e Z,
-X, I 

subject to the following assumptions. 

(MC ) The diagraml 

A A 
X e (y e (Z ~ W» -+ (X e Y) e (Z e W) -+ «X e Y) e Z) e w 


id Q A 1 rA Q id 


X ~ «Y e Z) e W) ---------+-) (X e (y e Z» ~ W 

A 


corrmutes. 

A 
X e (e e Y) -+ (X e e) e Y 

id eLl 1Reid 

xey xey 

conmutes. 

[Note: The "coherency" principle then asserts that "all" diagrams built up 

fran instances of R, L, A (or their inverses), and id by repeated application of 9 
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necessarily ccmnute. In particular, the diagrams 

A A 
e ~ (X ~ Y) -+ (e ~ X) ~ Y X ~ (Y ~ e) -+ (X G Y) G e 

lL ~ id id ~ Rl 
X~Y---XGY 	 X~Y--- X~Y 

carmute and L = R : e G e -+ e.]e e 

N.B. Technically, the categories 

C x (C x C) 

(C x C) x C 

are not the sane so it doesn't quite make sense to say that the functors 

(X,(Y,Z» -+ X ~ (y G Z) 

• C x (C x C) -+ C 

(f, (g,h» -+ f G (g ~ h) 

«X,Y),Z) -+ (X G Y) ~ Z 

• (g x g) x 	C -+ C 

«f,g),h) -+ 	 (f ~ g) G h 

are naturally isorrorphic. However, there is an obvious iscrrorphism 

1 

~ x (g x g) -+ (g x g) x ~ 

and the ass'llIrption is that A:F -+ G 0 1 is a natural isarrorphism, where 

11 
(c x C) x C 	 -+ C. 

G 
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1\ccordingly, 

v (X, (Y,Z» E Db e x (e x e) 

and 

v (f,(g,h» E Mor e x (£ x £), 

the square 

~,Y,Z 
x ~ (Y ~ Z) -----+) (x ~ Y) ~ Z 

f ~ (g 6} h) 1 1(f 6} g} 6lh 

x' 61 (Y' ~ Z') -----+) (x' ~ Y') 61 Z' 

~, ,Y' ,Z' 

canmutes. 

6.1 EXAMPLE Let VEe be the category whose objects are the vector spaces 

over s: and whose rrorphisms are the lirea.r transformations -- then VEe is rroroidal: 

Take X 6} Y to be the algebraic tensor product and let e be e. 

[Note: If 

f:X -+ XI 

g:Y -+ Y' , 

then 

sends x 6} Y to f (x) 

~ (f ,g) 

~ g (y) • ] 

= f 61 g:X ~ Y -+ X, ~ Y' 

6.2 EXAMPLE Let AIG be the category whose objects are the algebras over e 
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and whose norphlsrns are the multiplicative linear transfonnations -- then ALG is 

rronoidal: Take A ~ B to be the algebraic tensor product and let e be C. 

[Note: If 

A,B E Ob ALG, 

then the multiplication in A ~ B on eler:rentary tensors is given by 

6.3 EXAMPLE Let *ALG be the category whose objects are the *-algebras over 

S am whose rrorphlsms are the multiplicative *-linear transfonnations - then *ALG 

is nonoidal: Take A S B to :be the algebraic tensor product and let e be C. 

[Note: To say that 1>:A -+ B is *-linear means that 

<P(A*) = 1> (A) * 

for all A EA.] 

6.4 REMARK Each of these three categories also admits another nonoidal 

structure: Take for the multiplication the direct sum E9 and take for the unit the 

zero object {a}. 

Let H and K be complex Hilbert spaces -- then their algebraic tensor product 

H ~ K can be equipped with an inner product given on eler:rentary tensors by 

<Xl ~ Yl,x2 ~ Y2> = <xl ,x2><Yl'Y2> 

and its completion H ! K is a complex Hilbert space. 
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N.B. If 

then 

extends by contiruity to a bourrled linear operator 

Recall f"CM that HILB is the category whose objects are the canplex Hilbert 

spaces and whose morphisms are the bounded linear operators (cf. 4.28). 

6. 5 LEMMA HILE is a rromidal category. 


PRCX)F Defire a functor 


9:HILB x HILB -+ HILB 

by 

9(H,K) = H 9 K 

and 
A B 

9(Hl -+ H ,K -+ K ) = A 9 B
2 l 2

and let e be C. 

A syrrrretry for a nonoidal category £ is a natural isanorphism T, where 

such that 
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is the identity, ~ = Ix 0 TX,e' and the diagram 

A T 
X e (y e z) (X e Y) e z ) z e (X e Y) 

id ~ T1 1A 
X e (z e Y) (X e z) e Y ) (z e X) e Y 

A T e id 

ccmnutes. A symnetric moroidal category is a monoidal category ~ endowed with a 

symmetry T. A monoidal category can have more than one symmetry (or none at all) • 

[Note: The "coherency" principle then asserts that "all" diagrams built up 

fran instances of R, L, A, T (or their inverses), and id by repeated application of 

e necessarily ccmnute.] 

N.B. Let 

f:C x C -7- C X C 

be the interchan:re -- then f is an isorrorphism and T:e -7- e 0 f is a natural iso

morphism. 

It is clear that VEe, AJ...[;, and *AJ...[; are syrrmetric monoidal, as is HILB. 

6.6 LEMMA Let H and K be ccmplex Hilbert spaces -- then the linear :rn.::'I.p 

~:B(H) e B(K) -7- B(H e K) 

induced by the bilinear :rn.::'I.P 

- B(H) x B(K) -7- B{H e K) 

s: 
(T,S) -7- T e S 

is an injective *-harx:mJrphism. 
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From the definitions, C*ALG is a full subcategory of *ALG and while *ALG 

is syrrmatric rronoidal, it is definitely not automatic that the same is true of 

C*ALG (the algebraic tensor product of two C*-algebras is not, in general, a 

C*-algebra) . 

Suppose that A and B are C*-algebras -- then a C*-ronn on their algebraic 

tensor product A ~ B is a norm II· I la which is suJ.:multiplicative, Le., 

and satisfies the C*-condition, Le., 

[Note: The pair (A ~ B, II· I I a) is a pre-C*-algebra and its canpletion 

A ~ B is a C*-algebra.]a 

Definition: A norm II· IlonA ~ B is said to be a cross nonn if V A E A, 
V B E B, 

I IA e BI I = I IAI I I IBI I· 

6.7 LEMMA Every C*-rorm 	on A ~ B is a cross rorm. 

6.8 	 EXAMPLE Given X E A e S, let 

= inf{ i: \lA. I I liB. II :X = E A. e B. }."xII 1 1 1 	 1 

Then II· II 
A 

is a sub:nultiplicative cross norm on A ~ B am the canpletion A ~ B 

is a Banach *-algebra. Still, II· II is rarely a C*-norm. 

6.9 RAPPEL Every C*-algebra is isometrically *-isarorphic to a ronn closed 
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*-subalgebra of B(H) for same H, or in different but equivalent terminology, every 

C*-algebra admits a faithful *-representation on same ccmplex Hilbert space (cf. 

10.37). 

6.10 LEMMA Suppose that 

1J:A -+ C 

IJi:B -+ V 

are *-h.cm::m:>rphisms of C*-algebras -- then there is a unique *-h.cm::m:>rphism 

1J Q IJi:A 2 B -+ C 2 V 

of algebraic tensor products such that 

(1J 2 1Ji) (A 2 B) = 1J{A) 2 IJi(B) 

for all A E A, B E B. And 

1J injective 

=> 1J 2 IJi injective. 

IJi injective 

A 
, letGiven C*-algebras 

B 

1J:A -+ B(H) 

1Ji: B -+ B(K) 

be faithful *-representations -- then the ca:rp:>sition 
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~ ~ ~ ~ 
A~ B---+ B(H) ~ B(K) + B(H ~ K) 

is an injective *-hcm::morphism. One can therefore place a e*-nonn on A ~ B by 

writing 

0IIX II . = II (B ~ ~ ~) (X) II (X E A ~ B) • 
IIWl 

6.11 LEMMA \ I· I I min is independent of the choice of ~ and ~. 

[Note: If in the above ~ and ~ are arbitrary *-representations, then 

II (~ 0 ~ ~ ~) (x) II ::; Ilx limin. J 

One terms II· II. the minimal e*-nonn on A ~ B. Denote its canpletion by
IIWl 

A ~. B and call A ~. B the minimal tensor product of A and B. 
IIWl IIWl 

6.12 EXAMPLE Fix a e*-algebra A. Given X E M (e) ~ A, write 
n 

X = L: E •. ~ A •.• 
. . 1J 1J 
1,) 

Then the A •. are unique and the map
1) 


X + [A•. J 

1) 

defines a *-isooorphism 

M (e) ~ A + M (A).
n - n 

But M (A) is a e*-algebra (cf. 4.41), hence M (e) ~ A is a e*-algebra w.r.t. the 
n n 

nonn that it gets fran Mn (A). ONing to 1.2, this norm must then be 11·IIInin' so 



10. 

M (e) 9 A= M (e) 9. A.n- n- nn.n 

[Note: One can show directly that Mn (s:) 9 A is complete per 11·llmin " 

For if {~} is Cauchy and if 

kL: E .. 9 A .. ,~= ~] ~Ji,j 

then for each pair (i, j), {A~.} is Cauchy in A, thus 
~] 

lim A~. = Ar:x:., say.
k ..... co ~J ~] 

Now put 

00 

X = L: E .. 9 A .. 
co •• ~J ~J 

~, ] 

and observe that 

ookII XOO - x. linn.'n = l I. L:. E .. 9 (A.. - A •. ) II . 
-~ 	 ~J ~J ~J nn.n 

~,J 

s L: IIA~. - A~ .11 .. ~J ~J 
~,J 

..... 0 (k ..... 00) " 

Consequently matters can be turneCi around: 'I'he *-iscmorphism 

M (e) 9 A ..... M (A)
n - n 

can be useCi to place the structure of a e*-algebra on Mn (A)"] 

6.13 	 EXAMPLE Suppose that X and Y are compact Hausdorff spaces -- then 

e(x) 9. e(Y): e{X x Y) " 
nun 
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[Note: If instead, X and Y are noncanpact locally canpact Hausdorff spaces, 

then 

C (X) 9 'n C (y) ~ C (X x Y).]
00 nu 00 00 

6.14 EXAMPLE Fix a C*-algebra 	Aand suppose that X is a compact Hausdorff 

space 	-- then 

C(X,A) : C(X) 9, A. nun 

[Note: If instead, X is a noncampact locally canpact Hausdorff space, then 

6.15 LEMMA If A and B are simple, then A 9, B is simple.
nun 

6. 16 EXAMPLE Suppose that H and K are ca:nplex Hilbert spaces -- then 

is simple and 

L (H) 9, L (K) ~ L (H 9 K).
-00 mm -00 -00_ 

6.17 LEMMA Suppose that 

1?:A -+ C 

lJi:B -+ V 

are *-hc::m:::Inorphisms of C*-algebras -- then 

1? * lJi:A 9 B -+ C 9 V 
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extends by continuity to a *-haocm::>rphism 

~ ~. ~:A ~, B + C ~. V. nun nun nun 

6.18 REMARK Here 

- ~ injective 

=> ~ ~. ~ injective.nun 

~ injective 

E.g.: If A is a C*-suba1gebra of C and if B is a C*-suba1gebra of V, then there 

is an anbedding 

A~. B + C~. V. 
nun nun 

[Note: This is false in general if "~ . " is replaced by"~ "(cf. infra). J nun max 

There are canonical isarorphisms 

RA:A ~. C = A~ C} -+ A nun

LA:C ~, A ( = C Q A) + A,
- nun 

and 

TA B:A ~. B + B~. A, , nun nun 

which are evidently natural. 
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6.19 SCHOLIUM Equip~ with the minimal tensor proouct, C*ALG is a syrrmetric 

rronoida1 category. 

[Define a functor 

~:C*ALG -+ C*ALG 

by 

~(A,B) = A ~min B 

and 
1> '¥ 

~(A -+ C,B -+ V) = 1> ~. '¥ 
nun 

am let e be ~.] 

6.20 THEOREM Let 11·11 be a C*-mnn on A ~ B -- then 'if X E A ~ B,a 

Ilx II· ~ Ilx II .nun a 

[Note: This result is the origin of the tenn "minimal tensor productll .] 

6_ 21 LEMMA If A is nonunita1, then any C*-nonn II· lion A ~ B can be a 
+eKtendEd to a C*-mnn on A ~ B. 

[Note: Therefore if both A and B are nonunital, then any C*-mnn II· lion a 

A ~ B can be extended to a C*-nonn on A+ ~ B+.] 

6.22 LEMMA If A ~ B is simple for sane C*-mnn II· lion A ~ S, then a a 


11·ll = II-I lInin am A am B are simple (cf. 6.15).
a 

Given C*-a1gebras A and B, define the maximal C*-nonn on A ~ B by 

Ilx II = sup {lin (X) II}'
max n 
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sup beirq taken over all *-representations of A ~ B. Let A ~ B be the conpletionmax 
'IT 

of A ~ B w. r. t. II· I I max -- then A ~max B is the maximal tensor product of A and B 

and 

A 

A ~ B =C*(A ~ B),max 

A A 

where c*(A ~ B} is the enveloping C*-algebra of A ~ B (cf. §9), hence there is an 

A 

A ~ B -+ A ~ B. max 

6. 23 LEMMA If tIl: A ~ B -+ C is a *-hcm:::norphism, then there is a unique 

*-hananorphism tIl : A ~ B -+ C which extends tIl. max max 

6.24 THEOREM let II· II be a C*-norm on A ~ B -- then V X E A ~ B,a 

Ilxll :S: Ilxll .a max 


PRCX)F Thanks to 6.23, there is a surjective *-hCXl.lCI'OC)rphism 


A ~ B -+ A ~ B,max a 

so 

for all X E A ~ B. 

6.25 REMARK Equi:r;:ped with the maximal tensor product, C*ALG is a syIIIlEtric 

rronoidal category (cf. 6. 19) • 
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A C*-algebra A is nuclear if there is only one C*-nonn on A ~ B for every 

C*-algebra B. So, if A is nuclear, then II·! I . = II· II on A ~ B and we write rru.n max 

A~ B for 

A9. B = A 9 B. 
rru.n max 

6.26 EXAMPLE V n :?: 1, the C*-algebra M (C) is nuclear (cf. 6.12). 
n 

[Note: More generally I every finite din:ensional C*-algebra is nuclear 

(use 1.4).] 

6.27 EXAMPLE If H is an infinite dinen.sional canplex Hilbert space, then 

B(H) is not nuclear. 

[There are a number of ways to see this, none of them obvious. One nethod is 

to 	shaN that 

B(H) 9. B(H) ~ B(H) 9 B(H).]
rru.n 	 max 

6.28 THEOREM Every ccmnutative C*-algebra is nuclear. 

6.29 THEOREM A filtered 	colirndt of nuclear C*-algebras is nuclear. 

6. 30 EXAMPLE Every AF'-algebra is nuclear (cf. 3.17). 

6.31 EXAMPLE Suppose that H is an infinite dinensional canplex Hilbert 

space -- then L
_00 

(H) is nuclear. 

Note: 	 Recall that 


M(!:oo (H» ::: B(H) (cf. 5.9). 
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Since B(H) is not nuclear, it follows that the multiplier algebra of a nuclear 

C*-algebra need not be nuclear.] 

6.32 	 LEMMA The minimal tensor product A Q B is nuclear iff both A andmin 

B are 	nuclear. 

PRCX)F If B is not nuclear and if C is a C*-algebra for which 11·I!max ~ 

II· I \ . on B Q C, then the surjective *-hrnDnorphismnun 

BQ C-+-BQ. C 
max nun 

has a 	nontrivial kernel, thus the same is true of the canposition 

(A Q. B) Q C -+- A Q. (B Q C)
nun max nun max 

-+- A Q. (B Q. C)
nun nun 

~ (A Q. B) Q. C. 
nun nun 

Therefore A Q. B is not nuclear . Conversely, if A and B are nuclear, then for rm.n 

any C, W\e have 

(A Q. B) Q C ~ (A Q B) Q C 
nun max max max 

:: A Q (B Q C)
max max 

~ A Q (B Q. C)
max rm.n 

:: A Q. (B Q. C)
nun nun 

= (A Q. B) Q. C. nun nun 
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6. 33 EXAMPLE If A is nuclear, then V n ~ 1, Mn (A) is nuclear. In fact, 

= M (C) 9. A (cf. 6.12).
n - ffill1 

6. 34 EXAMPLE If H and K are complex Hilbert spaces, then 


L (H) 9. L (K) 

-ro nun -IX> 

is nuclear and, in fact, is *-isanorphic to 

L (H 9 K) (cf. 6.16).-'00 _ 

6.35 REMARK Write NUCC*ALG for the full subcategory of C*ALG whose objects 

are the nuclear C*-a1gebras equipped with the minima.1 tensor product -- then NUCC*ALG 

is a syrrnetric nonoidal category. 

A C*-algebra Ais said to be stable if A ~ A9min ~(t2) (~~oo(HA) (cf. 5.12». 

6.36 EXAMPLE ~(t2) is stable: 

=> 
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6 • 37 EXAMPLE A is stable, then V n 2: 1, Mn (A) :::: A. Prcx:>f: 

:::: A. 

Two C*-algebras A and B are stably isomorphic if 

6.38 EXAMPLE C and L (l2) 
- -co 

are stably isarnorphic. 

6.39 

nuclear. 

PROOF 

LEMMA 

For 

If A is nuclear and if A and B are stably isorrorphic, then B is 

A nuclear => A ~.n:u.n 

=> B ~.nun 

L (l2)
_00 

2L (l )
_00 

nuclear 

nuclear 

(cf. 6.32) 

=> B nuclear (cf. 6.32). 
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It is false in general that a C*-subalgebra of a nuclear C*-algebra is 

nuclear. Still, there are properties of permanence. 

6.40 LEMMA If A is nuclear and if 1 c A is a closed ideal, then 1 is 

nuclear. 

6. 41 lEMMA If A is nuclear and I c Ais a closed ideal, then All is 

nuclear. 

6.42 THEOREM Suppose that I c A is a closed ideal. Asst:m'e: 1 and All 

are nuclear -- then Ais nuclear. 

If 

o + ] + B + BI] + 0 

is a short exact sequence of C*-algebras and if A is a C*-algebra, then 

o + A ~ ] + A ~ B+ A ~ BI] + 0 
max max max 

is again short exact. On the other hand, this need not be true if "max" is replaced 

by "min", leading thereby to the following definition. 

A C*-algebra A is said to be exact if it has the property that A ~min -

preserves short exact sequences. 

6.43 LEMMA Every nuclear C*-algebra is exact. 

6.44 REMARK There are C*-algebras which are not exact and there are exact 
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C*-algebras which are not nuclear. 

6.45 LEMMA Every C*-subalgebra of an exact C*-algebra is exact. 

[Note: Thus every C*-sul:::>.:.:l.lgebra of a nuclear C*-algebra is exact (but not 

necessarily nuclear).] 

The quotient of an exact C*-algebra is exact. Filtered colirnits of exact 

C*-algebras are exact but extensions of exact C*-algebras are in general not exact. 

N.B. It is a farrous theorem due to Kirchberg that every separable exact 

C*-algebra can be embedded as a C*-sul:::>.:.:l.lgebra of a separable nuclear C*-algebra. 

6.46 LEMMA If A and B are exact C*-algebras, then so is A ~. B. nun 

6.47 REMARK Write EXC*ALG for the full subcategory of C*ALG 'IN'hose objects 

are the exact C*-algebras equipped with the minimal tensor product -- then EXC*ALG 

is a syn:netric m::>noidal category containing NUCC*ALG as a full subcategory. 
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§7. STATES 

Let A, B be C*-algebras -- then a linear map iP:A ->- B is said to be positive 

if iP(A+) c B+. 

7.1 	 LEMMA Suppose that iP:A ->- B is positive - then If Al'~ E A, 

iP(AiA2)* = iP(AiAl)' 

2[Note: Since A = A , it follCMS that 


iP (A) * = iP (A*) (A E A) .] 


7.2 	 EXAMPLE A *-hornc.m:>rphism iP:A ->- B is positive: 


iP(A*A) = iP(A*)iP(A) = iP(A)*iP(A) E B+. 


7.3 	 LEMMA Suppose that iP:A ->- B is positive -- then iP is bounded. 

More can be said 	in the unital situation. 

7.4 	 LEMMA If A and B are unital and if iP:A ->- B is positive, then IliPll = 

IliP(lA) 	II· 


[Note: Accordingly, if iP is in addition unital, then IliPll = 1.] 


7.5 EXAMPLE Take A = B = ~ <g) and let iP be the linear map defined by 
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= 

o o 

Then II~II = 11~(lA) II 	 = 1 and ~(lA) ?! O. Still, ~ is not positive. 

7.6 LEMMA If A and B are unital and if ~: A -+ B is a unital J::xnmded linear 

map such that "<P II = I, then <P is positive. 

Specialize now and take B = S -- then a linear functional w:A -+ C is said to 

be positive if 

A ?! 0 => w(A) ~ O. 

N. B. Positive linear functionals are necessarily continuous (cf. 7.3). 

7.7 	 LEMMA let w:A -+ S be a positive linear functional -- then V A E A, 

w(A*) = weAl 

and 

IW(A) 12 ~ I 'wi IW(A*A). 

7.8 	 LEMMA Let w: A -+ g be a positive linear functional -- then \:/ A, B E A, 

IW(A*B) 12 ~ w(A*A)w(B*B). 

Fix an approximate unit 	{e.:i E I} for A per 1. 20. 
~ 
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7.9 LEMMA Let w: A -+ £ be a positive linear functional -- then 

Ilwll 	 = lim w{e.). 
iEI ]. 

In particular: If A is unital and if w: A -+ £ is positive, then II w II = 

w(1A) (cf. 7.4). 

[Note: This can be turned around. In other words, if w:A -+ £ is a bounded 

linear functional such that Ilwll = w(lA)' then w is positive (cf. 7.6) 

If 

are positive linear functionals, then their sum wI + w is a positive linear2 

functional. And: 

Proof: 

= lim wI (e.) + lim w (e.)2iEI :r iEI ]. 

= II WI I , + I I w211 • 

Suppose that A is nonunital. Given a positive linear functional w:A -+ £, 
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define a linear functional W+ on A+ by 

+. ..Then W J.S posJ.tive. In fact, 

W+ ( (A, A) * (A, A) ) 

= 1 A 12 I IwII + ~w (A) + AW (A*) + W (A*A) • 

But 

Aw(A) + AW{A*) + 21AI I Iwi 11/2 w(A*A) 1/2 

-
~ AW(A) + AW{A*) + 21AI IW(A) I (cf. 7.7) 

~ O. 

Therefore 

N.B. We have 

7.10 LEMMA let w:A -+ C be a bounded linear functional. Assun:e: V A E A, 

W(A*) = weAl. 

Then 3 unique positive linear functionals 
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w :A -+ C 

such that 

w = w - w+ 

and 

by 

7.11 REMARK Let w: A -+ C be a bounded linear functional. Define w*: A -+ C 

and put 

w* (A) = w(A*) 

w + w* 
Re w = ---=2::--

w - w*
Im w = . 

UC:[ 

Then 

w = Re w + ;::r Im w. 

Since 

Re w(A*) = Re W(A) 


Im w(A*) = Im W(A), 


it follows fran 7.10 that every bounded linear functional on A can be written as 

a linear combination of four positive linear functionals. 
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A state on A is a positive linear functional w of nonn 1. The state space 

S (A) of A is the set of states of A. 

E.g. : S (C E9 C) can be identified with [0,1] and S (~(~)) can be identified 

2with 8 . 

7 .12 EXAMPLE Fix a locally canpact Hausdorff space X . 

• If X is canpact, then the dual C(X)* of C(X) can be identified with 

M(X) I the space of ca:nplex Radon rreasures on X: 

~ + I ,I (f) = Ix fd~. 
~ ~ 

Here 

+I~I the total variation of ~. Therefore S(C(X» = Ml (X), the Radon probability 

rreasures on X • 

• If X is non~ct, then the dual C (X) * of C (X) can be identified with
~-''l::'''"'" eo eo 

M (X), the space of ca:nplex Radon measures on X: 

~ + I , I (f) = Ix fd~. 
~ ~ 

Here 

II ~ II = I~ I (X) I 

I~ I the total variation of ~. Therefore S (Ceo (X» = Ml+ (X) I the Radon probability 

rreasures on X. 

7. 13 EXAMPLE Given a ca:nplex Hilbert space H, denote by W(H) the set of 

density operators (Le. the set of positive trace class operators W with tr(W) = 1) 
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then the arrOW' 

W(H) -+ S (L (H»
-00 

that sems W to ~, where 

~ (T) = tr (wr) (T E L (H»
-00 

is bijective. 

[Note: It is clear that 

S{L
_00 

(H» c S{B{H», 

the inclusion bein:J proper if H is infinite dimensiona.1.] 

7.14 LEMMA SeA) is a nonempty convex subset of A*. 

7.15 LEMMA S (A) is weak* closed iff A is unital. 

[Note: So, if A is unital, then SeA) is weak* compact (A1aog1u) I thus is the 

weak* closed convex hull of its extrerre points (Krein-Milman).] 

If 

are positive linear fumtiona.1s, write w 2: w if w - w is positive.1 2 1 2 

NOW' let w E S(A}. Denote by [O,w] the set of all positive lirear fumtiona1s 

w':w 2: Wi -- then [O,w] is a convex set am w is said to be pure if [O,w] = 

{tw:O ::;; t ::;; 1}. Write peA) for the set of pure states of A. 

http:fumtiona.1s
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7.16 EXAMPIE If X is a locally compact Hausdorff space, then 

P{C{X» = {o :x E X} (X compact)x 

am 

P(C (X» = {o :X E X} (X norxx:xnpact) . 
00 x 

7.17 EXAMPIE Suppose that H is a canplex Hilbert space -- then 

P(~{H» = {wx: Ilxll = l}. 

Here 

w (T) = <x, Tx> x 

or still, 

w (T) = tr(p T),x x 

p the orthogonal projection onto Cx. x 

[Note: Let ~H :be projective Hil:bert space (the quotient of the unit sphere 

in Hby the canonical action of Q(l». Give ~H the quotient topology -- then 

P(~ (H» supplied with the relativised weak* topology is ~:rphic to ~H.] 

N.B. The w (11x II = 1) are the so-called vector states. x 

7. 18 LEMMA If A is unital, then the extrerre points of S (A) are the pure 

states: 

ex S (A) = P (A) . 

7.19 REMARK For any A (unital or nonunital), let S (A) stand for the set 
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of positive linear functiona1s of nonn ::;; 1 -- then S (A) is convex, weak* compact, 

and 

ex S(A) = {O} u P(A). 

7.20 LEMMA Every multiplicative state is pure. 

7.21 LEMMA Every pure state is multiplicative on the center- of A. 

7. 22 SCHOLIUM If A is a commutative c*-algebra, then 

P(A) =1l(A). 

Suppose that A is ronmital. Given a state w E S (A), define as before a 

linear fun::::tiona1 w+ on A+ by 

w+ (A, It) = w(A) + It (II w II = 1). 


+ +
Then w E S (A ). Moreover , 

+ +wE peA) <=> w E P(A). 

7.23 THEOREM If AI is a C*-suba1gebra of A, then every state WI on AI can 

be extended to a state w on A. 

PROOF It suffices to establish this when both A and A I are unital with 

1A = 1 • So let WI E S (A'). ONirq to the Hahn-Banach theorem, :3 a bounded linear 
AI 

functional w E A* that extends Wi and is of the same nonn. But 

1 = Ilw II = Ilwl II = Wi (I ) = w(lA) • 
AI 
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Therefore w is positive (cf. 7.6), hence w E SeA). 

I7.24 	 THEORNVl If A is a C*-suba1gebra of A, then every pure state w I on A' 

can 	be extended to a pure state w on A. 

PROOF Let S (A) be the subset of S (A) oonsisting of those states that 
Wi 

extend w' -- then S (A) is rot empty (cf. 7.23). On the other hand, S (A) is a 
w' Wi 

weak* 	canpact face of S (A), thus 

ex S (A);c!if (Krein-Milman) • 
Wi 

But 

ex S (A) c ex S(H). 
Wi 

And 

w E ex S (A) => w ;1! 0 => w E P(A) (cf. 7.19). 
Wi 

7.25 	 lEMMA Let A E t\;A -- then :3 w E P(A): Iw(A) I = I !AII· 

PROOF The C*-suba1gebra C* (A) generated by A is corrmutative. Choose a 

character w E Ll (C* (A) ) : Iw (A) I = IIA I I and extend w to a pure state w on A
A A 	 A 

(cf. 7.24). 

Here is a ooro11ary: If w(A) = 0 V w E P(A), then A = O. In fact, 

V w E P(A), 

weRe A) = 0 

=> Re 	A = Im A = O. 

w(Im A) = 0 
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7.26 LEMMA Let A E A -- then A E ASA iff weAl E ~ for all w E peA). 

7.27 LEMMA Let A E A -- then A E A+ iff weAl E ~~ for all w E P{A). 

A weight on A is a function w:A+ -+ [O,ooJ such that 

w(A + B) = weAl + weB) 


w{O) = 0, w{AA) = Aw{A) (A > 0, A E A+). 


E.g.: The prescription w(O) = 0, weAl = (A E A+,A ";! 0) is a weight, albeit00 

a not very interestin;J are. 

Every p::>sitive linear fun:::tio:n.3.1 is, of course, a weight. :More generally, any 

sum of positive lirear fun:::tio:n.3.ls is a weight (in fact, any sum of weights is a 

weight) . 

7. 28 EXAMPLE Let H be a complex Hilbert space. Fix an orthononua.l basis 

{e. :i E I} for H and define 
1. 

tr:B(H)+ -+ [0,00] 

by 

tr (A) = E <e. ,Ae.>.
1. 1.iEI 

Then tr is a weight. 

[Note: Recall that tr is welldefined in the sense that it is indeprodent of 

the choice of orthononua.l basis. J 

7.29 EXAMPLE Take X = ~n -- then the Riesz representation theorem identifies 

http:fun:::tio:n.3.ls
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the positive linear functionals on C (R
n

) with the Radon I'IEasures and the positive 
c 

linear functionals on Coo C!t) with the finite Radon measures. Therefore every Radon 

I'!Easure ]J such that ]J(~n) = 00 determines a weight on Coo(~n) vv.hich is not a positive 

linear functional (e.g., ]J = Lebesgue measure) . 

[Note: Recall that a positive linear functional on C (Rn ) is a linear c 

functional I:C (Rn ) -+ C such that I (f) ~ 0 whenever f ~ 0.]
c 

Given a weight w on A, let 

7.30 lEMMA A ~ B ~ 0 and if A E w - A+, then B E w - A.r. 

PR(X)F write 

A = (A - B) + B. 

Then 

00 > weAl = w(A - B) + w(B). 

Let 


L = {A E A:w(A*A) < oo}.

W 

[Note: In general, 


w(A*A) < 00 "1-> w(AA*) < 00.] 


7.31 LEMMA L is a left ideal. 
w 
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PROOF There are two points. First, V A,B E A, 

(A + B)*(A + B) + (A - B)*(A - B) = 2 (A*A + B*B) 

=> 

(A + B)*(A + B) s 2 (A*A + B*B). 

Second, V X E L & V A E A,w 

(AX) *AX 	= X*A*AX 

s IIA*A Ilx*x 

2= IIA 11	 x*x. 

7. 32 LEMMA The linear span w - A of w - A+ is the set of elem:mts of the 

form 

n 
{E
i=l 

Y~X. :X. r Y. 
1 1 1 1 

E L }, 
W 

i.e., is 

L* L • ww 

PROOF If X,Y E L , then w 

3 
4Y*X = E (r-I) k (X + (;'::1) ky) * (X + ( r-I) ky) r 

k=O 

which implies that 

L* Lew - A. ww 

1/2
In the other direction, A E w - A+' then A E LW' thus 
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N.B. It follows that w - Ais a *-subalgebra of Awith 

(w - A) n ~ = w - ~. 

Given A E w - A, we can write 

A - At - A' + ;.::r At - ;.::r AI - 1 2 3 4 

is another such deccmp::>sition I then 

So 

=> 


Therefore the prescription 

unambiguously extends w fran w - A+ to w - A. 

7.33 REMARK If w - A+ = t\, then w - A = A and the extension of w to A is 

a positive linear functional, hence w is continuous. 



15. 


A trace on A is a weight w satisfying the condition 

w(A*A) = w('AA*) 

for all A E A. 

N. B. If A is ccmnutative, then every weight is a trace. 

7.34 REMARK If w is a trace, then L is a *-ideal, thus the same is true w 

of w - A (cf. 7.32). 

7.35 EXAMPLE If H is a complex Hilbert space, then 

is a trace and 

tr - B(H) = ~l(H). 

A tracial state on A is a state w whic.h is a trace. 

N.B. If A is contmltative, then every state is a tracial state. 

7.36 EXAMPLE Take A = M (e) -- then th.e assigrnrent
n 

1 n 
[a •. J -+ - z:: a.. 
~J n k=l KK 

is a tracial state on M (e) (and there are no others) . 
n 

7.37 EXAMPLE Let H be an infinite cl.im:msional canplex Hilbert space - 

then ~(H) does not admit a tracial state. To see this, assl.lIl:e the opposite and 
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suppose that w E S (L (H)) is a tracial state, hence w has the sane constant value 
-00 

t > 0 on all rank one orthogonal projections (any two such being unitarily equiv

alent) . Let {e.: i E I} be an orthononnal basis for H. Given e. , ... ,e. , let P 
1 11 1n n 

be the orthogonal projection onto their closed linear span -- then 

Iw(p ) I ::; lip Ii = l.n n 

On the other hand, 

Iw(Pn ) I =nt => nt::; 1 => n ::; l, 
t 

fran which the obvious contradiction. 
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§8. REPRESENTATIONS OF ALGEBRAS 

N.B. In what follONS, the underlying scalar field is g. 

let E be a linear space, L(E) the linear maps fran E to E -- then L(E) is 

an algrora (multiplication being COIl'I[X)sition) . 

let A be an algrora -- then a representation of A on E is a hcm::m:>rphism 

TI:A + L(E). 

[Note: A represa:1tation TI:A + L(E) defines a left A-nodule structure on E 

(viz. Ax = TI (A) x) and conversely_] 

8.1 TERMINOI1JGY 

• TI is faithful if TI is injective. 

• TI is trivial if TI(A) = a v A E A. 

• TI is algebraically irreducible if TI is not trival and {a} and E are the 

only TI-invariant subspaces. 

• TI is algebraically cyclic if 3 x E E such that {TI (A) x:A E A} = E. 

8.2 REMARK The definition of algebraically irreducible explicitly excludes 

trivial representations. If they were not excluded, then the trivial representation 

on a zero or one d:irrensional space would qualify. 

8.3 LEMMA let TI be a representation of A on E ;t a -- then TI is algebraically 

irreducible iff every nonzero vector in E is algebraically cyclic. 

8.4 THEOREM let TI be an algebraically irreducible representation of A on E. 
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Suppose that 1 c Ais a nonzero ideal - then the restriction TI 11 is either trivial 

or an algebraically irreducible representation of 1. Furtherm::>re, every algebra

ically irreducible representation of 1 arises by restriction fran SatE algebraically 

irreducible representation of A. 

[Note: If 1 c Ker TI, then TI drops to an algebraically irreducible represent

ation of A/I and every algebraically irreducible representation of A/I is obtained 

in this fashion.] 

8.5 lEMMA let TI be an algebraically irreducible representation of A on E. 

Suppose that A E ~A -- then TI (A) = O. 

PRCX)F Fix Y E E:y "#. 0, thus {TI(B)y:B E A} = E. And 

TI{A)TI{B)y 	= TI(AB}y 

= TI{O)y = o. 

COnse<;{UeIltly, 

Ann[/ c Ker TI. 

Since ~A is an ideal , it foll()l)olS that the induced hcm::morphisrn 

A/~A -+- L{E} 

is an algebraically irreducible representation of A/~A. 

8.6 THEOREM let TI be an algebraically irreducible representation of A on 

E -- then TI can be extended to an algebraically irreducible representation iT of 

DC (A) on E. Moreover, TI is unique. 
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PRCOF Suppose that 

n(X)x = n(Y)y (X,Y E A, x,y E E) . 

Then V A E A & V (L,R) E De(A) , 

n(A) (n(L(X»x - n(L(Y»y) 

= n(AL(X»x - n(AL(Y»y 

= n(R(A)X)x - n{R{A)Y)y 

= n(R(A» (n(X)x - n(Y)y) 

= o. 

But n is irreducible, hence 

n(L{X»x = n(L(Y»y. 

Accordingly, if e E E and if 

- n(X)x 

e= 

n(Y)y, 

then the prescription 

n(L(X» x 

rr{(L,R»e = = 

n(L(Y)) y 

makes sense and defines an algebraically irreducible representation of DC(A) on E. 

Finally, V A E A, 

;;: ( (LA'~» e = n (LA (X) ) x 

= n{AX)x 
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= TI(A) TI (X) x 

= TI (A) e. 

Given a representation TI of A on E, let 


TI(A) , = {T E L(E) :TTI(A) = TI(A)T(A E A) }. 


8.7 LEMMA let TI be an algebraically irreducible representation of A on 

E -- then TI(A) , is a division algebra. 

[Note: In other words, TI(A) , is a unital algebra in which every nonzero 

element has an inverse.] 

8.8 REMARK The converse is false, Le., it may very well be the case that 

TI(A) I is a division algebra, yet TI is not algebraically irreducible. E.g.: let 

A be the algebra of all ~-by~ matrices which have only finitely many nonzero 

entries, let E be the vector space of all carplex sequences, and let TI be t.~ 

canonical representation of A on E -- then TICA) , can be identified with ~, yet the 

subspace of E consisting of those sequences that are finitely supported is TI-invariant. 

let TI be a representation of A on E ~ 0 -- then TI is totally algebraically 

irreducible if v T E L(E) and every finite dimensional subspace VeE, ::I A E A: 

TI (A) x = Tx V x E E. 

N.B. Evidently, 

"totally algebraically irreducible" => "algebraically irreducible". 
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B.9 LEMMA If TI:A -+ L(E) is totally algebraically irreducible, then 

TI(A) , = g i<\:. 

PRCX)F Let T E TI(A) , and sUPIX>se that for sorre x E E, x and Tx are linearly 

independent. Since TI is totally algebraically irreducible, 3 A E A: 

TI(A)x = x 

TI(A)Tx = o. 

But then 

a = TI(A)Tx = TTI(A)x = Tx, 

a contradiction, So, V x E E, 3 c E C:Tx = c x. If x ~ 0, y ~ 0, and c ~ c ,x - x x y 

then x + y and T(x + y) "INOuld be linearly independent. This being an impossibility, 

the conclusion is that 3 c E C:Tx = ex (x E E) or still, T = c (i<\:) . 

B.lO LEMMA If TI:A -+ L(E) is algebraically irreducible and if TI(A) , = g i<\:, 

then TI is totally algebraically irreducible. 

B.ll RAPPEL The only finite <'linensional division algebra over g is g itself. 

Let TI be an algebraically irreducible representation of A on E. Assurre: 


dim E < -- then TI is totally algebraically irreducible. Proof: TI (A)' is a finite
00 

dim2msional division algebra, thus TI(A) , = g i<\:. Now quote B.lO. 

B.12 EXAMPLE If A is con:mutative, then every finite d..iIrensional algebraically 

irreducible representation TI: A -+ L (E) of A is one dinensional. 
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[Suppose that E has two linearly independent vectors x and y. Choose 

A,B E A:n(A)x = x, n(A)y = 0, n(B)x = y -- then 

TI(AB)x = n(A)TI(B)x = n(A)y = 0 


TI(BA)x = TI(B)TI(A)x = TI(B)x = y. 


But AS = BA, so "IIJe have a contradiction.] 

[Note: The assumption dim E < 00 implies that n is totally algebraically 

irreducible and this is all that is needed. Spelled out: If A is conmutative, 

then every totally algebraically irreducible representation of A is one d:i.lrensional. J 

8.13 REMARK Let TI be an algebraically irreducible representation of A on E. 

Assurre: V A E A, TI (A) is of finite rank -- then TI is totally algebraically irre

ducible. 

Let TIl and TI2 be representations of A on El and E2 • 

• An algebraic equivalence is a linear bijection l;;:El ~ E2 such that 

(A EA) • 

• An algebraic intertwining operator is a linear map T:E ~ E2 such thatl 

(A E A). 


8.14 LEMMA Suppose that TIl and TI2 are algebraically irreducible representa

tions of A on El and E2 -- then all nonzero algebraic intertwining operators 

be~en TIl and TI2 are algebraic equivalences. 
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Let n be an algebraically irreducible representation of A on E. Fix x ~ 0 -

then I = {A E A: n (A) x = O} is a nodular maximal left ideal and the arrC1N A -+ n (A) x 

implements a linear bijection s:A/I -+ E that sets up an algebraic equivalence be

tween the canonical representation L of A on A/I and n. 

[Note: To check nodularity, choose e E A:n(e)x = x -- then V A E A, 

n(Ae - A)x = n(A)n(e)x - n(A)x = n(A)x - n(A)x = o. 

Therefore 

Ae-AEI (A E A) • 

1.e. : I is nodular. J 

* * * * * * * 

Assume henceforth that A is a Banach algebra and that E is a Banach space -

then in this context a representation of A on E is a hcm:::m::>rphism n: A -+ B(E), where 

B(E) is the Banach algebra whose elements are the bounded linear maps fran E to E. 

8. 15 TERMINOI.OGY 

• n is faithful if n is injective. 

• n is trivial if n(A) = 0 V A E A. 

• n is topologically irreducible if n is not trivial and {O} and E are the 

only closed n-invariant subspaces . 

• n is topolggically cyclic if 3 x E E such that {n(A)x:A E A} is dense in E. 

N.B. It is clear that the notions "topologically irreducible" and "topologically 

cyclic" are weaker than their purely algebraic counterparts. 
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8.16 LEM1A ret 'IT be a representation of A on E ~ 0 -- then 'IT is topologically 

irreducible iff every nonzero vector in E is topologically cyclic (cf. 8.3). 

8.17 REMARK Suppose that 1 c Ais a nonzero closed ideal -- then the re

striction to 1 of a topologically irreducible representation of A is either trivial 

or a topologically irreducible representation of 1 (cf. 8.4). 

[Note: It is not cla.irred, however I that every topologically irreducible repre

sentation of 1 can be extended to a topologically irreducible representation of A.] 

8.18 RAPPEL A nomed division algebra V is one d.irrensional: V:::: C. 

8.19 THEOREM ret 'IT be an algebraically irreducible representation of A on 

E -- then 'IT is totally algebraically irreducible. 

PRCXJF Recall first that 'IT (A) , is a division algebra (cf. 8.7). Accordingly, 

in view of 8.10, it suffices to show that 'IT (A) , is named. To this end, fix a 

nonzero x E E. Given T E 'IT (A) " put 

IITII = inf{II'IT(A) II:A E A, 'IT (A) x = Tx}.
x 

Since 'IT is algebraically irreducible, the RHS is not empty (cf. 8.3) and 

o :::; I I T I I x < ro. Next 

I I Tx I I = I I 'IT (A) x " :::; I I 'IT (A) I I I I x t I 

=> 

Therefore 

II T II x = 0 => IITx II = 0 

liT" .x 
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=> Tx = 0, 

so T = 0 (otherwise T-l.rx = 0 => X = 0). The verification that II· II is a nonn x 

is straightforward. 

[Note: The carmutant 1T(A) , of 1T(A) is CClrq?uted in L(E) (not B(E».] 

8.20 REMARK Mc:Ioontarily drcp the assumption that E is a Banach spa.ce (but 

retain the assumption that A is a Banach algebra). Consider an algebraically 

irreducible representation 1T of A on E -- then 1T is necessarily totally alge

braically irreducible. To see this, recall that 1T is algebraically equivalent to 

the canonical representation L of A on A/I for satl: rrodular max.imal left ideal 

leA. But All is a Banach space (I being closed) and the operator LA: A/I -+ A/I 

'Which sends B + I to AB + I is continuous (indeed, IILA II $ IIAII). One may there

fore apply 8.19. 

[Note: It is thus a corollary that an algebraically irreducible representation 

of a ccmnutative Banach algebra is one d..iIrensional (cf. 8.12).] 

8.21 EXAMPLE If 1T is an algebraically irreducible representation of A on E, 

then 1T(A) I = ~ i~ (cf. supra) but this is false if "algebraically irreducible" is 

replaced by "topologically irreducible". Thus take for E a Banach space with the 

property that :3 T E B(E) which has no nontrivial closed invariant subspaces 

(Enflo) -- then the identity representation 1T of the carmutative unital subalgebra 

A of B(E) generated by T is a topologically irreducible representation. But 

A c 1T (A) , • •• • 

If 1T is a representation of A on E, then 1T is continuous if :3 K > 0 such that 
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lilT (A) II ~ K II A II (A E A) • 

[Note: If in the tenninology of §4, E is a left Banach A-m::rlule, then the 

associated representation IT of A on E is continuous: 

lilT (A) x \I = I I Ax 1\ ~ K I I A II \I x \I 
=> 

I IlT (A) I I ~ K IIA I I . ] 

8.22 LEMMA Suppose that V x E E, the rrap 

- A + E 

IT : 
x 

A + lT (A) (= IT(A)x)
x 

is continuous -- then lT is continuous. 

PRX>F Consider the set 

{n : Ilxll ~ l} c: B(A,E) • x 

sUI? lilT (A) II ~ I IlT (A) II (A E A) • 
Ilxll~l x 

So, by the unifo:rm boundedness principle, 3 K > 0: 

SUI? lilT II ~ K. 
Ilxll~l x 

And this implies that 

lilT (A) II = sUI? lilT (A) x II = SUI? lilT (A) II ~ K IIA I , . 
, I x I I~l IIxI I~l x 
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8.23 THEOREM Suppose that 'IT is an algebraically irreducible representation 

of A on E -- then 'IT is continuous. 

PR<X>F In the notation of 8.22, the algebraic irreducibility of 'IT implies 

that there are two possibilities: 1. v X, 'IT is continuous; 2. v x ;z! 0, 'IT x X 

is discontinuous. This said, the idea then is to assume that the second possibility 

obtains and fran there derive a contradiction. So take E infinite dimensional and 

start by fixing a sequence of linearly independent elements x E E (11x II = 1) . 
n n 

Next, choose a sequence A E A with the following properties:
n 

That such a construction is possible will be detailed belCM. Proceeding, let 

00 

Then v k E ~, 

But 'IT(A ) E B(E), fran which a contradiction.
O

[Note: The existence of the A can be established by induction if one can 
n 

Iprove: V E > 0, V M > 0 I V m E ~ there is an A E A such that 
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IIAII < E:, n(A)x = ••• = n(A)x = 0, I In(A)xml I > M.l n_l 

'Ib this end, let 

11 = {A E A:n(A)Xl = O}, ••• ,l = {A E A:n(A)x = OJ. m m 

en the basis of 8.19, 3 Xm E A: 

n(xm)x = •.• = n(X)x 1 = 0, n(X)x = x •l m m- m m m 

Thls 

=> 

1 being maximal. Therefore addition defines a continuous linear map of m 


1 n ••• n 1 $ 1

1 m-l m 

onto A. By tl:e open mapping theorem, 3 0 > 0 such that for any C E A with 

Ilc II < OE:, 

3 A E 11 n ••• n 1m-I' B E 1m 

such that 

C = A + B and IIAII < E:, IIBII < E:. 

Since the map n is discontinuous, one can find a C: Ilc II < os and Iln(c)xmll > M. 
~ 

For this choice of C, the corresponding A satisfies the required conditions.] 

Let n1 and n2 be representations of A on El and E2. 

• A topological equivalence is a linear bt:::::m:Jeonorphism l;:El -+ E2 such that 
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(A E A) • 

• A topological intertwining operator is a rounded linear map T:E -+ E2
l 

such that 

(A E A). 

8. 24 LEMMA Supp:>se that TIl and TI2 are algebraically irreducible represen

tations of A on El and E2 -- then every algebraic equivalence l;; :El -+ E2 is a 

tofOlogical equivalence. 

PR(X)F In view of 18.23, TIl and TI2 are continuous. Fix xl E El (xl ~ 0) and 

let 

Put x = l;;x -- then2 1 

Since the arrows 

are topological equivalences between 

the arrow 
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is a linear harreorrorphism. But 

Therefore 1;; is a topol<:X1ical equivalence. 

The radical of A is the intersection of the kernels of all the algebraically 

irreducible representations of A, thus is an ideal. Notation: rad A. 

[Note: A priori, this is a purely algebraic notion, Le., the representation 

space E of an algebraically irreducible representation TI of A is merely a linear 

space, not a Banach space. However, as was pJinted out in 8.20, one can always 

place a norm on E w. r. t. which E is a Banach space, the TI (A) (A E A) are bounded, 

and TI:A + B(E) is continuous.] 

8. 25 	 LEMMA The radical of A is the intersection of the nodular maximal left 

ideals 	in A, hence is a closed ideal. 

[Note: One can replace "left" by "right".] 

8.26 FEMARK A nodular maximal left ideal in A is closed but in general, 

maximal left ideals need not be closed. E.g.: Take A to be an infinite dimensional 

Banach space thought of as a Banach algebra with trivial multiplication (AB = 0 

V A,B E A) and let r be any dense linear subspace of codi:rrension l. 

[Note: If A has a right (left) approximate unit (cf. 4.1), then every maximal 

left (right) ideal is closed.] 
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N.B. If r:A -+ ~;:£) is the spectral radius, then 

r Irad A :: o. 

B.27 LEMMA let 1 c A be a closed ideal -- then rad 1 = 1 n rad A. 


[This is a trivial consequence of B. 4.] 


If rad A = {O}, then A is said to be sanisimple. 

N. B. The quotient A/rad A is a semis inple Banach algebra: 

rad(A/rad A) = {a}. 

[The algebraically irreducible representations of A are of the form 'IT pr,0 

where pr:A -+ A/rad A is the projection and 'IT is an algebraically irreducible re

presentation of A/rad A.] 

B.2B EXAMPLE Every C*-algebra is semisimple. Proof: let A E rad A -- then 

A*A E rad A => r(A*A) = o. 

But 

IIAII = r(A*A) 1/2 (cf. 1.1). 

Therefore A = O. 

[Note: Not all Banach algebras are sanisimple and there are plenty of 

instances at the extreme end, viz. those equal to their radical (hence having no 

algebraically irreducible representations whatsoever).] 

8. 29 THEOREI'll let A and B be Banach algebras. Assume: A is semisimple and 

let '¥:B -+ A be a surjective harom::>rphism -- then '¥ is continuous. 
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PRCX)F Suppose that '¥ is not continuous -- then 3 a sequence {B } in B such n 

that B ..... 0 and '¥(B ) ..... A ~ O. Since A is semisimple, 3 an algebraically irre
n n 

ducible representation 'IT of A on a Banach space E such that 'IT (A) ~ 0 with 'IT con

tinuous. Because '¥ is surjective, 'IT 0 '¥: B ..... B(E) is also algebraically irreducible, 

thus is continuous (cf. 8.23). Therefore 

n('¥(B» = (n 0 '¥)(B) ..... (n 0 '¥){O) = O. n n 

MearlI'tlhile, thanks to the continuity of n, 

n{'¥{B » ..... n{A) ~ O. 
n 

Contradiction. 

8.30 REMARK If A is in addition ca:mlUtative, then it can be shown that any 

harrornorphism '¥: B ..... A is continuous. 

8. 31 THEOREM Any two complete no:rms on a semisimple Banach algebra are 

equivalent. 

[Apply 8.29 to idA:A ..... A.] 
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§9. *-REPRESENTATIONS OF *-ALGEBRAS 

N.B. In what follCMS, the underlying scalar field is ~. 

let E be a Hilbert s];:6.ce, B(E} the bounded linear operators fran E to E - 

then B(E) is a C*-algebra. 

let A be a *-algebra -- then a *-representation of A on E is a *-hamomorphism 

'IT:A -+ B(E). 

9.1 LEMMA let 'IT be a *-representation of A on E. Supp:>se that EO c E is a 

- .1
'IT-invariant linear subspace of E -- then EO and EO are closed 'IT-invariant linear 

subspaces of E and 

[Note: let P O:E -+ EO be the orttogonal projection -- then 


Po E 'IT (Al ' . ] 


9.2 RAPPEL A subset SeE is total if the linear span of S is dense in E. 

let 'IT be a *-representation of A on E -- then 'IT is nondegenerate if the set 

AE = {'IT(A)x:A E A, x E E} 

is total. 

[Note: The trivial *-representation of A on a zero di.nensional space is non-

degenerate. ] 

E.g.: If 'IT is topologically cyclic, then 'IT is nondegenerate. 

http:s];:6.ce
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9.3 ~ Let if be a *-representation of A on E -- then if is nondegenerate 

V nonzero x E E, 3 A E A:if(A)x ~ O. 

9. 4 LEMMA Let if be a *-representation of A on E -- then if is nondegenerate 

V x E E, 


x E {if(A)x:A E A}-. 


Given a *-representation if of A on E, let Eif be the closed linear span of AE 

then Eif is IT-invariant and the restriction of IT to EIT is a nondegenerate *-repre

sentation of A. Write 

J.E=Eif ESE.IT 

Then EJ. is if-invariant and the restriction of IT to EJ. is a trivial *-representationif if 

of A: 

EJ. = n Ker if (A) . 
if AEA 

9.S THEOREM Suppose that IT is a nondegenerate *-representation of A on E - 

then there is an orthogonal decomposition 

where ViE I, E. is a closed if-invariant subspace and the restriction of IT to E. 
1. 1. 

is a topologically cyclic *-representation of A. 

PROOF Order the set of sets of mutually orthogonal, topologically cyclic, closed 

IT-invariant subspaces of E by inclusion and, via Zorn, consider a maximal element 
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{E.:i E I}. 
~ 

Let 'ITl and 'ITZ be *-representations of A on El and E2 • 

• A unitary eg:rlvalence is a unitary operator U:E + E such thatl Z 

UTI1 (A) = TI2 (A) U (A E A) • 

9.6 REMARK Let I;;:E + E be a to[X>logical equivalence. Write I;; = U(I;;*I;;) liZ
l Z 

(polar decx:mposition) -- then V A E A, 

(1;;*1;;) liZ TI (A) = 'IT (A) (1;;*1;;) liZ
1 1 

and 

Therefore 

=> 


[To begin with, 

= ('IT (A*) 1;;) * z 
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=> 

=> 

And then 

But the range of (1;;*1;;) 1/2 is dense, so 

9.7 LEMMA Let TIl and TI2 be *-representations of A on El and E2 . Assurre: 

TI2 is top:>logically cyclic with a top:>logically cyclic vector x E E2 -- then TIl2 

is unitarily equivalent to TI2 iff TIl is topologically cyclic with a topologically 

cyclic vector Xl E El such that 

(A E A). 

[tbte: One can always arrange llE.tters so as to ensure that UX = x .]l 2

In §8, 

TI(A) , = {T E L(E):TTI(A) = TI(A)T (A E A)L 
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I.e.: The ca:rmutant of 'IT was computed in L(E). However, for the p1.lI1Oses at hand, 

it is best to let 

'IT (A) t = {T E B(E) :T'IT(A) = 'IT(A)T (A E A)}. 

9.8 LEMMA Let 'IT be a *-representation of A on E ~ a -- then 'IT is topologic

ally irreducible iff 'IT is not trivial and 'IT (A) t = g i~. 

9.9 LEMMA Let 'IT be a *-representation of A on E ~ a -- then 'IT is topologic

ally irreducible iff 'IT is not trivial and 'IT (A)' contains no nonzero orthogonal pro

jections except for the identity reap on E. 

PROOF Assume that 'IT is not trivial and that the condition on 'IT (A)' obtains. 

To get a contradiction, supy;ose that 'IT is not topologically irreducible. Let 

EO ~ E be a nonzero closed 'IT-invariant subspace and let Po be the orthogonal pro

jection of E onto EO -- then V A E A, 

PO'IT(A)P 'IT(A)P · O = O 

Therefore 

Po'IT (A) = ('IT(A*)P )*O

= (pa'IT (A*) Po) * 

= Po'IT (A) Po 

= 'IT (A) Po 

=> 
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ret 1T. :A -+ E. (i E I) l::x:! a *-representation. Assurre: V A E A, :3 K.. > 0
1. 1. -A 

such that 

sup I 11T.: (A) II s K...
iEI..... -A 

Fonn the (Hilbert) direct sum 

Then V A E A, 

e 1T. (A) E B( (D E.) 
iEI 1. iEI 1. 

and the assignmant 

A -+ (D 1T. (A) 
iEI 1. 

defines a *-representation of A on (D E., the (Hilbert) direct sum of the 1T .• 
iEI 1. 1. 

[Note: It is clear that 

(D 1T. 
iEI 1. 

is nondegenerate iff ViE I, 1T. is nondegenerate.]
1. 

N.B. If 1T is a *-representation of A on E and if 1T. = 1T ViE I, then the 
-- 1. 

*-representation 

(D 1T. 
1.iEl 

is denoted by !1T (1 the cardinality of 1). Under the identification 

~ 2
(D E ~ E ~ I (1), 

iEI 

I1T beoames 1T ~ id. 
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[Note: lilly *-representation which is topologically equivalent to a 

*-representation of this type is called a multiple or amplification of 1T by!..] 

The definitions and results that folloN can be formulated for arbitrary 

*-represmtations but rna.tters s:implify if we restrict to nondegenerate *-re:pre

sentations which is not an essential loss of generality. 

Let 1Tl and TI2 be nondegenerate *-representations of A on El and E2 -- then 

1Tl and 1T2 are disjoint if no nonzero sub *-representation of TIl is topologically 

equivalent to a nonzero sub *-representation of 1T2 • 

[Note: Therefore two topologically irreducible *-representations of A are 

disjoint iff they are not topologically equivalent. ] 

9.10 EXAMPLE Every nontrivial nondegenerate *-representation of A on a finite 

dinensional Hilbert space is the finite direct sum of topologically irreducible sub 

*-representations (these are unique up to topological equivalence while their multi 

plicities are unique period). So, if 1Tl and 1T2 are two such, then to say TIl and 

1T2 are disjoint rooans that the "same lf topologically irreducible *-representation 

cannot appear in the decantX>sitions of 1Tl and 1T2 into topologically irreducible sub 

*-representations. 

Let TIl and 1T2 be nondegenerate *-representations of A on El and E2 -- then 

TIl and TI2 are geometrically equivalent if no nonzero sub *-representation of TIl is 

disjoint fran 1T2 and no nonzero sub *-representation of 1T2 is disjoint from 1Tl . 
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9.11 EXAMPLE In the finite d:i.mensiona1 case (cf. 9.10), "\ is ge<:netrically 

e::jUivalent to TI2 iff the II same" top:::>logically irreducible *-representations occur 

in Heir respective decompositions into top:::>logically irreducible cClll1p:::>nents but 

not necessarily with the same multiplicity. 

9.12 LEMMA Nondegenerate *-representations TIl ,TI2 are geon:etrically e::jUivalent 

iff TIl is unitarily equivalent to a sub *-representation of a multiple of TI2 and 

vice versa. 

[Note: Therefore a given nondegenerate *-representation is geanetrically 

e::jUivalent to any of its multiples.] 

In particular: 

"unitary e::jUivalence" => lIgec:metric equivalencell 
• 

9.13 REMARK If TIl is top:::>logically irreducible and TI2 is geon:etrica11y e::jUiv

alent to TIl' then TI2 is unitarily equivalent to a multiple of TIl' Thus if TI2 is 

also top::>logically irreducible, then TIl and TI2 are unitarily equivalent. 

9.14 LEMMA Nondegenerate *-representations TIl'TI2 are gE!ClITEtrically equivalent 

iff ::I a cardinal number ~ such that ~TII is unitarily equivalent to ~TI2' 

[To establish sufficiency, let 11 be a nonzero sub *-representation of 

then 11 is not disjoint from ~TIl' hence is not disjoint fram ~112' or still, is 
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not disjoint from TI2. I t remains only to reverse the roles of TIl' TI2. J 

N.B. One says that TIl is weakly equivalent to TI2 if Ker TIl = Ker TI2. SO, as 

a corollary to 9.14, 

"geometric equivalenceft => "weak e::.JUivalence". 

9 .15 REMARK Let Rep A be the set of all nondegenerate *-representations of 

A -- then in Rep A there are four standard notions of equivalence: 

1. unitary e:ruivalence; 

2. to:t;:Ological equivalence; 

3. geometric equivalence; 

4. weak e:ruivalence. 

All are e:ruivalence relations and we have 1 <=> 2 => 3 => 4. M:>reover, these 

implications are not reversible (except in certain special situations). 

9.16 LEMMA Nondegenerate *-representations TIl ,TI2 are disjoint iff they have 

no gecxnetrically e:;ruivalent nonzero sub *-representations. 

A nondegenerate *-representation TI of A on E is pr.i.m3.ry if every nonzero sub 

*-representation of TI is geometrically e:ruivalent to TI. 

E.g.: If TI is to:t;:Ologically irreducible, then TI is primary (as is TI ED TI which, 

of course, is not to:t;:Ologically irreducible). 

[Note: Arbitrary multiples of a topologically irreducible *-representation are 

primary. J 

http:pr.i.m3.ry
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9.17 LEMMA Nonde:Jenerate primary *-representations 1Tl' 1T2 are either disjoint 

or geanetrically equivalent. 

PKX)F SuptDse that 1T ,1T2 are not disjoint -- then :1 nonzero sub *-represenl 

tations 1T~ of 1Tl , 1T~ of 1T2 with 1T~ geometrically equivalent to 1T~ (cf. 9.16). But 

1T~ is geometrically equivalent to 1Tl and 1T~ is geometrically equivalent to ·rr~. 

Therefore 1Tl is geometrically equivalent to 1T2 . 

* * * * * * * 

Assume henceforth that A is a Banach *-algebra (but maintain the assumption 

that E is a Hilbert sp::lce). 

9.18 REMARK There is no universally agreerl to definition of the term "Banach 

*-algebralt Here, it simply means that A is a Banach algebra supplied with an• 

involution. In particular: The involution is not necessarily continuous. 

[Note: In my book POOITIVITY, the involution was tacitly taken to be isanetric 

(i. e., I IA* II = IIA II for all A E A) which, of course, implies its continuity. Let 

us also remind ourselves that this is autauatic for C*-algebras.] 

9.19 EXAMPlE Let A be an infinite dimensional Banach space. Fix a Hamel 

basis E = {e} for A subject to lie II = 1 VeE E. Let {en} be a sequence of distinct 

elements of E and put 

= nezn' = n e (n = 1,2, ... ).e2n_l e 2n 
1 

n_l 

For all remaining elements of E, put e* = e and then extend *: E -+ E to A by 
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conjugate linearity. Taking ncM the multiplication in A to be trivial (AB = 0 

V A,B E A) thus gives rise to a Banach *-algebra with a discontinuous involution. 

9.20 REMARK If A is a Banach *-algebra, then the ma.p 

PC (A) 4- PC (A) 
*: 

(L,R) 4- (R* ,L*) , 

'Where T* (A) = T (A*) *, is an involution, hence PC (A) is a *-algebra. If in addition, 

Anrly} = {oJ and ~A = {O}, 

then 5.15 (and subse:;ruent discussion) implies that PC (A) is a unital Banach *-alge

bra, in 'Which case 

is contractive. 

[Note: In the presence of the involution, 

~A = {oJ <=> ~A = {Ole 

Therefore PC(A) is a Banach *-algebra if A admits a right or left ap~ximate unit 

(cf. 5.16).] 

9.21 LEMMA Sup:r;ose that A is se:nisimple -- then the involution *: A 4- A is 

continuous. 

PR!X)F Denote a nonn II· 11* by IIAII* = IIA* \\ -- then the p:lir (A, II· \1*) is 

a Banach algebra. But according to 8.31, 11·11 and 11·1\* are equivalent, fran 

which the assertion. 
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9. 22 REMARK The image of a left ideal under the involution is a right ideal. 

Therefore rad A is a closed *-ideal (cf. 8.25), thus A/rad A is a semisimple Banach 

*-algebra and its involution is oontinuous w. r. t. the quotient nonn. 

A *-representation of A on E is a *-hc:m:.m:>rphism rr: A + B(E) • 

N.B. If the involution is isometric, then every *-representation is continuous, 

a fact that persists in general (cf. 9.25). 

[Note: A *-hc:m:.m:>rphism from a Banach *-algebra with isexnetric involution to 

a C*-algebra is continuous (indeed, contractive).] 

9.23 EXAMPLE Let H be a complex Hilbert space. Take A = B{H) , E = !!2 (H) 

(the *-ideal in B(H) consisting of the Hilbert-8chmidt operators) -- then the left 

regular representation rr of B (H) on ~2 (H) is a *-representation: 

rr(A)T = AT (A E B(H), T E !!2(H». 

[Note: 


rr (A) E B (L2 (H» (' \rr (A) \ I = I I AII) . 


Moreover, V T,T' E ~2 (H) , 

<T',AT>2 = <A*T' ,T>2 = <rr(A*)T' ,T>2 

<T' ,AT>2 = <T' , rr(A) T>2 = <rr(A)*T ' ,T>2 

=> 

rr{A*) = rr{A) *.] 
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9.24 lEMMA Let T be a *-subalgebra of B(E) which is a Banach algebra illlder 

an auxiliary norm II· 110 -- tren 3 M > 0: 

I IT II ~ M I IT I 10 (T E T). 

9.25 THEOREM Let IT be a *-representation of A on E -- then IT is continuous. 

PRCX)F The image IT (A) is a *-subalgebra of B (E) (hence is sanisimple) and the 

kernel Ker IT is a cloSErl *-ideal of A: 

IT(Ker IT) c rad IT(A) = {O} => IT c Ker IT. 

Ther:efore IT (A) is a Banach algebra via transport of structure: 

A/Ker IT::::: IT(A) , 

the auxiliary norm II· 110 being given by 

lilT (A) 110 = inf {liB r I:IT (B) = IT (A) }, 

It remains only to take T = IT(A) and apply 9.24: 

I IlT (A) I I ~ M lilT (A) II 0 ~ MilA II· 

[Note: 

X E rad IT(A) => X*x E rad IT(A). 

The sp:.ctrum of X*X thus consists of {O} alone, so the spectral radius r (X*X) 

com}?Uted in B(E) must vani she But 

IIXII2 = r (X*X) = 0 => X = 0.] 
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9.26 RAPPEL In a lll1ital *-algebra A, an element U E A is lll1itary if U*U = 

00* = lA' In an arbitrary *-algebra A, an element V E A is quasilll1itary if V*V = 

W*=V+V*. 

[Note: If A is lll1ital , then the map A ~ lA - A induces a bijection between 

the lll1itary elanents and the quasilll1itary elements.] 

9. 27 LEMMA SUppJse that A is a Banach *-algebra -- then every element of A is 

a linear combination of quasilll1itary elements. 

[Note: This is a well..kno.tm structural fact (its proof depends on Ford's farrous 

"square root 16IIlla").] 

Let A E A -- then 

n 
A = l: A.V. (A. E C) ,

1. 1. 1. i=l 

where the V. are quasiunitary• 
1. 

n 
[Note: Since 0 is quasiunitary,one can always assume tmt l: A. = 0.] 

i=l 
1. 

Put 
n n 

q(A) =inf{l: IA.I: l: A. = oL 
1. i=l 1. 

9.28 LEMMA q:A ~ E;d) is a sul:multiplicative seminonn such that q<A*) = q(A) 

for all A E A. 

9.29 REMARK If A = rad A, let (3 (A) = 1 but if A ;t'. rad A, let (3 (A) be the 
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norm of *:A/rad A + A/rad A, i.e., let 

fHA) = sup {IIA* + rad AII A E A - rad AL 
IIA + rad All 

Then it can be SIown that 

q(A) :::; (l + S{A» IIAII (A E A). 

Let I c A he a nonzero *-ideal (it is not assurred that I is closed). 5ur:pose 

tJ:at TI: I + B(E) is a *-representation - then we claim that TI can be extended to a 

*-representation :rr:A + B{E). To see this, recall that on general grounds there is 

an orth:>gonal deccmr:osition 

where ETI is the closed linear span of IE and the restriction of TI to E~ is a trivial 

*-representation of 1. One can certainly extend the latter to a trivial *-repre

sentation of A. SO, to settle the extension question, one can assume that TI is 

nondegenerate. 

n 
If L: TI (I. ) x. is a typical elenent in the linear span E of IE and if :rr is an 

. 1 1. 1.1.= 

extension of TI, then V A E A, 

n n 
:rr (A) (L: TI (I. ) x. ) = L: :rr(A)TI{I.)x.

1. 1.i=l 1. 1. i=l 

n 
== L: :rr (A) :rr (I. ) x. 

1. 1.
i=l 

n 
= L: :rr (AI . ) x . 

. 1 1. 1.1.= 
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n 
= L 1T(AI.) x •• 

]. ].
i=l 

Since TI(A) E B(E) and since IE is total, it follCIINs that if TI exists, then TI is 

unique. 

One can also use this recipe to establish existence. For sup];Ose that 

n 
1: 1T(L)x. = O. 

i=l 

Then 

n n 
= L L 

i=l j=l 

n n 
= L L 

i=l j=l 

n n 
= l: L 

i=l j=l 

n n 
= l: 1: 

i=l j=l 

n n 
= L < L 

]. ]. 

<1T (AI. ) x. , 1T (AI.) x. >
].]. J J 

<x. , 1T (AI. ) *1T (A! .) x. >
]. ]. J J 

<x., 1T(I~A*A! .)x.>
]. ]. J J 

<1T(L )x. ,1T(A*AI .)x.>
].]. J J 

1T (L ) x. ,1T (A*AI .) x . > 
i=l ].]. J Jj=l 

= o. 

The prescription 
n n 

TI(A) ( L 1f(I.)X.) = L 1T(A!.) x. 
]. ]. ]. ].

i=l i=l 
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is thus a we11defined linear operator on E. 

9.30 RAPPEL Supp::>se that E is a pre-Hilbert space. Let T:E -to E be a 1ine:rr 

map -- then a 1ine:rr map T*:E -to E is a formal adjoint of T V x,y E E, 

<Tx,y> = <x,T*y>. 

Formal adjoints are tuilique and tre subret 

L* (E) c L(E) 

consisting of those T that have a formal adjoint is a unital *-a1gebra. 

[Note: The mere existence of a formal adjoint does not imply roundedness. 

If, however, U is a unitary e1e:nent of L* (E), then U is rounderl: 
,..., _ f"W1 _ 

<Ux,Uy> = <U*Ux,y> = <x,y> 

=> I lux 112 = Ilx 112 => !lUx II = Ilx II => Ilu II = 1. 

Incidentally, if E is a dense 1ine:rr subsp3.ce of a Hilbert space E, then the formal 

adjoint is the restriction to E of the Hilbert space adjoint.] 

Next, TIm) has a fo:rma1 adjoint, viz. n(A*). Proof: 

m n 
< E TI (J . ) y . , TI (A) (E TI (I. ) x. ) > 
j=l J J i=l 1 1 

m n 

= ""' E <TI (J.) y . I
L, TI (AI. ) x. >

J J 1 1j=l i=l 

m n 
= E L <y. , TI (~) TI (AI. ) x, >

J J 1 1j=l i=l 

m n 
= E E <y., TI {J'1!AI. )x. >.

J J 1 1j=l i=l 

http:subsp3.ce
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On the other hand, 

rn n 
<i (A*) (E 1T (J .) Y • ), E 1T (1. ) x. > 

j=l J J ~ ~ 

rn 	 n 
= E L <7T(A*J.)y.,1T(I.)x.>

j=l 	i=l J J ~ ~ 

rn n 
= E E <y.,1T(A*J.)*1T(1.)x.>

j=l i=l J J ~ ~ 

m n 
= E E <y. ,1T (J"l:A.1. ) x. >. 

J J ~ ~j=l 	i=l 

Therefore 

1T(A)* = 1T(A*) • 

N.B. The definitions imply tmt i:A -+ L(E) is a *-honDrrorphism. 

9.31 LEMMA If V E A is quasiunitary, then 

id~ - 1T(V) E L(E) 
E 

is unitary. 

PR(X)F We have 

(id~ - 1T(V»*(id~ - i(V» 
E E 

= id~ - i(V*) - 1T{V) + 1T(V*)1T(V) 
E 

= id	~ + 1T (- V* - V + V*V) 
E 

= id . 
E 
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Ditto 

(id_ - n(v» (id_ - n(V)* = id_. 
E E E 

Therefore 

id - n(V) E L(E) 
E 

is bounded (cf. 9.30). 

n n 
A= E A.v. E A. = 0) • 

1 1 1i=l i=l 

Then 
n 

TI (A) = E A. TI (V. )
1 1i=l 

n n 
= E A. n (v.) E A. id 

1 1 1i=l i=l E 

n 
== E A. (n (V.) - id-) ,

1 1
i=l E 

so TI(A) is bounded, thus can be extended by continuity to a bounded operator 

TI(A) E B(E) and the resulting map TI:A -+ B(E) is a nondegenerate *-representation 

of A which extends TI. 

N.B. If A is roorely a *-algebra, then it need not be true that a *-repre

sentation TI: I -+ B(E) is extendible to a *-representation TI:A -+ B(E). 

9.32 LEMMA With too notation and assumptions being as above, TI is topologic

ally cyclic iff TI is topologically cyclic and TI is topologically irreducible iff 

TI is topologically irreducible. 
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9. 33 EXAMPLE Suppose that A is a C*-algebra and let TI: A -+ B(E) be a non

degenerate *-representation -- then 3 a unique nondegenerate *-representation TI of 

DC (A) on E such that V A E A, TI (LA/~) = TI (A). Assurre further that TI is topologically 

irreducible. Since the sane holds for TI I given any Z in the center l (A) of DC (A) I 

there exists a corrplex number C (TI) :z 

(cf. 9.8). 

[Note: let us keep in mind that DC(A) is a unital C*-algebra and leA) is a 

unital ccmnutative C*-algebra. J 

The *-radical of A is tre intersection of the kernels of all the topologically 

irreducible *-representations of A, thus a closed *-ideal. Notation: *-rad A. 

If *-rad A = {O}, then A is said to be *-sernisimple. 

N. B. 	 The quotient A/*-rad A is a *-semisimple Banach *-algebra. 

9.34 	 THEOREM The *-radical of A is the intersection of the kernels of all the 

*-representations 	of A. 

[This will emerge from the machinery developed in §10 (cf. 10.29).J 

Acrordingly, if A admits a faithful *-representation, then A is *-semisimple. 

E.g.: Every C*-algebra is *-semisimple (cf. 10.36). 

9.35 EXAMPLE Consider Ll(G) (cf. 5.17) -- then Ll(G) is a Banach *-algebra 

with isc:me.tric involution but it is not a C*-algebra unless G is a singleton. Still, 

Ll(G) 	 is *-semisimple. 
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1 	 2[The lift to L (G) of the left regular representation of G on L (G) is a 

1faithful *-representation of L (G).] 

9.36 EXAMPLE Let D = {z E C: Iz I s l} -- then by A(D) we shall l..ll'rlerstand the 

algebra of all continuous complex valued functions on ~ that are lnlCllIDrphic in 

int D. Since A(!2) c C(!2) is clos=d. in the supra:mJm. ronn, it follO\Vs that A(!2) is 

a unital conmutative Banach *-algebra, the involution being given by the rule 

f*(z) = fez). 

Define a *-representation TI of A(!2) on L2 (Iz I = 1) by 

TI(f)¢ = f¢ (:r;ointwise product) • 

Then TI is faithful, thus A(!2) is *-sem:i.simple. 

[Note: A (!2) is rot a C*-algebra (consider 1 + ;:r z) • ] 

9. 37 LEMMA Let TI be a 	 *-representation of A on E -- then V A E A, 

IITI (A) II s r(A*A) 1/2, 

r the spectral radius. 

9.38 	 LEMMA ve have 

rad A c *-rad A, 

hence 

A *-semisimple => A sernisimple. 

PR<X>F 	 Let A E rad A -- then 


A*A E rad A => r(A*A) = 0 
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=> 

I I TI (A) II = 0 ('If TI) => A E Ker TI ('If 'IT) 

=> 

A E *-rad A. 

[Note: It can happen that rad A = {o} but *-rad A ;;t {oL] 

Define Y:A -+ ~~ by 

y (A) = sup II TI (A) I I, 
'IT 

woore TI ranges over the *-representations of A. 

[Note: 'If A E A, 

y(A) ~ r(A*A) 1/2 (cf. 9.37). 

But 

r(A*A) 1/2 s; IIA*AI1 1/2. 

If nc:M *:A -+ A is continuous, then :3 CA > 0: IIA* II ::; C~ IIAII, so 

which proves that y is continuous w. r. t. I I· II (see belOlN for the general case) . ] 

9.39 LEMMA 'If A E A, 

y(A) s; q(A). 

n n 
PRCX)F If TI is a *-representation of A on E and if A = E 'A.V. (E 'A. = 0), 

i=l ~ ~ i=l ~ 

then i~ - TI (Vi) is unitary. Therefore 
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n 
I I 'IT (A) x I I = I I L: A . 'IT (V. ) x II 

. 1 1 1
1= 

n 
= II L: \ ('IT (Vi) - i~)xll 

n 
~ (L: IA. I) I Ix II 

. 1 11= 

=> I I 'IT (A) I I ~ q (A) => 	 Y(A) ~ q (A) • 

[Note: It is true (but not obvious) that y = q.] 

9.40 	 THEOREM V A E A, 


y (A) ~ (1 + S(A» I IA II (cf. 9. 29) . 


9.41 REMARK Here is 	a different approach to the continuity of y w.r.t. 

11·II:vAEA, 

r(A*A) = r(A*A + rad A) 

~ IIA*A + rad All 

~ IIA* + rad AI IliA + rad All 

~ S(A) IIA + rad A I \2 

~ S(A) IIA 112 

=> 

In turn, this leads to another proof of 9.25 and also srows that 
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y (A) ~ m(A) I IA II , 
where 

(A*A) 1/2
meA) = sup{r A E A - {oJ} 

IIAII 

[Note: 

IIA + rad All ~ s(A) IIA* 	 + rad All 

=> 

1 ~ S (A) • 

If *:A + A is isometric, then *:A/rad A + A/rad A is isometric, hence in this case, 

S(A) = 1.] 

It is clear that y is a 	 sul:::multiplicative seminorm and 


y(A*A) = y(A)2 (A E A). 


And 

Therefore y induces a C*-norm on the quotient A/*-rad A. Denote the completion 

of A/*-rad A by C*(A), the enveloping C*-algebra of A, and write PA for the canon

ical *-hcm:m:::>rphism A + C* (A) • 

9.42 EXAMPLE Take A = Ll(G) (cf. 9.35) -- then C*(G) =C*(Ll(G» is called 

the grOUp C*-algebra of G. 
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[Note: Since L I (G) is *-senisimple, it can be viewed as a dense *-subalgebra 

of C*(G).] 

9.43 LEMMA If B is a C*-algebra and if if>:A -)00 B is a *-lx::.lrocm:>rphism, then 

there is a unique *-hcm::m:>rphism ¢:c* (A) B such that if> = ¢ 0 PA'-)00 

9.44 SCl:DLIUM The map TI -)00 TI = TI 0 PA sets up a bijection between the set of 

all *-representations TI of C* (A) and the set of all *-representations TI of A. This 

oorrespmdence prese:r:ves the following properties: trivial, nondegenerate, top::>

logicalI y cyclic, top:>logically irreducible, unitary e:;ruivalence, ge:.::metric e:;ruiv

alence. 

9. 45 REMARK It may very well be the case that TI is faithful yet TI is not 

faithful. 

[Note: It is also p:>ssible that TIl and TI2 are weakly equivalent but TIl and 

TI2 are not weakly equivalent.] 

The *-representation theory of Bclnach *-algebras, hard one to say the least, 

simplifies enonrously when specialiZed to C*-algebras. Further evidence for this 

is supplied by 9.48 infra, a surprise if there ever was one. Its proof depends on 

the two pillars of W*-algebra thEOry. 

9.46 T.HEOREH. Supp:>se that A is a nondegenerate *-subalgebra of B(E) -- then 

the weak closure of A is A" (= (A')'). 
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[N:>te: In this context, to say that A is nondegenerate means that the set 

AE = {Ax:A E A,x E E} 

is total, Le., A is nondegenerate in the sense used at the beginning per the 

identity representation of Aon E.] 

9.47 THEOREM SupJ?Ose that A is a *-subalgebra of B{E} and let T be an element 

in the weak closure of A -  then 3 a net T. 
~ 

in A such that V i, liT. I' 
~ 

:s liT II and 

T. 
~ 

+ T strongly. 

[Note: If T is selfadjoint, then one can take the T. selfadjoint.] 
~ 

9.48 THEOREM Let A be a C*-algebra and let n:A + B{E) be a *-representation. 

Assume: n is toJ?Ologically irreducible -- then n is algebraically irreducible. 

PROOF Since A is a C*-algebra, the image n{A} is a norm closed *-subalgebra 

of B{E). So, to establish algebraic irreducibility, we can replace A by n{A), the 

claim being that V x ~ 0, the set 

{Ax:A E A} 

a:xuals E {cf. 8.3}. To this end, note first that A is nondegenerate and 

AI = g i~ {cf. 9.8} => N' = B{E). 

Therefore the weak closure of A is B{E}. NOW' fix x ~ 0, y in E. To construct an 

A E A such that Ax = y, nonnalize the situation and take Ilx II = 1, Ily II = 1 and 

for any z E E, let 

P z,x = <x,->z {lipz,x II = liz II Ilx II} . 
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Accordingly, lip IIy,x = 1, so 3 Al E A: IIAll! ::; 1 and 

lip xy,x - AIX II ::; 2 
1 

or still, 

Ily - Alx II ::; 2 
1 

. 

Next, let Yl = Y - AIX -  then I I pYl' x II ::; 2 
1 

, so 3 A2 E A: II~ II ::; 2 
1 

and 

lip x - A X II ::; 2-2
2Yl'x 

or still, 

Proceeding, 3 ~ E A: I IAn II ::; 2-n such that 

n 
Ily - L: A.xll ::; 2-

n 
. 

i=l ]. 

Put 

00 

A = L: A. 
n=l n 

Then A E A and Ax = y. 

[Note: It is thus a corollary that every topologically irreducible *-repre

sentation of a C*-algebra is totally algebraically irreducible (cf. 8.19). J 

Let Abe a C*-algebra and let n:A + B(E) be a topologically irreducible 

*-representation. SupfOse given 

Yl'·.· 'Yn E E, 
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where the x. are linearly independent. 
~ 

9.49 LEMMA 3 A E A: 

9.50 LEMMA Assume that 

for same selfadjoint T:E + E -- then 3 a selfadjoint A E A: 

9.51 LEMMA Take A unital and assume that 

for Sate unitary V:E + E -- then 3 a unitary U E A: 

PIroF It suffices to establish this under the additional supp::>sition that 

the Xi are orthonormal, hence that the Yk are also orthonormal. Let EO be the 

linear span of Xl'." ,xn'Yl'·" 'Yn0 Extend 

Xl' 0 0 0 ,xn to an orthonormal basis Xl"'" xm for EO 

Yl' ••• , Y n to an orthonormal basis Yl' . 0 . , Y m for EO 0 
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be an orthononna.l basis 	for EO: 

voe . = A. e . (A. E c, IA. I = 1).
J J J J - J 

r-r t. 
write A. = e J (t. E g) and put

J 	 J 

m 
T = L: t.P., 

j=l J J 

where P. is the orthogonal projection of E onto Ce. - then T:E + E is selfadjoint
J 	 - J 

and Te. = t.e.. Accordingly, 3 a selfadjoint A E A: 
J J J 


n(A)e. = t.e. (cf. 9.50).

J J J 

I=IA th EA' 	 , andLet U = e -- en U 1S UIlltary 

I=IAn(U) e. = n(e )e.
J 	 J 

r-I n (A)= e e. 
J 

= A.e. 
J J 

Therefore n (U) equals V 0 	on EO' thus 

n(U)x. = VOx. = y.,
111 

as desired. 

9.52 REMARK Let A be a C*-algEbra - then e.rery algebraically irrerlucible 
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repreSEntation of A is algebraically a:;ruivalent to a top::>logically irreducible 

*-representation of A. 

9.53 LEMMA Let A be a C*-algebra. SUpp::>se that TIl and TI2 are algebraically 

6:]Uivalent tofOlogically irreducible *-represEntations of A on El and E2 -- thEn 

TIl and TI2 are unitarily 6:]UivalEnt. 

PRCX:>F Since TIl and TI2 are algebraically irreducible (cf. 9.48), if I;;:E -+ E2
l 

is the algebraic eg:uivalence at issue, then I;; must be a top::>logical 6:]Uivalence 

(cf. 8.24), so TIl and TI2 are unitarily a:;ruivalent (cf. 9.6). 

One of the objectives of the thoory is the classification of all the non-

degenerate *-representations of a given C*-algebra A, the simplest situation being 

when A is canmutative. 

Notation: 

• Bor t;, (A): The a-algebra of Borel subsets of t;, (A) • 

• Pro E: The lattice of orthogonal projections of E. 


SUPFOse that 


P:Bor t;, (A) -+ Pro E 

is a spectral measure. Let 

A 

TIp (A) = ft;,(A)A(w}dP(w) (A E A). 

Then 

and the assignment A -+ TIp(A) is a unital *-representation of A on E. 

----------....--~ 
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[This is a simple conse:;ruence of the generalities that govern spectral 

inte:;rrals. In fact, 

TIp (AB) 	 = f l'l (A)AB" (w) dP (w) 

= fl'l(A)W(AB)dP(W) 

= (fl'l(A)W(A)dP(W» (fl'l(A)W(B)dP(W» 

and 

"

TIp(A)* 	 = Ul'l(A)A(W)dP(w))* 

"

= fl'l(A)A(W)dP(w) 

= f l'l (A) W(A) dP(w) 

N.B. 	 If A is unital, then 

Tenninology: P is rE9Ular if V S E Bor l'l (A) , 

peS) = sup{P(K):K c S, K compact}. 
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[Note: This is "irmer" rSJUlarity. It forces "outer" rSJUlarity: 

P(S) = inf{P(U) :U ;) S, U open}.] 

We then claim that TIp is nondegenerate if P is rSJUlar. Proof: There are 

two p:>ints. 

(i) First, by rSJUlarity, 

i~ = p(~{A» = sup P(K). 
Kc~ (A) 

Therefore 

{P(K)X:K c ~(A),x E E} 

is total. 

(ii) Second, if f =1 on K c ~(A) (f E c(~(A» (A unital) or f E Coo(~(A» 

(A nonunital», then 

P(K) = J~(A)XKdP 

=> 

Ran P(K) c Ran J~(A)fdP. 

Therefore 
A 

{(J~(A)AdP)X:A E A,x E E} 

is total, i. e., TIp is nondegenerate. 
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We thus have a map P -?- TIp from the set of regular E-valual spa::tral mEE.sures 

on fl {A} to the set of nondElJener-ate *-representations of A on E. 

9.54 SNAG The map P -?- TIp is bijective. 

The details are relatively straightfo:r:ward. Given x, y E E, set 


~ {S} = <x,P(S}y> (S E Bor fl{A».

x,y 

Then ~ is a complex Radon measure on fl (A) • x,y 

If nt::M P and Q are regular and if TIp = TIQ, then P = Q. Thus define \)
x,y 

per-

Q: V A E A, 

= <X,TIQ(A)y> 

=> 

~ = \) (V x,y E E)x,y x,y 

=> 

peS) = Q(S} (V S E Bor fl(A)} 

=> 

P = Q. 

Therefore the map P -?- TIp is injective. 

To prove surjectivity, assume initially that A is unital (so MAl is compact) 
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and let TI:A -+ B(E) be a nondegmerate *-represmtation (so TI(lA) = i~) -- thm 

by the Riesz represmtation theoran, V x,y E E, one can find a unique ccmplex Radon 

measure II on t,(A) such that V A E A,x,y 

'" 
ft,(A)Ad]Jx,y = <x,TI(A)y>. 

Since V S E Bor t, (A) , 

IllX,y(S) \2 S II (S)]J (S)x,x y,y 

S]J (t,(A»]J (t,(A»
x,x y,y 

there exists a unique operator peS) E B(E) such that 

II (S) = <x,P(S)y>.x,y 

It is clear that P (S) is selfadjoint and idan};Otmt, i. e., P (S) is an orth;:)gonal 

projection. Morenver I the assignment 

Bor t, (A) -+ Pro E 

S -+ peS) 

is a regular spectral me:lsure on t, (A) • Finally I V A E A, 

A 

<x,TIp(A)y> = <X, (ft,(A)AdP)y> 

= <x,TI(A)y>, 

implying thereby that TIp = TI. 
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It rema.ins to consider a nomnital A. So let 'IT:A -+ B(E) be a nondegenerate 

*-representation. Extend 'IT to A+ by writing 

'IT+ (A, A) = 'IT (A) + A i,\:, 

+ +Then 'IT : A -+ B(E) is a nondegenerate *-representation, thus 3 a regular spootral 

measure 

+ +P :Bor 6. (A ) -+ Pro E 

+such that 'IT + = 'IT. But 
P 

(cf. §2). 

And 

= 0 

P+ ({oo}) = 0 

=> 

P+ (6. (A) ) = P+ (6. (A) + - fool) 

= P+ «6.(A) + - fool) U fool) 


= P+(6. (A) +) 


= i,\:_ 


If DOiI P = p+I6.(A) , then 

P:Eor 6. (A) -+ Pro E 
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is a regular spectral measure such that 'ITp = 'IT. 

9.55 EXAMPLE Let A be a commItative C*-alget>ra. 8upFOse that 11 
+

E Ml (6. (A) ) 

(ef. 7.12). Take E = L
2 (6. (A) ,11) and define 'IT (A)

11 
by 

" 
('IT (A) f) (w) = A(w)f(w) (f E E).

11 

Then 'IT is a nondegenerate *-representation of A on E an:i its associated spectral
11 

measure P is the prescription
11 

(8 E For 6. (A» • 

Let 

P:Bor 6. (A) -+ PLo E 

be a regular spectral measure - then the support of P, der:otErl spt P, is the set 

of all w E 6.(A) such that p(U) ~ 0 V open neighborhood of w. 

[Note: The sUPFOrt of P is a elosErl subset of 6. (A) • ] 

N.B. 	 If 'ITp = 'IT, then spt P is callErl the spectrum of 'IT. 

9.56 	 LEMMA SUppose that 'IT:A -+ B(E) is a nondegenerate *-representation of A 

then 	Ka:- 'IT consists of those A E A such that A vanishes on the spectrum of 'IT. 

[Note: 'IT is faithful iff its spectrum is all of 6. (A) .] 

9.57 REMARK The rna.chinery assembled for the proof of 9.54 and its consequences 

provides a direct route to the spectral theorem for normal operators. 
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§l0. GNS 

let A be a Banach *-algebra -- then a linear fun::::tional w:A -+ s: is E9sitive 

if v A E A, w{A*A) ;c O. 

10.1 	 LEMMA Let w:A -+ s: be a p:>sitive linear functional -- then V A,B E A, 

w(Z\*B) = w(B*A) 

and 

Iw{A*B) \2 :::; w (A*A)w (B*B). 

N.B. 	 Supp:>se that A is unital -- then V A E A, 


w (A*) = w (A) 


ani 

[Note: Therefore 

10.2 EXAMPLE There are Banach *-algebras that have no nonzero IOsitive linear 

functional s. Thus take any unital Banach algebra A ~ {O} and fonn the cartesian 

product A x A. Introduce operations am nonn by (Al,BI) + ~,B2) = (AI + A2' 

~ + B2) I A(A,B) = (AA,~B), ~,Bl)' (A2' Bz) = (Al A2, B2~)' (A, B) * = (B,A), am 

II (A, B) II = max { IIAII, IIBII) -- then A x A is a Banach *-algebra with unit 

lA x A = (lA,lA)· 
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Sime 

it follows that every pJsitive linear functional on A x A must vanish at (lA,lA)" 

hence from the above, must vanish identically. 

If A is a C*-algebra, then pJsitive linoor functionals are continuous (cf. 7.3) 

but if A is just a Banach *-algEi:>ra, this need :rnt be true. 

10.3 EXAMPLE Let A be the Pa.nach space C[O,l], take the multiplication to 

be trivial (fg = 0 V f,g) and set f* = f -- then A is a Banach *-algEi:>ra and every 

linear functional w:A + £ is pJsitive. On the other ham, A is infinite dimensional, 

trus admits a discontinuous linear functional. 

Let w:A + £ be a pJsitive linear functional. Given B E A, define wB:A + £ by 

(A E A) • 

10.4 lEMMA ve have 

[looking ahead, the cat1putation 

~ w(B*B)w(B*A*AB) 

B= w(B*B) w (A*A) 

Bshows that w satisfies condition H with 
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Therefore w
B is representable (cf. 10.10), hence (cf. 10.12) 

:::; w (B* B) y (A) • ] 

Let w:A + ~ be a FOsitive linear functional. Given B,C E A, define 

BC 
w ' :A + ~ by 

BC w ' (A) = w (B*AC) (A E A) • 

10.5 LEMMA ve have 

IwB,C (A) I :::; w (B*B) 1/2w (C*C) 1/2y (A) 

PROOF In fact, 

:::; w(~B)w(C*A*AC) (cf. 10.1) 

C = w (B*B) w (A*A) 

=> 

:::; w (~B) 1/2w (C*C) 1/2y (A*A) 1/2 

= w (~B) 1/2w (C*C) 1/2 (y (A) 2) 1/2 
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N.B. 	 Recall from 9.41 that 


y (A) ::; m (A) IIA II (A E A). 


10.6 THIDREM SUpp:>se that A has a left approx:in1a.te unit (cf. 4.1) -- then 

all positive linear functionals on A are continuous. 

PRCXJP Let W: A -+ ~ be a positive linear functional. 

Step 1: w \*-rad A ::: O. Thus let A E *-rad A and using 4.6, write A = B*C, 

where B E A, C E AA. c *-rad A. Rep69.t and write C* = E*D*, ...mere E* E A, 

D* E AC* c *-rad A, so C = DE, ...mere D E AC** c *-rad A, E E A. Therefore A = B*DE 

and 

IW(A) 12 = Iw(B*DE) 12 

= \wB,E (D) \2 

::; w(B*B)1/2w (E*E)1/2y (D) 

Step 2: Since w drops to A/*-rad A, it can be assumerl that A is *-sanisimple, 

hence sanisimple (cf. 9.38). In prrticular: The involution *:A -+ A is continuous 

(cf. 9.21). 

Step 3.: Let An E A be a se:;ruence in A such that ~ -+ o. Claim: w(A ) -+ 0 
n 

(=> w is continuous). To see this, use 4.8 to first write A = A*B*, where B* -+ O. n n n 

BJ.t then, thanks to the continuity of the involution, Bn -+ 0, thus by a second 

awlication of 4.8, we can write B = B*C*, where C* -+ 0, so A = A*C B and C -+ O. n n n 	 n n n 

http:approx:in1a.te
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Therefore 

+ 0 (n + (0) • 

10.7 LEMMA Suppose that A is unital -- then all positive line:rr fUIX:'!tionals 

on A are continuous. Moreover, if w: A + g is one such, then 

PRCXJF V A ;.e 0, 

Iw (lAAlA) IIw (A) I 
IIAII 

= -
IIAII 

lA,lA
Iw (A) I= 

IIAII 

=> 


[Note: If *:A + A is is::metric, th:m B(A) = 1 (cf. 9.41) and 

meA) $ S(A) 1/2 = 1 

=> 
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which can be improved to 

when A is a C*-algebra (cf. 7.4).] 

10.8 	 EXAMPLE It is not always true that Ilwll :'£ w(lA)' Thus let A = B(~2), 

2
where c has the nonn 

(t > 2). 

Represent the elerrents of A as 2-by-2 complex matrices [A. •• ] and put [A. •• ]* = 
1) 	 1) 

(~ .. ] -- then A is a Banach *-algebra with a continuous (but not isanetric) invo
)1 

lution. Define w:A -+ C by w([A. •• ]) = l: A. •• -- then w is a positive linear 
- 1) i,j 1) 

functional on A such that w (lA) = 2. If 

o 2
t 

A= 

1 0 

then 

A = t 
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=> 

IIAII = t 
=> 

Ilwll ~W{A) 
IIAII 

n 
10.9 	 REMARK Write A+ for the set of all finite sums of the form z.: AiA. - 

i=l 1 

ethen the linear span of A+ is A (a.k.a. the linear span of the A*B). Proof: 

If A2 is not closed or is closed but not of finite codi.nension, then one can use a 

Harrel basis for A to construct a discontinuous linear functional w that vanishes on 

A2. Such an w is necessarily fOsitive. 

fute: [It therefore follows that a necessary condition for the continuity of 

all fOsitive linear functionals on a Banach *-algebra A is that A2 be closed of 

finite codimension.] 

Let w:A -+ s: be a p:.>Sitive linear functional. 

• w is said to be representable if 3 a topologically cyclic *-representation 

1T of A on E with a tofOlogically cyclic vector x E E such that 

w(A) = <x,TI(A)x> (A E A) • 

• 	 w is said to satisfy condition H if 


2

IlwliH = sup{ IW(A) I :w{A*A) :5 l} < co. 
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10. 10 THEOREM Let w: A -+ s: be a positive linear functional -- then w is 

representable iff w satisfies condtion H. 

N. B. The equivalences in 10.10 are of central importance for the theory. One 

direction is imnediate, viz.: 

10.11 LEMMA SUppose that w:A -+ s: is representable -- then w satisfies con

dition H. 

PROOF By definition, 

w (A) = <x, TI (A) x> (A E A) , 

'Where x E E is topologically cyclic. Therefore 

2
IW(A) 12 = l<x,TI(A)x>1 

:0; (I I x I! 1 I TI (A) x I I) 2 

2 = IIxl1 <TI(A)x,TI(A)x> 

2 
== IIxl1 <x,TI(A*A)x> 

2
= IlxI1 w(A*A) 

=> 

1.e.: w satisfies condition H. 


[Note: Since x E E is topologically cyclic, we have 
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In fact, 

2
IIxl12 = 9.1p{l<x,y>1 :llyll :;; I} 

2
= rup{l<x,'1T(A)x>1 :11'1TQ\.)xll :;; I} 

= 9.1p{ Iw (A) 12:w (A*A) :;; I} 

10.12 

[Note: 

REMARK In viElW' of 9.25, a representable w is necessrrily continuous. 

This can be pinned dc:Mn in that 

IW(A) 12 :;; IIxl1 
4 

11'1T(A*A) II 

:;; II x 114 Y (A*A) 

=> 

= 

IW(A) I :;; 

IIxll 4 Y(A)2 

IIxl1
2 

yeA) 

= IlwliH yeA) 

=> 

IIwll 

:;; 

:;; 

IlwliH meA) IIAII 

IlwliH m(A).] 

10.13 

V A E A, 

LEMMA Suppose that w:A -+ £ is representable 

w(A*) = weAl. 

-- then w is hermitian: 
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PRCX)F 	 In fact, 

w(A*) 	 = <x,rr(A*)x> 

= <x, rr (A) *x> 

= <rr(A)x,x> 

= <X,rr(A)x> 

= w(A). 

The 	proof that 

Ucondition Hit => "representable" 

is a special case of the KolIrogorov construction. However, proceeding to the 

details, we shall first look for conditions on a Banach *-algebra that are sufficient 

to ensure that all its positive linear functionals satisfy condition H. 

10.14 LEMMA If A is unital, then every positive linear functional w:A -+ C 

satisfies 	condition H and IlwliH = w(lA)' 

PRCX)F To begin with, 

Accordingly, 

w(A*) 	 = W(A*lA) 

= w(lAA) (cf. 10.1) 

= W1AJ. 
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Therefore 

Iw(A) 	I
2 

= Iw(A} I2 

(cf. 10.1) 

On the other hand, 

=> 


=> 


[Note: If w (lA) = 0, then w is the zero functional am ma.tters are trivial.] 

10.15 LEMMA If A is a C*-algebra, then every positive linear functional 

w:A 	+ £ satisfies condition H and Ilw IIH = Ilw II. 

PR!X>F W:::>rk with an approximate unit {e.:i E I} per 1.20: V A E A,
l.. 

Iw(A) 12 = lim Iw(e.A) 12 
iEI l.. 
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2 
= 	 lim Iw(el~A) I 

iEI 

~ lim inf w(e~e.)w(A*A) (cf. 10.1)
iEI 1 1 

= lim inf w(e~)w(A*A)
iEI 1 

~ 	 Ilw Ilw(A*A) 

=> 

On the other hand, 

e~ e. 
w( 1 1) ~ 1 

II w111/2 IIw111/2 

=> 

2
2 w(e. ) 

IlwliH ~ w( 1/2~ = 1 

IIwl\ Ilwll 

=> 

wee. ) 2 

Ilw IIH ~ lim 1 

iEI Ilwll 

= 	IIwl12 (cf. 7.9) 
IIwll 

= 	IIwll· 

The preceding lerrmas are special cases of the follCMing result. 
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10.16 THEOREM Suppose that A has a left approximate unit (cf. 4.1) - then 

every positive linear functional w:A + g satisfies condition H. 

PRCX)F rl'here is no loss of generality in taking A *-sanis.i.rrple (see the proof 

of 10.6) I so the involution *: A + A is continuous (cf. 9.21). If now {e.:i E I}
1 

is a left approximate unit per A and if M > 0: I lei II ::; M (i E I), then arguing as 

in 10.15 (bearing in mind that w is continuous (cf. 10.6», 'V A E A, we have 

IW(A) 12 = lim Iw(e.A) 12 
iEI 1 

= lim Iw«e~)*A) 12 
iEI 1 

::; lim inf w{e.e.*)w(A*A)
iEI 1 1 

~ lim inf IIe ,e , * II Ilw Ilw(A*A) 
iEI 1 1

::; lim inf lie. II lie. * II Ilw IIW(A*A)
1 1iEI 

::; lim inf IIe , 112 B(A) Ilwllw(A*A) 
iEI 1

::; ~B(A) Ilwllw(A*A) 

[Note: Here (3(A) is the nonn of the involution *:A + A (cf. 9.29).] 

Returning to 10.10, assume that w satisfies condition H and put 
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where Aw is the left ideal 

{A E A:w(A*A) = O} (cf. 10.1). 

- A E A A+A 
w 

Given , write in place of then the prescription 

BEA B+A 
w 

< , 

Wequips A with the structure of a pre-Hilbert space (=> I lAw II = w (A*A) 1/2) • 
w 

Define 1T 
w 

by 

Then 

is a *-harm:orpmsm. 

N.B. 1T
w(A) has a formal adjoint, viz. 1T 

w
(A*). Proof: 

= w( (AB)*C) 

= w(B*A*C) 

=> 
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10.17 !.EMMA V A E A, 'ITw (A) is bounded. 

PR(X)F This is because 'ITw (A) can be written as a finite linear canbination 

of unitary elements of L* (Aw) (cf. 9.31 and subsequent discussion) • 

[Note: 	 It is thus a corollary that V A E A, 


SUp{w(B*A*AB):B E A,w(B*B) ~ I} < 00]. 


W
Let E be the Hilbert space completion of AW 

-- then 'ITw extends by continuity 

to a *-representation of A on E
W

, denoted still by 'ITw. Since W satisfies condition 

H, it vanishes on AWl hence induces a linear functional on AW which is continuous 

w.r. t. II· Ilwl thus extends to E
W 

with the same bound, namely Ilw 11;2: V A E A, 

Owing to the Riesz representation theorem, 3 a unique vector x. E E
W such that 

W 

W (A) = <x fA
W 

> •
W W 

Here 

10.18 LEMMA V A E A, 

W W 
'IT (A)x = A • 

W 

PROOF V B E A, 
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= <x (A*B) w> - W(A*B)I
W W 

= w(A*B) - w(A*B) 

= o. 

WTo sumnarize: Trw is a topologically cyclic *-representation of A on E with 

topologically cyclic vector x E E
W such that 

w 

(A E A). 

Therefore w is representable I which ccmpletes the proof of 10.10. 

[Note: Trw is called the eNS representation attached to w.] 

10.19 EXAMPLE Take A unital -- then V A E A, 

TrW(A)l~ = AW, 

so l~ is topologically cyclic. And 

= w(A) 

=> 



17. 


10.20 LEMMA Suppose that 'IT is a topologically cyclic *-representation of A 

on E with topologically cyclic vector x E E -- then 'IT is tmitarily equivalent to 

nW for SCIre w satisfying condi tion H. 

PRCX>F Define w: A -+ £ by 

wCA) = <x/n (A) x> (A E A). 

Then w is representable I hence satisfies condi tion H (cf. 10.11) I so 

wweAl = <x ,n (A)x > (A E A).w w w 

NQV.l quote 9. 7. 

[Note: The trivial *-representation on the zero di.nensional Hilbert space 

"is" nUJ=O.] 

10.21 LEMMA Supp:.>se that n is a nondegenerate *-representation of A on E - 

then :3 a set ~ of representable positive linear ftmctionals w on A such that n is 

wunitarily equivalent to EO n and V A E A, 
wE~ 

lin (A) II = sup Iinw 
(A) II. 

wE~ 

[This is an i.nmediate consequence of 9.5 and 10. 20. ] 

Suppose that w:A -+ £ is a positive linear ftmctional which satisfies condition 

H -- then w is said to be a state if Ilwi IH = 1. 

[Note: This tenninology is consistent with that used for C*-algebras (cf. 10.15).] 

If w ;e. 0 satisfies condition HI then V t > 0 I tw satisfies condition H: 
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Also V A E A, 

W (A) = <xW 
,1T 

W(A)x > ww 

=> 

two , '1 '1 w, th Etw EWtha end twAnd 1T 1S urn. tar1 Y eqw..va ent to 1T V1a e arrCM -+ . t s s A to 

10.22 THEOREM Every nontrivial to:p:>logically cyclic *-representation of A is 

Wunitarily equivalent to 1T for sane state W (cf. 10.20). 

PROOF If W ~ 0, then 

W 

is a state. 

If 

are :p:>sitive linear functionals satisfying condition H, write w ::: w2 if wl l w2 

is p:Jsitive. 

10.23 LEMMA If w,w':A -+ ~ satisfy condition H and if w ::: w', then 3 

wT E 1T (A) I (0 :s: T :s: I) such that 

w
WI (A) = <x 11T (A) Tx > (1\ E A).

w w w 
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PROOF Noting that 

W ~ W, => A c A I 

W w' 

put 

<AW,B
W> = w' (A*B). 

WI 

Then 

Iwi (A*B) 12 ::;; WI (A*A)WI (B*B) 

::;; w(A*A) w(B*B) 

Therefore < , > can be extended to E
W 

x EW. Fix T E B(Ew) : 
WI 

Then 

W ~ WI ~ 0 => 0 ::;; T ::;; I. 

And V A,B,C, 

= Wi (A*CB) 
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=> 


Finally, choose a sequence {A } in A such that AW -+ x : 
nnw 

IIw, I I H w, «AA - A) * (AA - A» n n 

$ I I w' IIH W «AA - A) * (AA - A»n n 

= Ilw' IIH IITIW(A) (A
W 

- x ) 112 (cf. 10.18)
W W 

-+ 0 (n -+ (0) 

=> 

w' (A) = lim w' (AA )
nn-+ oo 

= lim w'«A*)*A)nn-+ oo 

= «A*)w,Tx > 
ww 

= <x ,TI
W

(A)Tx > • 
W W W 
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[Note: 

=> 

1.0' (A) = <x , 'TTw (A) Tx > 
1.0 1.0 1.0 

= <T1/2 1.0 (A) 1/2 > ]XW,'TT r Xw w· 

Suppose that 1.0 ~ 0 satisfies condition Ii -- then 1.0 is said to be ~ if 

1.0 ;::: 1.0 => 1.0' = tw (3 t ;::: 0) • 

10.24 LEMMA If 'TTw is topologically irreducible, then 1.0 is pure. 

PR(X)F Assuming that 1.0 2 1.0', produce T E 'TT (A)' per 10.23: 
1.0 

o ~ T ~ I => T = tI (0 ~ t ~ 1) (cf.9.B). 

So, V A E A, 

1.0' (A) 

= t<x ,'TTw(A)X > 
1.0 1.01.0 

= tw(A) • 

10.25 LEMMA If 1.0 is pure, then TI 
w is topologically irreducible. 

PR(X)F 	 let P E 'TTw (A)' be a nonzero orthogonal projection. Define w':A -+ £ by 

1.0' (A) = <Px ,'TTw(A)Px > (A E A) • 
1.0 1.0 1.0 
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Then 

Therefore w, satisfies condition 	H. And 

w(A*A) = Iinw
CA) xw II~ 

w~ II Pn (A) x 112 w w 

= w' (A*A) 

=> 

w ~ w'. 

Eilt w is pure and w' is nonzero, hence w' = tw (3 t > O). So, 'if A E A, 

o = w' (A*A) - tw(A*A} 

since AWis dense in EW, it follows that P = tI => t = 1, thus nW is topologically 

irreducible (cf. 9.9). 

10. 26 THEOREM Suppose that w ~ 0 satisfies condtion H -- then nW is t0po

logically irreducible iff w is pure. 
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PROOF Combine 10.24 and 10.25. 

10.27 THEOREM Every topologically irreducible *-representation of A is 

unitarily equivalent to 'ITw for 5C:.lIOO pure state w (cf. 10.22). 

PROOF 	 If w is pure, then 


w 


is a pure state. Proof: 

_w__ ~ Wi => w= II w II Hw' 

=> w' = t( w ) • 
IlwliH 

10.28 EXAMPLE Take A = L (H) (H a cauplex Hilbert space) -- then the pure
-00 

states are the Wx ( II x II = 1), where 

w (T) = <x,Tx> (cf. 7.17).x 

Since the identity representation 'IT of L (H) on H is a topologically irreducible 
00 _00 

*-representation (cf. 9.8 ('IToo('!:!oo(H»' = S idH» it follows that V X, 'IT00 is unitarilyI 

w 
. 1 x equ~va ent to 'IT • On the other hand, an arbitrary topologically irreducible 

w 
*-representation 'IT of L_00 (H) is unitarily equivalent to SOJ:IE 'IT x (cf. 10.27). There

fore 'IT is unitarily equivalent to 'IT 	 • 
00 
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[Note: Every nondegenerate *-representation of kx, (H) is unitarily equivalent 

to a direct sum of copies of TIro'] 

10. 29 THEOREM. The *-radical of A is the intersection of the kernels of all 

the *-representations of A (cf. 9. 34) . 

The proof requires serre ancillary considerations. Thus given a norriegenerate 

*-representation TI of A, let 

and for any w satisfying condition H, put 

10.30 LEMMA 3 a set Q of pure states with the property that V A E A,
TI 

w a (A) = sup a (A). 
wEQ

TI 

Grant 	this temporarily -- then 

10.30 => 10.29. 

For in the first place, it is obvious that 

n Ker TI c *-rad A, 
TI 

where 	n is taken over all the *-representations TI of A. Conversely I let 
TI 

w
A E *-rad A -- then A is annihilated by all the TI (w pure). In particular: Given TI, 

w
V w E QTI' a (A) = 0 => a(A) = 0 => A E Ker TI. 


Therefore 


n Ker 	TI = *-rad A. 
TI 
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Proceeding: 

• Write S (A) for the set of positive linear functiona1s w on A that 

satisfy condition II subject to IlwliH ::; 1 and write ~(A,a) for the subset of 

~(A) consisting of those w such that OW ::; a • 

• Write peA) for the set of pure states w on A and write P(A,a) for the 

subset of peA) consisting of those w such that OW ::; cr. 

N.B. ~ (A) and ~ (A,a) are convex sets. 

[tbte-:- If w ,w both satisfy condition H, then so does wI + w2 and1 2 

Therefore SeA) is convex. Suppose further that w1,w E ~(A,a) and let 0 ::; A ::; 1 -2 

then 

::; a.] 

10.31 LEMMA Suppose that w:A + ~ satisfies condition H -- then w is a pure 

state iff w is a nonzero extreme point of ~ (A) (cf. 7.19). 

10.32 lEMMA P(A,a) is the set of nonzero extreme points of ~ (A,a) and 

P(A,a) U {oJ is the set of all extreme points of ~(A,a). 

Equip ~(A,a) with the topology of pointwise convergence -- then the image of 
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~ (A, a) in 1T a (A) D (product topology) under the natural embedding 
AEA 

w -+ {weAl :A E A} 

is closed, hence ~ (A, a) is carpact. 

[Note: Recall that 'if A E A, 

wweAl = <x ,TI (A)x > w ww 

=> 

10.33 LEMMA The closed convex hull of P(A,a) U {oJ is ~(A,a). 

PR(X)F Apply the Krein-Milman theorem. 

Let us pass nCJ.Il to the proof of 10.30 -- then 3 a set rt of representable 

positive linear functionals w on A such that 'if A E A, 

a (A) = sup aW
(A) (cf. 10.21) 

wEQ 

and we claim that 

w a (A) = sup a (A), 
wErt

TI 
where rtTI = P(A,a) • 

To this end, fix A E A and £ > 0 -- then it suffices to produce w E P(A,a) 

such that 
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Choose W E Q:
E 


W 

o E(A) > o(A) - E. 

tw WE 
Because 0 E = 0 (t > 0), we can ass~ that W is a state, heoce W E S (A,o) • 

E E 

Using 10.33, choose a net w. (i E I) that converges to W , where each w. is a convex 
~ E ~ 

oombination of elements fran P(A,o) U {a} -- then 3 io E I: 

w 
o o(A) > O(A) - E (ruo 

Let w ' ••• 'W be the elements of P(A,o) which occur with nonzero coefficients inl n 

the expression of Wo as a convex canbination per the al::x:>ve. Sioce 

W + •.. + W 
1T 1 n 

is unitarily equivalent to a sub *-representation of 

with 

W + ... + W w W
l lo n s sup{o , ... ,0 n}, 

there is an index k E {l, ... ,n}: 

Therefore 

as cla:irned. 

10.34 REMARK It is false in general that a nondegenerate *-representation 1T 

----~ ........... - 
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decomposes into a direct sum of topologically irreducible *-representations. 

HONever, on the basis of the preceding discussion, V A E A, 

II Tf (A) II = II ED Tfw (A) II • 
wErt

Tf 

Set 

where W ranges over those positive linear functionals that satisfy condition H 

(meaningful since V A E A, II Tfw (A) II ::; y (A» -- then TfUN is a nondegenerate 

*-representation of A. It is "universal" in the sense that every nondegenerate 

*-representation of A is unitarily equivalent to a sub *-representation of a nnlltiple 

N.B. We have 

*-rad A= Ker TfUN 

and V A E A, 

Therefore the extension TIUN of TfW to a *-representation of C* (A) is isaretric 

(cf. 9.44), so the image 

is a norm closed *-subalgebra of EtJN = E9 EW. 
W 

[Note: Suppose that A is *-semisimple: 


*-rad A = {O}. 




29. 


Then TIUN is a faithful *-representation of A.] 

10.35 RAPPEL If A is a C*-algebra, then every J=Osi tive linear functional 

w: A -+- C satisfies condition H (cf . 10. 15) • 

10.36 LEMMA Suppose that A is a C*-algebra and let A E A be nonzero -- then 

3 a topolCXJically irreducible *-representation TI of A such that 

hence A is *-sanisimple. 

PB(X)F Choose W E P(A) : 

w«A*A) 2) = II (A*A) 211 (cf. 7.25) 

= IIAI14. 

Then 

IIAI12 = w( (A*A) 2) 1/2 

= w ( (A*A) (A*A) )1/2 

= II (A*A)W II W 
W 

= I I TI (A*) AWI I W 

= [ I TI 
wCA) *AWII W 

.$ I ITI 
w(A) * I I IIAWII W 

W= I I TI CA} II IIAWllw• 
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But 

I lAw II = w(A*A) 1/2
w 

Therefore 

On the other hand, 

II'ITW(A) II :,; r(A*A) 1/2 (cf. 9.37) 

= IIAII (cf. 1.1). 

So 

thus it remains only to recall that 'ITw is a topologically irreducible *-representation 

wEP(A) 

of A (cf. 10.26). 

Put 

'IT = ED W
'IT. 

AT wEP(A) 

Then 10.36 implies that'ITAT is a faithful *-representation of A on EAT = ED EW. 

10.37 SCHOLIUM Every C*-algebra is isometrically *-isamorphic to a norm closed 

*-subalgebra of the bourrled linear operators on some couplex Hilbert space. 

[Note: Every separable C*-algebra is isometrically *-isamorphic to a norm 

closed *-subalgebra of the bounded linear operators on some separable ccmplex Hilbert 

space. ] 
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If I c A is a nonzero *-ideal (not recessarily closed), then every mrrlegen

erate *-representation 'IT: I -+ B(E) can be extended to a mrrlegenerate *-represen

tation TI:A -+ B(E) (see the discussion lea.ding up to 9.32). 

[Note: Recall that 

'IT top::>logically irreducible => TI top::>logically irreducible.] 

SUppose row that A' c A is a C*-subalgebra -- then a *-representation 

'IT: A -+ B (E) is said to be an extension of a *-representation 'IT': A' -+ B(E') if :3 

a closed subspace X c E which is invariant under 'IT IA' and has the proper 1::¥ that 

the sub representation 

'IT IA' : A' -+ B (X) 

is unitarily equivalent to 'IT'. 

10.38 LEMMA Every topologically irreducible *-representation 'IT':A' -+ B(E') 

has a topologically irreducible extension to A. 

PR(X)F Take 'IT = 'IT
W' 

, where w' is pure (cf. 10.27). Using 7.24, extend w' to 

a pure state w on A arrl let X be the closure of 

in EW 
- then X is invariant urrler 'ITw IA' ani if x 'is the orthogonal projection of 

W 

onto X, we have 
W 

(A' E A'), 


so x' is topologically cyclic for the sub representation of 'ITw IA' on X. 
W 

x 
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Finally, V A' E A', 

= <x , 'If 
w

(A') x > w w w 

= w(A') = (0' (A') 

w'= <x ,'If (A')x > 
w' w' w' 

Therefore 'If 
wlA' on X is unitarily equivalent to 'If 

w' (cf.9.7). 

[Note: The same kind of argument shcMs that every to:POlogically cyclic 

*-representation 'If' :A' -+ B(E') has a to:POlogically cyclic extension to A, thus 

every nondegenerate *-representation 'If' :A' -+ B(E') has a nondegenerate extension 

to A (cf. 9.5).] 

10.39 LEMMA Suppose that A' c A is a ccmn:utative C*-subalgebra -- then 

V w' E fICA'), 3 a top::>logically irreducible *-representation 'If: A -+ B(E) arrl. a nonzero 

vector x E E such that V A' E A', 

1T(A')x = w' (A')x. 

[This is a special case of 10.38.] 

10.40 	 REMARK The analog of 10.38 for Banach *-algebras is false in general. 

[Consider an A whose only *-representations are trivial.] 

Let H be an infinite dimensional ca:rplex Hilbert space -- then B(H) is a unital 
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C*-a1gebra but its representation theory is far more conplicated than that of 

L (H) (cf.10.28).
-00 

10.41 DICHOTOMY PRINCIPLE Suppose that TI is a topologically irreducible 

*-representation of B (H) -- then ei ther 

TI(L-co (H» = {oJ 

or 

TI is unitarily eq:uiva1ent to the identity representation of B(H) on H. 

[The point is that wis a pure state on B(H), then either wl!:co(H) = {oJ 

or w =w (3 x:llxll = 1).]x 

10.42 REMARK Every rorrlegererate *-representation of B(H) is unitarily 

equivalent to ore of the fonn 

where TIO is norrlegererate ani vanishes on !:oo (H) am TIi is unitarily eq:uiva1ent to 

the identity representation of B(H) on H. 

w 
10.43 LEMMA If w

1
,w

2 
are pure states on B(H) I then TI 1 is unitarily equiv

w2alent to TI 3 a unitary u:H + H such that V A E B(H), 

PROOF If there is a U E U(H) with the stated property, then V A E B(H), 

http:cf.10.28
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W W 
Therefore 'IT 1 am 'IT 2 are unitarily equivalent (cf. 9.7). Conversely, sUPIDse that 

W w w w
l 2 l 2'IT and 'IT are W1itarily equivalent ani let W:E -+ E be a W1itary operator such 

that 

W wl 2W'IT (A) = 'IT (A)W (A E B(H)). 

W w2 2Chcx:>se a W1itary V:E -+ E :V'x = Wx -- then 3 U E U(H):ww2 l 

W2'IT (U)x = Wx (cf. 9.51).w w2 l 

So, VAE BUO, 
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10. 44 EXAMPLE If H is a separable infinite di.rrensional ca:nplex Hilbert space, 

c 
then there are 2- unitary equivalen::e classes of topologically irreducible *-repre

sentations 	of B(H) • 

[This is a countirg argun:ent. 

1. The cardinality of B(H) is S. 

c 
2. The cardinality of P(B(H» is 2-. 

3. The cardinality of U(H) is S. 

NcJw let K be the cardinality of the set of unitary equivalence classes of tope-

logically irreducible *-representations of B(H). Stipulate that pure states w ,w
l 2 

are equivalent (denoted w
l 

~ w
2

) iff 3 a unitary u:H + H such that V A E B(H), 

-1Wl(A) = W (U AU).2 

Then in view of 10.43, 

K = #(P(B(H»/~). 

But each equivalence class of pure states has at least one and at ITOst S rranbers. 

Therefore 

C 

K $ #(P(H» = 2- $ KS = max(K,S). 

c c 
Since c < 2-, it follows that K = 2-.] 
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§ll. STRUCTURE THEORY 

A 

Given a C*-algebra A, denote by A the set of tmitary equivalence classes [1T] 

of to:tX>logically irreducible *-representations 1T of A -- then A is called the 

structure space of A. 

E.g.: If A is conmutative, then 

" 
A <-> 1l(A}. 

11.1 EXAMPLE let H be a complex Hilbert space. Take A = L
_00 

(H) -- then 

#(A) = 1 (cf. lO.28). 

11. 2 DICHOTC:MY PRINCIPlE let 1T:A -+ B(E} be a topologically irreducible 

*-representation -- then either 

1T(A} :::> L (E)
_00 

or 

1T(A} n L (E) = {oJ.
_00 

11.3 EXAMPLE let 

be toFOlogically irreducible *-representations of A such that Ker 1Tl = Ker 1T2. 

Assume: 
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Then 1Tl and 1T2 are lIDitarily equivalent. 

[Note: Therefore a topologically irreCl.ucible *-representation 1T of A is 

detennined by its kernel to within unitary equivalence provide::l TI (A) contains a 

nonzero ccrnp:lct operator. But all bets are off if 1T(A) n L 
_00 

(E) = {oJ (cf. 11.11).] 

11. 4 LEMMA. If # (A) = 1, then TI is faithful ([TI] E A) and A is simple. 

PRCX)F 'if A ;i! 0, 

IITI (A) II = IIA II > 0 (cf. 10.36). 

Therefore Ker 1T = {OJ. If I c A is a proper closed ideal, then I = {O}. 'l'his is 

because A/I, being a C*-algebra, aClmits a topologically irreducible *-representation 

the lift of which to A is unitarily equivalent to TI, so I c Ker TI = {O}. 

A C*-algebra A is said to be elanentary if A is *-isarorphic to !:oo(H) for sc:ma 

oamplex Hilbert space H. 

11. 5 LEMMA Let TI: A + B(E) be a *-representation. Assume: TI is nondegenerate 

and TI(A) c L (E) -- then TI is discretely decomposable, i.e., there is an orthogonal
-00 

decanposition 

E = (D E., 
iEI 1 

where each Ei is a closeCl. TI-invariant subspace of E on which TI acts irreducibly. 

[Note: To be completely precise, 'if i E I, the assignment 

- A + B(E.) 
1 

A + TI(A) IE. 
1 



3. 


is a topolCXJically irreducible *-representation of A on E.. J 
1

11. 6 THEOREM. SUppose that A is *-iscm::>rphic to a C*-subalgebra of an 

elementary C*-algebra -- then A is *-isamorphic to a (C*) direct sum mA. (cf. 3.19)
i 1

of elementary C*-algebras A.. 
1

A is elementary, then HA) = 1 (cf. 11.1) and this can be reversed provided 

A is separable. 

11. 7 THEOREM. Suppose that A is separable am # (A) = 1 -- then A is elementary. 


PROOF The rontrivial argurrent is lengthy and best broken up into pieces. 


Step 1: Take 1T per 11. 4, say 1T: A -+ B(E) -- then E is separable. Thus fix 


x ~ 0 inE and let DcA be a countable dense subset of A -- then 1T{D)x is dense 

in 1T{A)x, which is dense in E. 

Step 2: Let A' c A be a maximal conmutative C*-subalgebra -- then ~ (A') is 

countable. In fact, V w' E MA'), 3 a unit vector x{w ' ) E E:V A' E A', 

1T (A') x(w') = w' (A' )x(w') (cf. 10.39). 

Given wI ~ Wi 3 A I E A' •1 2' .~. 

Therefore 
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=> 

So if ""(AI) was uncountable, then E would have un:ountably many mutually orthogonal 

unit vectors oontradictin;:J its sep:rrability. 

Step 3: ""(AI) a countable locally ccmpact Hausdorff space, hence by the 

Baire category theorem, has at least one isolated point wOo On the other hand, 

A'::::c (MAl»,
00 

so there 	is a projection P in A' (p = P* = p2) such that wo(P) = 1 and wl(P) = 0 

for Wi ;c wo. ~reover, every element A' E AI decanJ:X)Ses as 

AI = AP + B' , 

where A E C and B'P = PB ' = O. 

Step 4: 	 let A E A - then 

AI (PAP) 	 = (AP + Bt) (PAP) 

= APAP 

= APAP + PAPB I 

= PAP (AP + B I ) 

= (PAP) A' • 
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But A' is maximal: 

PAP E AI => PAP c AI • 

Step 5: Sinc::::e 'IT faithful, 'IT(P) ;t; O. Therefore Ran 'IT(P) is a nonzero 

closed linear subspace of E 'Which is invariant urrler the cx:mmutative *-algEbra 

PAP. ~rote by 'ITp the associated *-representation 

PAP -+ 'IT (PAP) IRan 'IT (P) (A E A) • 

Then 'ITp is topologically irreducible. Proof: Let x,y E Ran 'IT(P) with x ;t; 0 and 

choose a ret {A.:i E I} in A: 
1 

'IT(A.)x -+ y (cf. 8.16)
1 

=> 

'IT(PA.P)x = 'IT(P)'IT(A.)'IT(P)x
1 1 

== 'IT (P) 'IT (A. ) x 
1 

-+ 'IT (P) Y == y. 

That 'ITp is topologically irreducible follows upon citing 8.16 once again. 

Step 6: Due to the topological irreducibility of 'ITp ' the 'ITp (PAP) (A E A) 

are scalar operators (cf. 9.8). In turn, this forces Ran 'IT(P) to be one dimensioral, 

i.e., 'IT (P) is rank 1. Accordi:rqly, 

'IT (A) n L (E) ;t; {a}
_00 

=> 

'IT (A) ::> L (E) (cf. 11. 2) • _co 

Step 7: The inverse image 'IT-1 (~oo (E» is a nonzero closed ideal in A, so, as A 

is simple (cf. 11.4), 

'IT-1 (L
-ro

(E» = A. 
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Therefore 

'IT:A -7 L (E)
_00 

is a *-isaoorphism or still, A is ele:nentary. 

11. 8 REMARK Consul t Akemarm-~V'eavert for a discussion of the situation when 

A is ronseparable (but #: (A) = 1). 

11.9 RAPPEL A primitive ideal of A is an ideal which is the kernel of a 

topologically irreducible *-representation of A. 

Write Prim A for the set of primitive ideals of A and equip it with the hu1l

kernel topology - then Prim A is TO. 

The obvious arrC1il 

" A -7 Prim A 

['IT] -7 Ker 'IT 

is surjective (but, in general, is not injective). Therefore the hull-kerrel 

topology on Prim A can be pulled back to A to give what is called the regional 

topology on A. 

[Note: A subset SeA is open in the regional topology it is of the form 

{['IT] E A:Ker 11" E O} for S<:::lre subset 0 c Prim A which is open in the hull-kernel 

topo1ogy. ] 

N.B. In general, A need not be TO but if it is TO' it need not be Tl but if 

t proc• Natl. Acad. Sci. USA, 101 (2004), 7522-7525. 
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it is Tl , it need not be T2 (cf. infra). 

A 

11.10 LEMMA The following conditions are equivalent: (i) A is TO; (ii) Two 

to:p::>logically irreducible *-representations of A with the same kernel are unitarily 
A 

equivalent; (iii) The canonical map A -+ Prim A is a h.orneonorphisrn. 

[This is a simple deduction fran the definitions.] 

A 

11.11 EXAMPLE Sup:p::>se that A is sinple -- then Prim A = {O}. So, if A has 

rrore than one elanent, then A will not be TO' 

A 

[Note: rfhere are sinple A for which A is uncountable ("Glinm algebras") .] 

11.12 EXAMPLE Let H be an infinite dimensional complex Hilbert space. Take 
+ A A 

A = ~oo(H) - then :JI:{A) = 2, say A = bTl'TI2}. Here Ker TIl = {oJ, Ker TI2 = ~oo(H), 

so A is TO' But A is not T1: [TI1] is a dense open point ([TI2] is a closed point) . 

11. 13 EXAMPLE Let 

o 

(3 A, 11 E g) }.A = {f E C( [0,1],M2(~» :f(O) = 

o 

Then 
A 

A= ]0,1] U {TI
l 

,TI
2

}, 

where 

t <--> f(t) (0 < t s 1) 
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Top::>logically, ] a,I] has its usual topology and sets of the fonn {nI} u ] 0, E: [, 

{-rr } U ]O,E:[ are also open. Therefore A is Tr Still, it is not T :2	 2 

1-n 

1-
n 

11.14 LEMMA Let SeA -- then 

[TI] 	 E S <=> n Ker S c Ker TI. 
[S]ES 

E.g.: If S 	= {[S]} and Ker S = {a}, then S = A. 

"-

ILlS THEOREM. Suppose that A is separable -- then for a given [TI] E A, 

the following conditions are equivalent: (i) [TI] is closed in A; (ii) TI (A) = L
_00 

(E). 

PROOF AssUJ.l.1e (i) -- then 

{[TIl] E A:Ker TI c Ker TIl} 

is a one element set (cf. 11.14), so the C*-algebra TI(A) is elementary (cf. 11.7), 

hence :1 a *-isarorphism 4):TI(A) -+!:!oo (11) (H a complex Hilbert space). But the identity 

representation of TI(A) on E is topologically irreducible, thus :3 a unitary operator 

u:11 	 -+ E such that V A E A, 

U4)(TI(A»U-1 = TI(A). 

I.e. : 

http:AssUJ.l.1e
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=> 

L (E) = 'IT(A).
_00 

Ass1.n'le (ii) and consider a ['ITo] E ['IT], thus Ker 'IT c Ker 'ITO (cf. 11.14), so 

there is a topologically irreducible *-representation 'IT' of ~oo(E) on E' such that 

'ITa = 'IT' 0 'IT. Bearing in mind 10.28, fix a unitary operator U:E -+ E' with the pcop

erty that V A E A, 

-1
U'IT (A) U = 'IT' ('IT (A» ( ;:: 'ITa(A» • 

'rhen obviously 

A 

which establishes that ['IT] is closed in A. 

[Note: The proof of the implication (ii) => (i) does not use the assWlption 

that A is seprrable.] 

A C*-algebra A is said to be liminal for every topologically irreducible 

*-representation 'IT:A -+ B(E), -we have 'IT(A) = L
_00 

(E). 

11.16 EXAMPLE Every cannutative C*-algebra is limina.1. 

11.17 EXAMPLE Every finite dimensional C*-algebra is liminal. 

11.18 EXAMPLE Every elanentary C*-algebra is limina.1. 

N.B. If H is an infinite dimensional ca:nplex Hilbert space, then B(H) is not 
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liminal (just consider the identity representation of B(H) on H). 

11.19 LEMMA Suppose that A is liminal -- then its C*-subalgebras are liminal 

(in 	particular, its closed ideals are liminal). 

[One has only to apply 10.38 (restrictions of canpact operators are canpact).] 

11. 20 LEMMA Suppose that A is liminal -- then V closed ideal I c A, the 

quotient A/I is liminal. 

If A is unital and liminal, then its topologically irreducible *-representations 

are necessarily finite dimensional (V 1f,1f(lA) = i~). This said, let H be an infinite 

dimensional canplex Hilbert space -- then L 
_00 

(H) + is not liminal (consider 1f (A, X) = 

A + Ud ). Still, ~oo (H) is a liminal closed ideal of ~oo(H) + and the quotientH

L (H) +/L (H) ~ C is liminal as well. _co _00 

11.21 LEMMA If A is liminal, then A is Tl , the converse being valid if in 

addition A is separable (cf. 11.15). 

11. 22 EXAMPLE Suppose that A *-isamorphic to a C*-subalgebra of an ele

mentary C*-algebra -- then A is liminal (cf. 11.19), hence A is Tl and, in fact, 

A is discrete. 

A C*-algebra A is said to be postliminal if for every topologically irreducible 

*-representation 1f: A -+ B(E) I 'de have 1f (A) :::> ~oo (E) . 
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Trivially, 


"liminal" => "postliminal". 


11. 23 EXAMPLE Let H be an infinite dimensional complex Hilbert space -- then 

L 
_00 

(H)+ postliminal (but not liminal) . 

11. 24 LEMMA Supp:>se that A is postliminal -- then its C*-subalgebras are 

p:>stliminal (in particular, its closed ideals are postliminal) . 

11.25 LEMMA Suppose that Ais postliminal -- then V closed ideal I c A, 

the quotient A/I is postliminal. 

11. 26 LEMMA Let I c A be a closed ideal. AsS'llI1:'e: I and AI I are postliminal -

then A postliminal. 

[Note: If I and All are liminal, then A is postliminal (but, as observed 

al::x:>ve (and will be seen again below), A need not be liminal).] 

211. 27 EXAMPLE Take H = 1... with its usual orthono:rma.l basis {e } am. let S 
n 

be the unilateral shift characterized by Sen = e + -- then the Toeplitz algebran l 

T is the C*-subalgebra of B(H) generated by S. It is well.knoltm. that T properly 

contains ~oo(H} and T~oo(H) ;::: C(!'). Since ~oo(H) and C(!') are liminal, hence post

liminal, it follOtlS fran 11. 26 that T is postliminal. Nevertheless, T is not 

liminal: The identity representation is topologically irreducible and T properly 

contains L (H).
-00 
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N • B. One consequence of 11.25 am 11. 26 is this: Suppose that A is non

unital - then A is postlimina1 iff A+ is post1imina.1. 

11.28 LEMMA Suppose that A is post1imina1. Let 

be topologically irreducible *-:representations of A such that Ker TIl = Ker TI2 -

then 

(cf. 11. 3) • 

A A 

Therefore A is TO and the canonical ma.p A -+ Prim A is a horreaoo:tphism (cf. 

11.10) . 

[Note: A is T1 if A is liminal (cf. 11.21).J 

A 

11.29 REMARK It is a fact that if A is separable and A is TO' then A is post

1imina.1. 

[Note: This is definitely not obvious.] 

11. 30 lEMMA Suppose that A is simple and post1imina1 -- then A is e1etrEI1tary. 

PR(X)F Let TI:A -+ B(E) be a topologically irreducible *-representation -- then 

1TI(A) ~ L (E). But TI-1 (L (E» is a closed ideal, thus A = TI- (L (E». At the same 
-co -co _C() 

time, TI is faithful. Therefore TI:A -+ L (E) is a *-isaoorphism, so A is e1~ntary. 
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An elementary C*-algebra is unital iff it is finite di.nensiona1. CombiniDJ 

this with 11. 30, we cor:clude that an infinite dimensional unital simple C*-algrora 

is not :r;ostlimiml. 

11. 31 EXAMPLE Let H be a separable infinite dimensional complex Hilbert 

space - then the quotient B (H) /L-oo (H) is not pJstliminal, her:ce B (H) is rot pJst

limiml ei ther (cf . 11. 25) . 

[Note: For the record, Prim B(H) = {O,L (H)} (cf. 10.41), while 
-00 

#(B(H) 
"-

) (cf. 10.44).] 

11.32 THEOREM SUPpJse that A is pJstlimiml -- then every primary *-represen

tation of A is geometrically equivalent to a tOpJlogically irreducible *-representation 

of A or still, is unitarily equivalent to a multiple of a to"fOlogically irreducible 

*-representation of A. 

11. 33 LEMMA Let A am B be C*-algebras and sup:r;ose that A is :r;ostlimim1. Fix 

a C*-rorm II· lion A 6} B -- then every topJlogically irreducible *-representationa. 
"

r;; of A 6} B is unitarily equivalent to one of the form rr ~ r;;, where [rr] E A and 
a. 

"

[r;;] E B. 

PRCX>F On elementary general grounds, there are nomegenerate *-representations 

(r;;:A 6} B + B(E»
a. 
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such that V A E A, V B E B, 

1;; (A ~ B} = 

Both 1;;A and 1;;B are primary. But A is also postlirninal, so 3 a topologically irre

ducible *-representatian TI of A such that 1;;A is unitarily equivalent to !TI ~ TI ~ id 

(cf. 11. 32). And, umer this equivalence, 1;;B takes the fonn id ~ n, where n is a 

topologically irreducible *-representation of B. 

11.34 THEOREM Suppose that Ais postlirninal -- then Ais nuclear. 

PROOF Let B be a C*-algebra ani let X E A~ B (X ~ 0). Given a C*-nonn 

11·11 on A G B, choose a topologically irreducible *-representatian 1;; of A ~ B a a 

such that 

II X, Ia = I' 1;; (X) II (cf. 10.36). 

Then 

I I X I I = I I (TI ~ n) (X) I I (cf. 11. 33) . 
a 

But 

II (TI ~ n) (X) II s IIx II . (cf. 6.11)
nun 

=> 

=> 

Ilxll s !lxll ..max nun 

Therefore Ais nuclear. 
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11. 35 REMA..t~:K It can :be shown that 

A,B postliminal => A ~ B postliminal. 

11. 36 EXAMPLE Let H :be an infinite diroonsional complex Hil1:Jert space -

then B (H) is not postlimina1. 

[In fact, B(H) is not nuclear (cf. 6.27).] 

[Note: If H is not separable, then for each cardinal K :s; di.."U H there is a 

closed ideal IKe B (H) containing ~oo (H), hence B(H) If!oo (H) is not sirrple.] 

11.37 LEMMA Fix A E A -- then the function 

[n] "* lin (A) II 

A 

is lower semicontinuous on A. 

PRCOF Fix £ > O. Given a topologically irreducible *-representation 

n:A"* B(E), choose unit vectors x,y E E: 

I<x, n (A) y> I > lin (A) II - ~ • 

Then :3 a neighborh.cx:Xi U of [n] such that V [n'] E U, there are unit vectors x' ,y' 

in E' for which 

I<x',n' (A)y'> - <x,n(A)y>I < ~ , 

thus 

I<x' ,n' (A) y' > I > I In (A) I I - £ 

=> 

I In' (A) I I > I In (A) I I - E: • 
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Suppose now that {[~.]:i E I} is a net in A: 
l 

[~.] -+ [~].
l 

Then 	 [~i] is eventually :in U, so 

lim:inf II~·
l 

(A) II ~ I I ~ (A) I I - s 
iEI 

or still, 

lim:inf II~·
l 

(A) II ~ II ~(A) II (s -+ O) , 
iEI 

II, 38 REMARK In general, the function 

I~ ] -+ I I ~ (A) I I 
A 	 A 

is not continuous on A but it will be if A is T2 (see the next lemma) (a compact 

subset of a Hausdorff space is closed) . 

[Note: The continuity of the function 

[~] -+ I I ~ (A) I I 

'if A E A is equivalent to the condition that A be T ,]2

11.39 LEMMA Fix A E Aand r > 0 -- then 

A 

Sr (A) = {[~] E A: II ~ (A) I I ~ r} 

A 

is a 	 compact subset of A. 

PROOF let {S.: i E I} be a decreas:ing net of relatively closed nonempty subsets 
l 

of Sr(A) -- then it will be enough to prove that n S. ';!~. To this end, let 
iEI l 
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Claim: 

In fact, 

IIA + Ker 'IT II. 

But 

IIA+ Ker 'IT II = inf I I A + B II . 
BEKer 'IT 

And V B E Ker 'IT, 

r ::;; I I 'IT (A) I I = I I 'IT (A + B) I I 

::;; I I 'IT II IIA+BII 

::;; IIA + BII. 
Continuing, put 

1 = ( U 1.) , 
].

iEI 

so 

IIA + 111 ~ r. 

Since A/I is a C*-algebra, :I a topologically irreducible *-representation 'IT of A: 

1 c Ker 'IT & I I 'IT (A + 1) II = IIA+ 1 II (cf . 10. 36) . 

Therefore 

But ViE I, 

1. 
]. 

c Ker 'IT 

=> 

['IT] E Si (cf. 11.14) 
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=> 

fir] E S. (S. =!. n S (A»
1. 1. 1. r 

=> 

n S. ;t JJ. 
1. 

11.40 THEOREM A is locally compact. 

" 
PROOF Fix ['ITO] E A - then the claim is that ['ITO] has a basis of 	canpact 

" 
neighborhoods. Thus let U be an o:r;:en neighborhcxJd of ['ITO]' Since S = A - U is 

closed, 3 A E A: 

'ITo (A) ;t a and SeA) = a v [S] E S (cf. 11.14). 

Choose r > O:r < I I 'ITO (A) II -- then 

" 
{['IT] E A: II 'IT (A) II > r} 

is open (cf. 11.37), so 
A 

{['IT] E A: II 'IT (A) II ~ r} 

is a compact neighborhcxJd of I 'ITO] (cf. 11.39) which is contained in U. 

" 
11.41 	 REMARK If A is unital, then A is canpact. Proof: 


" 

{['IT] E A: 11'IT(lA) II ~ l} 

is a compact subset of A. But 

('IT:A -+ B(E» 

= 1. 
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[Note: The converse is false: If H is an infinite dirre:nsiona1 complex 
A 

Hilbert space and if A = L (H), then :if (A) = 1 (cf. 11.1), yet id fJ- L (H).]
-00 -00H 

N.B. The };I"Leceding considerations imply that Prim A is locally compact, 

Prim A being cO£rq?act if A is unital. 

Using the notation of 9.33, each Z in the center ~(A) of Dt(A) detennines 

a bounded continuous complex valued ftmction 

via the };I"Lescription 

If instead, we hold [TI] fixed and let Z vary, then the assignrrent 

defines a character w[TI] of ~ (A) (note that 

In stm:JTta.ry: 

X E BC(A) z 

11.42 RAPPEL An element Z E ~(A) is a pair (~,~) such that V A,B E A, 

~(A)B = ~(AB) = A~(B). 

http:stm:JTta.ry
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11.43 LEMMa V [~] E A, 

Ker w[~] = {z E leA) :s(A) c Ker ~}. 

[One has only to recall that by construction (cf. 9.32) I 

n n 
rr(Z) (L ~(A.)x.) = L ~(s(A.»x .• ]

i=l ~ ~ i=l ~ ~ 

It follows that w[~] depends only on Ker ~, so there is a continuous function 

¢:Prim A ~ ~(l(A» 

such that V ~ I 

11. 44 THEOREM The rra.p 

l (A) ~ Be (Prim A) 

is a *-iscm:>rphisn. 

[Note: ve have 

(Z 0 ¢) (Ker ~) = Z(w[~]) 

The only issue is surjectivity and for that 'We'll need a couple of lemnas , the 

first of which is standard fare. 
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11. 45 LEMMA let lk c A (k = 0,1, ••• , n) be closed ideals. Suppose that 

A E 10 + 11 + .•. + In' 

Then V e > 0, .3 ~ E l k : 

A = AO + Al + •.. + An and II~ II ~ (2 + e) IIA II· 

PROOF Proceed by induction, the statement being trivial if n = O. 'lb pass 

from n to n + 1, choose 

such that A - B E In+r Since 

(10 + ••. + In+l)/ln+l 

one can assurre that 

where e' > 0 will be specified below. Let en be another positive parameter which 

will also be specified below -- then the induction hypothesis applied to the pair 

(B, en) gives rise to a decanposition 

with 

II~ II ~ (2 + en) liB II. 

Put 

An+l = A-B. 

Then 

A = B + (A - B) 
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=A +A +···+Ao 1 n+1 

=> 

I lAo II :s; (2 + e") liB II :s; (2 + e") (1 + c') IIA II 

IIA111:s; (2+ cn)IIBII:s; (2+ c")(l+ e')IIAII 

Now take c', e" small enough to force 

2c' + e" + ene' :s; c. 

N.B. Take c = 1 to get the estimate 

To sirrp1ify the writing, let P stand for a generic e1a:rent of Prim A and let 

prp:A + A/p be the quotient map -- then 

n Ker prp = {O}. 
P 

11. 46 LEMMA Fix c > 0 and A E A. Let f E BC (Prim A) - then :3 Be E A such 

that V P E Prim A, 

PR(X)F Assl.JI'Ce for sake of argl.JI'Cent that f : Prim A + 10,1]. Fix n and define 
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open sets 

Ok = {p E Prim A:k~l < f(P) < k~l} (k = O,l, •.. ,n). 

Obviously, 
n 

Prim A = U Ok 
k=O 

and each P E Prim A belongs to at lIDst two of the Ok' IBt 

Then 

and 

A = AO + Al + ..• + An and II~ II ~ 3 IIA II . 

IBt 

n k 
B = L: -A.. 

n k=O n -1<. 

Then V P E Prim A, 

n 
= II L: (~ prp (~) - f (P)prp (~)) II 

k=O 

n 
= II L: (~ - f(p))prp(~) II 

k=O 

~~ IIA\!. n 
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Choose n > > 0: 

~ IIAII < s n 

and put 

B == B • s n 

N. B. If B' also has the stated property I then s 

lIB - B' I I < 2s.s s 

Proof: 

IIBs - B~ II == su~ IIrr(B - B~) IIs 
[rr] EA 

$ sup (1Iprp(Bs) - f(p)prp(A) II 
PEPrim A 

< 2s. 

The sequence {B .} generated per 11. 46 is therefore Cauchy I hence converges
2-n 

to an elerrent T(f/A) E A, and V P E Prim A, 

an equation that characterizes T(f,A) (since 	n Ker prp == {O}). 
P 

Let 

(A EA). 
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Then sf=A + Ais linear. 

[Note: 

Proof: V P E Prim A, 

=> 


=> 

f(P) = g(P) 

11.47 LEMMA 	 V A,B E A, 

PROOF V P E 	Prim A, 

prp(T(f,A)B) 	= prp(T(f,A»prp(B) 

= f(P)prp(A)prp(B) 

= f (P) prp (AB) 

prp (T (f ,AB) ) • 

E'IC. 

Put 
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Then 

(cf. 11. 42) 

and we claim that 

thereby establishing surjectivity in 11.44. 

First,v TI & V A, 

" 
= (Zf 0 </l) (Ker TI) TI (A) • 

But 

= TI(s" (A) - (Z 0 </l) (Ker TI)A + (Zf 0 </l) (Ker TI)A)
fZ 0 </lf 

= TI(s" (A) - (Z 0 </l) (Ker TI)A) + TI«Zf 0 </l) (Ke:- TI)A) 
f 

Zf 0 <P 

= TI(T(Zf 0 </l,A) - (Z 0 </l) (Ker TI)A) + TI«Zf 0 </l) (Ker TI)A)
f 

" = TI«Zf 0 </l) (Ker TI)A) 

" = (Zf 0 </l) (Ker TI) TI (A) • 

So V IT & V A, 
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=> 

~f(A) = 

=> 

=> 


11.48 REMARK One can work with A rather than Prim A provided A is TO 

(cf. 11.10), in 'Which case 

l (A) :.::oc (A) • 

11.49 LEMMA The map 

Prim A + Prim DC(A) 

that sends 

Ker 'IT to Ker TI 

is a continuous injection with a dense range. 

[The closure of the image of Prim A in Prim DC(A) consists of those Q: 

Q:::l nKerTI.] 
'IT 

Since DC(A) is a tmital C*-algebra, Prim DC{A) is compact. And, as will be 

seen nnnentarily, one can assign to each 

f E C(Prim DC(A» 
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an element 

1> (f) E Ie (Prim A) 

with the property that 

1>(f) (Ker TI) = f(Ker TI). 

11.50 THEOREM The map 

C (Prim DC (A» -+ BC (Prim A) 

f -+ 1> (f) 

is a *-isaro:rpmsm. 

PRCX)F Injectivity is implied by 11. 49, leaving surjectivity. To deal with it, 

note that the arrCM 

Prim A -+ Prim Z (A) 

Ker TI -+ Ker TI IZ (A) 

factors as 

Prim A -+ Prim DC(A) -+ Prim Z (A) 

fran which an induced map 

C (Prim Z (A» -+ C (Prim DC (A» ! Ie (Prim A) • 

But 

C (Prim Z (A» ~ C (M Z(A» ) 

:: ZeAl, 

so fran 11. 44, the arrc:M 

C (Prim Z (A» -+ BC (Prim A) 

is bijective, hence 1> is surjective. 
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11. 51 RAPPEL Let X be a top1ogica1 space -- then a Stone-Cech carpact

ification of X is a compact Hausdorff space SX and a continuous map Sx:X ~ SX 

such that for every ca:npact Hausdorff space Y and every continuous function f: X ~ Y 

there is a unique continuous function f I : Sx ~ Y with f = flo SX' 

[Note: It is not assumed that X is Hausdorff. Still, SX always exists 

(cf. 11. 53) and is essentially unique. Incidentally, the image of X in eX is dense 

and is all of eX if X is compact.] 

11. 52 REMARK Let TOP be the category of t.0pologica1 spaces and continuous 

functions and let CPT;! be the full subcategory of TOP whose objects are the canpact 

Hausdorff spaces -- then the Stone-cech canpactification determines a functor 

Indeed, if X,Y are topological spaces and if f:X ~ Y is a continuous function then 

there is a a::nmu.tative diagram 

f 
X - Y 

Sx --+ 
Sf 

BY 

Sf being the unique filler for 

X 
f 
~Y 

Sx ... > BY 
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On the other hand, there is a forgetful functor 

and S is its left adjoint, so S preserves colirnits (cf. 3.24). E.g.: If {X.:i E I}
J. 

is a collection of corrpact Hausdorff spaces, then its coproduct in CPT2 is 

11.53 LEMMA. Let X be a top:>logical space. Define E:X + Prim Be (X) by E (x) = 

Ker EX' where Ex is evaluation at x - then the pair 

(Prim :oc: (X) , E) 

is "the" Stone-cech canpactification of X. 

[Note: Be (X) is a unital conmutative C*-algebra, hence Prim :OC:{X) is a canpact 

Hausdorff space.] 

E.g.: Tracing through 	the various identifications, we have 


S Prim A ;::: Prim Be (Prim A) 


;::: Prim z(Al (cf. 11. 44) . 



1. 


§12. W*-ALGEBRAS 

Let H be a com~eK Hilbert space -- then a *-subalgebra A c B(H) is non

degenerate if the linear span of the set 

AH = {Ax:A E A,x E H} 

is dense in H, i.e. I if AH is total. 

[Note: A unital *-subalgebra A c B(H) is automatically nondegenerate.] 

12.1 REMARK If A c B(H) is a C*-subalgebra, then H is a left Hilbert 

A-rrcdule (11Ax II ::; IIA II II x II), hence in this situation, AH is a closed linear 

subspace of H (cf. 4.2) I thus H = AH if A is nondegenerate. 

12. 2 RAPPEL The arrow 

B(H) -+ ~l (H)* 

that sends A to AA (A E B(H», where 

AA (T) = tr (AT) (T E ~l (H» , 

is an is:>rnetric isooorphism, thus B(H) can be equippe::1 with the weak* topology 

arising from this identificatiDn. 

[Note: Accordingly, the weak* topology on B(H) is generaterl by the sem:i.norms 

IIAIIT = Itr(TA) I (T E ~l (H».J 

12.3 THEOREI4 SUROse that A is a nondegenerate *-subalgebra of B(H) -- then 

A is dense in An per the weak, the strong, arii the weak* topologies. 
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So, as a corollary, if A c B(H} is a nondegenerate *-subalgebra, then the 

following conditions are a;{Uivalent: 

1. A = A": 

2. A is weakly closed: 

3. A is strongly closErli 

4. A is -weak* closed. 

N.B. Therefore A is necessarily unital. 


A von Neuma.m algebra is a *-subalgebra A c B(H} such that A = A". 


E.g.: AI is a von Neumam algebra. In fact, (Atl It = At I t = AI. 


12.4 REMARK A von Neuma.m algebra A is weakly closed, hence n:>nn closed, so 

A is a unital C*-algebra. 

[Note: Sut=POse that A is a weakly closed C*-subalgebra of B(H). Let 

HO = n Ker A. 
AEA 

Then H~ is A-invariant am AIH~ is a -weakly closed nomegererate *-subalgebra of 

B(H~), hence is a von Neumann algebra. J 

12.5 EXAMPLE B(H) is a von Neumann algebra. On the other hand, L 
_00 

(H) is not 

a von Neuma.m algebra if H is infinite dimensional. To see this, fix an orthonormal 

basis {e.:i E I} for H. Write P. for the orthogonal projection onto Ce. and given
1 1 - 1 

a finite subset F c I, put 
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Then the net {Pp} is strongly convergent to idW But idH rt !!oo(H) • 

12.6 LEMMA If S is a subset of B{m which is closed under the *-operation, 

then S.. the sma.llest von Neumann algebra containing S (the von Neumann algebra 

ge:rerated by S) • 

12. 7 RAPPEL Suptl)se that {Ai: i E I} is a bo1.mded increasing net of self

adjoint operators on H -- then 

sup Ai E B(m SA 

exists, call itA. So, Vi, Ai ~ A and if B E B (H) SA has the property that vi, 

A. ~ B, then A ~ B. 
1 

[Note: We have 

1. A. -+ A weakly;
1 

2. A. -+ A strongly;
1 

3. A. -+ A weak*.]
1 

If A c B{H) is a von Neumann algebra and if {Ai:i E I} c ~A is a bo1.mded 

increasing net, then it is clear that 

sup A. E A 
iEI 1 "SA· 

Conversely: 

12.8 THEOREM Let A c B (H) be a unital C*-algebra. Assurre: V bo1.mded 
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increasing net {Ai: i E I} c ~A' 

sup A. E AA. 
iEI 1 ·S 

Then A is a von Neumann algebra. 

A C*-algebra A is nnnotone complete if every bounded increasing net {A.:i E I}
1 

in ASA has a suprEmLUn in ASA. 

E.g.: Every von Neumann algebra is monotone ca:nplete. 

12.9 LEMMA. Suppose that A is monotone canplete -- then A is unital. 

PROOF Let {e.:i E I} be an approximate unit per A (cf. 1.20). Put 
1 

e = sup e. 
iEI 1 

and let 'IT:A + B(E) be a faithful *-representation of A (cf. 10.37) -- then, due 

to the nondegeneracy of 'IT, 'IT (e ) + iC\; strongly. But ViE I, 'IT(e.) $ 'IT (e) , thus
i 1 

i~ $ 'IT (e) , so 'IT(e) is invertible in B(E) or still, is invertible in 'IT(A) + ~ i,\:. 

Accordingly, V A E A, V c E ~, 

-1
'IT (e) 'IT (e) ('IT (A) + c i,\:) = 'IT(A) + c i,\:. 

Write 

( ) -1 () l'n'IT e = 'IT Ae + c e """E 

and take A = 0, c = 1 to get 
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i. e. , 

rr(eA + c e) = iiL e e -:E 

=> 

i~ E rr(A). 

Therefore A is unital. 

12.10 REMARK Let A be a unital comnutative C*-algebra - then A is rronotone 

romplete iff D,(A) is a a:mq::a.ct extranely disconrected Hausdorff space. 

[Note: The term "extranely disconrectedft means that the closure of every 

open set is open.] 

A W*-algebra is a C*-algebra A which is *-isorrorphic to a von Neumann algebra. 

N. B. A W*-algebra is unital and rronotone complete. 

12.11 REMARK Let A be a unital commutative C*-algebra -- then A is a 

W*-algebra iff there exists a locally compact Hausdorff space X equiPr:al with a 

positive Radon measure 1-1 such that A is iso.rretrically *-isarrorphic to the algebra 

L00 (X, 1-1) of essentially bounded 1-I-measurable fu:rctions on X. 

[Note: The};air (X, 1-1) is not unique.] 

If A and B are rronotone complete C*-algebras, then a }X)sitive linear map 

<P: A -)0. B is said to be normal if for every bounded increasing net {Ai:i E I} c I\,A' 

we have 

<p(sup A •. ) = sup <P(A.). 
iEI 1 iEI 1 

http:a:mq::a.ct
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12.12 LEMMA A *-isarorphism between rronotone complete C*-algebras is normal. 

Take B = g -- then it makes sense to consider normal positive linear function

als on A, in particular mnnal states on A:S (A) c S (A) • 
n 

12.13 LEMMA Suppose that A is a von Neumann algebra. Let w:A + C be a 

positive linear functional -- then w is nonnal iff w is weak* continuous. 

12. 14 THEOREM Suppose that A c B(H) is a von Neumann algebra. Let 

w E S(A) -- then w is nonnal iff 3 a density operator W E W(H) such that V A E A, 

w (A) = tr ("'IA) • 

[Note: Recall that a density operator is a positive trace class operator W 

with tr(W) = 1 (cf. 7.13).] 

N.B. It is thus :i.mnediate that the nonnal state.5 separate the !Dints of A, 

i.e., V A 7 0, 3 w E S (A) :w(A) 7 O. 
n 

w[Note: Consequently, V A 7 0, 3 w E S (A):TI (A) 7 0.]
n 

Suppose that 

A c B(H) 


B c B (K) 


are van NeumaIID algebras. 

12.15 ~ Let <p:A + B be a !Dsitive line:rr map -- then <P is mnnal iff 

<P is wEEk* rontimnus. 
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12.16 THEOREr-1 Let <p:A -+ B be a *-haronorphism. AsSllI1l:!: <P is nonnal -- then 

Ker 	<P is weak* closed and Ran <P is weak* closed. 

[Note: It follows that Ran <P is a von Neuma.rm algebra if <P is unital.] 

12.17 EXAMPLE Let W E S (A) and consider its <NS representation Tfw -- then 

Tf 
W:A 	-+ B(E

W
) is a unital *-hcm::lrtorphism. Moreover, 

W norma.l ==> Tfw mrma.l, 


W W
herx:::e 	Tf (A) c B(E ) is a van Neumann algebra. 

A projection in the center 	of A is called a central projection. 

12. 18 LEMMA Sug;:>ose that 	1 c A is a weak* closed ideal - then 3 a unique 

central 	pvojection P such that 1 == pA (= AP) and V A E A, 

PA = P(PA) = P(AP) == (PA)P = AP. 

[Note: We have 

.L
A == pA (D P A.] 

12. 19 REMARK_ In the context of 12.16, one can thus say that there exists 

a unique central projection P such that Ker <P = pA am <P is a *-is:>norphism of P.LA 

onto Ran <P. 

Suppose that A is a W*-algebra -- then A is m:::n'Dtone ca:nplete and the norma.l 

states sep;rrate the points of A. Conversely, as we shall row see, these properties 

are characteristic. 

http:Neuma.rm
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[Note: If AO c BCHO) is a von Neumann algebra and if <p:A -r AO is a *-iso

rrorphism, then <P is normal (cf. 12.12). So, V Wo E Sn (AO)' Wo 0 <P E Sn (A). 

B..lt Sn (AO) separates the points of AO' Therefore Sn (A) seprrates the points of A.] 
-

12. 20 LEMMA Suppose that A is nonotone ca:nplete. let W be a normal positive 

linear functional on A -- then for any bounded. increasing net {Ai: i E I} c ~, 

rrW (A.) converges strongly to rrW (A) (A = sup A.) • 
1 i8 1 


PRCX)F Let U E A be unitary -- then 


-1 -1

DAU = 	 sup DA. U 

iEI 1 

=> 


W W W
<rr (U)x 	,rr (A)rr (U)x >
W W W 

W -1 = <x ,rr 	(U AU)x >
W W W 

-1= sup w(U A. U)
1 

W -1= sup <x ,rr (U A.U)x > 
iEI W 1 W W 

=> 


= O. 
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Since the finite linear ca:nbinations of unitary e1~nts exhaust A and since 

w
converges stroI"B1y to zero, which imp1ie.c; that 1T (Ai } converges strongly to 1T

w
(A) • 

12.21 THEOREM Let A be a C*-a1gebra. Assume: A is rrorotone complete and 

the nonna1 states separate the pJints of A -- then A is a ~'i1*-a1gebra. 

PROOF 	 Let 


1]: = (9 1T 
W 

• 

NOR ES {A}w n 

rrhen 1T is a faithful *-representation of A onNOR 

So 

is a *-isorrorphism, thus to prove that A is a ~'i1*-a1gebra, it suffices to prove that 

is a von Neumann algebra and for this, we shall appeal to 12.8 (1T {A) is unitalNOR 

(cf. 12.9». Let {A1..': i E I} c AA be a bounded in::::reasillJ net and put A = sup A, - 
"8 	 iEI 1.. 

converges strongly to 1TNOR (A). Meanwhile 

strongly. Therefore 



10. 


sup 'NOR (Ai) = 'NOR(A) E 'NOR (A) • 
iEI 

1. e. : IT (Al is rronotone complete.NOR 

12.22 REMARK There are examples of rronotone complete C*-algebras A: 

S (A) = {O}. Such an A canrot be a W*-algebra.
n 

The predual of a von Neumarm algebra A is the set of all weak* continuous 

linear functionals on A. Notation: A*. 

So, e.g., 

12. 23 lEMMA let w: A -+ C be a weak* contiruous linear functional. Ass1.ID'e : 

'if A E A, 

w(A*) =w{A}. 

Then 3 unique weak* continuous positive linear functionals 

such that 

w= w - w,. -
and 

Ilwll = I i~+ Ii + IlwJ I
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[Note: It is a corollaIy that every element of ~ can be written as a linear 

canbination of four weak* continuous positive linear functionals (cf. 7.11).] 

12.24 !..EMMA A* is a nann closed subspace of A* • 

Therefore A* is a Banach space. 

12.25 THEOREM Let A be a von Neumann algebra -..., then the arrow r: A -+- (A*) * 

definei by the rule 

r (A) (w) = w(A) 

is an isanetric isarorp:ri.sm. 

INote: r is also a horna:::mp~sm if A and (A*) * are endowei with their re

spective wEBk* top::>logies, thus the closei unit ball Al of A is weak* compact.] 

Let X be a ca:nplex Banach space - then a canplex Banach space Y is callei a 

predual of X if X is isometrically isomorphic to Y*. 

[Note: If X is reflexive, then X :::: (X*) *, thus the dual x* is a predual.] 

E. g.: Take X = A, Y = ~. 

12.26 LEMMA Let A be a C*-algebra - then up to isometric isanorphism, A 

admits at IlDst one predua1. 

12.27 EXAMPLE In general, prErluals are not unique: Take H = t l and let 

- Y
l 

= c 

-- then c is not isaretrically isarorphic to Co I yet c* and c8 are 

http:isarorp:ri.sm
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both isanetrically isarorphic to tl. 

12.28 THEOREM let A be a C*-algebra. Sup};X)se that A has a predual V 

then A is a W*-algebra. 

Because the proof is sanewhat involved, it will be convenient to proceed via 

a series of le:rmJaS, the goal being to finesse the matter by an application of 12.21. 

So let A be a C*-algebra with a predual V -- then by definition, there is an 

isaretric isarorphism cp: A -+ V*. Use cp to transfer the weak* to};X)logy on V* to A 

and call it the V*-topology ~ This done, given v E V, define w :A -+ C by
v 

w (A) = <v,Cp(A) > (A E A).
v 

Then the set 

is the subset of A* consisting of those linear functionals that are continuous J?9r 

the V*-topology. 

[Note: To say that Ai -+ A in the V*-topology IOOans that V v E V, 

w (A.) -+ w (A).]v 1. V 

12.29 LEMMA Ais unital. 

lPRO:)F The closed unit ball A of A is ccmpact in the V* -topology (Alaoglu), 

hence has an extretre };X)int (Krein-.Milman). Therefore A is unital (cf. 1. 30) . 

12.30 RAPPEL (Krein-smulian) let E be a canplex Banach space; let E* be its 

dual and. let B* be the closed unit ball in E* - then a convex subset S c E* is 
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VJeak* closed iff each of the sets S n rB* (r > 0) is weak* closed. 

[Note: Here is an application. Suppose that w:E* -+ g is a linear functional - 

then w is weak* continuous iff the restriction wi B* is weak* continuous. Proof: 

Ker w n B* is weak* closed, thus Ker w is wea.k* closed, \\7hich implies that w is 

weak* continuous.] 

12.31 LEMMA ASA is closed in the V*-tq;x::>logy. 

PID)F I t is enough to prove that 

is closed in the V*-topology (Krein-Smulian). So let {A.:i E I} be a V*-convergent
J. 

net in ~A and write the limit as X + r-I Y (x,Y E ASA)' the claim being that Y = O. 

To establish this, note that 'If n EN, {A. + r-I nl } is V* -convergent to X + r-I 
- J. A

(nlA + Y). And then 

=> 

2(1 + n ) 1/2 ~ lim inf IIA. + r-I nlAll 
iEI J. 

~ II X + r-I (nlA + Y) II 

If Y is not zero, one can asS1.llle that its spectrum contains sare r > 0 (otherwise 

work with {- Ai:i E I}), thus 'If n E~, 
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or still, 

222 
r +2m+n ~l+n, 

an imrnssibili ty. Therefore Y = 0, as clairred. 

12.32 LEMMA A+ is closed in the V*-top:>logy. 

PRCX)F It is enough to prove that 

is closed in the V*-topology (Krein-Smulian). But 

12.33 	 LEMMA A is rronotone canplete. 


1

PROOF Let {Ai: i E I} be a bounded i:r:creasing net in A ' Because ASA isSA 

compa.ct in the V*-top:>logy, there is a subret {A.:j E J} which is convergent to an 
J 

element A E ASA' But \;f Ai' Aj is ~ Ai eventually, hence A ~ Ai (A+ being closed in 

the V*-top:>logy (cf. 12.32)}. On the other ham, B E ASA and if 	B ;:?: Ai for all i, 

then B ~ A. for all j, so B ~ A. 'rherefore 
J 

A = sup A., 
iEI ~ 

which proves that A is nonotore canplete. 

Bearing in mim 12.21, to finish the proof of 12.28, we have to show that the 

normal states separate the p:>ints of A. Am for this, sare additional preparation 

is required. 

http:compa.ct
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12.34 RAPPEL (UrysOhn) Let X be a topological space. Suppose that {x.} 
~ 

is a net in X -- then l.lin x. = x iff every subnet {x.} has a subnet {x. } such that 
~ J K 

lim ~ = x. 

[If xi does rot converge to x, then 3 a reighborhcx:>d U of x with the following 

property: \;f i, j j z i:x. ¢ U. But the subnet {x } has a subnet {~} such that 
J j 

the ~ are eventually in U.] 

12.35 ~~ The involution *:A + A is V*-continuous. 


PROOF The V*-topology is the initial topology per the linear furctionals 


(v E V). 

So, to conclude that the involution *: A + A is V* -continuous, it suffices to prove 

that \;f v E V, the arrow 

A + W (A*)
v 

is V*-continuous am for this, it can be assume:l that IIAII s 1 (cf. 12.30). 

Accordingly, fix v E V am suppose that A. + 0 in the V*-topology -- then the 
~ 

contention is that w (A~) + o. Consider an arbitrary subnet {w (A~)}. since 
v ~ v J 

IIA1: II = IIA·II S I,
J J 

it follows fran the V*-canpactness of Al that the net {A~} has a V*-convergent
J 

subnet {Ak}: 

~ + B. 

Claim: B = O. To see this I note that 
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ASA being closed in the 	V*-topo1ogy (cf. 12.31). But 

B * BB* = B, ( - -) = - 
r-I r-I 

=> 

_ ~) * = - B* B B 
=-=-

r-I - r-I r-I r-I 

B = O. 

Therefore 

w (A*) 7 w (0) = O. v -1c v 

NON' apply 12.34 to get 

w (A~) 7 O. 
v ~ 

12.36 LEMMA If Wv is 	:r;:ositive, then Wv is ronna.l. 

PRCX)F 	 In the notation of 12.33, 

A 2 A. => W (A) 2 W (A.) 
~ v v ~ 

W (A.) :$ sup W (A.) 
v ) iEI v ~ 
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=> 

w (A) = lim w (A.) ~ sup w (A.). 
V jEJ V J iEI V 1 

[Note: Recall that A. + A in the V*-topology and w :A + C is a:mtinuous in
J V 

the V* -topology. ] 

12.37 RAPPEL (Hahn-Banach) Let E be a real Hausdorff lCTVS. Let SeE be 

a closed convex COIE -- then 'if x E E - S, :3 a continuous liIEar furctional S:E + R 

such that S(x) < 0 and eIs ~ o. 

E.g. : Take E = A ' S = A+ and work with the v*-topology -- thenSA 

'if A E ASA - A+, :3 a V*-continuous linear functional S:t\,A + ~ such that S (A) < 0 

N . B. Extend e to a linear functional w on all of A by writing 


w(x + r-ly) = S(x) + e(Y) 


Then 	w is V*-continuous (cf. 12.35) and, by construction, is positive, heoce nonnal 

(cf. 12.36). 

12.38 IEMr-iA Let A E A and assume that Wv (A) = 0 for all V*-continuous 

positive lirear functionals w on A -- then A = o. v 


PROOF Write 


A = Re A + r-l Im A. 
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and fran this '11119 want to conclude that A = 0, which will be the case if 

Re A = 0 


Im A = O. 


Consider Re A: 

Re A = (Re A) + - (Re A) _. 

Suppose that Re A 'J. A+ (=> (Re A) ;t! 0) -- then 3 W = v 

WV(Re A) < 0 (cf. supra). 

'As this can't be, it follows that (Re A) = O. Analogous considerations apply to 

Im A, thus (Im A) = O. 'rherefore 

andVw,v 

Consider (Re A) + • If (Re A) + ;t! 0, then 

(Cf. 1. 24) , 

(cL supra), 

a contradiction, hence (Re A)+ = O. Similarly, (Im A)+ = O. Therefore A = O. 

'rhe upshot, then, is that the normal states se:r;:arate the points of A, which 

ccmpletes the proof of 12.28. 



- -
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12.39 REMARK Write A* for the subs:pace of A* spanned by the nomal :positive 

linear functionals -- then 

Suppose that A is a von 	Neumann algebra. 

• Write Pro(A) for the set of all projections P in A. 

• Write F (A) for the set of all nonn closed faces FinS (A).n 	 n 

• write IL (A) for t'tJ.e set of all '\.veak:* closed left ideals I in A. 

Equip each of these entities with their natural ordering. 

12.40 THEOREM 

• 	There is an order preserving bijection 


<p:Pro(A) ~ F (A).

-- n 

• There is an order reversing bijection 

• There is an order reversing bijection 

0:Fn (A) ~ IL (A) • 


[The relevant definitions are as follCMS. 


<P: Let 

<p(P} = {w E S (A):w(P) = 	I}.
n 


-1

Then <P (F) = P I where 	P is the smallest projection such that w(P) = 1 for all w E F. 
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'¥: Let 

'¥(P) = {A E A:AP = a}. 

-1 i
Then '¥ (1) = P , where P is the 1.IDique projection such that 1 = AJ? 

0: Take 0 = '¥ 0 if>-1 then 

0{F) = {A E A:w{A*A) = 0 V w E F} 

0-1 (1) = {w E S (A) :w{A*A) = 0 V A E I}.]
n 

Given P E Pro (A) , let 

thus 

12.41 LEMMA. Every Y in the convex hull of Fp U F can be written as a 1.IDique
pi 

convex canbination 

y = AO + {1 - A)T, 

Let Fp c Sn (A) be a nonn closed face -- then Fp is said to be a split face if 

the convex hull of Fp U F is all of S (A).
pi n 

12.42 LEMMA Fp is a split face iff P is a central projection. 
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[Note: Suprose that P is a central projection -- then 

w E Fp <=> V A E A, w(PA) = w(A) .] 

Let 	w E S CA) and fonn wB as in 10.4: 
n 


B 

w (A) 	 = w (B*AB) (A E A) 

or still, 

If w(B*B) ~ 0, then 

But 

(cf. §10). 

'Iherefore 

B 
wW ::: 

B - w(B*B) 

is a 	vector state which, moreover, is nonnal (cf. 12.17). 

12.43 !.EMMA Let Fp c:; Sn (A) be a split face. Fix w E Fp and suppose that 

w{B*B) 	 ;t; 0 -- then ~ E Fp' 

PROOF We have 

Since Fp is a split face, p is central, so 
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= w(B*P
.1

B) 

= w ( (B*B) p.l) 

But 

= w(P) + w(p .1 ) 

= 1 + w(p.1 ) 

.1 .1=> w(p ) = 0 => ~ (p ) = 0 => ~ (P) = 1 => w E Fp. 
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§13. THE 'DOUBLE 'DUAL 


Given a C*-algebra A, let 

- W 
TI = IB TI • 

wES (A) 

Then iT is faithful. Moreover, the image A= IT (A) is a nondegenerate *-subalgebra 

-of B(E) (E = IB EW) • Therefore A is dense in At , ~r the weak, the strong, 
wES (A) 

and the weak* topologies (cf. 12.3). 

13.1 LEMMA Each w E S (A) has a unique extension to an elanent wE S (At I) : 
n 

w = w 0 TI. 

PROOF Uniqueness follows from 12.13. As for existence, view x E E 
w as an w 

-
element x of E and let wbe the restriction to AI , of the vector state w -- then 

w 
xw 

V A E A, 

weAl = <x ,TI
w(A)x > 

w ww 

= <x ,TI(A)X > w w 

= (w 0 IT) (A) • 

N.B. The procedure is exhaustive in that every el~t of S (AI') arises in 
n 

this way. 

13. 2 REMARK On AI I, the weak and the weak* topologies coincide. 
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-
[Every normal state on A" is a vector state.] 

13. 3 THEDREM The map 

seA) -+ S (A' ')
n 

-
w--+w 

is an affine isarorplllsm and extends to an isanetric isarnrphism 

-w --+ w. 

PROOF The only thing that has to be checked. is the fact that 

Ilwll = Ilwll (w E A*) • 

HaNever, according to 9.47, the closed unit ball Al (= TI(Al » is weakly dense in 

the closed. unit ball of A". But wis weakly continuous (cf • 13 • 2), so 

Ilw II = sup I(w 0 TI) (A) I 
AEAl 

= sup IW(A) I 

AEAl 

= I Iwl t· 

13.4 REMARK The dual of the arrow 

is an isorretric isonorphism 
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Therefore (A' ')* is a predual of A**. As it will be shoNn below that A** is a 

C*-algebra (cf. 13.20), this means that A** is actually a W*-algebra (cf. 12.28). 

There is an arrow 

A" r «A") *) * , 

viz. 

(cf. 12.25). 

Denote by 11 the a::::JIl:pOsite 

Then V A E ;4>" 11 (A) is that elanent of A** which sends w to weAl and by construction, 

11 is an isaretric isa:rorphism. 

N • B. The diagram 

11-
A't ~ A** 

r r 
A +-- A-1T 

canmutes. For let A E A -- then on the one hand, A(w) = w(A) , while on the other, 

11(1T (A» (w) = w(1T (A» = (w 0 1T) (A) = w (A) • 

To proceed further, it will be convenient to introouce sane formalities. 

So let A be a Banach algebra • 

• Given A E A, define linear maps A .... A by 

LA (B) = AB 

~ (B) = EA. 
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Then 

LA,:A* -+ A* 

RA:A* -+ A* . 

• Given 	w E A*, define 

w E A*
A 

w E A*
A 

by 

w = (L*) (w)A A 

• Given f E A**, define 

w E A*f 

w E A*
f 

by 

13.5 ARENS PRODUCT Given f,g E A**, define 

f 
L 

x g E A** 

f x g
R 

E A** 
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by 

(f L x g) (w) = f(gw) 

(f x R g) (w) = g(wf) . 

13.6 LEMMA We have 

- II wAII s; II W II IIAII 

IIAwl1 IIwl! IIAII.s; 

13. 7 LEMMA vie have 

13. 8 LEMMA We have 

- lI~il s; Ilwl! Ilfll 

I I wf I I s; I I W I I I I f I I . 

13.9 LEMMA We have 
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13.10 IEMMA W:!: have 

IlfLxgl1 ::;llfll Ilgll 

Ilf xRgll::; Ilfll IIgII· 

13. 11 IEMMA W:!: have 

Now bring in the canonical injection 

A -+ A** 

A -+ A. 

13. 12 IEMMA We have 

13.13 IEMMA We have 

A A 

A L x f = A x R f = (LA*) (f) 

A A

f x A = f x A = (~*) (f).
L RA 
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13.14 THEOREM Either Arens product makes A** into a Banach algebra and the 

arrCM A -+ A** is an injective honororphism w.r.t. both: 

A A 
A L x B = CAB) 

A A " 

A x B = (AB).
R 

"

[Note: If A is unital, then 1A is a unit for either Arens product.] 

Definition: A is Arens regular if the two products LX, x R coincide (in 

which case we simply write f x g) • 

13.15 EXAMPIE Take G per 5.17 -- then Ll(G} is Arens regular iff G is finite. 

1 00 

13.16 EXAMPLE Take A = Co -- then Co ::: l and c*O ::: l . Here x = xL R 

and is just the elementwise multiplication on l 
00 

. 

Suppose in addition that A is a Barach *-algebra. Ass'1.llIe: The involution 


*:A -+ A is continuous• 


• Given w E A*, define w*:A -+ £: by 

w*(A) = w{A*). 

Then w* E A*, the map w -+ w* is a linear involution on A*, and 

(w )* = (w*) 
A A* 

(
A

w) * = (w*) 
A* 
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• Given f E A**, define f*:A* -+ S by 

f*(w) = f(w*) . 

Then f* E A**, the map f -+ f* is a linear invGlution on A**, and 

( f w) * = (w*) 
f* 

(w 	 ) * = (w*) • 
f f* 

13.17 EXAMPLE Take A to be a C*-algebra -- then 

In fact, V w E A*, 

(:., (A*) (w) = OJ (A*) , 

while 

(:., (A) * (w) = £). (1\) (w*) 

= (w*) (A) 

= W(A*) • 

13. 18 I..EMM..2\. We have 
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(f x g) * = g* X R +* 
L 	 .L 

(f x R g)* = g* L x f*. 

Consequently, if A is Arens regular, then A** is a Banach *-algebra. 

13.19 THEOREM Suppose that A is a C*-algebra -- then A is Arens regular. 

PROOF Given x,y E E, define w by 

x,y 


w (T) = <x, Ty> (T E B (E)) • 
x,y 

Then 

w 0 'IT E A* 
x,y 

and V f E A**, the expression 

f(w	__ 0 TI) 
x,y 

is 	conjugate linear in X, linear in y, and 

If (w__ 0 TI) I ::; I' f I' IIw__ 0 TI II 
x,y x,y 

::; Ilfll IIxll Ilyll, 
so :J a unique operator 

-
~f E B(E) 

such that 

f(w__ 0 TI) = <x'~fY>' 
x,y 
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The map 

"'

is nonn preserving (11r.lfll = Ilfll) and V A E A, r.l(A) = TI(A), Le., there is a 

ccmnutative diagram 

AT A** 

:;r 1 1r.l 

BeE) == BeE). 

lastly: 

• <x,r.lf x g y> 
L 

= f x g (w TI)

L X,Y 

0 


= f «w TI»0 
g - x,y 

= f (w TI)0 

X,r.lii 

-
• <x,r.lf x g Y> 

R 

= f x g (w TI)0 

R - x,y 

= g({w	__ 0 TI} f} 
x,y 



- -
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=> 

f L x 	g = f x R g. 

-[Note: It is clear that the span of the w o TI is all of A* but more is 
x,y 

true: Every w E A* "is" an w _ iT.]_ 0 

X,Y 

N.B. 	 We have 

and 

0f = Q 
f* 

fTo check the second point, write 

<x,Q y> = f* (w 0 '.jf) 
f* x,y 

= f«w	__ 0 w)*) 
X,y 

= f (w _ _ '.jf)0 

y,x 

= <y,Qr> 

= <Qr'Y> 

= <x,Q:fY>' ] 
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13.20 LEMMA Suppose that A is a C*-a1gebra -- then A** is a C*-a1gebra. 

PROOF V f E A**, 

Ilf* 	x f II = II rl II 
f* x f 

= II rl rlf II 
f* 

= II rlfrlf II 

= II rlf 112 

= Ilf 112. 

-
Maintaining the supposition that A is a C*-a1gebra, note that rl (A**) = A" 

and consider the composite 6. rl:0 

rl 6. 

A** -+ A" -+ A**. 


Then V f E A**, 

and 

6.W ) (w__ 0 TI)
f x,y 

= f(w__ TI).0 

x,y 
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Therefore 

L\ 0 n = id 
A** 

13.21 LEMMA L\ is a *-isamorphism. 

PROJF We already know that L\ is an isanetric isomorphism which I noreover I 

is *-li~ar (cf. 13.17), thus one has only to show that 

But 

= f x g 

N.B. 	 Therefore L\ is normal (cf. 12.12). 

[Note: Recall that A** is a W*-algebra (cf. 13.4) I hence is IIDIlOtone cauplete.] 

13.22 	 EXAMPLE let H be a carplex Hilbert space -- then 

~oo (H) * ::: ~1 (H) 

~1 (H) * ::: B (H) • 
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And the iSCJIretric isorrorphism B(m +:s., (Hl ** arising therefrcm is a *-isorrorphism, 

VJhere L 
_00 

(H) ** carries the Arens product. 

13.23 LEMMA Let 1T be a nondegenerate *-representation of A on E -- then 

there is a unique nonna1 *-ha:ncm::>rphism 1T" of A" onto 1T (A) It such that 1T" 0 TI = 1T: 

-1T 
A ~ A" 

1T(A)" -- 1T(A)". 

PRClOF Take for 1T" the canposite 

!'::. 1T** 
A" + A** --+ (1T{A)")** 

1T(A)". 

Here 

inc 
(1T(A)")* -----t (1T(A)")* 

=> 
inc* 

(1T(A) ")** -

And 

X E 1T(A) " => X E (1T(A)")** 
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=> 

-
0There remains the claim that TI" TI = TI. SO let A E A: 

'" L':.(if (A» = A 

'" A A 
TI**(A) = A 0 TI* = TI(A) 

r-1 0 inc* (TI"(A» = TI (A) • 

[Note: TI" is necessarily 	weak* continuous (cf. 12.15).] 

Now specialize and asSl:I£1e further that A c B (N) is a von Neumann algebra. 

Let TI:A -+ B(N) be the identity map -.,.. then 3 a unique central projection P in A" 

such that Ker TIlt = PAil and TI" is a *-isarorphism of P.1A" onto A (cf. 12.19). 

N.B. 	 V A E A, 


TI"(TI(A» = TI(A) = A, 


so 

= A. 

Therefore 

.1
arrl TI" is a *-isanorphism of P A onto A. 
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Definition: SeA) is the convex direct sum of convex subsets Sl,S2 c SCA) 

each w E S (A) admits a unique decanposition 

Notation: 

A norm closed face F c SeA) is said to be a ~lit face if there is a face 

Fol c S (A) such that S (A) is the convex direct sum of F and r: 
olS (A) = F e F. 

cvx 

[Note: Fol is nonn closed and is uniquely detennined by F.] 

13.24 LEMMA S (A) is a split face of S(A).
n 


PRCX)F Let 


F c S (An)
pol n 

be the split face corresponding to pol per 12.40, thus 

Taking into account the identification 

SeA) <-> S (An) (cf. 13.3),
n 

let 

F<->F,
pol 

the contention being that 

F = S (A).
n 
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'Ihus let w E Sn (A) and consider w 0 TI" E Sn (A") -- then 

w 0 TI" 0 i = w 0 TI = W 

and 

'Iherefore 

S (A) c F. n 

As for the other direction, let w E F, so w = W 0 i (w E F ). 'lb verify that 
pol 

w E Sn (A), let {Ai:i E I} c ASA be a bounded increasing net and put A = sup Ai -

then 

ol- ol-P TI (A.) t P TI (A)
1 

=> 

- ol- - ol-w{P TI(A.» t w(P TI{A»
1 

=> 

w(n(A.» t w(i{A» (cf. 12.42)
1 

=> 


W(A.) t w(A)

1 

=> 

wE S (A).
n 

Therefore 

F c S (A).
n 



18. 


Consequently, 

SeA) = S (A) 
n 

N. B. The elements of Sn (A).L are said to be singular. 

E.g.: A pure state is either nonna.l or singular. 

13.25 	 REMARK We have 

S (A") = F E9 F 
n p.L cvx P 

and 

F .L <-> S (A) 
p n 

13.26 LEMMA Fix Wo E S (A) -- then Wo is singular iff there is no nonzero 

-weak* continuous positive linear functional w on A such that w :::; w00 

then >..0" is a nonzero -weak* continuous positive linear functional on A such that 

>..0" :::; wOo Suppose, conversely, that there is such an W. Introduce 

(cf. 13.3).by 

-- WOTI=Ww 

Since W > 0 weak* continuous, 
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hence 

=> 


Therefore Wo is not singular. 

13.27 EXAMPLE Sup!X)se that H is an infinite dimensional canplex Hilbert space. 

Let wE S(B(H» -- then wis singular iff wlL
_00 

(H) = o. 

13.28 REMARK Let wE BUI) * - then wis weak* continuous iff Ilw II = 

IlwlL (H) II._00 
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§14. FOLIA 

Suppose that A is a C*-a1gebra. Let 1T be a nondegenerate *-representation of 

A on E. Take 1T" as in 13.23 (so 1T" 0 :rr ;: 1T) - then 3 a unique central projection 

P(1T) in A" such that Ker 1T" ;: P (1T) An (cf. 12.19). NCM put 

C(1T) = P(1T).L 

and call C (1T) the central cover of 1T. 

N.B. 1T" is a *-isarorphism of C(1T) A" onto 1T(A} " (cf. 12.19). 

14.1 LEMMA Let 1T1 and 1T2 be nondegenerate *-representations of A on E1 and 

E2 -- then 

C (1T ) = C (1T ) <=> Ker 1T" = Ker 1T"1 2 1 2' 


[This is trivial: 


.L

Ker 1T" = C(1T ) A"

1 1 

14.2 RAPPEL Suppose that A is a *-a1gebra. Let 1T1 and 1T2 be nondegenerate 

*-representations of A on E1 and E2 then 1T1 and 1T2 are geometrically equivalent 

iff 3 a *-isamorphism 

such that V A E A, 
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14.3 LEMMA let Trl and Tr2 'be nondegenerate *-representations of A on El and 

PR.CX)F Suppose first that Trl and Tr2 are gecxnetrically equivalent and take iP 

as in 14.2 then iP is nonnal (cf. 12.12), hence is weak* continuous (cf. 12.15), 

and V A E A, 

or still, 

But A = TI (A) is dense in A" per the weak* topology, so 

iP (Tr" (A)) - Tr" (A) (A E A") •1 - 2 

Therefore 

i.e. , 

Conversely, 

thus the prescription 

-
iP(Tr"(A))1 

-= Tr"(A)2 (A E A") 

makes sense. 

14.4 SCHOLIUM Let Rep A 'be the set of all nondegenerate *-representations 

of A (cf. 9.15) and let C CA) 'be the set of all central projections in A" -- then 
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Rep A/~ <-> C(A) 

[TI] <-> C(TI). 

E.g.: C(TI) = 0 corresponds to TI:A -+ {OJ. 

Given TIl,TI2 E Rep A, write TIl :::; TI2 if TIl is geanetrically equivalent to a 

sub *-representation of TI2 • 

E.g.: V TI E Rep A, TI :::; TI. 

Definition: A folium F is a nonn closed convex subset of S (A) which is 

"invariant" in the sense that w E F and if w(B*B) 7 0, then ~ E F. 

[Note: Here 

=w::...:..(B_*..;;,.AB~)- .] 
w (B*B) w(B*B) 

Given a nonCI.egenerate *-representation TI:A -+ B(E) I put 

A = TI(A) " 
TI 

ana. let 

14.7 LEMMA F(TI) is a folium. 
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[To check invariance, suppose that 

(W 0 rr) (B*B) ~ 0 

and then write 

w(rr(B*AB» w(rr(B)*rr(A)rr(B»= 
w(rr(B*B» w(rr(B)*rr(B» 

= wrr(B) (rr(A» 

= (w (B) 0 rr) (A) • rr 

But wrr (B) E Sn (Arr) (see the discussion prefacing 12.43).] 

14.8 LEMMA V rr E Rep A, 

Ker 	rr = n Ker w 0 TIe 
wES (A )

n rr 


['!he nonna.l states separate the points of A • J 

rr 

14.9 THEOREM Let rr and rr be nondegenerate *-representations of A in El1 2 

PR(X)F Suppose first that rr and rr2 are gec.metrically equivalent and take <P :per
1 

114.2. Since <P and <p- are weak* continuous, the arrCM 

is bijective, thus F(rr ) = F(rr2). Turning to the converse,1
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(cf. 14.8), 

fran which a *-isomorphism 

(A E A) • 

Next, V w E S (A ),2 !! TI2 

=> 

=> 

'lherefore w2 0 <p (= wI) is -weak* continuous. But every weak* continuous linear 

functional on TI2 (A) is a linear ccmbination of (restrictions) of elements of 

S (A ). Accordingly, fran the very definition of the -weak* topology as an initial 
!! TI2 

topology, <p (and its inverse) must be -weak* continuous, so :3 a weak* continuous 

*-isamorphism ~:A + A such that ~IA = <p. Now quote 14.2 to conclude that TIl 
TIl TI2 

and TI2 are geometrically equivalent. 

'l1le follo.ving generality was tacitly used above. 

14.10 lEMMA let H and K be canplex Hilbert spaces. Suppose that A c B(H) 

is a C*-subalgebra and <p:A + B{K} is a linear map. Assume: <p is weak* continuous -
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then <p extends uniquely to a weak* continuous linear map iP:A" + B(K). Moreover, if 

<p is a *-homamorphism (hence <P(A) is a C*-subalgebra of B(K», then iP is a *-hamo

nnrphism and iP(A") = <P(A)". 

[Note: In particular, every weak* continuous linear functional W: A + g 

extends uniquely to a weak* continuous linear functional w:A" + g.] 

E.g.: V 1T E Rep A, F(1T) c F(if) (= S(A» . 

Given w E SeA), let 

Then 

w E F(w) • 

Proof: V A E A, 

w
weAl = <XW,1T (A)Xw>w' 

On the other hand, the orthogonal projection P of EW onto ex is a density operatorw -w 
and the assigmnent 

is an element of F(1T
w). 

N.B. F(w) is the smallest folium containing w. 
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14.13 IEMMA If F is a folium in S (A) I then 3 a 11 E Rep A, determined up 

to gearetric equivalence, such that F(11) = F. 

w[One has only to take for 11 the direct sum of the 11 (w E F).] 

'Ihe folia in S(A) are thus in a one-tcrone correspondence with the gearetric 

e::J.Ul.valence classes in Rep A. 

[Note: Conventionally, the empty folium corresponds to 11: A -+ {O}.] 
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§l5. C*-CATEGORIES 

Given a category S, denote by Ob S its class of objects and by flor S its class 

of rrorphisms. If X,Y E Ob S is an ordered pair of objects, then Mor(X,Y) is the set 

of rrorphisms (or arrows) fran X to Y. An element f E Mor (X,Y) is said to have 

danain X and codanain Y. One writes f: X -+ Y or X t Y. 

We shall nCf.N impose a series of conditions which in total lead to the notion of 

c*-category. 

1. V X,Y E Ob S, Mer eX,Y) is a cx:m:1plex vector space and canposition 

Mer (X,Y) x rlor (Y, Z) -+ Mer (X, Z) , 

denoted by (f,g) -+ g 0 f, is bilinear. 

2. V X,Y E Ob S, Mor(X,Y) is a Bctnach space and 

- f E Mor(x,Y) 

g E M::>r(Y,Z) 

3. :l an involutive, identity on objects, cofunctor 

Spelled out (in superscript notation) : 

V X E Ob S, X* = X 

and 

V X,Y E Ob C, *:Mor(X,Y) -+ Mor(Y,X) 

subject to 

(af + bg)* = af* + 5g* (a,b E S) • 
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In addition, 

f** = f 


(g 0 f)* = f* 0 g*. 


4. 	 V X,Y E Ob g & f E M::>r(X,Y), 


II f I 12 = I I f* f II
0 

and 

f* 0 f E Mor(X,X)+. 

Summing up: g is said to be a 	C*-category if conditions 1,2,3,4 are satisfied. 

N.B. V X E Ob g, M::>r (X,X) is 	a unital C*-algebra. 

[Note: Every unital C*-algebra A can be viewed as a C*-cateog"Ory with one 

object. ] 

15.1 EXAMPLE Take C = HILB 	 (cf. 4.28) -- then g is a C*-category. 

15.2 EXAMPLE Let A be a C*-algebra and take C = H*M:D" (cf. 4.27) -- then C- .~ 

is a C*-category (use 4.26). 

15.3 EXAMPLE Let A be a unital C*-algebra -- then by End A we shall understand 

the C*-category whose objects are the unital *-haroI:torphisrns ¢:A -+ A and whose arrCMS 

¢ -+ If are the iritertwiriers, i.e., 

Mbr(¢,P) = {T E A:T¢(A) = P(A)T V A E A}. 

Here, the carq:;x:>Sition of arraN'S, when defiried, is given by the product iri A and 

*:End A -+ End A, 
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take it to be the identity on objects and then define 

by sending T to T*. 

15.4 EXAMPLE Given a C*-algebra A, there is a C*-category whose objects 

are the elements Tf of Rep A (cf. 9.15) and whose rrorphisms Tfl -+ Tf2 are the topo

logical intertwining operators, Le., 

is trivial iff Tfl and Tf2 are diSjoint.] 

15.5 EXAMPLE let A be a unital C*-algebra -- then by Mat A we shall understand 

the category whose objects are the natural numbers and whose rrorphisms n -+ m are the 

n-by-m matrices with entries in A (cf. 4.41). Here, CODlpOsition of 

A E Mor(n,m) 


B E Mor(m,p) 


is the prescription 

BoA = AB, 

where AB is the usual multiplication of matrices, and id is the unit diagonaln 

n-by-n matrix, Le., id = diag lAo As for n 

*:Mat A -+ Mat A, 

take it to be the identity on objects and then define 

* :Mor (n,m) -+ Mer (m,n) 
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by sending [A.. ] to [A~.].
1J J1 

15. 6 REMARK The technical requirerrent that 


f* 0 f E M:>r (X,X) + 


is not an automatic consequence of the other conditions. To see this, consider the 

category with b.lo objects X and Y, where 

M:>r(X,X) = Mor(Y,Y) = C 


M:>r(X,Y) = Mor(Y,X) = g, 


and composition is multiplication of cc:mp1ex m.nllbers. Take the norm of z E C to be 

Iz I and define * by 

X* = X, Y* = Y 

and 

Z if z E Mor(X,X) or Mor(Y,Y) 

z* = 

- 'i if z E Mor (X, Y) or M:>r (y ,X) . 

Then 'if z E Mor(X,Y), 

z* z (- z) (z) = 0 = 

Let g and !2 be C*-categories -- then a functor F:C -+ D is said to be a 

C*-functor if 'if X,Y E Ob g, 

F:M:>r(X,Y) -+ M:>r(FX,FY) 

is linear and 'if f E Mer (X, Y) , 
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F(f*) = (Ff)*. 

N.B. V X E Ob ~, the rrap 

M:>r (X,X) -+ M:>r (FX,FX) 

is a unital *-ha:rarorphism. 

15.7 LEMMA Suppose that F:~ -+ Q a C*-functor -- then V f E Mor(X,Y), 

PRCX)F By hypothesis, :3 A E Mor(X,X) such that 


f* 0 f = A* A.
0 

But 

IIF (A* A) II s; IIA* 0 All (cf. 1.7).0 

'Iherefore 

II F (f* 0 f) II s; II f* 0 f II 

=> 

II (Ff) * 0 Ff II s; II f* f II 0 

=> 

Accordingly, if F:~ -+ !? is a C*-functor, then the linear naps 

M:>r(X,Y) -+ M:>r(FX,FY) 

are continuous. 

15.8 LEMMA Suppose that F:~ -+ Q is a C*-functor. Assurre: F is faithful -

then V f E Mor (X, Y) , 
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PROOF V X E Ob ~, the map 

Mer (X,X) + Mer (FX,FX) 

is injective (F being faithful), hence V A E Mer (X,X) , 

IIF (A* 0 A) II = IIA* 0 All (cf. 1. 8) . 

Now repeat the argunent of 15. 7. 

Let ~ be a C*-category -- then a representation of ~ is a C*-functor 


TI:C + RILE. 


15.9 THEOREM Fix X E Ob ~ and let w E S (Mer (X,X» -- then there is a rep

resentation TIw:c + RILE and an element x E TIwX of nonn 1 such that 
- W 


w(f) = <x ,TIW(f)x > 
w w 

far all f E Mer (X,X) • 

[This is a straightforward extension of the standard GNS construction.] 

15.10 THEOREM Suppose that ~ is small -- then ~ admits a faithf.ul repre

sentation TI:C + RILE. 

PROOF Fix X E Ob ~ and let ~ be the full subcategory of ~ consisting of those 

Y E Ob ~ such that Mer (X,Y) 7:. {O}. Given w E S(Mer(X,X», choose TIw:~ + RILE 

per 	15.9 and set 

X W
TI =E9TI, 

W 

http:faithf.ul
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X
where ED is taken over S(Mar(X,X». Claim: 1T is faithful. For let g E Mar(Y,Z) 

w 

and choose f E Mar (X, Y) : II f II = 1 -- then :1 A E Mer (X,X) such that 

(g f)* 0 (g f) = A* 0 A,0 0 

thus 

IIAII 
2 

= IIg 0 fll 
2

• 

But:1 wE S(Mar(X,X»: 

w(A* 0 A) = IIAI12 (cf. 7.25), 

so 

w( (g 0 f) * (g 0 f» = Ilg f ,,2,0 0 

from which 

X'lberefore 1T is faithful. NJw' put 

X 
1T= ED 1T • 

X E Ob C 

'ltlen 'IT! C -+ HIIB is faithful. 

15.11 RAPPEL Let £, Q be categories and let 

F:C -+ D 

be flIDctors -- then a natural transfonnation 3 from F to G is a flIDction that assigns 

to each X E Ob £ an elE!l1eI1t 3 E M:>r (FX,GX) such that v f E Mar (X, Y) the squarex 
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~ -x 
FX --> GX 

FY --> GY. 

ccm:nutes. 

Let £, Q be C*-categories and let 

F:C -+ D 

G:C -+ D 

be C*-functors. Given a natural transforIll3.tion E Nat (F,G) , putM 

II~II = sup II~xll 
X E Ob C 

and call ~ bounded if 

15.12 REMARK A natural transfonnation 5:F -+ G need not be bounded. Thus let 

£ = Q be the C*-category VJhose objects are the positive integers 1,2, ... with 

Mor (n,m) = £, canposition being induced by multiplication in £ with involution 

ca:nplex conjugation. Take F = idc and define ~:idc -+ idc by specifying that 

~ :n -+ n sends z to nz -- then ~ is not bounded. n 

15.13 LEMMA Let £, Q be C*-categories -- then the category [£,Q]*whose objects 

are the C*-functors F:£ -+ Q and whose rrorphisms are the rounded natural transfo:r::rrations 

~:F -+ G is a C*-category. 
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I'Ib define 

take it to be the identity on objects and given ~:F ~ G, specify ~*:G ~ F in the 

obvious way, viz. 

::x E Mor (FX,GX) => ~x E Mor (GX,FX) • 

Then V f E Mor (x,Y), the square 

';:;*
-X 

GX > FX 


Gf 1 1
Ff 

G:l > FY 
';:;*
-y 

comm.ltes. Indeed, 

Ff ~x = F(f**)0 

= F(f*)* ~x0 

= (~X 0 F(f*»* 

= (G(f*) ~y)*0 

= ';:;* 0 G(f*)*-y 

= ~y 0 G(f**) 

Moreover, ,;:;* E Mor(G,F), i.e., is bounded: 
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=> 


[Note: Strictly speaking, [~,Q] * is a rretacategory, not a category.] 

E.g.: '!he objects of [~,HIIB] * are the representations of ~. 
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§16. THE CATEGORY OF CATEGORIES 

let i:A -+ Y, p: X -+ B be no:rphisms in a category £ - then i is said to have 

the left lifting property with respect to p (LLP w. r. t. p) and p is said to have 

the right lifting property with respect to i (RLP w.r.t. i) if for all u:A -+ X, 

v:Y -+ B such that P 0 u = v i, there is a w:Y -+ X such that w 0 i = u, pow = v.0 

Schematically: The com:nutative diagram 

u 
A --> X 

i ! ! p 

Y --> B 


v 


admits a filler w:Y -+ X. 

Consider a category S equipped with three canposition closed classes of IIOr

phigns tenned -weak equivalences, cofibrations, and fibrations, each containing the 

isano:rphisms of S. Agreeing to call a IIOrphism which is both a weak equivalence 

and a cofibration (fibration) an acyclic cofibration (acyclic fibration), C is said 

to be a model category provided that the following axioms are satisfied. 

(M::-l) S is finitely ccnplete and finitely cocanplete. 

(M::-2) Given canposable IIOrphisms f,g, if any two of f,g, g f are -weak0 

equivalences, so is the third. 

(M::-3) Every retract of a weak equivalence, cofibration, or fibration is 

again a weak equivalence, cofibration, or fibration. 

[Note: To say that f:X -+ Y is a retract of g:W -+ Z means that there exist 

IIOrphisms i:X -+ W, r:W -+ X, j:Y -+ Z, s:Z -+ Y with g 0 i = j f, for = s 0 g,0 

r 0 i = i~, s 0 j = idy, thus there is a com:nutative diagram 
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i r 
X-->W-->X 

y --> Z --> Y. 
j s 

Fact: A retract of an iscnorphism is an iscnorphism.] 

(r£-4) Every cofibration has the LLP w.r.t. every acyclic fibration and 

every fibration has the RLP w.r.t. every acyclic cofibration. 

(MC-5) Every rrorphlsm can be written as the canposite of a cofibration and 

an acyclic fibration and the canposite of an acyclic cofibration and a fibration. 

N.B. For a systematic introouction to model category theory (with numerous 

exan:p1es), see Chapter 12 of my book 'IDPICS IN 'IDpor..cx:;y AND HOMaroPY THEORY. 

16.1 REMARK A rrode1 category ~ has an initial object (denoted fO) and a final 

object (denoted *). An object X in ~ is said to be cofibrant if fO -+ X is a cofibra

tion and fibrant if X -+ * is a fibration. 

16.2 NarATION" CAT is the category whose objects are the small categories and 

whose rrorphisms are the functors. 

Definition: Given sma.11 categories ~, Q, a functor F:C -+ D is a cofibration 

if the map 

ObC-+ObD- -

is injective. 


Definition: Given sma.11 categories ~, Q, a functor F:C -+ D is a fibration 
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if 'if X E Ob C and 'if isarorphism ljJ:FX -+ Y in Q, 3 an isarorphism 4>: X -+ X' in C 

such that F4> = ljJ. 

16.3 THEOREM CAT is a node1 category if vveak equivalence = equivalence, 

the cofibrations and fibrations being as above. 

The first step is the verification of M:-1 which, being of independent interest, 

will be isolated. 

16.4 THEOREM CAT is finitely complete and finitely cocanp1ete. 

16.5 RAPPEL The following conditions on a category £ are equivalent. 

(1) £ is finitely canp1ete. 

(2) C has finite products and equalizers. 

(3) C has finite products and pullbacks. 

(4) £ has a final object and pullbacks. 

Let 1 be the category with one object and one arrow - then 1: is a final object 

in CAT. 

Finite Products Given objects S, Q in CAT, their (binary) product is the 

category S x Q defined by 

Ob(C x D) = Db £ x Ob Q, 

!>:'lor ( ex, Y), (x I , Y' » = Mor (x,X' ) x Mer (y, YI ) 

id{X,Y) = i~ x i~, 
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with camposition 

(fl ,gl) (f,g) = (fl f,g' 0 g).0 0 

[Note: If a category bas a final object and (binary) products, then it bas 

finite products.] 

Equalizers Given objects £, Q in CAT and rrorphisms P, G:£ -+ Q in CAT, their 

equalizer eq (F ,G) is the inclusion inc of the subcategory of £ on which F, G 

coincide: 

Pinc ---.>
eq(F,G) --> C ___.> Q, 

G 

'Where 

Ob eq (F ,G) = {x E Ob £:FX = GX} 

MDr eq(F,G) = {f E MDr £:Ff = Gf}. 

T S 
Pullbacks Suppose that ~ -+ £ -+ ~ is a 2-sink in CAT. Fonn the product 

prB
-->B 

and note that 

T pr0 
A 

> 
AxB C.-

> 
S o pr

B 

let 
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pr 0 incB 
B~ Xc ~ > 

0pr inc SA 1 1 
A > C 

T 

is a pullback square. I.e. : 'Ihe 2-source 

pr o inc pr 0 incA B 
A< ;> B~ Xc ~ 

T S 
is a pullback of the 2-sink ~ -+ g +- ~. 

[Note: In SET, there is a pullback square 

Ob A -------'> Ob C.] 
T 

16.6 RAPPEL The follCM"ing conditions on a category g are equivalent. 

(1) g is finitely cocamplete. 

(2) C has finite coprcx:lucts and coequalizers. 

(3) C has finite coproducts and pushouts. 

(4) C has an initial object and pushouts. 

Let Q be the category with no objects and no arrows -- then 0 is an initial 

object in CAT. 
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pinite Coproducts Given objects ~, ~ in CAT, their (binary) coproduct is the 

category ~ 11 ~ defined by 

Ob (~ _II ~) = Ob ~ _" Ob ~ 


Mar (~ 11~) = Mar ~ 11 Mar ~, 


the coproducts on the RHS being taken in SET with the obvious carq;:lOsition of rror

phisms. 

{Note: If a category has an initial object and (binary) coproducts, then it 

has finite coproducts.] 

Coequa.lizers Given objects ~, ~ in CAT and rrorphisms P, G:~ + ~ in CAT, con

sider the smallest equivalence relation on Ob ~ w. r. t. "Which FX and GX are equivalent 

for all X E Ob g and let Sp, G be the set of pairs (Pf , Gf), -where the doma.in and co

danain are equivalent. l):!note by ~ the principal congruence on ~ generated by this 

t pro 
data and fonn the quotient ~/:: (cf. ) -- then ~ -> 0/:: is a coequalizer of P,G: 

P __> pro 
~ __> ~ --'> coeq (F, G) • 

G 

T S 
Pushouts Suppose that ~ +- ~ + ~ is a 2-source in CAT. Fonn the coproduct 

inA ~ 
~-->~ll~<--B 

and note that 

t 'Ibeory Appl. Categ. 5 (l999), 266-280. 
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----'> 

c ~ 11~. 
-----:'> 

~ 0 S 

let 

AllB = coeq(in T, ~ 0 S).
A 

0 

C 

'Ihen the conmutative diagram 

S 
c -----> B 

lproo~ 
A ----> ~ll~ 

pro 0 inA C 

is a pushout square. I.e.: 'rhe 2-sink 

pro inA pro 0 ~0 

A '>~ll~< B 
C 

T S 
is a pushout of the 2-source ~ + £ -+ ~. 

[N:Jte: In SRI', there is a pushout square 

S 
Ob C '> Ob B 

T 1 1 
ObA '> Ob A Ob ~.]11 

Ob C 
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'!here remains the verification of r£-2, r£-3, r£-4, and r£-s. 

16.7 m~ If P:C -+ D and G:Q -+ ~ are equivalences, then G P:C -+ E is an0 

equivalence. 

16.8 LEMMA Suppose that P:~ -+ !2 and G:!2 -+ ~ are functors. Assume: P and 

GoP are equivalences -- then G is an equivalence. 

pRCXJF 	 Choose PI:D -+ C such that 


- p 0 pI ::::: i~ 


Choose H:E -+ C such that 

let GI = P 0 H - then G 0 GI 
::::: i~ and 

GI 
0 G = F 0 HoG = F 0 HoG 0 i~ 

::::: P 0 HoG 0 P 0 pI 

::::: P 0 id 
C 

0 pI 

= F 0 pI ::::: i~. 

16.9 LEMMA Suppose that P:~ -+ !2 and G:!2 -+ :§ are functors. Assume: G and 
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G 0 F are equivalences - then F is an equivalence. 

Therefore .MC-2 	 is satisfied. 

16.10 LEMMA A retract of an equivalence is an equivalence. 


PRCOF Consider a corrrnutative diagram 


i r 

e --> K --> e 


F 1 A 1 
-

F 1 

D --> L --> Q,
- j s 

where r 0 i :: ide' s j = i~, and A is an equivalence -- then the claim is that0 

F is an equivalence. Thus fix A ':L -+ K such that 

A 0 A' ~ i~ 


A' 0 A ~ i~. 


Then 

0 0 0 0 0r A' j F= r A' A 0 i 

::::: r 0 0 ii~ 

= r i0 = i~ 

and 

0 	 0 0F 0 r A' 0 j 	 = s A 0 A' j 

::::: s 0 0 ji~ 

= s j = i~.0 



- -
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16.11 LEMMA A retract of a cofibration is a cofibration. 


PR(X)F Consider a cannutative diagram 


i r 

C --> K --> C 


F 1 A 1 F 1 
D --> L --> ~, 

j s 

where r i = idc' s j = i~, and A is injective on objects -- then the claim is0 0 

that F is injective on objects. So SllptX)se that 

FX=FY (X,Y E Ob g>. 

Then 

jFX = jFY => AiX = My 

=> iX = iY 

=> riX = riY => X = Y. 

Ct 

N.B. let I denote the category with objects a,b and arrows id , ifL a + b,- a-b I 

b + a, where Ct 0 B= icL , B 0 Ct = id -- then F:C +D is a fibration iff every
D a 

corrmutative diagram 


]l 
1 -->c 

n 1 1F (n(*> = a) 

I -->D-
\) 

admits a filler p~! + g, i.e., 

Fop = \). 



- - -
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16.12 LEMMA A retract of a fibration is a fibration. 


PRCX)F Consider a carmutative diagram 


]l i r 
l-->C-->K-->C 

I --> D --> L --). Q, 
- \i - j S 

where r i = idc, s 0 J = i~, and A is a fibration -- than 3 A:1 -+ K such that0 

A 0 A = j 0 \i, 

so if P = r 0 A:! -+ ~, we have 

p 0 1T r 0 A 0 1T = r 0 i 0 ]l = id O]l = ]l
C 

Fop = For 0 A = soli. 0 A = s 0 j 0 \i = i~ 0 \i = \i. 

Therefore MC-3 is satisfied. 

16.13 LEMMA Every cofibration has the LIP w. r. t. every acyclic fibration. 

PR!X>F Consider the ccmnutative diagram 

U 
C ). K 

AF 1 1 
D '> ~, 


V 
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where F is a cofibration and A is an acyclic fibration -- then the claim is that 

3 W:!? + !S such that W 0 F = u, A 0 W = V. Since A is an equivalence, it has a 

representative image, hence, being in addition a fibration, it is surjective on 

objects. Accordingly, define W on objects by first denanding that WFX = UX 

(X E Ob 9 (F is injective on objects, thus this nakes sense). Next, given 

Y E Ob ~, choose A E Ob !5 such that fIA = Vi and put WY = A, all the \I\1hile nain

taining the relation WFX = UX (possible, as VFX = AUX). Turning to rrorphisms, 

there is an arrow 

M:rr(Y,Y') + Mor(VY,VY'). 

On the other hand, 

.M:>r (WY,W':! I) ;::: Mor (AW':!, p,;WY') = Mor (VY ,Vi' ) • 

So the data at hand does indeed give rise to a functor W:!? + !5 with the chosen 

object nap such that W 0 F = u, II. W = V.0 

16.14 LEMMA Every fibration has the RLP w.r.t. every acyclic cofibration. 

PR(X)F Consider the carmru.tative diagram 

U 

~ > !S 


F 1 1A 

D > ~, 

V 


where F is an acyclic cofibration and A is a fibration -- then the claim is that 3 

W:D + K such that W 0 F U, A 0 W = V. 'Ihe initial step is to construct F':!? + g 

subject to 

F' 0 F = id
C 

-------....-~ - 
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which can be done by the usual procedure, viz. given Y E Ob ~, choose an object 

F'Y E Ob s: and an isomorphism FF'Y -+ Y, where if Y = FX, we take F'FX = X (per

missible, F being injective on objects). As regards the natural isamorphism 

~':F 0 F' -+ idlY ll\'3.tters can be arranged so that V X E Ob ~, 

is i~. With this preparation, we shall start by defining W on objects, observing 

first that V Y E Ob ~, 

AUF'Y = VFF'Y. 

But 

EY:FFfY -+ Y 

=> 

V3 f 'vpp'Y -+ VY ,--yo . 

thus, since A is a fibration, :1 an object WY E Ob K and an isarnrphism Sy:UFfY -+ Wi 

with 

ASy = vsy (AWY = VY) • 

We can further assume that 

(WFX = OX). 

Passing to :rrorphisms, let g E MJr (Y I Y') and define Wg E Mer (NY,NY') by 

-1
Wg = ~ 0 UF'g 0 ~Y • 

y' 

Then W:D -+ K is a functor with the desired properties. 

Therefore MC-4 is satisfied. 
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16.15 IEMMA Every norphism can be written as the canposite of a cofibration 

and an acyclic fibration. 

PRCXJF Suppose that F:~ -+ Q is a norphism in CAT. let D' be the category with 

Ob Q' = Ob ~ 11 Ob Q 

and for 

X,X' E Ob C 


Y,Y' E Ob Q, 


viewed as objects in Q', let 

Mor(X,X') = Mor(FX,FX'), Mor(X,Y') == Mor{FX,Y') 

MDr (Y, X, ) == Mor (y ,FX'), Mor (y , Y') = Mo:r (Y, y' ) • 

Define a functor U:C -+ D' by 

ox = X (X E Ob C) 

Uf = Pf (f E Mor(X,X'». 

'ltlen U is injective on objects, hence is a cofibration. Define a functor V:D' -+ D 

by 

VX=FX (X E Ob ~) 


VY = Y (y E Ob D) 


and on each of the four possibilities for norphisms, take V to be the identity, thus 

V is fully faithful and surjective on objects, so V is an acyclic fibration. And 

fran the definitions, F = V U.0 

16.16 LEMMA EVery norphism can be written as the COl1\POsite of an acyclic 
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cofibration and a fibration. 

PROOF Suppose that F:~ -+ Q is a morphism in CAT. let~' be the category 

whose objects are the triples (X,E,Y), where X E Ob S' Y E Ob Q, and E:FX -+ Y 

is an isarorphism. Put 

MDr((X,E,Y) I (X' ,E',Y'» = Mor(X,X'). 

Define a functor U:C -+ C' by 

Vf = f (f:X -+ X') • 

Then it is clear that V is an acyclic cofibration. Define a functor V:~'-+ Q by 

V(X,E,Y) = Y 


Vf = ;::, Ff
0 0 

In this cormection, note that 

Vf:V(XIE,Y) -+ V(X',E',Y'), 

i.e. , 

Vf:Y-+Y'. 

Meanwhile, ;::, 0 Ff 0 is the cauposition 

;::-1 


Y >FX 


;::, 

FX' ---> Y'. 

So 

(V V) (f) = id Ff i~ = Ff.0 0 0 

FX' 
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To verify that V is a fibration, let 

1jJ:V(X,E,Y) -+ y' 

be an isanorphism - then we want to proouce an isanorphism 

¢: (X,E,Y) -+ (X' ,E' ,Y') 

such that V¢ = 1jJ. To this end, take 

X' = X, ~, = 1jJ 0 ~, 

and let 

¢ = i~ E Mor«X,E,Y),(X,1jJ 0 E,Y')). 

'!hen 

V¢ = 1jJ 0 

= 1jJ 0 i~ = 1jJ. 

Therefore MC-5 is satisfied. 

16.17 REMARK In CAT, all objects are roth cofibrant and fibrant. 

In addition to the categories Q and !, let ~ be the category with two objects 

and one arrow not the identity, let d2 be the discrete category with two objects, 

and let 12£ be the category with two objects and two parallel arrows -- then the 

canonical functors 

u:O -+ 1 

v:d2 -+ 2 



- -
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are cofibrations, hence every acyclic fibration has the RIP w.r. t. each of them 

(cf. M:-4), a property that turns out to be characteristic. 

16.18 LEMMA Let F:£ -+- ~ be a norphism in CAT. 

(u) F has the RLP w.r. t. u iff F is surjective on objects. 

(v) F has the RLP w.r.t. V iff F is full. 

(w) F has the RIP w.r. t. w iff F is faithful. 

Consequently, if F:£ -+- ~ has the RLP w.r. t. u,v,w, then F is an acyclic 

fibration. Proof: F is surjective on objects and fully faithful. 

[Note: By comparison, recall that F:£ -+- ~ is a fibration iff F has the RIP 

w. r. t. 'IT:! -+-! (which is an acyclic cofibration) . ] 

16.19 LEMMA Let 

F:e -+- D 


F' :e' -+- D' 


be cofibrations. Consider the diagram 

e x e' ----------------------------~> D x e' 

FIe x DI D X e'x F'ide i~ xJl - e x e' 
~F' 

{ ~ 
e x DI > D X D'. 
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Then F 11 F' is a cofibration. 

[IDte: w::>rking in SET, supp:>se that X c y, X'cY' - then 

X x X, = (X X Y') n (Y x X') 

and the diagram 

X X X' ------------~> Y x x, 

1 1 
X X y' ------'> (X x Y') u (Y X X') 

is a pushout square, tlrus trivially the arrow 

(X x yI) lJ (Y x X') -+ Y x Y' 

is one-to-one.] 

N.B. If in addition, either F or F' is an equivalence, then so is F 11 F'. 

16.20 RAPPEL A category g with finite products is said to be cartesian closed 

provided that each of the functors - x Y:g -+ g has a right adjoint Z -+ zY, so 

Mor(X x Y,z) ~ Mor(X,ZY) • 

The object zY is called an exponential object. The evaluation norphism evy , z is 

the rrorphism zY x Y -+ Z such that for every arrow cp:X x Y -+ Z there is a unique 

arrow Acp:X -+ ZY 
such that cp = evy,z 0 (Acp x idyl . 

[Note: Each Y E Ob g determines a functor F:g -+ g defined on objects by 

Y • f
FZ = Z and on rrorphisms Z -+ X by 

Ff = :\(f 0 evy,z>' 



- - --
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so 
y y

Ff:Z -+ X . 

On the other hand, each X E Ob £ determines a functor G:£OP -+ £ defined on objects 

y
by GY = x and on norphisms Z 2. y by 

Gg = A(evy,x id y x g),0 

X 

so 

y Z 
Gg:X -+ X .] 

Functor categories Given small categories C,D, [C,D] is the small category 

whose objects are the functors F:~ -+ ~ and whose n:orphisms are the natural trans

formations Nat(F,G) fram F to G. 

16.21 LEM-1A CAT is cartesian closed: 

D 
Mor(£ x ~,§) ~ Mbr(£,§-), 

16.22 REMARK The product operation 

x : CAT x CAT -+ CAT 

equips CAT with the structure of a synmetric rronoidal category (here, e = !). 

16.23 l..EM)1A Let F:C -+ D be a cofibration and let 1\:K -+ L be a fibration. 



- -
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Consider the diagram 

D 
-----------------> L

/i 
1 

C c 
K -------------------~> L 

'Ihen r is a fibration. 

PRCOF One has merely to show that every camtUtative diagram of the form 

D 
1 --------> K 

1 1 (Tr(*) :::: a}
r 

C D 
I ---------:> K x C ~ 

L 

D 
admits a filler P:! -+ !$ , i.e., 

r 0 p = \) 

But this lifting problem is equivalent to a lifting problem for the diagram 

C x I J1 D >< 1 > K 
C x 1 

F 11 ~ 1 1A 

o- x I L.>-
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Since IT is an acyclic cofibration, the same holds for F 11 IT. Therefore J\. has 

the RLP w.r.t. F 11 IT (cf. ]1£-4), fran which the assertion. 

N.B. If in addition, either F or J\. is an equivalence, Wn so is r. 

16. 24 NarATIOO GRD is the full subcategory of CAT whose objects are the 

groupoids, Le., the small categories in which every n:orphism is invertible. 

16.25 REMARK GRD is a n:odel category if the cofibrations, fibrations, and 

v.:eak equivalences are defined per CAT. 

16.26 RAPPEL Let iso:CAT -+ GRD be the functor that sends ~ to iso ~, the 

groupoid whose objects are those of ~ and whose morphisms are the invertible n:or

phisms -- then iso is a right adjoint for the in::lusion 1:GRD -+ CAT. Let 

IT1 : CAT -+ GRD be the functor that sends ~ to IT1 (~) I the fundamental groupoid of ~ 

(a.k.a. the localization of ~ at Mor~) -- then ITl is a left adjoint for the 

inclusion 1: GRD -+ CAT. 

16.27 NarATICN SISET is the category of simplicial sets. 

16.28 RAPPEL There is a functor 

c:SISET -+ CAT 

that assigns to each simplicial set X its categorical realization eX and there is 

a functor 

ner:CAT -+ SISET 
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1. 

§17. THE UNITARY MOVE L STRUCTURE 

In this § "We shall take up the C*-analogs of the purely categorical results 

that were obtained in §16. 

17.1 NCYI'ATION: C*CAT is the category 'Whose objects are the small C*-categories 

am 'Whose rrorphisms are the C*-functors. 

N.B. Q. is an initial object in C*CAT am ! is a final object in C*CAT. 

17.2 THEOREM C*CAT is finitely complete am finitely coca:nplete. 

[Note: 	 The inclusion 


UNC*ALG -+ C*CAT 


preserves finite limits (obvious) but does not preserve finite colimits (as can 

be seen by considering binary coproducts).] 

Let ~,Q be small C*-categories -- then their algebraic tensor product ~ ~ Q 

is the category defined by 

ObC~D=ObcxObD 

am 

Mor«X,Y),(X',Y'» = Mor(X,X') ~C Mor(Y,Y') 

equipped with the involution 
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Consider the diagram 

D 
L 

C 

--------------------------------~> 

/ 
c 

K --------------------------------~> L 

Then 	r is a fibration. 

PR(X)F one has merely to shOll that every ccm:nutative diagram of the fonn 

II D 
1 > K-

1 c 
1r 

0 
I > K Xc~ 

\) 
L 

D 
admits a filler P:! + !5 , i.e. , 

r 0 p 	= \) 

But 	this lifting problem is equivalent to a lifting proble:n for the diagram 

c x I II Dx 1 > K 
C x 1 

FJl1T 1A1 

o x I 	 > L. 



21. 


Since IT is an acyclic cofibration, the sane holds for F II IT. Therefore A has 

the RLP w.r. t. F _II IT (cf. M:-4), fran tvhich the assertion. 

N.B. If in addition, either F or A is an equivalence, then so is r. 

16. 24 NDrATION GRD is the full subcategory of CAT whose objects are the 

groUJ?Oids, Le., the small categories in tvhich every :rrorphism is invertible. 

16.25 REMARK GRD is a :rrodel category if the cofibrations, fibrations, and 

v.eak equivalences are defined per CAT. 

16.26 RAPPEL let iso:CAT -+ GRD be the functor that sends C to iso ~, the 

groUJ?Oid whose objects are those of ~ and whose :rrorphisms are the invertible :rror

phisms -- then iso is a right adjoint for the inclusion 1 :GRD -+ CAT. let 

ITl:CAT -+ GRD be the functor that sends ~ to ITI (~), the fundarrental groupoid of ~ 

(a.k.a. the localization of ~ at Mor~) -- then ITI is a left adjoint for the 

inclusion 1:GRD -+ CAT. 

16.27 NDrATICN SISET is the category of simplicial sets. 

16.28 RAPPEL There is a functor 

c:SISET -+ CAT 

that assigns to each simplicial set X its categorical realization eX and there is 

a functor 

ner:CAT -+ SISET 
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that 	assigns to each srrall category g its nerve ner g. 

Fact: c is a left adjoint for nero 

Let 	Tr == TIl c -- then0 

IT: SISET + GRD 

is a functor that sends a s:iroplicial set X to its fundamental groupoid lTx. 

16.29 	 LEMMA The functor 


1 0 IT:SISEl' + CAT 


is a left adjoint for the functor 

ner 0 1 0 iso:CAT + SISEl'. 

POClOF V X & V g, we have 

= Mor(l TIl (cX),g)0 

~ Mor(TI1(cX),iso g) 

~ Mor(cX,l(iso g» 

~ Mor(X,ner 1 (iso g». 

Take SISEl' in its canonical rrod.el category structure -- then it can be shown 

that 1 IT preserves cofibrations and acyclic cofibrations while ner 0 1 iso0 	 0 

preserves fibrations and acyclic fibrations. 
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§17. THE UN1TARY MOVE L STRUCTURE 

In this § we shall take up the C*-analogs of the purely categorical results 

tha.t were obtained in §16. 

17.1 NarATIOO C*CAT is the category whose objects are the small C*-categories 

an:l whose rrorphisms are the C*-fun:::tors. 

N.B. Qis an initial object in C*CAT am ! is a firal object in C*CAT. 

17.2 THEOREM C*CAT is finitely complete am finitely cocamplete. 

[Note: 	 The inclusion 


UNC*ALG -+ C*CAT 


preserves finite limits (obvious) but does not preserve finite colimits (as can 

be seen by considering binary coproducts) .] 

Let s:,Q be small C*-categories -- then their algebraic tensor product s: 9 Q 

is the category defined by 

ObC9D=ObC xObD 

Mor{(X,Y), (X' ,Y'» = Mor(X,X') 	 9 Mor(Y,Y')
C 

equipped with the involution 
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This said, there are small C*-categories 

C ~. D - nun-

C ~ D 
- max

which reduce to the usual minimal am maximal tensor proo.ucts of C*-a1gebras 

(details left to the reader) . 

N. B. The canonical functors 

C~D ->ce. 	D 
- nun

ceD ->Ce D 
- max

are faithful. 

17.3 	 lEMMA C*CAT is a sy.rrnetric nonoida1 category per 

e "C*CAT x C*CAT -+ C*CATmax" , 

the unite being the canp1ex numbers (viewed as a C*-category) . 

17.4 REMARK The 	functor - e D admits a right adjoint, viz. 
max 

thus 

M:)r(C e D,E):::; 	Mor(g, [Q,~] *)- max - 

or still, 
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In any C*-category, an arrcM f:X -+ Y is unitary if f*f = i~ and ff* = idy. 

Definition: let S,Q be objects in C*CAT -- then a C*-fumtor F:S -+ Q is a 

unitary equivaleme if :3 a C*-functor G:D -+ C am natural isomorphisms 

such that 

v X E Ob S, llX E M:>rCGFX,X) is unitary 

v Y E Ob S, Vy E M:>r (FGY,Y) is unitary. 

[Note: An iSOll'Orphism S -+ Q is necessarily unitary.] 

17.5 LEMMA A functor F:S -+ Q is a unitary equivalence iff it is fully 

faithful am v Y E ct> Q, :3 X E Ob S and a unitary isarorphism FX -+ Y. 

Definition: Given small C*-categories S,Q, a functor F:C -+ D is a cofibration 

if the map 

ObC-+ObD 

x -+ FX 

is injective on objects. 

Definition: Given small C*-categories S,Q, a fW1Ctor F:C -+ D is a fibration 

if V X E Ob S aId V unitary isamorphism 1J;:FX -+ Y in Q, :3 a unitary isomorphism 

</l:X -+ Xl in S such that F</l = 1J;. 
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17.6 THEOREM C*CAT is a nodel category if weak equivalence = unitary 

equivalence, 	the cofibrations and fibrations being as al:ove. 

['!he proof is similar to but not identical with that of 16.3. J 

let ~ be a small groupoid, i.e., let Q E Ob GRD -- then by fr ~ we shall 

understand the category whose objects are those of ~ but 

Morfr G (X,Y) 

is the free complex vector space generated by Mor (X,Y), thus the e1errents of
G 

are the fonna.1 finite linear combinations 

with 	composition law 

n m n,m 
(E c.cjl.) (E d.I/J.) = E (c.d.)cjl. I/J ..0 	 0 

i=l 	 1 1 j=l J J i,j=l 1 J 1 J 

17.7 	 LEMMA The prescription 

n 	 n _ -1 
(E 	 c.cjl.)* = E c.cjl. 
. 1 	 1 1 . 1 1 11= 1= 

generates an involutive, identity on objects, cofunctor 

*:fr 	G -+ fr G. 

n 
E c.cjl.

i=l 1 1 



5. 

A representation of fr § is a *-preserving linear functor rr:fr ~ ~ HILB. 

[Note: In particular, the elenents of rr(Mor (X,Y» are unitary operators
G 

from 	rrX to rrY.] 

Given f E Morfr G (x,Y), let 

II f II = sup II rr (f) II , 
max rr 

wrere the sup is taken over the representations rr of fr § -- then Ilf I Imax < 00. 

Proof: V rr, 
n 

Ilrr(f) II = Ilrr( l: c.cp.) II 
. 1 	 1 11= 

n n 
::; l: Icil Ilrr(CPi) II = l: Ic. 

1 
I < 00. 

It is therefore clear that fr G a pre-C*-category, herce its caupletion is a 

C*-category, call it C* (G).
max 	

17.8 EXAr11?LE Take G =I as in §16 and fonn C* (I) (= fr I ffire) -- then 
max 	- 

ex 
a ~ b is unitary and for every small C*-category C_' the C*-functors C* (I) ~ C 

max 

are in a ore-to-ore corresporrlence with the unitary elements of MDr g. 

17. 9 	 LEMMA The association G ~ C* (G) defines a functor 
-	 max 

C* 	 :GRD ~ C*CAT. max 	- 

PROOF Let ~,!i be snaIl groupoids and let F:§ ~ ~ be a furctor -- then F induces 
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in tre evident manner a furctor fr F:fr ~ -+ fr!.! (on morphisms 

n n 
fr F( L c.¢.) = L c.F¢.).

i=l L L i=l L L 

Accordi:r.tg'ly, one has only to shcM that V X,Y E Ob g, 

fr F:MOrfr G (X,Y) -+ Mor H (FX,FY) 
- fr 

is continuous. But for any representation IT of fr !.!, IT fr F is a representation0 

of fr g, so V f E Mor G (x,Y),fr 

II(IT frF)fll ~ Ilfllmax0 

=> 

II fr F (f) II ~ II f II .max max 

N • B. C~ takes equivalences to unitary equivalences. 

Let uni:C*CAT -+ GRD be the functor that sends C to uni S, the groupoid whose 

objects are those of S and whose mo:rphisms are the unitary mo:rphisms -- then uni is 

a right adjoint for C* : max 

Mor(C* (G),C):::: Mor(G,uni C).
max - - - 

Indeed, to proceed fran the IRS to the RHS send 

F:C* (G) -+ C max 

to the ccmposition 

P uniF 
G -+ uni C* (G) --> uni G. 
- max 
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17.10 LEMMA We have 

uni[C* (G),C]* ~ [G,uni C].
max - - - 

PRCX)p The bijection on objects is the gist of the preoedillJ observations. 

Suppose tr:M that P,P' :C* (G) -+ C are C*-fun::::tors am let S:P -+ P' be a unitarymax 

nablral iscnorphisn, so 

v X E Ob C* (G) = Ob G, 
max - 

3 a unitary arrow Sx:FX -+ FX' in C am V f:X -+ Y in Mer C* (G), there is a 
max 

ca:rroutative diagram 

FX > F'X 

FY > P'Y. 

It is thus i.rrm:3diate that the data gererates a mtural is:::morphisn pp -+ P' p. 

17.11 EXAMPLE Let ~1'~2 be srtlClll groupoids and let £ be a sma.ll C*-category -

then there is a strirY3" of is:::morphisms of categories: 



8. 

~ uni[C* (G ) ~ C* 	 (G ),C]*.
max - l max max - 2 

[Note: It follows that 

let 

IT = C* IT.0 max max 

17.12 	 LEMMA '!he functor 

IT :SISET ~ C*CAT max-

is a left adjoint for the functor 

ner 0 t 0 uni: C*CAT ~ SISET. 

PROOF 'If X & 'If £, we have (cf. 16.29) 

Mor(IT (X),C) = fur{C* (ITX) ,C)
max - max

~ fur (ITX, uni £) 

~ fur (cX, t (uni £» 

~ Mer (x,ner t (uni £» • 

Take SISET in its canonical m:Xl.el category structure - then it can be shown 

that ITmax preserves cofibrations and acyclic cofibrations while ner 0 t 0 uni 

preserves fibrations and acyclic fibrations. 
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