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ABSTRACT

This book is addressed to those readers who are already familiar with the
elements of the theory but wish to go further. While some aspects, e.g. tensor
products, are summarized without proof, others are dealt with in all detail.
Numerous examples have been included and I have also appended an extensive list

of references.
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§1. BASIC FACTS

Iet A be a complex Banach algebra, *:A > A an involution —— then the pair

(A,x) is said to be a C*-algebra if v A € A,

lla*a || = [|a]]=.
N.B. It is automatic that ||a*|| = ||a]], twus the involution *:A > A is
continuous.
1.1 IEMMA YV A€ A,
lal| = r @)Y/,

r the spectral radius.

1.2 REMARK If (A, |

-|) is a C*-algebra and if

-||" isa submultipli-

cative norm satisfying the C*-condition, viz.,

[asal [t = ([|a]|D% @,
then

L3

=11 =11

[Note: It is not assumed that (A, |

|') is complete, i.e., (A,]]-]]") is

merely a pre-C*-algebra. ]

1.3 EXAMPLE Given a complex Hilbert space H, denote by B(H) the set of
bounded linear operators on H — then B(H) is a C*-algebra. Furthermore, any
*—subalgebra A of B(H) which is closed in the norm topology is a C*-algebra. E.q.:
This is the case of A = L_(#), the norm closed *~ideal in B(H) consisting of the

compact operators.



1.4 EXAVPIE Take H = C' and identify B(C)) with M_(C), the algebra of

n-by-n matrices over C. Equip M (C) with the induced operator norm and let the
involution *:M ) ~ M (C) be "conjugate transpose" -- then with these stipulations,
Mn (C) is a C*-algebra. More generally, if n = (nl,... ,np) is a p-tuple of positive
integers, then

P
M€= M (C
D k=1 T

is a C*-algebra. Here

p
|lk§1AkH= max | |a || By €M, ©D)

1<k<p

or still,

p
@ all= mx X\,
o K 1s}<sp)\k

where Aﬁ is the largest eigenvalue of A]’;Ak

[Note: Every finite dimensional C*-algebra A is *-isomorphic to an M ()
for some n and n is uniqguely determined by A up to a permutation. If B is another

finite dimensional C*-algebra with associated g-tuple m = (ml,. .o ,mq) , then A and

B are *-isomorphic iff p = g and 3 a permutation ¢ of {1,...,p} such that m =D

k=1,...,p).]

1.5 EXAMPLE Fix a C*-algebra A and let X be a compact Hausdorff space. Equip
C(X,A) with pointwise operations and define the involution by £*(x) = £f(X)* (x € X).

Put

"

HEN] = sup [|£06x) |
xEX



Then C(X,A) is a C*-algebra.

1.6 NOTATION C*AIG is the category whose objects are the C*-algebras and

whose morrhisms are the »-homomorphisms.

[Note: An isomorphism is a bijective morphism.]

N.B. Let A,B be C*-algebras -~ then a linear map ¢:A + B is a *~homomorphism
iff

2(ah,) = 0(A))0(A,) & (A% = 0(B)*.

1.7 LEMMA A »-homomorphism ¢:A +~ B is necessarily norm decreasing, i.e.,

.

VAEA, |le@]] = ||a

1.8 LEMMA An injective #~homomorphism ¢:A -+ B is necessarily isometric, i.e.,

vAEA, |loe@]||=|]a

Suppose that T ¢ A is a closed ideal —- then T is a *-ideal. Equip A/T

with the quotient norm, thus

lla+ 7|| = inf ||a + I|],
1T
and let
A+ T)y*=pn% +17,

Then A/T is a C*-algebra and the mrojection m:A > A/T is a *~homomorphism with
kernel 1.

N.B. If ¢:A » B is a »-homomorphism, then the kernel of ¢ is a closed ideal

»



in A and the image of ¢ is a C*-subalgebra of B:A/Ker ¢ = &(A).

[Note: The tam "C*-subalgebra"” means a norm closed subalgebra which is

invariant under the *-operation.]

1.9 EXaMPLE If X is a compact Hausdorff space and if I « C(X) is a closed

ideal, then 3 a unique closed subset Y ¢ X such that
1={f €cX:£|Y =0}

Moreover, the C*-algebra C(X)/I is *-isomorphic to C(Y) via the map induced by the

arrow of restriction C({X) -» C(Y).

A C*-algebra A is simple if it has no nontrivial closed ideals. E.g.: L_(H)
is simple (but B(H) is not simple if H is infinite dimensional).

A C*-algebra A is unital if A has a unit 1 A otherwise, A is normunital.

1.10 LEMMA If A is unital, then every maximal ideal in A is closed.

A simple unital C*-algebra has no nontrivial ideals. On the other hand, a
nonunital simple C*-algeora may very well have nontrivial ideals (e.g., L, (H) if
H is infinite dimensional).

A closed ideal I in a C*-algebra A is essential if AT = 0 => A = 0 (equiv-

alently, JA = 0 => A = 0). In particular: A is essential in itself.

1.11 IFMA A closed ideal 7 < A is essential iff I n J = 0 for all nonzero

closed ideals J in A.



1.12 EXAMPLE Suppose that H is a complex Hilbert space —- then L _(H)

is an essential ideal in B{#).

A unitization of a C*-algebra A is a pair (U,i), where U is a unital C*-
algebra and i:A - U is an injective *-homomorphism such that the image i(A) is an

essential ideal in U.

1.13 REMARK If A is unital to begin with, then the only unitization of A is
A itself. Proof: Identify A and i(A) and, assuming that U = A, fix U € U - A —

themUlAEAandU—Uleo. Mearwhile, V A € A,

(U—UlA)A=[T_A~UlAA=UA—UA=0.

1.14 CONSTRUCTION Given a nonunital C*-algebra A, put Af=ae C (vector

space direct sum) -— then with the operations

(A, (B,y)

(BB + AB + A, \u)

AN * = (a%,)),
A+ acquires the structure of a unital *-algebra (1 + = (0,1)). Moreover, the
A
prescription

el = sup  |]ax+ ]|
x[]

X| =1
is a C*-norm on A+. Proof: It suffices to cbserve that

a0 *@,0 || = | (a*a + 2 + aax,00) ||

= su {HA*AX'F;\AX’*‘AA*X"'K}\XH}
(x| ]<1



[\

sup  {||X*A*AX + AX*AX + AX*A*X + MX*X||}
[1X]]<1

= sup  {|]@X+ *@EX + AX) ||
= swp  {||ax +xx[|H

= [lan ]2

Denote now by i the arrow A > A" that sends A to (A,0) — then the pair (AT,i) is
a unitization of A. Indeed, i(A) is a closed ideal in A+, thus one only has to
check that it is essential. 5o suppose that (A,N)i(A) =0, i.e., BB+ 3B =0

Y B€A. Claim: A= 0 and A = 0. This being obvious if A = 0, assume that X = 0:
v B €A,

AB + )B

]
)

l_.l

(~A)B + B

I
o

==
1
B* (T A)* + B* = 0

=

I
L]

m%m*+5-

FRGN*+ (G A* =0

1 1
(';‘\- A) (I A)*

-+
I
&2
I
o



Therefore — —%—A is an identity for A. But A is nonunital, from which a contra-

diction.

[Note: The quotient A'/i(A) is x-isomorphic to C ((A,1) + A).]

1.15 EXAMPLE Let X be a noncompact locally compact Hausdorff smce, C _(X)
the algebra of complex valued continuous functions on X that vanish at infinity.
Equip C_(X) with the sup norm and let the involution be complex conjugation -- then
C_(X) is a nonunital C*-algebra and C_(X)' = c(x"), X' (= X U {»}) the one oint
compactification of X.

[Note: Explicated, the relevant arrow

c. x* +cxh
is the assignment
(£,20) +~ £+ X,

where

(£ + 2) (=) = A.]

Given C*~-algebras A and B, their direct sum A ® B is the ordinary *-algebra
direct sum with norm
|| @,B) || = max{]|[a]|[,||B]]}.

This is a C*-norm. Proof:

|| @&,B)*(a,B) || = ||(a*A,B*B| |

max{ | [a*A[ [, [ [B*B] |}

2 2
max{ | [A[ %, | [B][7}

]



[

max{| [a] [, | [B] [}°

2

H

|| @&,B) |

N.B. A ® B contains A and B as nonessential ideals and

(A®B)/AxB

i

(A ® B)/B = A.

1

In addition, A ® B is unital iff A and B are unital (in which case lA@B = (lA’lg))'

1.16 REMARK Take A unital -- then one can form A’ exactly as in 1.14 and

the arrow c:A+ -~ A ® C that sends (A,)) to (A + AlA,)\) is a unital *-isomorphism.

1.17 LEMMA Let A,B be C*-algebras and let ¢:A » B be a *-homomorphism —-

then ¢ admits a unique extension to a unital *-homomorphism otaat 5 B+, viz.

st @a,n = (0(8),0).

1.18 NOTATION UNC*AIG is the category whose objects are the unital C*-alge-

bras and whose morphisms are the unital *-homomorphisms.

[Note: An isomorphism is a bijective morphism. ]

N.B. The assigrment

is functorial, i.e., defines a functor



C*ALG - UNC*ALG.

1.19 RAPPEL Let A be a Banach algebra -—— then an approximate unit per A

is a norm bounded net {ei:i € I} such that v A € A,

lim ||e;A - A[[ =0
ier
lim ||ae, - A[] = 0.

ier

1.20 LEMMA Every C*-algebra A has an approximate unit {ei:i € I} such that

C*-algebras having a countable aprroximate unit are said to be o-unital.

1.21 REMARK Every unital C*-algebra is o-unital. Every separable C*-algebra
is o-unital but there are nonseparable nonunital c-unital C*-algebras.

[Note: Not all C*-algebras are c-unital.]

1.22 EXAMPLE Take H separable and infinite dimensional. Fix an orthonormal

basis {en:n € N} and let P, be the orthogonal mrojection onto Cey + -+ +Ce —
then the sequence {Pn} is an approximate unit per L (M), hence L (H) is o-unital.

[Note: L _(H) is separable (but B(H) is not separable).]



10.

1.23 EXAMPLE Let X be a noncompact locally compact Hausdorff space — then

C_(X) is g-unital iff X is og-compact.

Let A be a C*-algebra.

.ASA is the collection of all selfadjoint elements in A, i.e.,

ASA = {A € A:Aa* = A}.

oA " is the collection of all positive elements in A, i.e.,

I
It

2
{a®:a € ASA}

or still,

A = {A*a:A € Al.

1.24 1EMMA The set A+ is a closed convex cone in A with the property that
A, n (= A) = {0].

Given A,B € ASA’ one writes A =B {or B < A) iff A ~-B ¢ A+.

1.25 IEMMA If A 2B =20, then ||A|| = ||B]].

l1.26 IEMMA If A >B >0, thenv X € A,

X*AX > X*BX = 0.

PROOF Since A - B ¢ A+, 3Ce¢e A:A - B = C*. Therefore

X*AX - X*BX = X*(A - B)X



11.

= X*C*CX

({CX)*CX € A+.

N.B. If A is unital, then

AceA =0s<Ax HAHlA.

If A is nonunital, then

- +
A+—Aﬂ (A )4
and
Ac€A =>0s<As |[a][L,.
A
So, in either situation, v X € A,
0 < X*AX < ||Aa||x*X.

1.27 REMARK Every positive A has a unique positive square root Al/ 2

a= @32,

, thus

2)1/2

1.28 1LEMA Given A € A, mut a] = @& and let

a = (|a] £ n)y/2.

A €A,A=A -A,AA =0.

Moreover, A, are the unique positive elements with these properties.

—



12.

N.B. Every A € A is the sum of two selfadjoint elements:

A=ReA+ /-1 Im2a,

* — %
MA=A;A , maA=2"2A

r

2 /-1

[[Reall, [lmal] < |a

l -

Therefore every A € A can be written as a linear combination of four positive

elements.

Suppose that A is unital - then an element U € A is unitary if U*U = UU* = 14-

IfAEASAand

all =1, then
A= (U +U)/2.

Here

_ 2.1/2
U, =A% AT (1, - 2D

are unitary. Therefore every A € A can be written as a linear combination of four

unitary elements.

1.29 REMARK If ||Aal| <1 -?‘ﬁ, then there are unitaries Uy,...,U, such that

Ul+ soe -!-Un

A= .
n

Consequently, the convex hull of the set of unitary elements includes the open unit

ball in A, thus its closure is the closed unit ball in A.



13.

Put

Al= (A e A:

|| < 1}
1.30 LEMMA A C*-algebra A is unital iff Al has an extreme point.

1.31 EXAaMPLE If A is unital, then 1, is an extreme point of Al.



§2, THE COMMUTATIVE CASE

A character of a comutative C*-algebra A is a nonzero homomorphism w:A + C

of algebras. The set of all characters of A is called the structure space of A

and is denoted by A(A).
N.B. We have
AA) =8 (A ={0})
A(A) = @ (A= {0}).

2.1 ILEMMA Let w € A(A) — then w is necessarily bounded and, in fact,
llw|| = 1. Moreover, if A is unital, then
1= w(lA)

ard if A is nonunital, then

1 = 1lim w(ei) .
i€I
Given A € A, define
A:A(A) > C
by stipulating that
Alw) = w(a).

Equip A(A) with the initial topology determined by the A, i.e., emip A(A) with
the relativised ‘weak* topology.

2.2 IEMA A(A) is a locally campact Hausdorff srace. Furthemore, A(A)

is compact iff A is unital.



2.3 LEMVA Fix a comutative C* algebra A.
If A is unital, then A € C(A(A)) and the arrow
A > C(A(A))
A > A
is a unital *—isomorphism.
o If A is nommital, then £ € Cw(&(A)) and the arrow
A > C_(A(A))

~

A->A

is a »-isomorphisnm.

N.B. If A = {0}, then A(A) = f§ and there exists exactly one map #§ - C,

namely the empty function (# = g x C), which we shall take to be 0.

2.4 REMARK It suffices to establish 2.3 in the unital case. Thus suppose
that A is nonunital - then each w ¢ A{A) extends to an element m+ € A(A+) via the

mrescription w (A,A) = w(A) + A and

AAT) = {w'w € AT U ),
where w_(A,}) = A, so A(,A+) is homeomorrphic to A(A)+, the one point compactification
of A(A). But A’ is unital, hence

AY e 2 camh
=>

Az C_(AA)).



2.5 LEMMA Fix a locally compact Hausdorff space X.

e If X is compact, then v x € X, the Dirac measure éx € A(CX)) and the

arrcow

X > A(CX))

X + 68
- b*

is a homeomorphism.
o If X is noncompact, then ¥V x € X, the Dirac measure 6X & A(Cm(x)) and

the arrow

X > A(C, (X))
x> 8

is a homeomorphi sm.

2.6 REMARK It suffices to establish 2.5 in the compact case. Thus suppose

that X is noncompact —— then X+ is compact, hence

x" = acEh)
or still,

Xz A(C_ (X) ")
or still,

X"z ac_ o™t
Therefore

Xz AC_(X)).

2.7 RAPPEL Let C and D be categories — then a functor F:C » D is an




equivalence if there exists a functor G:D -+ C such that G o F = idc and
Fegzx idD, the symbol = standing for natural isomorphism.

[Note: The term coequivalence is used when F is a cofunctor: v f € Mor(X,Y),

Ff € Mor (FY,FX).]
N.B. A functor F:C ~ D is an equivalence iff it is full, faithful, and has
a remresentative image (i.e., for any Y € Ob D, there exists an X € Ob C such that

FX is isomorphic to Y).

2.8 RAPPEL Categories C and D are said to be equivalent (coequivalent) pro-

vided there is an egquivalence (coeguivalence) F:C ~ D. The object isomorphism types

of equivalent (coequivalent) categories are in a one-to-one correspondence.

Let X and Y be compact Hausdorff spaces. Suppose that ¢:X > Y is a continuous

function - then ¢ induces a unital *-homomorphism
(b*:C(Y) + C(X) r

viz. ¢*(f) = £ o ¢, Therefore the association C that sends X to C(X) is a cofunctor
from the category of compact Hausdorff spaces and continuous functions to the cat-
egory of unital commutative C*-algebras and unital *-homomorphisms.

Let A ard B be unital commtative C*-algebras. Suppose that ¢:A > B is a

unital *-homomorphism -—- then ¢ induces a continuous function
o*:A(B) > A(A),

viz. o*(w) = v ° $. Therefore the association A that sends A to A(A) is a cofunctor



from the category of unital commutative C*—algebras and unital *-homomorphisms

to the category of compact Hausdorff spaces and contimous functions.

2.9 THEOREM The category of campact Hausdorff spaces and continuous
functions is coequivalent to the category of unital commutative C*-algebras and
unital x—homomorphisms.

PROOF Define

EX:X > ACX))

by the rule EX(x) =8, — then =, is a homeomorrhism and there is a commutative

X
diagram
X —X 5 ACE)
o J J -
Y
Define
EA:A > C(A(AN)

A

by the rule = A (A) = A — then = A is a unital *-isomorphism and there is a commutative

diagram
A AL cian)
¢ l pr*
+
B
Therefore
T idzAeC
id = C » A.




The situation for noncompact locally compact Hausdorff spaces and nonunital
commutative C*-algebras is slightly more complicated. One immediate and obvious
difficulty is that a continuous ¢:X + Y need not induce a map ¢* :C (Y) »C_(X).

E.g.: Take X =Y =R and let

o(t) = eZTrv,q t

However, the resolution turns out to be simple enough: Impose the restriction that
$:X + Y be proper.
[Note: Iet ¢:X > Y be continuous —— then ¢ is proper iff its canonical

extension ¢ :x' » ¥ (47 (=) = =) is continuous.

2.10 LEMMA A proper ¢:X - Y induces a *-homomorphism

$*:C_(¥) + C_(X) .

There is also a problem on the algebraic side, namely if A and B are nonunital
commutative C*-algebras, then a *-hamomorphism ¢:A > B need not induce a map
d*:A(B) » A(A), the point being that w ¢ ¢ might very well be zero. To get around
this, call ¢ proper if for any approximate unit {ei:i € I} per A, {<I>(ei):i € I} is
an approximate unit per B (cf. 1.20).

[Note: A surjective ¢ is proper. To see this, choose an approximate unit

{ei:iEI}perA-—thenVAEA,

eA > A => @(ei)CD(A) - &(a).]

2.11 LEMMA A proper $:A » B induces a continuous function



P*:A(B) > A(A).

[vAeA,
% (w) (A*A) = w(®(A)*o(a)) = O.

Therefore ¢*(w) is a positive linear functional, hence v w € A(B),

[[o* (w) || = Lim &* (w) (e;)

iex

i

lim w(@(ei) )
ieT

]

ol = 0.]
N.B. The ¢* fiquring in 2.10 is proper and the ¢* figuring in 2.11 is proper.

2.12 THEOREM The category of noncompact locally compact Hausdorff spaces
and proper continuous functions is coequivalent to the category of nonunital
commutative C*-algebras and proper *-homomorphisms.

PROOF Replace the cammutative diagrams in 2.9 by

(>}

X —2 s A(C_ (X))

R

5y

and

AR e

o | | oxs

B ——— C_(8(B)).



§3. CATEGORICAL CONSTDERATIONS

We ghall first review some standard terminology.

3.1 RAPPEL Let C be a category.

e A source in C is a collection of morphisms fi:X > X, indexed by a set

-

I ard having a comon domain. An n-source is a source for which #(I) = n.

¢ A sink in C is a collection of morphisms £i:X, > X indexed by a set I

and having a common codomain. An n-sink is a sink for which #(I) = n.

A diagram in a category C is a functor A:I + C, where I is a small category,

the indexing category. To facilitate the introduction of sources and sinks associ-

ated with A, we shall write Ai for the image in Ob C of i € Ob I.

3.2 LIMITS Let A:I + C be a diagram — then a source {fi:X > Ai} is said

§
to be natural if for each 6§ € Mor I, say i + j, A(Sofi=fj. A limit of A is a

natural source {Ki:L > Ai} with the property that if {fi:x > Ai} is a natural
source, then there exists a unique morphism ¢:X -+ L such that fi = f’i o ¢ for all

i€ 0Ob I. Limits are essentially unique. Notation: L = lij Af{or lim A).

3.3 COLIMITS TLet A:I » C be a diagram -- then a sink {fi:Ai + X} is said

§
to be natural if for each § € Mor I, say i + j, fi =~fj o AS. A colimit of A is



a natural sink {Zi:Ai + L} with the property that if {fi:Ai + X} is a natural sink,
then there exists a unique morphism ¢:L -~ X such that fi =¢ o ﬂi for all i € Ob I.

Colimits are essentially unique. Notation: L = c:olimI A{or colim A).

There are a nurber of basic constructions that can be viewed as a limit or

colimit of a suitable diagram.

3.4 PRODUCTS ILet I be a set; let I be the discrete category with Cb I = I.

I
P<

Given a collection {X;:i1 € I} of objects in C, define a diagram A:I -+ C by A,

(i € I) — then a limit {Ei:L > L\i} of A is said to be a product of the X;.

Notation: I = 1;[' Xi {or XI if Xi; = X for all i}, ﬂi = pri, the projection from

TiTxi to X;.

3.5 LEMMA C*ALG has products.

PROOF Let {Ai:i € I} be a collection of objects in C*ALG. Consider the set

A of all functions A fram I to U A, such that v i € I, A(i) € A; and
iex

[[A]] = sup ||AD) ][] < .
1€1

Take the sum, product, and involution pointwise — then A is a C*~algebra and

v i €I, there is an arrow pry:A - A;, viz.

prl(é) = é(l) .



We claim that the natural source {prizé > Ai} is the product of the Ai. For suppose
that {tbi:A > Ai} is another natural source - then v i,
[o; @ || < [|a]]  (ef. 1.7),

thus the function

o(A):I >~ U Ai
i€l

that sends i to <I>i (A) belongs to A. Moreover, the diagram

e
|3 A 3>
[P A—
LS
i—!

obviously camutes, from which the claim.

[Note: A is not the cartesian product of the Ai if I is infinite.]
E.g.: Take Ai = C V i — then the product in this case is simply £2(1).

3.6 COPRODUCTS Let I be a set; let I be the discrete category with Ob I = I.

Given a collection {X;:i € I} of objects in C, define a diagram A:I ~ C by
A, =X, (i € I) — then a colimit {ﬁi:ai +~ L} of A is said to be a coproduct of

the X,. Notation: L = _]_|_ X; (or I-X if X; =X for all i), Ei = ini, the injection
i

from X; to _EL X;-

‘3.7 LEMMA C*ALG has coproducts.




PROOF Let {Ai;i € I} be a collection of objects in C*ALG ~— then their

coproduct can be realized as the free product C*-algebra *Ai, i.e., the completion

of the free *-algebra generated by the Ai w.r.t. the largest C*-norm whose

restriction to each Ai is the original norm.

3.8 REMARK Let 0 be the category with no objects and no arrows —— then the

limit of a diagram having 0 for its indexing category is a final object in C and

the colimit of a diagram having 0 for its indexing category is an initial object

ing‘

[Note: The zero C*-algebra is both a final and initial object in C*ALG.]

a b
3.9 PULIBACKS Iet I be thecategory 1 ¢ —» @ « . @2, Given a
- - 3
£ g
2-sink X » 2 <« Y in C, define a diagram A:I -~ C by

A1=X

T pa=f
A2=Y &

_ b = gq.
A3=Z

Then a commutative diagram

Poouos¥

X ——r 2



is said to be a pullback square if for any 2-source X ¢ P' 3 Y with f o &' =

g o n' there exists a unique morphism ¢:P' > P such that &'

The 2-source X § Py is called a pullback of the 2-sink X 5 Z 2 ¥. Notation:

ool
oy

o
-
Jﬂ

|

=

o

-

:

P =X %y Y. Limits of A are pullback squares and conversely.

3.10 ILEMMA C*AIG has pullbacks.

PROOF Given a 2-sink A i?- C iii B, let

P={(A,B) € A ® B:0(n) = ¥(B)}.

‘ a b
3.11 PUSHOUTS Let I be the category 1 «— @ — ®2, Given a
3

2-source X fE z § Yin C, define a diagram A:I ~ C by

Al=X
T ha=f
A2=Y &
_ b =gq.
B A3=Z
Then a commutative diagram
g
Z — Y
|
£ L
X— P
a

L) 3
is said to be a pushout square if for any 2-sink X § p U vwith




E' o £ = n' o g there exists a unique morphism ¢:P » P' such that £' = ¢ ¢ £ and

, . £
n' = ¢ o n. The 2-SJ_Tﬂ{XEPEY is called a pushout of the 2-source X « ZgY.

Notation: P =X || Y. Colimits of A are pushout squares and conversely.
Z

3.12 IEMMA C*ALG has pushouts.

¢ V¥
PROOF Given a 2-source A « C » B, let

the amalgamated free product.
[Note: Spelled out, P is the quotient of the free product C*-algebra A = B

by the closed ideal generated by the set

{®(C) -~ V¥(C):C € C}.]

A category C is said to be complete if for each small category I, every

diagram A:I » C has a limit.

3.13 CRITERION C is camplete iff C has products and pullbacks.

A category C is said to be cocamplete if for each small category I, every

diagram A:I > C has a colimit.
3.14 CRITERION C is cocomplete iff C has coproducts and pushouts.

What has been said above can thus be sumarized as follows.



3.15 THEOREM C*ALG is both complete and cocomplete,

Let (I,<) be an up-directed poset =- then the pair (I,<) gives rise to a
small category:
(i,3) if i <3
ocb I=1I, Mor(i,j) = ' idi = (i,1),
g otherwise
composition being
(G,k)e(di,j) = (i,k) (1 <3=<k.

This said, let C be a category — then by definition, a filtered colimit is the

colimit of a diagram A:I - C.

3.16 LEMMA C*ALG has filtered colimits.

[On the basis of 3.15, this is clear. However, it is not difficult to proceed
directly. Indeed, to specify a diagram A:I - C*ALG amounts to specifying a
collection

{(Ai,tbij):i,j € 1,ic< i},
where the Ai are C*-algebras and (Pij is a *-homomorphism fram Ai to Aj with

@ﬂ{=®jk°@ijf0r13:]£k.

Each q)ij is norm decreasing, so on the algebraic filtered colimit, the prescription

|1al] = inf H@ij(A)H A€ A)
j>i

is a C*-geminorm. Dividing out the elements of seminorm 0 and campleting then leads



to a C*-algebra, written

which in fact is a realization of the filtered colimit.]

[Note: Put

A= @*(Ai’q}ij) .

Then strictly speaking, the filtered colimit is the natural sink {<I>i:‘Ai + Al,

where @i:Ai + A is the *~homomorphism defined by

0; () (1) = A0, R () =0 (<3,

s (a) () = 0 otherwise.]

3.17 EXAMPLE Let I =N -- then a filtered colimit of a sequence of finite

dimensional C*-algebras is called an AF-algebra. E.g.: Take An = Mn(g) and let

0] k:Mn c) ~

n,n+ ©

ﬂn+k
be the *-homomorphism obtained by adding k rows and colums of zeros -- then

-]:ilg(Mn (Q_) ’®n,n+k)

is x-isomorphic to L (22) .

3.18 LEMMA Iet

A = Lim(A,0;4).

Assume: V i, Ai is simple — then A is simple.



3.19 REMARK ILet I be a set and let {Ai:i € I} be a collection of objects
in C*ALG. Form the categorical product A as in 3.5 and denote by & Ai the closure
- ‘ i

:inéoftl‘ealgebraicdirectsm-—thenéé?Aiiffv8>0,

#{i:|

A || 2 €} < =,
To realize & Ai as a filtered colimit, let F be the set of finite subsets of I
i

directed by inclusion and for each F € F, put

= & A, (=TT A).
AF iGFl ieF 1

If F c G, define

% gt~ Ag

by setting the additional coordinates equal to zero — then
;EQ(AF,@F,G) = ? Ai'

[Note: Take A, = CV i —- then ? C can be identified with c;(I).]

The setting for filtered colimits is an up-directed poset I. Dually, the

setting for cofiltered limits is a down-directed poset I. E.g.: If I = IjOP, then

a diagram A:I > C is essentially a sequence

f
n
IRV D

of morphisms in C, where

fn
An+1-+n) = Xn-t—l > X .



1o0.

3.20 IEMMA C*AIG has cofiltered limits.

Iet C, D be categories and let F:C »~ D be a functor.
¢F is said to preserve a limit {ﬂi:L > Ai} (colimit {i{i:Ai + L}) of a
diagram A:I ~ C if {F{;:FL > FA,} ({FL;:FA; -~ FL}) is a limit (colimit) of the
diagram F o A:I » D.

e F is smid to preserve limits (colimits) over an indexing category I if

F preserves all limits (colimits) of diagrams A:I —+ C.

e I is =mid to preserve limits (colimits) if F preserves limits (colimits)

over all indexing categories I.

10
o

10
¥

1o

3.21 ADJOINTS Given categories , functors are said t be

1o
Q
1o
v
10

an adjoint pair if the functors

mor o EF x id)

Mor o (id op X G)

—_ C
from QOP x D to SET are naturally isomorphic, i.e., if it is possible to assign to
XeobC
each ordered pair a bijective map
Y € 0b D

EX’Y:I\fbr (FX,Y) - Mor {(X,GY)
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which is functorial in X and Y. When this is so, F is a left adjoint for G and

G is a right adjoint for F.

write [I,C] for the category whose objects are the diagrams A:I - C and whose

morphisms are the natural transformations Nat(A,A') from A to A'.

3.22 EXAMPIE Let K:C - [I,C] be the diagonal functor, thus v X € &b C,

$
&X) (1) =X, ®X)(@E > 3J) =idy
and v £ € Mor (X,Y),
KE € Nat(KX,KY)

is the natural transformation

—-
=

(KX) (1) —2» (KY) (1)
(KX) (8) l l (KY) (8)

(KX) (3) —(KY) (3)
3

defined by the comutative diagram

f

X —5Y
| |
X «-"‘f'—* Y -
Assume now that C is both complete and cocomplete —— then K has a left adjoint, viz.
colim: [LQ] > Q:

and a right adjoint, viz.
lim:[I,C] ~ C.
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3.23 REMARK If C is both complete and cocomplete, then the same holds for
[1,Cl.

[Note: Limits and colimits in [I,C] are computed "object by object”.]

3.24 THEOREM Ieft adjoints preserve cclimits and right adjoints preserve
limits.
3.25 RAPPEL Let C be a category -- then a morphism f:X -~ Y is said to be

a monamorphism if for any pair of morphisms A X such that £ e u= £ o v, there

<4 ¥R

follows u = v.

3.26 IEMMA In C*ALG, a *-homomorphism ¢:A -+ B is a monamorphism iff it is
injective.

PROOF An injective *-homomorphism ¢:A4 + B is trivially a monomorphism. As
for the converse, consider

Ker ¢ > A > B

Rer & > A > B.

Then
®oi=3%00=>1i=0=>Ker &= {0}.
3.27 RAPPEL Let C be a category —— then a morphism £:X - Y is said to be

an epimorphism if for any pair of morphisms Y _ B such that u o £ = v o £, there

<o
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follows u = v.

3.28 LEMMA In C*ALG, a *~homomorphism ¢:A ~ B is an epimorphism iff it is

surjective%.

T Archiv d. Math. 20 (1969), 48-53; see also Inventiones Math. 9 (1970),

295-307.



§4. HILBERT A-MODULES

Let A be a complex Banach algebra —— then a left Banach A-module is a complex

Banach space E equipped with a left action (A,x) - Ax such that for some constant
K>0,

lax|| < x||a]] ||xl] (& eAxeE).
[Note: Right Banach A-modules are defined analogously.]
N.B. If A is nonunital, form A" as in §1 (but with || @,0 || = |[A]] + [A]} -
then E becomes a left Banach A'-module via the prescription
A+ Mx=ax+ Ax ((A,2) = A+ }).

[Note: We have

Ix=x (I=1,=(0,1).]
A

4.1 RAPPEL A left approximate unit per A is a norm bounded net {ei:i. € 1t

in A such thateiA+AforallAEA.

4.2 THEOREM Suppose that A has a left approximate unit {ei:i € I} and let
E be a left Banach A-module —— then the set

AE = {Ax:A € A,x € E}

is a closed linear subspace of E.

The assertion is trivial if A is unital @ take A nonunital and fix M > 0O:

le;ll <M e,



4.3 1EMMA 1et EO be the closed linear span of AE -~ then

EO = {x € B:lim e.x = x}.
iel

PROOF The RHS is certainly contained in the IHS. On the other hand, AE

is contained in the RHS as is its linear span [AE]. With this in mind, take an

arbitrary x € E; and given ¢ > 0, choose y € [AE]: |x = y|| < e. Next, choose

iOEI:
iziy= |legy-vyl] <e
and write
eix-x=ei(x-y) + (y - x) + (e;v - v
Then V 1 Zior
legx - %11 < Klleg || lx = vl|+ 1y - xI| + |legy - v/|
< (KM + 2)e.

4.4 RAPPEL ILet X € A" and suppose that ||X|| < 1 — then (I - X) ™ exists

and there is a norm convergent cxpansion

T-XToT+x+C+ en .

Iet y=1/M -~ then v 1 € I,

- M
I l+uei

is invertible, hence the same is true of

as well. And



(@A +wI - uei)'1 = (1 + u)—lI + A

for some Ai € A.

4.5 IEMMA Fix XO € EO — then 3 a sequence {ei (= en)} in {ei:i € I} such
n
thnot
+ _ _ -1 _ -1
An-— ((1 + I uen) eee ({1 + )T uel)

il

-n
(L + uI) I +2—\n

o an element x.

converges in A to a limit A € A and x, = (A;)-lxO converges in Eg

Admit 4.5 for the noment — then

| 1a7x - ax||

HA;xn—Axn+Axn—Ax|[

in

@y -2 ||+ Ak, -]

A

x|l - al| x|+ &lal] |lx, - x|]

>0 (n »x).

S0
. -+
x0=Ax = lim A x = Ax
n > w©
Therefore
XOEAE.

+

Turming to the proof of 4.5, set AO = 0, AO = I and chooss the e, inductively



subject to
+-1,,-1 M -n-1
and
-11~1
e, — Bl <M+ .
Since

+
to prove that {A;} is convergent, it suffices to prove that {An} ig Cauchy.

First

N

- .|
= @+ wT - pe D w@ 0™ e o+ e A -]

But
-1
QA+ I =ve ) 7]
< (1 + u}_l 1 -
L-u@+w e 1
< 1
L+u=-ulle,, !
< M,
ud + 0™ e 1] s @+ ™,
and

[lve (A - w8 |l = 0+ w L



Therefore
A - A |l <2 + ™
So, for m > n,
1A, -3
<A, Al + 1A A I+ e+ A -2l

M1 + u)"n‘l(l + 1+ u)"l +oeee + (14 il

in

)

MM+ 1A+ W 50 @),

A

which implies that {An} is Cauchy.

It remains to deal with x_ = (A:;) L . For this purpose, note that

o
PR N |
%41 = Bo) X
_ +, -1 _
= (An) (L +wI ueml)xo,
thus
+,-1
EXn+l - XnI ! = l I (An) (UXO - uen—l-lXO) 1 l
+, -1
< K| | @D T %y - e g%l ]

-n-1

IA

1+ )

Proceeding as above, we then conclude that {xn} is Cauchy, thereby finishing the

proof of 4.5,



4.6 EXAMPIE Iet A € A -~ then AA is a left Banach A-module. Since A € AZ,

it follows from 4.2 that 3 B € A, C € AA such that A = BC.

Maintain the assumption that A has a left approximate unit {ei:i € 1}.

4.7 1EMMA Iet X be a compact subset of E, — then 3 A € A and a continuous

0
function f:X » Eo such that

x = Af{x) VX € X.

PROOF Define a left action of A on the Banach space C(X,BO) (sup norm) by

(Af) (x) = Af(x) (x € X).

Then
[[af]| = sup || (Af) (x) ||
®eX
= sup | [Af () ||
xeX
< [af] [I€]].

Therefore C(X,EO) is a left Banach A-module. 2And here

C{X,E C(X,E

0o = o~

Accordingly, thanks to 4.2, V £, € C(X,EO), FAceAand £ € C(X,EO):

0

£, = Af.

Conclude by applying this to the particular choice fO x) =x (x € X).



4.8 EXAMPLE Suppose that {xn} is a seguence in EO which converges to 0.

In 4.7, take X = {O,Xl,Xg,...}, and put Y, = f(xn) -=- then Ayn =X, Af(0) = 0,

and Yo > £(0). So, letting xr‘1 =Y, - £ (0), we have Ax1'1=xn and xr’k—> 0.

4.9 SCHOLIUM Iet A,B be complex Banach algebras. Iet ¢:4 > B be a homo-

morphism. Assume:

1. 3K>0:vA€EA, |[|le@]] < K||a]]-

2. {ei:i € I} is a left approximate unit per A.

3. {@(ei) :i € I} is a left approximate unit per B.
Define a left action of A on B by

AB = O (A)B.
Then B is a left Banach A-module and
B = AB.
[In 4.2, take E = B -— then
BO = {B € B:lim ®(e.)B = B}.
N 1
i€l

But B{) = AB.]

Iet A be a C*-algebra. ILet E be a right A-module —- then an A-valued

pre~immer product on E is a function < , >:E X E »+ A such that VY x,y,2 € E,

VAEA VXIEC:

(1) <x,y + 2> = <x,y> + <x,2>;

(li) <K AYy> = A<X, V>3



(iii) <X, YA> = <X,y A;
(iv) <x,y>* = <y,x>;
(V) <x,x> 20 (=> <x,x> € A+) .

If

<X,x>=0=>x=0,

then < , > is called an A-valued imner product.

[Note: < , > is "conjugate linear" in the first variable: <xA,y> = A*<x,y>.]

A pre-Hilbert A-module is a right A-module E equipped with an A-valued pre-

inner product < , >.

N.B. Tacitly E is a complex vector space with compatible scalar multipli-
cation: A(A) = (Ox)A = x{(}A).

4.10 I1IEMMA Suppose that E is a pre-Hilbert A-module —— then V x,y € E,
<x,y>*<x,v> < | |<x,x> | |<y,v>.
PROOF Assume that ||<x,x>|| =1 and let A € A:

A¥<x,x>A - <y,x>A - A¥<x,y> + <y, y>

A

| |<x,x>| |A*A = <y,x>A — BA*<x,y> + <y,y>
= A*A - <y,X>A - A¥<x,y> + <y,y>.

)
Now take A = <x,y> tO get |

0 5 <X,y>¥x,y> = <Y, X0<K, V> ~ <X, VX, v + <y, v



or still,
<Y E><X, ¥ £ <Y,¥y>
or still,
<X, y>¥<x,y> < <y,v>.
Put
Ixl| = [Jxo |72 xem.

Then 4.10 implies that

.

| is a seminorm on E:

A

[+ vl < [ + |yl

| 12|

A

Al [x

Moreover,

| is a norm if the pre-inner product is actually an inner product.

Definition: E is said to be a Hilbert A-module if the seminorm is a norm and

E is complete (hence is a Banach space).

4.11 EXAMPIE Take A = C —— then the Hilbert C-modules are the complex
Hilbert spaces.

4.12 EXAMPIE let Z be a hermitian vector bundle over a compact space X.
Denote by I'(3) the space of continuous sections of & ~- then T'(5) is a right

CX)—module and the rule

<g,0'>(x) = <o(x),o" (X)>X

equips I'(Z) with the structure of a Hilbert C(X)-module.
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Iet

N, = {x € Ez[ [x]] = 0}.
Then NE is a sub A-module of E and the pre~inner product and seminorm drop to an

inner product and norm on the quotient A-module E/NE.

4,13 IEMMA The completion of E/NE is a Hilbert A-module.

A Hilbert A-module E is a right Banach A-module. Proof:

|[sal] = ||<xaxa>| |12

1/2

| |a*<x, 0] |

(2% 172 (<0 (M2 | |a] |12

IA

=[] [1al]-

4.14 LEMMA Iet E be a Hilbert A-module -— then E = EA.
PROOF One has only to show that EA is dense in E (cf. 4.2). But

<KX - . - g
X xel,x xel

i

<, x> = e,< > - < >, + e.< >,
z i X'X X;X 1 i X,.X i

+ 0.

[Note: If A is unital, then x = xlA.]

Here are three examples of Hilbert A-modules which are "internal" to A.
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4.15 EXAMPIE View A itself as a right A-module and put

<A,B> = A*B (A,Be A).

Then A is a Hilbert A-module.

4.16 EXAMPLE Givenn € N, let A" = A ® --- @ A. View A" as a right
A~-module in the obvious way and put

n
@ v B Bn> = il *%(’

<A, ®--- ®A, B 5

1

Then A" is a Hilbert A-module.

4.17 EXAMPLE Let H, stand for the subset of TT A oconsisting of those A
k=1

o0

such that I AXA (A = AKk)) converges in A. View H, as a right A-odule in the
k=1

obvious way and pat

k=1
Then HA is a Hilbert A-module.
4.18 REMARK ILet Hi stand for the subset of || A consisting of those A
k=1
such that I ]]AkHz <o (& =AaK)) — then
k=1
2
HA c HA
and
2 _
iy = Hy
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iff A is finite dimensional. E.g.: H,= £7.

Let H be a complex Hilbert space, E a Hilbert A-module ~- then their algebraic
tensor product H @ E carries an A-valued inner product given on elementary tensors
by

<€ 8 X,n R y> = <, n><xX,y>.

Its completion H 8 E is therefore a Hilbert A-module (cf. 4.13).

4.19 EXAMPLE Suppose that H is separable and infinite dimensional -- then

H @ A and H, are isomorphic as Hilbert A-modules.

4.20 EXAMPIE Iet X be a compact Hausdorff space -- then C(X,H) is a Hilbert
C (X)-module and

H8 CX) = CX,H).
[Consider the map

HecX ~Cci,H
that sends £ @ £ to the function x > f£(xX)£. It preserves C(X)-valued inner products

and has a dense range.]

4.21 CONSTRUCTION Suppose that E and F are Hilbert A-modules —— then E® F

is a right A-module in the obvious way and the prescription
<%, y) (X', ¥')> = o<x,x'> + <y, y'>

is an A-valued inner product on E ® F. Since the completeness of E and F implies
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that of E ® F, it follows that E @ F is a Hilbert A-module.

One difference between Hilbert A-modules and Hilbert spaces lies in the
rroperties of orthogonal complements. Thus let F c E be a closed sub A-module
of the Hilbert A-module E. Put

F* = {x € E:<F,x> = 0}.

Then F' is also a closed sub A-module but in general, E is not equal to F & F~

4.22 EXAMPIE Take A = C[0,1] = E and let F = {g € E:g(0) = 0} — then

Fl=1{0}, o F®F"=E.

Iet E and F be Hilbert A-modules —— then by I—IomA (E,F) we shall understand
the subset of B(E,F) wipse elements are the T:E ~ F which are A-linear:

T(xA) = (TX)A (x €EE, A€ A).

N.B. HomA(E,F) is a closed subspace of B(E,F), hence is a Banach space.

4,23 IEMMA V T € HomA(E,F), we have

<Px,Tx> < ||T] 12<x,x> (x € B).

Iet T & EbmA(B,F) — then T is said to be adjointable if 3 an operator
T* HomA(F,E) such that
<Ix,y> = <x,T*y>

for all x € E, YyE F,
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[Note: T* is unigue and T%* = T.]

Weite I*Iomz (E,F) for the subset of HomA (E,F) consisting of those T which are
adjointable -- then Homx (E,F) is a Banach space.

[Note: The containment

Hom*

A(E'F) c Ek:):mA (E,F)

is, in general, proper (cf. infra).]

4.24 EXAMPIE Take A = C[0,1] = E and let F = {g € E:g(0) = 0} (cf. 4.22).

Define T:E @ F - E @& F by T(f,g9) = (g,0) — then

TEHOIHA(E(BF,EQF) butTEHOmX(EG)F,EQF).

4.25 IFMMA Homz(E,E) is a unital C*-algebra.

[Note: fbmA (E,E) is a unital Banach algebra.]

4,26 REMARK Iet T € HomX(E,E) -~ then T € HomX(E,E)_‘_ iff v x € E,

<TX,x> = 0.

4.27 NOTATION H*MOD, is the category whose objects are the Hilbert A-modules
with

Mor (E,F) = HOIHX(E,F) .

N.B. H*MOD, is a *—category in the sense that it comes equipped with an

involutive, identity-on-objects, cofunctor

*:H*MOD, -~ H*MOD,.
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4.28 EXAMPLE Iet HILB be the category whose objects are the complex

Hilbert spaces and whose morphisns are the bounded linear operators — then

HILB = H*MOD.

*:Mor(Hl,Hz) = B(H]_,Hz)

sends 'I':H':L > H2 to its ad pint T*:h‘2 > Hl‘

4.29 IEMMA Hmnz(E,F) is a Hilbert HomX(E,E)—xrodule.

PROOF The right action
Homy (E,F) X Homi(E,E) ~ Homj (E,F)
is precomposition and the HomX (E,E)~valued immer product
<, >:HomX(E,F) X Homz(E,F) -> HomK(E,E)
is
<T,S> = T*g,

[Note: The induced norm on chnf\ (E,F) is the operator norm.]

Iet E be a Hilbert A-module. Given x € E, define x:E -+ A by

§(y) = <X,y>
and define LX:A + B by
LX(A) = xA.
Then
x € Hom, (E,A)

L, € Homy (A,E).



le.

And

il

<§(y) JA> <<X,y>,A>
= <x,y>*A
= <Y,X>A
= <Y, RB>
= <y,LxCA)>.
Therefore

®)* =L

;z € Homz(E,A)

‘l Lx € HomX(A,E) .

Put
E = Hom, (E,A).
Then E is a right A-module:
(TA)x = A¥x.
4.30 LEMMA The arrow
- E -~ E:
X > %

is an isometric conjugate linear map of right A-modules.

One then calls E selfdual if this arrow is surjective, thus
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chmA (E,A) = Homz E,A).

4.31 EXAMPIE A is selfdual iff A is unital.

4.32 EXAMPLE HA is selfdual iff A is finite dimensional.

4,33 LEMMA Suppose that E is selfdual -- then v Hilbert A-module F,

HC}mA (E,F) = Homi E,F).

4.34 REMARK Suppose that A is a W*-algebra and let E be a selfdual Hilbert

A-module -- then it can be shown that the unital C*-algebra fbm/’{ (E,E) is a Wr-algebra.

X €B
Let E and F be Hilbert A-modules. Given , define @y X:E -+ F by
y eEF
GY:X(X|) = y<xX,X'>,
Then
18y, 11 = 1wl 1=l
and

' = ' = ' — '
@y,x(x A) V<X R'A> = y<x, X" >A ey,.x(x JA.
E.g.: Take E=F = A and suppose that A is unital -- then

e = jdAQ

lA,lA
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4.35 IEMMA O € Hom* (E,F) :
— Yy,x A

[ 4

* =
G)Y,x @x,y'

Write L (E,F) for the closed linear subspace of Homx (E,F) spanned by the (E)y <
r

4.36 EXAMPIE The image of the arrow in 4.30 is L _(E,A). In fact,

A*
G)A,x = XA*,

Accordingly, when E is selfdual,

il

L (8,A) = Hom} (E,A).

S0, e.g., if A is unital, then

L, (A,A) = Hom} (4,A),

but if A is nonunital, then Hom:{ (A,A) is in general much larger than goo(A,A)

(cf. 85).

4.37 REMARK If A is unital and if E is a Hilbert A-module, then

;,w{E,A) = chn;’;\(E,A).

Thus let T € HomK(E,A) and put x = T*(lA) ~— then
x(y) = <x,y>
= Tk (lA) e
= <1A,Ty>
= lXTy

il

Ty.
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Take E = F -~ then

ex,yeu,v = ®x<y,u>,v = ex‘,v'<u,y>
and
) =0
X:y II‘)<I§’
ex,yT = @x,‘I‘*y.

4.38 LEMMA L (E,E) is a closed ideal in Hc)mK(E,E).

[Note: Therefore L _(E,E) is a C*-algebra.]

More is true: L (E,E) is an essential ideal in Hom} (E,E).

A
we shall need a technical preliminary.
4.39 IEMMA V X € E,

x = lim x<x,x> (<X,x> + e)—l.
£+0

To prove this,

Bearing in mind 1.11, let J c HomK(E,E) be a closed ideal such that

JnL (EE) ={0}. FixJeJ-—thnvx€eE Jo, = 0and
’

JIx = J{(lim x<x,x> {<x,x> + e:)-l)
e->0
= lim J(x<x,x> (<x,x> + e)—l)
e-+0
1

i

lim J@X’X(x) (<x,x> + €)
e+0
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£->0

= 0.

I.e.: J = {0}.

lim O(<x,x> + s)_l

4.40 EXAMPLE The C*-algebra L _(A,A) is x~isomorphic to A. To see this,

define LA:A > A by L,B = AB - then

(Ly)* =L => L, € Homf (A,A).

A*

But

[yl 1= 112

3

Therefore the range of

is a C*-gubalgebra of Irme (A,A). On the other hand,

0 (C) = A<B,C> = AB*C =

A,B

from which it follows that

5
!

- L__OO(A:A) .
[Note: The pair

(Hom (A, 4) L)

L C,

AB*

is a unitization of A. Indeed, the image LA is L (A,A), which is an essential

ideal in HomX(A,A) .1

4.41 REMARK let Mn(A) be the set of n-by-n matrices with entries from A —
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then Mn (A) is a x—algebra but it is not a priori obvious that Mn(A) is a C*-algebra

(if n > 1). Here is one way to proceed. Introduce A per 4.16 — then the map

- X oo *
AlBl Aan

Q
Al®'--®Ah,Bl@°--€BBn+ . .

implements a #-isomorphism

n n
L, (A% - ).

Therefore Mn (A) becomes a C*-algebra via transport of structure.

[Note: The involution *:Mn(A) > Mn(A) is

{Aij) * = [Ag‘i} -]



§5. MULTIPLIERS and DOUBLE CENTRALIZERS

Given a C*-algebra A, put

M(A) = Hmz(A,A) .

Then M(A) is a unital C*-algebra, the multiplier algebra of A. Abbreviate L _(A,A)

o L (A), thus L (A) is an essential ideal in M(A) and there is a *-isomorphism

L:A > L_(A) (cf. 4.40).

[Note: Recall that
L_(A) = M(A)
if A is unital (cf. 4.37).]
Iet E be a left Banach A-module -- then according to 4.2, the set
AE = {Ax:A € A,x € E}

is a closed linear subspace of E, which can be characterized as

{x € E:1im e.x = x},
iel

denoted by EO in 4.3.

N.B. E can, of course, be viewed as a left Banach LOO(A) -module by writing

I,Ax=Ax.

5.1 THEOREM Assume: E = AE — then the prescription
M(Ax) = (MLA)X ™M e M(A))

iw welldefined and serves to equip E with the structure of a left Banach M(A)-module.



PROOF Observe first that
MLA €L _(A),

£ the RHS makes sense. To check that matters are welldefined, suppose that

Byxy = Byxy o then

(ML
B

M lim L Ix
jer &1

I

)xl

= lim (ML yx
jer e 1

= lim (ML Y%
ier & 1

= lim (ML )A.x
ieT eiAll

= lim (ML_ )
ier &1 %2

= (I"K.A2)x2.

And

Il

| M@x) | |

L omy) x| |

| [ilézn (Nmei)AX( ]

il

lim || (M@, )2x||.
iex i

But

A

!l(MLéi)AX|\ K“MLéi|l | [ax] |

a8

K| ] | IILei!i 12| |

A

R M| ||ax]].



Therefore E is a left Banach M(A)-module.

Given C*-algebras A and B, a *-homomorphism ¢:A »~ B is said to be proper
if for any approximate unit {ei:i € I} per A, {@{ei) :i € I} is an approximate unit

per B.

5.2 THEOREM Suppose that ¢:A - B is proper —- then there is a unique unital

*-homomorphism ®:M(A) + M(B) extending o_:

PROOF It is a question of applying 5.1. Thus view B as a left Banach

A-module per 4.9 —— then B = AB. This said, given M € M(A), define ®(M) € M(B) by

o0 (@)B) = ¢ (ML,)B.
Then
o|L (A) = o_.
In fact, V A' € A,
(L ) (2(A)B) = ¢ (L L,)B
A’ A
=¢ (L )B

A'A


http:approxirna.te
http:awroxima.te

=L B
®(A'A)

= L L B
o(A') o(a)

L (¢(A)B)
d(A')

o_(L )(2(A)B).
Ai

5.3 NOTATION PRC*ALG is the category whose objects are the C*-algebras

and whose morphisms are the proper *-homomorphisms.

N.B. The assignment

is functorial, i.e., defines a functor

PRC*ALG + UNC*ALG.

Suppose that (U,1) is a wnitization of A -~ then (U,i) is said to be maximal
if for every embedding j:A -+ V as an essential ideal of a C*-algebra V, there exists

a *-homomorphism Z:V - U such that ¢ °o j = i:

|

LW
< — >

d!

o — >
|
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5.4 REMARK ( is necessarily injective (j(A) being essential) and, in fact,

is unique.
[Note: If
Uy ,ip)
_ (U,,i,)
are maximal unitizations of A, then there exists a *5ismnrphisra <I>:Ul > U2 such

that ® ¢ 1, = 1

1 =1i,.]

5.5 ILEMMA The pair (M(A),L) is a maximal unitization of A,

5.6 EXAMPLE Iet X be a noncompact locally compact Hausdorff space and let
BC(X) be the C*-algebra of complex valued bounded continucus functions on X -- then

C,(X) sits inside BC(X) as an essential ideal, hence there is a comutative diagram

c () —/—= c (X
i L

BC(X) —— M(C (X)),
4

where, as pointed out above, ¢ is injective. But here ¢ is also surjective, i.e.,

is a *-isamorphism.

Given a Hilbert A-module E, denote by <E,E> the linear span of the set
{<x,y>:x,v € E} — then the closure <E,E> of <E,E> is an ideal in A. Working with

an approximate unit from <E,E>, one finds that E<E,E> is dense in E.



Abbreviate

Hom‘;i (E,E) to Homz (E)

L (E,E) to L (E).

Then Hcmji (E) is a unital C*-algebra containing L (E) as an essential ideal.

5.7 LEMMA View E as a left Banach L _(E)-module —- then

L_(E)E = E.

PROOF Let {ei:i € I} be an approximate unit per L_(E) —— then it need only
be shown that eX >*X VXEE (cf£. 4.2 and 4.3). And for this, it suffices to prove

that e.,X > x ¥ x € E<E,E>., So suppose that
X = y<u,v>.
Then

.0 -+ 0 inL (E
el Y. Yy "’m( )

=2

(eiey,u) v) » @y,u(v) in E

e. (0 (v)) -0 u(v) in E

iy,u Ve

e, X -+ x in E.

5.8 THEOREM We have

M(L,(E)) = Hom} (E).



PROOF Iet
i:L (E) -~ HomK(E)
be the inclusion -- then the pair
(Homz (E),1)
is a unitization of L_(E), which we claim is maximal. To see this, consider an
embedding j:L_(E) -~ V as an essential ideal of a C*-algebra V. Imitating the

procedure utilized in 5.1, define z:V -» HmX(E) by

cv)Tx = (vj(M)x (X €E, TeL (B).

aAnd so forth... .

5.9 EXAMPLE Take A = C —- then the Hilbert C-modules are the complex Hilbert
spaces H, thus
M(EOO(H)) = Hcm("i(H) = B{H).

—

5.10 REMARK The relation
M{A) = Hcmz(A)

is a definition. On the other hand,
L.(A) = A

ML, (A) = Hom} (A) .

5.11 EXAMPIE Y n €N,

LA M (&)  (cf. 4.41)



?

ML, (Ah) = MO (A))

1

M_(M(A))

N

n
Horm} (A%)
[Note: v n € N,

MA™ = MA)™.

5.12 EXAMPLE Suppose that H is separable and infinite dimensional -- then

H

n

A H 2 A (cf. 4.19)

=>

0
-
=
©
=

L, ()

N

the symbol & . standing for the minimal tensor product (cf. §6).

[Note: L_(H) is nuclear, so there is only one C*-norm on L_(H) @ A.]

There is another approach to M(A) based on purely algebraic tenets.

Assume for the moment that A is just a complex algebra —— then a

left centralizer

of A

right centralizer




is a linear map

L:A -+ A
R:A » A

such that v A,B € A,

L{AB) = L(A)B

R(AB)

i

AR(B)

and a double centralizer of A is a pair (L,R), where

L is a left centralizer

R is a right centralizer

such that v A,B € A,

AL(B) = R(A)B.

Write DC(A) for the set of double centralizers of A —- then DC(A) is a complex

algebra under pointwise linear operations, multiplication being defined by
(Ll,Rl) (Lz,Rz) = (Lle,Rle) .
Since
(idA,idA) € DC(A),

it follows that DC(A) is unital.
Given A € A, define

LA:A > A

%:A—>A

L, (B) =

R, (B)

&

I
2
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Then the pair
(LA,RA) € DE(A)
and the map
A+ DC(A)
Ly
A > (LyR,)

is a homomorphism whose kernel is called the annihilator of A: Ann A.

5.13 1LEMMA 14 is surjective iff A is unital.
N.B. Therefore 1

A is an isomorphism iff A is unital.

5.14 IEMMA VYV A,BE€ A and v (IL,R) € DC(A), we have

L,L(B) = AL(B) = R(A)B = Ly () B
RR, (B) = R(BA) = BR(A) = Ry (2B
LL, (B) = L(AB) = L(A)B = L, \B
RAR(B) = R(B)A = BL(A) = RL(A)B.

Consequently, 1 A(A) is an ideal in DC(A) and

(LR Ly rRy) = (T, () /Ry, ()

(LA'%) {L:R) = (LR(A) 'RR(A)) -
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- ArmLA={AeA:AB 0v Be A}

Il

A={Aec A:BA=0vVv Be A}
AnnR

Then

ArmA=ArmLAﬂAnnRA.

Now specialize and assume that A is a complex Banach algebra.

5.15 LEMMA Suppose that
AnnLA = {0} and Ann.RA = {0}.
let (L,R) € DC€(A) —— then L and R are bounded:

L,R € B(A).
PROOF Let {An} be a sequence which converges to 0 with {L (An)} converging

to B (say) —— then ¥V C € A,

CB = C{ lim L(An))

n > «

lim CL (An)

n >«

1lim R(C)An

n-+ «

= 0,

Therefore

B € AnnRA {0}

So, by the closed graph theorem, L is bounded. The argument for R is analogous.
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5.16 REMARK The existence of a

T right approximate unit per A => AnnLﬁx = {0}

left approximate unit per A => Ann.RA = {0}.

[Note: In particular, these conditions are met by a C*-algebra.]

Maintaining the suppositions of 5.15, place a norm on DC(A) by stipulating
that
@R ] = max{] |n] |, [|R]]}.

Then DE(A) is a unital Banach algebra and

is contractive.

5.17 EXAMPIE ILet G be a locally compact topological group (Hausdorff is

assumed). Take A = ! (G) (left Haar measure) —— then vV f,g € L:L G),

O EN = swl]|Ex0] ]| [6]] < 1}
|lgl| = sup{||¢xg||:]|¢]] < 1}.
Therefore
- AnnLA= {0}
AnnRA= {o}.
Given 1 € M(G), define
H
e 8t@)
R


http:approxima.te
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by
- Lufr—-u*f
~ Ruf':f*u.
Then
Tl = el

1
. (Lu'Ru) € pe(L (@),

R, 1=l

and a classical theorem due to Wendel says that the arrow

T M@ - pet@)
3 u - (Lu,Ru)

is an isometric isomorphism.
Assume henceforth that A is a C*-algebra.

5.18 IEMMA Iet (L,R) € DC(A) -- then

Holl = [IR]].
PROOF Since
[aL@) || = [[R@B|| < [[R]| |[a]] [[B]],
we have
[lL® [| = sw |lan@) || < [[R]] |[B]]
||alf=1



14.

Dittos
Rl < [z]].

[Note: V X € A,

Ix|| = s = sy .
| 1{YT$31 | x| llYl}fngYXH

Define an involution

*:DC(A) - DC(A)
by ‘

(L,R)* = (R*,L*),

where T*(A) = T(A¥)*.

5.19 THEOREM Under the multiplication, norm, and involution defined above,

DC(A) is a unital C*-algebra.

PROOF To check that

I (@R*@B || = ||@R]]?,

note that v A € A of norm < 1,

L@ ||

i

(@) *L@) ||

il

| |lL*(av) @) | |

il

| |a*R* (L@)) ||

HaY

Hax ] | |r*@@) [

IA

|| R*) () ||
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A

| [R*L| |

|| (©,R)*(L,R) ||

@R ||?=|L]|?

It

Hiﬁﬂ REACNEN

< || @,R*@,R) ||
< || @ |>.
It is clear that V A € A,
1y B 1] = |1a]]
(L,,R)}*= (L ,R ).
Rt R )
Therefore
A - DE(A)
1A:
A Ly Ry)

is an isometric *-homomorphism.

5.20 LEMMA The ideal IA(A) is essential in DEC(A).
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PROOF If v A € A,

(LRI, (A) = 0 = 1, (A) (L,R),

then
T Ro@! = 0= TrayFra))

o)

L{A) = 0 = R{A)

=>
(LrR) = (0,0).
[Note: The quotient
C(A) = DC(A)/lA(A)

is called the corona algebra of A.]

The pair (DC(A) '1A) is thus a unitization of A, which we claim is maximal.

To see this, consider an embedding j:A - V as an essential ideal of a C*-algebra

V -- then the problem is to construct a *-homomorphism z:V - DC(A) such that

L e j= 1yt

A A

L

V —— DE(A).

C

Definition:

W) = (LR,
vhere

L&) = 37 (via)

R (A) = j'l(j(A)v).
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The computation

L, (@B) = 37 (vi (B))

il

57H w3 )5 8))

;7Y a)) B

Il

Lv (A)B

shows that Lv is a left centralizer of A. BAnalogously, RV is a right centralizer
of A. And

T oA, ® =T wIE) = 3T EEN T E) = 3G @vsE)

5 @vie).

il

R, B = 5 G @B = G @wITHE®)

Therefore the pair (LV,RV) is a double centralizer of A. That { is a *-homomorphism

is likewise immediate. Finally,

CG M= (T ) Ry )
But
T oL, (B =3 tE@sm) = 5N G@B) = AB = L (B)
J(A) 7\
R, (B) = 51(3®)§(A) = §7H(5(BA)) = BA = R (B)
_ 5 (A) J J J J RA
=>
(Lj (n) er (A)) = (LA'RA) = IA(A)'
I.e

C o j = 1;‘51.
[Note: The construction of 7 uses only the fact that j(A) is a closed ideal

in V.]
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5.21 THEOREM The C*-algebras M(A) and DC(A) are x-iscmorphic. Moreover,

there is a commtative diagram

MR —— D).

[This is because maximal unitizations are unique up to »-isamorphism. ]

[Note: One can therefore realize the corona algebra of A as the quotient

M(A) /L(A) . ]

5.22 REMARK ILet E be a Hilbert A-module -- then according to 5.8,
M(L,(E)) = Hom}(E),
so by 5.21,
HomK(E) * DE(L, (E)).
This can be explicated, viz. define
@:Hch(E) + DE(L (E))

by assigning to T € HomK(E) the pair (I‘I"RI') , where

T L) =T e 9

(¢ € L (E).

¢ oT

R (9)

Then ¢ is a *-isomorphism.
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[Note: V x,v,z € E,

‘ T o Gx,y(z) = Tx<y,z2> = G’I‘x,y(Z}
| S s T(z) = x<T*y,z> =0 (z).
s XY Ye X,T*y ]

Iet A,B be C*-algebras -- then an extension of A by B is a C*-algebra £ and

a short exact sequence
i m
0~>+A »~E »B-~0.
So: 1 is injective, 7 is surjective, and Im 1 = Ker .

N.B. There is a conmtative diagram

A—A

xl lmA

E — DC(A)
o

but ¢ need not be injective (since the closed ideal 1(A) need not be essential).

5.23 EXAMPLE The unitization extension is

v
0+-A> A > C~>0,

where 1{a) = (A,0) and 7{A,N) = A.

Two extensions

_ ‘1 kit
0>A—E, — B~»0

1

0+A—E —>B>0
1 2 m
- 2 2
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of A by B are said to be isomorphic if 3 a %-isomorphism Y:El > E2 rendering the

diagram

conmatative,
[Note: This notion of "isomorphic" is an equivalence relation and we write
Ext(A,B) for the corresponding set of equivalence classes.].

Suppose that

1 ™
0>+A—— E— B=>0

is an extension of A by B. Postcompose o:E + DC(A) with the projection pr:-
DE(A) » C(A) to get a x-homomorphism T from E/1(A) = B to C(A), the so-called

Busby invariant of the extension.

N.B. The diagram

1 ™
0 — A —» E —» B — 0

I Y

0 — A —— DC(A) —> C(A) — 0
1
A

is comutative.

5.24 LEMMA There is a pullback square

DC(A) XC{A}B ey B

e
DC(A) — C(A),
pr
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a *-isomorphism 7:E - DEC(A) XC(A? , amd a comutative diagram
1 T
0 A -+ E B 0
I |

0 —s A > DE(A) XC(A)B+B > 0,

Two extensions

of A by B with respective Busby invariants T, and T, are isomorphic iff Ty = Ty
Therefore the Busby irnvariant determines the iscmorphism class of an extension,

thus there is an injection
Ext(A,B) - Mor(B,C(A)),

that, in fact, is a bijection. Proof: Iet T € Mor(B,C(A)) -- then the Busby

invariant of the extension

0+~ A > DC(A) x B+-B~+0

C(A)

is 1T itself.

5.25 EXAMPLE Take A = C_(]0,1[), B = C — then up to isomorphism there are

four extensions of A by B:

1. = C_([0,1D) 3. E=c(lo,1)

2. E=c_(]0,1]) 4. E=c_(10,1]) @ C.
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5.26 IEMMA Iet 1:B > C(A) be the Busby invariant of the extension

1 i
0+ A ——>FE ——B~+0.

Then T = 0 iff E is x-isomorphic to A ® B.

5.27 REMARK If A is unital, then C(A) is trivial and, up to iscmorphism,

there is only one extension of A by B, viz.

0+A->A®B~+B~>0.



§6. TENSOR PRODUCTS

A monoidal category is a category C equipped with a functor ®:C x C ~C

(the multiplication) and an object e € Ob C (the unit), together with matural

isomorphisms R, L, and A, where
o RyiX 8 e X

LX:eQX*X

and
AX,Y,Z:X 2 (YR2Z) > (XQY) & 2,

subject to the following assumptions.

(MCl) The diagram
A A
Xe Y (zZaw) » XY)2 (2W) ~(XeY)Q2)aw
idﬁz\.l IA@id
X® ((YR2Z) W Xxe ¥Ye2)aw
A
comutes.,
(MCZ) The diagram
A
X2 e®Y) »~»XQe) QY
id@Ll lRQid
XY —— XQVY
comuites.

[Note: The "coherency" principle then asserts that "all" diagrams built up

from instances of R, L, A (or their inverses), and id by repeated application of &



necessarily commute. In particular, the diagrams

A A
e (XQY) > (e@X) QY Xa (YRae) > (XRY) Qe
Ll lL@id id&Rl lR
X8y Xeyv XY — X®2Y

comute and Le=Re:e®e—>e.]

N.B. Technically, the categories
c x (c x Q)

(€ xQ x¢

are not the same so it doesn't quite make sense to say that the functors

(X,(¢,2)) »x@ (Y  2)
e C X (gxg) > C

(f,(g,h)) > £ 2 (g2 h)

(X,v),2) ~ Xy @2z

e (CxQ) xC~>C

((f,9),h) > (fRg) &h
are naturally isomorphic. However, there is an obvious isomorphism
1

cx(ELxQ »(CxQ xg

and the assumption is that A:F > G ¢ 1 is a natural isomorphism, where



Accordingly,
v (X,(¥,2)) €0bC x (C xC)
and
v (£,(g,h)) € Mor C x (C x Q),
the square
By,
X® (Y az) XQY) @z
fe (ggh l l(f@g)@h
X'e (Y' e 2') X' 2 Y') @ 7'
Ax! ,Y".Z'
canmmutes.

6.1 EXAMPLE ILet VEC be the category whose objects are the vector spaces
over C and whose morphisms are the linear transformations -- then VEC is momoidal:

Take X 8 Y to be the algebraic tensor product and let e be C.

[Note: If

£:X X
g:¥ > Y',

then

R (f,g) =f@g:XQY->X'@aY'

sends x @ y to £(x) & g(y).]

6.2 EXAMPLE Let ALG be the category whose objects are the algebras over C



and whose morphisms are the multiplicative linear transformations —- then ALG is

monoidal: Take A ® B to be the algebraic tensor product and let e be C.

[Note: If

A,B € Ob ALG,

then the multiplication in A 8 B on elementary tensors is given by

(Al R Bl) (A2 ® B2) = AlAZ 2 BlB2']

6.3 EXAMPLE Let *ALG be the category whose objects are the *-algebras over
C and whose morphisms are the multiplicative *-linear transformations -- then *ALG

is monoidal: Take A @ B to be the algebraic tensor product and let e be C.
[Note: To say that $:A » B is *-linear means that

o(a*) = p(A)*

for all A € A.]

6.4 REMARK Each of these three categories also admits another monoidal
structure: Take for the multiplication the direct sum ® and take for the unit the

zero object {0}.

Let H and K be complex Hilbert spaces —- then their algebraic tensor product

f & K can be equipped with an inner product given on elementary tensors by
X By %y BYy> = <Xp,XpYhYp?

and its campletion H @ K is a complex Hilbert space.



A€ B(Hl,Hz)

B € B(K;.K,),
then
AQB:HlQKl+H2QK2
extends by contimiity to a bourded linear operator

a@B:, @K ~H, ek,

Recall now that HIIB is the category whose aobjects are the complex Hilbert

spaces and whose morphisms are the bounded linear operators (cf. 4.28).

6.5 LEMMA HILB is a mornoidal category.

PROOF Define a functor

®:HILB x HILB - HILB

by
and
A B
@(Hl -+ Hz,Kl - Kz) =ARB

and let e be C.

A symmetry for a monoidal category C is a natural isomorphism 7, where

gy XBY>Y Y,

such that

TY'X o TX'Y:X RY-X8QY



is the identity, RX = LX ° Ty or ard the diagram

A T
X2 (¥YRZ) — > (X8Y) RZ2 ——ZR(X82Y)

id @ TJ J'A

Xxe zY) ——eeees (X R Z) QY — (Z2RAX) QY
A T & id

comutes. A symmetric mornoidal category is a monoidal category C endowed with a

symmetry T. A monoidal category can have more than one symmetry (or none at all).

[Note: The "coherency" principle then asserts that "all" diagrams built up
from instances of R, L, A, T (or their inverses), and id by repeated application of
® necessarily cammute. ]

N.B. Let

BigxCc>Cxg

be the interchange —— then T is an isomorphism and T7:2 + & o f is a natural iso-
morphism.

It is clear that VEC, ALG, and *ALG are symmetric monoidal, as is HILB.

6.6 ILEMMA ILet H and K be complex Hilbert spaces —- then the linear map

B:B(H) & B(K) > B(H & K)
induced by the bilinear map
B(H) x B(K) ~ B(H & K)

(T,8) > T@S

is an injective *-hamomorphism.



From the definitions, C*ALG is a full subcategory of *ALG and while *ALG
is symmetric monoidal, it is definitely not automatic that the same is true of
C*AIG (the algebraic tensor product of two C*-algebras is not, in gereral, a
C*-algebra) .

Suppose that A and B are C*-algebras —- then a C*-rorm on their algebraic

tensor product A @ B is a nomm |- ||  which is submiltiplicative, i.e.,

CAIEREANTe

and satisfies the C*—condition, i.e.,

[ xex] |, = 11x]12.
[Note: The pair (A& B, ||| !O() is a pre-C*-algebra and its completion
A @oc B is a C*-algebra. ]
Definition: A norm ||-|| on A @ B is said to be a cross norm if v A € A,
v B € B,
llae B[] = ||al] |IB]].

6.7 LEMMA Every C*-rorm on A @ B is a cross romm.

6.8 EXAMPIE Given X € A @& B, let

~

x|l =inf{Z||a,|] [|B;|] :x=1Z A, & B;].

~

Then ||-|| is a submultiplicative cross norm on A 8 B and the completion A & B

“

is a Banach x-algebra. Still, ||-|| is rarely a C*-norm.

6.9 RAPPEL Every C*-algebra is isometrically *-isomorphic to a norm closed



x-subalgebra of B(H) for same H, or in different but equivalent terminology, every
C*~algebra admits a faithful *-representation on some complex Hilbert space (cf.

10.37).

6.10 ILEMMA Suppose that

$:A > C

Y:B » D

are *-homomorphisms of C*-algebras -- then there is a unique *-homomorphism

PRV ARB--C@0D

of algebraic tensor products such that

(¢ V) (a8 B) = 2A) & ¥(B)

for all A € A, B € B. And

% injective
=> ¢ @ ¥ injective.

¥ injective

Given C*-algebras , let

$:A - B(H)

¥:B -+ B(K)

be faithful *-representations -- then the camposition



b @V B
AR B — B(H) & B(K) ~ B(H & K)

is an injective *-homomorphism. One can therefore place a C*-norm on A @ B by
writing

x| ;= Beoean®|| &eAad.

6.11 1A |- Hmm is independent of the choice of ¢ and V.
[Note: If in the above ¢ and ¥ are arbitrary *-representations, then

@ ooanooll < x|y

One terms ||-| lmln the minimal C*-norm on A 8 B. Denote its campletion by

A 2 in B and call A 2 B the minimal tensor product of A and B.

6.12 EXAMPLE Fix a C*-algebra A. Given X € Mn((_:_) R A, write

Then the Aij are unique and the map

X - [Aij]

defines a »-isomorphism

Mn(g) 2 A~>M(A).

But Mn(A) is a C*-algebra (cf. 4.41), hence M_ (C) 8 A is a C*-algebra w.r.t. the

norm that it gets fram M (A). Owing to 1.2, this norm nust then be [1-] lmin' 50
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M @A=M(C 8. A

[Note: One can show directly that M (C) @ A is complete per |[-]] ; .

For if {X } is Cauchy and if

then for each pair (i,j), {A};j} is Cauchy in A, thus

. k co
lim A,. = A.., say.
DTS B & Led

Now put
Xo= L E.. A
i,y 20
and observe that
%, =% || . =112 E.@& @&, -2
o = Xl lnin fy i3 i3~ Pig! llgin
r
< I IIAgy - 2|
i3
> 0 (k-)-co).

Consequently matters can be turned arocund: The *-isomorphism
M (©C &AM (A

can be used to place the structure of a C*-algebra on Mn(A) .1

6.13 EXaMPLE Suppose that X and Y are compact Hausdorff spaces — then

cx gmin Cy) CcX xY).
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[Note: If instead, X and Y are noncompact locally compact Hausdorff spaces,
then

C(X) & . C_(Y) =C (XxY).]

6.14 EXAMPLE Fix a C*-algebra A and suppose that X is a compact Hausdorff
space -- then

C(X,A) = Cc(X) 8 i A
[Note: If instead, X is a noncompact locally compact Hausdorff space, then

Co(X,A) 2 C () & . Al

6.15 LEMMA If A and B are simple, then A Qmin B is simple.

6.16 EXAMPLE Suppose that H and K are camplex Hilbert spaces -- then
L, (H) R in L, (K)
is simple and
L ) & in LK) =L (HeK).

m

6.17 IEMMA Suppose that

P:A > C

_ ¥:B-~>0D

are x-homomorphisms of C*-algebras —- then

% V:AQB~>CQ7D



12,

extends by continuity to a *-homoorphism

ol ]

min‘i’:AQminB*C&. D.

min

6.18 REMARK Here
¢ injective
=> & Qmin ¥ injective.
¥ injective
E.g.: If A is a C*-subalgebra of C and if B is a C*-subalgebra of 7, then there

is an embedding

A . B->Cea . 7.
min min

. . s * H " wog " " 4
[Note: This is false in general if Qmi.n is replaced by "®& (cf. infra).]

There are canonical iscmorphisms
- — 3
R:AR . C(=ARC ~>A

: mi

LCR. . A(=Cai) »A4

2p,B,cA Qpin B o O > (Ae, Be, C

TA’B:A &min BB gmin A,

which are evidently natural.
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6.19 SCHOLIUM Equipped with the minimal tensor product, C*ALG is a symmetric
monoidal category.
[Define a functor

®:C*ALG » C*ALG

by
Q(A,B) = A Qmin 2]
and
9 y
(A~ C,B>1) =<I>®min‘i'

and let e be g.]

6.20 THEOREM ILet |

-Hocbeac*-normonA@B—-thenVXEAQB,

< | x|

-

I )

[Note: This result is the origin of the term "minimal tensor product”.]

6.21 LEMMA If A is nonunital, then any C*-norm

|+

|, on A & B can be

extended to a C*-norm on A" @ B.
[Note: Therefore if both A and B are nonunital, then any C*-nomm ||- || on

A Q B can be extended to a C*-norm on A+ 2 B+.]

6.22 IEMMA If A 2, B is simple for same C*-norm

]aonAQB, then

|- Hoa = ||| lmin and A and B are simple (cf. 6.15).

Given C*-algebras A and B, define the maximal C*-norm on A & B by

x|l = sup O[] |13,
v
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sup being taken over all x-representations of AR B. Iet A - B be the completion
11

of AR Bw.r.t.

-~thenAﬁmBisthen)axi.rnaltensorproductoanmdB

|.

I mae
and

A@ _B~Ct(Aa B),
max

where C*(A € B) is the enveloping C*-algebra of A B (cf. §9), hence there is an

arxrow
AQB+Ag B
max

6.23 IEMMA If $:A @ B + C is a sx-homomorphism, then there is a unique

*~homomorphism @maX:A Qmax B » C which extends 9.

6.24 THEOREM ILet H-Habeac*—nomonAQB-—thenVXEAQB,
EANEET ..
PROOF Thanks to 6.23, there is a surjective *-hamomorphism

A& B+-A@Q B,
max o
el e x|
for all X € A @ B.

6.25 REMARK Equipped with the maximal tensor product, C*ALG is a symmetric

monoidal category (cf. 6.19).
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A C*-algebra A is nuclear if there is only one C*-norm on A & B for every

C*-algebra B. So, if A is nuclear, then |

.

~Hmin=] [mxonA@Bandmwrite

A @ B for

6.26 EXAMPIE V n 2 1, the C*-algebra Mn(g} is nuclear {cf. 6.12).

[Note: More generally, every finite dimensional C*-algebra is nuclear

(use 1.4}).]

6.27 EXAMPIE If H is an infinite dimensional camplex Hilbert space, then
B(H) is not nuclear.

[There are a number of ways to see this, none of them obvicus. One method is
to show that

B(H) 2 .. B(H) = B(H) 2 < B(H).]

6.28 THEOREM Every coamutative C*-algebra is nuclear.

6.29 THEOREM A filtered colimit of nuclear C*-algebras is nuclear.

6.30 EXAMPLE BEvery AF-algebra is nuclear (cf. 3.17).

6.31 EXAMPIE Suppose that H is an infinite dimensional cawplex Hilbert
space -- then L _(H) is nuclear.

Note: Recall that

ML () = B(H) (cf. 5.9).
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Since B(H) is not nuclear, it follows that the multiplier algebra of a nuclear

C*-algebra need not be nuclear. ]

6.32 IEMMA The minimal tensor product A R in B is nuclear iff both A and

B are nuclear.

PROOF If B is not nuclear and if C is a C*-algebra for which

B
It

| i o0 B @ C, then the surjective *-homomorphism

B e C+Ba . C
max min

has a nontrivial kernel, thus the same is true of the camposition

(Agm.lnB) meC-*AQnﬁn (B@max(?)

F}Agmin (BﬁminC)

~Ae. Byea. C.
min min

Therefore A Qmin B is not nuclear. Conversely, if A and B are nuclear, then for
any C, we have

(A@ms) Qmaxc (AQHBXB) Qmaxc

i

TAR (Ba &)
max max

12

AR Be . O

[

Agmin (B@min(?)

= (A @min B) Qm:’m C.
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6.33 EXAMPIE If A is nuclear, then v n 2 1, Mn(A) is nuclear. 1In fact,

M (A) =M () RA

Mn((_f_) Qmin A (cf. 6.12).

6.34 EXAMPIE If H and K are complex Hilbert spaces, then
