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Some say follow the money; I say follow the arrows.



ABSTRACT

This book is an account of certain developments in categorical homotopy
theory that have taken place since the year 2000. Some aspects have been given
the complete treatment (i.e., proofs in all detail), while others are merely
surveyed. Therefore a lot of ground is covered in a relatively compact manner,
thus giving the reader a feel for the "big picture" without getting bogged down

in the "nitty-gritty".
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MATTERS SIMPLICIAL

DEFINITIONS AND NOTATION

A is the category whose objects are the ordered sets [n] = {0,1,...,n}
(n > 0) and whose morphisms are the order preserving maps. In A, every morphism
can be written as an epimorphisn followed by a monomorphism and a morphian is a

monomorphism (epimorphism) iff it is injective (surjective). The face operators

are the monomorphisms 6?:&1 -11 > [n] (n >0, 0 <i<n) defined by omitting

the value i. The degeneracy operators are the epimorphisms 02“: [n + 1] = [n]

n 20, 0 <1ic<n) defined by repeating the value i. Suppressing superscripts,

if o € Mor([m], [n]) is not the identity, then o has a unique factorization

o= (8§, © ««c 0§, ) o (g, © s 03,.),
i lp i jq
wherenzil> >ip20, Osjl< ---<jq<m,andm+p=n+q. Each
. . . mt+1 n+l . .
o € Mor{[m], [n]) determines a linear transformation R - R which restricts

>
to a map z\a:Am + A, Thus there is a functor A :A » TOP that sends [n] to At
and o to A%, Since the objects of A are themselves small categories, there is

also an inclusion 1:A - CAT.

Given a category C, write SIC for the functor category [QOP,(_J] and COSIC

for the functor category [A,C] — then by definition, a simplicial object in C

is an object in SIC and a cosimplicial cbject in C is an object in COSIC.

EXAMPLE The Yoneda embedding
¥, € OblA,Al,



so Y& is a cosimplicial object in é

—

SIMPLICIAL SETS

Specialize to C = SET —— then an object in SISET is called a simplicial set

and a morphisn in SISET is called a simplicial map. Given a simplicial set X,

d. = X6,
i i
putxn=x([n]), so for a:[m] - [nl, Xu:xn+xm. If , 1-_hend:‘L and
s, = X0,
_ i i
s; are connected by the simplicial identities:
“s. . od, (1 <3j)
- - . . Jj-1 i
di © dj dj_l ° di i<
'di°Sj= id (i=jJori=3j+1).
S, 0 S, = 8., °8;, (1<5])
i j 3+1 i . .
Sjodi—l 1 >3+1)

The simplicial standard n-simplex is the simplicial set A[n] = Mor(—, [n]), so

for c:fm]l > [nl, Alel:Alm] - A[n}. Owing to the Yoneda lemma, if X is a simplicial

set and if x € Xn’ then there exists one and only one simplicial map AX:A[n] + X

that takes id In] to x.

THEOREM SISET is camplete and cocamplete, wellpowered and cowellpowered.
. . . oP oP _ oP _
[Note: SISET admits an involution X -+ X~ , where di = dn—i' s; = Sn—i']

Iet X be a simplicial set —— then one writes x € X when one means XEUX.
n

With this understanding, an x € X is said to be degenerate if there exists an

epimorphism o = id and a y € X such that x = (Xo)y; otherwise, x € X is said to



be nondegenerate. The elements of X (= the vertexes of X) are nondegenerate.

Every x € X admits a unique representation x = (Xa)y, where o is an epimorphism
and y is nondegenerate. The nondegenerate elements in A[n] are the monomorphisms
a:[m] -~ [n] (m <n).

A simplicial subset of a simplicial set X is a simplicial set Y such that

Y is a subfunctor of X, i.e., Yn c Xn for all n and the inclusion ¥ » X is a

simplicial map.
SKELETONS

The n-skeleton of a simplicial set X is the simplicial subset x(n) (n 2 0)

(n)

of X defined by stipulating that Xp is the set of all x € Xp for which there

exists an epimorphism a:{p] » [g]l (g sn) anda y € Xq such that x = {Xa)v.

(n)

Therefore Xp (0)

(1) ()

= p(pSn);fm:ﬂBmore,x c X c =++ and X = colim X .

A proper simplicial subset of A[n] is contained in A[n] (n-1)

(0)

, the frontier Aln]

of Aln]. Of course, is isomorphic to XO - A[0]. In general, let Xﬁ be the

st of nondegenerate elements of X . Fix a collection {A[n]x:x € xﬁ} of simplicial

standard n-simplexes indexed by X' — then the simplicial maps A An) > X (x € xh)
(n}

determine an arrow xﬁ « Aln] » X and the commutative diagram

) (n-1)
Xn l Aln] —> xl
$ (n)
Xn » Aln] > X

is a pushout square. Note too that A[n] is a coegualizer: Consider the diagram



Il 8km-21; 4 3 || 4l -1l

0<i<jsn v Os<isn

where u is defined by the A[(Sr:;j] and v is defined by the A[&?—l] —- then the

A[Sr.i] define a simplicial map f: || Aln - 1]; > Aln] that induces an isomorphism
0O<isn
coeqg(u,v) + Aln].

REMARK Call A the full subcategory of A whose objects are the [m] (m < n).

Given a category C, denote by SIC the functor category [QI?P,C] . The objects of

SIC are the "n~truncated simplicial objects" in C. Employing the notation of Kan

extensions, take for K the inclusion éﬁp > éOP

(n)

(n)

and write tr in place of K*, so

tr 77 :8IC » SIC . If C is complete and cocomplete, then tr(n) has a left adjoint

n .
Sk( ):SIC + 8IC, where v X in SIC ,

(sk™x) = colim X,
[m] » [k]
k<n
. " (n) .
and a right adjpint cosk :SIC ~ SIC, where Vv X in SIC ,
(cosk ™x) = 1im
m Xk
[k1 » [m]

k<n

[Note: The colimit and limit are taken over a comma category.]




EXAMPLE Iet C = SET —- then for any simplicial set X,
ek @ (e My ~ x @)
GEOMETRIC REALTIZATION

The realization functor I' , is a functor SISET -~ TOP such that T' , o ¥, = A",
ﬁl ——— — A-

=g

It assigns to a simplicial set X a topological space
n
x| = st ]xn - AT,

the geometric realization of X, and to a simplicial map f£:X > Y a continuous

»
-

function |f

X| > |Y|, the geometric realization of f.

In particular: |Aln]| = A" and |Alal| = A%

EXAMPIE The pushout square

Aln] ———> A[O]
Aln}] - > Sin]

defines the simplicial n-sphere S[n]. Its geometric realization is homeomorphic

to S

A simplicial map £:X - Y is injective (surjective) iff its geametric reali-
zation |f|:|X| + |Y| is injective (surjective). Being a left adjoint, the functor

| |:SISET - TOP preserves colimits.

THEOREM Iet X be a simplicial set — then |X| is a CW complex with CW structure
(3.



PROCF }X(O) | is discrete and the commutative diagram

xfl . Aln] —— x@1)
xﬁ - Aln] —s x

is a pushout square in SISET. Since the geometric realization functor is a left

adjoint, it preserves colimits. Therefore the commutative diagram

Ry ——
xfl o x®)

is a pushout square in TOP, which means that Ix(n) | is abtained from |X(n—l)[ by

attaching n-cells (n > 0). Moreover, X = colim x@™ - |X| = colim [X(n) |, so

X| has the final topology determined by the inclusions |Xx™ | - |X|. Denoting
now by G the identity component of the homeomorphism group of [0,1], there is a
left action G x |X| » |X| and the orbits of G are the cells of |X|.

[Note: If Y is a simplicial subset of X, then |Y| is a subcomplex of |X|,

thus the inclusion |Y| + |X| is a closed cofibration.]
Therefore "geometric realization" can be viewed as a functor SISET - CGH.

REMARK A colimit in CGH is calculated by taking the maximal Hausdorff quotient

of the colimit calculated in TOP.

THEOREM The functor | |:SISET - CGH preserves finite limits.

N.B. |

:SISET + CGH does not preserve arbitrary limits. E.g.: The arrow




\A[l]w] + |A[1] |w is not a homeomorphisn (w the first infinite ordinal).

SINGULAR SETS

The singular functor S , is a functor TOP - SISET that assigns to a topo-
A _ =

logical space X a simplicial set sin X, the singular set of X: sin X([n]) =

sin X = c(t™,x). | | is a left adjoint for sin.

REMARK There is a functor T from SIAB 1o the category of chain complexes

3 0 3

of abelian groups: Take an X and let TX be X< X, < X, ««-, where

That 8 ¢ 3 = 0 is implied by the simplicial

2
it
o~MB3

i
(1M, (d;:X > X ).

identities. One can then apply the homology functor H, and end up in the category
of graded abelian groups. On the other hand, the forgetful functor AB + SET has

a left adjpint FAB that sends a set X to the free abelian group FABX on X. Extend

it to a functor FAB:SISET > SIAB. In this terminology, the singular homology H, (X)

of a topological space X is H,( {gin X)).

TF AR

THEOREM Let X be a topological space — then the arrow of adjunction |sin X| ~

X is a weak homotopy equivalence.

REMARK The class of (W spaces is precisely the class of topological spaces

for which the arrow of adjunction |sin X| > X is a homotopy equivalence.

THEOREM Let X be a simplicial set — then the geometric realization of the

arrow of adjunction X + sin|X| is a homotopy equivalence.



CATEGORICAL REALIZATION

The realization functor I‘\l is a functor SISET » CAT such that I‘«t ° YA = 1.

It assigns to a simplicial set X a small category

cat X = f[n} Xn « [n]

called the cateqgorical realization of X. In particular, cat Aln] = [n]. In

general, cat X can be represented as a quotient category CX/~. Here, (X is the

category whose objects are the elements of X and whose morphisms are the finite
sequences (xl,. .- ,xn) of elements of X1 such that dei = dlxi 41 Composition is

concatenation and the empty sequences are the identities. The relations are

S.X = idx (x € XO) and (dox) ° (dzx) = dlx x € Xz) .

0

REMARK The functor cat:SISET - CAT preserves finite products but does not

preserve finite limits.
NERVES

The singular functor S1 is a functor CAT » SISET that assigns to a small

category C a simplicial set ner C, the nerve of C: ner C([n]) (= ner C) =

Mor([n],C), thus ner, C= COb C and ner, C = Mor C. cat is a left adjoint for ner.

0 1

Since ner is full and faithful, the arrow of adjunction cat ° ner - id is a

natural isomorphism.

EXAMPIE Viewing [n] as a amall category, the definitions imply that ner[n] =

Alnl.



N.B. ¥We have

ner QOP = (ner <_._‘,) OP.

Iet C be a small category -- then its classifying space BC is the geometric

realization of its nerve:

BC = |ner C

LEMMA If C is a small category, then

[This identification is canonical but, in general, is not realized by a functor

from C to (_JOP.]

IEMMA If C and D are small categories, then in CGH,

B(C x D) = BC x_ ED.

k
[In fact,

ner(C x D) = ner C x ner D.]
SIMPLEX CATEGORIES

Iet X be a simplicial set -~ then X is a cofunctor A -~ SET, thus one can form

the Grothendieck construction gro, X on X. So the obijects of gro, X are the

(In]l,x) (x¢ Xn) and the morphisms (In],x) - ([m],y) are the o:Inl - [m] such that

Xa)y = x. One calls gro, X the simplex category of X. It is isomorphic to the

A

comma category

Aln] > A[m]
M l l
X %o

N.B. The association X - gro, X defines a functor

e 4

gro, :SISET -+ CAT.



10.

e In SISET, a simplicial weak equivalence is a simplicial map £:X > Y
such that |f

.
.

X| » |¥| is a homotopy equivalence.

e In CAT, a simplicial weak equivalence is a functor F:C -+ D such that

|ner F|:BC » BD is a homotopy equivalence.

LEMMA There are natural simplicial weak equivalences

ne:r(groA X) X

groA(ner C) » C.

[For instance, the first arrow is the rule nerp(groA X) » Xp that sends

%0 %1

([nO] %)

- e

> ([nP] ,xp) o (Xoc)xp,

where o:[p] ~ [np] is defined by af{i) = ap—l 0 »e- © oai(ni) (0 <i<p)

alp) = np)-]
EXAMPLE Put
Aln] = gro, Aln}.

Then there is a natural simplicial weak equivalence
ner Aln] - Aln].
If X and Y are simplicial sets and if f£:X » ¥ is a simplicial map, then there

is a commtative diagram

]ner(groA X) | > |X|

| | e

Iner(groﬂ ¥) | > Y],




11.

from which it follows that £ is a simplicial weak equivalence iff gro A f is a

simplicial weak equivalence.
EXPONENTIAL OBJECTS

CAT is cartesian closed:

D
Mor (C x D,E) = Mor(C,E ),

where

SISET is cartesian closed:

Y
Nat(X x Y¥,Z) = Nat({X,z2"),

where

z° ([n]) = Nat(¥ x A[n],Z).

EXAMPIE Iet @ = A[O] and * = A[0] -- then the four exponential objects asso-

. . 2 * *
c1amdmth,@and*areﬂﬂ=*,* =%, @ =@, x = %,

ILFMMA The functor

ner:CAT -+ SISET

preserves exponential objects.

PROOF Vv [n] € A,

il

ner (IC,Dl) = Mor([n], [C,D])

n

Mor([n] % C,D)

n

Mor (ner{{n] x (_:) ner D)

Mor (ner[n] x ner C,ner D)

13!
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14

Mor (ner C x ner([n],ner D)
% Mor (ner C x A[n] ,ner D)

ner C
{ner D) (In]).

1l

Therefore
ner C
ner ([C,D]) = (ner D) :

REMARK Given a small category C and a simplicial set X, the map

ner (cat X)

(ner C) > (ner C) X

induced by the arrow X - ner{cat X) is an isomorphisanm.

NOTATION Given simplicial sets X and Y, write map(X,Y) in place of YX

[Note: The elements of map (X,Y)0 = Nat(X,Y) are the simplicial maps X - Y.]

SEMISIMPLICTAL SETS

Let M, be the set of monomorphisms in Mor A; let E, be the set of epimorphisms

A A

inMorg—-—theneveryaﬁmrécanbewrittenmiquelyinthefomoc=oa#oocb

’

#

where o € M, and o” € E

A A*

_QMisthecategorywithObéM=Obéandmrg}M=Mé, Lyidy ™ A being the

inclusion.

oP
Write SSISET for the functor category [A ,SET] -- then an object in SSISET
M
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is called a semisimplicial set and a morphism in SSISET is called a semisimplicial

map. There is a commutative diagram

is the realization functor corresponding to Yy ot

It assigns to
A M -

M
a semisimplicial set X a simplicial set PX, the prolongment of X. Explicitly, the

elements of (1r>X)n are all pairs (x,p) with x € Xp and p:[n] » [p] an epimorphism,

thus (PXa) X,p) = ((X{p ° oe)#)x, {p o oe,)b } if the codomain of o is [n]. And P
PX - PY

assigns to a semisimplicial map f£:X - Y the simplicial map Pf: .
(x,0) > (£(x),p)

The prolongment functor is a left adjoint for the forgetful functor U:A - é’M {the
singular functor in this setup).
Put

=1 1o e

Then (| }M,U o sin) is an adjoint pair and | |,, is the realization functor deter-

M

-
mined by the composite A" o 1., i.e.,

M
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THEOREM For any simplicial set X, the arrow |UX|, ~ |X| is a homotopy

equivalence.
SUBDIVISION
Given n, let A[n] be the simplicial set defined by the following conditions.
(0b) Aln] assigns to an object [p] the set Aln] 5 of all finite sequences

u= (uo,...,up) of monomorphisms in A having codomain [n] such that v i,
(0 < i< i< p) there is a monomorphism uij with Wy = Uj ° “ij‘
(Mor) Aln] assigns to a morphism a:[q] - [p] the map Z\'[n]p -+ E\'[n]q taking

utoue o, l.e., (UGI""UP) - (UOL(O)f...,Ua(q)).

Call A the functor A + A that sends [n] to Aln] and a:[m] -+ [n] to Ala]:A[m] -
Aln], where Alalv = ((a o \)0)#,... , (o e \)p)%) . The associated realization functor

I'_ is a functor SISET - SISET such that ['_ o Y, = A. It assigns to a simplicial
A A -
set X a simplicial set

sq x = sl X - Anl,

the subdivision of X, and 1 a simplicial map £:X - Y a simplicial map Sd £:5d X >
Sd Y, the subdivision of f£. In particular, Sd A[n] = A[n] and Sd Ala] = Alal.

n the other hand, the realization functor FY associated with the Yoneda embedding
A
Y A is naturally isomorphic to the identity functor id on SISET:

x = sinl X - Alnl.

If dnzﬁ[n] + A[n] is the simplicial map that sends u = (uo,...,up) € Z[n}p to



15.

dnu € A[n]p:dnu i) = uy (mi) (ui: {mi] -+ [n]), then the &n determine a natural trans-
formation d:A » Yoo which, by functoriality, leads to a natural transformation

d:T_ - I‘Y . Thus, v X,Y and V £:X »~ Y, there is a commtative diagram
A A

dy
ad X > X
sd f J(f.
sdy > Y
dy

THEOREM For any simplicial set X, the arrow |d,[:[sd X| - [X| is a homotopy

equivalence.

REMARK It can be shown that for any simplicial set X, there is a homeomorphism

sa x| - |X].

hX:

[Note: h, is not natural but is homotopic to |d;| which is natural.]

EXAMPIE ILet X be a simplicial set — then |X| is homeomorphic to B{cat sd x).
Therefore the geometric realization of a simplicial set is homeomorphic to the
classifying space of a amall category.

[Note: The homeomorphism is not natural.]
EXTENSTION
Sd is the realization functor I'_. The associated singular functor S_ is

A A

denoted by Ex and referred to as extension. Since (8d,Ex) is an adjoint pair,



160

there is a bijective map Ey Y:Nat(Sd X,Y}) » Nat®,Ex Y) which is functorial in
[
X and ¥. Put ey = :X’X(dx) -- then eX:X + Ex X is the simplicial map given by

ey® = A od (€X), hence ey is injective.

THEOREM For any simplicial set X, the arrow |e,[:|X| » |Ex X| is a homotopy

equivalence.

Denote byExoothe colimit of id - Ex ~>E:»s:;Z + ... —— then Ex is a functor

SISET -+ SISET and for any simplicial set X, there is an arrow e;:x > EX X, the

geometric realization of which is a homotopy equivalence.
COFIBRATIONS

A simplicial map £:X + ¥ is =said t be a cofibration if its geometric reali-

zation |£]:|X| -+ |Y| is a cofibration.

IFMMA The cofibrations in SISET are the injective simplicial maps or still,

the monomorphi. ans.
A cofibration is said t be acyclic if it is a simplicial weak equivalence.

EXAMPLE Let X be a simplicial set —— then the arrow of adjunction X + sin|X|
is an acwlic cofibration.
EXAMPLE Iet X be a simplicial set — then eX:X + Ex X is an acylic cofibration,

R o0 0
as is eX:X > Ex X.

LEMMA Suppose that £:X -+ Y is an acyclic cofibration -- then Sd f is an acyclic
cofibration.
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PROOF Consider the conmutative diagram

sd f
sd X > 8d Y

£
Since Sd preserves injections, Sd f is a cofibration. But d}{ and dY are sim-

plicial weak eqguivalences.

Given n = 1, the kth-horn Alk,n] of A[n] (0 < k £ n) is the simplicial subset
of A[n] defined by the condition that A[k,n]m is the set of o:[m] -+ [n] whose
image does not contain the set [n] - {k}.

N.B. |Alk,n]| = %" is the subset of |Aln]| = A% consisting of those

(t tn) :ti =0 (3 1i=k), thus Ak'n is a strong deformation retract of AR,

oreecr
LEMMA The inclusions Alk,n] - A[n] (0 <k < n, n 2 1) are acyclic cofibrations.
KAN FIBRATIONS

let p:X > B be a simplicial map - then p is said to be a Kan fibration if it

has the RLP w.r.t. the inclusions Alk,n] =+ Aln] (0 <k <n, n =21).

X
EXAMPLE let be topological spaces, f:X - Y a continuous function —— then
Y

f is a Serre fibration iff sin f:sin X » sin Y is a Kan fibration.
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LEMMA Iet p:X > B be a Kan fibration — then Ex p:Ex X ~ EX B is a Kan
fibration.

A simplicial st X is said t© be a Kan complex if the arrow X -+ x is a Kan
fibration. The Kan complexes are therefore those X such that every simplicial
map £:Alk,n] > X can be extended to a simplicial map F:A[n} X (0 <k <n, n =1).

N.B. Aln] {0 =z 1) is not a Kan complex.
EXAMPIE Iet X be a topological space — then sin X is a Kan complex.

EXAMPLE Iet C be a small category — then ner C is a Kan complex iff C is a

groupoid.
EXAMPIE Iet X be a simplicial set - then Ex X is a Kan complex.

IEMMA Suppose that L »~ K is an inclusion of simplicial sstsand X ~ B is a

Kan fibration —— then the arrow map (K,X) - map{L,X) x map (K,B) is a Kan

map (L, B)
fibration.
[Pass from
Alk,n] ———— map K,X)
Al[n]~——> map (L, X) Xmapl(L'B)map(K,B)
to

Alk,n] x KU A[n] x L >¥

| l

Aln] x K —>B. ]

So, as a special case, if Y is a Kan complex, then s is map{X,Y) V X,
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COMPONENTS
Iet <2n> be the category whose objects are the integers in the interval
[0,2n] and whose morphisus, apart from identities, are depicted by

. > @ < > @ < e .
0] 1 2n-1 2n

Put I, = ner<2n>: IIZn} is homeomorphic to [0,2n]. Given a simplicial set X,

a path in X is a simplicial map G:IZn + X, One says that ¢ begins at ¢(0) and

ends at o(2n). Write Ty (X} for the quotient of XO with regpect to the equivalence

relation obtained by declaring that x' ~ x'' iff there exists a path in X which

begins at x' and ends at x'' -- then the assignment X - To (X} defines a functor

TTO:SISET + SET which preserves finite products and is a left adjint for the

functor si:SET - SISET that sends X to si X, the constant simplicial set on X,

cii=ic'lX
i.e., si X([n]) =X & (v n).

s; = idy

[Note: The geometric realization of si X is X equipped with the discrete

topology. ]

Given a simplicial set X, the decomposition of XQ into equivalence classes
determines a partition of X into simplicial subsets Xi' The Xi are called the

components of X and X is connected if it has exactly one component.

[Note: X= || X, =>[X{=]] |%], [X;| running through the components
i i

of |X|, = ToX) <—> WO(IX[)-]
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EXAMPLE A small category C is connected iff its nerve ner C is connected or,

equivalently, iff its classifying space BC is comnected ( = path connected).
LEMMA The components of a Kan complex are Kan.

RAPPEL let K and L be CW complexes -~ then a continuous function f£:X + L is

a homotopy equivalence iff for every CW complex Z, the arrow
Womap(L,Z) - Tromap(K,Z)
is bijective.

[Note: We have

Tromap(L,Z) > 'rrOmap{K,Z)
mgep (L, |sin 2|) ———— 'rromap(K,[sjn z]).

Therefore the top horizontal arrow is a bijection iff the bottom horizontal arrow

is a bijection.]

X

be simplicial sets. Assume: Y is a Kan complex —- then
Y

ILEMMA Iet

there is a weak homotopy equivalence

lmap (X,Y) | + map (|X], |¥])-
PROOF The assumption that Y is a Kan complex implies that the arrow
|map (X,¥) | + |map (X,sin ¥) | is a homotopy equivalence. But map(X,sin |Y|) =z

sin map(|X|,|Y|) and the arrow of adjunction

|sin map (|X|, |¥])| + map (|X|,[Y])
is a weak homotopy egquivalence.

[Note: Here map(|X|,|¥]) = kC(|X|,|¥]) (compact open topology).]
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CRITERION A simplicial map f:Xl > X, is a simplicial weak equivalence iff for
every Kan complex Y, the arrow
Tromap(XZ,Y) -+ womap(xl,Y)
is bijective.
[The arrow |f|: ]Xl\ -> \le is a homotopy equivalence iff for every CW complex
Zz, the arrow
mep (1%, ], |sin 2]) + mmap(|x, |, |sin 2])

is bijective. On the other hand,

i

Wonlap(xl,sin Z) Trolmap(xl,s:in Z)l
Tap (X, sin 2) = TEO|map(X2,sin z) |

and since sin 2 is a Kan complex,

i

- Trolmap(xl,sin 7) | Trorrap(lxll,fsin z|)

i

Tolmap 04, sin 2) | = momap (1%, [, |sin 2).]

CATEGORTICAL WEAK EQUIVALENCES

A weak Kan complex is a simplicial set X such that every simplicial map

f:Alk,n] -+ X can be extended to a simplicial map F:Aln] - X (0 <k <n, n > 1).
[Note: Every Kan complex is a weak Kan complex.]

N.B. If Y is a weak Kan complex, then so is map(X,Y) V X.

EXAMPIE Iet C be a small category —— then ner C is a weak Kan complex.

IEMMA Suppose that X is a weak Kan complex -~ then X is a Kan complex iff

cat X is a groupoid.
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Denote by
cO:SI‘SET -+ SET

the functor that sends X to the set of isomorphian classes of obijects of cat X.

LFMMA ¢, preserves finite products.

0
PROOF cat and Ty Preserve finite products. This said, observe that 4 is
the composite
cat iso 1 ner T
SISET > CAT > GRD > CAT > SISET > SET.

IEMMA If X is a Kan complex, then

cOX = TYOX.

N.B. It therefore follows that if Y is a Kan complex, then Vv X

cqmep (X,Y) Tmap X, ¥).

DEFINITION A simplicial map fle - X2 is a categorical weak equivalence if
for every weak Kan camplex Y, the arrow
Cgmap (XZ'Y) > Cqmap (Xl,Y)
is bijective.
EXAMPLE The inclusion Alk,n] + Aln] (0< k <n, n > 1) is a categorical weak

equivalence.

LEMMA The functor cat:SISET - CAT sends a categorical weak equivalence to a

categorical equivalence.
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THEOREM Suppose that f :X2 > X is a categorical weak equivalence -- then
£ X, > Xy is a simplicial weak equivalence.
PROOF For every Kan complex Y, the arrow

Coap (XZ'Y) > cmap (Xl,Y)

is bijective. But

I

cqrap (X, ,Y) = mgmap (X, ,Y)

Comap (X, ,Y) = Tamap (X,,Y),

from which the assertion.

POINTED SIMPLICIAL SETS

A simplicial pair is a pair (X,A), where X is a simplicial set and A ¢ X is

a simplicial subset. Example: Fix Xq € XO and, in an abuse of notation, let X,

be the simplicial subset of X generated by Xy SO that (xo)n = {sn-—l SOXO}
n > 1) — then (X,xo) is a simplicial pair.
A pointed simplicial set is a simplicial pair (X,x

0) . A pointed simplicial

map is a base point preserving simplicial map f:X -+ Y, i.e., a simplicial map

£:X + Y for which the diagram

A[0] ——————— A[O]
A A
%0 ¥y
X ~ Y
£

commutes or, in brief, f(xo) = Yo
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SISET, is the category whose objects are the pointed simplicial sets and

whose morphisms are the pointed simplicial maps. Thus SISET, = [éOP,SET,] and

the forgetful functor SISET, - SISET has a left adjoint that sends a simplicial

st X to the pointed simplicial set X = X [ =.

[Note: The vertex inclusion eO:A[O] + A[l] defines the base point of A[l],

hence of A[1].]

A[0] is a zero object in SISET, and SISET, has the obvious products and co-

products. In addition, the pushout square

XvY ——— A[0]
| |
XXY——5 X$Y

defines the smash product X # Y. Therefore SISET, is a closed category if X ¥ =

X # Y and e = A[1]. Here, the internal hom functor sends (X,Y) to map, (X,Y), the
simplicial subset of map(X,Y) whose elements in degree n are the f£:X x A[n] - Y

with f(x0 x Alnl} = Yqr i.e., the pointed simplicial maps X # A[n]+ > Y, the zero

morphism OXY being the base point.

SIMPLICTAL HOMOTOPY

Given simplicial sets X and Y, simplicial maps f£,9 € Nat(X,Y) are said t be

simplicially homotopic (f ; g) provided that there exists a simplicial map

H:X % A[1] > Y such that if
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- dy x &g H
HOiO:X:XxA[O] > X x A[1] > Y
Ho il:X ~ X x AlO] > X x Af1] > Y,
idX X € H
Hedij=f ey:AL0] ~ A[1] 0
then , where are the vertex inclusions per .
Ho il =g el:A[O] -+ A[1] L

The relation z is reflexive but it needn't be symmetric or transitive.

[Note: Elements of map (}{,Y)1 correspond to simplicial homotopies

H:X x A[1] » Y.]

EXAMPLE Take X = Y = Aln] (n > 0). Iet CO:A[n] ~ A[n] be the projection of

An] onto the Oth vertex, i.e., send (on,...,OLp) = A{n]p to (0,...,0) € A[n]p.

Claim: CO -S- idA[n]' To see this, consider the simplicial map H:A[n] x A[1l] - A[n]
defined by H((ao,...,ap), (0,...,0,1,...,1)) = (0,...,0,0Li+l,...,ocp) so that
H((ao,...,ap), 0,...,0)) = (0,...,0), H((c&o,...,ocp), 1,...,1)) = (0&0,...,()Lp) —

then H is a simplicial homotopy between C

Oandid On the other hand, there

Aln]l*

is no simplicial homotopy H between idA[n] and CO. For suppose that H((L1,1),(0,1)) =

(u,v) € A[n]l. Apply dl & do toget u=1& v =0, an impossibility.

C
LEMMA Suppose that are small categories. ILet F,G:C - D be functors,
D
5:F - G a natural transformation —— then = induces a functor Z.:C x [1] » D given

H
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on objects by

EH(XIO) = FerH(Y:l) = GY
and on morphisms by
£ Ff g Gg
EH(X > Y,0 —>0) = FX > FY,EH(X > Y,1 1) = GX
h %y ° Fh
EH(X > ¥,0 ——1) = FX > GY
or still,
h Gh o Ey
EH(X >Y¥,0 —1) = FX ——> GY.
Therefore

ner EH:ner C x A[1] > ner D

is a simplicial homotopy between ner F and ner G.

3
10
v
({w)

Suppose that are an adijoint pair with arrows of adjunction

Q
15
v
Te

U € Nat(id_.,G ¢ F)

— then
Vv € Nat(F o G,idD)
ldner c ; ner G e ner F

id

ne o
r F o ner G ner D

wnr

or still, in the topological category,
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- idB(_: = |ner G| o |ner F|

[ner F| o |ner G| = id,..
T.e.: have the same homotopy type.

CONTRACTIBLE CLASSTIFYING SPACES

DEFINITION A topological space X is contractible if the identity map of X

is homotopic to some constant map of X to itself.

FACT A topological space is contractible iff it has the homotopy type of a

one point space.
FACT Two contractible spaces have the same homotopy type.
FACT Any continuous map between contractible spaces is a homotopy equivalence.

A small category C is contractible if its classifying space BC is contractible.

EXAMPLE 1 is contractible (Bl is a one point space).
LEMMA C is contractible iff the arrow C »+ 1 is a simplicial weak equivalence.

N.B. The arrow C + 1 is an equivalence of categories iff C # 0 and every object

is a final object.

LEMMA If C has a final object, then C is contractible.
[For then the functor C -~ 1 has the obvious right adjoint 1 -+ C, thus BC and
Bl have the same homotopy type.]
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[Note: If C has an initial object, then C is contractible. Proof: COP has

a final object and BC = BQOP.}

EXAMPLE A is contractible ([0] is a final object).

REMARK If the functor C + 1 is an equivalence of categories, then C is con-

tractible.

Suppose that I is a filtered category and let A:I - CAT be a functor —- then

since filtered colimits commute with finite limits in SET, we have
ner colim A = colim ner &i.

8
Assume now that v morphism i

>j in I, the induced functor AcS:Ai - Aj is a

simplicial weak equivalence —— then v i, the functor Ay > colim A is a simplicial

weak equivalence.

LEMMA Every filtered category I is contractible.
PROCF Define a functor A:I » CAT by sending i to I/i — then I = colim A.

But v i, I/i has a final object, hence is contractible.
Let C be a small category, let X € Ob C, and let F:C > C be a functor.

IEMMA If there is a natural transformation from idc to F and if there is a

natural transformation from the constant functor C + C at X to F, then BC is

contractible.

To illustrate this point, given a small category I, let A/I be the category
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whose objects are the pairs (m,u}, where m > 0 is an integer and u:[m] +~ I is a

functor, a morphism (m,u) - (n,v) being a morphism f:[m] - [n] of A such that the

diagram

[m] — [n]

commutes.

FACT If I has a final object i,, then A/I is contractible.

OI
[Define a functor F:A/I » A/I as follows.

e On objects,

F(mu) = (m+ 1,u),

where
utk) ifk < m
u+(k) =
B iO if k=m+ 1.
& On morphisms,
fk) ifk < m
FE(k) =
n+1lifk=m+ 1.

Let KO:Q/E +~ &I be the constant functor at (0,K; ) —— then 3
0

o€ Nat(zdé/l,}?)

B e Nat(KO,F) .
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a: The inclusion [m] - [m + 1] (k » k) induces a natural transformation

1dé/£ -+ F, 1In fact,

*(m, )
idé/z(m,u) > F{m, 1)
is a morphism since the diagram
[m] > [m + 1]
I I

commtes (u(k) = u (k) if k < m).

B: The inclusion [0] + [m + 1] (0 » m + 1) induces a natural transformation

Ky > F. In fact,

B (m,u)
K0 {m,u) > F(m,uq)
is a morphism since the diagram
[0] ———— [m + 1]
I I

commutes (KiO(O) = iO = u+(m + 1)).
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CHAPTER 0: MODEL CATEGORIES

0.1 ELEMENTS

It is presupposed that the reader is familiar with the theory in so far as
it is presented in TTHT. So in this section we shall simply establish notation

and recall some standard facts.

0.1.1 DEFINITION ILet i:A > Y, p:X + B be morphisms in a category C —— then i

is said to have the left lifting property with respect to p (LIP w.r.t. p) and p

is said to have the right lifting property with respect to i (RLP w.r.t. i) if

for all u:A~» X, v:¥ > B guch that p e u= v o i, there is a w:Y¥ -~ X such that
woi=u,pew=v, ie,, the comutative diagram

u
> X

admits a filler w:Y - X.

0.1.2 EXAMPLE Take C = TOP — then i:A ~ Y is a cofibration iff V X, i has

the ILIP w.r.t. pO:PX + X and p:X »~ B is a Hurewicz fibration iff v ¥, p has the

RIP w.r.t. iO:Y > TY.

[Note: As usual,

PX

c(lo,11,x)

I¥Y =Y x [0,1].]



Consider a category C equipped with three composition closed classes of

nmorphisms termed weak equivalences (denoted —> ), cofibrations (denoted >— ),

and fibrations (denoted ——> ), each containing the isomorphisms of C. Agreeing
to call a morphism which is both a weak equivalence and a cofibration (fibration)

an acyclic cofibration (fibration), C is said to be a model category provided that

the following axioms are satisfied.

(MC - 1) C is finitely complete and finitely cocomplete.

(MC - 2) Given composable morphisms f,g, if any two of f,g,g ¢ £ are weak
equivalences, so is the third.

(MC - 3) Every retract of a weak equivalence, cofibration, or fibration is
again a weak equivalence, cofibration, or fibration.

(MC - 4) Every cofibration has the LIP w.r.t. every acyclic fibration and
every fibration has the RIP w.r.t. every acyclic cofibration.

(MC - 5) Every morphism can be written as the composite of a cofibration

and an acyclic fibration and the composite of an acyclic cofibration and a fibration.

0.1.3 NOTATION
W = class of weak equivalences
cof = class of cofibrations
fib = class of fibrations.

N.B. The term model structure on a finitely complete and finitely cocomplete

category C refers to the specification of W, cof, fib subject to the assumptions
above.

0.1.4 REMARK A weak equivalence w:X - Y which is a cofibration and a fibration

is an isomorphism. Proof: The commutative diagram



X > X
wl lw
Y > Y
idy

admits a filler ¥ - X.

0.1.5 EXAMPLE Every finitely complete and finitely cocomplete category C

admits a model structure in which the weak equivalences are the’ isomorphisms and

cof = Mor C

fib = Mor C.

A model category C has an initial object (denoted ) and a final object
(denoted *). An object X in C is said to be cofibrant if @ -~ X is a cofibration

and fibrant if X - * is a fibration.

0.1.6 LEMMA Suppose that C is a model category. ILet X € Cb C —— then X is
cofibrant iff every acyclic fibration Y -~ X has a right inverse and X is fibrant

iff every acyclic cofibration X - Y has a left inverse.

0.1.7 EXAMPLE Take C = TOP -- then TOP is a model category if weak equivalence =
homotopy equivalence, cofibration = closed cofibration, fibration = Hurewicz fi-
bration. All objects are cofibrant and fibrant.

[Note: We shall refer to this model structure on TOP as the Strgm structure.]

Addendum: CG has a Str@gm structure if weak equivalence = homotopy equivalence,

cofibration = closed cofibration, fibration = CG fibration.

Given a model category C, QOP acquires the structure of a model category by



stipulating that fOP is a weak equivalence in QOP iff £ is a weak equivalence in

op

C, that fOP is a cofibration in C™ iff f is a fibration in C, and that foP is a

fibration in ¢ iff £ is a cofibration in C.
Given a model category C and cobjects A,B in C, the categories A\C, C/B are
again model categories, a morphism in either case being declared a weak equiv-

alence, cofibration, or fibration if it is such when viewed in C alone.

0.1.8 EXAMPLE Take C = TOP (Strgm Structure) -- then an object (X,XO) in
TOP, (= *\TOP) is cofibrant iff x > (X,xo) is a closed cofibration (in TOP), i.e.,

iff (X,xo) is wellpointed with {xo} c X closed.

0.1.9 THEOREM Let C be a model category.

(1) The cofibrations in C are the morphisms that have the LIP w.r.t. acyclic
fibrations.

(2) The acyclic cofibrations in C are the morphisms that have the LIP w.r.t.
fibrations.

(3) The fibrations in C are the morphisms that have the RIP w.r.t. acyclic
cofibrations.

(4) The acyclic fibrations in C are the morphisms that have the RLP w.r.t.

cofibrations.

0.1.10 NOTATION Let C be a category and let C < Mor C be a class of morphisms.
® Write LIP(C) for the class of morphisms having the left lifting property
w.r.t. the elements of C.
® Write RIP(C) for the class of morphisms having the right lifting property

w.r.t. the elements of C.



0.1.9 THEOREM (bis) Let C be a model category — then

cof = LLP(W n fib), W n cof = 1LIP(fib),
fib = RIP(W n cof), W n fib = RLP (cof).

0.1.11 SCHOLIUM In a model category C, any two of the classes of weak equiv-
alences, cofibrations, and fibrations determines the third.
[Note: Suppose that

wl, cofl, fibl

wz, cofz, fib

_ 2
-
are two model structures on C and let denote their classes of fibrant
objects —— then
cof, = cof, & F; = F, => W, =W, & fib, = fib,.
And
cof, = cof, & F, « F) => W, < W,
cof, = cof, & Wy < W, =>F, < F,.]

In a model category C, the classes of cofibrations and fibrations possess a
number of "closure" properties.
{Coproducts) If V i, fi:X:.L - Yi is a cofibration (acyclic cofibration), then

ﬂ fi:J_—L X; > i_[_ Y, is a cofibration (acyclic cofibration).
1 1 1

(Products) If v i, fi:Xi > Yi is a fibration (acyclic fibration), then

TT £5:1T %, > TT ¥; is a fibration (acyclic fibration).
i i i



£ g
(Pushouts) Given a 2-source X < Z > Y, define P by the pushout
g
Z > Y
square fl ln. Assume: £ is a cofibration (acyclic cofibration) -- then
X > P
g

n is a cofibration (acyclic cofibration).

£ g
(Pullbacks) Given a 2-sink X > 7 < Y, define P by the pullback
0
> Y
square gl lg. Assume: g is a fibration (acyclic fibration) -— then §
X —— 2
£

is a fibration (acyclic fibration).

(Sequential Colimits) If V n, fn:Xn - Xn+l is a cofibration (acyclic co-
fibration), then Vv n, in:Xn -+ colim Xn is a cofibration (acyclic cofibration).
(Sequential Limits) If V n, fn:Xn 17 Xn is a fibration (acyclic fibration),
then v n, pn:lj.m Xn > Xn is a fibration (acyclic fibration).
[Note: It is assumed that the relevant coproducts, products, sequential

colimits, and sequential limits exist.]

0.1.12 EXAMPLE (Pushouts) Fix a model category C. Let I be the category

a b
le «~—— ® — > @2 — then the functor category [I,C] is again a model category.
3
£ g
Thus an object of [I,C] is a 2-source X < Z > ¥ and a morphism £ of 2-sources




is a commutative diagram

£ g
X <« yA > Y
X'« z! > Y'.
fl gl

Stipulate that Z is a weak equivalence or a fibration if this is the case of each

of its vertical constituents. Define now P

I PR by the pushout squares
4 g
X <« Z Z > Y
N
PL< z' VA > PR

let QL:PL - X', pR:PR -+ ¥Y' be the induced morphisms, and call £ a cofibration

provided that Z2 ~ Z', or and pp are cofibrations. With these choices, [I,C] is

t g

a model category. The fibrant objects X < Z

> Y in [I,C] are those for

f g

which X, Y, and Z are fibrant. The cofibrant objects X < Z

> Y in [I,C]

f:2 + X
are those for which Z is cofibrant and are cofibrations.
g:Z » Y

[Note: The story for pullbacks is analogous.]

0.1.13 EXAMPLE Fix a model category C -— then FIL(C) is again a model category.
Thus let ¢:(X,f) » (¥,9) be a morphism in FIL(C). Stipulate that ¢ is a weak

equivalence or a fibration if this is the case of each d)n. Define now Pn+l by the




pushout square

£
n
% > Xl
o
n e Pn+l,
%n
let p n+l:Pn+l > Yn+l be the induced morphism, and call ¢ a cofibration provided

that g and all the Pl

are cofibrations (each ¢ (n > 0) is then a cofibration
as well). With these choices, FIL(C) is a model category. The fibrant objects

(X,f) in FIL(C) are those for which X is fibrant v n. The cofibrant cbjects

(X,f) in FIL(C) are those for which X = is cofibrant and v n, fn:Xn -+ Xn+l is a

0
cofibration.

[Note: The story for TOW(C) is analogous. ]

0.1.14 DEFINITION Given a model category C, objects X' and X'' are said to

be weakly equivalent if there exists a path beginning at X' and ending at X'':

X' = XO > Xl + aae > Xan1 <« in = X'', where all the arrows are weak equivalences.

0.1.15 EXAMPLE Take C = TOP (Str¢gm Structure) —— then X' and X'' are weakly

equivalent iff they have the same homotopy type.

0.1.16 COMPOSITION LEMMA Consider the commutative diagram




in a category C. Suppose that both the squares are pushouts -- then the rectangle
is a pushout. Conwversely, if the rectangle and the first square are pushouts, then

the second square is a pushout.

0.1.17 APPLICATION Consider the commutative cube

A

AT

¢ —r &

in a category C. Suppose that the top and the left and right hand sides are push-
outs — the the bottom is a pushout.

£ g

0.1.18 LEMMA Iet C be a model category. Given a 2-source X < Z

> ¥,

define P by the pushout sguare

X e s P
€

Assume: f is a cofibration and g is a weak eguivalence —— then £ is a weak equiv-
alence provided that Z & Y are cofibrant.

[Note: There is a parallel statement for fibrations and pullbacks.]

0.1.19 EXAMPLE Working in TOP (Strgm Structure), suppose that A > X is a
closed cofibration. Iet f£:X - Y be a homotopy equivalence -— then the arrow

X > X l_;f Y is a homotopy equivalence.
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0.1.20 LEMMA Let C be a model category. Suppose given a commtative diagram

3 g
X < Z > Y
X' < Zt > Y'Y,
fl g.l
T f
where are cofibrations and the vertical arrows are weak equivalences -- then
f!

the induced morphism P » P' of pushouts is a weak equivalence provided that Z & Y

and Z' & Y' are cofibrant.

[Note: There is a parallel statement for fibrations and pullbacks.]

A+ X
0.1.21 EXAMPIE Working in TOP (Strgm Structure), suppose that are
At » X!
f:A > Y
closed cofibrations. let be continuous functions. Assume that the
fr:at » y*
diagram
£
X <« A > Y
X' < Al > Y
fl

commites and that the vertical arrows are homotopy equivalences —- then the induced

map X Uf Y » X' LJf. Y' is a homotopy equivalence.

0.1.22 DEFINITION Iet C be a model category.

e C is said to be left proper if the following condition is satisfied.
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f g
VA

Given a 2~-source X < > Y, define P by the pushout square

g
Z — Y
X > P,
g
Assume: f is a cofibration and g is a weak equivalence -- then £ is a weak equiv~
alence.
e C is said to be right proper if the following condition is satisfied.
£ g
Given a 2-sink X > 7 < Y, define P by the pullback square
n
P > Y
{ b
X ——> Z.
f
Asgme: ¢ is a fibration and f is a weak equivalence -~ then n is a weak equiv-
alence.

N.B. C is proper if it is both left and right proper.

0.1.23 LEMMA If all the objects of C are cofibrant, then C is left proper

(cf. 0.1.18) and if all the objects of C are fibrant, then C is right proper (cf.
0.1.18).

0.1.24 EXAMPLE The Strgm structure on TOP is proper (all objects are cofibrant
and fibrant).

0.1.25 NOTATION Given a model category C, write HC in place of w—l(_: and call
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it the homotopy category of C (cf. 2.3.6).

[Note: W is necessarily saturated, i.e., W = W {cf. 2.3.20).]
0.1.26 EXAMPLE Take C = TOP (Strgm Structure) -- then HTOP "is" HTOP.

0.1.27 THEOREM Suppose that C is a model category -- then HC is a category

(and not just a metacategory) (cf. 2.4.4).

0.1.28 EXAMPLE Consider the arrow category C(») of a model category C —-
then C(») can be equipped with two distinct model category structures both having
the same class of weak equivalences, hence the same homotopy category. Thus let

(9,9): X, £,Y) » X', £',Y') be a morphism in C(+), so

¢
X — s X!
|k
> Y!

1%

comutes. In the first structure, call (¢,y) a weak equivalence if ¢ & Y are weak

equivalences, a cofibration if ¢ and X' || Y ~ Y' are cofibrations, a fibration if
X

¢ & y are fibrations and, in the second structure, call {¢,)) a weak equivalence if
¢ & y are weak equivalences, a cofibration if ¢ & Y are cofibrations, a fibration

if p and X + X' x Y are fibrations.
Yt

[Note:
€ proper => C(*) proper.]

0.1.29 17MMA If S is a set and if

w., cofs, fib

s s
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is a model structure on a category gs (s € 85), then

W= Tl Wy cof =T[ cof,, fib =TT fibg
s s s

is a model structure on C = T[ C_ and the cancnical arrow
s

HC > T BC,
s

is an equivalence of categories.
0.2 TOP:QUILLEN STRUCTURE

Take C = TOP -~ then TOP is a model category if weak equivalence = weak
homotopy equivalence, cofibration = retract of a "countable composition " X -+ Y,

wherex=xo->xl—>---,Y=colimxk, and Vv k, thearrcka->xk+l is defined by

the pushout square

st —x

| |
11 v > K1

fibration = Serre fibration. Every CW complex is cofibrant (and every object is
weakly equivalent to a CW complex). Every cofibrant object is a compactly generated
Hausdorff CW space (the quotient [0,1]/[0,1[ is compactly generated {(and contractible)
but not Hausdorff, hence not cofibrant). Every object is fibrant.

N.B. If (X,L) is a relative CW complex, then the inclusion L -+ K is a cofibration

in the Quillen structure. Every cofibration in the Quillen structure is a closed
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cofibration, thus is a cofibration in the Strgm structure. Bnd the Quillen structure
is proper (even though not every object is cofibrant).
Addendum: CG, A-CG, and CGH each has a Quillen structure (definitions per

those for TOP) which, moreover, is proper.
0.3 SISET:KAN STRUCTURE

Take C = SISET -- then SISET is a model category if weak equivalence =

simplicial weak equivalence, cofibration = injective simplicial map, fibration =
Kan fibration. Every object is cofibrant and the fibrant objects are the Kan
complexes.

[Note: It is a corollary that SISET, = A[O]\SISET is a model category.]

N.B. Recall that a simplicial map f:X + Y is a simplicial weak equivalence
if |£]:

X| - |Y| is a homotopy equivalence.

0.3.1 IEMMA The Kan structure is proper.
PROCOF Since all objects are cofibrant, half of this is automatic (cf. 0.1.23).

This said, consider a pullback square

n

P — Y

d :

X — > %
£

in SISET. Assume: g is a Kan fibration and f is a weak equivalence — then 7 is

a weak equivalence. In fact,

P -—-—-—-—Ji‘————ﬂﬂ
el l l g
X| ——— 7]
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is a pullback square in CGH, |g| is a Serre fibration, and |£| is a weak homotopy
equivalence. Therefore |n| is a weak homotopy equivalence.

0.3.2 REMARK Let fib stand for the class of f such that ExX (f) is a Kan
fibration ( > 0, Ex(f) = £) — then the containment

f1bn c ﬁbn-i—l

is strict and there is a model siructure wn, cofn, fi bn on SISET whose weak equiv-
alences are those of the Kan structure {(i.e., ¥ n, wn = WO) and whose fibrations
are the elements of f 1‘bn. Bottom line: SISET can be equipped with a countable

collection of distinct model structures all having the same homotopy category.
[Note: The containment

cof

n+l € Cm(:n

is strict, thus for n > 0, not every object is cofibrant. On the other hand,
objects which are not fibrant in the Kan structure can become fibrant in structure

"n" (n > 0), e.g., the Alm] (m = 1).]

0.4 SISET:JOYAL STRUCTURE

Take C = SISET —— then SISET is a model category if weak equivalence =

categorical weak equivalence, cofibration = injective simplicial map, fibration =
all simplicial maps which have the RIP w.r.t. those cofibrations that are cate-
gorical weak equivalences. Every object is cofibrant and the fibrant objects are
the weak Kan complexes.

N.B. Every weak equivalence per the Joyal structure is a weak equivalence
per the Xan structure:

"categorical weak equivalence" => "simplicial weak equivalence".
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0.4.1 REMARK The Joyal structure is left proper. However, it is not right

proper.
0.5 SISET:HG-STRUCTURE

Take C = SISET and fix a nontrivial abelian group G —— then SISET is a model
category if weak equivalence = HG-equivalence, cofibration = HG-cofibration,
fibration = HG-fibration. Every object is cofibrant and the fibrant objects are

the HG-local objects, i.e., those X such that X + * is an HG-fibration.

0.5.1 RAPPEL let f:X - Y be a simplicial map — then f is said to be an

HG-equivalence if ¥ n > 0, [fl*:Hn([X

iG) » H_(]¥

:G) is an isomorphism. Agreeing

that an HG-cofibration is an injective simplicial map, an HG-fibration is a sim-

plicial map which has the RILP w.r.t. all HG—cofibrations that are HG-equivalences.

N.B. Every HG-fibration is a Kan fibration, hence every HG-local object is

a Kan complex.

0.5.2 REMARK The HG-structure is left proper (but it need not be right proper

(e.g., when G = Q)).
0.6 SISET:p-STRUCTURE

Take C = SISET and fix an inclusion p:A -+ B of simplicial sets -—— then SISET

is a model category if weak equivalence = p-equivalence, cofibration = p-cofibration,
fibration = p-fibration. Every object is cofibrant and the fibrant objects are the

p~local objects.
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0.6.1 RAPPEL Working within the Kan structure, a Kan complex Z is said to

be p-local if p*:map(B,Z) +~ map(A,Z) is a weak equivalence. Moreover, there is

a functor LQ:SISET =+ SISET and a natural transformation id - LD' where v X, pr
is p-local and f,p:x > pr is a cofibration such that for all p-local Z, the arrow

map (pr,z) + map (X,2) is a weak equivalence.

0.6.2 RAPPEL Iet f£:X > Y be a simplicial map — then f is said to be a

p—~equivalence if Lpf :pr > LDY is a weak equivalence. Agreeing that a p—-cofibration

is an injective simplicial map, a p-fibration is a simplicial map which has the

RIP w.r.t. all p-cofibrations that are p-equivalences.
N.B. Every p~fibration is a Kan fibration.
0.7 SIGR:FORGETFUL STRUCTURE

The free group functor Fgr: ET ~ GR extends to a functor Fgr:SISET + SIGR

which is left adjoint to the forgetful functor U:SIGR -+ SISET. Call a morphism

f:G » K of simplicial groups a weak equivalence if Uf is a weak equivalence, a

fibration if Uf is a Kan fibration, and a cofibration if f has the ILIP w.r.t.

acyclic fibrations — then with these choices, SIGR is a model category.
[Note: Every object in SIGR is fibrant but not every object in SIGR is

cofibrant. Definition: A simplicial group G is said to be free if Vv n, Gn is a
free group with a specified basis Bn such that s;B, < B 1 (0 =1 £n). Every

free simplicial group is cofibrant and every cofibrant simplicial group is the

retract of a free simplicial group.]
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0.8 SISETS:FORGETFUL STRUCTURE

Fix a nontrivial group G. Denote by G the groupoid having a single object

* with Mor (%,%) = G — then the category SE'l"G of right G-sets is the functor

category [§OP,SBT] and the category of simplicial right G-sets SISET3 is the

functor category

n%*, *

,SETI] = [(A x &), sET].
So, if X is a simplicial right G-set, then v n, X is a right G-set and the actions
are compatible with the simplicial structure maps. This said, let

U:SISE']?3 —> SISET

be the forgetful functor and call a morphism f:X + Y of simplicial right G-sets a
weak equivalence if Uf is a weak equivalence, a fibration if Uf is a Kan fibration,
and a cofibration if f has the LLP w.r.t. acyclic fibrations -— then with these

choices, SZ[SET3 is a model category.

[Note: Ewvery object in SISET3 is fibrant, the cofibrant objects being those

X such that v n, Xn is a free G-set.]
0.8.1 REMARK U has a left adjoint FG which sends X to X x si G.

0.9 CXA:CANONICAL STRUCTURE

Let A be an abelian category. Write CXA for the abelian category of chain
conmplexes over A. Given a morphism f:X - Y in CXA, call f a weak equivalence if

f is a chain homotopy equivalence, a cofibration if v n, fn:Xn - Yn has a left
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inverse, and a fibration if Vv n, fn:Xn > Yn has a right inverse -- then with

these choices, CXA is a model category.

0.10 CXA- 0 :STANDARD STRUCTURE

Let A be an abelian category with enough projectives. Write %20 for the
full subcategory of CXA whose objects have the property that X, = 0 if n < 0.
Given a morphism £:X » Y in %0, call £ a weak equivalence if f is a homology
equivalence, a cofibration if v n, fn:Xn > Yn is a monomorphism with a projective
cokernel, and a fibration if v n > 0, fn:xn > Yn is an epimorphism — then with

these choices, CXA 0 is a proper model category. Every object is fibrant and the

cofibrant objects are those X such that v n, X is projective.

0.11 CXA:BEKE STRUCTURE

Iet A be a Grothendieck category with a separator -- then A is presentable,
as is CXA. Given a morphism £:X + Y in CXA, call f a weak equivalence if f is a
homology equivalence, a cofibration if f is a monomorphism, and a fibration if f
has the RIP w.r.t. those cofibrations that are homology equivalences —- then with
these choices, (XA is a proper model category. Every fibration is an epimorphism

{but not conversely).
0.12 CAT:INTERNAL STRUCTURE

Take C = CAT, let weak equivalence = equivalence, stipulate that a functor
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F:C » D is a cofibration if the map
ObC — 0bD

X > FX

is injective and a fibration if v X € Ob C and vV isomorphism y:FX ~ Y in D, 3 an
isomorphism ¢:X » X' in C such that F¢ = ¢ - then CAT is a model category in
which all objects are cofibrant and fibrant.

[Note: These definitions restrict to give a model structure on GRD.]
0.13 CAT:EXTERNAL STRUCTURE

Take C = CAT, call a functor F:C + D a weak equivalence if |ner F

:BC > BD
is a homotopy equivalence, a fibration if Ex2 o ner F is a Kan fibration, and a
cofibration if F has the LIP w.r.t. all fibrations that are weak equivalences —
then CAT is a proper model category (but not all objects are cofibrant nor are all
objects fibrant).

[Note: These definitions restrict to give a model structure on GRD.]
0.14 CAT:MORITA STRUCTURE

Take C = CAT, let the weak equivalences be those fully faithful functors
F:C » D such that every object in D is the retract of an object in the image of F,
let the cofibrations be the F:C ~ D which are injective on objects, and let the
fibrations be the F:C + D which have the RIP w.r.t. acyclic cofibrations — then
CAT is a left proper model category (but CAT is not right proper). Every object
is cofibrant and the fibrant objects are the small categories with the property
that every idempotent splits.
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0.15 FEQU: LARUSSON STRUCTURE

Iet BQU be the category whose objects are the pairs (X,~X) , where X is a st
and ~ is an equivalence relation on X, and whose morphisms are the maps f: (X,~X) >
(Y,~,), where £ is a morphism in SET that sends equivalent elements in X to equiv-
alent elements in Y. Call f a weak equivalence if f induces a bijection X/~X >
Y/~Y, a cofibration if f is injective, and a fibration if f maps each equivalence

class in X onto an equivalence class in Y —— then BEQU is a model category. Every

obiject is cofibrant and fibrant.
0.16 EXAMPLE:[I,SISET]

Fix a small category I — then the functor category [_I_,§ES_E:I‘_] admits two

proper model category structures. However, the weak equivalences in either structure
are the same, =0 both give rise to the same homotopy category HII,SISET].

(L) Given functors F,G:I - SISET, call £ € Nat(F,G) a weak equivalence if
v i, Ei:Fi -~ Gi is a simplicial weak equivalence, a fibration if Vv i, Ei:Fi + Gi
is a Kan fibration, a cofibration if ¥ has the LIP w.r.t. acyclic fibrations.

(R) Given functors F,G:I - SISET, call E € Nat(F,G) a weak equivalence if
v i, Ei:Fi + Gi is a simplicial weak equivalence, a cofibration if v i:Ei:Fi =+ Gi.
is an injective simplicial map, a fibration if E has the RLP w.r.t. acyclic co-
fibrations.

[Note: When I is discrete, structure L = structure R (all data is levelwise).]

Since the arguments are dual, it will be enough to outline the proof in the

case of struchare L.
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0.16.1 NOTATION Let f:X - Y be a simplicial map -~ then f admits a functorial

i T
factorization X £ > Lf £ > Y, where if is a cofibration and Te is an acyclic

1 P
Kan fibration, and a functorial factorization X £ £

> Y, where e is an

acyclic cofibration and Pe is a Kan fibration.

N.B. These factorizations extend levelwise to factorizations of =:F - G, viz.

i T 1
- G and F > R

- b

Pz

(13

> G

F

Write T

I3is for the discrete category underlying I --— then the forgetful functor

U: [I,SISET] ~ [;diS,SISET] has a left adjoint that sends X to fr X, where

fr x. = |l Mor(i,j) - xi.
) ieob 1

0.16.2 LEMMA Fix an F in [I,SISET]. Suppose that ¢:UF » X is a cofibration in

[I4;/SISET] and

fr &
fr UF > fr X
Vp u
F > G

is a pushout square in [I,SISET] —-- then the composite

Uu

> Ufr X > UG

Ua o uX:X

is a cofibration in [I .S,SISET] .
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[The cammitative diagram

Xj X5

(UX) .

B
( ] ] Fi) || Fj > ( ] Fi) || %3 >(l__l_xi) 1] %3
8 8

i3 i3
§ = id. § = id.
3] J

* 4 o
Lo

o -
(..l.
s

Fj > Xj > Gj
% uy e iy

tells the tale. Indeed, the middle row is a factorization of (fr <I>)j {suppression

of "U"), the bottom square on the right is a pushout, and a coproduct of cofibrations

is a cofibration.]

H
[Note: As usual, are the ambient arrows of adjunction.]
v

Consgider any =:F - G. Claim: E can be written as the composite of a cofibration

and an acyclic fibration. Thus define Fl by the pushout square

fr Ui
fr UF - fr UL_
iy > F
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Then there is a commutative diagram

fr Ui, fr Um_
fr UF i} > fr Ul . fr UG
VF (e
;‘ > F:l > G
L L L

{11
[n

"y
it

in which fr UL, > F; ~ L; is v, . Putting Fy = F (and £y = £), iterate the con-

struction to obtain a squence F = FO > Fl > eee Fw of objects in [I,SISET],

taking Fw = colim F . This leads to a commutative diagram

Here, iw is a cofibration (since the Fo o> Fn +1 are). Moreover, iw is a weak equiv-

alence whenever % is a weak equivalence and in that situation, iw has the ILIP w.r.t.

all fibrations. To see that Ew is an acyclic fibration, lock at the interpolation

UF > UL > UF > UL > eee
T

in [_I_dis,SISET]. Thanks to the lemma, the horizontal arrows in the top row are
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cofibrations. On the other hand, the arrows UL_ - UG are acyclic fibrations.
“n

But then UEu:. is an acyclic fibration per [Idis’SISET] , 1.e., Em is an acyclic

fibration per [I,SISET]. Hence the claim.
To finish the verification of MC - 5, one has to establish that £ can be
written as the composite of an acyclic cofibration and a fibration. This, however,

is immediate: Apply the claim to 1.. MC - 4 is equally clear. For if E is a

cofibration, then £ is a retract of iw’ so if £ is an acyclic cofibration, then

¢3!

% has the LIP w.r.t. all fibrations. Propriety is obvious.

N.B. In all of the above, it is understood that

[T,..,SISET] = | SISET
=dig'—— ob I

carries the product structure of 0.1.29, where SISET itself is taken in its Kan

structure.

0.16.3 EXAMPLE A functor F:I - SISET is said to be free if 3 functors

B :Iy > SET (n > 0) such that V j € Ob T:B j « (FJ)_ & s;BJ < B 13 (0 <1 < n),

with fr B, ~F (Fnj = (Fj)n) . Every free functor is cofibrant in structure L and
every cofibrant fimctor in structare L. is the retract of a free functor. Exanple:
ner(I/—) is a free functor, hence is cofibrant in structure L.

0.17 EXAMPLE: [L,C]

Consider the functor category [I,C], where (I,<) is a finite nonempty directed
set of cardinality > 2 and C is a model category. Stipulate that a morphism

% € Nat(F,G) is a weak equivalence or a fibration if this is true levelwise, i.e.,
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if vi € 0b I, 5;:Fi ~ Gi is a weak equivalence or fibration. As for the co-
fibrations, given i € Ob I, let I, be the subcategory of I whose elements are the

j € T such that j < i - then there is a comwutative diagram

colimI Fj > c:ol;imI GJj
J-i [-i
Fi > Gi
°i

and one deems E a cofibration if V i € Ob I, the arrow

i | colim. Gj — Gi
colim, Fj i

is a cofibration. Using induction on the cardinality of I, it thus follows that

with these choices, [I,C] is a model category.
0.18 WEAK FACTORIZATION SYSTEMS
Let C be a category.

0.18.1 DEFINITION A weak factorization system (w.f.s.) on C is a pair (L,R),

where
T LeMrC
_ R c Mor C
are classes of maps such that
~ L =1P(R)

R = RLP(L)
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and every f € Mor C admits a factorization f =p o A with A € L, p € R.
0.18.2 EXAMPLE Suppose that C is a model category —— then the pairs

(cof, W n fib)
(W n cof, fib)
are w.f.s. on C (cf. 0.1.9 (bis)).
0.18.3 LEMMA Let (L,R) be a w.f.s. on C — then L and R are closed under the
formation of retracts and each contains the isomorphisms of C.

[Note: The intersection [ N R is the class of isomorphisms of C. Proof: Iet

felnR, say £:X +~ Y, and consider the lifting problem

1dy
X > X
| !
Y .]
idy

0.18.4 EXAMPIE Let C be a finitely complete and finitely cocomplete category --

then every w.f.s. (L,R) on C gives rise to a model structure on C, viz. the triple
(Mor C,L,R).

E.g.: Take C = SET and let L = the monomorphisms, R = the epimorphisms.

0.18.5 DEFINITION Let C be a cocamplete category. Fix a class C < Mor C.

® C is closed under the formation of pushouts if for every pushout square
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g
2 —a>Y
fj J(n :fEeC=nc¢€cC.
Xe P
2

e C is closed under the formation of transfinite compositions if for every
wellordered set I with initial element 0 and for every functor A:I -~ C such that

v i > 0, the arrow

mlmj<i Aj > i‘si

is an element of C, the arrow
&O -+ ool.un_I.A

is an element of C.

0.18.6 DEFINITION Let C be a cocomplete category. Suppose that C < Mor C is
closed under composition and contains the isomorrhisms of C —- then C is stable if

it is closed under the formation of pushouts and transfinite compositions.

0.18.7 LEMMA Let C be a cocomplete category — then every stable class

C ¢ Mor C is closed under the formation of coproducts (taken in C(»)).

0.18.8 DEFINITION Let C be a cocomplete category ~- then a class C < Mor C is

retract stable if it is stable and closad under the formation of retracts.

0.18.9 EXAMPLE Let C be a small category —— then the class M < Mor C of mono-
morrhisus is retract stable.
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[Note: The pir (M,RLP(M)) is a w.f.s. on é.]

0.18.10 THEOREM Suppose that C is a cocomplete category — then for any class

C « Mor C, LLP(C) is retract stable.

In particular: If C is cocomplete and if (L,R) is a w.f.s. system on C, then

L is retract stable.
Let C and C' be categories.

0.18.11 IFMMA Suppose that

are an adjoint pair. Let -- then Ff has the LLP w.r.t. £' iff £
_f' € Mor C'

has the LIP w.r.t. F'f'.

PROCF There is a one-to-one correspondence between the commutative squares

X — > X X — F'X'
e J e
F—— > ¥ Y o F'Y'

and their fillers.

0.18.12 LEMMA Suppose that
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are an adjoint pair. Let

(L,R) be aw.f.s. on C

(L',R'") be aw.f.s. on C'.

FL c L' <= F'R' c R.

10

Suppose that are categories and

1o

10

admits pushouts

10

admits pullbacks.

® Let Fl,FZ:(_t + D be functors and let o € Nat(Fl,Fz). Given f € Mor C,

there is a commtative diagram

A
FA > F A
P £ l l o
F{B > FoB
%g

and a caronical arrow

) [ .
a'f.FlB Al FZA > F

FlA

2B

defining thereby a functor

0g:C(*) > D).
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® Let Gl,GZ:Q > C be functors and let B € Nat(Gz,Gl) . Given g € Mor D,

there is a comutative diagram

BX
G2X > G1X
ng Glg
G2Y ” > G]_Y
Y
and a canonical arrow
B¥f:G.X —> G.Y x. ., G.X
N2 2 GlY 1
defining thereby a functor
8%:D(+) ).
Assume now that
Fi:¢~+D Fy:C > D
G:D~>C, Gy:D > C

are adijoint pairs.

B generates a natural transformation

By, 9 Fy > Fye

Proof: ‘v‘AEObg

(uy) oiA > GyF A

Fl(uz)A:FlA

> FlGZFZA
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PrafCF A GFA
=0
F1fp aTF1CF R —> 16 PR
o (vy) xF1G X —> X
=>
(vl)FzA:F 16157 > FA

(By,20a = (Vl)FzA ° FlBFzA °F ) p-

o generates a natural transformation

a2,12G2 > Gl.

Proof: VX € 0bD

(Ul)A:A > GlFlA

(ul) G 2x‘G2X — GlFlGZX

OLGZX:FlGZX —_— F2G2

X

GlO!.G 2X:G1F1G2X - GleGZX
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(\)2) X:FZGZX > X
=2
B (':‘c1 (\)2) X:GlZE‘ZGZX > GlX.

(ay Py = G )y e G1°‘G2x ° (“1)G2x'

0.18.13 LEMMA Suppose that o = Bl 2 and B = Oy 1~ then
I 4 r

are an adjoint pair.

Accordingly, under these conditions, there is a one-to-one correspordence

between the commutative squares

rB Ll Fa > X a > G,X
A
1
®
oc.f l g f Bg
FZB > Y B G2Y XG1Y GlX
ard their fillers.
0.19 FUNCTORTALITY
Let C be a category. Consider its arrow category C(+) —— then there are

functors
dom:C(*) — C

cod:C > —C



34.

that project to the domain and codomain respectively and a natural transformation
Z:dom ~» cod, viz. Ef = £,

[Note: There is also an embedding functor E:C + C(+). On objects, EX = ldX
ard on morphisms,

f
X > Y
f . .
E(X > ¥Y) = (f,£): ld.’( ldY
X —— Y -]
f

0.19.1 DEFINITION A w.f.s. (L,R) on C is functorial if there are functors

L:C(») —> C(»)
R:C(*) —> C(»)
such that
dom o L = dom

&cod o L =dom o R

cod o R

cod

and V £ € Mor C, £ = Rf o If with Lf € L and Rf € R.

N.B. Put
F=cod e L =dom o R.
Then there are natural transformations

A € Nat(dom,F)

(1]
I
©
°

-

p € Nat(F,cod)
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and the factorization of £ € Mor C is given by

~—
-
—

g=*f
dom £ > cod £

Ff Ff.

[Note: Let (¢,9): (X, £,Y) » X', £',Y') be a morphism in C(*), so

$
X e, X1
f £
Y > Y!
2
commutes ——- then the diagram
)
X > X!
A.f >\f|
F(dhl.b) 4
® ——— > @
pf pfl
Y > Y
12

commutes. ]
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0.19.2 DEFINITION The triple (F,2,p) is called a functorial realization of
the w.f.s. (L,R).

0.19.3 EXAMPLE Let C be a model category. Suppose that the w.f.s.
(cof,W n fib) (cf. 0.18.2)

is functorial --— then v X

> Y there is a commtative diagram

a 2
l F(id,, f) 2
X! 2 > Y!
X g Y'
£
X! X' - X
where are cofibrant and the arrows are acyclic fibrations. The
Y' Y' > Y

assignment X + X' is called the cofibrant replacement functor, denote it by L,

e
1
—

thus by construction, there is a natural transformation L >:idc and Vv X,

P

EgilX > X is an acyclic fibration.

e Vv f €|, the lifting problem

Y

has a solution s, thus;\f'—-SOf, pfos=id.
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® vV g € R, the lifting problem

W W
A
e .3z
Py

has a solution t, thus pg:g o, o xg = id.

0.19.4 NOTATION Given a functional realization (¥F,),p) of the w.f.s. (L,R),

let

LE,={fzilsst)\f s o f, pfos=id}

Rp = {g:3 t st pg got, te xg = id}.

If £ ¢ LF, g & RF, then the lifting problem

u
e > @
L4 > @
v

can be solved by taking w = t o F(u,v) ¢ s.

0.19.5 LEMMA We have
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0.20 COFIBRANTLY GENERATED W.F.S.
Let C be a cocomplete category.

0.20.1 NOTATION Let C < Mor C be a class of morphisms -— then by cell C we

shall understand the smallest stable class containing C.

0.20.2 NOTATION Let C < Mor C be a class of morphisms -- then by cof C we

shall understand the smallest retract stable class containing C.

0.20.3 LEMMA We have

C « cell C ¢ cof C c LIP(RLP(()) (cf. 0.18.10).

0.20.4 LEMMA Suppose that C is presentable —- then for every set I < Mor C,
cof I = LLP(RLP(I)).
0.20.5 EXAMPLE Let C be a small category and let M < Mor é be the class of

monomorphisms - then there exists a set M <« M such that M = LIP(RLP(M)), hence

M = cof M (C being presentable).

il
1

(1) Take C ;——theni SET and we can let M = {f ~ «}.

(2) Take C = A — then A ~ SISET and we can let M = {A[n] ~ A[n]:n > O}.

0.20.6 NOTATION Given a class C < Mor C, let C be the full subcategory of

C(») having C as its objects.

0.20.7 LEMMA Suppose that C is presentable (hence that C(») is presentable) —

then for every set I < Mor C, RLP(I) is an accessible subcategory of C(=).

0.20.8 REMARK In general, cof I < C(») is not accessible.
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0.20.9 DEFINITION ILet C be a cocomplete category —— then C is =said to admit

the snall object argument if it has the following moperty: Given any set

IcMrC, the pair
(LLP (RLP (I)), RLP (I))
is a functorial w.f.s. on C.

[Note: We kve

RLP (ILP (RIP (I))) = RIP(I).]

0.20.10 CRITERTON Iet C be a cocamplete category. Asame: V X € Ob C, there

exists a regular cardinal «

X such that X is KX—definite -- then C admits the small

object arqument.
N.B. In particular, every presentable category admits the small object argument.

0.20.11 REMARK TOP is not presentable, hence doesmot fall within the purview

of 0.20.9. Nevertheless, TOP does admit the snall object argument (Garner*) .

0.20.12 REMARK If C is presentable, then in general, QOP is not presentable,

thus it isnot automatic that QOP admits the amall object argument.

op

[Note: If C and C are both presentable, then Mor (X,Y) has at most one

element for each pair X,Y € Ob C.]

0.20.13 DEFINITION Let (L,R) be a w.f.s. on a cocomplete category C —— then

(L,R) is cofibrantly generated if there exists a st I ¢ L such that

R=RLP(I) = L =LIPRIP(I))).

[Note: W skll refer to I as a generating set for (L,R).]

T arXiv:0712.0724
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N.B. Accordingly, if C admits the small object argument, then a cofibrantly

generated w.f. s (L,R) on C is necessarily functorial.

0.20.14 DEFINITION Let C be a cocomplete model category —— then C is

cofibrantly generated if the w.f.s.

(cof, Wn fib)

(v n cof, fib)

are cofibrantly generated with generating ssts .

Here are a few examples.

0.20.15 EXAMPLE Take C = TOP (Quillen Structure) -- then C is cofilrantly
generated.

[Iet I be the set of inclusions Sn-'-L +0" ;> 0, D0 = {0} and S"l = @) and

let J be the st of inclusions iO:[O,l]n + 10,11™ % [0,1] @ 2 0).]

0.20.16 EXAMPLE Take C = SISET (Kan Structure) -- then C is cofibrantly gen-
erated.

[let I be the st of inclusions A[n] ~ A[n] @ > 0) and let J be the set of

A

inclusions Alk,n}l ~ Aln] (0<k<n, n z1).]

0.20.17 EXAMPLE Take C = CAT (Internal Structure) —- then C is cofibrantly
generated.
[In addition to the categories 0, 1, and 2, let 42 be the discrete category

with two objects, and let p2 be the category with two objects and two parallel
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arrows -- then the canonical functors

%Q
|
N =

5
®
l
N

are cofibrations and we can take I = {u,v,w}. Turning to J, let iso

5 denote the

o B
category with objects a,b and arrows ida, idb, a—-> b, b——s a, where o o B =

idb,B°c;;=ida——themwecantakeJ={ﬂ},mere’rr:}_—»is::

5 (m{x) = a) .]

0.20.18 EXAMPLE Take C = CAT (External Structure) -- then C is cofibrantly

generated.
[Let T be the set of arrows cat Sd%A[n] - cat Sd°A[n] (n = 0) and let J be

the st of arrows cat sdzA[k,n] -+ cat saza[n] (0<sk<n, n =21).1

0.20.19 EXAMPLIE Take C = EQU (Larusson Structure) —- then C is cofibrantly
generated.

[One can take I = {f,g}, J = {h}, where £:0 » {x}, g is the identity map
from {a,b} (discrete partition) to {a,b} (indiscrete partition), and h:{x} > {a,b}

(indiscrete partition) sends * to a.]

0.20.20 EXAMPIE Take C = CAT and let L be the class whose elements are the
full functors - then the pair (L, RIP(L)) is a w.f.s. which is not cofibrantly
generated, thus there are model categories that are presentable but not cofibrantly

generated (apply 0.18.4).
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0.20.21 REMARK The Strgm structure on TOP is not cofibrantly generated

(Raptis').
0.20.22 IEMMA If S is a set and if

Wy, cofg, fibg

is a cofibrantly generated model structure on Cs (s € S) with generating sets

T
s

sets , then the model structure on C = || C, per 0.1.29 is cofibrantly
J s
s

generated with genetating sets

"I=U(st“["['idﬂ)
sES tzs t

J=U(Jsxﬂ_ldﬁ),
s€S tzs t

where idg is the identity map of the initial object @ c of Ce:
t

0.21 crsinskrtt TwEORY

Iet C be a small category —- then the class M c Mor é of monomorphisms is

retract stable and the pair (M,RLP () is a w.f.s. on C (cf. 0.18.9).

”~
in C is a monomorphism iff

[§4]

[Note: For the record, recall that a morphias

vXelC is a monomorphign in SET,]

=
"X

N.B. Elements of RLP (M) are called trivial fibrations.

¥ Homology, Homotopy Appf. 12 (2010), 211-230.

T pstenisque 308 (2006) .
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0.21.1 DEFINITION A cofibrantly generated model structure on é is said to be

a Cisinski structure if the cofibrations are the monomorphisms.

[Note: The acyclic fibrations of a Cisinski structure on é are the trivial

fibrations.]

0.21.2 EXAMPLE Take C = A -- then the Kan structure on SISET is a Cisinski

structure (cf. 0.20.16).

0.21.3 IEMMA A Cisinski structure on é is determined by its class of fihrant

objects (cf. 0.1.11).

0.21.4 DEFINITION Consider a category pair (Ci:,W) - then W is a (:Z—localizer
provided the following conditions are met.
(1) W satisfies the 2 out of 3 condition (cf. 2.3.13).
(2) W contains RIP (M) .

3y WN M is a stable class.
N.B. If
W, cof = M, fib=RPMW n M)
is a model structure on é, then W is a é-localizer. :

let C < Mor é -- then the é—localizer generated by C, denoted W((), is the

intersection of all the é-—localizers containing C. The minimal (j';—localizer is

W@ @ the empty set of morphisms).

0.21.5 DEFINITION A é—localizer is admissible if it is generated by a set of

morphisms of (3

0.21.6 EXAMPLE Mor C is an admissible C-localizer. In fact,
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W({g, > *.}) = Mor C.
C C

0.21.7 THEOREM Iet @,w) be a category pair —— then W is an admissible
(::-localizer iff there exists a cofibrantly generated model structure on é whose
class of weak equivalences are the elements of W and whose cofibrations are the
monomorphisms.

[Note: The cofibrantly generated model structure on § determined by W is

left proper (but it need not be right proper).]
0.21.8 SCHOLIUM The map

W->W, M, RLP(W n M)

induces a bijection between the class of admissible é—localizers and the class of

Cisinski structures on §_:

[Note: The partially ordered class of é—localizers has a maximal element

and a minimal element. Furthermore, if I is a set and if wi (1 € I) is an admissible

c:t-localizer, then the intersection N W, 1s an admissible _(E-localizer.]
161
0.21.9 REMARK It follows a posteriori that the stable class W N M is retract
stable. In addition, W is necessarily saturated, i.e., W = W (cf. 2.3.20).
[Note: Every é—-localizer is the filtered union over the class of the admissible

(E—localizers contained therein, thus, by a simple arqument, is saturated.]

0.21.10 EXAaMPIE Consider SISET (Joyal Structure) — then W is the class of

categorical weak equivalences and is an admissible A-localizer:

W=W{IM] - Alnl:n = 0}).
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Therefore the Joyal structure is cofibrantly generated.
[Here I[n] is the simplicial subset of A[n] generated by the edges (k, k+1)
(0 £ k £ n~l) (take I[0] = A[l]), so there is a pushout square

A[0] ————— A[1]
Inh] ———> I[n+l].]

[Note: The Kan structure on SISET is cofibrantly generated and its :zi\x_-localizer

is generated by themapsA[n] ~ A[0] (n 2 0).]

0.21.11 REMARK The HG-Structure on SISET is cofibrantly generated, thus its

@-localizer is admissible.

0.21.12 DEFINITION The Cisinski structure on C corresponding to W(f) is called

the minimal monic model structure on é

0.21.13 EXAMPLE Take C = 1 — then 1 = SET and W(§) is the class

B>pu XY X= @}
0.21.14 LEMMA The minimal monic model structure on C is proper.

0.21.15 EXAMPLE Take C = A —— then the minimal monic model structure on SISET

has fewer weak equivalences than the Joyal structure (cf. 0.4.1).

0.21.16 NOTATION Given an admissible _a_—loca,lizer W and a small category I,

denote by W, < bbr[;l;,é] the class of morphisms =:F ~ G such that Vv i € Ob I,

Ei:Fi + Gi is in W.
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0.21.17 THEOREM The category [Lé] carries a cofibrantly generated model
structure whose weak equivalences are the elements of NI and whose cofibrations

are the monomorphisms.

[Identifying [;,é] with the category of presheaves on IOP

X C, observe that

NI is admissible and then invoke 0.21.7.]

[Note: If EZ:F »> G is a fibration in this model structure, then vV i € Ob I,

Ei:Fi + Gi is a fibration in the model structure on _6_ per W (but, in general, not

conversely) .]

0.21.18 EXAMPIE Take C = A and consider SISET in its Kan structure (hence
the admissible Z&—localizer W is the class of simplicial weak equivalences) — then
for any I, the specialization of 0.21.17 to this situation gives rise to structure

R on [I,SISET] (cf. 0.16).

0.22 MODEL FUNCTORS
Iet C and C' be model categories.

0.22.1 DEFINITION A left adjoint functor F:C -+ C' is a left model functor if

F preserves cofibrations and acyclic cofibrations.

0.22.2 DEFINITION A right adjoint functor F':C' - C is a right model functor

if F' preserves fibrations and acyclic fibrations.

0.22.3 LEMMA Suppose that
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are an adjoint pair — then F is a left model functor iff F' is a right model

functor.

0.22.4 DEFINITION A model pair is an adjoint situation (F,F'), where F is

a left model functor and F' is a right model functor.

0.22.5 FXAMPLE Consider the setup

cat
Y
SISET (Joyal Structure) CAT (Internal Structuxe).

<
ner

Then (cat, ner) is a model pair.

[Note: The inclusion 1:GRD + CAT admits a left adjoint m.,:CAT -~ GRD and a

1
right adjoint iso:CAT + GRD. This being =0, consider the setup

1 o1, ¢ c¢cat
1

SISET (Kan Structure) CAT (Internal Structure).

ner ¢ 1 o iso

Then (1 o m, o cat, ner © 1 ¢ iso) is a model pair.]

1

0.22.6 EXAMPLE Consider the setup

1o0p
S
TOP (Quillen Structure) TOP (Strgm Structure) .

< .
*rop

Then (ideB, idi[ga) is a model pair (take F' = id‘mp)“
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0.22.7 ILEMMA The adjoint situation (F,F') is a model pair iff F preserves

cofibrations and F' preserves fibrations.

0.22.8 LEMVA The adjoint situation (F,F') is a model pair iff F preserves
acyclic cofibrations and F' preserves acyclic fibrations.
Recall now that C cof is a cofibration category and C' £ib is a fibration

category, the setup of 2.2.6 thus becoming

F

=cof

0.22.9 SCHOLTUM

e To ensure the existence of (LF,\)F) , it suffices to require that F send
acyclic cofibrations between cofibrant objects to weak equivalences.

e To ensure the existence of (RF' ,uF.), it suffices to require that F'
send acyclic fibrations between fibrant objects to weak equivalences.

So, if the adjoint situation (F,F') is a model pair, then the functors

LF:HC ~ HC'

RF':HC' -~ HC

exist and are an adjoint pair.

a b
0.22.10 EXAMPLE Fix a model category C, let I be the category 1 @ <— e —> @ 2,
3
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and equip [I,C] with its model category structure per 0.1.12. Iet colim: [,Ccl - ¢

£ g
be the functor that on objects assigns to each 2-source X « Z + Y it pushout P:
g
4 > Y
i |
X > P,

Then colim has a right adjoint, viz. the constant diagram functor K:C -~ [I,C].
But it is obvious that K preserves fibrations and acyclic fibrations. Therefore

Leolim

the adjoint situation (colim, K) is a model pair, thus exist and

RK

{(Lcolim,RX) is an adjoint pair.

[Note: The story for pullbacks is analogous.]

Given a model category C and objects A,B in C, the categories A\C, C/B are
again model categories, a morphism in either case being declared a weak equivalence,

cofibration, or fibration if it is such when viewed in C alone.

0.22.11 EXAMPLE Iet C be a model category and let X,Y € Cb C —— then each
f:X + Y induces a functor

£,:X\C ~ Y\C

which sends an cbject X + Z of X\C to its pushout along f:

D G —
1
Y ——> P

Moreover, f, is a left adjoint for the functor

£%:Y\C + X\C
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which sends an object Y +~ W of Y\C to its precamposition with f and it is immediate

that f* preserves fibrations and acyclic fibrations:

Y X ——X
f* E €| =€ o f Vllg. o f
CW— W' W W .
g g
- Lf,
Therefore the adjoint situation (f,,f*) is a model pair, thus exist and
: RE*

(L, ,Rf*) is an adjoint pair.

[Note: The story for C/X, C/Y is analogous. ]

0.22.12 EXAMPLE Define a functor Y:A - SISET by the rule Y[n] = ner wl[n] -

then

I‘q:SISET ——> SISET

sinq :SISET —— SISET

is an adjoint pair. But

Fq:SISET (Kan Structure) > SISET (Joyal Structure)

is a left model functor. Therefore the adjoint situation (Fq,sinq) is a model

LI‘q

pair, thus exist and (LFq,Rsinq) is an adjoint pair.

R51nq

0.22.13 EXAMPLE In the notation of 0.7,
- Fgr:SISET —> QIGR

U:SIGR

~ SISET
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is an adjoint pair. Since Fgr preserves cofibrations and U preserves fibrations,

LF
gr
it follows that exist and (LE‘gr,RU) is an adjoint pair.
RU

A model pair (F,F') is a model equivalence if the adjoint pair (LF,RF') is

an adjoint equivalence of homotopy categories.

0.22.14 ILEMMA The adjoint pair

LF:HC ~ HC'
RF':HC‘& HC
per
F
1 ‘ > 1!
1 t
Ceof > & C'< € fib

is an adjoint equivalence of homotopy categories if

X E€0bCoop

1
X' € 0b Cleips

an arrow

¢ € Mor (FX,X')
is a weak equivalence iff its adjoint

¥ € Mor (X,F'X")

is a weak equivalence.
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[This is a special case of 1.7.3.]

N.B. Since

RF'

are an adjoint pair, the left derived functor LF is an equivalence iff the right

derived functor RF' is an equivalence.
0.22.15 EXAMPLE Take EQU as in 0.15 and equip SET with its model structure
per 0.1.5, hence the weak equivalences are the bijections and
cof = Mor SET

fib = Mor SET.

Iet Q:EQU - SET be the functor that on objects sends (X,~,) to X/~ —— then Q has

a right adjoint Q':SET - EQU that on objects endows a set with its discrete par-
tition. It is clear that Q preserves cofibrations and Q' preserves fibrations.

Lo
Therefore the adjoint situation (Q,Q') is a model pair, thus exist and

RQ'
(LQ,RQ') is an adjoint pair. Since the arrow of adjunction
U(X’~X) H (Xl""x) > Q'Q(X;p"’x)
is the projection X - X/~x, an arrow

¢ € mr(@- (Xr"'x} rX')
is a bijection iff its adjoint

‘P € Pbr( (xr"x) IQ'X')




53.

is a bijection on quotients, so the adjoint pair (LQ,RQ') is an adjoint equivalence

of homotopy categories:

>
HEQU HSET,

<

where HSET is isomorphic to SET itself (cf. 1.1.8).

0.22.16 EXAMPLE In the theory above, take C = SISET (Kan Structure), C' = TOP

(Quillen Structure) and let F = | |, F' = sin — then from the definitions, | |
preserves cofibrations and sin preserves fibrations, thus the adjoint situation
(] |, sin) is a model pair which, in fact, is a model equivalence. Therefore the

adjoint pair (L| |, Rsin) is an adjoint equivalence of hamotopy categories:

>
HSISET HTOP.
<

[We shall sketch the classical argument. Consider the bijection of adjunction

EX,Y:C(]X[,Y) + Nat(X,sin Y},

sin £
so E, ,f is the composition X - sin|X| —— sin Y —- then the arrow X - sin|¥X]|
r

is a simplicial weak equivalence. Proof: The diagram

|X| ~——> |sin|X]|
iapy| l
|X] —— %]

commites and the vertical arrow on the right is a weak homotopy equivalence. Con-

sequently, EX,Yf is a simplicial weak equivalence iff sin f is a simplicial weak
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equivalence. But there is a commutative diagram

. |sin £ _
|sin|x] | > |sin Y|
]X] >Y .

And the vertical arrows are weak homotopy equivalences, hence gin £ is a simplicial

weak equivalence iff f is a weak homotopy equivalence. Finally, then, EX Yf is
r

a simplicial weak equivalence iff f is a weak homotopy equivalence and 0.22.14 is
applicable.]

[Note: All objects in SISET are cofibrant and all objects in TOP are fibrant.]

0.22.17 REMARK let HCW be the homotopy category of CW complexes -=- then HCW
is equivalent to HTOP (TOP in its Quillen structure).
[Nobte2: There are two points to be kept in mind.

(1) If K and L are CW camplexes and if f:K »~ L is a weak homotopy equivalence,
then £ is a homotopy equivalence.

(2) If X is a topological space, then there exists a CW complex K and a
weak homotopy equivalence f£:K + X.]
0.23 PROPRIETY
Let C be a model category.

f
0.23.1 DEFINITION A weak equivalence X

>Y is proper it the left if for

every cofibration X + Z the arrow Z + Z L} Y is a weak equivalence.
X
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N.B. C is left proper iff all its weak equivalences are proper to the left.

£

0.23.2 LEMMA A weak equivalence X > Y is proper to the left iff the model

pair (f£,,f*) of 0.22.11 is a model equivalence or, equivalently, iff the functor

RE*:H(Y\C) + H(X\C) is an equivalence.

0.23.3 THEOREM Iet C be a model category —- then C is left proper iff for every

£
weak equivalence X

> Y the functor RE*:H(Y\C) ~ HRX\C) is an equivalence. |

0.23.4 REMARK The upshot is that "left proper" can be formulated without the
use of cofibrations. So if W, cof, fib is a model structure on C which is left
proper, then so is any other model structure W, cof', fib'.

[Note: The story for "right proper" is analogous. ]

0.24 TRANSFER OF STRUCTURE

ILet C be a cofibrantly generated model category with generating sets ’

thus

W n fib = RLP(T)

fib = RIP(J).

Let C' be a finitely complete and finitely cocomplete category. Suppose that

F:C » C

F':C' » C

are an adjoint pair.
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(LLP (RIP (FI)), RLP(FI))

isaw.f.s. on C'.

® Assume:
(LLP (RIP (FJ)), RLP (FJ))

is a w.f.s. on C'.

Suppose further that

F'{LlP RIP (FJ))) < W.

W' = {£' € Mor C':F'f' € W}

fib'

{£' € Mor C':F'f' € fib}

and set

cof' = LIPp W' n fib").

0.24.1 THEOREM The data

w', cof', fib"

defines a cofibrantly generated model structure an C' with generating sets

PROOF Cne has only to note that from the assumptions

W n fib' = RLP (FI)
_ fib' = RIP (FJ)
and
cof' = LIP (RLP (FI))
W' n cof' = LLP(RLP (FJ)).
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[Note: The detail that is not quite immediate is the relation

W' n cof' = LIP(RLP(FJ)).
However, by hypothesis,

F' (LIP(RIP(FJ))) < W,

LIPRIP(FT)) < W' n cof'.

Conversely, given £':X' + Y' in W' n cof', write £' = p

in ILIP(RLP (FJ)) and p:Z' » Y' is in RIP(FJ) -~ then

£ EW => pE W

o 3, where Xi:X'

=>p € W' N RIP(FJ) = W' n fib'.

But since f' € cof', the commutative diagram

A
Vee— s 2
! Y'

admits a filler r:Y' » Z', thus the commutative diagram

X' X! x
o xl o
Y! > 7' > Y!

r P

exhibits f' as a retract of A, implying thereby that f'

€ LIP(RIP(FJ)).]

> Z!

is
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N.B. The adjoint situation (F,F') is a model pair (for by construction, F'

LF
is a right mndel functor), thus exist and (LF,RF') is an adjoint pair.
RFI
0.24.2 EXAMPLE Take
T C = SISET T F=cat o 5d°
and
C' = CaT F' = Ex2 ° ner.

Then C, C' are presentable and (F,F') is an adjoint pair. Moreover, all the
assumptions of 0.24.1 are satisfied and the resulting cofibrantly generated model
structure on CAT is its external structure.

e V X € Ob SISET, the arrow of adjunction

X+Ex20nerocat°Sd2X

is a simplicial weak equivalence.
® V & € Mor CAT, ner ¢ is a simplicial weak equivalence iff Ex2 ° ner ¢
is a simplicial weak equivalence.

Consider now the bijection of adjunction

5. _sMor(cat o S&°X,C) + Mor (X,Ex> o ner C),
Se c c

8
(1]

¢ is the composition
X,C

5 2 Exzoneré 5
X » EX™ o ner o cat © Sd'X > EX” © ner C.

Then EX C<I> is a simplicial weak equivalence iff ¢ is a simplicial weak equivalence.
'—

So, in view of 0.22.14, the model pair (F,F') is a model equivalence, i.e., the
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adjoint pair (LF,RF') is an adjoint equivalence of hamotopy categories:

>
HSISET HCAT.

[Note: The main reason for working with (cat o Sdz, Ex2 o ner) rather than
(cat,ner) (or (cat o Sd, Ex ¢ ner)) is that the arrow of adjunction X - ner(cat X)
(or X * Ex o ner ¢ cat o Sd X) need not be a simplicial weak equivalence.]

0.24.3 REMARK Recall first that there are natural simplicial weak equivalences

ner(groA X) » X

groA(ner C) »~C.

e In CAT, let W denote the class of simplicial weak equivalences, i.e.,

the class of functors F:C + D such that |ner F

:BC ~ BD is a homotopy equivalence.
N.B. W_ is the class of weak equivalences per CAT (External Structure) and

w;lc:ﬂ = HCAT.

e In SISET, let W_ denote the class of simplicial weak equivalences, i.e.,

the class of simplicial maps f:X + Y such that |f]:|X| + |Y| is a homotopy equiv-
alence.

N.B. W_is the class of weak equivalences per SISET (Kan Structure) and

W ls1sET = HsIsET.

Since ner W _ c W_, there is a commutative diagram
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ner
CAT —————> SISET

HCAT s, HSISET
ner

and since gro, W, < W, there is a commutative diagram

gro,
SISET — — _~ CAT

BSISET ————— HCAT.
gro,

Taking into account the natural isomorphisms

nerogroA-rid

gro, ° ner - id,

it follows that ner induces an equivalence

HCAT - HSISET

of homotopy categories.

N.B. Take TOP in its Quillen structure, SISET in its Kan structure, and CAT
in its external structure —— then HCW is equivalent to HTOP (cf. 0.22.17), HTOP is
equivalent to HSISET (cf. 0.22.16), and HSISET is equivalent to HCAT (by the above).
[Note: Iet [CAT] be the category with Ob[CAT] = Ob CAT and whose morphisms

are isomorphism classes of functors (i.e., in [CAT], Mor(I,J) is the set of
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isomorphism classes of objects in [I,J]) —- then the canonical projection
caT > [CAT]

is a localization of CAT at the class W whose elements are the equivalences of

small categories, thus when CAT is equipped with its internal structure,

HCAT = [CAT].

Given a small category I, write Edis for the discrete category underlying

I -- then for any cocomplete category C, the forgetful functor U:[I,C] + [I .S,(_:]

has a left adijoint that sends X to fr X, where

frxj= |l Mord,3) -xi.
i€obI

0.24.4 EXAMPLE Take C = SISET (Kan Structure) and consider the adjoint pair

fr:[L,, ,SISET] > [I,SISET]

U [1,SISET] + [, ,SISET].

Then [;dis,SISEI‘] is a cofibrantly generated model category (cf. 0.20.22) and all

the assumptions leading to 0.24.1 are satisfied (F = fr, F' = U). The resulting

cofibrantly generated model structure on [I,SISET] is structure L (cf. 0.16).

0.24.5 IEMMA Iet G,H € Ob GRD, £:G + H a morphism —- then £ is a simplicial

weak equivalence iff f is an equivalence.

0.24.6 LEMMA Let G,H € Ob GRD, £:G ~ H a morphism — then Ex” © ner £ is a
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Kan fibration iff ner f is a Kan fibration iff f has the RIP w.r.t. m:l > iso,

(cf. 0.20.16).

0.24.6 SCHOLTM The external and internal model structures on CAT resirict

to the same model structure on GRD.

0.25 COMBINATORTAL MODEL CATEGORIES
et C be a cofibrantly generated model category.

0.25.1 DEFINITION C is combinatorial if in addition C is presentable (hence

complete and cocomplete).

Suppose that C is combinatorial -- then there exist sets

I < cof

J c W n cof

such that

W n fib = RLP(I)

fib = RLP(J).

0.25.2 REMARK The cofibrantly generated w.f.s.
(cof,wW n fib)
W n cof,fib)

are functorial (C being presentable) and the functors

L:C(+) + C(+)

R:C(>) » C()

can be taken accessible.
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N.B. Recall that

C presentable => C(+) presentable.

0.25.3 IEMMA Suppose that C is combinatorial —- then

=
=
-i-h
-
o

-+
—e
o

|

are accessible subcategories of C(+).

[This is an application of 0.20.7.]

0.25.4 ILEMMA Suppose that C is combinatorial — then W is an accessible sub-

category of C(=).

PROOF Work with

= L:(_j(—)») > g(—>)

R:iC(+) + C(+)

per (W n cof,fib) and note that

w=RTWn fib).

We tum now to the "recognition principle" for combinatorial model categories.
Thus fix a presentable category C, a class W <« Mor C, and a set I < Mor C.

Make the following assumptions.
(1) W satisfies the 2 out of 3 condition (cf. 2.3.13).

(2) W < C(>) is an accessible subcategory of C(»).

{(3) The class RIP(I) is contained in W.

{4) The intersection W N cof I is a stable class.
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N.B. The closure of W under the formation of retracts is automatic (cf. (2)).

0.25.5 THEOREM Under the preceding hypotheses, C is a combinatorial model

category with weak equivalences W, cofibrations cof I, fibrations RLP(W N cof I).

The key is to construct a set J < W n cof I such that cof J =W n cof I.
Granting this for the moment, it is not difficult to check that C is in fact a

model category, the remaining claim being that

W n fib = RLP(T)

_ fib = RIP(J).
But
W n fib = RIP(cof)
= RIP(LIP(RLP(I)))  (cf. 20.4)
= RIP(I)
and

fib = RLP(W N cof I)
= RLP(cof J)
= RLP(LLP (RLP(J))) (cf. 20.4)
= RLP(J).

There are two steps in the construction of J.

0.25.6 LEMMA Suppose that J <« W n ¢cof I is a set with the following property:

Every commutative diagram
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where
T O X>Y) el
Aa-~->B) el

can be factored as a commutative diagram

|

N =
g e

Vv

where
(W~ 2Z) € J.
Then
cof J =W n cof I.
[It suffices to show that every £ € W admits a factorization as h o g, where
g€ cell Jand h € RIP(I). To this end, fix a reqgular cardinal k such that the

domains of the elements of I are x—-definite and proceed by transfinite induction.]

Since W is an accessible subcategory of C(+), the inclusion functor @ + C(»)
satisfies the solution st condition: Given any object X + Y in Mor C, there exists

a source

i
X > Xl
l l ((Xi - Yi) €W
Y " > Yi
i
such that for every commtative diagram
X > A
l l (@d-»B) € W),
Y > B
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there is an i, an arrow

Xi > A
Yi > B
in C(+), and a conrmitative diagram
u.
i
X > Xi > A
l + J
Y > Y. > B.
i
V.
i

0.25.7 LEMMA There exists a set J <« W n cof I which has the property set forth
in 0.25.6.

PROCF Start with a commutative diagram

X > A
Y > B,
where
T XY el
(A >B) €W,
and factor it as abowe
X >Xi >ZI
Y >Y >B'
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S0, to draw the desired conclusion, it suffices to factor the square on the left

by an element of W N cof I. For this purpose, form the pushout square

1(_-———————>Xi
Y e ¥ (] X,
X 1
andnotethatttxearrwxi+YUXi is in cof I. Next, factorthearrow‘fuxi»Yi
X

X

as an element Y (] Xi - Zi of cof I followed by an element Zi > Yi of RLP{I)
X

(permissible since C admits the small object argument) -- then the commutative

diagram

v
>

P e
N
e

v

factors the square

X > X.
| I
Y > Y

by an arrwxi+ziincxfncof I.

[Note: To check the last point, introduce some labels:
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Then

Wi=1JJioq)iOf..

; €ERIP(I) < W =>¢, o £, € 0.

On the other hand,

f; € cof I,9; € cof I => b ° fi € cof I.]

0.25.8 EXAMPLE Take C = SISET, let (W be the class of categorical weak equiv-
alences, and let I be the set of inclusions ZX[n] > Afn] (n = 0) = then this data
satisfies the assumptions of 0.25.5, which thus provides a route to the construction
of the Joyal structure on SISET.

[Note: I am unaware of a specific description of "“J".]

0.25.9 REMARK Working within the framework of 0.21, let C be a small category

and let W < Mor C be an admissible C-localizer -- then

W, M, RLIP(W n M

is a cofibrantly generated model structure on é, thus is combinatorial (@ being
presentable) . Therefore W is an accessible subcategory of C(+) (cf. 0.25.4). To
reverse matters, fix a set M < M:M = cof M (cf. 0.20.5) and suppose that W < Mor é
is a class satisfying assumptions (1) through (4) above (with I replaced by M} =--
then

Il

RLP (M) = RLP (cof M)

RLP (LIP (RIP (M) )) {(cf. 0.20.4)

RIP(M) < W,

so Wis a é—localizer. But the cofibrantly generated model structure on C produced
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by 0.25.5 has W for its weak equivalences and M for its cofibrations. Accordingly,
on the basis of 0.21.7, W is necessarily admissible.

0.25,10 THEOREM Keep I fixed and let wk k € K) be a set of classes of mor-
phisms of C. Suppose that v k € K, the pair (wk,I) satisfies assumptions (1)

through (4) above — then C is a combinatorial model category with weak equivalences

n wk, cofibrations cof I, fibrations RIP( N wk n cof I).
keK kek

[The point here is that an intersection of a set of accessible subcategories

is an accessible subcategory.]
0.26 DIAGRAM CATEGORIES
Fix a amall category I.

0.26.1 DEFINITION Let C be a model category and suppose that £ € Mor[I,Cl,

|y Z:F > G,

{1]

is a levelwise weak equivalence if v i € Gb I, Ei:Fi + Gi is a weak
equivalence in C.

is a levelwise fibration if ¥ i € Ob I, E;:Fi » Gi is a fibration in C.

291

is a projective cofibration if it has the LIP w.r.t. those morphisus

{1}

which are simultaneously a levelwise weak equivalence and a levelwise fibration.

0.26.2 DEFINITION The triple consisting of the classes of levelwise weak equiv-
alences, levelwise fibrations, and projective cofibrations is called the projective

structure on [I,C].
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Question: Is the projective structure a model structure on [I,C]?

a b

0.26.3 EXAMPLE Iet I be the category 1 e <« > @ —— then the model

o
3 2

structure on [I,C] per 0.1.12 is the projective structure.

0.26.4 EXAMPLE Suppose that (I,<) is a finite nonempty directed set of
cardinality > 2 — then the model structure on [I,C] per 0.17 is the projective

structure.

0.26.5 THEOREM Suppose that C is a combinatorial model category — then for
every I, the projective structure on [I,C] is a model structure that, moreover, is

combinatorial.

0.26.6 EXAMPIE Take C = SISET in its Kan structure —-- then the projective

structure on [I,SISET] is a cambinatorial model structure (it coincides with

structure L (cf. 0.16)).

0.26.7 DEFINITION Iet C be a model category and suppose that E € Mor[I,C],
say H:F - G.

e = is a levelwise weak equivalence if vi € Ob I, Ei:Fi + Gi is a weak

equivalence in C.

L
{x

£ is a levelwise cofibration if v i € Ob I, Ei:Fi + Gi is a cofibration

L
(91

% is an injective fibration if it has the RIP w.r.t. those morphisms

which are similtaneously a levelwise weak equivalence and a levelwise cofibration.
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0.26.8 DEFINITION The triple consisting of the classes of levelwise weak
equivalences, levelwise cofibrations, and injective fibrations is called the

injective structure on [I,C].

Question: Is the injective structure a model structure on [I,C]?

a b
0.26.9 EXAMPIE Iet I be the category 1 e > @ < ® 2 —— then the model
3
structure on [I,C] per 0.1.12 is the injective structure.

0.26.10 EXAMPLE Iet C be a small category —— then C is presentable and the
Cisinski structures on é are in a one-to-one correspondence with the class of
admissible é—localizers. Bach Cisinski structure is cofibrantly generated and
the model structure on [I,C] per 0.21.17 is the injective structure.

[Note: Recall that here monomorphigms are levelwise.]

0.26.11 THEOREM Suppose that C is a combinatorial model category —- then for
every I, the injective structure on [I,C] is a model structure that, moreover, is

combinatorial.

0.26.12 EXAMPLE Take C = SISET —— then the injective structure on [I,SISET]

is a combinatorial model structure (it coincides with structure R (cf. 0.16)).

0.26.13 LEMMA Take C combinatorial — then

[I,C] (Projective Structure)
C left proper => left proper

[I,C] (Injective Structure)



72.

and
[I,C] (Projective Structure)
C right proper => right proper.

[I,C] (Injective Structure)

N.B.
® Every projective cofibration is necessarily levelwise, hence is a
cofibration in the injective structure.
® Every injective fibration is necessarily levelwise, hence is a fibration

in the projective structure.
0.26.14 LEMVA Take C cambinatorial and consider the setup

1(1,¢)

[I,C] (Projective Structure) [I,C] (Injective Structure).

1,0
Then {1d[£’g] ‘ ld[{@]) is a model equivalence.
PROOF The weak equivalences are the same and ... .

0.26.15 REMARK If C and C' are combinatorial and if

Fl

is a model pair, then composition with F and F' determines a model pair
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1

[1,C] [1,¢']

¥
FI

w.r.t. either the projective structure or the injective structure.

Let I and J be small categories, K:I +~ J a functor, and take C cambinatorial —-
then C is camplete and cocomplete, so the functor K*:{J,C] - [I,C] has a right
adjoint

Ky: (LG > 12,C)
and a left adjoint

K,:[LQ] -+ [Q:Q]o

0.26.16 LEMMA Consider the setup

[I,C] (Projective Structure) [J,C] (Projective Structure).

<

K*

Then (K, ,K*) is a model pair.
PROOF K* preserves levelwise weak equivalences and levelwise fibrations.

0.26.17 1EMMA Consider the setup

K*

[3,C] (Injective Structure) [I,C] (Injective Structure).
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Then (K*,K+) is a model pair.
PROOF K* preserves levelwise weak equivalences and levelwise cofibrations.
0.26.18 THEOREM The model pairs

(K' IK*)

are model equivalences if K is an equivalence of categories.

Since K* preserves levelwise weak equivalences, there is a camutative diagram

K*
[J,cl >[1,C]
H[J,C] > H[I,C]
K*
and ad joint pairs
- ¥, 1
(Projective Structure), (Injective Structure).
R* RK

- +

0.26.19 DEFINITION The functor

K, :HIL,C] ~ HIT,C]

is called the homotopy colimit of XK.

[Note: Take J = 1 -- then in this case, LK, is called the homotopy colimit

functor and is denoted by hocolimI.]
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0.26.20 DEFINITION The functor
RK+:§[;-’91 - E[g;g]

is called the homotopy limit of XK.

[Note: Take J = 1 — then in this case, RK, is called the homotopy limit

..I.

functor and is denoted by holimI.]

Is it true that for every small category I and model category C, the functor
category [I,C] admits a model structure whose weak equivalences are the levelwise
weak equivalences? As far as I can tell, this is an open question. But some
information is available. Thus let C(cof) stand for C viewed as a cofibration
category and let C(fib) stand for C viewed as a fibration category —— then
[I,C(cof)] in its injective structure is a homotopically cocomplete cofibration
category (cf. 2.5.3) and [I,C(fib)] in its projective structure is a homotopically
complete fibration category (cf. 2.5.6). Furthermore, since every model category
is a weak model category, 2.7.5 and 2.7.6 are applicable and serve to equip [I,C]

with two weak model structures.
0.27 REEDY THEQRY
Iet I be a small category.

0.27.1 DEFINITION I is said to be a direct category if there exists a function

R .
deg:0b I -~ Z__ such that for any nonidentity morphism i —— j, we have deg(i)

0
< deg(3j).

a b

0.27.2 EXABMPLE The category 1 e < > @ 2 is a direct category.

we
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0.27.3 THEOREM Suppose that C is a cocomplete model category — then for

every direct category I, the projective structure on [I,C] is a model structure.

0.27.4 DEFINITION I is said to be an inverse category if there exists a

function deg:0b I + Z_, such that for any nonidentity morphism i >j, we have deg(i)

0
> deg{j).

0.27.5 EXAMPLE The category 1 e > @8 < ® 2 is an inverse category.

0.27.6 THEOREM Suppose that C is a complete model category -- then for every

inverse category I, the injective structure on [I,C] is a model structure.

0.27.7 DEFINITION Let I be direct and let i € Ob I —— then the latching
category 3(I/i} is the full subcategory of I/i containing all the objects except
for the identity map of i.

£
If I is direct, then 5(I/i) is also direct with deg(i'

> l) = deg(l') r
thus all the objects of 3(I/i) have degree < deg(i).

0.27.8 LEMMA Suppose that I is direct —— then for any morphism f:i' - i,
there is a canonical isomorphism

3(3(I/1)/£) = 3(T/i")

of categories.

0.27.9 DEFINITION Iet I be inverse and let i € Cb I — then the matching

category 3(i\I) is the full subcategory of i\I containing all the objects except
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for the identity map of i.

If I is inverse, then 5(i\I) is also inverse with deg(i > i') = deg(i'},

thus all the objects of 5(i\I} have degree < deg(i).

0.27.10 LEMMA Suppose that I is inverse -- then for any morphism f:i » i',
there is a canonical isomorphism
3(ENB(AND)) = 3(i"\I)

of categories.

0.27.11 DEFINITION Fix a cocomplete category C, a direct category I, and an
i€0bl. Iet

dU/1:0(I/4) » I

be the forgetful functor — then the latching functor L, is the composite

(ou/i) * colim
[r,¢] —— [3(1/1),] ——— C.

N.B. Given F € Ob[IL,C], the latching object of F at i is LiF and the latching

morphism of F at i is the cancnical arrow L,F ~ Fi.

0.27.12 THEOREM Suppose that C is a cocomplete model category — then for any
direct category I, a morphism Z:F -~ G in [I,C] is a cofibration (acyclic cofibration)

in the projective structure (cf. 0.27.3) iff v i € Gb I, the induced morphism

Fi _[_1_ LG -~ Gi
L.F
1

is a cofibration (acyclic cofibration) in C.
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0.27.13 DEFINITION Fix a complete category C, an inverse category I, and an
i€0bI. ILet

3i\U:3 (I\I) + I

be the forgetful fumctor — then the matching functor M, is the composite

(3i\U) * lim

> C.

N.B. Given F € Ob[I,C], the matching object of F at i is M.F and the matching

morphism of F at 1 is the canonical arrow Fi - M.F.

0.27.14 THEOREM Suppose that C is a complete model category —— then for any
inverse category I, a morphism Z:F -~ G in [I,C] is a fibration (acyclic fibration)

in the injective structure (cf. 0.27.6) iff v i € Ob I, the induced morphism

Fi ~» MiF XMiG Gi

is a fibration (acyclic fibration) in C.

0.27.15 DEFINITION A small category I is said to be a Reedy category if the

following conditions are satisfied.

Ob Ob I
® There exist subcategories with such that .

Ob b I

Py
1y
Il

4
il

-4

- £~ - ->
every £ € Mor I admits a unique factorization £ = £ o £, where £ € Mor I and

< +
feMrlI.

e There exists a function deg:0b I » Z_, such that

=y

v i >j € Mor

(§ = id), deg(i) < deg(j)

I 4

v i >j € Mor I (8§ = id), deg(3) < deg(i).
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> <
N.B. Therefore I is a direct category and I is an inverse category.

[Note: Conversely, every direct category is a Reedy category and every

inverse category is a Reedy category.]
0.27.16 REMARK The only isomorphisms in a Reedy category are the identities.

0.27.17 REMARK The notion of Reedy category is not invariant under the equiv-

alence of categories.

0.27.18 LEMMA If I is a Reedy category, then _I_OP is a Reedy category:

0.27.19 IEMMA If I and J are Reedy categories, then I X J is a Reedy category:

B > e
Ixg=1xJ
< <« <
Ixg=1x3.

0.27.20 EXAMPLE A is a Reedy category: deg([n]) = n with

->
A the injective maps

-~
A the surjective maps.

Fix a Reedy category 1.
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0.27.21 DEFINITION Iet F € Ob[I,C], where C is complete and cocomplete.

e The latching object of F at 1 is L.F, where Ly is camputed per

i
d(L/i), and the latching morphism of F at i is the canonical arrow LiF » Fi.

¢ The matching object of F at i is M.F, where M, is computed per

.(—
d(i\I), and the matching morphism of F at i is the canonical arrow Fi - MiF'

0.27.22 EXAMPIE Take I = A and given a simplical object X in sIc (= [AF,c]),

put
. sk My = g ) (tr(n}X)
cosk ™x = cosk ™ (er My .
Then
_ _ (n-1)
LX(= Ly X) = (sk X)
and

_ _ (n~-1)
Mnx(— M[n]x) = {cosk X)n.

[Note: Therefore LyX is an initial object in C and MjX is a final object in C.]

0.27.23 DEFINITION Iet C be a complete and cocomplete model category and
suppose that Z € Mor[I,Cl, say Z:F -+ G.

P

e F is a lewvelwise weak equivalence if v i € Ob I, Ei:Fi + Gi is a weak

equivalence in C.

® £ is a Reedy cofibration if v i € Ob I, the induced morphism

Fi || LG ~»Gi

L.F
1
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is a cofibration in C.

e £ is a Ready fibration if vV i € Ob I, the induced morphism

. .
F1i MiF xMiG Gi

is a fibration in C.

0.27.24 LEMMA Suppose that Z:F -+ G is a Reedy cofibration —— then v i € Ob I,
Ei:Fi + Gi is a cofibration in C.

[Note: In addition, the induced morphism LiE: P~ LG of latching objects
is a cofibration in C which is acyclic if E is a levelwise weak equivalence.]

0.27.25 LEMMA Suprose that E:F > G is a Reedy fibration —- then v i € Ob I,
Ei:Fi + Gi is a fibration in C.

[Note: In addition, the induced morphism MiE :MiF - MiG of matching objects

is a fibration in C which is acyclic if E is a levelwise weak equivalence.]

0.27.26 APPLICATION Every projective cofibration is a Reedy cofibration and

every injective fibration is a Reedy fibration.

0.27.27 DEFINITION The triple consisting of the classes of levelwise weak

equivalences, Reedy cofibrations, and Reedy fibrations is called the Reedy structure

on [I,C].

0.27.28 THEOREM The Reedy structure on [I,C] is a model structure. And
C left proper => [I,C] (Reedy Structure) left proper

C right proper => [I,C] (Reedy Structure) right proper.
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[Note: Iet E € Mor(I,C], say E:F - G.

e < is both a levelwise weak equivalence and a Reedy cofibration iff
v 1€ Ob I, the arrow

Fi || LG~6i
L.F
i
is an acyclic cofibration in C.

e * is both a levelwise weak equivalence and a Reedy fibration iff
v i€ Ob I, the arrow

F1 - MiF XMiG Gi

is an acyclic fibration in C.]

0.27.29 REMARK It follows from 0.27.12 that if I is direct, then
[I,C] (Projective Structure) = [I,C] (Reedy Structure)
and it follows from 0.27.14 that if I is inverse, then

[I,C] (Injective Structure) = [I,C] (Reedy Structure).

0.27.30 THEOREM Suppose that C is combinatorial -- then [I,C] (Reedy Structure)

is combinatorial.
0.27.31 LEMMA Take C combinatorial and consider the setup

ig,c

[1,C] (Projective Structure) [I,C] (Reedy Structure).
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Then (1&[_1"9, ld[};,Q]) is a model equivalence.

[Working from left to right, the weak equivalences are the same and every

projective cofibration is a Reedy cofibration.]

0.27.32 ILEMMA Take C combinatorial and consider the setup

ML,
>
[I,C] (Reedy Structure) [I,C] (Injective Structure).
<
id[Lg
Then (id[&g], id[}g]) is a model equivalence.

[Working from right to left, the weak equivalences are the same and every

injective fibration is a Reedy fibration.]

0.27.33 EXAMPIE Take I = A, C = SISET -~ then every projective cofibration

is a Reedy cofibration (cf. 0.27.26) and the containment is strict since, e.qg.,

YA is a cosimplicial object in g which is cofibrant in the Reedy structure but not

in the projective structure (a.k.a. structure L}.

0.27.34 THEOREM If I and J are Reedy categories, then for any complete and
cocomplete model category C,
[I % J,C] (Reedy Structure)
is the same as

[I,[3,C] (Reedy Structure)] (Reedy Structure).

Iet I be a Reedy category, C a complete and cocomplete model category, and



84.

let K:C + [I,C] be the constant diagram functor. Equip [I,C] with the Reedy

structure.

0.27.35 LEMMA The adjoint situation (K,limI) is a model pair iff v i € Ob I,

the latching category 3 (i/i) is either connected or enpty.

0.27.36 REMARK Iet I be a gmall category, C a combinatorial model category --
then [I,C] admits a model structure such that the adjoint situation (K,lim;) is

a model equivalence.

0.27.37 ILEMMA The adjoint situation (colimI,K) is a model pair iff v i € Ob I,

the matching category 93 (i\i_) is either connected or empty.

0.27.38 REMARK Let I be a small category, C a combinatorial model category ——
then [I,C] admits a model structure such that the adjoint situation (colim;,K) is

a model equivalence.

0.27.39 EXAMPIE Take I = A"

-

to realize 0.27.35 and take I = A to realize

0.27.37.

The theory outlined above is "classical" and certain important examples do
not fall within its scope, e.g. Segal's category I or Comnes's category A. To
accommodate these (and others of significance) it is necessary to extend the notion
of Reedy category so as to allow for nontrivial isomorphisms (cf. 0.27.16). For

a systematic account, consult Berger--MoerdijkT.

T arxiv:0809.3341




85.

0.28 EXAMPLE:TSISET,

I is the category whose objects are the finite setsn = {0,1,...,n} @ 2 0)
with base point 0 and whose morphisms are the base point preserving maps.
[Note: Suppose that y:m -+ n is a morphism in [ —- then the partition

| vi¢) =m

0<j<n
of m determines a pernutation 6:m + m such that v o 6 is order preserving. There-
fore vy has a unique factorization of the form o o 0, where o:m + n is order pre-
serving and o:m +~ m is a base point preserving permutation which is order preserving
in the fibers of v.]
Write I'SISET, for the full subcategory of [I,SISET,] whose objects are the

X:T -+ SISET, such that Xy = * (}{n =XMm)).

0.28.1 EXAMPLE let G be an abelian semigroup with unit. Using additive no-
tation, view " as the set of base point preserving functions n + G —- then the

rule X = si & defines an object in I'SISET,. Here the arrow & > &" attached

o ymm > n sends (gy,...,q) © @l’“"(}n)' where (Sj = (E. g if Y_l(j) z g,
Yi1i=]

3= 0 if v = .

Let S, (SISET,) be the category whose objects are the pointed simplicial left

Sn—-sets ~— then Sn(SISET,) is a model category (cf. 0.8).

[Note: The group of base point preserving permutations n +n is Sn and for

any X in I'SISET,, X is a pointed simplicial left Sn~set.]
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Let f_n be the full subcategory of T whose objects are them (m < n).
Assigning to the symbol _I_‘nSISEI'* the obvious interpretation, one can follow

the usual procedure and introduce tr ) :I'SISET, - I' SISET, and its left (right)

adoint ™ (o ™).

0.28.2 NOTATION Given an X in I'SISET,, put

sk ®x = & ® (o @y

cosk ™x = cosk ™ (= ®xy

and write
— _ (n-1)
LnX (= Ii.lX) = (sk X)n
- — (n-1)
Mnx (= MEX) = {cosk X)n
for the
latching
__ matching

objects of X atn (cf. 0.27.22).

0.28.3 DEFINITION Suppose that £ € Mor I'SISET,, say f:X » Y.

e f is a weak equivalence if v n = 1, fn:Xn >y is a weak equivalence

in S, (SISET,).

e f isa cofibration if ¥ n > 1, the induced morphism X 11 LY~>Y
L X
n
is a cofibration in Sn (SISET,).
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e f isa fibration if vn 2 1, the induced morphism X -+ M X X Y
n n N&‘:Y n

is a fibration in Sn (SISET,) .

Call these choices the Reedy structure on I'SISET,.

0.28.4 THEOREM I'SISET, in the Reedy structure is a proper model category.
0.29 BISIMPLICIAL SETS

The category [éQP,SISET] carries three proper combinatorial model structures:

The projective structure (= structure L) (cf. 0.26.6)
The Reedy structure

The injective structure (= structure R} (cf. 0.26.12).

0.29.1 LEMMA The projective structure is not the same as the Reedy structure
but the Reedy structure is the same as the injective structure (hence all objects

in the Reedy structure are cofibrant).

Given a category C, write BISIC for the functor category [(A % é)op,g] — then

by definition, a bisimplicial object in C is an object in BISIC.

X
0.29.2 EXAMPLE Suppose that C has finite products and let be simplicial
Y

objects in C — then the assignment {([n],[m]) - Xn X Ym defines a bisimplicial

object X x Y in C.

Specialize to C = SET — then an object in BISISET is called a bigimplicial

set and a morphisn in BISISET is called a bisimplicial map. Given a bisimplicial
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st X, put Xn o= X([n],[m]) — then there are horizontal operators
,

dr.l:X > X
i n,m n-1l,m
(0 <1 <n)
h
_ Si'xn,m Xn~!~1,m
and vertical operators
av:x  +X
3" "n,m n,m1
(0 <3<m.

v
sj 'Xn,m - Xn,m%{l.

The horizontal operators commite with the vertical operators, the simplicial
identities are satisfied horizontally and vertically, and thanks to the Yoneda

lemma, Nat(A[n,m],X) = Xn o’ where Aln,m] = A[n] X A[m].

r

[Note: Every simplicial set X can be regarded as a bisimplicial set by
trivializing its structure in either the horizontal or vertical direction, i.e.,

X =X or X =X.]
n,m m n,m n

0.29.3 EXAMPLE Every functor T:A - CAT gives rise to a functor X,:CAT - BISISET

by writing

X L([n], [m])

ner, ([T[m],I])

or still,

ner[T[m],I] ([n])

n

Nat (Aln] ,ner [T[m],I])

u

Nat (ner[n] ,ner[Tim],I])
= Mor (In], [T{m],I])

= Mor([n] x T[m],I)
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i

Mor (T[m] x [n],I)

1]

Mor (T[m], [[n] I_:E])

i

SpLn1,10)_,

S the singular functor.

0.29.4 REMARK There are two canonical identifications
EISISET ~ [A°F,SISET]
that send a bisimplicial set X to the cofunctors
[n] Xn,*

[m] - x* M.

Each bisimplicial map f£:X + Y induces simplicial maps

X - Y
n,* n,% n,*

£ X > Y

*,m: *,m *,m
and it can happen that v n, fn . is a simplicial weak equivalence but for some m,

f* o is not a simplicial weak equivalence.
1

[Take X = Alll, ¥ _ = {*} and let f be the unique bisimplicial map from

r

X ¥ —-- then vV n, fn,*:xn,* > Yn is the simplicial map A[1] - A[0], which is

sk

a simplicial weak equivalence, but £, .:X S 4 is the simplicial map
*#,0°7%,0 *,0

Af0] || A[0] + A[0], which is not a simplicial weak equivalence.]

[Note: The projective (injective) structure on [QOP,SISET] agives rise to
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two model structures on BISISET. In the one, a bisimplicial map f:X -+ Y is a weak

equivalence if v n, £ :X +Y is a simplicial weak equivalence and in the
n,*"n,*x n,*

other, a bisimplicial map f:X -+ Y is a weak equivalence if Vv m, £, m:X* o> Y, o
14 14 14

is a simplicial weak equivalence. The point then is that these model structures

are not the same.]

0.29.5 LFMMA Iet X be a bigimplicial sst -~ then

x = /P yor (), ) - x
and
) Mor (([n], [m]) ,—
X2 I ) % ’

[Theee formuilas are instances of the integral Yoneda lemma. ]

[Note: Here Mor is computed per A x A (and not (A x Q)OP) .1

Using the notation of Kan extensions, take C = QOP, D= éOP x QOP (= (A x é)op),
3 . op 0P _ ,OP
S = SET, and let K be the diagonal A~ + A™ x A™ —— then the functor K*:RBISISET ~
SISET is denoted by dia, thus
(dia X), = X([n],In]) =X

the operators being

_ v wv.h
di = didi = didi
s, = shsv = svsh.

i i7i i7i
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0.29.6 EXAMPLE Iet X,Y be simplicial ssts -~ then
dia(X x ¥Y) =X x Y (=> dia Aln,m] = Aln] x Alm]).
0.29.7 LEMMA Iet X be a bisimplicial st -~ then
agia x = M0 por (1)« wor (=, m) - x_

s [n]

u

Mor (—,[n]) x X_

s [m]

Iz

Mor (—, [m]) x X*’m

dia X =

t

—
E

Yooy
E)
g

4
-,

& )Mor([m] — .

[m] “%,m
0.29.8 DEFINITION The simplicial sst

[n]
S Mor (—, [n]) x Xn’*

~ f[n] X, Aln] (xn = xn'*)

is called the realization of X, written |X|.

[Note: Its geometric realization is the coend

f[n] [an % An.]
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0.29.9 ILEMMA Let f£:X + Y be a bisimplicial map. Assume: v n, £ :X > Y
N,* DN,* n,*

is a simplicial weak equivalence —— then |f

X| - |Y| is a simplicial weak equiv-

alence, thus dia f:dia X - dia Y is a simplicial weak equivalence.

0.29.10 ILEMMA Iet f:X ~ Y be a bisimplicial map. Assme: dia f:dia X > dia Y

is a Kan fibration - then

are Kan fibrations.

[The converse is false, i.e., it can happen that

vn, £ X -+ Y
N,% 1N,% n,*

vm, £ X > Y

*,M0" % ,m *,m

are Kan fibrations but dia f:dia X » dia Y is not a Kan fibration. In fact, there

are bisimplicial sets X such that the X xr¥, o are Kan complexes but dia X is not
14

'm
a Kan complex.]

The functor dia:BISISET - SISET has a left adjoint

dia:SISET -~ BISISET

and a right adjoint

dia +:SISET - BISISET.

® Iet A be a simplicial set -- then

@ia,A) (In], fm])

[k]
= /" Mor K[k, ([n], [m]) - A[k]
AP o AP

— —
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= T yor o® AOPu[k],[k]),c[n],[m])) - B

g

X

= skl Mor, ., (Unl, [n]), (K1, (kD) - B

= /5 wor (In], k1) x Mor (Ind, (1)) - 2.

[Note: To run a reality check, let X be a bisimplicial set and compute:

Mor(A,dia X) = Nat(A,dia X)

= f[k] Mor (a[k] ,dia X([k]))

Mor ([n], [k]) Xr'br([m],[k]))

N

Ty Y0t By Sy iy !

= Loy [y’ e MOT @y % Mor (Inl, k1) % Mor (m], (kD) X, )

vor (51 gror ([n1, k1) x wor (Im] , k1)) + Ax )

13

" n1? tml
~ Nat(dia‘A,X) = Mor (dia'A,x) .l

0.29.11 EXAMPLE Take A = A[n] -- then
dia,A[n] = Aln,n] (= Aln] x Alnl).

[For any bisimplicial set X, we have

Mor (dia,;ﬁ[n] X) = Mor{Aln],dia X) = X .
1 n,n

On the other hand,

Mor (A[n,n],X) = X n-]
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® Iet A be a simplicial set — then

(dia ‘I‘A) (Inl, [m])

% 4
= Iy BKD

Mor (([n], [m]), (Lk], [k]})
.{\OP % éOP

Mor,  ,(([k],[k]), (In], [m]))

—

= f[k] )
Mor([k], [n]) x Mor([k], [m])

= f[k] A)

Aln] k] x Afm] [k]

I

f k] (A

f[k] Mor (A[n] [k] x A[m] [k] ,Ak)

= Nat{A[n] x Alm],A) = Mor(A[n] x Alm],A).

[Note: To run a reality check, let X be a bisimplicial set and compute:
Mor{dia X,A) = Nat(dia X,A)

~ [, Mor(dia X([k]) ,Alkl])

k1]

14

or (£ /I vor (1k7, In]) x Mor(ik], [m])) - X0 By

= f[n]f[m]f[k] Mor(xn m

r

x A[n] k] x Alm] [k],3)

Aln] [k] x Alm] Ik])

]

T my Y ) M0 e By
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Aln][k] x Alm] [k,

tt

Tt g "0 % e g B

= f[n]f[m] Mor (Xn’m,Mor (Afn] x A[m],A))

R

Nat(¥X,dia +A) = Mor (X,dia +A) .

0.30 THE W-CONSTRUCTION

Using the notation of Kan extensions, take C = _Q_OP X QOP (= (A x Q)OP),

D= _QOP, S = SET, and let K be the ordinal sum QOP x QOP > QOP (i.e., ([n],[m]) -

[n+mt+l]) -- then the functor K*;SISET - BISISET is denoted by dec, thus

(dec X) ([n], [m]) = X omel’

the operations being

h _ . .
sh = : - X {0 £1i<n)
5T S5 m T e, 01 S
and
 d=q :X > X 0 <3 <m)
| n+l+g " ndmel ntm T

IA

37 S5 Fnemel T Fptmear 03 = m).

0.30.1 EXAMPLE We have

(dec A[n]) ([k], [n-k]) = A[n] (0 <k =n).

n+l

Put 770 = dec hence

.!.’
W:BISET ~ SISET.
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N.B. For any bisimplicial set X,

n
(ﬁmn = {(Xo,n"" 'xn,O) € EO Xk,n--k:d:)rxk,,n-k - d]1c1+f'ik+l,n-k—l (0 <k <mn)l.
And the
d;: (ﬁx)n M (ﬁx)n—l
(0 £ 1 <n)
5t (ﬁx)n M (ﬁx)n-l-l

are the prescriptions

N+ A4 h h
diz-{ - (dixo mite 'dlxi-l,n—i+l’dixi+l,n-i-l’ e 'dixn,O)

A4 h h
ree e rSp¥Xy . 8. X

\'4
S. ¥ = S. X . . .
( i"g, in-1""1"1,n-1 in,

1= n

where

§—‘ (Xoln,...,xn’o).

[Note: To shorten matters, the elements of (r?ax)n can be regarded as

(n+1) —tuples

n
(xo, cen ,xn) € k'[;]"o Xk,n-k
such that

gy = d]r{)+lxk+l (0 sk <m).]

0.30.2 LEMMA The rule that assigns to each bisimplicial set X the simplicial
map

Ex:dia X > WX
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given by
- _ h.n n-1.v h n-i v i v.n
(“X)X = ((dl) X, (dz dOX;- ooy (di-l-l) (do) Xyeear (do) x) x € Xn,n)
defines a natural transformation
Z:dia > W.

0.30.3 THEOREM For every X,

is a simplicial weak equivalence.

0.30.4 DEFINITION A bisimplicial map f:X + Y is a diagonal weak equivalence

if dia f is a simplicial weak equivalence.

|X] X
[Note: Recalling that ] ] are the realizations of {cf. 0.29.8),
Y Y
there is a commutative diagram
£
[1x1] > |yl
|dia x| > |dia Y|,

|dia f|

o f is a diagonal weak equivalence iff |f| is a simplicial weak equivalence.]

0.30.5 1LEMMA Iet £:X + Y be a bisimplicial map -~ then f is a diagonal weak
equivalence iff WE:WX > WY is a simplicial weak equivalence.
PROCF Consider the commmitative diagram

)
fe

X -
dia X > WX
diafl lﬁf
dia Y > WY

h{fn
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and quote 0.30.3.

0.31 BISISET:MOERDIJK STRUCTURE

Given a bisimplicial map f:X -+ Y, call £ a weak equivalence if f is a diagonal
weak equivalence, a fibration if dia f is a Kan fibration, and a cofibration if £
has the LIP w.r.t. acyclic fibrations — then with these choices, BISISET is a
proper combinatorial model category.

N.B. Every cofibration in the Moerdijk structure is a monomorphism.

0.31.1 REMARK The Moerdijk structure on BISISET is not the same as the induced
projective or injective structures. This is because the weak equivalences in these
structures are necessarily weak equivalences in the Moerdijk structure (cf. 0.29.9)

but not conversely.

0.31.2 ILEMMA Consider the setup

>
SISET (Kan Structure) BISISET (Moerdiijk Structure).
<

dia

Then (dia,,dia) is a model pair.

[One has only to note that by construction, dia is a right model functor.]

Ldia,
Therefore exist and (Ldia,,Rdia) is an adjoint pair.

Rdia

0.31.3 ILeMMA The model pair (@ia,,dia) is a model equivalence.
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Therefore the adjoint pair (ldia ,Rdia) is an adpint eguivalence of homotopy

categories:

HSISET HEISISET .

There is another proper combinatorial model structure on BISISET that is
analogous to the Moerdijk structure, the role of "dia" being played by "W'. Thus
the weak equivalences are again the diagonal weak equivalences but now a bisimplicial
map f:X > Y is a fibration if Wf is a Kan fibration and a cofibration if it has the
IIP w.r.t. acyclic fibrations.

Note: We shall refer to this model structure on BISISET as the i;:*—strucmre.]

N.B. Every cofibration in the Wstructure is a monomorphism.

0.32.2 LEMMA Let f:X »> Y be a bisimplicial map. Asaume: dia f is a Kan
fibration —— then Wf is a Kan fibration.
Therefore
cof (W-Structure) < cof Moerdijk Structure).

0.32 BISISET:0THER MODEL STRUCTURES

0.32.1 NOTATION Iet
M < Mor EISISET

be the class of monomorphisns and let M ¢ M be the set of inclusions

Aln] x Alm] U Aln] x Aln] > Afn] x Alm].

0.32.2 IEMMA We have

M= 1IP®RIP M) {cf. 0.20.5).
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0.32.3 THEOREM There is a model structure on BISISET in which the weak
equivalences are the diagonal weak equivalences and the cofibrations are the
monomor phians.

[Note: This structure is proper and combinatorial.]

0.32.4 THEORFM There is a model structure on BISISET in which the weak

equivalences are the bisimplicial maps f:X - Y such that Vv n,

f X -~ Y
n,*" " n,x n,*

is a simplicial weak equivalence and the cofibrations are the monomorphisms.

[Note: This structure is proper and combinatorial.]

0.32.5 THEOREM There is a model structure on BISISET in which the weak
equivalences are the bisimplicial maps £:X -+ Y such that v m,

f X - Y
*¥,m *,m *,m

is a categorical weak equivalence and the cofibrations are the monomorphisns.

[Note: This structure is left proper and combinatorial.]
0.33 MODEL LOCALIZATION
Let C be a model category and let C < Mor C be a class of morphisams.

0.33.1 DEFINITION A model localization of C at C is a pair (E'CE'L ), where

¢

Ec(_: is a model category and I_C:f_: > _I_'CC_: is a left model functor such that v £ € C,

LLoLyE is an isomorphian in HLCr (LoCrLo) being initial among all pairs having

this property, i.e., for any model category C' and for any left model functor

F:C > C' such that vV £ € C, LFL,f is an isomorphisn in HC', there exists a unique
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left model functor E:gcg + C' such that F = F o Lo-

0.33.2 EXAMPLE Take C = / and let L.C = C, L, = id. — then the pair ((_;,idc)
is a model localization of C at W.

Given C and C, the central question is the existence of the pair LS Lo)
(uniqueness up to isomorphism is clear) and for this it will be necessary to impose
some conditions an C and C.

Assunme:

e C is left proper and combinatorial.

e ( is a set.
0.33.3 NOTATION let WC be the smallest class subject to:
1) wc contains (! and C.

) wc satisfies the 2 out of 3 condition (cf. 2.3.13).

(3) wc N cof is a stable class.

0.33.4 THEOREM Under the preceding hypotheses, C is a left proper combina-
torial model category with weak equivalences wc, cofibrations cof, fibrations

RLP (Wc n cof).

[The proof hinges on 0.25.5, the key point being that e < C(») is an

accessible subcategory of C{(»).]

Write L.C for C equipped with the model structure per 0.33.4 and let L, = id..

0.33.5 THEOREM The pair (L.C,L,) is a model localization of C at C.
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[Let F:C » C' be a left model functor. SinceF =F o LC' it suffices to

check that F is a left model functor when viewed as a functor from L.C to C'.

The fact that F preserves cofibrations is obvious, the fact the F preserves acyclic

cofibrations being slightly less so.]

0.33.6 DEFINITION A presentation of a model category C is a small category I,

a set S < Mor[I,SISET], and a model eguivalence
Lo [I,SISET] (Projective Structure) - C.
[Note: Recall that
[I,SISET] (Projective Structure)

is a left proper combinatorial model category (€f. 0.26.6 and 0.26.13), = Lg...

makes s=nse.]

./f.

0.33.7 THEOREM Every combinatorial model category has a presentation.

0.33.8 NOTATION Given a small category I, let PREI = [;OP,QEE] = i) and put

SPREL = [1°F,SISET].

N.B. There is a canonical arrow

L]

which will be denoted by SYI.

0.33.9 RAPPEL lLet C be a cocomplete category — then for every T € Ob[I,C]

¥ bugger, Adv. Math, 164 (2001), 177-201.
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there exists I'; € Ob[L,C] swch that T = I o ¥

H

0.33.10 LEMMA Suppose that C is a cocomplete model category and let T:I > C

be a functor —- then there exists a functor s[';:SPREI - C and a natural trans-
forma tion
H:SI’T o S:YE + T

such that v i € b I,

I/Ii: (SI'T o SYI)i > Ti

is a weak equivalence.

0.34 MIXING

Let C be a finitely complete and finitely cocomplete category. Suppose that
C carries two model structures

Ml:wl,cofl,f'l bl

Mzzwz,cofz,ﬁbz.

0.34.1 THEOREM Assuire

ﬁ'bl c ﬁbz.

Then

WZ,LLP (w2 n ﬁbl),ﬁbl

is a model structure on C which is left (right) proper if this is the case of Mz.
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0.34.2 DEFINITION The model structure arising from 0.34.1 is said to be mixed.

0.34.3 EXAMPIE Take C = TOP —— then TOP carries its Strgm structure and its
Quillen structure. Since a homotopy equivalence is a weak homo topy equivalence
and since a Hurewicz fibration is a Serre filration, there is a mixed model struc-
ture on TOP whose weak equivalences are the weak homotopy equivalences and whose
fibrations are the Hurewicz fibrations.

[Note: We shall refer to this model structure on TOP as the Cole structire.

Consider the setup
1dmop
>

TOP ((ble Structure) < TOP (Strgm Structure).

mop

Then (mg,ldlo?_) is a model pair.]

0.34.4 IFEMMA X is cofibrant in the mixed model structure iff X is cofibrant

in model structure Ml and there exists an arrow wl:X' + X, where W € wl and X'

is cofibrant in model structure MZ‘

0.34.5 EXAMPIE Consider the Cole structure on TOP —- then every cofibrant X
is necessarily a CW space. In fact, for such an X, 3 an arrow w:X' -+ X, where w
is a lomotopy equivalence and X' is cofibrant in the Quillen structure. But X'

is a CW space (cf. 0.2.1), hence the same holds for X.

0.35 HOMOTOPY PULLBACKS

Iet C be a right proper model category —— then a commutative diagram
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b
v
N

in C is said to be a homotopy pullback if for some factorization Y s ¥ —>7

of g, the induced morphism WX X, Y is a weak equivalence. This definition is

essentially independent of the choice of the factorization of g since any two such

factorizations
Ty - ¥ >>7
Y 5 g >>2
lead to a commutative diagram
W > X %, ¥
}.
W > @
l...
W e, X ><Z e

and it does not matter whether one factors g or £.

[Note: The dual notion is homotopy pushout. ]

0.35.1 ILEMMA A pullback square

n
P ~ Y
g g
X > 4
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is a homo topy pallback provided g is a fibration.

id, g

[Take Y = Y and factor g as Y > Y > Z.]

0.35.2 LEMMA A commutative diagram

n
W > Y
"
X > &
£
n
where £ is a weak equivalence, is a homotopy pallback iff the arrow W >Y isa
weak equivalence.
£ _ g
PROCF Factor g as Y > Y > Z and form the commutative diagram
n
W > Y
] :
o - n M
W > X Y > Y

I
(et

L X
Lo}

where o is the induced morphism and 'é,ﬁ are the @ojections -~ then the claim is
that p is a weak equivalence iff n is a weak equivalence. Since C is right proper
and g is a fibration, it follows that N is a weak equivalence. But £ o n=Tnoe p
and f is a weak equivalence. Therefore

PW.e. =>TopwWe, =>Ffonw.e =>1w.e.

—

nwe., =f onw.e. =

o)

° p W.e. => p W.e.
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0.35.3 COMPOSITION LEMMA Consider the commutative diagram

.&..—
P—
® — @

in a right proper model category C. Suppose that both the sguares are lomotopy
pallbacks -~ then the rectangle is a homotopy pullback. Conversely, if the rectangle
and the second square are homotopy pullbacks, then the first square is a homotopy

pallback.

g9

0.35.4 LEMMA Suppose that C is a right proper model category. Ilet Y > Z
be an arrow in C —-- then the following conditions are equivalent.

£

(1) For every arrow X > 7, the pullback square

XXZY > Y

is a omotopy pullback.

u £
> X and for every arrow X

(2) For every weak equivalence X' > 7,
the arrow

X x, ¥ — X %X, Y

in the comutative diagram
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X! XZYm>X

X! >

is a weak equivalence.
PROCF
L) => ) The assmptions, in conjunction with 0.35.3, imply that the

sjuare v

is a lomotopy pullback. Therefare v is a weak equivalence (cf. 0.35.2).

£

~

>%, factor it as X — X —>>7 and

2) => (1) Given an arrow X

consider the commutative diagram

Then the first square is a homotopy pullback (cf. 0.35.2), as is the second square

{cf. 0.35.1). Therefore the rectangle is a homptopy pullback (cf. 0.35.3).

g9
0.35.5 DEFINITION Let C be a model category —— then an arrow Y

> Z in C

is said to be a lomotopy fibration if in any commutative diagram
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v
XXZY———-—————-—>X><ZY > Y
X! > X > 7,
u f

v is a weak equivalence whenever u is a weak equivalence.

N.B. If C is right proper, then every fikration is a homotopy fikration but,

in general, there will be homotopy fibrations that are not fibrations.

0.35.6 EXAMPLE Take C = TOP (Strgm Structure} -- then fibration = Hurewicz

fibration. On the other hand, the pullback square

X—

is a homotopy pullback provided g is a Dold fibration.

[Note: Recall that Hurewicz => Dold but Dold #> Hurewicz.]

0.35.7 EXAMPLE Take C = SISET (Kan Structure) -- then fibration = Kan fibration
and the fibrant cobjects are the Kan complexes. Still, for every simplicial set Y,

the arrow Y + % is a homotopy fibration.

0.35.8 LEMMA The class of homotopy fibrations is clossd under composition and

the formation of retracts and is pullback stable.
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A: FIBERED CATEGORIES

A.1 GROTHENDIECK FIBRATIONS

Iet C and D be categories and let F:C > D be a functor.

A.1.1 DEFINITION Given Y € Cb D, the fiber o of F over Y is the subcategory
of C whose objects are the X € Ob C such that FX = Y and whose morphisms are the

arrows £ € Mor C such that Ff = idY.

[Note: In general, o is not full and it may very well be the case that Y

and Y' are isomorphic, yet G, = 0 and C = 0 (cf. A.1.20).]
Y'

N.B. There is a pullback square

IY

A\

e §
P 9

\'4
19

A.1.2 NOTATION Given X,X' € b gy' let MorY(X,X') stand for the set of

morphisns X > X' in Cy-

A.1.3 DEFINITION Iet X,X' € Ob C and let u € Mor (X,X"') - then u is pre-

horizontal if vV morphism w:x0 + X' of C such that Fw = Fu, there exists a unique

morphisn v € MorFX(XO,X) such that u o v = w:



u
> X!
V[ ] w
XO XO.
[Note: Iet
Moru(xo,x‘) = {w e Mor(xo,x‘) :Fw = Ful.

Then there is an arrow
BbrEx(XO,X) +mrn(x0'X ),
viz. v >u e v (in fact, F{u ¢ v) =Fu°Fv=FuoidFKw}?’u) and the condition

that u be prehorizontal is that v XO € C_:Fx, this arrow is bijective.]

A.1.4 DEFINITION Ilet X,X' € Ob C and let u € Mor(X,X') — then u is preop-

horizontal if v morphism w:X - X, of C such that Fw = Fu, there exists a unique

0
morphism v € Mor (X',XO) such that v ¢ u = w:
FX'
u
X > X!
wl l v
XO — XO’

[Note: ILet

Moru(x,xo) = {w emr(x,xo) :Fw = Pul.

Then there is an arrow

1
MorFX' x ,XO) > Ivbru(x,xo) '

viz.,v->v e u (in fact, F{v o u) = Fy o Fu = id ° Fu = Fu) and the condition
Exl



that u be preophorizontal is that v Xg€C this arrow is bijective.]

EX'
A.1.5 LEMMA The isomorphisms in C are prehorizontal (preophorizontal).

A.1.6 REMARK The composite of two prehorizontal (preophorizontal) morphisms

need not be prehorizontal (preophorizontal).

A.1.7 DEFINITION The functor F:C - D is a Grothendieck prefibration if for

any object X' € Ob C and any morphism g:Y - FX', there exists a prehorizontal

morphism u:X - X' such that Fu = 4.

A.1.8 DEFINITION The functor F:C - D is a Grothendieck preopfibration if for

any object X € Ob C and any morphism g:FX - Y, there exists a preophorizontal

morphism u:X » X' such that Fu = g.

A.1.9 ILEMMA The functor F:C - D is a Grothendieck prefibration iff v ¥ € Ob D,

the canonical functor
QY +~ ¥Y\C (X -~ {idy,X))

has a right adjoint.

A.1.10 LEMMA The functor F:C -~ D is a Grothendieck preopfibration iff

¥ ¥ € Ob D, the canonical functor
o >SN (X~ (X,id))

has a left adjoint.

A.1.11 DEFINITION lLet X,X' € Ob C and let u € Mor(X,X') — then u is horizontal




if v morphism w:X, - X' of C and v factorization

0

Fw=Fu o x (x ber(FXO,FX)):

there exists a unique morphism V:XO +Xsuch that Fv=x and u o v = w.

Schematically:

N.B. If u is horizontal, then u is prehorizontal. Proof: For Fw = Fu =>

FX0=FX, so we can take x = ldFX, hence Fv = 1de=> vepbrm(xo,x).

A.1.12 DEFINITION Let X,X' € Ob C and let u € Mor (X,X') — then u is ophor-

izontal if v morphism w:X > X, of C and v factorization

0
Fw = x o Fu (xEMDr(FX',FXO)),

there exists a unique morphism v:X' - X, such that Fv = x and v o u = w.

Schematically:

N.B. If u is ophorizontal, then u is preophorizontal. Proof: For Fw = Fu =>

E‘X0=E'X‘,sowecantakex=id , hence Fv = id => v € Mor (x',xo).
X! X! X!

A.1.13 DEFINITION The functor F:C »~ D is a Grothendieck fibration if for any

object X' € Ob C and any morphism g:Y » FX', there exists a horizontal morphism

u:X -+ X' such that Fu = g.



N.B. If @1:X » X' is another horizontal morphism such that Fi = g, then 3 a

unique isomorphism £ € Mor G such that 4 = u o f.

{We have
4 Fu
! )~(---->X >X'!,lF§( ~ FX >FX'l
v u idY Fa
u Fu
= ~ |
I)ge;...m..>}<; ~>X‘i,|}3‘x > FX —> FX'
v u idY Fu *
Here
_E‘v=idY&u°v=ﬁ
__Fv=idY&uov=u.
Therefore
T Uevev=uoev=auqu
o u°evoevV=1ueV=uy,
S0

Vo v=id_
X

Vovzidx.]

A.1.14 DEFINITION The functor F:C + D is a Grothendieck opfibration if for

any object X € Ob C and any morphism g:FX + Y, there exists an ophorizontal mor-

phism u:X > X' such that Fu = g.

N.B. If t:X ~ X' is another ophorizontal morphism such that Fu = g, then 3



a wmique isomorphism £ € Mor Gy such that 0 = £ o u (cf. supra).

A.1.15 LEMMA The functor F:C -+ D is a Grothendieck fibration iff the functor

FF.cF ]_)_OP is a Grothendieck opfibration.

-

A.1.16 EXAMPLE The functor pczg -+ 1 is a Grothendieck fibration.
[Note: The functor 0 > C is a Grothendieck fibration (all requirements are
satisfied vacuously).]
A.1.17 EXAMPLE The codomain functor
cod:[2,C] (= C(®)) > C

is a Grothendieck fibration provided C has pullbacks.

[Note: The fiber [2,C]l, of cod over X € Ob C can be identified with C/X.1

G TG
A.1.18 EXAMPLE Given groups , denote by } ~ the groupoids having a
H H
T Mor (x,%) =G
single object % with -— then a group homomorphism ¢:G -~ H can

be regarded as a functor ¢:G - H and, as such, ¢ is a Grothendieck fibration iff

¢ is surjective.

[Note: The fiber G, of ¢ over * "is" Ker ¢.]

A.1.19 EXAMPIE Let U:TOP - SET be the forgetful functor -- then U is a

Grothendieck fibration. To see this, consider a morphism g:Y -~ UX', where Y is



a set and X' is a topological space. Denote by X the topological space that
arises by equipping Y with the initial tooology per g (i.e., with the smallest
topology such that g is continuous when viewed as a function from Y to X') ——

then for any topological space Xyr @ function Xy > X is continuous iff the compo-
sition XO + X » X' is continuous, from which it follows that the arrow X -~ X' is

horizontal.

[Note: The fiber 'IOPY of U over Y is the partially ordered set of topologies

on Y thought of as a category. ]

A.1.20 REMARK Suppose that F:C + D is a Grothendieck fibration. Iet Y,Y' € Ob D

and let y:Y > Y' be an isomorphism —— then C =0=>C, = 0.
Y' =

[To get a contradiction, assume 3 X € Ob C:FX = Y. Since w—le’ + Y = FX, 3

a horizontal u':X' - X such that Fu' = w-l, hence FX' = Y'.]
A.1.21 IEMMA The isomorphisms in C are horizontal (ophorizontal).

A.1.22 IFMMA Iet u € Mor(X,X'), u' € Mor(X',X''). Assume: u' is horizontal —
then u' o u is horizontal iff u is horizontal.
[Note: Therefore the class of horizontal morphisms is closed under composition

(cf. A.1.6).]

A.1.23 LEMMA Suppose that F:C ~ D is a Grothendieck fibration. ILet
u € Mor(X,X') be horizontal. Assume: Fu is an isomorphism —— then u is an iso-
rorphism.

PROOF In the definition of horizontal, take XO = X', w= id , and consider
xl



the factorization

Fw=1id =Fue (Fu) ~ (x= (Fu) %).
F}{t

Choose v:X' + X accordingly, thus u o v = id , so v is a right inverse for u.
Xt

But thanks to A.1.21 and A.1.22, v is horizontal. Since Fv = (Fu)-l, the argument

can be repeated to get a right inverse for v. Therefore u is an isomorphism.

A.1.24 RAPPEL Consider CAT (Internal Structure) (cf. 0.12) —- then by def-
inition, a functor F:C + D is a fibration if v X € Ob C and v isomorphism §:FX > Y
in D, 3 an isomorphism ¢:X + X' in C such that F¢ = y. Equivalently, a functor
F:C > D is a fibration iff v X' € Ob C and Vv isomorphism y:Y » FX' in D, 3 an
isomorphism ¢:X - X' in C such that F¢ = .

0]

[Note: In this connection, observe that F is a fibration iff F~ is a

fibration. ]

A.1.25 THEOREM Let C and D be small categories —- then a Grothendieck fibration
F:C -~ D is a fibration in CAT (Internal Structure).

PROOF Let y:Y » FX' be an isomorphism in D -- then there exists a horizontal
morphism ¢:X - X' such that F$ = . But, in view of A.1l.23, ¢ is necessarily an
isomorphism in C.

[Note: The same conclusion obtains if instead F:C + D is a Grothendieck

opfirbration. ]
Suppose that F:C » D is a Grothendieck fibration.

A.1.26 IEMMA Consider any object X' € Ob C and any morphism g:Y - FX'.

Suppose that X ~ X' is prehorizontal and Fu = g —— then U is horizontal.



PROOF Choose a horizontal u:X -+ X' such that Fu = g -~ then u is prehorizontal

o]

so 3 a unique isomorphism £ € Mor gY such that U = u ¢ f. Therefore u is horizontal

(cf. A.1.21 and A.1.22).

A.1.27 THEOREM ILet F:C - D be a functor -— then F is a Grothendieck fibration
iff

1. vX' €O Cand V g€ Mor(Y,FX'), I a prehorizontal u € Mor(;(,x'):Fﬁ = q;

2. The composition of two prehorizontal morphisms is prehorizontal.

PROOF The conditions are clearly necessary (for point 2, cf. A.1.26 and
recall A.1.22). Turning to the sufficiency, one has only to prove that the u of
point 1 is actually horizontal. Consider a morphism w:xo +~ X' of C and a factor-
ization

Fw=Fiox (x€Mor(FX,FX).

Then there is a prehorizontal U

OEIv:br(XO,X):FuO=x(=>FXO=FXO). Here
% 0w
4
XO > X > X
and
F(ﬁOﬁO)=FﬁOFﬁO=Eﬁ°x=Fw.

But @ o U, is prehorizontal, thus there exists a wnique morphism ¥, € Mor _ (Xo,fio)
FX

0
suchthatuouoovo'——w:

H
ON
v
"

<&
o
S
4
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°FV0=FUO°3~C1~= O=xa.nduov=

Qou, oV, =w. Toestablish that v is unique, let v'iX, > X be another morphism

with Fv' = xand U o v' = w. Since ﬁo is prehorizontal and since Fv' = x = Fﬁo,

the diagram
. 8 .
XO > X
A
v! [ ]vl
X Xy

A.1.28 THEOREM Suppose that F:C -~ D is a Grothendieck fibration. Iet

L = the morphisms rendered invertible by F

R = the horizontal morphisms.

Then the pair (L,R) is a w.f.s. on C.

A.1.29 EXAMPLE Assume that C has pullbacks and work with cod:C(+) ~ C
(cf. A.1.17). Consider a morphism (¢,¢): (X,£,¥Y) ~ (X', £',Y') in C(>), so

o)
X 5 X!

f f!

Y o Y
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commutes —— then (¢,y¥) is horizontal iff this square is a pullback square. There-
fore the category C(») admits a w.f.s. (L,R) in which R is the class of pullback

squares. On the other hand, (¢,y) € L iff ¢y is invertible.

Fix a category D —- then by FIB(D) we shall understand the metacategory
whose objects are the pairs (C,F), where F:C -~ D is a Grothendieck fibration, and
whose morphisms ¢:(C,F) +~ (C',F') are the functors ¢:C +~ C' that send horizontal
arrows to horizontal arrows subject to F' o ¢ = F.

[Note: Such a ¢ is called a fibered functor from C to C'.]

. . '
N.B. VY € Ob D, ¢ restricts to a functor <I>Y.CY > CY

A.1.30 EXAMPIE Take D = 1 — then FIB(l) is CAT.

A.1.31 DEFINITION Suppose that F:C -+ D and F':C' ~ D are Grothendieck fi-
brations —- then a fibered functor ¢:C > C' is said to be an equivalence if there

exists a fibered functor ¢':C' -~ C and natural isomorphisms

<I>'o<1>->idg
o ' > igd .
Cl

A.1.32 IEMMA The fibered functor ¢:C + C' is an equivalence iff v Y € Ob D,

the functor @Y:QY > g.;{ is an equivalence of categories.

Because of A.1.15, in so far as the theory is concerned, it suffices to deal
with Grothendieck fibrations. Still, Grothendieck opfibrations are pervasive

(cf. B.2.6). Here is a specific instance.
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A.1.33 EXAMPIE Let C be a category —- then the twisted arrow category C(~>)

of C is the category whose objects are the arrows f:X » Y of C and whose morphisms

¢ € Mor(X',X)
f » £' are the pairs (¢,¢): for which the square
¥ € Mor(Y,Y")
£
X > Y
¢ lkb
X! 5 Y!
fl

commutes, thus

idf= (ldX'ldY) , @) e (d,0) = (b o 'Y o ).

e

C
Denote by ~  the canonical projections
t
_ ¢
c(s) > c®
§(~>) *> 91
hence
- S(_;f = dom f Sg((i)ﬂl)) = ¢
3 tgf = cod f, tg((brw} = wl
-
and ~ are Grothendieck opfibrations.
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[Note: The functor

A:C(~>) » ¢ (~>)

that sends £ to £ and (¢,y) to (Y,$) is an isomorphism of categories and

s o A=+t

C_:OP c
t o A= g_.]
gop C

N.B. If F:C ~ D is a functor, then the prescription

f-Ff
(¢,9) ~ (F$,FY)

defines a functor rendering the diagram

s t

C C
F e T ) ———— ¢
o { }F
% D(~>) > D

g i

commuitative.

A.1.34 REMARK To relativise the preceding setup, let C,D be categories and
let F:C » D be a functor — then F(~>) is the category whose objects are the
triples (X,f,Y), where X € Ob C, Y € Gb D, f:Y +~ FX, and whose morphisms (X,£,Y) -

¢ € Mor(X,X')

X',£',Y") are the pairs (¢,y): for which the square
P € Mor(Y',Y)
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f
> FX
IDI le)
Y! > FX!
ff

commutes, thus

id(x,f’Y) = (id.x,idy) ; (B',07) ° (o,9) = (¢ o ¢, © Y').

Sp
Denote by the canonical projections
e
T p(e) - e
E(~>) > G,
hence
spX,£,Y) =Y o osple) =y
tF(X'f'Y) = X, tF(d’I\P) = ¢,
B
and are Grothendieck opfibrations.
t

[Note: Take C =D, F = id,, and switch the labeling of the data to get

id (=) = ¢(=2).]

A.2 CLOSURE PROPERTIES

A.2.1 IEMMA If F:C > D and G:D » E are Grothendieck fibrations, then so is
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their composition G o F:C —~ E.

A.2.2 1LEMMA The projection functor
CxD+D

is a Grothendieck fibration.

A.2.3 LEMMA If F:C > D and F':C' + D' are Grothendieck fibrations, then the
product functor
F x F':C x C' > D x D'

is a Grothendieck fibration.

A.2.4 IEMMA If

c e
D' - > D

is a pullback square in €AT, then

F a Grothendieck fibration => F' a Grothendieck fibration.

A.2.5 EXAMPIE Iet A be a category, a:A -~ C a finctor — then there is a pull-

back square
|id,,al > C()
gl a l cod
A > C

and gf o is a Grothendieck fibration.
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A.2.6 LEMMA Let F:C > D be a Grothendieck fibration and let I be a small
category -- then

F*:[_I_IQ] e [:_[_19]

is a Grothendieck fibration.

A.2.7 EXAMPIE Define <I,C> by the pullback square

<L, —— L,
D —— [L,D].
K

Then the arrow <I,C> - D is a Grothendieck fibration.
[Note: Iet Y € Gb D -~ then the objects of the fiber <§,C_3>Y are those

functors A:I - C such that F, A = KY (the constant diagram functor at Y).]

A.3 CATEGORIES FIBERED IN GROUPOIDS

A.3.1 DEFINITION Suppose that F:C » D is a Grothendieck fibration —— then C

is fibered in groupoids by F if v Y € Ob D, C_:Y is a groupoid.

A.3.2 RAPPEL Iet G be a topological group, X a topological space. Suppose

XxG=»X
that X is a free right G-space: ~- then X is said to be principal

(x,9) »x - g
provided that the continuous bijection 6:X X G > X x X/G X defined by (x,9) =

(x,x « g) is a homeomorphism.
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Iet G be a topological group —- then an X in TOP/B is said to be a principal

G-space over B if X is a principal G-space, B is a trivial G-space, the projection

X »~ B is open, surjective, and equivariant, and G operates transitively on the

fibers. There is a commutative diagram

X X
X/G > B

and the arrow X/G -~ B is a homeomorphism,

A.3.3 NOTATICN Let
PRZENE ,G
be the category whose objects are the principal G-spaces over B and whose morphisms

are the equivariant continuous functions over B, thus

$
X > X!
B B,

with ¢ equivariant.

is an isomorphism.

A.3.4 FACT Every morphism in PRINE,G

A.3.5 EXAMPLE Iet G be a topological group -- then the classifying stack of

G is the category PRIN(G) whose objects are the principal G-spaces X -+ B and

whose morphisms (¢,f): (X ~ B) » (X' » B') are the commutative diagrams

b
X > X'
| |
B > B,
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where ¢ is equivariant. Define now a functor F:PRIN(G) - TOP by F(X ~ B) = B
and F(¢,f) = £ — then F is a Grothendieck fibration. Moreover, PRIN(G) is

fibered in groupoids by F:

PRIN(G) = PRIN; .,

which is a groupoid by A.3.4.

A.3.6 LEMMA If C is fibered in groupoids by F, then every morphism in C is
horizantal.
PROCF Iet f € Mor{X,X') (X,X' € Ob C), thus Ff:FX >~ FX', so one can find a

horizontal uy X, > X' such that Fu, = Ff. But u, is necessarily prehorizontal,

hence there exists a unique morphism v € MorFx (X,XO) such that u o v = f:

0
u
]
X0 > X
VT Tf
X X.

Since u is horizontal and v is an isomorphism, it follows that £ is horizontal

(cf. A.1.21 and A.1.22).

N.B. Suppose that

C is fibered in groupoids by F

C' is fibered in groupoids by F'.

Then every functor ¢:C -+ C' such that F' ¢ ¢ = F is automatically a fibered functor

from C to C'.
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A.3.7 LEMMA Let F:C -~ D be a functor. Assume: Every arrow in C is hori-
zontal and for any morphism g:Y -+ FX', there exists a morphiam u:X - X' such
that Fu = g -- then F is a Grothendieck fibration and C is fibered in groupoids
by F.

PROOF The conditions obviously imply that F is a Grothendieck fibration.
Consider now an arrow f:X - X' of (_ZY for some ¥ € Ob D — then f is horizontal,

so there exists a unique morphism v El\*brY(X‘,X) FX =Y =FX') such that £ o v =

id
X!
£
X > X!
v id (cf. A.1.3).
Xl
X! Xt

Therefore every arrow in QY has a right inverse. But this means in particular that

v must have a right inverse, thus f is invertible.

Let F:C ~ D be a Grothendieck fibration. Denote by ghor the subcategory of

C whose objects are the objects of C and whose morphisms are the horizontal arrows

of C. Put

Fhor =F Ighor'

A.3.8 LRMMA Fhor:ghor +Dis a Grothendieck fibration and (-':'!'x)r is fibered in

groupoids by Fhor'

A.3.9 RAPPEL A category is said to be discrete if all its morphisms are

identities.
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[Note: Functors between discrete categories correspond to functions on their

underlying classes. ]

A.3.10 EXAMPLE Every class is a discrete category and every set is a small
discrete category.

A.3.11 ILEMMA A category C is equivalent to a discrete category iff C is a
groupoid with the property that v X,X' € Ob C, there is at most one morphism from

X to X'.

Every discrete category is, of course, a groupoid. So, if F:C +D is a
Grothendieck fibration, then the statement that C is "fibered in discrete categories

by F" (or, in brief, that C is discretely fibered by F) is a special case of A.3.1.

A.3.12 EXAMPLE Given a category C, Vv X € Ob C, the cancnical functor UgiC/X > C

is a Grothendieck fibration. Moreover, C/X is discretely fibered by UX (VYeEC,

the fiber ((__;/X)Y is the discrete groupoid whose set of objects is Mor(Y,X)).

A.3.13 IEMMA Iet F:C ~ D be a functor — then C is discretely fibered by F iff
for any morphism g:Y » FX', there exists a wnique morphism u:X -+ X' such that Fu = g.
PROCF Assume first that C is discretely fibered by F, choose u:X +~ X' per g
and consider a second arrow U:X -+ X' per g — then Fi = Fu. Since u is horizontal
{(cf. A.3.6), thus is prehorizontal, there exists a unigque morphism v € NbrFX(fi,X)

sucht that u o v = U:

=
4
»

<
ey
=

Pt
e
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But the fiber ng is discrete, hence X = X and v is the identity, so i =u. In

the other direction, consider a setup

w Fw

XO---->X-——-—“-——>X' ; FX > FX » FX.
u pid Fua

With "x" playing the role of "g", let V:XO + X be the unique morphism such that

Fv = x —— then

u e V:XO—>~X' => F(u o v}:FX., > FX'

0

weX, > X' => F(w) :FX

'
0 O-*FX.

Accordingly, by uniqueness, u o v = w. Therefore every arrow in C is horizontal
which implies that C is fibered in groupoids by F (cf. A.3.7). That the fibers

are discrete is clear.
A.4 CLEAVAGES AND SPLITTINGS

Let F:C > D be a Grothendieck fibration.

A.4.1 CONSTRUCTION Suppose that g:Y - ¥' is an arrow in D.

Case 1: C =0 — then take g*:.C > C, as the canonical inclusion.
Y' Y'

Case 2: C =2 0 —— then for each X' € Ob C , choose a horizontal u:X - X'
y! !

and define g*:C -~ CY as follows.
g T

e On an object X', let g*X' = X.

e On a morphism ¢:X' > X', noting that F(¢ o u) = Fp ©c Fu= id o Fu =
Yl
g = F{i, let g*¢ be the unique filler for the diagram
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©2

e s> DGR
Y
ol

g*¢ ¢ o u

A.4.2 IEMMA g*:C o is a functor.
=g =

Needless to say, the construction of g* hinges on the choice of the horizontal
u:X » X',

A.4.3 DEFINITION A cleavage for F is a function ¢ which assigns to each pair

(g,X'), where g:Y »+ FX', a horizontal morphism u = o(g,X') (u:X - X'} such that
Fu = g.

N.B. The axiom of choice for classes implies that every Grothendieck fibration

has a cleavage.

A.4.4 REMARK If C is discretely fibered by F, then there is only cne cleavage
for P (cf. A.3.13).

Consider now a pair (F,0), where F:C > D is a Grothendieck fibration and ¢ is

a cleavage for F — then there is an association Ip 5
’
g . © g*
> Y >
) > S <)

Y —> QY' (Y

from QOP to CAT that, however, is not necessarily a functor for more or less obvious
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reasons. Still, we do have:

® Vv Y, there is an isomorphism eY:id§ + id

S

of functors (_ZY - C_IY

9 g'
> ¥ —— ¥''", there is an isomorphism o ig*¥ o g'* >
9,9

e VY
(g'" o g)* of functors C > C .
-Y' 1 -Y'
A.4.5 DEFINITION A cleavage ¢ is split if the following conditions are
satisfied.

1. o(id ,X") =id .
FX' X!

2. O(g' ° grxyt) =O'(g',X“) og(g,gl*xrs)‘
[Note: A Grothendieck fibration is split if it has a cleavage that splits

or, in brief, has a splitting.]

A.4.6 EXAMPIE In the notation of A.1.18, assume that ¢:G » H is surjective,
hence that ¢:G ~ H is a Grothendieck fibration -- then a cleavage ¢ for ¢ is a
subset K of G which maps bijectively onto H and ¢ is split iff K is a subgroup of
G. Therefore ¢ is split iff ¢ is a retract, i.e., iff 3 a homomorphism ¢:H > G

suchthat¢<>1p=idH.

A.4.7 LEMMA The association

oP
ZF,O'Q + CAT

is a functor iff F is split.

N.B. It is a fact that every Grothendieck fibration is egquivalent to a split

Grothendieck fibration.

A.4.8 REARK In the world of Grothendieck opfibrations, the term cleavage

is replaced by opcleavage but there is no "op" in front of split or splittings.
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B: INTEGRATION

B.1 REALIZATION OF PRESHEAVES

Given a small category C, let y:C > CAT be the functor that sends X to /X —-

then the realization functor FY assigns to each F in C its Grothendieck construction:

FYF = gro, F.

[Note: Recall thatyzl‘on thus v X € Ob C,

Cf

YX=C/X = FYhX.]

B.1.1 IEMMA The projection

wF:grog F->C

is a Grothendieck fibration and gro. F is discretely fibered by e

In the sequel, we shall write C/F in place of gros F and organize matters

functorially.
B.1.2 NOTATION Given F € Ob C, let C/F be the small category whose objects
are the pairs (X,s), where X € Ob C and s € Nat(hX,F) <—> FX, and whose morphisnms

X,s) - (¥,t) are the arrows f:X -+ Y such that thf = g,

B.1.3 NOTATION Given F,G € Ob C and Z:F - G, let
C/5:C/F » C/G

be the functor that sends ({,s) to (X, ¢ s).




B.1.4 NOTATION lLet

iQ:c:: > CAT
be the functor defined on objects by

F ~ C/F
and on morphisms by

g > C/E.

Iet %, be a final object in (:3 - then iC(*A) = C, so there is a factorization

C = ¢
A ic
c > CAT
c { g
CAT/C CAT/C,

UC the forgetful functor.

B.1.5 ILEMMA The functor

is fully faithful.

B.1.6 LEMMA The functor

|..J.
oM

+
2

is faithful.

[The forgetful functor

is faithful.]
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B.1.7 LEMMA The functor

preserves limits and colimits.

B.1.8 LEMVA The functor

N
'a,

10>
¥
i

preserves colimits.

[The forgetful functor

preserves colimits.]

B.1.9 ILFMA The functor

preserves pullbacks.

iThe forgetful functor

preserves pullbacks. ]

N.B. Therefore iC preserves monomorphiams.

£
[Note: In any category, A > B is a monomorphism iff
ldA
A > A
1dAl lf
A ~ B
f

is a pullback square.]



B.1.10 IEMMA The funcior

i(j:: T -+
that sends I to FI' where
FE X) =
is a right adjoint for iC'
[Note: Iet
T op:id, o iXi
g e

be the arrows of adjunction.

® Given F,

pF:F -> iéiCF'

i.e.,
UF:F - F(_;/F'

But Nat(hx,F) <—> FX and

102>

= Mor (C/h,, T)

(X € Ob C),

i (X) sNat (B, F) ~+ Mor (¢/hy, C/F)

is the map that sends s to C/s.

e Given I,

v ;ici*l * EI
i.e.,

\)I:Q/FE > I.



An object in g_:/FI is a pair (X,s), where X € b C and s € Nat(hX,FI) Lo FI X) =

Mor (C/hy,,I). But C/h, = C/X and

8

v XC/X — ) = s(X,id,).]

B.1.11 DEFINITION Let C be a small category -- then a sieve in C is a full

subcategory U of C with the following property:

cod fECbU=>dmfE0bU (f€MrC.

B.1.12 ILEMMA The functors F:C -+ [1] are in a one-to-one correspondence with

the sieves in C via the map F » FLlo).

B.1.13 EXAMPLE Put Lo = ié[l] -— then for any F in é, there are functorial
bijections

Mor (F,Lg) = Mor(F,ié{l])

n

Mor (iF, [11)

1

Mor (C/F, [1])

n

{sieves in C/F} = Sub, F,

¢
the symbol on the RHS standing for the subobjects of F. Therefore L. represents
Sub, .
C

[Note: LC is called the object of Lawvere.]

B.1.14 THEOREM For any small category C, the canonical arrow

AN N
C/F > O
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is an equivalence.

Specialize, taking C = A and F = X (a simplicial set) -~ then the objects of

A/X are the pairs ([n],x) (x € Xn) and

4/X = gro, X,

-

the simplex category of X.

Given a small category I, consider the composite

J A ner
> CAT/I

1>

> SISET/ner I.

Since ner is fully faithful, it follows from B.1.5 that ner o j A is fully faithful.

B.1.15 LEMMA Iet F € Ob I —— then

ner I/F = | ] Fi .
n i0+...+in n

[Note: This isomorphism is natural in n.]

let

N_:I ~ SISET/ner I

be the functor defined by

- | - | |
Ny @), = (— i, %)

0 n 10

I

N, = ner o jA’

hence N is fully faithful.



B.1.16 DEFINITION The composite

NI UI

> SISET/ner I

i > SISET

is called the simplicial replacement functor.

In B.1.14, let C= A, F=ner I — then

(Amer I) > Aner I = SISET/ner I.
[Note: To explicate matters, let
F: (A/ner ) - SET

T
be a presheaf — then the object X —— ner I corresponding to F is given in degree

n by

X = I ! Fa,
o
Aln}] —> ner 1

where

m, (@) = an(id{n]) (@ € Fu).]

B.1.17 RAPPEL For any small category I, there is a natural simplicial weak
equivalence

A/ner I ( = gro, ner I) + I.

A

N.B. The induced functor

i + (A/ner Iy - SISET/ner I

is N._.

(L]



B.2 THE FUNDAMENTAL CONSTRUCTION
Iet I be a small category, F:I - CAT a functor.

B.2.1 DEFINITION The integral of F over I, denoted INT, F, is the category

whose objects are the pairs (i,X), where i € Ob I and X € Ob Fi, and whose mor-
phisms are the arrows (§,£):(i,X) - (j,Y), where § € Mor (i, ) and f € Mor((F§)X,Y)
(composition is given by

(8',£') o (§,£) = (8' o §, £' o (F§')£)).

B.2.2 NOTATION Let

@F:]NI'ZF > I

be the functor that sends (i,X) to 1 and (S§,f) to 6.

B.2.3 LEMMA The fiber of @F over i is isomorphic to the category Fi.

PROOF Define

1i:Fi - IN‘I’IF

by

1iX = (i,X) (X € Ob Fi)

1if = (idi,f) (f € Mor Fi).

[Note: There is a natural transformation

viz.

' Fo)x P X > (G, FOHX).




And
g = (§ F8) o £.,8., =1id_ .]
506 o orady Ty
N.B. There is a pullback square
Fi > -I_NEIF
1 > 1 .
K.
1
B.2.4 1IFMMA The preophorizontal morphisms are the (§,f), where f is an iso-
morphism.
[Note: The composition of two preophorizontal morphisms is therefore preop-
horizontal.]

B.2.5 1LEMMA GF is a Grothendieck preopfibration.

B.2.6 THEOREM eF is a Grothendieck opfibration.

PROCF In view of B.2.4 and B.2.5, one has only to cite A.l1.27.

B.2.7 LEMMA G)F is a split Grothendieck opfibration.
PROCF Define oy by

OF(Sr(lrx)) = (S'ldF(SX):(i'X) g (j;F(SX)-

B.2.8 EXaMPLE If F._:I - CAT is the constant functor with value J, then

IN'I‘f‘Q is isamorphic to I x J.
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[Note: In particular

EI‘I._TEF}. = I.]

B.2.9 EXAMPIE Given a small category I, let

HI:_ZEOP x I > CAT

be the functor (j,i) - Mor(j,i), where the set Mor(j,i) is regarded as a discrete
category -—- then

INT H
1 x1 i

can be identified with I(~>) (cf. A.1.33), @H kecoming the functor
I

(sp,tp)sI(~>) > 1% x 1,

Let F,G:I » CAT be functors, EZ:F » G a natural transformation.

11

B.2.10 DEFINITION The integral of E over I, denoted INT E, is the functor

1

INTIF - INTZG

defined by the prescription

il

(INE,5) (3,%) = (1,5;%)

(INT;) (6,6) = (5,240).

[Note: Since f:(F§)X -~ ¥ € Mor Fj, it follows that

[1]

FrE (FS)X > BLY Gi.
j J(6) > &y € Mor Gj
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But there is a commutative diagram

[13

i
Fi —— - Gi
o
Fj ————— GJ,
73

(G,Ejf):(i,EiX) +> (j;EjY)

is a morphism in INTIG.]

Obviously,

and, in fact,

is an opfikered funcior.

B.2.11 ILEMMA The association

F > (INI.F,Qp)

[13

> INT_E

*

defines a fimctor

INT : [1,CAT] > CAT/I.

[Note: Suppose that I and J are small categories and K:J ~ I is a functor —-

then there is an induced functor
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K*:[EICA-T] > [ngAT]

and vV F:I ~ CAT, there is a pullback sguare

INT K*F > INTF
Og*p J{ lO’E‘
J > 1 .1

be the functor given on objects (A,p) (P:A -~ I) by

[Note: There is a pullback sguare

FE @Api —A
J ;
I/i > I .1

B.2.12 I’ T, is a left adjoint for INT,.

PROCF It suffices 1o exhibit natural transformations

u € Nat(id.,, /_:E,IN*I'l o T

E)
= Nat(I"I- o INTI,id

[1,car)’

T Nico, Houston J. Math. 9 (1983), 71-99.
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such that

(INT \)) ° (uINT ) = ld__IN_TI

(\)T;) ° (Tlu) = idI‘

p: Iet (A,p) be an object of CAT/I. To define a functor

¢
over I, note that the objects of INT (A,p) are the triples (i,a,pa —> 1), where

i€elI,aclbi, ¢ € Mrland ﬁlemorphlsnsofIN’I‘l" (A,p) are the arrows

1

¢
8,f): i,a,pa —> i) > (i',a',pa’ > i'),

where § € Mor(i,i') and f:a + a' is a morphism of A for which the diagram

pf

pa —————> pa'

¢l lq)'

1 > it
)

comutes. This said, let
_ id

* pa

Ha,p? = Pasapa —> pa)

- - 2 ] ' .
Wa,pf = @ A:aadd, ) > (pa'a 'ldpa')'

v: Iet F be an object of [I,CAT]. To define a natural transformation

\)F:FZINTI.F > F
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or still, to define a functor

\)F,i:mf'/l + Fi
6l
functorial in i, note that the objects of INTIF/i are the triples (i',X',i' — i),

where i' € Ob I, X' € Fi', ¢' € Mor I and the morphisms of INT.F/i are the arrows

(SI (Sll

(§,£): (1',x',1" > i) > (1'',x"',i! > 1),

where § € Mor(i',i'') and £:(F8)X' - X'' is a morphism of Fi'' for which the diagram

|

i

$

6!!

B b

commutes. This said, let

— 8"

Vi i(i‘,X',i' > i) = (F§")X!
r

Vp i(cS,f) = (FE'"} £ (FE)XY » (FS'")X''.
The verification that p and v have the requisite properties is straightforward.

B.2.13 REMARK Given small categories I, J and a functor K:I - J, let

CAT/K:CAT/I + CAT/J

be the induced functor —— then the functor

Ty o CAT/K:CAT/I > CAT/J > [J,CAT]

-

is a left adjoint for the functor
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INT, o K*:[J,CAT] > [I,CAT] > CAT/I,

the proof being an easy extension of the preceding considerations (take I = J,
K= idI to recover B.2.12).

The category INTIF has a universal mapping property.

B.2.14 THEOREM Fix a small category C. Suppose given functors cbi:Fi >~ C

§
(i € Ob I) and natural transformations EG:¢i -> daj o F6 (i —— Jj € Mor I) such that
= = (8 PS) o %, E. = id, .
' o § 8! 8 ldi d)l
Then there exists a unique functor
@:INTEF > C
such that
¢l = o 1 (li:Fl > INTEF)
(cf. B.2.3).
E(S = CDEG (E(S:l > 1. o I§)

PROCF Define ¢ by

®(1,X) = ¢.X (X € Ob Fi)

8(8,£) = ¢5F o Zy 1.

[Note: As regards the definition of ¢(§,f), observe that

ES,X:(bix > ¢jF6X.
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On the other hand, f:(F§)X »~ Y, where (F§)X, Y € Ob Fj, so

93205 (FOIX > ¢.Y,

®(6,£):0(1L,X) (= ¢,X) ~ ¢(3,¥)( = ¢jY)

as desired.]

B.2.15 EXAaMPLE Consider the natural sink {Ki:Fi > colimIF}, hence ﬁi = F’j o F§ —

then there exists a unique functor

Kp:INT.F - colim F
such that
=R ey
id, = Kp&g-
— i
[Note: Spelled out,
KF(i,X) = flix

Let C be a small category, F:I ~ (2 a functor -~ then

and there is an arrow
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KiCF:_I_I:H‘_EigF - colimzigF

N

igcolimIF (cf. B.1.8)

= C/colim F.

B.2.16 LEMMA Ki is a Grothendieck fibration.

&

Let (X,s) be an object of C/colim F (so X &€ Ob C and s:hy ~ colim F) -- then

the fiber
(_Iy'l‘_zigF) X,8)

of R, over (X,s) admits an external description. In fact, ¥ i in Ob I, there is

el

an arrow i.[f.:C/Fi -~ C/colim F and Vv 8:1 ~ j in Mor I, there is an arrow

©FL) x,5) 7 &FD (x,5)"
Write
(iCF) (x S):_?E -+ CAT

for the functor thus determined.

B.2.17 LEMMA We have
(ITAF) (x,5) = DL EF) (1,6

[The verification is tautological.]
B.3 THE CANONICAL EQUIVALENCE

Fix a small category D -- then by SO(D) we shall understand the category
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whose objects are the triples (C,F,0), where C is small and F:C + D is a split
Grothendieck opfibration with splitting o, and whose morphisms ¢:(C,F,0) » (C',F',c")
are the functors ¢:C » C' such that for any object X € Ob C and any morphism

g:FX » ¥,
®(0(g,X)) = o' (g,)
subject to F' o & = F.

. ] '
N.B. ¥ Y € Ob D, ¢ restricts to a functor &:C, + Co.

Define now the association

as in A.4.7 (recast for opfibrations) -— then ZF 5 is a functor (o being split).

B.3.1 NOTATION Let

£,:50(D) + [D,CAT]

be the functor given on an object (C,F,0) by

ZQ(C,F,G) = ZF,O

and on a morphism

®:(C,F,0) > (C',F',0")
by

{EI_)@)Y = 9.
[Note: The tacit assumption is that

ZD<I> € Nat(Z, ,Z ).

Ff{j Fl ;U'

But, from the definitions,
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ot TS

z Y = (!
F!,o’ QY

and for any g:Y -+ Y', there is a commutative diagram

Y
S > &
z z
Flgg{ l F!’O-Ig
c > C' .1
Y! ¢ Y
Yl

Matters can be reversed. Thus let G:D + CAT be a functor —- then

OG:INTG +D

is a split Grothendieck opfibration with splitting o

G (cf. B.2.7), so the triple

(INTE_G,@G,U G)

is an object in SO(D). Furthermore, if {2:G -+ G' is a natural transformation, then

INT]:_Q: (INTE_G'GG’GG) -> (INT—EG"GG"GG‘)

is a morphism in SO(D).
Accordingly, these considerations lead to a functor

INT,: [D,CAT] + SO(D) .

B.3.2 THEOREM The categories SO(D), [D,CAT] are equivalent:
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with

B.4 COINTEGRALS

Tet I be a small category, F:_I_OP > CAT a functor.

B.4.1 DEFINITION The cointegral of F over I, denoted INTF, is the category

whose objects are the pairs (i,X), where 1 € Ob I and X € Ob Fi, and whose morphisms
are the arrows (8,f):(i,X) = (j,¥), where § € Mor(i,]) and £ € Mor (X, (F§)Y)
{conposition is given by

(8',£') o (§,£) = (&' o §,(FSE' o £f)).

B.4.2 REMARK Let C be a small category and suppose that F € Ob é —-— then

F:(_:GP + SET. Thinking of SET as a subcategory of CAT (every set is a small cat-

egory when viewed discretely), it follows that

INTEF = grog F = C/F.

B.4.3 NOTATION Let

OF: .I.F > I
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be the functor that sends (i,X) to i and (§,f) to 6.

B.4.4 THEOREM éF is a split Grothendieck fibration.

What has been said about integrals can be said about cointegrals, thus no

additional elaboration on this score is necessary.

B.4.5 LEMMA We have

mm— opP
INTEF = (INTIOPOP ° F)
and
- op
@F = (OOP o F) .
[Note:
Q fINT __OP o F » EOP

P o F -——EOP

©

oP oP
op o F) :(INTIOPOP o F)~ > 1I1.]

N.B. FOP is not the sme as OP o F.

B.4.6 REMARK The involution
OP:CAT » CAT

induces an isomorphisn
IOP,

o, : [I1F,car) ~ [1F,car]

and there is a commitative diagram
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TNT
[EOP,CAT] > CAT/I
oP, op/I
(1, car] > car/1r .
INT
=P

Iet I and J be small categories, F:_I.OP x J - CAT a functor -- then there are

functors

- mrea” s ar

INT F:J —> CAT

arising from term-by-term operations and in this context
@F:INT_J.E’ +~J
B GF:INTEF > I

are natural transformations (treat the targets as constant functors).

B.4.7 ILEMMA There is a commutative diagram

INTINT,F > INT,INT,F
INT .6, INT, 0

I
X
14
v
€4
X
-

u




23.

B.4.8 NOTATION Given functors

define T_ZN-_T_I (F,G) by the pullback square

L Ele

IN'I‘Z(F,G) EEEE— INT;[-G

Pp %%

NrF — > I .
@F

N.B. Using the notation of B.2.8,
INTl (F,G;L) o~ INT-I_F
INT-];(Fl,G) = INTIG.

B.4.9 1LEMMA The functor Pp is a Grothendieck fibration and the functor 9 is

a Grothendieck opfibration (cf. A.2.4).
B.5 ISOMORPHIC REPLICAS
Iet I be a small category.

B.5.1 NOTATION Given funciors



Ge F= rfeiox i,
an object of CAT.

[Note: One can realize G @I F as

coeq( || GixFi > || Gi x Fi).]
i3 1

N.B. It is clear that — &I — 18 functorial in F and G and behaves in the

-

obvious way w.r.t. a functor I » J.

B.5.2 EXAMPIE Iet G be constant with value 1 — then

1 &l F =z oollmgF.

Specialize and take for G the functor EOP -+ CAT that sends i to i\I -- then

the assignment (i,7j) - i\I x Fj defines a diagram _I_oP x I - CAT.

B.5.3 CONSTRUCTION V i € Ob I, there is a canonical functor

£.:1\I x Fi » INT_F.
1 - ~—T

® Define fi on an object (i >3,X) (X € Ob Fi) by

fl(l >er) = (]l (F(S)X).

[Note:

S FS

i >j => Fi

> Fj

=> (F§)X € Ob Fj.]
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e Define ;Ei on a morphism

S O £) st

(i >3,X) — (i

> 3',X"),
where A:j > 3' (A o § = §') and f:X > X' (f € Mor Fi), by

fi(A,f) = (A, (FS")E£): (3, (FOX) ~ (3',(F§")X").

[Note:
- - (FSYE
F§:Fi » Fj (FSHX ——r—> (FS)X'
=>
F§':Fi > Fi' (FS")X — = (F8§")X'.
_ _ (F6") £
But
Ao §=8"=>F)\oF§=F§".
Therefore

(FS")£: (FA) (F&)X » (FS")X'.]

B.5.4 LFEMMA The collection

{£;:4\I x Fi ~» INTf}

is a dinatural sink: v 1

>3 in Mor I, there is a commutative diagram

£,
i

AN X Fi ———— INT F

f.
J

:]\_:E X Fi o j\;I- X Fj.
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B.5.5 LEMMA Suppose that {Yi:i\z x F1i » T'} is a dinatural sink (' € Ob CAT) --
then there is a unique functor ¢:INT F + T such that Yy =00 fi for all i € Ob I.

[The verification is elementary but fastidious.]

B.5.6 SCHOLIUM We have

-\ @ F = INIF.

[Note: Let K:I ~ J be a functor — then for all G € Ob [J,CAT],

- ~ %
\I 8 G & INIKG,

where in this context —\I sends j to j\I.

B.5.7 REMARK If F:IO° - CAT, then

F QE I/— = IN’I‘EF.

[Note: Let K:I -~ J be a functor —- then for all G € Ob [ ,cam],

~ == 0P %
G &y I/~ = TIL(K) G,

where in this context I/— sends j to I/3j.]

B.6 HOMOTOPICAL MACHINERY

Recall:

& In SISET, a simplicial weak equivalence is a simplicial map £:X - Y

such that |f

X| + |¥| is a homotopy equivalence.

-
»*

e In CAT, a simplicial weak equivalence is a functor F:C - D such that

lner F|:BC + BD is a homotopy equivalence.
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N.B. Therefore a functor F:C + D is a simplicial weak equivalence iff

ner F:ner C +~ ner D is a simplicial weak equivalence.

B.6.1 LEMMA If F:C ~ D is a functor and if ner Finer C + ner D is simplicially
homotopic to a simplicial weak equivalence, then F:C - D is a simplicial weak

equivalence,

B.6.2 NOTATION Let W  denote the class of simplicial weak equivalences in

CAT (a.k.a. the class of weak equivalences per CAT (External Structure) (cf. 0.13)).

B.6.3 EXAMPLE Suppose that F:C + D is a Grothendieck prefibration — then
v Y € Ob D, the canonical functor QY + ¥Y\C is a simplicial weak equivalence
{cf. A.1.9).

B.6.4 EXAMPLE Suppose that F:C + D is a Grothendieck preopfibration -- then
VY € Ob D, the canonical functor C, ~ C/Y is a simplicial weak equivalence
(cf. A.1.10).

B.6.5 THEOREM Fix a small category I and let

P

10

D

be objects in CAT/I. Suppose that ¢:(C,p) ~ (D,q) is a morphism in CAT/I (d o ¢ = D)
such that vV i € Ob I, the arrow
®/1:C/i » D/i

is a simplicial weak equivalence -- then ¢ is a simplicial weak equivalence.
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PROCF

e The elements of ner C/i are the pairs
(Xy > === > X)) ,pX, > 1),

where pxn + 1 is a morphism in I. This said, define a bisimplicial set TC by
Tg([n],[m]) = {(Xy > =ee > X),pX > dg) iy > eee > L

® The elements of ner D/i are the pairs
((YO Foeee o Yn),an - 1),

where v, > i is a morphism in I. This said, define a bisimplicial set TD by

Ty([n], m]) = {((Y0 oo +Yn),an > io,i0 > oeee > im}.

Then there is a map

T@:TC > TD

of bisimplicial sets given on vertexes by

T<I>((XO > oeee > Xn) ,an -> 10),1

')'ooa-)'i)
m

0

= ((@XO > ees > (I)xn)'q(i)xn -> iO'iO S aas > j_m),

Fixing the second variable leads to a commutative diagram

TQ (—l {m]) > 'I‘]2 (— [m])
l l ner (_:'/i0 > ! l ner Q/io.
1. > *e° 5 3 i3> e » 1
0 ™ 0 m

By hypothesis, the horizontal arrow on the bottom is a simplicial weak equivalence.



29.

Since the vertical arrows are isomorphisms, it follows that the horizontal arrow

on the top is a simplicial weak equivalence. Therefore

dia Td:dia T(_Z + dia T12

is a simplicial weak equivalence. On the other hand,

Tc( [n],—) = ‘ l ner an\l
— X. > e > X
0 n
I
T ([n],—) = | — ner g¥Y_\I
D ’ Y. = eee > Y n-=
_ 0 n
and since
pPX \I
an\I

have initial objects, the arrows

| ner pX \I > | ner 1
Xo > *00 > X n Xg > eee > X -
| ner g¥_\TI > ‘ ner 1
YO+... +Yn n YO+...+Yn -

are simplicial weak equivalences. Therefore

diaTc->ner

-—

102

diaTD—>ner]_§

are simplicial weak equivalences. Form now the commutative diagram
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dia T¢
dia > dia ‘I‘D

Q

ner C > ner D
ner ¢

to conclude that ner ¢ is a simplicial weak equivalence.

B.6.6 APPLICATION Let C,D be small categories and let F:C - D be a functor.
Assume: VY Y € Cb D, the arrow C/Y »~ 1 is a simplicial weak equivalence — then
F is a simplicial weak equivalence.

[In B.6.5, take I =D, p=F, g = idD:

T
il
e
1o ~—— 10

With F playing the role of ¢, consider the diagram

F/Y
Y —— 5 DY

[ —
[ —

The vertical arrow on the left is a simplicial weak equivalence (by assumption),
while the vertical arrow on the right is a simplicial weak equivalence (D/Y has
a final object). Therefore F/Y is a simplicial weak equivalence. As this is true

of all Y € Ob D, it remains only to quote B.6.5.]

B.6.7 EXAMPLE Suppose that F:C - D is a Grothendieck preopfibration.
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Assume: V Y € Ob D, (—:Y is contractible -- then F is a simplicial weak equivalence.

[Bearing in mind B.6.4, consider the diagram

S
l
1

B.6.8 LEMMA Fix a small category I and let

> C/Y

I —

- P

10
v
I

W)
v
]

be Grothendieck preopfibrations. Suppose that ¢:(C,p) - (D,q) is a morphism in

CAT/I (g © ¢ = p) such that v i € Ob I, the arrow of restriction

$.:C. » D,
i°=1i

is a simplicial weak equivalence -~ then 9 is a simplicial weak equivalence.

PROOF The horizontal arrows in the commutative diagram

c; — o
@i d/1
D, > D/i

are simplicial weak equivalences (cf. B.6.4), thus ¢/i is a simplicial weak equiv-

alence from which the assertion (cf. B.6.5).

B.6.9 LEMVMA Iet
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be a pullback square in CAT. Suppose that f is a Grothendieck fibration and that
for all z € Ob Z, the category ¥/z is contractible -- then for all x € Ob X, the

category P/x is contractible, hence ¢ is a simplicial weak equivalence (cf. B.6.6).

B.6.10 LEMMA Let

[iaat
Rl L/

be a pullback square in CAT. Suppose that f is a Grothendieck fibration and g is
a Grothendieck opfibration with contractible fibers —— then £ is a simplicial weak
equivalence.

PROOF The assumption on g implies that the Y/z are contractible (cf. B.6.4),
hence that the P/x are contractible (cf. B.6.9). But £ is a Grothendieck opfi-
bration (cf. A.2.4), thus its fibers are contractible (cf. B.6.4), so £ is a

simplicial weak equivalence (cf. B.6.7).
What follows next is a list of results that dualize B.6.5 -~ B.6.10.
B.6.11 THEOREM Fix a small category I and let

- P
¢

10
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be objects in CAT/I. Suppose that ¢:(C,p) -~ (D,q) is a morphism in CAT/I

(e ®=p) such that v i € Ob I, the arrow

i\@:i\C » i\D

is a simplicial weak equivalence -— then ¢ is a simplicial weak equivalence.

B.6.12 APPLICATION Let C,D be small categories and let F:C + D be a functor.

Assume: V Y € Ob D, the arrow Y\C + 1 is a simplicial weak equivalence -- then F

is a simplicial weak equivalence.

B.6.13 EXAMPLE Suppose that F:C - D is a Grothendieck prefibration. Assume:

VYe€OD, (_‘.Y is contractible -- then F is a simplicial weak equivalence.

B.6.14 IEMMA Fix a small category I and let

\
IH

\
iH

be Grothendieck prefibrations. Suppose that ¢:(C,p) -~ (D,q) is a morphism in CAT/I

(e ®=p) such that v i € Gb I, the arrow of restriction
$,:C. ~ D,
it=i

is a simplicial weak equivalence —— then ¢ is a simplicial weak equivalence.

B.6.15 LEMMA Let
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be a pullback square in CAT. Suppose that f is a Grothendieck opfibration and
that for all z € Ob Z, the category z\Y is contractible -- then for all x € Ob X,
the category x\P is contractible, hence £ is a simplicial weak equivalence

{cf. B.6.12).

B.6.16 LEMMA Let

v
24

0 mme—— |
Q

£

be a pullback square in CAT. Suppose that f is a Grothendieck opfibration and g
is a Grothendieck fibration with contractible fibers -- then £ is a simplicial

weak equivalence.
B.7 INVARTANCE THEORY

Iet I be a small category.

B.7.1 THEOREM Suppose given functors F,F':I - CAT and £ € Nat(F,F').
Assume: VvV i € Qb I,
E.F1 » F'i
i
is a simplicial weak equivalence -~ then
INT ::INTIP -+ INTIF'

=

is a simplicial weak equivalence.
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PROOF The arrows

G)F:IN’I‘IF +~1I

-

& INT.F' » I
a1 =

are Grothendieck opfibrations (cf. B.2.6) and
GF. ° Q’I‘__E = OF.

Moreover, v i € Ob I,

Fi

143

(INT;F)

(cf. B.2.3)

124
e |
H

]
(INTIF )i

with

(INTI:) i <> -

That INTIE is a simplicial weak equivalence thus follows from B.6.8.

B.7.2 REMARK Consider CAT in its external structure —- then CAT is combina-
torial, as is [I,CAT] when equipped with its projective structure (cf. 0.26.5).

Since the weak equivalences per [I,CAT] are levelwise, the composite

INTI UE

[1,CAT] — > CAT/I — — > CAT

induces a functor

int. :H[I,CAT] - HCAT

at the level of homotopy categories (cf. B.7.1). But it is not difficult to see
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that int_ is a left adjoint for the functor

HCAT - H[I,CAT]

associated with the arrow p;:I - 1. Therefore

int = hocolim;  (cf. 0.26.19).

B.7.3 THEOREM Suppose given functors F,F':I - CAT and Z € Nat(F,F') plus

functors G,G‘-IOP + CAT and 2 € Nat(G,G'). Assume: Vi€ Ob I,

B.:F1 > P'i
i

N.:GL -~ G'i
i

are simplicial weak equivalences -~ then the induced arrow
E|Q:INT, (F,G) ~ INT (F',G")

is a simplicial weak equivalence.

PROCF There is a commutative diagram

— Bl __

'
—IN—ZE(F'G) > I, (¥',G)
E|Q id|Q
INT, (F',G') ————— INT (F',G')

from which the factorization

E|Q = 1d|Q o E|id

and the claim is that £|id and id|Q are simplicial weak equivalences. In view of
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B.4.9, the projections

- qG:INTI(F,G) - INTIG

——-

[y [ T
C]G.INT:—[(F /G) > INTIG

are Grothendieck opfibrations and

q ° £lid = q.
The objects of ?ﬁi"lc; are the pairs (i,y), where i € Ob I and Y € Ob Gi, and from
the definitions,

INT;E(F,G) (i,¥) = Fi

F'i

n

INTy (F78) (5, y)

with

(2]id) i,v < 5

That Z|id is a simplicial weak equivalence thus follows from B.6.8. And analo-

gously for id|Q (use B.6.14).
B.8 HOMOTOPY COLIMITS

et (g_?l,wl), ((_:2,012) be category pairs, where W ,w2 satisfy the 2 out of 3

condition. Suppose that

Fig) » C

1 2

GG > G

are an adjoint pair with arrows of ad-unction
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B.8.1 LEMMA The following conditions are equivalent.

(1) F‘l(wz) and v X, € Ob C,, the ArTow vy FK, X, is in U,

_ -1 . -
(2) Wy, =G (W) and V X; € Cb C;, the arrow uxl.xl->GFXl is in ;.

PROCOF

o (1) => (2) Given X:L € Ob (_Zl, we have

v o Fu, = i .
FXl Xl dFXl

But \)FX € w2,

ide € W,, so, since w2 satisfies the 2 out of 3 condition,
1 1

X 1

prl € U, hence p ] € W;. There remains the contention that W, = G-l(wl). Given

an arrow f2 :x2 > Y2 in Mor §2, consideration of the commutative diagram

%
FeK, ———— %,
FGE, £,
FGY2 > Y2
implies that f2 € w2 iff :E‘Gf2 € wz. However, by hypothesis, FGf2 € &}2 iff
sz € wl.

e (2)=>{(l) ....
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B.8.2 LEMMA Suppose that the equivalent conditions of B.8.1 are in force —
then
Gw2 S wl,
thus

are morphisms of category pairs, so there are unique functors

= -1 -1
Fill) 76 > WG
= -1 -1
L GG G
for which the diagrams
F G
S > S S !
Ly, Y, M, M
-1 -1 -1 -1
WG >0y S Wy G > UG

s |
o

commte (cf. 1.4.5).

B.8.3 ILEMMA Suppose that the equivalent conditions of B.8.1 are in force —
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are natural isomorphisms, thus the adjoint situation (F,G,u,v) is an adjoint
equivalence of metacategories.

[Note: Bear in mind that

VX, E0bC,, szvxz is an isomorphism in w;lgz

. . e o ]
v X, €0bC, Lwlpxl is an isomorphism in W;7C,.]

Iet I be a small category.
e Denote by wm' I the levelwise simplicial weak equivalences in Mor [I,CAT],
i.e., the £ € Nat(F,F') such that vi € 0b I,
Ei:Fi + F'i

is a simplicial weak equivalence.

® Denote by W /I the local simplicial weak equivalences in Mor CAT/I,
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i.e., the ¢ € Mor((C,p),(D,q)) such that v i € b I,
¢/i:C/i ~ D/i
is a simplicial weak equivalence.
Recall now the setup of B.2.12 which produced an adjoint pair

I :CAT/T > [I,CAT]

INT_: [I,CAT] > CAT/I.
The claim then is that the equivalent conditions fiquring in B.8.1 are realized by
this data.

B.8.4 LEMMA We have

|
W/L =T (W, ;

).

1
I'

PROOF For ¢ € T (W, ;) <=> 12 € U, ;. And T10 = o/—.

B.8.5 LEMMA Let F € Ob[I,CAT] — then V i € Ob I, the functor

\)F,i:mf/i +Fi {(cf. B.2.12)
is a simplicial weak equivalence.

PROCF It suffices to show that Vp 3 admits a right adjoint
1

pF,i:Fl - INT.:[-F/J_.
Definition:

— id,
= (1,X,i

>
|

> 1) (X € Ob Fi)

Fh
1

(idi,f) (f € Mor Fi).
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Therefore the first condition of B.8.1 is satisfied and, as a consequence,
B.8.3 is applicable.

B.8.6 THEOREM The adjoint pair

T

1]

INT:-[.

is an adjoint equivalence of categories:

-1 -1
Tyt /D 7'Ca/T > W 1 [1,Ca

— -1
INT <, 1 [L,CAT) > (U /D)™ GT/L.

Let I and J be small categories, K:I -+ J a functor.

B.8.7 18MMA The functor

K*: [7,CAT] - [1,CaT)

PROCF If Q € W, I’ then v j € Ob J, Qj is a simplicial weak equivalence, so
14

-

vie€oblI,

(K*2); = Qg

is a simplicial weak equivalence.
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Therefore

K*: ([3,CAT], 0, ;) ~ ([I,CATI,W, )

is a morphism of category pairs, thus there is a unique functor
&0t (3,cam -~ WL [I,caT)
" ao'g e ek oo':_[_ i Sniiviond

for which the diagram

K*
[3,CAT) > [1,CaT]
u, 5 W,
-1 -1
W ~_[J,CAT] > W ~_[I,CAT]
o, J t=l—— —— I;E -
K*

commites.

Now take CAT in its external structure. Since CAT is combinatorial, the

functor categories

[1,CAT]

[3,CaT]

in their projective structure are also combinatorial (cf. 0.26.5) and we have an

instance of the setup of 0.26.16:

>
[I,CAT] (Projective Structure) [J,CAT] (Projective Structure).

Therefore K* admits a left adjoint
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the homotopy colimit of K (cf. 0.26.19), the explication of which will be carried

out below.

B.8.8 ILIvMA The functor

CAT/K:CAT/I - CAT/J

sends wm/; to wa/g:
CAT/R, /T < W, /3.

PROOF Consider

®
c > D
p 9q
1 I
K K
J J

where g e ¢ =pand v i € Ob I,
b/i:C/i » D/i

is a simplicial weak equivalence, the claim being that v j € Ob J,
®/3:C/3 + D/

is a simplicial weak equivalence. To see this, form the commutative diagram

®/3
¢/3 > D/J

N "

1/3 /3
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and let (i,g) be an object of 1I/j (g:Ki ~ j) — then

(C/9) /(1,9 = ¢/i
(D/3)/(i,9) = D/i
and
(8/3)/(1,9) < &/i.
Consequently,

®/3:C/3 ~ D/3

is a simplicial weak equivalence (cf. B.6.5).

Therefore

CAT/K:CAT/I ~ CAT/J

is a morphism of category pairs, thus there is a unique functor

GHI/R: (U,/T) " CAT/T > (W,/3) " ar/3
for which the diagram
CAT/K
car/1 = > ot/
Y /1 /g
3 /K ..1
w,/n " oar/z s /0 rear/g

comutes.

B.8.9 NOTATION Write K(!) for the camposite

rg o CAT/K o INT,
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K(l) : [Er_cg] > [g:gﬂ] .

[Note: K(!) is not to be confused with K, (the left adjoint of K*).]

B.8.10 NOTATION Write LK(!) for the composite

T"E o CAT/K o INT.,

LK(!) :H[L,CAT] + HIJ,CAT].

B.8.11 THEOREM LK{!) is a left adjoint for K*, thus LK(!) "ig" LK, .

PROOF Start with the adjoint pair

' o CAT/K

(cf. B.2.13).

v X € Ob H[I,CAT]

vV Y € Ob H[J,CAT],

Mor(LK(1}X,Y)

Mor(ﬁ o CAT/K o INT. X,Y)

u

Mor(IN‘I’I X, INT, o K* Y)

u

Mor('I‘—I— o INT, X, K*Y)

(cf. B.8.6)
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144

mr(idml'%]x,ﬁ?‘r)

Mor (X,K*Y) .

i

B.8.12 SCHOLIUM The composite

T, o CAT/X © INT,

1Cq

is the homotopy colimit of K.

B.8.13 EXAMPLE Take J = 1 and let K = p, (the canonical arrow I ~ 1) —- then

pE:CAT ~ [I,CAT] is the constant diagram functor and its left adjoint Pr, is
colim : [I,CAT] - CAT, thus

hocolim]: =L colimI,
and V F € Ob[I,CAT],

hocolimIF = _IN_TIF (cf., B.7.2).

E.g.: Suppose that F = Fs (cf. B.2.8) — then

hocolimIFJ=w = Ixd.

[Note: Given F € Ob[I,CAT], put NF = ner o F, so NF:I » SISET. Denote by

|| NF the bisimplicial set for which

(|| ™) (In], [m])

are the pairs of strings

§ £

) m-1
> ln'XO — Xl > wee > xm—-l

%
(io —_— i]_ - e ww in—-l

n-1

> Xm)r

where the X € Cb Fio and the fk € Mor(FiO,FiO) (0 < k < m), supplied with the



48.

evident horizontal and vertical operations. Using B.2.14, one can show that for

any small category C,

Mor (dia || NF,ner C) = Mor (INT F,C)
from which,
Mor (cat dia || NF,C) = Mor (INT.F,C),
thus
cat dia || NF = INT.F.

On the other hand, there is an arrow of adjunction

dia || NF — ner cat dia || NF

= ner INT_F

..i.

and Thomason proved that it is a simplicial weak equivalence.]

Keeping still to the assumption that K:I - J is a functor, there is an arrow
of adijunction

LR(DER* (cf. B.8.11)

* 1%, camy

and

= Lp;(1) © LK(1) o K¥ o ¥

¥ Math. Proc. Cambridge Philos. Soc. 85 (1979), 91-109.
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Lp. (! i o p%
> gt e gy cam © P5
= Lp;(1) ° p3.
B.8.14 IEMMA The functor K:I » J is a simplicial weak equivalence iff the
natural transformation
Lp-I_(!) ° §§+ Lpg(i) ° f}§

is a natural isomorphism.

PROOF Given a small category C, the arrow

o —

Iy LxQ =Ixg

1

(Lp (1) © PP (T, O

+

(Lp; (1) ° p%) (I, O

is precisely Lw (K x idc) which is an isomorphism iff K x idc is a simplicial weak
equivalence (W is saturated (cf. 2.3.20)).

[Note: The product of two simplicial weak equivalences is a simplicial weak
equivalence. On the other hand, if v C, K x idc is a simplicial weak equivalence,

then K is a simplicial weak equivalence (take C = 1).]

The position of the adjoint pair

It

INTI
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is clarified if CAT is equipped with its internal structure (cf. 0.12) (which is
inherited by CAT/I) and [I,CAT] is given the associated projective structure (thus

the weak equivalences are levelwise as are the fibrations).

B.8.15 LEMMA The adjoint situation (I‘I,]I\ITI) is a model pair.

PROOF If F,G € Ob[L,CAT], if £ € Nat(F,G)}, and if v i € Ob I, 5;:Fi » Gi is
an equivalence of categories, then the opfibered functor

INTIE:INTF * INTG

is an equivalence (cf. A.1.32). Accordingly, we have only to show that INT

preserves fibrations. So suppose that Z:F + G is a levelwise fibration, the claim
being that

INTI::INTIF - INTIG

is a fibration in CAT/I (Internal Structure). To establish this, let (i,X) €

b ]NTIF and let y: (]‘NT ) (1,X) + (3,Y) be an isomorphism in MIG - then
(INT E) (1,X) = (1,EX)

and y = (S,g), where §:1 +» j is an isomorphism in I and g: (GcS)EiX (= Ej (F&)X) ~ ¥
is an isomorphism in Gj. Since Ej:Fj + Gj is a fibration, 3 an isomorphism

v:{F§)X » X' in Fj such that

5.y = ¢g. Now put ¢

j (8§,v), thus ¢:(i,X) » (j,X") and

I

(6,9) = ¥.

(INT;2)6 = (8,E5y)

B.8.16 REMARK If I is a groupoid, then the model pair (I‘I,INTI) is a model

equivalen
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C: CORRESPONDENCES

C.1 FUNDAMENTAL LOCALIZERS

Suppose that (CAT,W) is a category pair, where ! < Mor CAT is weakly
saturated (cf. 2.3.14).

[Note: Therefore # contains the isomorphisms of CAT.]

C.1.1 DEFINITION W is a fundamental localizer provided:

(1) If I € Ob CAT admits a final object, then the canonical arrow pI:E +1
is in {.

(2) If I € Ob CAT, if

v
]

v
)

are objects in CAT/I, and if ¢:(C,p) + (D,q) is a morphism in CAT/I (q ¢ ¢ = p)
such that V 1 € Ob I, the arrow
¢/i:C/i ~ D/i

is in W, then ¢ is in W.

C.1.2 EXAMPIE The class wtr consisting of all the elements of Mor CAT is a

fundamental localizer, the trivial fundamental localizer.

C.1.3 EXAMPIE The class wgr consisting of ido:_O_ + 0 and all functors F:I - J,

—

where I = 0 and J # 0, is a fundamental localizer, the coarse fundamental localizer.




N.B. If W is a fundamental localizer and if

then either W = wgr or W = wtr {(cE. C.5.2).

C.1.4 EXAMPLE W_ is a fundamental localizer.

[W is saturated (being the weak equivalences for CAT (External Structure),
s0 2.3.20 can be cited), hence W _ is weakly saturated (cf. 2.3.15).

Ad (1): If I has a final cobject, then I is contractible and the canonical

arrow p;:I ~ 1 is a simplicial weak equivalence.

Ad (2): This is B.6.5 verbatim.]

C.1.5 RAPPEL If X and Y are simplicial sets and if f:X -~ Y is a simplicial map,

then f is an n-equivalence (n 2 0) if wo(f):ﬂo(x) - TTO(Y) is bijective and if
VX € Xy, f induces an isomorphism
'rrk(X,x) g 'frk(Y,f(x)) (L £k £n)

of homotopy groups.

C.1.6 EXAMPLE The class W (n z 0) consisting of those functors F:I > J such

that ner F:ner I » ner J is an n-equivalence is a fundamental localizer.

N.B. We have
wmcwncwmcwocwgrcwtr (m < n)
and
W,= n W.
n=0 °



C.1.7 EXAMPIE Given a fundamental localizer W, form the derivator D(CAT )

{cf. 3.2.1) — then

L‘JD (AT, ) (cf. 3.5.2)

coincides with # (cf. C.1.13).

[Note: Fundamental localizers are necessarily saturated (cf. C.9.3).]

C.1.8 REMARK Suppose that D is a right (left) homotopy theory — then UJD is
a fundamental localizer (cf. 3.5.17).

Let C « Mor CAT —— then the fundamental localizer generated by C, denoted
W(C), is the intersection of all the fundamental localizers containing C. The

minimal fundamental localizer is W(@) (F the amty set of morphisms).

N.B. It turns out that W(@) =W _ (cf. C.7.1).

C.1.9 DEFINITION A fundamental localizer is admigsible if it is generated by

a set of morphiasms of CAT.

£.1.10 EXAMPLE wtr is an admissible fundamental localizer. In fact,

w{o ~1}) = wtr‘
C.1.11 EXAMPLE wgr is an admissible fundamental localizer. In fact,

w{l [|1->1b = W (cf. C.5.4).

The formal aspects of "fundamental localizer theory" are spelled out in
sections C.2 and C.3 below. Here I want to point out that certain important
results that were stated and proved earlier for W = W _ are true for any W. In

particular: This is the case of B.7.1, B.8.6, and B.8.11.



C.1.12 EXAMPLE Take W = wo — then vV I € Cb CAT, m, induces an isomorphism

-1
Uy, 1 (LT ~ [1,SET).

If K:I ~ J is a functor, then

— 1 -1
KUy 5[3,CT) > Wy L [1,CAT]

is identified with the functor
K*:[J,SET] ~ [I,SET]

and the functor

LK(1) W3 (1,cam] > Wit [g

is identified with the functor

K!:[_I.'gg] > [Q’QE_T_]’

C.1.13 REMARK Since W is saturated (cf. C.9.3), B.8.14 goes through with no
change.
C.2 SORITES

Fix a fundamental localizer W.

C.2.1 DEFINITION A functor F:I -~ J is aspherical if v j € Ob J, the functor
¥/3:1/3 ~ 3/3
is in W.
[Note: It then follows that F itself is in W (specialize condition (2) of

C.1.1 in the obvious way (cf. B.6.6)).]



C.2.2 DEFINITION An object I € Ob CAT is aspherical if py:I > 1 is aspherical

(or, equivalently, if p;:I >~ 1 is in W).

[Note: Condition (1) of C.1.1 thus says that if I admits a final object,

then I is aspherical.]

C.2.3 REMARK If W = W

e then

I aspherical => I = 0 (cf. C.5.1).

C.2.4 LEMMA The functor F:I -~ J is aspherical iff v j € Ob J, the category
I/3J is aspherical.

PROCF Since J/7j has a final object, it is aspherical, thus the arrow J/j + 1
is in . This said, consider the comutative diagram

F/3
/3 >

i
e
N

P1/5

I |
[
¥
I
\
Cnd

1=

C.2.5 LEMMA Suppose that the functor F:I -~ J admits a right adjoint G:J ~ I —
then F is aspherical.

PROOF v i € Ob I and V j € Ob J, we have
Mor{Fi,j) = Mor(i,Gj).

Therefore the category I/j is isomorphic to the category I/Gj. But I/Gj has a
final object, thus I/Gj is aspherical, hence the same is true of I/j and one may

then quote (.2.4.




C.2.6 EXAMPLE An equivalence of small categories is aspherical.
C.2.7 1A If I € Ob CAT admits an initial object i, then I is aspherical.

1

PROOF The functor p;:I ~ 1 is a right adjoint for the functor K, :1 + I.
- 0

Therefore Ki is aspherical (cf. C.2.5). But P ° K, = idl, thus py:l > lis

0 1o

aspherical, i.e., I is aspherical.

C.2.8 LEMMA let C,D be small categories, F:C + D a functor. Assume: F is a
Grothendieck preopfibration —— then F is aspherical iff vV Y € Cb D, the fiber (_ZY
is aspherical.

PROOF The canonical functor
Gy > &Y X~ (Xid)))
has a left adjoint C/Y ~» o (cf. A.1.10), which is therefore aspherical (cf. C.2.5).

Taking into account C.2.4, consider the commtative diagram

/Y > Gy
|
I ——1.

C.2.9 LEMMA Iet F:I - J be a functor —- then F is in W iff FO :1O » I is
in W.
PROOF Consider the commutative diagram
op SE tE
1%« 1(->) > 1
OoP
F J l lF (cf. A.1.33).
< 3(~>) > 3
[} t

<
1



Here the arrows Spr tys Syr t‘:r are Grothendieck opfibrations and since their fibers

admit an initial object, it follows from C.2.7 and C.2.8 that Srr tp Syr tJ are

aspherical, hence are in W (cf. C.2.1). Accordingly, if F is in (/, then the

unlabeled vertical arrow is in {, which implies that E‘OP is in W and conversely.
C.2.10 APPLICATION et I € Ob CAT — then I is aspherical iff I is aspherical.

C.2.11 IEMMA Let F:I >~ J be a functor. Assume: F is a Grothendieck pre-
fibration and vV j € Ob J, the fiber -:Ej is aspherical -~ then F is in W.

[The functor FOP:EOP > C_IOP is a Grothendieck preopfibration and v j € Cb J,

(%) ;= (;j)OP.]

C.2.12 IEMMA Suppose that I is aspherical —- then v J, the projection

I xJ~>Jis in W.

PROOF It suffices to show that v j € Gb J, the category (I x J)/Jj is aspherical

{cf. C.2.4). But
(Ix3/3=1x 3/

and there is a commitative diagram

|

so, since pI:E -+ 1 is aspherical by hypothesis, one has only to prove that the

arrow I x (J/J) >~ I is in W. BAnd to this end, it suffices to show that v i € Ob I,



the category
(I x (I/3)/1
is aspherical (cf. C.2.4). But
(I x (I/3))/1 = 1/i xJ/7F

and the category on the RHS admits a final object, hence is aspherical.

C.2.13 LEMMA If &:C > D is in W, then v I, the arrow

CDdeZ
CxI———>DxI

is in W.

[This is the relative version of C.2.12 (take C

I
1
-

I
1=
1o

I
=

L=

I
e

=

and its proof runs along similar lines.]

C.2.14 IRMMA If I € Ob CAT, if

D —087F—>

=

are objects in CAT/I, and if ¢:(C,p) » (D,q) is a morphism in CAT/I (q o @ = p)

which is aspherical, then v i € Ob I, the arrow
®/i:C/i ~ D/i

is aspherical.

C.2.15 IEMMA If I € Ob CAT, if
— P



are objcts in CAT/I, and if ¢:(C,p) ~ (D,q) is a morphism in CAT/I (g o & = p)

which is aspherical, then p is aspherical iff g is aspherical.

PROOF Given i € Ob I, consider the commutative diagram

o/i
/1 > D/1
p/i /1
1/i /i .

Then /i is aspherical (cf. C.2.14), hence is in (. Therefore p/i is in W iff

g/i is in W, so p is aspherical iff g is aspherical.

C.2.16 DEFINITION Iet F:I > J be in W —— then F is universally in W if for

every pullback square

—
v
I

<
v
1y

F' is in W.

C.2.17 EXaMPLE If pp:I > 1 is in W, then o is universally in W (cf. C.2.12)

and conversely.

C.2.18 ILEMMA If F:I - J is universally in ), then F is aspherical.

PROOF v j € Ob J, there is a pullback square

1/3 1
F/ JF

J/3
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C.3 STABILITY
Fix a fundamental localizer W.

£.3.1 1sp If l‘k (k = 1,...,n) are aspherical, then so is their product

n

T I
k=1 X

PROOF Take n = 2 — then the projection I, x I, » I

1%L is in W (cf. €.2.12).

2

But p. :I, -~ 1 is in @, thus
I, =2

X
4
¥

f

is in W.

C.3.2 LEMMA If

Fk:-I-k -> gk k=1,...,n
are aspherical, then so is their product
n n n
F e I, - _[T J, -
NN SIS IR
PROOF Take n = 2 and let (j;,],) € Ob J; X J, -- then

(I, x I,)/(31.35) = I;/3) x I/3,.

But the product on the RHS is aspherical (cf. C.3.1), thus Fl x F2 is aspherical

(cf. C.2.4).

C.3.3 LM If
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are in W, then so is their product

n n n
F s I, - J.
ol e I G 7 I

PROOF Take n = 2, decompose

-

Fy X Fpidy x Iy >y x
as the composition
F, x id id., xXF
1 I 3, 2
I 1L, > d; x 1, > Jy X dy

and apply C.2.13.]

C.3.4 IFVMA If S is a ==t and if v s €

their coproduct

s, FS:ES-M_:[S is in W, then = is

.U_FS: _].l_ .]—-‘s +i£8.
S s S
PROOF Let F = || F_ and let
CI=|lI
s
J=1lJ
— S
Then there is a commutative diagram
I F >

and V s € Ob dis S, the arrow F/s:I/s » J/s

can be identified with the arrow
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F:I >3

&Iy > Jg- Therefore F is in W (recall condition (2) of C.1.1).

C.3.5 LEMMA Suppose that I is a filtered category and F,G:I - CAT are
functors. Let Z:F » G be a natural transformation with the property that

vieoblI, Ei:Fi+Giismw-tllen

colim Z:colim F » colim G

is in W®.

C.3.6 REMARK It follows that I is closed under the formation of retracts

(take for I the category with one object and two morphisms {id ,p}, where p2 = p).

[Note: This is also a corollary to the fact that W is saturated (cf. C.9.3).]

¢

C.3.7 LEMMA Suppose that are small categories. ILet F,G:C > D be
D

functors, Z:F - G a natural transformation — then F is in W iff G is in W.

PROCOF Pass to the functor

E.:C % [1] D
and denote by
eO:[O] - [1]
_ el:[O] - [1]
the obvious arrows -- then
idg * e 2y
C=Cx[0] — 5 Ccx[l] — 50D
C=Cx 0] ————>¢Cx[1] ——>D
id. . x e B
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with

i

F EH o (:Ld(_: * eo)

G EHO (ld(_l_xel)'

Since [1] has a final object, it is aspherical, thus the projection

pr

10

x [1]

> ¢
is in W (cf. C.2.12). But

pro(ldg x eD) = ldC = pI‘O(ldg X e

D

- idcxe

0
id, x e

c* 4

are in W. Therefore F(G) is in W iff =

By is in w.

C.4 SEGMENTS

Fix a fundamental localizer W.

C.4.1 DEFINITION A segment in CAT is a triple (H,ao,al) where U € Ob CAT

is aspherical and 3,,9,:1 ~ 1 are morphisms in CAT.
C.4.2 EXAMPIE The triple ([1] ,eO,el) figuring in C.3.7 is a segment.

Given a segment (11,3,,3,) and a small category C, let pr:C x 1l > C be the



14.

proijection -- then pr is in W (cf. C.2.12).

C.4.3 LEMA vV C € Ob CAT, the morphisms

1d§ x 80

1(:19 X al

are in §.
PROCF One has only to note that

pr © (J_dg P 80) = :de =pr e (.’Ldg X al).

C.4.4 DEFINITION Iet (M,ao,al) be a segment in CAT. Suppose that

samll categories and let F,G:C + D be functors — then F,G are said to be

W-homotopic if 3 a morphism H:C x M » D such that

F=Hoeo (1d§><30)

G=Ho (:i.dg X E)l)

C.4.5 L@MMA If F,G:C ~ D are V-homotopic, then LF = LG.

PROOF Since Lypr is an isomorphism in W Lear,

Lpr o Ljy(id, x 35) = idp = Lypr o L, (id, x 3,)

]'_.w(idC X 80) = Lw(idC X Bl).

{9

Hw)

are
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Therefore
Lyf = Igft o By(de x 3g) = Iyfl o Iy (idg x 3y) = LG.

[Note: It follows that F and G are homotopic in the sense of 1.3.1.]

C.4.6 IEMVMA If F,G:C » D are U-homotopic, then F is in W iff G is in W.

PROOF In view of C.4.3, F(G) is in W iff H is in W.

C.4.7 LEMMA Suppose that idc is W~homptopic to KX ° P (3 X € Ob ¢) == then
C is aspherical.

PROOF Because (C,W) is a category pair, idC is in W, thus KX ° Po is in

W (cf. C.4.6). On the other hand, the composition

& Pc

l > C s 1

is idl. So, since W is weakly saturated, P is in W, i.e., C is aspherical.

C.4.8 THEOREM Suppose that E € Nat(id.,K, o p,) (3 X € Ob C) —- then C is
aspherical.
PROOF In fact, idc is W~homotopic to KX ° Par where
(MfQO,Bl) = ([1] ’eo'el) .
[Note: Bear in mind that [1] has a final object, hence is aspherical.]
C.4.9 EXAMPLE Consider the category A/I which is defined and discussed on

pPp. 28-30 of MATTERS SIMPLICIAL — then, under the assumption that I has a final

object iO’ we exhibited
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o€ Nat(ldA/I'F)

g € Nat(KO,F) .

Ko = Kio,x. ) ° Py/1
i, ==

So, with

(I/I'aoral) = ([1] reorel) ’

id A/T is U-homotopic to F via Ogsy and KO is W-homotopic to F via BH. Therefore

F is in W, thus KO is in W (cf. C.4.6). Reasoning now as in C.4.7, the conclusion

is that pA/I is in W or still, that A/I is aspherical.

C.5 STRUCTURE THEORY

C.5.1 LFMMA If I} is a fundamental localizer and if W = W ~ then
I aspherical => I = 0.

PROCF Suppose that 0 is aspherical. Since v I € Ob CAT, there is a pullback

square

Ihd b | O

it follows that the arrow 0 - I is in @ (cf. C.2.17), hence Pr is in W, i.e.,
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I is aspherical. But this means that every morphism F:C -~ D in CAT is in W

, a contradiction.

(writepc=pD°F), sc>w=wtr

C.5.2 APPLICATION If W is a fundamental localizer and if W o wgr, then

wmwtrorwmwgr.

[Suppose that the containment W o wgr is proper, hence that there exists an

arrow 0 > I in W (I # 0). Consider the comutative diagram

| e e S o |

C.5.3 ILeMMA If W is a fundamental localizer and if W = wtr,w then

gr?
I aspherical = I = 0 & #my(I) = 1.

PROOF Owing to C.5.1, one has only to show that I is comnected. Suppose

false -- then there is a decomposition I = Iy 11 I, where I,,I, # 0. Choose

10 € 0b EO' 11 e Ob ll and let

Q¥
»

bt
¥
1+

Qo
o
o
4
T+

be the corresponding constant functors
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-

Ki:
0

o
(o]

Ki :1 -
1

-

3

Then (2,80,81) is a segment (I being aspherical by assumption). Take now

Ce€ObCAT (C = 0) and fix X € Cb C. Denote by

Pe*c X I

10

SR e

!

the projections and define
HiCxI= (CxI) || €x1I)~C
by

H| (€ x I)

Il

Py

it

H| (€ x I

1) KX°p§°pl.

Then idc is I-homotopic to Kx ° Por thus C is aspherical (cf. C.4.7). Therefore
every functor between nonempty categories is in W, so W > wgr, a contradiction.

C.5.4 APPLICATION We have

WHL [ 1> 1D = 0.

[Per W({1 || 1~>1}, 1 || L is aspherical, thus arguing as in C.5.3, one

finds that every functor between nonempty categories is in W({1 || 1 + 1}), so
Wl 1->1 w_.
{L]l1~1b > -

l}_-*;isinwgr, S0

Wy > W1l ] 1~1h.]
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C.5.5 1EMMA If (¥ is a fundamental localizer and if W = wtr,wgr, then ¥ c wo.

[Note: Recall that W, consists of those F:I > J such that To(F)smg (I) ~ To ()

is bijective.]
C.6 PASSAGE TO PRESHEAVES
Fix a fundamental localizer W.

C.6.1 DEFINITION let C be a small category. Given F,G € Ob C and &:F > G,

call % a W-equivalence if

C/E:C/F > C/G

is in W.

C.6.2 NOTATION Write W_for the class of W-equivalences in Mor (3, thus

0

[Note: It is clear that (é,wA) is a category pair and W, satisfies the 2
C C

out of 3 condition. Moreover,

i (C,W ) ~ (CAT,W)
= T ¢ I

is a morphism of category pairs, thus there is a functor

1

T > wlcar  (cf. 1.4.5).]

= C

-

C.6.3 REMARK To resolve a small matter of consistency, take W = W_ and let

C= A - then a simplicial map f:X + Y is a simplicial weak equivalence iff
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gro, f:g‘roA X > gro, ¥ is a simplicial weak equivalence or still, in different but

equivalent notation, iff i gf :A/X > A/Y is a simplicial weak equivalence. Therefore

W,=1"W_ (cf. 0.24.3).

C.6.4 ILEMMA (V. is weakly saturated.
C

C.6.5 LEMMA (W, is closed under the formation of retracts.
C

PROOF Suppose that = is a retract of {2, say

1 e
F > G > F
! > G' s> F',
I.‘ Q'

vdlere901=idF, p' o ' =1id ,andQEwA——theniEisaretractoficﬂ.
F' =

10)

But icn € W and W is closed under the formation of retracts (cf. C.3.6), so

iCE € Wor still, 2 € W, .

10

C.6.6 THEOREM W, N M is a stable class.

10

C.6.7 REMARK Recall the definition of §—-localizer (cf. 0.21.4) —-- then W,

10

satisfies conditions (1) and (3). However condition (2), which here would read
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"every morphism of presheaves having the RLP w.r.t. the class M < Mor § of mono~

morphisms is in W,.", need not be true (for a characterization, cf. C.9.1).
C

C.6.8 ILEMMA W_n M is a retract stable class.

e

[Both W, and M are stable under the formation of retracts.]
C

C.6.9 APPLICATION Iet

JacW nNM

(1@}

be a set of morphisms -~ then

cof J=LIP(RIP(J)) cW_n M (cf. 0.20.4).

e

[Note: Bear in mind that § is presentable. ]

C.7 MINIMALITY

Our objective in this section is to establish the following result (conjectured

by Grothendieck and proved by Cisinski%) .

C.7.1 THEOREM If ( is a fundamental localizer, then

W <.

(o]

Postponing the details for now, if W is a fundamental localizer, then A/I

T Cahiens Topologie Geom. Differentiefle XIV-2 (2004), 109-140.




is aspherical provided I has a final

22.

N.B. From the definitions,

A1 = A/ner I = gro

E.g.:

Write

A ner I =1
A/[n] = i, Aln].
T/ > L

for the functor that sends (m,u) t© u(m).

C.7.2 IEMMA A functor F:I + J induces a functor

object (cf. C.4.9).

éner I.

AF:NI > A/T ((m,u) > (m,F o u))

and the diagram

~3
IH
L T

comutes.

C.7.3 12MMA The functor

is aspherical.

PROOF V i € Ob I,

A/F
> AT
B,
> J
F
T_I_'é/.l. 1

WD/ = &I/,
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But I/i has a final object, so A/(1/i) is aspherical (cf. C.4.9), from which the

assertion (cf. C.2.4).

C.7.4 LEMMA We have
1.-1

W = ner ié W,
i.e.,
W= ner‘lw,\.
A

PROOF Suppose that F:I -+ J is a functor —- then in the commutative diagram

o/F
AT > AT
Tzl Tg
I >3,
F

the vertical arrows are aspherical {(cf. C.7.3), hence are in . Therefore F is in

aner F is in W.

W iff A/F is in W or still, F is in W iff i

C.7.5 THEOREM If W is a fundamental localizer, then

W, <, (=iW).
é -
Admit this result momentarily - then

C.7.5 => C.7.1.

Proof:

w_= ner-liz\lww (cf. C.7.4)

-
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ner "W, (cf. C.6.3)

liglw (Cf. C.?.S)

W (cf. C.7.4).

ner

al

To deal with C.7.5, take an £ € W_ and using the Kan structure on A (= SISET),

factor £ as the composite of an acyclic cofibration and a Kan fibration (which is

then necessarily acyclic).

C.7.6 FACT Acyclic cofibrations are in W,.
A

[ILet J be the set of inclusions Alk,n] > Aln] (0 <k <n, n =1) — then J

is contained in W, N M (cf. infra), hence
A

cof J = LIP(RIP(J)) < W, n M (cf. C.6.9).
A

But cof J is precisely the class of acyclic cofibrations (cf. 0.20.15).]

[Note: The categories i &A [k,nl, i Aﬁ[n] are aspherical, thus the arrow
:LéA[k,n] > 1éA[n1

is in W.]

C.7.7 LEMWMA For every simplicial set X, the projection X x A[l] - X is in W _.
A

PROOF It suffices to show that the functor

i_A_(X x Af11) - iéx

is aspherical and for this, we shall apply C.2.4. So let ([n],s) be an object of
ié -— then
(A/(X x A[11))/(In],s)

= 0/ (Aln] x ALLD)
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[

A/ (ner[n] x ner[1])

121

A/mer([n] x [1]).
Since the category [n] x [1] has a final object,

Amer([n] x [1]) = A/(In] x [1])

it

is aspherical (cf. C.4.9).

C.7.8 FACT Acyclic Kan fibrations are in W, .
A

[Iet p:X » B be an acyclic Kan fibration. Because @ -+ B is a cofibra

the commtative diagram

g— X
| P
B———2B

tion,

has a filler s:B » X, hence p o s = idB. We then claim that s o p is in W, which,

in view of C.6.4, will imply that p is in W,. To see this, denote by
A

$:X || X+ X

the arrow arising from consideration of
in, in
X— X | [ X e— X

idX S op

X X .

A
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Proceed next from

Ny iy
X x A[0] = X >X_|_X< X = X x A[0]
1<3X><eO 1dxxel
X x A[0] X x A[0]
to get a cofibration
h
xﬂx > X x A[1].

Iet

H:X x A[l] - X

be a filler for the commtative diagram

¢
XX > X
h P
X x A[1] > X > B .
pr p

Then H is a simplicial homotopy between idx and s o p. But pr € W, (cf. C.7.7).
A

Therefore, arquing as in C.3.7,

idxew£=>sop€w,\.]

C.8 TEST CATEGORIES

Fix a fundamental localizer W.

C.8.1 EXAMPLE Take U = 0, ~~ then (™ 'CAT is equivalent to L.



27.

C.8.2 EXAMPLE Take W = wgr - then w—lC_A_'I;_ is equivalent to [1].

C.8.3 EXAMPIE Take () = ). —- then W "CAT is equivalent to SET.

0

C.8.4 EXAMPLE Take W = W _ —— then w_lCAT is equivalent to HCW.

C.8.5 ILEMMA Let C be a small category. Assume: The arrow

1

TeW'C > 0 car

¢

is an equivalence of metacategories — then C is aspherical.

PROOF To prove that pcz_g + 1 is in W, consider the commutative diagram

. e
¢ > CAT
(:j [
Wi , W car.
& i
¢

Then it need only be shown that LiPe is an isomorphism (W being saturated (cf. C.9.3)).

From the definitions, ic(*,\) = C. And
= C

il

Iy(@ = @y ° ig) &)

il

(g © Ly ) (x.).
C ~ A
-— C g

——

But L(L' (*,) is a final object in w:1§ {cf, 1.9.2) and since ':‘L'E is, by hypothesis,
C C -

— -

>

10
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an equivalence, hence gends final objects to final objects, it follows that I.w((_l)
is a final object in W'CAT. However L, (1) is also a final object in W lcar
(cf. 1.9.2), =0

LW‘ Lw(C) +Lw(l)

is an iscmorphism.

C.8.6 DEFINITION Iet C be a small category —— then C is said to satisfy

condition T if v I € Ob CAT, the arrow of adjunction

Vritict > 1
is in W.
C.8.7 REMARK Let

Tg=¢ 17 %

. (_:2=_C§I‘_, wg"w
and

- F=i§

G = 1iX*.

Then under the supposition that C satisfies condition T, condition (1) of B.8.1

is in force (by definition, W, = iElW) . Therefore
C -—

W= (i Ly

¢
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and v Fe Cb (il, the arrow of adjunction

is in W, . Furthermore

C
%‘ W:l§ > w_lCAT
= C
ié:w-lCAT — s uwle
= c "

are an adjoint pair and the adjoint situation (IE,E?_:,}_J,G) is an adjoint equivalence

of metacategories.

C.8.8 CRITERION Given C € Ob CAT, to verify condition ¥ for an arbitrary W,

it suffices to verify condition T for W_ (cf. C.7.1).

€.8.9 ILEMMA If C satisfies condition €, then C is aspherical.

[This is implied by C.8.5, in conjunction with what was said above.]

C.8.10 DEFINITION A small category C is a local test category if v X € Ob C,
C/X satisfies condition €.

N.B. If C is a local test category, then v X € Ob C, C/X is a local test
category.

C.8.11 LEMMA If C is a local test category, then v F € Ob C, C/F is a local
test category.
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PROCF Given (X,s) € Ob C/F, there is a canonical isomorphism
(C/F)/(X,s) = C/X.

[Note: This property is characteristic: If C is a small category such that

”~
VF€O0ObC, C/F is a local test category, then C is a local test category.]

C.8.12 DEFINITION A small category C is a test category if

(1) € is a local test category

(2) C satisfies condition €.

N.B. If C is a test category, then the arrow
Wl » wlcar
¢ —

is an equivalence of metacategories.

C.8.13 LEMMA Suppose that C is a local test category —— then C is a test

category iff C is aspherical.

C.8.14 EXAMPLE Take W = wtr -— then every small category is a test category.

C.8.15 EXAMPLE Take W = wgr -— then the test categories are the small nonempty
categories.

[In view of C.5.1, a small category C is aspherical iff it is nonempty.]

C.8.16 LEMMA Suppose that C admits a final object -- then C is a local test

category iff C is a test category.
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C.8.17 LFMMA A small category C is a local test category iff v X € Ob C, the

category C/X is a test category.

C.8.18 RAPPEL Given a small category C, M < Mor é is the class of monomor-

phisms and the elements of RLP(M) are called the trivial fibrations (cf. 0.21).

C.8.19 THEOREM Let C be a small category —- then C is a local test category iff

RIP(M) < W,..

1}

C.8.20 EXAMPIE A is a test category. Thus note first that A has a final object
(viz. [0]), hence is aspherical. So, to establish that A is a local test category,

it is enough to prove that A is a test category per W (cf. C.8.8). To see this,

consider @ in its Kan structure —- then M is the class of cofibrations, RIP(M) is

the class of acyclic Kan fibrations, and

W), =iy =W_ (cf. C.6.3).

Therefore
RLP (M) < (W) .
A

and C.8.19 is applicable.

[Note: Here i A = 9FO, and there is a commutative diagram

gro,
SISET - > CAT
l l (cf. 0.24.3),
HSISET : > HCAT
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where gro A is an equivalence of homotopy categories.]

C.8.21 REMARK é‘M is aspherical and satisfies condtion €. Still, if

W= wtr,wgr, then [—‘\‘M is not a local test category.

[Suppose that éM is a local test category -- then the same is true of

_A_M/[O] ~1l. Butv I € Cb CAT, iliﬂ = -]-:dis (the discrete category with objects

those of I). In particular: The discrete category {0,1} = ilii[l] would be

Y1

aspherical ([1] is aspherical and the arrow {0,1} > [1] is in W). This,

however, is possible only if W = wtr or W= wgr (cf. C.5.3).]
€.8.22 LEMMA Suppose that C is a local test category —— then for every small
category D, the product C x D is a local test category.

C.8.23 LEMMA Suppose that C is a test category — then for every small aspher-
ical category D, the product C x D is a test category.

[Recall that the product of two aspherical categories is aspherical (cf. C.3.1).]

C.8.24 EXAMPLE A x A is a test category.

C.9 CISINSKI THEQORY (bis)
Fix a fundamental localizer W.

C.9.1 THEOREM Let C be a small category — then C is a local test category

iff W, is a C-localizer.
C
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PROOF Taking into account C.6.7, one has only to quote C.8.19.

C.9.2IMAIetF:;+§beamrphisminCAT-~thenFis:inWiffizFis

in W..
A

PROCF Owing to C.8.20, A is a test category, hence satisfies condition T

{(cf. C.8.12). Therefore

W= (ig)‘lw,\ (cE. C.8.7).
A T}

Conseguently,

FEW<=>FE (i) "Ly <= iXF € W,

- A - A
C.9.3 W is saturated: W = W.
PROOF Since

i%: (car,w) > (A,W0,)
= A

is a morphism of category pairs (cf. C.9.2), there is a commutative diagram

i )
car > 3
A
W car > WA .
‘{g A

Suppose now that LyF is an isomorphism in W icar — then F‘A'LwF is an iscmorphism
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in w:lg or still, Lw izF is an isomorphism in w:lé. But W, is a g-localizer
§ % - é é
(cf. €.9.1), hence is saturated (cf. 0.21.9). Therefore i}_*\F € W, _or still,
- A
F e -

C.9.4 REMARK The functor

T A » whcar
A AT I

is conservative.

C.9.5 THEOREM Suppose that W is an admissible fundamental localizer and C is
a local test category —- then C admits a cofibrantly generated model structure

whose class of weak equivalences are the elements of W, and whose cofibrations are
C

the monomorphisms:

W., cof = M, fib=RrRP(W, N M).
C C

The central point is to establish that W, (which is a (E—localizer (cf£., C.9.1))
C

is necessarily admissible {for then one can cite 0.21.7). This is done in two steps.

Step 1: Prove it in the special case when C = A.

[Note: If W, is an accessible subcategory of §(+) , then W_ is necessarily
A A

admissible (cf. 0.25.9) but accessibility is not an a priori property.]
Step 2: Finesse the general case.

N.B. The composition

o>

ner ¢ i _:C ~>
C—
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preserves colimits and monomorphisms. In addition,

(ner o ic)“lw =W

~ "~

= A

@]

C.9.6 LEMYA Tet C|,C, be small categories and let F:C; -~ C, be a functor that

2 1 2

preserves colimits and monomorphisms. Suppose that Wz is a (Ez-localizer and that

) P A . _
W =F w2 is a Cy-localizer then

w2 admissible => W. admissible.

1

[The argument is a lengthy workout in set~theoretic gymnastics.]

C.9.7 RAPPEL Iet C be a small category —- then the Cisinski structures on é

are left proper (but not necessarily right proper).

C.9.8 DEFINITION An admissible fundamental localizer W is proper if for every

test category C, W, is proper, i.e., if the Cisinski structure on C:i determined by
C

W is proper.
C

C.9.9 LEMMA If W_ is proper, then W is proper.
A

C.9.10 EXAMPLE The minimal fundamental localizer W _ is admissible (being equal
to W(@)) and proper.

[In fact,
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and the Cisinski structure on é determined by wm is the Kan structure which is

proper (cf. 0.3).]

C.9.11 REMARK It turns out that if W is proper, then for every local test

category C, W, is proper.
C

C.9.12 THEOREM Suppose that W is an admissible fundamental localizer. Iet
C,C' be local test categories and let F:C - C' be an aspherical functor. Equip

é with its Cisinski structure per .
C

é' with its Cisinski structure per W

>

10

Then the adjoint situation
*
()7, @)

is a model pair that, moreover, is a model equivalence.

C.9.13 DEFINITION A Thomason cofibration is a cofibration in CAT (External

Structure) .

C.9.14 THEOREM Suppose that W is an admissible fundamental localizer -- then
CAT admits a cofibrantly generated model structure whose class of weak equivalences

are the elements of ( and whose cofibrations are the Thomason cofibrations.

N.B. The proof is an elaboration of that used to equip CAT with its external

structure {(cf. 0.24.2).

C.9.15 REMARK The cofibrantly generated model structure on CAT determined by

v is left proper and is right proper iff W is proper.
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C.10 CRITERIA
Fix a fundamental localizer W.

€.10.1 IEMMA Let C be a small category. Assume: V I € Ob CAT which admits
a final object, the category

1 *
c/igL

is aspherical -- then C satisfies condition T.

PROCF For any I € Cb CAT, the arrow of adjunction
»q 1%
\)E.lglgg > 1
is aspherical, hence is in W (cf. C.2.1). In fact, v i € Ob I,

(igiég)/i = i i%(T/i)

and I/i has a final object. Now apply (.2.4.

C.10.2 DEFINITION Iet C be a small category —- then a presheaf F € Ob (:1 is

said to satisfy the Q-condition if v X € Ob C, the category C/(h, x F) is aspherical.

[Note: If C admits a final object *., then h, is a final object for C,
= c

hence VF € 0b C, h, x F x F.]

N.B. Given an X € Ob C and an F € Ob C, let F|(C/X) be the presheaf induced

by F on C/X — then

(C/X)/ (F] (/X)) = C/hy x F).
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C.10.3 LEMMA Iet C be a small category. Assume: V I € Ob CAT which admits
a final object, the presheaf ié; satisfies the Q-condition -- then C is a local

test category.

PROOF The claim is that v X € Ob C, C/X satisfies condition T (cf. (€.8.10).

To establish this, it suffices to show that v I € Ob CAT which admits a final object,

the category

(g/X)/ié/Xg
is aspherical (cf. C.10.1). But

(/0 /1% L

u

(C/X)/(HEI] (/X))

123

c/ (hx X ié_I_)
and the latter is aspherical by assumption.

C.10.4 CRITERION ILet C be a small category. Assume: ié[l] satisfies the
fi-condition — then C is a local test category.

€.10.5 REMARK Using this criterion, Maltsiniotis+ has given a direct elementary
demonstration of the fact that A is a local test category (cf. C.8.20).

[Note: Here iz[l] = ner [1] = A[l], so it is a question of proving that

A/(Aln] x A[l]) is aspherical for all n z 0.]

ILet C be a small category, 1:C > CAT a functor — then the nerve of 1 is the

T Astenisque 301 (2005), 49-50.
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functor
nerl:_C_Z}_T_ > é
defined by
ner, (1) (X} = Mor(1X,I) (X € 0b Q).
N.B. If 1:C > CAT is the functor X + C/X, then C/X zg/hx and
Mor (1X,I) = Mor(g/hx,g).
Therefore

ner

I

1 ié (c£. B.1.10).

C.10.6 EXAMPLE Take C = A and let 1 be the inclusion A > CAT — then V [n] €
Ob A,

ner (I)([n]) = Mor(In],I) = ner I.

C.10.7 DEFINITION The functor 1:C - CAT satisfies the finality hypothesis

if v X € Ob C, X has a final object ey-

C.10.8 EXAMPLE The inclusion A - CAT satisfies the finality hypothesis: n € Ob [n]

is a final object for [n].
€.10.9 LEMMA Suppose that 1:C - CAT satisfies the finality hypothesis -- then
there is a natural transformation

CAT

.TI::I.g ° ner —> id.,n-
PROOF Iet I € Ob CAT and recall that

i, e I
c °mer.l

is the small category whose objects are the pairs (X,s), where X € Ob C and
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s:1X » I is a functor, and whose morphisms (X,s) -+ (Y,t) are the arrows f:X + Y

such that t ¢ 1{f) = s (cf. B.1.2). This said, define the functor

HI:J.C o nerlg +~1I

on objects by

L (X,8) = s(ey)
and on morphisms by

fXY

T (D) = s(ey) T tley).

Explicated:
1{(f):1X » ¥
=>
1(£) () € Ob 1Y
=>’
31
1(£) (ex) > ey
=
t(3t1)
t (1 (£) (ex)) —_— t(eY)-
But
s(ex) = t(1(f) (eX)),
S0
fX v = £{31).

C.10.10 EXAMPIE Take C = A and let 1 be the inclusion A -~ CAT -- then
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v I € Ob CAT, JL. is the canonical arrow

gro, (ner I) ~ I.

€.10.11 LEMMA Suppose that 1:C - CAT satisfies the finality hypothesis —
then the following conditions are equivalent:
(1) v I € Ob CAT which admits a final object, the category
C/ner I
is aspherical.
(2) v I € Cb CAT, the functor

J:i e ner I~>1

is in W.
(3) v I€ 0o CAT, the functor

i, oner I >
e P

{4

is aspherical.
PROOF It is clear that (3) => (2} {(cf. C.2.1). &as for (2) => (1), bear in
mind that

J.g o nerl_]; = (_Z/nerl_I_

and consider the cammitative diagram

Cfmer T — 1
iy j }
I > 1.

-

Since I has a final object, the arrow I + 1 is in (. Therefore the arrow



42.

C/ner T+ 1
is in W, i.e.,
C/ner 1

is aspherical. Finally, (1) => (3}. To see this, it suffices to show that
v i € Ob I, the category

(C/mer 1)/i
is aspherical (cf. C.2.4). But

{g/nerlg)/i = g/nerl(_l_/i)

and I/i has a final object.

C.10.12 REMARK Maintain the assumptions of (.10.11 — then

ner_: (CAT,W) ~ (C,W )
v e

is a morphism of category pairs, thus there is a functor

tear > w7'C  (cf. 1.4.5)
C

ner W
1(&)

and a natural isomorphism

i o ner - id .
¢ l W Llcar

[Note: The last point requires additional argumentation and is not an a priori
part of the overall picture. One is then led to ask: Is ner —an equivalence?

The answer is affirmative if C satisfies condtion T (under this supposition, 'iz

is an equivalence (cf. C.8.7).]
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C.10.13 LEMMA Suppose that 1:C + CAT satisfies the finality hypothesis.
Assume: V I € Ob CAT which admits a final object, the presheaf ner, I satisfies

the Q-condition — then C is a local test category.

€.10.14 CRITERION Suppose that 1:C - CAT satisfies the finality hypothesis.

Assume: ner [1] satisfies the {-condition -- then C is a local test category.

N.B. If 1:C »~ CAT is the functor X -+ C/X, then 1 satisfies the finality

hypothesis. Therefore €.10.13 encompasses (€.10.3 and (€.10.14 encompasses (.10.4.

€.10.15 REMARK Keeping to the setup of (.10.13, assume in addition that C
admits a final object —— then C is aspherical, hence is a test category (cf. C.8.13),

so by definition, C satisfies condition €. On the other hand, v I € Ob CAT,

h, xner I = ner I,
c 1= 1=

thus
C/ner I
is aspherical. Therefore

fer :W lcar ~ w:lé
=

is an equivalence of categories (cf. C.10.12).

€.10.16 EXAMPLE Take W = W , C = A, 1:A > CAT the inclusion, ner = ner, and

ié=groé —— then

ner:W_Tcar - W13

OO e

is an equivalence of categories and there are natural isomorphisms
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gro, ° ner — i

ner o gro, —> id _

wco

W

o]

-1

CAT

l/\

A

(cf. 0.24).
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D: LOCAL ISSUES

D.1 A LOCAL CRITERION

D.1.1 DEFINITION Let W be a fundamental localizer -- then a functor F:I + J

is locally constant if for every morphism j » j' in J, the functor

/i~ /3!

is in W.

D.1.2 EXAMPLE If F:I - J is aspherical, then F is locally constant. To see

this, consider the commitative diagram

» F/j »
/3 > J/7
/3’ > J/3'.
F/3"
/3
Then the horizontal arrows are in W (F being aspherical). Furthermore, both
J/3"

have final objects, thus are aspherical. Therefore the arrow J/j > J/j' is in W,

hence the arrow I/j > I/3' is in W.

D.1.3 EXAMPIE Let F:I - CAT be a functor with the property that for all mor-

phisms i 0> § in I, the functor Fi — O 5 Fj is in W — then the Grothendieck
opfibration -

GF:INT -1

is locally constant.



D.1.4 THEOREM Take CAT in its external structure and let { = W . Suppose

that F:I + J is locally constant —— then Vv j € Ob J, the pullback square

1/ —1
F/jl JF
33—

is a homotopy pullback.

[This is Cisinski's formulation of Quillen's "Theorem B" (cf. D.3.3 ff.).]

D.1.5 REMARK Within the setting of D.1.4, the converse is valid, a corollary

being that the locally constant functors (per W ) are composition stable.

D.1.6 RAPPEL In a right proper model category C, a commutative diagram

n
W > Y
I}
X > 24
f

n
where £ is a weak equivalence, is a homotopy pullback iff the arrow W ——> Y is a

weak equivalence (cf. 0.35.2).

D.1.7 APPLICATION Take CAT in its external structure and let W = (! . Suppose
that F:I +~ J is locally constant and a simplicial weak equivalence -- then F:I > J
is aspherical.

[According to D.1.4, Vv j € Ob J, the pullback square



Vi1
o5 JF
J3/3 > J

is a homotopy pullback. But CAT (External Structure) is right proper, so the

contention is implied by D.1.6.]

D.1.8 THEOREM Suppose that W < WO (cf. C.5.5) is a fundamental localizer.

Assume: Every locally constant functor in W is aspherical -- then W = W_.

Since W_ < W {cf. C.7.1), it suffices to show that

-1

w=1é

{Ucwm.

155

Proof:

W =rner W _ (cf. C.7.4)

1>

:

=ner = i, W (cf. C.6.3)

W (cf. C.7.4).

o0

il

D.1.9 LEMMA Iet p:X > Y be a Kan fibration. Assume: p € W, —— then p € W_.
A

-

Granted this result, it is easy to conclude matters. Thus given £ € W, write
A

f= Pg © if, where if is an acyclic cofibration and Pe is a Kan fibration. So:



i_elW <cW,
£ o A
=>pf€w’\=>pfewoo=>f€woo°
4
few
A

N.B. For use below, recall that

=,
i>>
¥
[

preserves pullbacks {(cf. B.1.9).

D.1.10 DEFINITION Iet W be a A-localizer — then a simplicial map p:X + Y

is locally constant if given any diagram

g
Aln] Xy p, QU | Xy X > X
Aln] > Alm] > Y,
f

the arrow g is in W.

D.1.11 1AMA A simplicial map p:X =+ Y is locally constant iff for any diagram

g
KXYX >LXYX > X
K > L > Y
£

with £ € W_, there follows g € W.

D.1.12 LEMMA Take A in its Kan structure and let W = W_ -— then p:X > Y is



locally constant iff for every simplicial map 2 -+ Y, the pullback square

ZXYX————-—->X
Z —mm > Y

is a homotopy pullback.
D.1.13 APPLICATION If p:X - Y is a Kan fibration, then p is locally constant
{(per Nw) {cf. D.1.12). 50, in the notation of D.1.11,
feW, =>geW_  (via propriety).

But W_c W, (cf. C.7.5). Therefore p is locally constant (per W,).
A

1>

D.1.14 LEMMA Take W = (! —— then a simplicial map p:X -+ Y is locally constant
A

(per W ) iff iAp:iAX > :i.AY is locally constant (per W).
A 8 & c

-

PROCF Iet ([nl,s), ([ml,t) be cbjects in é/Y -~ then a morphism ([n],s) -
([m] ,t) corresponds to a diagram
Aln} » Alm] - Y

of simplicial sets and the pullback squares

Aln] XYX~——-———————> Alm] XYX > X
Aln] > Alm] > Y

in SISET induce pullback sgquares



A (Aln] *y X) ———> A/ (A[m] Xy X) ———> AX

8/41n] > A/Alm] —— MY

in CAT. The functor

(/%) /([n],8) ——>(A/%)/([m] ,£)

is therefore isomorphic to the functor

5 (AIn] %, X) —> A/(Alm] x, X).

In particular: If p:X - Y is a Kan fibration, then iAp:iAX > iAY is locally

constant (per W) (for p is locally constant (per W, ) (cf. D.1.13)).
A

D.1.15 ILEMMA Iet p:X = Y be a simplicial map. Assume: p is locally constant

(per W.) and in !, -- then for any pullback square
A A

X'= ¥ X, X ——— X

Y —— >v,
p' is in W _.
A

PROOF Pass to the pullback square

. \
léx > léx

i p'l liép
o ,
3.éY > léY



in CAT -- then iAp is locally constant (per W (cf. D.1.14) and in W, thus is

aspherical (by hypothesis) (cf. D.1.8). The claim is that iép' is in W and for
this, it will be enough to prove that i Ap' is aspherical. Abusing the notation,

let y' € Ob i AY' and let y € Ob 1 AY be its image. Consider the diagram

o oo . .
léx Yy — :LéX/y _— :u.éx

J llép
oy ey . .
lQY Sy — J.éY/y R :Lé‘f

of pullback squares. Because i AP is aspherical, the arrow
i éX/y > i QY/Y

is in #. On the other hand, both :‘LAY‘/};' and i&Y/y have final objects, hence the

arrcw

iéY/y' > iéY/y

is in W < W. Now apply ner to get a diagram

ner iAX‘/y‘ e TYEY iAX/y > NIQY iAX
lner i ép
ner i,¥'/y'! ———s ner iAY/y — 75 iAY

of pullback squares in SISET. Since ner i AP is locally constant (per #,) and
= A

since the arrow

ner i AY/y' > ner i AY/y



is in ww, it follows that the arrow

ner iAX‘/y' -+ ner iéx/y

is in W, (cf. D.1.11). Therefore the arrow
A

iéx'/y' > iéx/y
is in W (cf. C.7.4), which implies that the arrocw
. [} ¥ 5 1 ¥

léx /Yyt > léY /Y

is in W, so iAp' is aspherical.

Consequently, if p:X + Y is a Kan fibration and if p is in W _, then for any

A
pullback square -
qt =y XYX————-—>X
p'l Jp
Y\ — e Y,

p' is in W_.

1>

D.1.16 EXAMPIE Iet X be a Kan complex. Suppose that the arrow X -+ A[0] is in
W —— then the projections
A
pri:X x X » X

Pry:X x X + X

are in W, .

e



[Consider the pullback square

Prz
XXX — X
Xeo— 5 Af0] L]

D.1.17 LEMMA Suppose that f:X -~ Y is in W — then 'no(f) :’iTO(X) > 'rrO(Y) is
A

bijective.

PROOF Consider the commutative diagram

ner 1éx —— X (J.éx---c_;a:oé X)
ner iéf £
ner iAY — Y (1Y = gro, Y).

- pund —

Since the horizontal arrows are simplicial weak equivalences, TTO(f) is bijective

iff o (ner iAf) is bijective. But iAf €W, so WO(iAf) is bijective (recall that

by hypothesis, W c wo (cf. D.1.8)), hence T (ner iAf) is bijective.

D.1.18 RAPPEL Iet X be a Kan complex — then the arrow X -+ A[0] is a simplicial

weak equivalence iff X is connected, nonempty, and v X € X, & Y n = 1, ﬁn(X,x)

0
is trivial.

D.1.19 ILEMMA Iet X be a Kan complex. Assume: The arrow X - A[0] is in W, —
A
then the arrow X + A[0] is in W_.
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PROOF Owing to D.1.17, %TEO(X) = 1, thus X is nonempty. This said, fix x € XO'

Since X is Kan, the canonical arrow

map (A[1],X) > map(A[1],X) = X x X

is a Kan fibration and the vertical arrows in the diagram

QX x) ———— > 0(X, %) ——— > map(A[1],X)
d
ATO] > X > X x X
X (idxrx)
2 prz
Af0] > X
X

are Kan fibrations. The composite

map(A[1],X) - X

is an acyclic Kan fibration, hence is in W, (cf. C.7.5). On the other hand,
A

prz:X Xx X+ Xis in W, (cf. D.1.16). Therefore g is in W . But g is also locally
A A

constant {(per W,) (cf. D.1.13). Therefore the arrow Q(X,x) - A[0] is in i .
A A

Proceeding from here by iteration, one obtains a sequence {((X,%)} of Kan com-

plexes such that v n = 1, the arrow Qn(x,x) + A[0] is in W, . And Vn =z 1,
A

#ﬂn(x,x) = 1. That the arrow X -+ A[0] is in W_ is then implied by D.1.18.
[Note: In the above, 0X is the mapping space of (X,x) and OX is the loop
space of (X,x):
0):4

24

map, (A[1],X)

map, (A[11/A[1],%) .]

=
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D.1.20 ILEMMA Let p:X +~ Y be a Kan fibration. Assume: p € W_-—- then p € W_
A
(cf. D.1.9). -

PROOF First, i (p):ﬂO(X) > ’ﬂ'O(Y) is bijective (cf. D.1.17). Therefore it

need only be shown that v x € X, and v n =z 1,

0
wn(x,x> I~ rrn(y,y) y =px)).

To this end, recall that the fiber XY of p over y is the Kan complex defined by

the pullback square

XY —_— X
A[0] ——— Y .
Y

Since p is locally constant (ver W,.) (cf. D.1.13) and in W_ (by hypothesis), the
A A

- —

arrow Xy > A[0] is in W_ (cf. D.1.15), hence is in Nm {(cf. D.1.19). So, vn =1,
A

™ (Xy,x) is trivial (cf. D.1.18). Conclude by applying the long exact sequence in

homotopy .
D.2 FAILURE OF UBIQUITY

Fix a proper fundamental localizer W < wo (cf. C.5.5) and equip CAT with the

cofibrantly generated model structure determined by W (cf. C.9.14) (itself necess-

arily right proper {cf. C.9.15)).

D.2.1 THEOREM Assume: For every locally constant functor F:I - J and
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v j € Ob J, the pullback square

/3 > I
” i
J/3 > J

is a homotopy pullback —— then W =W _.

PROOF If F:I - J is locally constant and in (¢, then v j € Ob J,
F/3:1/3 »~ 3/3

is in W (cf. 0.1.7). Therefore F is aspherical and one can quote D.1.8.

Moral: In the world of proper fundamental localizers W c wo, W_ is character-

ized by the validity of “Theorem B".
D.3 THEOREM B => THEOREM B
Take SISET in its Kan structure and CAT in its external structure.

D.3.1 CRITERICN A commutative diagram

), QU 4

N

X' > Y'

of simplicial sets is a homotopy pullback (per Nm) iff the commtative diagram

i > 1.¥Y

o>

e | [
w4

iX — iy

>
1> L |
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of small categories is a homotopy pullback (per W ).

D.3.2 ILEFMMA The functor

ner :CAT - SISET

preserves homotopy pullbacks.

PROCF Suppose that

10 <— 1}

is a homotopy pullback in CAT —- then the claim is that

ner ¢ ——— > ner Q
ner &' ———— ner 2°

is a homotopy pullback in SISET and for this, it need only be shown that

1 éner C—— 1 énTt D
4 ' 9 t
i éner ¢ ——— iner D

is a homotopy pullback in CAT (cf. D.3.1). To begin with, iA = gro,, thus there

are simplicial weak equivalences

iéner(_;+ C N iénerg-ﬂg
iAner ct-c', iAner D' > D'.
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e Consider the commutative diagram

iAner C—C——D
:'LAner C'—> C'—> D',

Then the first square is a hamotopy pullback (cf. 0.35.2), as is the second square

(by hypothesis). Therefore the rectangle

i Aner C—m——

i Aner C' ————

[ Lo R —

is a homotopy pullback {(cf. 0.35.3).
e Consider the commutative diagram

lémj[r C——> 1571: b > D
s 1 . 3 1
1Aner (_2_3 > 1éner 1_') > l_)_ .

Then the rectangle is a homotopy pullback (by the above), as is the second square

(cf. 0.35.2). Therefore the first square

1 énT: g e ——— A § énjr D
3 1 5 ¥
1 Aner ¢ 1 Aner 12

is a homotopy pullback (cf. 0.35.3).

D.3.3 THEOREM B Iet I,J € Ob CAT and let F:I - J be a functor.

Assume:

F is
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locally constant -- then v j € Ob J, the pullback square

ner I/j ————> ner I
ner F/j ner F
ner J/§ ———> ner J

is a homotopy pullback.

[In view of D.3.2, this is immediate (cf. D.1.4).]
To complete the picture, we shall ocutline an approach to D.l.4.

D.3.4 Iet C be a small category, F:C + CAT a functor. Assume: For every
arrow f:X + Y in C, Ff:FX -~ FY is a simplicial weak equivalence -- then the

Grothendieck opfibration
@F:IN'I‘_:F > C
is a homotopy fibration (cf. 0.35.5).

D.3.5 EXAMPLE Let J be a small category. Consider the functor

J + CAT
i > 3/3.

Then J/j has a final object, hence is contractible. So, for every morphism j - j'
in J, the arrow J/j - J/j' is a simplicial weak equivalence. Therefore the

Grothendieck opfibration

is a homotopy fibration.
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D.3.6 EXAMPLE Iet I,J be small categories, F:I » J a locally constant functor.
Consider the functor
J + CAT
i~ I/3.
Then by definition, for every morphism j - j*' in J, the functor
/3 »~ /3
is a simplicial weak equivalence. Therefore the Grothendieck opfibration

I/ /_"+J

is a homotopy fibration.
[Note: Needless to say, D.3.5 is a special case of D.3.6 (take I = J and

F= idJ).]

D.3.7 RAPPEL Given a small category C and a functor F:C - CAT, there is a

canonical arrow

Kg:INTF > colim F  (cf. B.2.15).

D.3.8 LEMMA If I,J are small categories and if F:I + J is a functor, then

K, +INT;I/— > colimsl/— = I
is a Grothendieck fibration with contractible fibers.
D.3.9 REMARK It follows that
I/ /——+colnnI/———_I_

is a simplicial weak equivalence (cf. B.6.13).



17.

Here now is the data for the proof of D.1.4:

‘—

1/j ———>INT.I/— .
F/3 ¥
g}j -————>INTJJV_/-— > J

= Kg/——
| S3/—
1 > J .
K

Each of the squares in this commutative diagram is a pullback square and the compo-

sition
G)g .

INT.I/— —>INTJ/— ——— > J

—

is GI/—-— .

e Since @Q/—— is a homotopy fibration (cf. D.3.5), the pullback square

3/j ———> INTJ/—

]

is a homotopy pullback (cf. 0.35.4).

>

e Since @I/-——- is a homotopy fibration (cf. D.3.6}, the pullback sguare

/) — INTJE/ e
1 > J
K.
]

is a homotopy pullback {cf. 0.35.4).
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Therefore the pullback square

/] — INTZZ/—-
£/4 j
3/j ——> INT J/—
is a homotopy pullback {(cf. 0.35.3).
f—
® Since are simplicial weak equivalences (cf. D.3.9), the
Kg ya
pullback sguare
f/—
]I\JT—}I —_— > T
NT 3/ — > J
= KJ /_—

is a homotopy pullback (cf. 0.35.2).

Therefore the pullback square

1/3 > I
ijl lF
J3/3 > J

is a homotopy pullback (cf. 0.35.3), the contention of D.l.4.
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CHAPTER T1: DERIVED FUNCTORS

1.1 LOCALIZATION
let C be a category and let W < Mor C be a class of morphisms.

1.1.1 DEFINITION (C,W) is a category pair if W is closed under camposition

and contains the identities of C, the elements of I/ then being referred to as the

weak equivalences.

E.g.: If wmin is the class of identities of C and if wmx is Mor C itself,
then (C,W . ) and (C,W )} are category pairs.

[Note: An intermediate possibility is to take for W the class of isomorphisms
of C.]

N.B. A category pair can be regarded as a subcategory of C with the same

objects.

1.1.2 DEFINITION Given a category pair (C,W}, a localization of C at W is

a pair (w'lg, L), where w—lg is a metacategory and I,,:C - w_lg is a furctor such

that v w € W, Lyw is an isomorphi san, (w—lg, Lw) being initial among all pairs
having this property, i.e., for any metacategory D ard for any functor F:C - D
such that v w € W, Fw is an iscmorphism, there exists a unique functor F:w-lg ~D

s;chthatF=§oLw.

1.1.3 THEOREM Iocalizations of C at W exist and are unique up to isomorphism.

Moreover, there is a representative (w_l(_; ‘ Lw) having the same objects as C and

for which Ly is the identity on objects.



1.1.4 EXAMPIE Take C = TOP and let W/ < Mor C be the class of homotopy equiv-

alences — then W 1C = HTOP.

1.1.5 DETAILS What follows is an outline of the proof of 1.1.3.

Step 1: Given X,Y € Ob C, a word

0= (XXpyeee Xy 0 ,Y)

connecting X to Y is a finite chain of objects and morphisms of the form

in which — and <— alternate and the w, are in W. Write Q(X,Y) for the class
of all words connecting X to Y.

Step 2: Two words w,w' € Q(X,Y) are deemed equivalent (w ~ w') if there is
a finite seguence

W= 0 s Wyreee s, = w'
of words with the property that each Wy is obtained from W _q (or fraom w; +l) by
one of the following operations.
(a) Replace

o ——> @ < ° > @ < ° (u,v €W

in w,_y (or wi+l) by
uf A2V
e —>e<——e

if there is a commutative diagram in C

H 9
®<— @ —> 0
ul lv
e ——— @

with vv in ¥.



(b) Replace

in w;_; (or w, ;) by

if there is a commutative diagram

with pu in W.

{c) Replace

in w;_; (or w;,.) by

or vice-versa.

{(d) Replace

inwy g (OF wyyy) by

or vice-versa.

u £ v g
e < e > @ < . > e  (y,v € W)
Hu gv
e<—eoe— @
in C
£ Y
e —e<—eo
I ¥
Y
f id f2
e > e<—eo—">e
£f.f
° 21>o
w id w.
o<lo >o<20
W W
° < 172 .




Step 4: Given words

w= (X,Xl, cua ,X2n_1,Y)

w' = (Yryll---ranl_llZ)l

let

o* o' = (KX Ky Y Y, 7).

Then the *-product is associative and the equivalence class of w * w' depends

only on that of v and w'.

Step 5: Now stipulate that the metacategory w_l(_: has for its objects those

of C and for its morphisms from X to Y the elements [w] € Q(X,Y)/~. Here com—
position is defined by
[W'] o [w] = [w* w']

and the identity in Q(X,Y)/~ is

dy i
[x > X < X].
2s for the functor L :C -~ wlc, on objects
k=X
and on morphisms
f :LdY
Lyf = ;4 > Y < Y].

Step 6: Given a word w € Q(X,Y), suppose that its morphisms in either
direction are elements of W ~- then [w] is an isomorphism in w'lg, its inverse

being represented by w written in reverse order. In particular: v we W, L( o



is an isomorphism.
Step 7: Let F:C > D be a functor such that vV w € W, Fw is an isamorphism.

Define ?:w—lg-»gonthexecbw_l§=0bgbyﬁx=FXarﬁgivenaword

W = (X,Xl, .o 'XZn-l’Y) .

put
Fu = F(w}"l o Ff © ... 0 F(W)-l o Pf
n n 1 1
Then
Therefore the assignment
fw] - Fu
is welldefined. And §:w—l(_2 + D is a functor.
Step 8: ¥ X € Ob C,
(F oLw)x=§wa=fx=Fx
and v £ € Nbr(X,Y) ’
(F o L f = }:'*wa
f idY
= F[X > Y < Y]
- : -1
= F(:LdY) o Pf

(idFY)_l o Ff = Ff.

Modulo uniqueness (which will be left to the reader), the proof is thus

camplete.,



1.1.6 REMARK In general, the Q(X,Y)/~ need not be sets and w‘lg need not be

isomorphic to a category (but it will be if C is small).

1.1.7 LEMMA Every word

w= X,X.,,... 'x2n-l'Y)

is equivalent to

fl ldl 1d1 Wy
(X > Xl < Xl) * (Xl > Xl < X2) % eos
fn J'd2n—ZL id2n-l Y
* Kopp —> Xy < Zon-1) * Koy ——> X < RE

Therefore
W] = @) " o Lyf o v o (L) T o Lf
n Wn w1 1°

1.1.8 LEMMA Suppose that (C,W) is a category pair whose weak equivalences are
isomorphisms -— then Ly:C + w-l(_j is an isomorphism.
PROCF vV w € W, idcw is an isomorphism, hence there is a unique functor

~1 i aa . _ ca
¢:lW "C +~ C and a factorization 1d§ =9 o L. Meanwhile, Ly, = L ° 1dc =

I_wf’(@ol'_w)=(]'_,wo®)o[w=>]:,w0@=j_dw_lc

1.1.9 DEFINITION Iet (C,W) be a category pair — then the saturation W of W

is the class of morphisms of C which are sent by Iy, to isomorphisms in w-l(_:.

N.B. (Q,a}) is a category pair.



1.10 LEMMA There is a canonical isomorphism

e - e

of metacategories.
PROOF Since W c W, there is a unique functor A:w’lg - E!'lg such that

L =Ac°L. Onthe other hand, Iw{é is an isomorphism for all w € W, so there
W
is a unique functor 5:@‘1(_; -~ (Tl(_: such that Iy

A e L . Therefore

il

7
Tnosaem=aeler
) Lw=EOLw=Z\OA°Iw
=>
- AOE=1<1@_1§
Eoza:ldw_lg.

1.11 IEMMA Iet (C,W) be a category pair -- then for every metacategory D, the

precomposition arrow

[wc,Dl ~ [c,D]

corresponding to L, induces an isomorphism from [w—lg,p_] onto the full sukmeta-

category [Q,Q]w of [C,D] whose objects are the fumctors F:C + D such that v w € W,

Fw is an isomorphism of D.
1.2 CALCULUS OF FRACTIONS

Iet (C,W) be a category pair —- then under certain conditions, the



description of the localization (W*lg, L, can be simplified.

1.2.1 DEFINITION W is said to admit a calculus of left fractions if

W kil
(LFl) Given a 2-source X' < X —>Y (w € W), there exists a commtative
square
f
X > Y
w l l w'
X' > Y',
f!
where w' € W;

(L‘E‘z) Given f,g:X > Y and wlzx' + X (w:L € W) such that £ » W, =g oW, there

c f =w

exists w,:¥ > ¥Y' (W2€W) such that w. 5 ° g

2 2

[Note: Reverse the arrows to define "calculus of right fractions".]

1.2.2 REMARK If (! admits a calculus of left fractions, then every morphism

in WC can be represented in the form (wa)-:L o Lf (cf. 1.1.7).

1.2.3 IEMMA Suppose that V (w,w'):w' cwe W awe W= w €W~ then

w £
admits a calculus of left fractions if every 2-source X'<— X —>Y (w € W) can

be completed to a weak pushout square

f
X > Y
wl lw'
b4 > Y' ,
fl

where w' € {.



1.3 HOMOTOPY

1.3.1 DEFINITION let (C,W) be a category pair -— then morphisms f,g:X » Y

in ¢ are homotopic (written f = g) if L f = L g.

1.3.2 REMARK If W/ admits a calculus of left fractions, then f = g =>

JwEWwo £f=wo g,

The homotopy relation = is an equivalence relation on Mor(X,Y) and ane
writes [X,Y] for Mor(X,Y)/=.
Suppose that £ = g:X + Y =~ then for u:X' » X, £ e u =g ¢ u and for v:Y¥ > Y',

v o f =>vog. Consequently, there is a category ngg whose objects are those of

C and whose morphisms from X to Y are the quotients Mor(X,Y)/~. Moreover, there

1

is a functor HO/C - WC and Ly, factors as the composition C - HO,C ~ w‘lg.

1.3.3 DEFINITION A morphism f£:X - Y is a homotopy equivalence if there exists

amxphisrng:Y+XsuchthatfngidYandgofzidX.

Write E(W) for the class of f that are homotopy equivalences -— then E{(W) < w

(cf. 1.1.9).

1.3.4 L8R E(W) = U iff L:C » 07 C is full.

PROCF Suppose first that L, is full, the claim then being that W c EW).

But v £ € U, wa has an inverse and (Lu’,f)_l = ng for some g, thus £ € E(W).

Turning to the converse, recall that a generic morphism [w] in w"l_c_: can be factored:

[w] = () L o TyE o wee o (L) e Lf (ef. 1LL7).
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However, vV 1
wiewc@=E(w),
hence
(L)t =
Ly Ly
for some z; € W. Therefore
[w] =Iw(zn o fn O ane O zl o fl)'

SO Lw is full.

1.4 TOTALITY

If (C,W) is a category pair and if F:C »~ D is a functor such that v w € W,
Fw is an isomorphism, then there is a commtative diagram
C —— ¢

Ly J’ JF (cf. 1.1.2).
D

W ———

i1

1.4.1 DEFINITION Let (C,W) be a category pair but let F:C + D be arbitrary --

then a right derived functor of F is a left Kan extension of F along Ly hence

1

is a pair (_I:.LwF,uF), where ;_,mew" C > D is a functor and uy € Nat(F,_I_LwF °o Ly,

with the following property: VvV F' € Ob[wnlg,l_)] and v o € Nat(F,F' o Lw), there

is a unique g € Nat(}_.Lle,F') such that g = BLW ° Up-
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1.4.2 NOTATION To simplify, let

RF:I’-'IWF

if no confusion is likely. So we have

F F
RF o Lw —> Pt o LW'
BLy,

1.4.3 DEFINITION A right derived functor RF of F is said to be absolute if
for every functor ¢:D ~ D', the pair (¢ ¢ RF, @uF) is a left Kan extension of

¢ o F along Lw

1.4.4 EXAMPIE If F:C + D is a functor such that v w € #/, Fw is an isamorphism,

then (F, idy) is an absolute right derived functor of F (cf. 1.11).

1.4.5 DEFINITION A morphism
F: (gllwl) > (gzrwz)

of category pairs is a functor F:gl + C, such that FW, < U,, thus there is a

2 1 27

unique functor i*:wzlc_:l - w;lgz for which the diagram

s 1

commtes {(cf. 1.1.2).
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1.4.6 DEFINITION Let (C,U;), (C,/W,) be category pairs but let F:C; + C,

be arbitrary -- then a total right derived functor of F is a right derived functor

of Lw ° F, which, to minimize the notational load, will be denoted as above by
2

. . -1 -]
(RF,uF) although in this context RF:lly ¢~ w2 C, and Wp € Nat(sz o F, RF o Lwl),

-1 -1 . .
sovF' € [wl (—:l' w2 (_32] and VvV o eNat(sz o F, F' o le), there is a unique
B € Nat (RF,F') such that a = 8Ly © i
1
N.B. The designation "absolute" total right derived functor is to be assigned

the obvious interpretation.

1.4.7 EXAMPLE If

is a morphism of category pairs, then (f',ide o F) is an absolute total right

2
derived functor of F.

1.4.8 REMARK The terms left derived functor, absolute left derived functor,
total left derived functor, absolute total left derived functor are dual, as is

the notation: (LF,\)F) .

1.5 EXISTENCE

Suppose that ((_:l,wl) r (C,y,W,) are category pairs and FiC > G, is a functor ——

then the problem is to find conditions which ensure that F possesses an absolute

total right derived functor (RF,pF) .



13.

1.5.1 DEFINITION Let

K: (gorwo) > (gllwl)

be a morphism of category pairs — then K is resolvable to the right if

where w, € W,.

VX €0bC, 3 X) €0 Cyand an arrow wy X, » KX 1 1

0!
N.B. Fix Xl € Ob g:_l - then the category of K-resolutions to the right of
X has for its objects the arrows wyiX) > KX, where W) € #, a morphism

W w!

1 1
]
(X.l > Kxb) > (Xl KXO)
being an arrow WO:XO - X!, where Wy € wo, such that the diagram
% X

commites.

Iet (f_:_l,wl) be a category pair —- then a derivability structure to the right

on (Cy,W;) consists of a morphism
of category pairs, where K is resolvable to the right, plus additional conditions

on the data that serve to imply the validity of the following assertion.

1.5.2 THEOREM Fix a derivability structure to the right on (C

for any category pair ((_Zz,wz) and any functor F:\_C‘_ll + G, such that
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is a morphism of category pairs, F admits an absolute total right derived functor

(RFIUF) -

1.5.3 ADDENDA V X:L € Ob 91 and Vv wl‘X1 > KXO (wl € wl),

L(U (Ewl) :Lw E‘Xl -+ LCU FKXO.
2 2 2
On the other hand,

(un) o Ly, FX, - X, .
vplx P mell

This said, the existence of a derivability structure to the right on (gl,wl)

implies that there is a canonical isomorphism

X, > FRX
Ry X1~ T, %
in w;l(_iz and a commutative diagram
(ug)
F Xl
szFXl > RFI..lel
Ty, P > Ty %
Lw (Nl)
2

where canonical refers to the category of K-resolutions to the right of Xl:
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Xl Xl RFXl RFXl

| : . 3

Wl l Wl >3 ~ =
KX > KX! FKX > FRX! .

0 KWO 0 0 FKWO 0

The specific choice of the conditions figuring in a derivability structure
to the right depends on the details of the situation at hand and on ones ultimate
objective. Accordingly, foregoing any pretence of a general theoretical study,

we shall zero in on just one particular instance that will be of use in the sequel.

1.5.4 DEFINITION Let(gl,wl) be a category pair — then a right approximation

to (C,,W;) is a morphism

of category pairs, where K is resolvable to the right, such that for any 2-source

W. f W, £

1 1 0 0
L] : - (] ]
KXO < Xl > KXO (wl € wl) , there is a 2-source XO < XO > XO
(w0 € {UO) and an arrow wi' :Xl -> KX(‘)' (wi' € wl) leading to a commutative diagram
Wy £
L
KX0 < Xl > KXO
KXO LS KXé' T KX(') .
Kw Kf
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In addition, if (WO,EO,W':'L) is another choice, then
Iy fo ° Oy wo) = Iy Fo © @y W)
0 0 0 0
1.5.5 THEOREM A right approximation
Kz (Cy i) > (Cp o0y
to ((_Zl,wl} is a derivability structure to the right on (gl,wl) .
[For the proof, which we shall amit, consult Radulescu-Banu .]

Therefore the existence of a right approximation to (_c_:l,wl) forces 1.5.2

and 1.5.3. But here there is a bonus.

1.5.6 THEOREM The induced functor

S B
Killg Sy > UG

is an equivalence of metacategories.

1.5.7 REMARK The terms resolvable to the left, derivability structure to the

left, left approximation are dual.
1.6 COMPOSITION
The result in question is this.

1.6.1 THEOREM Iet(gl,wl) , (Ch,u), (Cz,wz) be category pairs. Suppose that

T arxivimath/0610009
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K':(C) W) > (C',0)

are derivability structures to the right. Let F:C; > C', F':C' >~ C,, and

Fy:Cy > Gy be functors. Assume:

0

wa{') « (02.

Then F, F', and F'' = F' o F admit absolute total right derived functors (RF,uF) ’

(RF',u ), and (RF'',u1 ). Furthermore
P’ P

RF'' = RF' o RF.

PROOF First of all

= R Ty '
E'Kwo KFOWOCKWOCW

¥
F'K'WO = Wz

11 — ot 18742111 ¥
F KWO—FFMUOCFKchwz.

So, thanks to 1.5.2, (RF,UF), (RF',p ), and (RF'',u ) exist. Next, by univer-—
Fl Fll

sality, 3 a unigue
5 € Nat(RF'',RF' o RF})
such that

(RF'u,) o (,11 F) =E L r
'r Pt Lwl P
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and to conclude that
RF'' =~ RF' o RF,

it need only be shown that v Xl € Ob _(;l,

EX :RF”X:L -+ RP' (RFXl)

1
is an isomorphism. Choose X, € Cb Cj and wy:X; + KX, (w € W
-
in w Y,
RFXl = FRX,
and in W)'C
2 =27
Tt ~ Ty — 1
RE X1~F KXO-FFKXO.
But
s '
FKXO = K FOXO
and
. . .
1d : .FKXO - K FOXO.
K FOX{)

Therefore, by 1.5.3 again, in )'C,,

' ~ IR p—d
RFFKXONFKFOXO FFKXO.
Consequently,

Rr 'Xl ~ RPF'FKX

u

RE" (RFX, ) ,

which, if unraveled, is E

.

{1
P4

1)~

Owing to 1.5.3,
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1.7 ADJOINTS

Iet (c_:l,wl) ' (gz,wz) be category pairs. Suppose that

F:G) + 5

G:C, ~ C

=2 1

are an adjoint pair with arrows of adjunction

p:idgl + G o F

viF o G > idgz.

Assume:

F admits an absclute total left derived functor (LF,\)F)

G admits an absolute total right derived functor (RG,uG) .

1.7.1 THEOREM The functors

- -1 -1
LF:l"C) > Wy C

1 2

I |
REly UG

are an adjoint pair and one can choose the arrows of adjunction

- }é:idw_lc———b» RG o LF
1 =1
viLF o RG > id
= w-lc
2 =2

so that the diagrams
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(RG) Vp
RG o o F <« RG o |F o
sz LWl
n [
& y
o GoF < \
Lwl Lw u Lu1
1
(LF) e
LFOI.w o G >LF°RG°Lw
1 2
VG vLy
2
o F o G >
LWZ L(JJ \Y sz
2
commte.
S
Before establishing the existence of , it will be best to review the
v
definitions. - =
. (RG,uG) is an absolute total right derived functor of G, thus is an

absolute right derived functor of Ly °G.
1

® (LF,\)F) is an absolute total left derived functor of F, thus is an
absolute left derived functor of Ly ° F,
2

Therefore

e (LF o RG, (LF)uG) is a right derived functor of LF o L{x} o G.
1

o (RG ° LF, (RG) \)F) is a left derived functor of RG ° Lw °o F,
2



Next, by wmniversality,

- -1
o If 0,:W,C, > Uy C,
=2

then there exists a unigue

2
such that
)
-] -1
o If 0 :lijC; > U] Cy
51

then there exists a wnique

1)

such that

{1]

Now specialize and take

and let

B, = Inbv ° vFG:LF )

7 g © Iy iy

1

21.

is a functor and if

€ Nat(LF o L, © G,9, © Ly )
1 2

€ Nat(LF o RG,@Z)

= Eélwz = (LF)pG.

is a functor and if

€ Nat(d, o Lwl,RG o sz ° F),

€ Nat(®,,RG o LF)

(RG)\)F o Eilwl.

-1
Wy %
= id
-1
WG
L, v
vﬁG wl
T, o G > 1, o F oG >
Wy Wy Hu,

Lw H uGF

1
> c GeF
le
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Then there exist unigue

~ v € Nat(LF o RG, id 2 )

v
Wy Gy
u € Nat(id 1 RG o LF)
= W, C
_ 1=
such that
T Ly v VG =Ly o (P,
2 -2
WeF © Ty b= (RG)vp © Ly
_ 1 1
thus with these choices the diagrams in 1.7.1 are commtative but, of course, one
o
still has to prove that are in fact arrows of adjunction. I.e.:

v

id

(RG)y ° p(RG) RG

il

}__)(LF) o (LF)]é idLF’

We shall verify the first of these relations, the argument for the second
being analogous.
To begin with

dpct, ° Vo T Ve

Proof:

(Lo @ GX. » RG R
zeLwl 2 Lw2X2
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Meanwhile

(ldRGLw ° g X, ~ = (dpcly )Xz o (gl

2

]

((L,, )* id,.) o (u.)
sz RG'X, “ze

(idRG)Lw X, ° (“G)x2
2

= id o (u.)y, = (), -
Raiy X, © e, T Mely
Since idRG is characterized by this property, it will be enough to show that
UG = UG‘

((RG)y ° u(RE)L,
- - 2

Starting from the IHS, write

(R0)p © 3ROy

(RO, o (u(RETL,
T2 = 2

1

((RG)X)L()‘,2 ° E(RG o sz) ° g

il

(ROVILy, © (RG o LF)u, o p(Ly,
-T2 - 71

RG(\=)LW2 o (LF)UG) ° g(Lwl

it

RG(Ly, v © VG) o ULy, © G)
2 = 1

{RG o sz)\) ° ((RG)\)F)G ° g(Lwl

H

(RG o Ly v o ((RG)vg ° il )G)
2 -1
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i

(RG » sz)\) o (uF © Lwlu)G

il

(RG o sz)\) ° ug(F © G) o (Lwlu)G

Il

U, © ( ° Glv o (L, WG
G le Lwl

il

g © Lwl((Gv) o (UG))

i

Vg © Lwl (idG)

It

Mg ° idel ° G

il

Hae

N.B. Hidden within the preceding chain of equalities are two camutative

diagrams.
i]__.
u( o G)
ulty
Ly © G > RG o LF o Ly ° G
1 1
RG o > RG ¢ LF o RG o .
LwZ Lw2
u(RG o LW )
- 2
Iet
T A=id
-1
e
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Fix X € Ob C,, let

Y = GX
Lwl
% = RGL, X,
and consider
By
AY > BY
A(UG)X B(UG)X
AZ > BZ.
Yy
Then u € Nat(A,B), thus the diagram commutes.
4_%_2__:
Yo
o G > RG o
R R
{ o G)V
Lwl
o GoeF oG > RG o
'y p—— Ly
G
Iet
T A= o G
I_wl
B=RG ol

T

(RG oLw v
2

o F c G‘
2
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Fix X € Ob C, and consider

(uG) X
AX > BX
Ay, By
AFGX > BFGX.
() pax

Then e € Nat(a,B), thus the diagram commutes.

1.7.2 THEOREM Let (C,,W;), (C,,W,) be category pairs. Suppose that

T oRig - C

1 2
]
are an adjoint pair. Assume:
- L
(c ,wﬂ) — ((_:l,wl) is a left approximation
K
(gz,wz) Lo (gr,wr} is a right approximation
and
FLwi’, = WZ
GKwr < wl.

Then the conclusions of 1.7.1 obtain {(c¢f. 1.5.5).

1.7.3 LEMMA Suppose that for
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X

14

X €0bC,
r g

an arrow

¢ € Mor (FILX ,er)

is a weak equivalence iff its adjoint

¥ € Mor (I, ,GKX )
is a weak equivalence -~ then the adjoint situation
(LF,RG,L_A,E_J_)

is an adjoint equivalence of metacategories.
1.8 PARTIAL ADJOINTS
Iet A, B, C, D be categories (or metacategories).
1.8.1 DEFINITION Consider a diagram

Fy

1>
v
o

3
n «~——

F,

of functors -- then Fl'FZ is a partial adjoint w.r.t. Tl

AcObA

—

to assign to each ordered pair a bijective map
D€ECbD

,'I‘2 if it is possible to
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:A’D:Mor (FlA'TZD) -+ Mor (TlA,FZD)

which is functorial in A and D.

N.B. Take A =C, B=D, T; = id,, T, = id, to reduce to the usual scenario.

1.8.2 IEMMA If T, has a right adjoint S

1 then

1 and ".[‘2 has a left adjoint S2 ’

SZFl is a left adyint for Sle.

PROCF In fact,

i

Mor (S D) Mor (FlA ,T2D)

oFA

0

Mor (T, A, F,D)

1

Mor (A'SlFZD) .
1.8.3 IEMMA If Sl’Tl and SZ'TZ are adjoint equivalences, then F.S, is a left

1'1

adjoint for FZSB .

PROOF In fact,

N

Mor (FlSlC,B) Mor (FlSlC’T S.,B)

272

14

Mor (TlSlC 'FZSZB)

Mor (C,F,S,.B) .

u

252

Tet (cl,wl), (Cz,wz) be category pairs. Assume:

L
(CprWp)

> (Cy,W0)) is a left approximation

K

(gr,wr) is a right approximation.

B (G, /) <



Suppose further that

@Z:

<I>r:

are morphisms of category pairs.

1.8.4 THEOREM If ®£, <I>r is

partial adjoint w.r.t. L, K:

29,

(CpWp) > (Cylly)
(€l > (Cp )

Arrange the data:

%
> (_32
K
< C,-
o
r

)
wotc ¢ Wit
S > Wy G
L K
-1 -1
Wy & < = wr e
)
r
thus
- %, e ob W lc
£ £ =t
Y
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Nbr(@zxﬁ,KXr) = Mor (IX ,@rxr} .

1.8.5 REMARK Recall that

are equivalences of metacategories (cf. 1.5.6), thus L,K is part of an adjoint

equivalence, say

— 1
Ll 76 ~ e,

— -1
f.
K':yc, » W c .

Iet

are an adjoint pair (cf. 1.8.3}.

1.8.6 ILEMMA Suppose that

€0bC

Xy 2

X € 0bC.



31.

an arrow

¢ € Mor(2,X, KX )
is a weak equivalence iff its partial adjoint
¥ € Mor (IX,,® X )

is a weak equivalence -- then

1° Y -
Wy,"C
V2 o Vl i~ J.dw_lc
1 &

hence V1 and \/2 are mutually inverse equivalences.

1.9 PRODUCTS

Iet

(Qi'wi) (l = l,...,n)

be category pairs.
1.9.1 LEWA The canonical functor

(TnT W)™ TI}f c, Tr}r witc,
i=1 Y =17t =1 T
is an isomorphism of metacategories.
PROOF By induction, it suffices to treat the case when n = 2. But bearing

in mind 1.11, for every metacategory D, there are functorial bijections

-1 -1
Mor (W] ¢y % Wy Cy,D)
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1t

rWr:wr(w 1,[ 2 2,13])
B -1

=~ MorlC,,I[C,,Dl, ]
=1 w2 Wy

e

Mor{C X Cz'D]w

i

-1
Mor (U] x W,) (¢, x C,),D).

N.B. Therefore the functor

x L, :C, x C, > W."C, x W.C
Lwl w, "1 > &

is a localization of C; x C, at Wy x W,.

1.9.2 1FMMA Iet (C,W) be a category pair - then Lw sends final objects in

C to final objects in w"'lc_:.

1.9.3 IEMMA Let (C,W) be a category pair. Assume: C has binary products and

W is stable under the formation of products of pairs of arrows -- then w‘lg has

binary products.

IO
l(')
5

PROOF Since C has binary products, the diagonal functor AC

right adjoint I C x C~+C. In addition,

o A(C ) > (Cx G x W)

P

Mo:(C X C U x 1) ~ (C,W)



33.

are morphisms of category pairs, so
Bae > < whe x 0

Mo x ) 7HE x Q) » We

exist (cf. 1.4.5) and constitute an adjoint pair (cf. 1.7.1). But

(W x w)'l(g x C) = w"lg x w"lc_: (cf. 1.9.1)

and under this isomorphism, ',&E is identified with the diagonal functor

which thus has a right adjoint, viz. the functor corresponding to T[-E. Therefore

w*lg has binary products.

[Note: Ly:C ~ w‘lg preserves binary products: V X,Y € Ob C,

Lw(XXY) szXx LwY.]

1

1.9.4 SCHOLIWM Iet (C,W) be a category pair —— then W "C has finite products

if C has a final object and binary products and if W is stable under the formation

of products of pairs of arrows.

1.9.5 REMARK What has been said above for products admits the obvious reformu—

lation in texms of coproducts.
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CHAPTER 2: COFIBRATION CATEGORIES

2.1 THE SETUP

Consider a triple (C,W,cof), where C is a category with an initial cbject
g and

W < Mor C

cof < Mor C

are two composition closed classes of morphisms termed

T weak equivalences (denoted -—-)

cofibrations (denoted >-—>).

Agreeing to call an object X cofibrant if the arrow # > X is a cofibration and

a morphism f:X > Y an acyclic cofibration if it is both a weak equivalence and

a cofibration, C is then said to be a cofibration category provided that the

following axioms are satisfied.

(COF - 1) The initial object @ is cofibrant.

(COF - 2) All isomorphisms are weak equivalences and all isomorphisms with
a cofibrant domain are cofibrations.

(COF - 3) Given coamposable morphisms f,q, if any two of f,g,g o f are
weak equivalences, so is the third.

(COF - 4) Every 2-source X <—f—— Z —?-> Y, where f is a cofibration (acyclic
cofibration) and 2,Y are cofibrant, admits a pushout X _E_> P <—l Y, where n is

a cofibration (acyclic cofibration):



g
A > Y
X > P.
£

(COF - 5) Every morphism with a cofibrant domain can be written as the
camposite of a cofibration and a weak equivalence.

N.B. (C,W) is a category pair.

2.1.1 EXAMPLE Take C = TOP -— then TOP is a cofibration category if weak

equivalence = homotopy equivalence, cofibration = cofibration. All objects are
cofibrant.
2.1.2 REMARK Given a cofibration category C, denote by Coor the full sub-

category of C consisting of the cofibrant objects —— then C. of is a cofibration
category.

[Note: C.,¢ has finite coproducts (but this need not be true of C). Proof:

For cofibrant X and Y, consider the pushout sguave

g — Y
b
X >X ||y,

and observe that all arrows are cofibrations.]

2.1.3 DEFINITION Let C be a cofibration category — then C is said to be

homotopically cocomplete when the folleowing conditions are met.




H-1) If fi:Xi -> Yi (i € I) is a set of cofibrations with Xi cofibrant

v i, then the coproducts J_]_‘Xi, 11 Y, exist, are cofibrant, and 1L £, is a co-
i i i
fibration which is acyclic if this is the case of the fi.

(H - 2) Iet

5 £ 2

XO P — Xl >-——->X2> ce.

be a countable sequence of cofibrations (acyclic cofibrations) with X, cofibrant —-

0

then colim X exists and the canonical arrow X, - colim X is a cofibration (acyclic

0

cofibration).

There is also the notion of a fibration category, the definition of which, to
dispel any possible misunderstanding, will be provided in detail.

[Note: For the most part, the focus in the sequel will be on cofibration
categories, the results for fibration categories being invariably dual.]

Consider a triple (C,W,fib), where C is a category with final cbject * and

W e Mor C
_ fibecMor C

are two composition closed classes of morphisms termed

weak equivalences (denoted — )

fibrations. {denoted —>> }.

Agreeing to call an object X fibrant if the arrow X - % is a fibration and a

morphism £:X -+ Y an acyclic fibration if it is both a weak equivalence and a




fibration, C is then said to be a fibration category provided that the following

axioms are satisfied.

(FIB = 1) The final object x is fibrant.

(FIB - 2) All isomorphisms are weak equivalences and all isomorphisms with
a fibrant codomain are fibrations.

(FIB = 3) Given composable morphisms f,g, if any two of f,g,g ¢ f are weak
equivalences, so is the third.

(FIB - 4) Every 2~sink X —=> 2 <9y, where g is a fibration (acyclic

fibration) and X,Z fibrant, admits a pullback X <—§— P -D—> Y, where £ is a

fibration (acyclic fibration):

n
P > Y
{ b
> Ze
£

(FIB - 5) Every morphism with a fibrant codomain can be written as the
composite of a weak equivalence and a fibration.

N.B. (C,W) is a category pair.

2.1.4 EXAMPIE Take C = TOP —- then TOP is a fibration category if weak
equivalence = homotopy equivalence, fibration = Hurewicz fibration. All objects

are fibrant.

2.1.5 REMARK Given a fibration category C, denote by Crib the full subcategory

of C consisting of the fibrant objects —- then C.., is a fibration category.



[Note: Cc., has finite products (but this need not be true of C). Proof:

For fibrant X and Y, consider the pullback square

XxY > Y
X > %

and observe that all arrows are fibrations.]

2.1.6 DEFINITION let C be a fibration category -- then C is said to be

homotopically complete when the following conditions are met.

H-1) 1If fi:Xi -> Yi (i € I) is a st of fibrations with Yi fibrant Vv i,
then the products ‘I;T X, T:T Y, exist, are fibrant, and TI £, is a fibration which
is acyclic if this is the case of the fi’

(H -~ 2) Iet

£ £ f

2 1 0
>> X, >> Xy >> X,

be a countable sequence of fibrations (acyclic fibrations) with X . fibrant -~ then

0

lim X - exists and the canonical arrow lim X > X0 is a fibration (acyclic fibration).

2.1.7 REMARK In the terminology of Cisinski, a cofibration category is a

category which is derivable to the right and a fibration category is a category

which is derivable to the left.

There is a short list of technical facts which are formal consequences of the
axioms. Since the proofs run parallel to their analogs in model category theory,

they can be safely omitted.



2.1.8 LEMMA Iet C be a cofibration category and let f:X - Y be a map between
cofibrant objects -~ then f can be written as a composite r ¢ f', where f' is a
cofibration and r is a weak equivalence which is a left inverse to an acyclic

cofibration s.

2.1.9 LEMMA Iet C be a cofibration category. If fi:Xi > Yi (i € I) is a finite

set of weak equivalences (cofibrations) between cofibrant objects, then ﬂ f; is

1
a weak equivalence (cofibration).

2.1.10 IEMMA Iet C be a cofibration category. Given a 2-source X< 7z —2 Y,

define P by the pushout square

g
Z > Y
g
> P.
&

Assume: f is a cofibration and g is a weak equivalence -— then £ is a weak equiv-

alence provided Z,Y are cofibrant.
2.2 APPROXIMATIONS

Iet C be a cofibration category -- then a cofibrant approximation to C is a

pair (QO,AO) , where (_:0 is a cofibration category and AO:QO + C is a functor

satisfying the following conditions.

(CFA - 1) All objects of C, are cofibrant.
(CFA - 2} AO preserves initial objects and cofibrations.

(CFA - 3) A morphism £, € Mor C, is a weak equivalence iff Af, € Mor C

is a weak equivalence.



f g
(CFA - 4) If XO < 0 Zq 0 > Y, is a 2-source in Cyr Where fo,go are

cofibrations, then the induced arrow

ono 11 AOYO > ﬁ‘o (xo M_YO)
M2 Zy

is an isomorphism.

(CFA - 5) Every f:i\oxo +Y factors as f=r o AOfO' where fo is a cofibration
in C; and r is a weak equivalence in C.

N.B. The definition of a fibrant approximation to a fibration category is dual.

1
2.2.1 EXAMPLE The inclusion C. . ——> C is a cofibrant approximation to C.

If AO:QO + C is a cofibrant approximation to C, then it is clear that

Myt (Corllg) > (/1)

is a morphigm of category pairs and AO is resolvable to the left.

2.2.2 LEMMA A cofibrant approximation to C is a left approximation to C, hence

is a derivability structure to the left on C (cf. 1.5.5).

2.2.3 THEOREM If AO:QO + C is a cofibrant approximation to C, then the induced

functor

= -1 -1
Ny#lly Sy > W C

is an equivalence of metacategories (cf. 1.5.6).




2.2.4 THEOREM Iet C be a cofibration category and let (C,,W;) be a category
pair. Suppose that F:C -+ 91 is a functor that sends acyclic cofibrations between

cofibrant objects to weak equivalences — then F admits an absolute total left
derived functor (LF,\)F) .

PROOF Consider

1 F

—> C > C,.

=1

C
-cof

To apply 1.5.2, let f£:X + Y be a weak equivalence, where X and Y are cofibrant --
then the claim is that Fif = Ff:FX -+ FY is a weak equivalence. To see this, use
2.1.8 and write £ = r o f'. Since f and r are weak equivalences, the same holds
for £'. Therefore f' is an acyclic cofibration between cofibrant objects, thus
by hypothesis, Ff' is a weak equivalence. On the other hand, r ¢ s = id and s
is an acyclic cofibration between cofibrant objects, so too Fs is a weak equivalence.
But this implies that Fr is a weak equivalence, hence finally Ff is a weak equiv-
alence.

2.2.5 THEOREM Let C be a cofibration category and let (C_:l,wl) be a category
pair. ILet A,:C, + C be a cofibrant approximation to C and suppose that F:C + G
is a functor such that F o A, sends acyclic cofibrations to weak equivalences —-

then F admits an absolute total left derived functor (LF,\)F) .

Let C be a cofibration category with cofibrant approximation A,:C, + C and

let C' be a fibration category with fibrant approximation Aé:(_’:(") + C'. Suppose that



are an adjoint pair, thus schematically

Fl

2.2.6 THEOREM Assume that F o AO sends acyclic cofibrations to weak equiv-

alences and F' o A(') sends acyclic fibrations to weak equivalences —- then the
functors

1

Lr:w i » " le

1

RE' (' c' » w"lg

exist and are an adjoint pair.
2.3 SATURATION
Let C be a cofibration category.

2.3.1 DEFINITION Suppose that X € Ob C is cofibrant — then a cylinder object

for X is an object IX in C together with a diagram X || X >1t—> IX - X that

iO:X + IX
factors the folding map X || X V5 X. Write for the arrows
T i X » IX
_ 1
I il’lo - JL0
- then are acyclic cofibrations.
1 0 inl il
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N.B. Cylinder objects exist (in general, nonfunctorially).

2.3.2 EXAMPLE For any topological space X, the inclusion

iOX U ilx -+ X x [0,1]

is a closed cofibration, thus if TOP is viewed as a model category per its Strgm

structure, then a choice for IX is X x [0,1]. On the other hand, the inclusion

iXu i

0 X > X% [0,1]

need not be a cofibration in the Quillen structure but it will be if X is cofibrant
(e.g., if X is a CW complex).
2.3.3 DEFINITION Morphisms f,g:X » Y between cofibrant X and Y are said to be

w
left homotopic if 3 a cylinder object IX for X, an acyclic cofibration ¥ —— Y',

and a morphism H:IX - Y' suchﬂ’latHOio=w°f,H°il=w0g. Notation: f = g.

b
2.3.4 LEIVMSupposethathg—thenfisamakeq;ivalence iff g is a
weak equivalence,

PROCF Say, e.g., that £ is a weak eguivalence. Since H o iO =w o f and io

is a weak equivalence, it follows that H is a weak equivalence. But H ° 3'.1 =W o g,

thus g is a weak equivalence.

2.3.5 ’ItE«I[:‘.OR}EZ\'I1~ If £,9:X +~ Y are morphisms between cofibrant X and Y, then

f,g are left hompotopic iff they are homotopic:

feg<=£f=q.
Kg g

T Brown, Thans. Amen. Math. Scc. 186 (1973), 419-458.
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2.3.6 APPLICATION Let C be a model category. Suppose that X is cofibrant
and Y is fibrant —-- then f z g iff 3 a cylinder object IX for X and a morphism

H:IX -~ Y such that H o 1

o= f Hei =g

1

[Assume first that H exists:

i

V o in 1 o in

0

i
£
o

o = 1
Iwel)
Voj_nl=w010j_nl=idx

I

= L, o 1 o in)) = Ly (w o 1 o in))

=> Lw(1 ° :Lng) =Lw(1 o :Lnl) => i = i

0 1

=>Hoi0':Hoil=>fzg.

Conversely, assume that £ = g. Choose an acyclic fibration r:¥' - Y with Y'

cofibrant. Since X is cofibrant, the commutative diagrams

gy g—— ¥
ok
X > Y, X 5 Y
£ g
admit fillers
T frtiX - Y {(r o f' = £f)
_ g'X Y (reg'=g).
But
C Lylr o £') =Ly e L =T f
Lw(r o g') = Lwr 0 ng‘ = qu,
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Lyt = Iyg => Lyr o Lyf' = Lyxr o Lygt
= Lyt = Ly

=> f! t

12

g
=> f' zg‘ (cf. 2.3.5).

wl

Using the notation of 2.3.3, fix an acyclic cofibration Y' > ¥'"' and a

morphisn H':IX » ¥'' such that H' o io--w' o £', H' o ;i,l:w! o g'. Iet

h:Y'' - Y be a filler for

and put H= h o H' - then

I
R
o
m
I
Hh

HOiO:hoH‘oiOzhow'of'

H0i1=h0H'oi

J=how og'=rog =g.]

2.3.7 LEMMA Suppose that X and Y are cofibrant and w:X -+ Y is a weak equiv-
alence -- then any £ € Mor(X,Y) which is homotopic to w is necessarily a weak
equivalence.

PROOF The assurption is that L@n= wa or still, thatw = f. But then WE f

(cf. 2.3.5), s0 2.3.4 is applicable.
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.T.

2.3.8 THEOREM L

Every morphism [w] in () “C between objects X and Y which are

cofibrant in C can be written as a left fraction (wa) -1 ° wa, where f is a
cofibration and w is an acyclic cofibration:

£ w
> Y o<

w] = [X Y].

2.3.9 ILEMMA Suppose that £:X - Y is a morphism in C with X and Y cofibrant —-—
then L, f has a left inverse in w-lg iff there is a cofibration f':Y » Y' such that

f' o f is a weak equivalence.
PROOF The implication <= is obvious. In the other direction, if [w] o wa = id,

write, using 2.3.8,
— -1 [
hence
wa = wa‘ ° wa
or still, w = f' o £. But this means that £' o f is a weak equivalence (cf. 2.3.7).
2.3.10 LEMMA Suppose that f£:X > Y is a morphism in C with X and Y cofibrant —-
then wa is an isomorphism in w—l(_: iff there are cofibrations f':¥ » ¥', £'':y' > y"!

such that £' o £, £'' o £' are weak equivalences.

PROCF First, if f' o f =w (w € (), then
LA o (Lf o (wa)"l) = 14,
s0 wa' is a retraction, and second, if £'' o f' = w' (W' € ¥}, then wa' is a

monomorphism. Therefore wa ' is an isomorphism, hence wa is an isomorphism. The

* Brown, ibid.
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converse follows from a double application of 2.3.9.

2.3.11 THEOREM Let C be a cofibration category and suppose that H - 2 is in

force —- then [ = W,
PROOF It is enough to prove that a cofibration £:X - Y in 0 between cofibrant

X and Y is in W. Using 2.3.10, construct by induction a countable sequence of

cofibrations
£ £ £
XO D Xl > X2 > ees
withXO'—’X, X1=Y, f0=fand such that v n = 0, the composition
Xn i xn+l > Xn+2

is an acyclic cofibration -- then there are acyclic cofibrations

X - colim X2n +1

¥ - colim in,

canonical isomorphisms

colim X2n+1 = colim Xn ~ colim XZn’

and a commutative diagram

colim xn _ . colim Xn
f f
X > Y.
£

Since the vertical arrows are acyclic cofibrations, it follows that £ is an acyclic
cofibration.
[Note: The reduction to a cofibration f:X - Y between cofibrant X and Y runs

as follows.
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w

Step 1: Fix a cofibrant X' and a weak equivalence X' > X -- then

Lw(fow) =waowa, so if fewelW, then £ € . One can therefore assume

that the domain of f is cofibrant.
Step 2: Write f = r o £', where £' is a cofibration with a cofibrant domain

andrisaweakequivalence—~theanf=Lwr°wa’, so if £' € @, then £ € W.

ne can therefore assume that f is a cofibration with a cofibrant domain and

codomain. ]

2.3.12 DEFINITION Iet (C,W) be a category pair -- then W satisfies the

2 out of 5 condition if whenever f,g,h € Mor C have the property that g o £, he g

exist and are in W, then £,g,h are in W.

2.3.13 REMARK Iet (C,W) be a category pair -- then W satisfies the 2 out of 3
condition if for composable f,g € Mor C, the assumption that two of f,g,g o f are

in W implies that the third is in W. This said, it is then clear that

"2 out of 5" => "2 out of 3".
[Note: In the case of a cofibration category, the 2 out of 3 condition is

assumption COF - 3.]

2.3.14 DEFINITION let (C,W) be a category pair —— then (W is weakly saturated

if W satisfies the 2 out of 3 condition and has the following property:

i: X+ Y
If ,ifr0i=idX,andifior€w,theni,rew.
r:¥Y - X

2.3.15 1EMMA If W is saturated, then W is weakly saturated.

PROOF That W(= (:‘.-!) satisfies the 2 out of 3 condition is obvious. Suppose now
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that 1 and r are as above and write

Lw(l o x} = Lwl o Lwr
tv see that Lwi is an epimorphism. But

Lwr ° Lwi

il
L_l-P‘:
%

and
(g = Tye) o Ty
=Lwi° (LwroLwi)
=Lwiolw(r0i)
=Lt&1i°idlwx
= Lyi=id oL

Iyl © Ly = idle,
Therefore i € W and lastly r € W.

2.3.16 LEMMA If (Y satisfies the 2 out of 5 condition, then Wis weakly saturated.
PROOF Take i and r as above and consider

i r i
X > Y > X > Y.

2.3.17 IEMMA If (¥ satisfies the 2 out of 3 candition and is closed wnder the
formation of retracts, then [ is weakly saturated.

PROCF Take i and r as above and note that the diagram
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1y idy
Y > Y > Y
r ier r
> Y > X

1 r

exhibits r as a retract of 1 o r.

2.3.18 THEOREM Let C be a cofibration category —— then the following are
equivalent.
(1) w is weakly saturated.
(2) W satisfies the 2 out of 5 condition.
(3) W is closed under the formation of retracts.
(4) W is saturated.
PROOF We have (2) => (1), (3) => (1), (4) => (1), (2), (3), so the only point
at issue is (1) => (4) and for this it is enough to prove that a cofibration f:X = Y

in @ between cofibrant X and Y is in . Put X0= X, X1=Yanc'i construct a co-
flbratlong:xl->x2andanorphlsmhzxz +Xl suchthathfEWandhOg=1Xm
(see below) -~ then

Ly © D = g o L
so g€ W. And

hog=id, =>geheg=g
1

Lw(g s h) o ng = ng
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Ly(g o h) =idL&P(2=Lw(idx2)
gohﬁidx2

gehel (cf. 2.3.7)

=>g€§w=>f€w.

2.3.19 DETAILS The category C/Y is a cofibration category (via the forgetful
functor C/Y » Y). Denoting by W, < Mor C/Y its class of weak equivalences, the

image of the morphism

X - > Y
£ J( lldY
Y Y

in w;lg/Y is an isomorphism. On the other hand, @ ~ Y is an initial object in

C/Y and there are commutative diagrams

g— X d—Y
Y Y Y e ¥
- X g+ X
Since are cofibrant, the arrows are cofibrations in C, thus the
Y g->Y
arrows
- £
#— Y > (X > Y)
(@ > Y) > (Y > Y)
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are cofibrations in C/Y, i.e., the objects

£
X ——> Y
Y —mm— Y
1dy
are cofibrant in C/Y. One can therefore apply 2.3.10 to C/Y to get a cofibration
fl
Y > Y!
idy g' (g’ o £f'=1id)
in C/Y such that
f' o £
X > Y
Y Y

is a weak equivalence in C/Y. So f' is a cofibration in C and f' o f € W,

Reverting back to the notation of 2.3.18, let XO = X, Xl =Y, X2 =Y',g=1{',

h=g' - then

f' o £ € W

i

geof

hog=g'°f'=idY=idX.
1

2.3.20 APPLICATION Suppose that C is a model category -- then W is closed

under the formation of retracts, hence W is saturated.
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[(Note: For us, a model category is finitely complete and finitely cocomplete,

= it would be illegal in general to quote 2.3.11.]

2.3.21 THEOREM Suppose that (C,W,cof) is a cofibration category -- then

(g,(??,cof) is a cofibration category.
2.4 FIBRANT MODELS

Let C be a cofibration category -- then an object Y in C is a fibrant model

£ g

if for any 2-source X < Z

> Y, where Z is cofibrant and f is an acyclic
cofibration, 3 h:X - Y such that h o £ = g.

N.B. If C has a final object *, then Y is a fibrant model iff the arrow
Y - % has the RIP w.r.t. all acyclic cofibrations that have a cofibrant domain.

E.g.: The fibrant objects of a model category are fibrant models.

¢ is faithful, so v X,Y € 0b C, the induced

2.4.1 RAPPEL The functor HOC + W
map
[X,Y] -+ Mor(X,Y)

is injective.

2.4.2 IEMVA If X is cofibrant and Y is a fibrant model, then the induced map
[X,Y] » Mor(X,Y)
is surjectve.
PROCF let [w]l € Mor(X,Y). Fix a cofibrant Y' and a weak equivalence w':Y' =+ Y —-
then

(wa')"'l o [w] € Mor(X,Y"),
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s0, using 2.3.8, we can write

-1 -1
1 —
(wa ) T [w] = (Lyw) = o L,f
£ w
= [X > YT o< Y'i,
thus
(6] = Ty’ o @™ o Ty
w w'
Consider the 2-source Y'' < Y' > Y. Since by construction w is an acyclic

cofibration and since Y is a fibrant model, 3 A:¥'' »> Y sach that A o w = w'.

Therefore
[w] = L, o w) o (wa)‘l o I,f
=L Ty e (G Ty

= LW(A o f),
from which the surjectivity.

2.4.3 CRITERION Let C be a cofibration category with the following property:
Given any cofibrant X, 3 a fibrant model X' and a weak equivalence X + X' —— then
W_lg is a category (and not just a metacategory).

[This is implied by 2.4.2.]

2.4.4 THEOREM Suppose that C is a model category —— then HC is a category

(and not just a metacategory) .

2.4.5 REMARK Iet C be a category. Suppose given a composition closed class

W <Mor C cantaining the isomorphisms of C such that for composable morphisms f,g,
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if any two of f,9,g9 o £ are in W, so is the third. Problem: Does w"lg exist as
a category? The assumption that (¥ admits a calculus of left or right fractions
does not suffice to resolve the issue. However, one strategy that will work is
to somehow place on C the structure of a model category in which W appears as the

class of weak equivalences.
2.5 PRINCIPLES OF PERMANENCE
Fix a small category I.

2.5.1 DEFINITION Iet C be a cofibration category and suppose that E € Mor[I,Cl,

say E:F - G.

{1}

® is a levelwise weak equivalence if v i € Ob I, Ei:Fi + Gi is a weak

equivalence in C.

® E is a levelwise cofibration if v i € Ob I, E;:Fi + Gi is a cofibration

2.5.2 DEFINITION The injective structure on [I,C] is the pair consisting of

the levelwise weak equivalences and the levelwise cofibrations.

2.5.3 THEOREM Suppose that C is a homotopically cocomplete cofibration category —
then [I,C], equipped with its injective structure, is a homotopically cocomplete

cofibration category.

2.5.4 DEFINITION Iet C be a fibration category and suppose that E € Mor[I,Cl,
say Z:F - G.

e E is a levelwise weak equivalence if v i € Ob I, Ei:Fi + Gi is a weak

equivalence in C.
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e & isa levelwise fibration if v i € Ob I, E,:Fi » Gi is a fibration in C.

2.5.5 DEFINITION The projective structure on [I,C] is the pair consisting of

the levelwise weak equivalences and the levelwise fibrations.

2.5.6 THEOREM Suppose that C is a homotopically complete fibration category --
then [I,Cl, equipped with its projective structure, is a homotopically complete

fibration category.

Iet I and J be small categories, K:I + J a functor. Given a category pair

c,w), let

=
i

the levelwise weak equivalences in Mor(I,C]

(obvious definition)

c_‘E
il

the levelwise weak equivalences in Mor([J,C].

Then the functor K*:[J,C] > [I,C] preserves levelwise weak equivalences, so there

is a comutative diagram

K*
[3,Cl > [L,C]
-1 -1
W3 €] ——> ULl
J = I

e If C is a cocomplete cofibration category, then K* has a left adjoint
K,:[L,C] ~ [3,C].

e If C is a complete fibration category, then K* has a right adjoint

K.f.z [;[_lc_:] > [g:g] .
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2.5.7 THEOREM Suppose that C is a cocamplete cofibration category -- then

K, possesses an absolute total left derived functor (LK, Vg ) and
. * 1

LK!

R*
are an adjoint pair.
[Note: The assumption that C is cocomplete can be weakened to homotopically

cocomplete. Matters then become more complicated as K, need not exist. Neverthe-

less, it is still the case that K* admits a left adjoint which, in an abuse of

notation, is denoted by LK, and called the homotopy colimit of K.]

2.5.8 THEOREM Suppose that C is a complete fibration category -- then KN}_

possesses an absolute total right derived functor (RK ok )} and
T

are an adjoint pair.
[Note: The assumption that C is camplete can be weakened to homotopically

complete. Matters then become more complicated as K " need not exist. Nevertheless,

it is still the case that K¥ admits a right adjoint which, in an abuse of notation,

is denoted by RK1L and called the homotopy limit of K.]

2.6 WEAK COLIMITS

Let (C,W) be a category pair -- then for any small category I, there are arrows
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(L) «
[I,C] >[I0
Lwl
-1
Wi IL,¢l,

from which an arrow

1

-1 -
aguy s [L,C] > LWl

rendering the triangle commitative:
dgmy o Ly = (Iy),.
- I
[Note: Given E € Mor[I,C], we have

(L)) =L, (G € I).

And

EeW, =E €W (i€0bI.]

2.6.1 LEMMA If C is a homotopically cocomplete cofibration category, then

the functor dng is conservative.

Suppose that C is a homotopically cocomplete cofibration category —- then
w-lg has coproducts but, in general, does not have coequalizers or pushouts,

thus W1C need not be cocomplete.

2.6.2 RAPPEL Iet T be a small category, C a cocomplete category —— then the
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constant diagram functor K:C ~ [I,C] has a left adjoint, viz. colim :[I,C] ~ C.

So, for any diagram A:I + C, for any X € Ob C, and for any morphism f:A -+ KX there

exists a unique morphism g:coli.mIA + X such that £ = Kg o s

HA
A > K colimI
£ Kg
KX KX,

where uA:A > K colimIA is the arrow of adjunction.

2.6.3 DEFINITION Iet I be a small category, C a metacategory and let A:I » C

be a diagram -- then a weak colimit of A, if it exists, is an object wcoli.mIA € 0b C
and a morphism

uA:& + K wcolJm.;[‘A

with the property that for any other object X € Ob C and morphism f:A + KX there

exists a (not necessarily unique) morphism g:wcolJ'.mIA »> X such that £ = Kg ¢ u Al

HA
A > K wcolimIA

£ Kg

2

RX.

2.6.4 THEOREM Suppose that C is a homotopically cocaomplete cofibration category.
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-1 -1
c3.<31'n‘1‘:£t)E [I,Cl » [I, CI
is full and has a representative image -- then every diagram A:I - w‘lc_: has a
weak colimit wcolimiA which is unique up to (noncanonical) isomorphism.

PROOF Choose A' € Ob W;l [I,C] :dngA' = A. Taking J = 1 in the theory developed
in 2.5, let

n A" > KFLK A
At ¢

be the arrow of adjunction and put
wcoli_m]-jA = dgmgLK!A‘ '
which can be viewed as an element of Ob C —- then there is an arrow
Hyzh > dgmf?*‘LK!A‘,

But the diagram

dng
-1 = -1
W Id,Cl > [2,W ¢l
K* K*
W IL,C) . (1,67
et dng

commutes, so
. X N
UA'A A dngLKIA
or still,

Hpdh —> K*WcolunIA
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or still,
UA:A — K WCOliIn:_[-A (K* = K),.
Therefore the pair
(WCOlim:EA,uA)
is a weak colimit of A. If the process is repeated with A'' € Ob w;l[;,g] , thus

dngA' 'z A,

then one can find an £ € Mor(A',A'") such that dgm_ £ implements the isomorphism

dngA' = dgmfﬁ' .
But dng is conservative (cf. 2.6.1), hence f is an isomorphism. Consequently,

wcolimIA (as constructed) is unique up to (noncanonical) isomorphism.

2.6.5 DEFINITION A small category I is free if it is isomorphic to a category

in the image of the left adjoint to the forgetful functor U:CAT - PRECAT.

[Note: A finite, free category is both direct and inverse.]

2.6.6 LEMMA If I is a small category which is free and direct, then for any

homotopically cocomplete cofibration category C, the functor
-] -1
dg'mzzixfz [x,c1 ~ [L,w "Cl
is full and has a representative image.

2.6.7 EXAMPIE The categories

a

le e 2 , lec< ] > ® 2
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are free and direct.

2.6.8 APPLICATION Every homotopically cocamplete cofibration category admits

weak coequalizers and weak pushouts.

[Note: The story for homotopically complete fibration categories is analogous. ]
2.7 WEAK MODEL CATEGORIES

Iet C be a category and let W, cof, fib be three composition closed classes
of morphisms such that
(C,W,cof)
is a homotopically cocamplete cofibration category and
(c,w,fib)

is a homotopically complete fibration category.

2.7.1 DEFINITION C is said to be a weak model category provided that the

following axioms are satisfied.

(WMC - 1) W is closed under the formation of retracts.

(WMC - 2) Acyclic cofibrations with cofibrant domain have the ILIP w.r.t.
fibrations with fibrant codomain.

(WMC - 3) Cofibrations with cofibrant domain have the LIP w.r.t. acyclic

fibrations with fibrant codomain.

2.7.2 REMARK Every camplete and cocomplete model category is a weak model

category (but not conversely).

2.7.3 LEMMA Suppose that C is a weak model category — then W is saturated
(cf. 2.3.18).
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2.7.4 IEMMA Suppose that C is a weak model category -- then w"l(___: is a cat-
egory {(cf. 2.4.3).

Fix a small category I.

2.7.5 THEOREM ILet C be a weak model category — then [I,C] admits a weak

model structure in which the weak equivalences are the levelwise weak equivalences
and the cofibrations are the levelwise cofibrations.

[Note: The description of the fibrations is somewhat involved but they are,

at least, levelwise.]

2.7.6 THEOREM Let C be a weak model category -- then [I,C] admits a weak

model structure in which the weak equivalences are the levelwise weak equivalences
and the fibrations are the levelwise fibrations.
[Note: fThe description of the cofibrations is somewhat involved but they are,

at least, levelwise.]

2.7.7 REMARK In either weak model structure on [I,Cl, W is the class of weak

equivalences and w}l [I,C] is a category (cf. 2.7.4).

T Cisinski, Bufl. Soc. Math. France 138 (2010), 317-393.
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CHAPTER 3: HOMOTOPY THEORIES

3.1 THE STAR PRODUCT

Let F,F':C ~ D and G,G":D » E be functors; let
£ € Nat(F,F')
§ € Nat(G,G").

Then vV X € Ob C, there is a comutative diagram

(GE)X
(G o F)X > (G o F')X
1]
(QF)X (CF )X
{(G' o F)X > (GY o F')X.
(G'-:)x
3.1.1 DEFINITION The star product of 2 and E is defined by

Q#* Z=G'E o {F
or still,

Q%

[$3]

= (F' o GE.

[Note: The star mroduct is associative and in suggestive notation,

(Q o ) # (E' o B) = (@' * E') o (R * E).]

Q#* 5 € Nat(G o F, G' o F').



3.1.2 EXAMPLE We have

QF:Q*idF

. % 3 s
aMJ.dG ldF ldGo

3.2 DERIVATORS

A derivator D is a prescription that assigns to each small category I a meta-
category DI, to each functor F:I + J a functor

DF:DJ -~ DI,

and to each natural transformation Z:F - G a natural transformation

=:0G -~ D,
the data being subject to the following assumptions.

F G
e For all I, Did; = idy, and given I > J

DG o F) = DF o DG.

=

= 9]
e TFor all F, DidF=idDFandgivenF—>G~——>H,wehave

D@ o E) = DE o DQ.

tH
(LS

=

>
F' G'



and if

[
m

Nat{#,F')

{2 € Nat G,G"),

D@ * 5) = D= * DQ.

N.B. If D is a derivator, then its opposite DOP is the derivator that sends

1o %)%,

3.2.1 EXAMPIE Iet (C,W) be a category pair. Given I € Ob CAT, let W op be
T

the levelwise weak equivalences in Mor [.I_OP,_C_:] - then

op
(12,14 op)

is a category peir, thus it makes sense to form the localization of [EOP,_C_t] at

W :
IOP

-1 . OP
wIOP[; ,Cl (cf. 1.1.2).

Define now a derivator D C. W) by first specifying that
o ¥

a1 op
"c,mi =Y opld <l

Next, given F:I -~ J, pass to FOP:gi_oP - QOP and note that the induced functor

) 15%,0 » 1%F,a

3

F

*
is a morphisn of category pairs {(i.e., (FOP) W op © W OP) , which leads to a functor
I

J



op* -1 0P -1 _OP
F) :wJOP[g /Cl —>[!)IOP[£ +Cl (cf. 1.4.5),

- —

call it D e w)F. Finally, from a natural transformation Z:F - G there results a
_f

natural transformation

OoP, *

B @) - 7B

that gives rise in turn to a natural transformation

(1)

Pc.n®Pc,w® > Dic,mF
characterized by the property that

0P, *

(D )L =1 E7) (cf£. 1.11).
(C,Wy=""w W
= R 1P
[Note: Take I = 1 -- then
—
Dt =W"¢

3.2.2 ILFMMA Let D be a derivator. Suppose that

are an adjoint pair with arrows of adjunction

U:idI — FY o F

p':F o F' — id .
I!



DF:DI' -~ DI

DF':DI - DI'

are an adjoint pair with arrows of adjunction

Du' € Nat(id ,DF' o DF)

DI'
~ Du € Nat(DF o DF"idDE)'
PROCF Starting from
(F'u') o (uF') = id
F

(W'F) o (Fu) = idF:

we have

i

id = Did
Dr! F!

D(uF') » D(F'u') = (DF")Du o Du' (DF')

idDF = DidF = D(Fyu) o DW'F) = Du(DF) o (DF)Dy',

which leads at once to the contention.

3.2.3 IEWMA Iet D be a derivator. Suppose that

Fil > I'

Fre:I' > 1T

are an adjoint pair with arrows of adjunction

u:idI +F' o F

ui:iF e FP' » id .
II



F fully faithful => DF' fully faithful

F' fully faithful => DF fully faithful.

PROCF E.g.: If F is fully faithful, then p is a natural isomorphism, thus
Dy is a natural isomorvhisn and this, in view of 3.2.2, implies that DF' is fully

faithful.

3.2.4 DEFINITION A morphisn ¢:D » D' of derivators is a pair (2,¢), where v I,

@E:D_]_Z +D'I
is a functor, and v F:I » J,

¢F:D'F ° b > @E o DF

is a natural isomorphism, there being two conditions on ©.

[Note: The square per <1>F is

%3
DJ > D'J
DF D'F
DI > D' .]
°1
F G
e Given I > J > K, we have




from which

(bF(DG):D'F o (PQ o G —— @I ° DF o DG

(D'F)(bG:D‘F o D'G o @K -—> D'F o <I>J o DG.

On the other hand,

il

0g o g = D'F © D'G e & > @y o DF © DG,

The assumption then is that

b0 o p = 0p(DG) ° (D'F)gs.

e Given E € Nat(F,G), we have

Dz:DG > DF

D'=:D'G > D'F,

from which the square

e
D'G © 05 > 0p © DG
D*=(2y) (97) DE
D'F o (Pg > (DE o DFP
(bF

and the supposition is that it commites.

3.2.5 EXAMPIE ILet

F: (Ql,wl) + (C ,(Uz)

be a morphism of category pairs (cf. 1.4.5) — then F induces a morphism



D

D -+
(€ 8 7V,
of derivators.
Given morphisms
- ¢:D >~ D'
¢':pD' > D'

of derivators, it is clear how to define their composition
¢ o &:D >~ D'

which again is a morphisn of derivators, thus there is a metacategory DER wlpse
objects are the derivators.

If now D,D' € Ob DER and if

-+ DY

e
(X )
o

€ Mor (0,D"),

¥Y:0 -~ D!

then a natural transformation Z:¢ + ¥ is the assignment to each I of a natural

transformation

t1]

I:QE > \Pz

such that vV F:I + J, the diagram

¢F
D'F o ®§ > @E o DF
(D'M) Eg EE (DF)
D'F » ‘PJ > ‘PJ s DF
o i*[)F o

commites.



3.2.6 LEMMA Let

3, ¥, 0 € Mor (D,D').

Suppose that

SR

_ #E~ 0
are natural transformations. Define Q o E by

il
2

%3]

(320:;);E 1 ° I

Then @ o £ is a natural transformation from ¢ to 0.

1011

PROCF It is a question of showing that

il

(Q.:E o E_I_) (DF) o qu 8. o (D'F) (Qg o B

F J)'

—

@ o P (F) o 6 = Q OF) o E.0F) o 4

il

QE(DF) ° d}F ° (D'F)Eg

I

GF o (D'F)S’?.‘;I o (D'F)EJ

bp © (D'F) (QQ ° E0).

3.2.7 NOTATION Given derivators D,D', let HOM(D,D') stand for the metacategory
whose objects are the derivator morphisms $:D »~ D' and whose morphisms are the

natural transformations Nat(?,¥) from ¢ to VY.

3.2.8 EXAMPLE let 1 be the constant derivator with value 1 -- then for every

derivator D, HOM(1,D) is equivalent to D1.
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3.2.9 DEFINITION Let ¢ € Mor(D,D') —— then ¢ is an equivalence if v I,
@E:D_I_ -~ D'I

is an equivalence of metacategories.

3.2.10 LEMMA A morphism ¢:D -~ D' is an equivalence iff there exists a morphism
2':D' + D such that ¢' o ¢ is isomorphic t© :idD and ¢ o ¢' is isomorphic to id .
Dl

3.2.11 EXAMPLE Iet C be a complete and cocomplete model category, W its class

of weak equivalences — then there are morphisms

((—:cof'wcof) > €W

of category pairs, hence induced morphisns

D - D
(gcof ’wcof ) (G,

D - D

of derivators that, in fact, are equivalences.

3.2.12 NOTATION In 3.2.1, take for (/ the identities in C and write D, in place

of D(Q,w)' hence v I € Ob CAT,

3.2.13 EXAMPLE Let (C,W) be a category pair —- then W contains the identities
of C, so there is a morphism

De * O e,
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of derivators.

3.2.14 EXAMPIE If F:C - C' is a functor and if I € Ob CAT, then

F: (1,01 ~ [17,C)

and there is an induced morphism DC > DC' of derivators.

3.2.15 LEMMA Suppose that C is small —- then for every derivator D, there is
a canonical equivalence

HOM (D,,D) + DT

of metacategories.

[Given 9:D_ + D, let I =C", thus

Op

e

and by definition

2> plidg).]

[Note: This is the Yoneda lemma for derivators.]
3.3 TECHNICALITIES

3.3.1 DEFINITION Iet D be a derivator.

e A functor K:I + J admits a right homotopy Kan extension in D if the

functor
DK:DJ -~ DI
has a right adjoint

DK, :0I ~ DJ.
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e A functor K:I » J admits a left homotopy Kan extension in D if the

func tor
DK:DJ -~ DI
has a left ad pint

DK,:D; -+ DJ.

3.3.2 EXAMPLIE Take D = DC (cf. 3.2.12).

e Assame that C is complete -- then every K:I -+ J admits a right homotopy

Kan extension in DC'

e Asame that C is coconplete —- then every K:I +~ J admits a left homotopy

Kan extension in DC'

3.3.3 REMARK Let C be a model category, W its class of weak equivalences ——

then in the context of the derivator D(g,(&f} (cf. 3.2.1), one uses the term hamotopy

limit of KOP rather than right homotopy Kan extension of K and the term homotopy

colimit of KOP rather than the term left homotopy Kan extension of K.

[Note: The explanation for the appearance of KOP is to keep matters consistent.
Thus suppose that C is combinatorial -- then in the notation of 0.26.19 and 0.26.20,
we introduced

which were called
the homotopy colimit of K

the homotopy limit of X
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respectively. So here

— _ 0P
Dic,mks = LK,

_ oP
Dc,ms = RET 4.

See also 2.5.7 and 2.5.8.]

3.3.4 NOTATION Let I € Ob CAT and let p,:I +~ 1 be the canonical arrow.

e Suppose that Py admits a right homotopy Kan extension in D - then

Vv X € 0b DI, we let

T4(LX) = DppX.

® Suppose that Py admits a left homotopy Kan extension in D -- then

v X €O DI, welet

T\ (1,X) = Dp X.

3.3.5 DEFINITION A 2-diagram of categories (or metacategories) is a square

u
A!

F!

v

together with a natural transformation from F ¢ u to v ¢ F' or from v ¢ F' to

F o u.

1

2

{ve)
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Iet D be a derivator -- then a 2-diagram

A%
]

14— |H

F! F (2 € Nat(F o u,v o F'"))
13 > 2’
\Y%
of small categories induces a 2-diagram
Du
DI'< D1
DF'[ DF
DI'< b
Dv

of metacategories, where

DE:D(v o F') > D(F o u).
N.B. We have

D(vePF') =DF' o Dv

DEF o u) = Du o DF.

3.3.6 CONSTRUCTION Assume that both P and F' admit a right homotopy XKan

extension in D. Starting from the arrow of adjunction DF ° DF1L > idDI' proceed to

DuODF°DF+->Du

or still, using

Z:DF' o Dv » Du o DF,

DF‘ODVODF++DU
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or still, by adjunction, to

H:Dv ¢ DF, > DF! o Du,

+ T
leading thereby to another 2-diagram
Du

DI' < DI

?
DF " DF 4

DJ' <« DI

Dv

of metacategories.

[Note: The natural transformation Il is called the base change morphism

induced by E.

3.3.7 EXAMPLE Iet F:I ~ J be a functor. Given j € Ob J, write I/]j for the

comma category ]F,Kj], the objects of which are the pairs (i,g), where i € 0b I,

g € Mor J, and g:Fi + j. Consider the square

Pl/] F (proj (i,9) = i).

e |

Ll el L

v
1

K.
3

Then there is a natural transformation

EeF o pro. + K. ¢ .
Proy j p!;/a'

1}

G, ~ 9
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Assume now that F admits a right homotopy Xan extension in D and v j € Ob J,

Pr /3 admits a right homotopy Kan extension in D. Accordingly, on the basis of

3.3.6, there is a natural transformation
I]I:DKj ° DF*!“ > Dp}_/j? o Dproj.

[Note: From the definitions,
Dproj:D_I_ -+ DI/3,

SO v X € Ob DI, DproX € Ob DI/j, call it X/j — then

Oy 5#%/3 = T W 3I%/D)  (ef. 3.3.4.]

Iet D be a derivator — then a 2-diagram

u
I > 1
F'l lF (E € Nat(v o FP',F o 1))
J' > 3
v
of small categories induces a 2-diagram
Du
DI'< DI
DF! DF
D3’ < D3
Dv

of metacategories, where

DE:D(® o u) » D(v o FP").
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N.B. %We hawe

D(F o u)

I

Du o DF

D(v o F') = DF' o Dv.

3.3.8 CONSTRUCTION Assume that both F and F' admit a left homotopy Kan

extension in D. Starting from the arrow of adjmction id.. - DF o DF

DI !3‘ &

roceed to
Du > Du o DF o DF,

or still, using

DE:Du o DF ~ DF' o Dv,

Du->DF'°DVODF!

or still, by adjunction, to

Iﬂ:DF; o Du~>Dvo DF,

leading thereby to another 2-diagram
Du
DI'<———— DI
DF! DF
)y P |
Dv
of metacategories.

[Note: The natural transformation Il is called the base change morphism

induced by E.]

3.3.9 EXAMPIE Let F:I + J be a functor. Given j € Ob J, write j\I for the
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comma category ]Kj,Fl , the objects of which are the pairs (g,i), where g € Mor J,

i €0b I, and g:j + Fi. Consider the square

3P0
PN ————> I
pj\Il l}?‘ (jpro(g,i) =1i).
1 > J
K.
]

Then there is a natural transformation

Kj o "t;)j\;E +F o jpro,

viz.

“(g,i) T 9
Assume now that F admits a left homotopy Xan extension in D and v j € Ob J, pj\I
admits a left homotopy Kan extension in D. Accordingly, on the basis of 3.3.8,

there is a natural transformation

III:Dpj\y ° Djpro > DKj o DF,.

H

[Note: From the definitions,

Djpro:Dg > DiNI,

so VX € Ob DI, DjproXGOb DiNI, call it j\X —— then

Dpsy\ gy VX = T (AL, 3\ (of. 3.3.4).]

3.3.10 NOTATION Suppose that D is a derivator —- then for all I,J € Cb CAT,

there is a canonical funcior

d; ;DT x 3 > [17,03.

—
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In fact:
1. There is a functor

opP

[3,I x 317 - [D( x J),DJ]l.

2. There is a functor

op

(2,1 x 0% « D@ x 3 > b3

3. There is a functor

D x J) ~ [13,1 x 31,031,

4, There is a functor

or still, a funcior

So, in conclusion, there is a functor

op
dI J‘D(_I. X g) > [_]_:_ IDQ]‘

14

lIet d_=d thus

I
1
-~
1=
~

dp:Dr > [z,D1l.

[Note: I£ED=1D where (C,W) is a category pair, then dI is what was

(W)’
labeled dng in 2.6.]

3.3.11 ILEMMA Suppose that F:I » J —— then the diagram
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dJ
DJ - > 13%,01]
DF (FOP)*
DL > (1,01
I
commites.
3.4 AXIOMS

what follows is a list of conditions that a derivator D might satisfy but
which are not part of the setup per se.
(DER — 1) For any finite set ;l,... ' In of small categories, the canonical

functor
n n

D(kail L)~ k};}; D(L,)

induced by the inclusions
I,> 1l L, (1<£s<n)
is an equivalence and D0 is equivalent to 1.
(DER - 2) For any small category I, the functors
DK;:DI ~ D1 (i € Ob I)

constitute a conservative family, i.e., if X,¥ € Ob DI and if £:X > Y is a morphism

such that v 1 € Ob I, DK;f is an isomorphism in D1, then f is an isomorphism in DI.

(RDER - 3) Every F € Mor CAT admits a right homotopy Kan extension in D.
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(LDER - 3) Every F € Mor CAT admits a left homotopy Kan extension in D.

(RDER - 4) For any F:I ~ J and for any j € 0b J,

HJ:D]Kj ° DF“I‘ > Dp_];/ji‘ ° Dproj
is a natural isomorphiam.

(IDER - 4) For any F:I ~ J and for any j € Ob J,

HI:Dpj\EI ° Djpro > DKj o DF

1
H

is a natural iscmorphism.
(DER - 5) For any finite, free category I and for any small category J,
the functor
opP
dr 5@ x D + 17,031
is full and has a representative image.

N.B. Tacitly, RDER ~ 4 presupposes RDER - 3 and LDER - 4 presupposes IDER - 3,

3.4.1 DEFINITION Iet D be a derivator.

® D is said to be a right homotopy theory if DER - 1, DER - 2, RDER - 3,

and RDER - 4 are satisfied.

® D is said to be a left homotopy theory if DER - 1, DER - 2, LDER - 3,

and IDER - 4 are satisfied.

N.B. D is said to be a homotopy theory if D is both a right and left homotopy

theory.
3.4.2 EXAMPLE Iet C be a category and take D = DC (cf. 3.2.12).

e Assume that C is complete —- then DC is a right homotopy theory.
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e Assure that C is cocomplete — then DC is a left homotopy theory.

3.4.3 LEMMA Suppose that DER - 1 and RDER - 3 are in force —- then v I, DI
has finite products.
PROOF It suffices to prove that C has binary products and a final object.
Recall that DI has binary products iff the diagonal functor

Agp:DI ~ DI x DI has a right adjoint. Iet Y :I || I - I be the folding map --

then there is a comutative diagram

DI x DI — DI x DI.

Since DVI has a right adjoint and since the vertical arrow on the right is an

equivalence, it follows that Apt has a right adjoint.

Recall that DI has a final object iff the functor pDI:DE ~+ 1 has

a right adjint. Iet i;:0 » I be the insertion —- then there is a commtative

diagram

Di

o
tH

Vv

]
10

ie)

o

=
L e
TaT R S—
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Since Di:[ has a right adjoint and since the vertical arrow on the right is an

equivalence, it follows that Ppr has a right adjoint.

3.4.4 IEMVA Suppose that DER - 1 and LDER - 3 are in force —- then v I, DI

has finite coproducts.

Let D be a derivator —- then for any small category I and any i € Ob I, there

is a comutative diagram

“
pr —— 1%%,D1]
opP, *
DK, l l ") (cf. 3.3.11).
D1 DL

3.4.5 IEMMA The derivator D satisfies DER - 2 iff V I € Ob CAT, the functor

dI is conservative.
oP, * . . .
PROOF The (Ki } constitute a conservative family.
[Note: It is clear that the derivator DC attached to a category C satisfies

DER - 2 (levelwise isomorphisms are isomorphisms).]
3.5 D-EQUIVALENCES

ILet D be a derivator. Suppose that I,J are small categories and F:I + J is

a functor —— then upon application of D, the commtative diagram

v
1

[P S—
i e

(Lo
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leads to a commutative diagram

So, for any pair X,Y € Ob D1, there is an arrow

¢X'Y:I*br(DpJX,DPJY) ~ Mor (Dp,X,Dp,Y),

namely
¢'X,Yf = DFE,
i.e.,
£
DPQX > DPQY
is sent by ¢X ¢ ©
14
DFf
DpleD‘E‘o ngX >DFon§ =DplY.

3.5.1 DEFINITION A functor F:I -+ J is a D-equivalence if v X,Y € Ob D1, the

arrow

is bijective.
3.5.2 NOTATION Write WD for the class of D-equivalences in Mor CAT.

N.B. It is clear that (CAT,WD) is a category pair.
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3.5.3 LEMMA WD is saturated (that is, W WE (cf. 1.1.9)).

D —
PROCF Given X,Y € Cb D1, define a functor

op
%(,Y'CAT ~» SET

by the specification
I~ I«br(Dp.I.X,DpEY) and F ~» ¢X,Y‘
Accordingly, from the definitions, if F is a D-equivalence, then @X YF is a

bijection, so there is a commutative diagram

CAT CAT
)
LwD X,Y
wal(JAT > SETF,
@x,y

Suppose now that Lw FO is an isomorphism (F.:
D

0ilp * J) —— then CDX,YLWDFO is an

isomorphism or still, <I>X YFO is a bijection. Since this is true of all X,Y € Ob D1,
!

it follows that Fy is a D-equivalence: F, € wD.

N.B. It is a corollary that WD is weakly saturated (cf. 2.3.15).

3.5.4 DEFINITION An object I € Ob CAT is D-aspherical if p;:I + 1 is a

D-equivalence.

3.5.5 LEMMA I is D-aspherical iff the functor Dp;:Dl + DI is fully faithful.
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PROOF Given X,Y € Ob D1, to say that the arrow

Mor({X,Y) -+ Mor (DpIX,DpIY)

is bijective amounts to saying that the functor DpI:D_l_ + DI is fully faithful.

3.5.6 LEMMA Suppose that I has a final object - then I is D-aspherical.
PROOF If I has a final object, then Py has a right adjoint which is necessarily

fully faithful. Therefore DpI is fully faithful (cf. 3.2.3), so 3.5.5 is applicable.

3.5.7 DEFINITION A functor F:I » J is D-aspherical if v j € Ob J, the functor

F/3:1/3 > 3/3

is a D-equivalence.

3.5.8 LFMMA The functor F:I ~ J is D-aspherical iff v j € Ob J, the category
I/j is D-aspherical.
PROOF Since J/3j has a final object, it is D-aspherical (cf. 3.5.6), thus the

arrow J/j ~ 1 is a D-equivalence. This said, consider the commtative diagram

F/5
/) —— 5 3/3
p;/jl lpg/j
1 1

3.5.9 LEMMA Suppose that the functor F:I -+ J admits a right adjoint G:J » I —--
then F is D-aspherical.

PROOF Vi€ Ob I and vV j € Ob J, we have

Mor (Fi,j) = Mor(i,Gj).
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Therefore the category I/j is isomorphic to the category I/Gj. But I/Gj has a
final object, thus I/Gj is D-aspherical (cf. 3.5.6), hence the same is true of

I/3 and one may then quote 3.5.8.
3.5.10 EXAMPLE An equivalence of small categories is D-aspherical.

Suppose that RDER - 3 is in force. ILet F:I -~ J be a functor — then the

commutative diagram

=
e 1

1¢4
v
1=

generates an arrow

DpJ > DF'%* o Dp;  (cf. 3.3.6)

or still, upon postcomposing with Dpﬁ, an arrow

PPyt o OPg > DPgy © DFy Doy

=D(pQ°F)'f‘ o [)pz
- PPy © PPr
3.5.11 IEMMA Under RDER - 3, a functor F:I » J is a D-equivalence iff the arrow

ng"f‘ @ ng - ng:..f‘ ° Dpz

is an isomorphism (in [D1,D1]).
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PROOF If F:I - J is a D-equivalence, then v Y,X € Ob D1, the arrow
I*br(ngY,ng_X) > Mor(DPEY:DPEX)
is bijective or still, by adjunction, the arrow
Nbr(Y,ngl ° DPQ-X) —>Mor(Y,Dp£! ° DPZX}
is bijective, which implies that the arrow
Doy, © DpgX > Doy, © DpX
is an iscmorphism. Run the argument backwards for the converse.

Henceforth it will be assumed that D satisfies DER - 2, RDER - 3, and RDER - 4.

3.5.12 IFMMA Iet F:I > J be a functor — then the arrow

is an isomorphism (in [D1,DJ]) iff v j € Cb J, the arrow

DKj ° ng+DKj o DF, o DpI
is an isomorphism (in [DL,Dl]) (cf. DER - 2).

K; Py

[Note: The composition 1 > J —> 1 is idl‘ SO D(pJ ° Kj) = DKj ° DpJ

is 1dD£.]
3.5.13 LEMMA Iet F:I ~ J be a functor. Assume: The arrow

g 7 Py Py

is an isomorphism — then F is D-aspherical.
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PROCF Given j € Cb J, consider the diagram

/3 >

Pr/5 l F
1

]
4
ot

Py ° Proy = Pr,y => Dprog © Doy = Doy /5.

And, thanks to RDER - 4, there is an isamorphism

DK'j o DF'T' > DpI/j’i‘ ° DpI‘Oj,

or still, an isomorphism

DKy DFy @ Dop = Bpp/y4 © Dproy o Dpp

= Dpp g4 © DPryy

or still, an isomorphism

idpy > Dpp gy © DPp/g-

every j € Ob J, it follows that F is D-aspherical (cf. 3.5.8).

(cf. 3.3.7).

But this means that DpI /3 is fully faithful (the last arrow being an arrow of

Since this is the case of

3.5.14 LEMMA Let F:I > J be a functor. Assume: F is D-aspherical — then

the arrow

Dpy > DF, © Dpg



30.

is an isomorphism.
PROOF Owing to 3.5.8, V j € Ob J, 1/]j is D-aspherical, thus the functor

DpI/j is fully faithful (cf. 3.5.5). Using the notation of 3.5.13, form the

commtative diagram

ile > DKj o DF+ o DpI

Doy /5 © BPp/g = DRy 44 © Dpp /5

ile —_— DKj o DF+ o DpI

is an isomorphism. But j € Ob J is arbitrary, thus the arrow

Doy — DFy @ Dpy

— —

is an isomorphism {cf. 3.5.12).

3.5.15 LEMMA If F:I » J is D-aspherical, then F is a D-equivalence.

PROOF The arrow

DpJ —_ DF+ o Dpz

is an isamorphism (cf. 3.5.14). Therefore the arrow

PPt * DB > Dogy © Dy * DBy

D(py ° F), © Dpy

i

by o Doy

is an isamorphism, so F is a D—equivalence (cf. 3.5.11).
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3.5.16 REMARK Consider a commtative diagram

F

=
e |
v
1R ——
~ <

1=

of small categories. Assume: V k € Ob K, the arrow I/k + J/k is a D-equivalence —-
then F is a D-equivalence.

[This is the relative version of 3.5.15 and its proof runs along similar lines.]

N.B. The developments leading to 3.5.15 and 3.5.16 were predicated on the
supposition that D satisfies DER - 2, RDER - 3, and RDER - 4. The same conclusions

obtain if instead D satisfies DER - 2, IDER - 3, and IDER - 4.

3.5.17 THEOREM Suppose that D is a right (left) homotopy theory — then LUD is
a fundamental localizer.

PROOF One has only to cite 3.5.3, 3.5.6, and 3.5.16.

3.5.18 REMARK Consequently, if D is a right (left) homotopy theory, then
W, < wD {(cf. C.7.1).

3.5.19 LEMMA Suppose that D is a homotopy theory. ILet F:I > J be a functor,

FOP:EOP > ._J_OP its opposite —- then F is a D-equivalence iff FOP is a D-equivalence

{cE. C.2.9).

3.5.20 LEMMA Suppose that D is a homotopy theory. ILet F:I + J be a functor,

FOP:_I_OP -+ QOP its opposite -- then F is a D-equivalence iff FOP is a e

—equivalence.
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3.5.21 SCHOLIUM We have

if D is a homotopy theory.
3.6 PRINCIPAL EXAMPLES

Recall that if (C,W) is a category pair, then D is the derivator that sends

()

-1
I €0bCAT to W

1

%.cl (cf. 3.2.1).

3.6.1 THEOREM let C be a complete model category, W its class of weak equiv-

alences — then D is a right homotopy theory.

(c,w
3.6.2 THEOREM lLet C be a cocamplete model category, (f its class of weak equiv-

alences —— then D is a left homotopy theory.

()

3.6.3 THEOREM Let C be a complete and cocomplete model category, (W its class

of weak equivalences -- then D(C ) is a homotopy theory.

3.6.4 EXAMPLE Using the notation of 0.24.3, ner induces an equivalence

ner:0 car,p ) ~ P(ssET, W)

of homotopy theories.
[Note: It is an interesting point of detail that W _ coincides with the class
of D(CAT’wm)—equlvala&oes (cf. B.8.14}.]

Iet C,C' be complete and cocomplete model categories. Suppose that
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F:C > !

F'iC' > C

are a model pair - then the functors

L¥:HC > HC'
RF':HC' > HC
exist and are an adjoint pair.
In general, there are arrows
- F,
[EOPIC] > [;EOPIQ']
Fi
aF,.c1— - 1%F,q

and these functor categories are complete and cocomplete but there is no claim that
they are model categories with weak equivalences

W
IOP

W
IOP

[Note: Recall, however, that they are at least weak model categories (cf. 2.7.5
and 2.7.6).]
3.6.5 THEOREM There exist

EeMor®c u D ,umy’

E' E PJ'k>x.(D(g' ’w‘) ?D(glw))
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such that v I,
FrDc,m > Dcr ol
is the left derived functor of F, and

1.
FI'

Dicr,umt > P,

is the right derived functor of F,. Moreover, (FI’FP is an adjoint pair.

N«B. These results are due to C:‘Lsinskif.

The assumption that C is a model category (complete, cocomplete, or both) can
be substantially weakened.

3.6.6 THEOREM Let C be a homotopically complete fibration category, W its

class of weak equivalences —— then D(C ) is a right homotopy theory.
=

3.6.7 THEOREM Let C be a homotopically cocomplete cofibration category, W its

class of weak equivalences -- then D(C ) is a left homotopy theory.
~r

3.6.8 THEOREM Let C be a weak model category, W its class of weak equivalences —-

then D is a homotopy theory.

(c,w

N.B. These results are due to Radulescu—Banuﬂ.

T Aun. Math. Blaise Pascal 10 (2003), 195-244.

1 ar¥iv:math/0610009
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3.6.9 REMARK All the derivators D(C ) arising above also verify DER - 5.
-t

Turning to the proofs, we obviously have

3.6.6 => 3.6.1
3.6.7 => 3.6.2

3.6.8 => 3.6.3

and, of course,

3.6.1 + 3.6.2 => 3.6.3

3.6.6 + 3.6.7 => 3.6.8.

To illustrate the main ideas, we shall consider 3.6.1, the discussion per
3.6.6 being similar but more complicated.
3.6.10 NOTATION Given a small category I, let Q.M/; be the category whose objects

are the pairs (m,u), where m > 0 is an integer and u:[m] -~ I is a functor, a mor-

phism (m,u) -+ (n,v) being a morphism £:[m] -~ [n] of -A-M such that the diagram

£
[m] ——— [nl]
J !
I I

commites.

3.6.11 LEMMA The category ME is direct.

[Define deg:0b QM/E > Z, by deg(m,u) = m.]
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Write
TL:AM/I »~1I

for the functor that sends (m,u} t u{m).

3.6.12 IEMMA A functor F:I > J induces a functor

A/Filyy/I > 83 ((mu) > (mF o u))

and the diagram

éM/F

> by/d
>

pS

~
jH
H  ——

commu tes.

Let C be a complete model category, W its class of weak equivalences. Put

D =D e,y

3.6.13 LEMMA Given a small category I, the functor

DTE: DI ~ DQM/E
is fully faithful and has a right adjoint

DT;T:DQM/-I- ~> DI.

[Note: To ground this in reality, take I = 1 —— then _A_M/; = éM' But éM

is D-aspherical, thus the functor

Dp%:Dl > DéM
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is fully faithful (cf. 3.5.5). Since both 1 and A, are direct, the existence

of DpéMJr is automatic (cf. 3.6.17).]

3.6.14 RAPPEL Suppose that C is a complete model category and let I be a

direct category —— then {_ZEOP,C_:] in its injective structure is a model category

(cf. 0.27.8).

2Ad DER - 1: The canonical functor

n n
D¢ L) > D(L)

is bijective on objects, thus it need only be shown that it is fully faithful.

this end, form the commutative diagram

il fr
D{( L) —m8M—> D(T,)
=1 x S
DOt Dt
% L g I
n n
D( L) ——> D{( ).
1| & NINLLOYES

Then the functors

are fully faithful (cf. 3.6.13). On the other hand,
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n
H%quwg

n

opP
= [( L) ,Cl
HINREEYERAa
and v k,
[(a,/5) % <)

is a model category (cf. 3.6.14). Therefore the arrow

D{( IL)=H [(A/L ) ,C]
kJ:_,,Ll AL NI TE R

— D( I) = H ( L)y ,Cl
T_Tl ATy 18 Ay L) ,C

is an equivalence of categories (cf. 0.1.29).

[Note: Here DO = 1.]

3.6.15 LEMMA Let I be a small category, C a model category. Suppose that
[I,C] admits a model structure in which the weak equivalences are levelwise -— then
the

DK, :H[I,C] + HC (i € Ob I)

constitute a conservative family.
PROOF Let £:X +~ Y be an arrow in H[I,C]. Replacing X by a cofibrant object
and Y by a fibrant object, one can assume that f is an arrow in [I,C] (cf. 2.4.2).

But then the result is obvious (consider D{I C}) .
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Ad DER - 2: Iet I be a small category and let f € Mor DI be a morphism such
that v i € Ob I, DK;f is an isomorphism in D1 —- then the claim is that f is an

isomorphism in DI. Given (m,u) € Ob _A_M/_I_,

T1 o K(m,u) 1 ~>1
equals
Ku(m) 1> 1.
And so
DK(m,u) D"czf = D(TE ° K(m,u))f
= DKu(m)f

is an isomorphism in DL. But [(4,/D%,C] is a model category (cf. 3.6.14), hence
the

DK(m,u) :I_I[(QM/DOP,Q] > HC((m,u) € Ob -ﬁ-‘rlt/l)

constitute a conservative family (cf. 3.6.15). Therefore DTIf is an isomorphism in

D_QM/;E, thus f is an isomorphism in DI (cf. 3.6.13) (D'tI is fully faithful, hence

reflects isomorphisms).

3.6.16 RFMARK The generalization of the preceding considerations is embodied

in the dual of 2.6.1 (i.e., with C a homotopically complete fibration category).

3.6.17 RAPPEL Suppose that C is a complete model category. Let I,J be direct
categories and let F:I -~ J be a functor. Equip

— op

1™ ,cCl

Aol

,Cl
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with their injective structures (cf. 3.6.14) -- then the arrow

g

@5 " :u3%®,c1 - a1 cl

EOP!_,
has a right adjoint

RE) mI ™ el > 5I3%,0) (ef. 0.26.17).

[Note: The supposition in this citation that C is combinatorial was made
there only to ensure the existence of the injective model structure, thus is not

needed here. In terms of the derivator D(C W’ we have
=

- _ 0P ¥
D(Q,W)F = (F)
_ oP

Ad RDER - 3: The claim is that for every functor F:I + J, the functor
DF:DJ -~ DI

has a right adjoint

DFT:DE - DJ.

To establish this, form the comutative diagram

by/F
BT ———— 4y
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and pass to the square

Oy I > 4y/3

DTZ DT{{’}' (cf. 3.6.13)

D']E,. e s &« ® e » s >Dg ’

DF.}'

OF + being defined as the composition

DTQ+ ° DQM/F_“ o DT.I—.

Bearing in mind that D’L’I is fully faithful (cf. 3.6.13}), DF+ is seen to be a

right adjoint for DF.

Ad RDER - 4: Iet F:I ~ J be a functor and fix j € Gb J —- then the claim is
that the arrow
DR. o DF, ~ .. ° Dpro.
j t DPZ/:J? Dpro,
is a natural isomorphism.
Step 1: Check that the claim holds when I is direct.

Step 2: Take I arbitrary and consider the 2-diagram (cf. 3.3.7)

pro 5
B/ 13— AT
W% R
1 > J )
K
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Then by Step 1,

DKj o D(F o T£)+ = (Dpéw/l/j)+ ° Dproj.

Step 3: Since the functors DTI and DTI/j are fully faithful (cf. 3.6.13),

it follows that

DKj o DF+ b DKj o DF+ o DTI+ o DTI

b~ DKj o D(F o TE)+ o DTl

= (Opy /1734 © DProg o Dt

TH

= Dpl/j+ ° DTZ/j* ° Dproj o Dt

I

= Dpp/gp @ DTrygp © DTy/g © Deroy

= .. © Dpro.,
as desired.

[Note: The canonical arrow

A/ (/3 > (By/D/3

is an isomorphism and the diagram

proj
4¢/1/3 > &L
1/3 > I
pro,

commutes. |
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3.6.18 EXAMPLE Let C be a camplete model category, W its class of weak equiv-

alences — then D is a right homotopy theory (cf. 3.6.1). Given F:I > J, write

(c,w)
holmIOP in place of D((_E,W)p_];‘l'
holunJOP in place of D(C_I,W)pg_'%'
'I‘henFisaD(Cw)equivalenceiffVXEObg ( = 0Ob HC), the arrow

hollmJOPX > hollmIOPX

is an isomorphism, there being an abuse of notation in that

holmJOP operates on D(g'w)pg_x {and not on X)

holJmIOP operates on D pEX {and not on X).

)

— b

3.7 UNTVERSAL PROPERTIES

Given categories C and D, write [C,D}, for the full subcategory of [C,D] whose

objects are the F:C ~ D that preserve colimits.

3.7.1 RAPPEL Suppose that C is small and S is cocamplete —- then precomposition

with YC:C_Z + C induces an equivalence

[c.81, ~ [C.8]

of categories.
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3.7.2 EXAMPLE Take C = 1 —- then 1 = SET and there is an equivalence

hence in particular there is an equivalence

[SET,SET], -~ SET (F + F{x})

under which idSET corresponds t a final object in SET.

Let D,D' be homotopy theories and let ¢ € Mor(D,D') -~ then given F:I - J,

there is a square

1
D_I_ > D'_I_
DF!l D'F!
DI > D'g
s

and a canonical arrow

D‘F! ° @I -+ @J o DF!.

3.7.3 NOTATION Write HOM,(D,D') for the full submetacategory of HOM(D,D')
whose objects are the ¢ such that the arrow

D‘F! o ®Z - ¢£ ° DF!

is an isomorphism v F:I - J.

Let I be a small category — then there is a canonical arrow

SYI

=

> SPREI (cf. 0.33.8).
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Here

SPREI = [IF

—

,SISET],

which we shall endow with its projective structure (cf. 0.26.6). Iet HOTI be the

homotopy theory arising therefrom.

3.7.4 THEOREM The functor sY; induces a morphism

DE > HOT.]E
of derivators and for ewvery homotopy theory D, there is an equivalence
HOM, (HOTI,D) > HCM(DI,D)

of metacategories.
3.7.5 EXAMPIE Take I = 1 and let HOT = HOTl, thus

HOT = D srmr )

Then for every homotopy theory D, there is an equivalence
HOM, (HOT,D) » D1 (& - @lA[O])

of metacategories (cf. 3.2.15). Accordingly, choosing D = HOT, it follows that up
to equivalence,
HOM, (HOT ,HOT)

"iS"

HOT 1 = W;lSISET = HSISET.

Let D be a homotopy theory and let C < Mor D1 be a class of morphisms.
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3.7.6 DEFINITION A homotopical localization of D at C is a pair (LCD,LC) '

where LCD is a homotopy theory and

LC:D -> Lc

D

is an object in @_,(D,LCD) such that the functor

LCl:Dl > L,D1

C
sends the elements of C to isomorphisms in LCDl and is wniversal w.r.t. this
condition: For every homotopy theory D', the arrow

.}Em_! (LCD!D') > E@E!'C(DRDt)

induced by LC is an equivalence of metacategories, the symbol on the RHS standing

for the full submetacategory of HOM, (D,D') whose objects ¢ have the property that

the functor

@l:Dl -~ D'l

sends the elements of C to isomorphisms in D'l.

3.7.7 TH:E}OREMJr Iet C be a left proper combinatorial model category, C c Mor C

a set. Form the model localization (L.C,L,) of C at C per 0.33.5 — then

Lo:C > LC induces a morphism

Yicn ” Pize,u)

of homotopy theories which is a homotopical localization of D(C W) at LwC {the

image of C in D 1l =HC).

(C,W)

T Tabuada, arXiv:0706.2420
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[Note: Therefore

Lo pDym gy =D .1
1y C(C ) = DL Sl

3.7.8 REMARK The homotopy theories that are equivalent to the D(C W where
g 4
C is a left proper combinatorial model category, are the homotopical localizations

of the HOTI for some small category I (cf. 0.33.7).
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CHAPTER 4: SIMPLICIAL MODEL CATEGORIES

4.1 SISET ENRICHMENTS

What follows is a review of the terminology employed in enriched category
theory specialized to the case when the underlying symmetric monoidal category

is SISET.

4.1,1 DEFINITION An S~category Wt consists of a class O (the objects) and a
function that assigns to each ordered pair X,Y € O a simplicial set HOM(X,Y) plus
simplicial maps

Cx v Z:HCIVI(X,‘.K) x HOM(Y,2) - HOM(X,Z)
-
and
IX?,A[{)] -+ HOM(X,X)
satisfying the following conditions.

(5~1) The diagram

HOM(X,Y) x (HOM(Y,Z) x HOM(Z,W)) ——E—if——> HOM({X,Y) x HOM(Y,W)
A
(HOM(X,Y) x H(IVI\(Y,Z)) X HOM(Z,W) C
C x id
HOM(X, Z) >; HOM(Z ,W) - > HOM(X,W)

commates.



(§-2) The diagram

L R
A[0] x HOM(X,Y) ——— HOM(X,Y) <—um HOM(X,Y) x A[0]
Ix idJ l id x T
HOM(X,X) x HOM(X,Y) > HOM(X,Y) < HOM(X,Y) x HOM(Y,Y)
C C

commites.

The wnderlying category UMl of an S-category @l has for its class of objects

the class O, Mor(X,Y) being the set Nat(A[0],HOM(X,Y)) (= HOM(X,Y)O). Composition

Mor(X,Y) x Mor(Y,Z) - Mor(X,2)
is calculated from

fxg
AlO] = AIO0] x A0} > HOM(X,Y) x HOM(Y,Z) - HOM(X,Z),

while T)( serves as the identity in Mor(X,X).

4.1.2 EXAMPLE Every category C can be regarded as an S-category: Replace
Mor (X,Y) by

HOM(X,Y) = si Mor(X,Y).
The associated underlying category is then isomorphic to C. In fact,

Nat (AI0],s1 Mor(X,Y))

~ si Mor(X,Y)O = Mor(X,Y).

4.1.3 IEMMA Fix a class 0. Consider the metacategory CAEO whose objects are

the categories with object class O, the morphisms being the functors which are the

identity on objects — then the S-categories with object class O can be identified



with the simplicial objects in CAEO.
[An S~category M gives rise to a simplicial object b_r_I:éOP > CAEO via

[n] » J}gn, where for X,Y € Ob I»_ln = 0, MorM {X,Y) = H(I‘«*I(X,Y)n. Conversely, a
-n

simplicial object @:QOP - CMO determines an S-category @ if for X,Y € O,

HOM(X,Y) = {f € Mor M :dom f = X & cod £ = Y}.]

N.B. An object of [_A_OP,CAT] corresponds to an S—category iff its underlying

simplicial set of objects is a constant simplicial set, say si O for some set O.
4.1.4 CONSTRUCTION Suppose that M is an S—category with object class O -- then
its opposite mOP is the S—category defined by
o 0F =0;

™ HOMOP(X,Y) = HOM(Y,X);

P _ . o1 .
%,v,2 7 C2,v,x ° THoM(y,x) ,HOM(Z,Y)

TX'

.« 1F-

4.1.5 CONSTRUCTION Suppose that fi and M' are S—categories with object classes
0 and O' -- then their product M x M' is the S-category with object class O x O'
and

HOM( (X,X"), (Y, Y")) = HOM(X,Y) x HOM(X',Y').
[Note: The definitions of

Cxx", @Y, (2,20 T T, xn

are "what they have to be".]



4.1.6 DEFINITION Suppose that M and ' are S-categories with object classes
O and O' - then an S-functor F:M »~ M' is the specification of a rule that assigns
to each object X € O an object FX € 0' and the specification of a rule that assigns
to each ordered pair X,Y € O a morphism

F. :HOM(X,Y) - HOM(FX,FY)
X,Y

of simplicial sets such that the diagram

C
ey *Fy,z Fs.z
HOM(FX,FY) x HOM(FY,FZ) > HOM(FX,FZ)
c

commuites and the equality FX,X ° IX = IFX obtains.

[Note: The underlying functor UF:Ull ~ Ull' sends X to FX and f:A[0] - HOM(X,Y)

toFyy® £.]

4.1.7 EXAMPLE For any S-category M,

H(]VI:RIOP x f >~ SISET

is an S—-functor.
N.B. The opposite of an S-functor F:lI - W' is an S—-functor FOP:HIOP - m'OP.

4.1.8 NOTATION Iet S-CAT denote the metacategory whose objects are the

S-categories and whose morphisms are the S-functors between them.

4.1.9 DEFINITION Suppose that f,M' are S-categories and F,G:fl ~ M' are




S-functors —— then an S-natural transformation Z from F to G is a collection of

sinplicial maps

EX:&[O] + HOM(FX,GX)

for which the diagram

% * Gy
A[0] x HOM(X,Y) > HOM(FX,GX) x HOM(GX,GY)
1 C
HOM (X, Y) HOM (FX,GY)
r1 C
HOM(X,Y) x A[O] ~ HOM(FX,FY) x HOM(FY,GY)
Fev * %y

commites.
[Note: Take M' = SISET (viewed as an S-category per 4.2.1) -- then here an

S-natural transformation £ fram F to G is a collection of simplicial maps

EX:FX + GX
rendering the diagram

FX,Y
HM(X,Y) ——————> map(FX,FY)
5 oo
%,y y
map (GX,GY) ———— > map (FX,GY)

o
"X

commutative. ]

4.1.10 NOTATION Given S—categories U,l', let Mor¢ (f1,%") stand for the



S-functors M - W' and given S—-functors F,G:l -~ ', let I\Iad:S (F,G) stand for the
S-natural transformations = from F to G —— then by [m,mws we shall understand
the metacategory whose objects are the elements of Morg (M, Mm') and whose morphisms
are the S-natural transformations.
4.2 MISCELLANEOQUS EXAMPLES
One way to produce S-categories is to start with a category C and then

introduce

HOM(X,Y) 'CX,Y,Z' and Ige

subject to S-1 and S-2. In some situations, the underlying category is isomorphic

to C itself but this need not be the case in general (cf. 4.2.5 infra).

4.2.1 EXAMPLE SISET is an S-category if
HOM(X,Y = map(X,Y).

The associated underlying category is then isomorphic to SISET. In fact,

13}

Nat (A[0] ,HOM(X,Y)) = Nat(A[0] ,map(X,Y))

u

map (X, ¥)

n

Nat (X,Y) .
4.2.2 EXAMPLE CAT is an S-category if
HOM(I,J) = ner([I,J].
Here C is the composition
ner[I,J] x ner[J,K]

= ner([;r\z] X [ng_S]) -+ ner [;E:I_(]



II:A[O] + ner|[I,TI]

is the result of applying ner to the canonical arrow [0] - [I,I] (0 -~ idI) .

[Note: We have

Nat (A[0] ,ner([I,J]) = Nat(ner[0],ner[I,J])

R

Mor ([0, [Z,31)

Q

Ob[I,J] = Mor(I,J).

Therefore the associated underlying category is isomorphic to CAT.]

4.2.3 EXAMPLE CGH is an S-category if HOM(X,Y) is the simplicial set which
at level n is given by

HOM(X,Y) | = C(X x ALYy o= 0).

k

The associated underlying category is then isomorphic to CGH. In fact,

Nat (A[0] ,HOM(X,Y))

u

HOM(X,Y)O

I

CX Xy ALO] ,Y)

13

C(X,Y).

4.2.4 REMARK Iet C be a category with finite products. Suppose that I':A + C
is a cosimplicial object such that I'([0]) is a final object in C —— then the pre-
scription

H(]}/I(X,Y)n =Mor(X x I'{[n]),Y) (n = 0)

equips C with the structure of an S-category whose underlying category is iscmorphic

to C.



[Note:
e Take C = SISET and let T'([n]l) = Aln] to recover 4.2.1.
e Take C = CAT and let TI'([n]) = [n] to recover 4.2.2.
fvnzo0,
Mor (L x [n],d) = Mor([n],[I,d]) = ner [I,J].]
e Take C = CGH and let I'([n]) = A" to recover 4.2.3.]

4.2.4 EXAMPIE Define a functor A”° - SISET by sending [n] to A[1]™ and

§. to d. {o ,...,oan) (i

]
(=

]

, where di(ui,...,an) (Otl,...,zr\ax(cxi+l,c¢i),...,an) (0 < 1<n)

n)

(ocl, erery q) (i

si(ocl,. .. ,(xn) = (ocl,. .e ,ai,O,ai+l,...,an) .

Now fix a small category C. Given X,Y € Ob C, let C = C(X,Y) be the cosimplicial

set specified by taking for C(X,Y)" the set of all functors F:[n + 1] -~ C with

F =X, F

0 el Y and letting

- {'.ItSi:Cr1 > Cm-l

Ccri:Cr1 > Cn-l

be the assignments

(£grenerf) > (Egroeerfy 1,4d,E e E)

(£ £) > (£ £ ° fi,...,fn).

0'""" "™ 0r" T rTitl



Put

mom(x,y) = S x e, nm.

Since
o(x,v) = A x cxn®,

one can introduce a "composition" rule and a "unit" rule satisfying the axioms.

The upshot, therefore, is an S-category FRC with O = Ob C.

[Note: The underlying category UFRC is the free category on Ob C having one

generator for each nonidentity morphism in C.]

4.3 S-CAT
An S—category is small if its class of objects is a set.

4.3.1 NOTATION Let S—CAT denote the category whose objects are the small

S-categories and whose morphisms are the S—functors between them.

N.B. Typically, elements of S-CAT are denoted by I,J,K,... and their object
sets by |1[,|d],|K

Fese o

4.3.2 'IHEOR‘EMT S—-CAT is complete and cocomplete.
4.3.3 TT&BORH*&H S-CAT is presentable.

4.3.4 LEMMA S-CAT is a symmetric monoidal category (cf. 4.1.5).

Suppose that I is a small S—category and I is an arbitrary S—category —— then

T Wolff, J. Pune Appl. Algebra 4 (1974), 123-135.

L Kelly-Lack, Theoxry Appl. Categ. 8 (2001), 555-575.
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Morg (1,M) is the object class of an S-category

S[z,m].
Prcof: Given S-functors F,G:I - M, let HOM(F,G) be the equalizer
HOM(F,G) —>] HOM(Fi,Gi)" ] map(HOM(i,j) , HOM(FL,G)))
ie|1] >i,j€|1]
in SISET.

[Note: There is an S—-functor

E:S[I,m] xI -1
called evaluation.]

N.B. The underlying category

US[1,m]
is isomorphic to [I,III]S.
4.3.5 LEMMA If
F:I - SISET
or if
op

F:I~ - SISET,

then in SISET,

u

HOM(HOM(i,—) ,F) = Fi

or

HM (HOM (—,1) ,F) = Fi.

n

[This is the "enriched" Yoneda lemma.]

4.3.6 LEMMA Iet I,J,K be small S-categories —— then

MorS(I x J,K) = IVkarS(le,S[J,K]).
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4.3.7 SCHOLTUM S-CAT is cartesian closed.
It is also true that S-CAT is an S-category.

4.3.8 CONSTRUCTION Iet I be a small S-category. Given n > 0, define a small
S—cat: (n) i i )y _
egory 1 by stipulating that |1V | = |I| and

aM™ (i,9) = map(aln] HOM(1,3)).
Then

map (A[0] ,HOM(1,])) ([n])

Nat (A[0] x A[n],HOM(i,3))

n

un

Nat (A[n] ,HOM(i, 3))

(1]

H@d(i,j)n

(0)

I = I,

And there are canonical arrows

I —— 1% (Amn] —> Afol)

dia

(@ ) > Alnl x Aln]).

Suppose now that I and J are small S—categories —— then the prescription

(n)

H()M(I,J)n = Morc (I,3°°7) (n 2 0)

defines a simplicial set HOM(I,J).

4.3.9 ILEMMA Under the preceding operations, S-CAT is an S-category.
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[To define
CI’J’K:HCM(I,J) x HOM(J,K) -~ HOM(I,K),

consider

Mors(z,a(n)) x mrS(J,K(n)).
Then one arrives at

mor (1,5 ™)

via the diagram

1, o K(n)

AN J(n)__> K(Jn) (n) N K(n).]

Every small category C can be regarded as a small S-category (cf. 4.1.2) and
this association defines a functor

lg :CAT -+ S~CAT.

4.3.10 LEMMA The functor g has a right adjoint S-CAT - CAT, viz. the rule

that sends a given I € Ob S-CAT to its underlying category UI.

4.3.11 REMARK Given a small category C and an S—category M, there is an iso-
morphi.sm

[C,um] <—> [1S§,m] S

of categories.

4.3.12 IEMMA The functor 1. has a left adjoint, viz. the rule that sends a

S

given I € Ob S~CAT to the category m,1 whose objects are those of 1 with

0

Mor (1,3) = my(HQM(1,3)) (1,3 € [1).
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4,3.13 DEFINITION Let 1,J be small S-categories, F:I + J an S-functor —-

then F is a DK-equivalence if v i,j € |1], the simplicial map

Fi j:HCM(i,j) -+ HOM(Fi,Fj)
!’

is a simplicial weak equivalence and

ﬂOF:TrOI -> 'rrOJ

is surjective on isomorphism classes.

4.3.14 EXAMPLE Iet C,D be small categories —— then the DK-equivalences

16C ~ 14D are in a one-to-one correspondence with the equivalences C ~ D.

[If X is a set, then the gecmetric realization of si X is X equipped with the
discrete topology. and if A,B are topological spaces, each with the discrete

topology, and if ¢:A -~ B is a homotopy equivalence, then ¢ is bijective.]

4.3.15 DEFINITION 1et I,J be small S—categories, F:I - J an S-functor -- then

F is a DK-fibration if v i, € |I|, the simplicial map

F, .:HOM(i,j) - HOM(Fi,Fj)
i,3

is a fibration in SISET (Kan Structure) and
TFOF:TTOI -> TTOJ

is a fibration in CAT (Internal Structure).

4.3.16 'I‘ILIE‘,OREM-T~ S-CAT admits a cofibrantly generated model structure in which

the weak equivalences are the DK-equivalences and the fibrations are the DR-fibra-

tions.

T Bergner, Thans. Amer. Math. Soe. 359 (2007), 2043-2058; see also Lurie,

Annats of Math. Studies 170 (2009), 852-863.
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[Note: We shall refer to this model structure as the Bergner structure

(which is therefore combinatorial (cf. 4.3.3)).]

Here are some additional facts.

e If F:I » J is a cofibration in the Bergner structure, then v i,j € |,

F, StHQM(L,3) > HOM(FL,F})
1

is an injective simplicial map, thus is a cofibration in SISET (Kan Structure).

e The Bergner structure is proper (Bergner proved right proper and Lurie
proved left proper).

e A small S-category I is fibrant in the Bergner structure iff v i,j € |I|,

HM(i,]3) is a Kan complex, thus is fibrant in SISET (Kan Structure).

I

It is also possible to explicate the generating sets , matters being
J

simplest for I.

4.3.17 NOTATION Given a simplicial set X, let EX be the small S—category with

two obijects a,b and

X

i
il

HM{a,a) A[0] HM(a,b)

il
I

HOM(b,b) = A[0], HOM(b,a) = A[0].

4,3.18 NOTATION Let [0]3 be the small S-category with one object x and

HM(x,x) = A[O].

One can then take for I the arrows I, - ZA[n] (n 2 0) plus the arrow
An]

g - [0]S (@ the small S-category with no objects).



150
[Note: The arrows zA[k,n] -+ ZA[n] (0 <k <n, n=1) are part of J but the
full description requires more input.]
4.3.19 DEFINITION Let
€:A » S-CAT

be the functor that sends [n] to the small S—-category whose objects are those of

[n] and with
a6y
HOM(i,]) = Al0] (j = 1)
AL0] G < 1i).

[Note: Iet Pi 3 be the poset of all subsets of {i,i+l,...,Jj} containing i

and j (ordered by inclusion) -~ then the nerve of Pi j is isomorphic to (1.\[1])3"]’—l

if § > i, A[0] if j = i, and A[0] if j < i. Composition is defined using the
pairings
ik

given by taking unions.]

Bearing in mind that S-CAT is, in particular, cocamwplete (cf. 4.3.2), pass
from

€ € OblA,S~CAT]

to the realization functor

I'e € Ob[A,S~CAT],



le.

il

f{n]xn . ¢[n]

e

Il
>

ITX] =X,

4.3.20 LEMMA Iet f:X - Y be a simplicial map — then f is a categorical weak

equivalence iff th :I‘CX -> PCY is a DK-equivalence.

Denote the singular functor sinc by nerg, SO

nerg: S—-CAT > SISET

nerSI(In]) = Mors(t[n] (1),

4.3.21 REMARK There is no a priori connection between nerSI and ner UL. On
the other hand, for any small category C,

ner ¢ = nerg¢icC.

4.3.22 THEOREM Consider the setup

s
SISET (Joyal Structure) S-CAT (Bergner Structure).
L e
nere

Then (I‘C,ners) is a model equivalence, thus the adjoint pair (LI’C,RnerS) is an
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adjoint equivalence of homotopy categories:

e
HSTISET HS-CAT.
B ———

[Note: Compare this assertion with that of 0,22.5.]

4.3.23 REMARK It is not difficult to see that I’C preserves cofibrations.

Accordingly, in view of 4.3.20, (Tc,ners) is at least a model pair. However, the

verification that (I‘C,ners) is actually a model equivalence lies deeper (complete

details can be found in DuggerwSpivakbf) .
4.4 SIMPLICIAL ACTIONS

4.4.1 RAPPEL Given a category C, SIC is the functor category [gOP,(_;] and a

simplicial object in C is an object in SIC.

4.4.2 DEFINITION Let C be a category. Suppose that X,Y are simplicial objects
in C and let K be a simplicial set —— then a formality f:X| |K + Y is a collection

of morphisms fn(k):xn > Yn in C, one for each n > 0 and k € Kn, such that

Yo o fn(k) = fm((KOi)k) o Xo,
where q:[m] - [n].
4.4,.3 NOTATION Iet

For (X|_|K,Y)

be the set of formalities f:X| |K » Y.

T arxiv:0911.0469
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[Note: As it stands, X| |K is just a symbol, not an object in SIC (but see
below) .]

4.4.4 EXAMPLE For(X| |A[0],Y) can be identified with Nat(X,¥).

4.4.5 LEMMA Let C be a category —- then the class of simplicial objects in

C is the object class of an S-category SIMC.
PROOF Define HOM(X,Y) by the prescription
HOM(X,Y) | = For (X|_|A[n],Y) (n 2 0).
[Note:

Nat(A[O] ,HM(X,Y))

u

HOM(X,Y) 0

For (X|_|A[0],Y)

Q

i

Nat(X,Y) (cf. 4.4.4).

Therefore the underlying category USIMC is isomorphic to SIC.]

4.4.6 DEFINITION Given a category C, a simplicial action on C is a functor

|"|:c x SISET + ¢
together with natural isomorphisms A and R, where

By g X I ® x> x| [C]L

%(:XEIA[O] > X,

subject to the following assumptions.
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(5A,) The diagram

A B A
> (| J%) 7] @ x 10

X|_|[(K x (@ x M) > (XK || [T M
id|”|a Al lia

X| TR x 1) x M) > (X| ] (R x L)) | |M

commutes.

(sA,) The diagram

A
X|7|(A[0] x K) >(X|”|alol) | T

:i.dl:ILJ( JREIJ’.@.

X|”|K x|~

commites.
[Note: Every category admits a simplicial action, viz. the trivial simplicial

action.]

N.B. It is automatic that the diagram

X|“|] (K x A[0]) >(X| TRy | |al0]

id|”|rR lR

X|”|Kr x|7|x

commutes.

4.4.7 EXAMPIE If | | is a simplicial action on C, then for every small category
I, the composition

[_I_pg] x SISET - [_]_:_,(_:] X [I,SISET]

~ [I,C x SISET] —> [1,C]
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is a simplicial action on [I,C].

4.4.8 THEOREM Let C be a category. Assume: C admits a simplicial action
| | -- then there is an S-category | |C such that C is isomorphic to the under-
lying category U|_|C.

PROOF Put O = Ob C and assign to each ordered pair X,Y € O the simplicial
set HOM(X,Y) defined by

HOM(X,Y) = Mor (X|_|Aln],Y) (n > 0).

e Given X,Y,Z, let

CX v Z:H(XVI(X,Y) x HOM(Y,2Z) >~ HOM(X,2Z)
F~r
be the simplicial map that sends

£:X| 7 |AIn] » ¥

g:¥|_|Aln] » Z
to the composite

_ id|” |aia _
X|_|Aln] ————— X| | (Aln] x A[n])
A B _ £l lia _
>X|_|An]) | |AIn] ———— Y| ]AIn]

> Ze

e Given X, let

IX:A[O] - HOM(X,X)

be the simplicial map that sends [n] - [0] to

R

X|~|am] - x|”|A[0] > X.

Call |_|C the S~category arising from this data. That C is isomorphic to

the underlying category U| |C can be seen by considering the functor which is the
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identity on objects and sends a morphism £f:X + Y in C to

R f
X|”|Al0] > X > Y,

an element of

Mor (X|_|A[0],Y) = HOM(X,Y) , = Nat (A[0],HOM(X,Y)).

N.B. If | | is the trivial simplicial action, then

HM(X,Y) = si Mor(X,Y).

4.4.9 EXAMPLE SISET admits a simplicial action:

K| |L =K x L.
Therefore
HOM(K,L) = map(K,L) (cf. 4.2.1).
[Note: Iet I be a small category —— then there is an induced simplicial

action on [I,SISET], viz.

il

(FI |Ki=Fi x K (cf. 4.4.7).

HOM(F,G)

Y

fi map (Fi,Gi) .

In fact,

U

HOM(F,G), = Nat(F|_ |Aln],G)

it

/i Nat(Fi x A[n],Gi)

Q

J; Nat (AIn] ,map(Fi,Gi))

3]

Nat(A[n] Ifi maP(Feri) )

1

(/; 8P (Fi,Gi)) ]



22,

4.4.10 EXAMPLE CGH admits a simplicial action:

X|JK = X x_ [K].

"k
Therefore
HOM(X,Y) = C(X x AtY) (o= 0) (cf. 4.2.3).
[Note: CGH is cartesian closed, the exponential object being YX = kC{X,Y),

where C(X,Y) carries the compact open topology. Accordingly,

n . n
C(X xk AT,Y) = C(A Xk X,Y)
~ c(a®, %)
~ sin ¥(In]),
so
HOM(X,Y) = sin Y'.]
4.4.11 THEOREM Let C be a category. Assume: C has coproducts -- then SIC
admits a simplicial action | | such that | |SIC is isomorphic to SIMC (cf. 4.4.5).
PROOF Define X| |[K by (X|_|K) =X - X, thus for a:[m] > [n],
Xo Ko,
K - X >K .« X > K -+ X,
n  ‘n n = “m m m

The symbol X| |K also has another connotation (cf. 4.4.3). To resolve the ambigu~

ity, note that there is a formality in:X| |K » X|_|K, where
in (k)X > (X]|_[K)

is the injection from xn to Kn - X correspording to k € K + Moreover,

in*:Nat (X||K,Y) » For(X|_|K,Y)
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is bijective and functorial. Therefore | [SIC and SIMC are iscmorphic.

[Note: | | is the canonical simplicial action on SIC.]

N.B. Take C = SET — then the canonical simplicial action on SISET is the

simplicial action of 4.4.9. In fact,

X[ |Jk=xxK

XxK_=X xK =K xX =K +«X.
In n n

4.4.12 DEFINITION A simplicial action | | on a category C is said to be

cartesian if v X € Ob C, the functor

X|T|—:SISET + C

has a right adjoint.

4.4.13 LEMMA Iet C be a category. Assume: C has coproducts —- then the
canonical simplicial action | | on SIC is cartesian.
PROCF Iet HOM(X,Y) be the simplicial set figquring in the definition of SIMC, so
HOM(X,Y) = For(X|_[A[n],Y)  (cf. 4.4.5).
Define

ev € For (X|_ |HOM(X,Y),Y)

evn(f) = fn(id[n}):xn -+ Yn (n >0).

Viewing ev as "evaluation", there is an induced functorial bijection
Nat (K,HOM(X,Y)) ~ For(X| |K,Y).

But

For (X|_|K,Y) = Nat(X|_|K,Y) (cf. 4.4.11).
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Therefore | | is cartesian.
4.4.14 LEMMA Suppose that the simplicial action | | on C is cartesian — then
vXEOC,

is a right adjoint for
X|_|—:SISET + C.
PROOF The functor X| |— is a left adjoint, hence preserves colimits. This
said, given a simplicial set K, write

K= colami A[ni] .

Mor (X|_|K,¥) = Mor(X|| colim; Aln,],Y)

U

Mor (colim; X|_|Aln,1,Y)

4

lim, Mor(X|_|Aln;],¥)

n

l:Lmi HM(X,Y) n,

= limi Nat(ﬁ’s[ni} SJHOM(X,Y))

u

Nat(coljmi A [ni] JHOM(X,Y))

n

Nat (K,HOM(X,Y)) .

[Note: Here, of course, we are viewing C as an S—category per 4.4.8.]

4.4.15 DEFINITION A simplicial action | | on a category C is said to be
closed provided that it is cartesian and each of the functors —| |K:C + C has
a right adjoint X » hom(K,X), so

Mor (X|_|K,¥) = Mor(X,ham(K,Y)).
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4.4.16 EXAMPLE The simplicial action on SISET is closed {(cf. 4.4.9), as is

the simplicial action on CGH (cf. 4.4.10).

4.4.17 EXAMPLE Take C = CAT. Bearing in mind that

cat:SISET -~ CAT
preserves finite products, define a simplicial action

:CAT X SISET - CAT

by the prescription

I| |K=1I xcat K.

Then
Mor(I| |K,J) = Mor(I x cat K,J)
= Mor (cat K, [I,J])
= Nat (K,ner[I,J]).
Therefore | | is cartesian and
HOM(I,J) = ner[I,J] (cf. 4.2.2).
In addition, | | is closed with

hom (X, X)

[cat K,X].

4.4.18 EXAMPLE Take C = CAT. Since m, ° cat preserves finite products and

1:GRD -~ CAT is a right adjoint, the prescription

I JRK=Xx10m °catK

1

defines a simplicial action

I

sCAT x SISET - CAT.
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Here
Mor (I|_|K,J) = Mor(I x 1 o m ° cat K,J)
% Mor(i o m ° cat K,[I,J])
= Mor(my ° cat K,iso[I,J])
= Mor(cat K,1 ° isol[I,J])
~ Nat(K,ner o 1 o iso[I,J])
from which it follows that | | is cartesian and
HOM(I,J) = ner ¢ 1 ° iso[I,J].
Furthermore, | | is closed:
hom(K,X) = [1 ° ™ ° cat K,X].

4.4.19 LEMMA Suppose that the simplicial action | | on C is closed —— then
HM(X||K,Y) = map(K,HOM(X,Y)) = HOM(X,hom(K,Y)).

4.4.20 REMARK From the perspective of enriched category theory, this just

means that the S—category | |C is "tensored" and "cotensored” (cf. 4.7.14).

4.4.21 LEMMA Suppose that | | is a closed simplicial action on C. Assune:

K = colim; K, —- then V X,Y € 0b C,

mr(x,han(colimi Ki'Y))

i

limi Mor (X,l’xom(Ki,Y)) .

PROOF In fact,

2

Mor (X|_jcolim, K, ,Y)

~ Mor (\c:oli:rn:.L XL] K, YY)



27.

=~ lim, Mor(X|_[K,,Y) = RES.

4.4.22 NOTATION Let C be a complete category. Given a simplicial object X

in C and a simplicial set K, put

K
_ n
XK= S &),

an object in C.

4.4,23 EXAMPLE In view of the integral Yoneda lemma,

., Mor ([k] ,—)

X = f k] (Xk) .
Therefore
- Mor([k], [n])
X = f k] (}g()
" Aln] (Ik1)
= f (k] (Xk)
Aln]
-~ k
= Ty %)
= X Aln].
[Note: We have
MX X AR (cf. 0.27.22).

And the inclusion Aln] -+ Aln] induces the canonical arrow Xn -> Mnx‘]

4.4.24 EXAMPIE ¥ X € b C & ¥V Y € Ob SIC,

K
Mor(X,¥ f K) = Mor (X, (v) ™)
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K
N n
=~ [ [n]Mor(x,(Yn) )
Kn
= f[n]Mor(X,Yn)
~ f[n]Mor(Kn,Mor(X,Yn)).

Suppose that || is a closed simplicial action on C — then there is a functor
(_3—>§§§_thatsendsanobjectXin§toXM },where
20 T(tn1) = hom(amm],®).
4.4.25 THEOREM Suppose that | | is a closed simplicial action on C. Assume:
C is complete — then

hom(k,X) = XL 1 ¢ k.

PROOF V X,Y € Ob C,

K
Al ] - AL 7, "™n
Mor (X,Y h K) = Mor(X, [, (00 ) )
Kn
~ Mor (X'f[n] hom(A[nl,Y) ™)
Kn
] f[n] Mor (X,hom{A[n],Y) ™)
Kn
~ f[n} Mor (X,hom(A[n] ,¥))
—— Kn
~ f[n] Mor (X| " |A[n],Y)
= f 1y Mor (& Mor (X[ |AIn],Y))

i

f[n] I\br(Kn,HCM(X,Y)n) (cf. 4.4.8)
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2]

Nat (K, HOM(X,Y))

i

map (K, HOM(X,Y) )0

I

HCM(X[:]K,Y)O (cf. 4.4.19)

RS

Mor ((x|”|K) |_|alo1,¥)
= Mor (X|_ | (X x A[0]),Y)
= Mor (X|_|K,Y)
= Mor (X,hom(K,Y)}.
4.4.26 NOTATION Given a category C and a simplicial object X in C, write hX
for the functor QOP ~ SISET defined by (hXA)n = Mor (A,X ).

[Note: For all X,¥Y € Ob SIC,

Nat (X,Y) = Nat (hX,hY) (simplicial Yoneda).]

4.4.27 THEOREM Let C be a category. BAssume: C has coproducts and is complete —-
then the canonical simplicial action | | on SIC is closed (|7 | is necessarily
cartesian (cf. 4.4.13)).

PROCF Given a simplicial set K, write
K x Aln] = colJ.mi A[ni].

Then v A € Ob C,

u

Nat(K x A[n],hoA) = lim, Nat(Aln;],h.A)

I3

l:l.m:.L Mor (A,Xni)

[

Mor{A, l:Lmi Xni)

1

Mor (A, hom (K, X) ) ,
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where by definition,
hom (K,X) = lim, Xni.
In other words, hom(K,X)n represents
A > Nat(K x Aln],h.A).

Varying n yields a simplicial object hom(K,X) in C with

143

Prom(k,x) ~ TP Krhy) -

Agreeing to let hx]:lK be the cofunctor C - SISET that sends A to hA x K, we have

Nat (X|_|K,Y) = Nat(hXDK,hY)
= Nat(hxlle,hY)
= Nat(hx,mp(K,hY))
~ Nat (hy by o, v))
~ Nat (X,hom(X,¥)),
which proves that |_| is closed.
4.4.28 EXAMPLE The canonical simplicial action |_| on SIGR or SIAB is closed.

4.4.29 REMARK If | | is a closed simplicial action on C, then the composition

2%F,c1 x stsET » [a%F,¢l x [a%,SISET]

2%, 7|1

= [2%,c x SISET] > 18%,¢

is a closed simplicial action on [éop,g] = SIC. When C has coproducts and is
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complete, the canonical simplicial action on SIC is also closed. However, in

general, these two actions are not the same.

Let K be a simplicial set. Assume: C has coproducts —- then K determines

a functor
K.—:C »> SIC
by writing
(K-X) ([n]) = K -X.
4.4.30 LEMMA Assume: C has coproducts and is complete — then K-— is a

left adjoint for

— f K:8IC > C.

PROOF Vv X € Ob C & V Y € Ob SIC,

Nat(K-X,Y) = f[n] l\br(Kn'X,Yn)
Kn

s f[n} IVbr(X,Yn)
K

n
[ty MOr s () ™)

1

K
n
Mor(X,f[n] (Yn) )

i

u

Mor (X,Y i K).

4.4.31 1EMMA Assume: C has coproducts and is complete. Suppose that

K = colimi Ki —— then for every simplicial object X in C,

X i K= lim X 4 K,.
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PROOF' Given A € Ob C, let A € Ob SIC be the constant simplicial object

determined by A, thus

0

Mor (A,X M K) = Mor(K-A,X)

u

Mor (A |K,X)

43

Mor (colim, Al |K.,X)
1 -'—' 1

u

lim, Mor (A|_|K;,X)

1

lim. Mor(K, -A,X)
i i

13

lim, Mor (A,X th K, )

i

Mor (A,lim, X h K;).

4.4.32 IEMMA Assume: C has coproducts and is complete — then

hom(K,X) | = X h (K x A[nl).

n

PROCF Write

K x Aln]

i

colim, Aln.].
1 i

X h (K x Aln])

n

lim, X f Alng]  (cf. 4.4.31)

= l:Lmi an_ (cf. 4.4.23)

14

hcxn(K,X)n.

4.4.33 EXAMPLE Under the preceding assumptions on C, for all simplicial sets
K and L,

hom(K,X) f L = X (K x L).
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4.5 SMC

4.5.1 DEFINITION A simplicial model category is a model category C equipped
with a closed simplicial action || satisfying
(SMC) Suppose that A - Y is a cofibration and X -+ B is a fibration — then
the arrow

HOM(Y,X) - HOM(A,X) x HOM(Y,B)

HOM (A, B)
is a Kan fibration which is a simplicial weak equivalence if A > Y or X + B is
acyclic.

[Note: Associated with | | is an S-category | |C such that U|”|C is isomorphic

to C (cf. 4.4.8).]

N.B.

® If A is cofibrant, then the arrow
HOM(A,X) ~ HOM(A,B)

is a Kan fibration. Therefore the pullback square

HM(A,X) x

l noM@a,p) FOME,B)

> HOM(Y,B)

HOM (A, X) > HOM(A,B)

is a homotopy pullback {(cf. 0.35.1).
e If B is fibrant, then the arrow
HOM(Y,B) - HCOM(A,B)
is a Kan fibration. Therefore the pullback square
HM{A,X) x

HOM (Y ,B) > HOM(Y,B)

HOM(A,B)

HM(A,X) > HOM(A,B)
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is a homotopy pullback (cf. 0.35.1).

4.5.2 EXAMPIE Take C = SISET (Kan Structure) and take | | per 4.4.9 -- then
| | is closed and SISET is a simplicial model category.

[Note: SISET is also a simplicial model category if the Kan structure is
replaced by the HG-structure but it is not a simplicial model category if the Kan

structure is replaced by the Joyal structure.]

4.5.3 EXAMPLE Take C = OGH (Quillen Structure) and take | | per 4.4.10 -- then

|| is closed and CGH is a simplicial model category.

4.5.4 EXAMPLE Take C = CAT (External Structure) and take | | per 4.4.17 —- then

| | is closed and CAT is a simplicial model category.

4.5.5 EXAMPLE Take C = CAT (Internal Structure) and take | | per 4.4.18 -- then

|| is closed and CAT is a simplicial model category.

4.5.6 REMARK Tt is not clear whether S-CAT (Bergner Structure) admits a closed

simplicial action making it a simplicial model category.

4.5.7 EXAMPLE Take C = [I,SISET] (Structure L) and take | | per 4.4.7 —— then

|| is closed and [I,SISET] is a simplicial model category.

4.5.8 LEMMA In a simplicial model category C: (1) X| |A[0] = X; (2) hom(A[0],X) =
X (3) #lTIK = #; (4) hom(K,%) = *; (5) HOM(#,X) = A[0]; (6) HOM(X,*) ~ A[O];

(7) X|7|8 = #; (8) hom(F,X) = =.

What follows is strictly sorital... .
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4.5.9 LEMMA Suppose that | | is a closed simplicial action on a model category
C —— then C is a simplicial model category iff whenever A + Y is a cofibration in C

and L +~ K is an inclusion of simplicial sets, the arrow

alZlx Ll yZlw - y|Tlx

AL

is a cofibration which is acyclic if A+ Y or L. » K is acyclic.

4.5.10 APPLICATION Let C be a simplicial model category.
(i) Suppose that A -~ Y is a cofibration in C -- then for every simplicial
set K, the arrow A| |K »~ Y| |K is a cofibration which is acyclic if A ~ Y is acyclic.
(ii) Suppose that Y is cofibrant and L -~ K is an inclusion of simplicial
sets -- then the arrow Y| |L + Y| |K is a cofibration which is acyclic if L + K
is acyclic.

[Note: In particular, Y cofibrant => Y| |K cofibrant.]

4.5.11 CRITERION Suppose that | | is a closed simplicial action on a model
category C —— then C is a simplicial model category iff whenever A > Y is a co-

fibration in C, the arrows

alZ[aml || Y|Z|A] »¥[Z|aln] (o

v

0)
AZ|An]

are cofibrations which are acyclic if A > Y is acyclic and the arrows

A|T|AlL || Y|T|ALL,1] » Y[ |A[L) (A= 0,1)

Al |AlL, 1]

are acyclic cofibrations.
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4.5.12 LFMMA Suppose that I:] is a closed simplicial action on a model category
C -- then C is a simplicial model category iff whenever L + K is an inclusion of

simplicial sets and X + B is a fibration in C, the arrow

hom(K,X) -~ hom(L,X) x hom (L, B) hom (K,B)

is a fibration which is acyclic if L - K or X -+ B is acyclic.

4.5.13 APPLICATION Let C be a simplicial model category.

(i) Suppose that L -~ K is an inclusion of simplicial sets and X is fibrant —-
then the arrow hom(K,X) - hom(L,X) is a fibration which is acyclic if L + K is
acyclic,

(ii) Suppose that X + B is a fibration in C -- then for every simplicial set
K, the arrow hom(K,X) - hom(K,B) is a fibration which is acyclic if X » B is acyclic.

[Note: In particular, X fibrant => hom(K,X) fibrant.]

4.5.14 CRITERION Suppose that | | is a closed simplicial action on a model
category C -- then C is a simplicial model category iff whenever X + B is a fibration

in C, the arrows

hom(A[n],X) ~ hom(A[n],X) x ) hom(A[n],B) (n = 0)
hom(A[n],B)

are fibrations which are acyclic if X +~ B is acyclic and the arrows

hom(A[1l],X) - hom(A[i,1],X) X hom(A[1],B) (i =0,1)

hom(A[i,1],B)

are acyclic fibrations.

Apart from these structural formalities, there are a few things to be said

about the weak equivalences.
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4.5.15 LEMMA Iet X,Y, and Z be objects in a simplicial model category C.
(1) If £:X >~ Y is an acyclic cofibration and % is fibrant, then
f*:HOM(Y,Z) » HM(X,Z) is a simplicial weak equivalence,
(ii) If g:Y¥ » Z is an acyclic fibration and X is cofibrant, then

g, tHM(X,Y) » HM(X,Z) is a simplicial weak equivalence.

4.5.16 LEMVA et X,Y, and Z be objects in a simplicial model category C.
(1) If £:X ~ Y is a weak equivalence between cofibrant objects and Z is
fibrant, then f*:HOM(Y,Z) -~ HOM(X,Z) is a simplicial weak equivalence.
(ii) If g:Y » Z is a weak equivalence between fibrant objects and X is

cofibrant, then g,:HOM(X,Y) -~ HOM(X,Z) is a simplicial weak equivalence.

4.5.17 EXAMPLE Take C = OGH (Quillen Structure) — then all objects are fibrant,
so if g:Y » Z is a weak homotopy equivalence and X is cofibrant, then g, :HOM(X,Y) -

HM(X,Z) is a simplicial weak equivalence. But

sin (YX)

HOM(X,Y)

w

(cf. 4.4.10),

u

sin(ZX)

thus g*:YX - ZX is a weak homotopy equivalence.

HOM(X, Z)

[Note: There is a commutative diagram

|sin (£%) | > |sin(z®) |
| J
X >

and the vertical arrows are weak homotopy equivalences.]
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4.5.18 THEOREM Iet C be a simplicial model category —- then a morphism
f:X > Y is a weak equivalence if for every fibrant 2, f*:HOM(Y,Z) > HOM(X,2)
is a simplicial weak equivalence.
[Note: The result can also be formulated in terms of the arrows g, :HOM(X,Y) -

HM(X,2) (X cofibrant).]

4.5.19 APPLICATION Let C be a simplicial model category. Suppose that f:X » Y

is a weak equivalence between cofibrant objects -~ then V K,
£\ 1% | K > ¥[Jx

is a weak equivalence between cofibrant obijects (cf. 4.5.10).

[Take any fibrant Z and consider the arrow

HOM(Y|”|K,2) ~ HOM(X| K, 2)
or still, the arrow

HM (Y, hom(K,2)) - HOM(X,hom(K,2)}.

Because hom(K,2) is fibrant (cf. 4.5.13), the latter is a simplicial weak equivalence
(cf. 4.5.16), hence the same is true of the former. Therefore £|_[id, is a weak

equivalence (cf. 4.5.18).]

4.5.20 EXAMPLE Fix a small category I and view the functor category [EOP,SISET]
as a simplicial model category (cf. 4.5.7}. Suppose that L + K is a weak equivalence,

IC)P

where I,K: + SISET are cofibrant — then v f:I + SISET, the induced map

i x Fio> KL x Fi
of simplicial sets is a simplicial weak equivalence.

[To see this, use 4.5.18. Thus take any fibrant Z and consider the arrow
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map (/UKL x Fi,2) » map(/ i x Fi,Z),
i.e., the arrow

fi map(Ki x Fi,Z) - fi map(lLi x Fi,z),

i.e., the arrow

fl mp(Ki,mp(Fi,Z)) -> fl map(Li,maP(Fi:Z)),

i.e., the arrow

HOM(K,map(F,Z)) - HOM(L,map(F,2))  (cf. 4.4.9),
which is a simplicial weak equivalence (cf. 4.5.16).]
[Note: Here map(F,Z) is the functor I°° - SISET defined by i - map(Fi,Z),

thus map(F,Z) is a fibrant object in [_I_OP,SISET] 2]

4.6 SIC

let C be a category. Assume: C is complete and cocomplete and there is an
adjoint pair (F,G), where

F:SISET -~ SIC

G:8IC + SISET,

subject to the requirement that G preserves filtered colimits.

4.6.1 THEOREM Call a morphism f:X - Y a weak equivalence if Gf is a simplicial
weak equivalence, a fibration if Gf is a Kan fibration, and a cofibration if f has
the LIP w.r.t. acyclic fibrations -- then with these choices, SIC is a model cat-
egory provided that every cofibration with the ILIP w.r.t. fibrations is a weak

equivalence (cf. infra).
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N.B. This result is an instance of the overall theme of "transfer of structure".
Thus one works with the FA[n] - FAIn] (n = 0) to show that every f can be written
as the composite of a cofibration and an acyclic fibration and one works with the
FAlk,n] - FA[n] (0 £ k £ n,n 2 1) to show that every f can be written as the
composite of a cofibration that has the I11P w.r.t. fibrations and a fibration.
This leads to MC-5 under the assumption that every cofibration with the IIP w.r.t.
fibrations is a weak equivalence, which is also needed to establish the nontrivial

half of MC-4. In practice, this condition can be forced.

X
4.6.2 SUBLEMMA let be topological spaces, f:X - Y a continuous function;
Y

let ¢:X' + X, ¥:Y > ¥Y' be continuous functions. Assume: f o ¢, o £ are weak homo-

topy equivalences -~ then f is a weak homotopy equivalence.

4.6.3 ILEMMA Suppose that there is a functor T:SIC -+ SIC and a natural trans-

formation e:idSIC - T such that Vv X, EgiX > TX is a weak equivalence and TX - *

is a fibration -~ then every cofibration with the LIP w.r.t. fibrations is a weak
equivalence.
PROOF Iet i:A -+ Y be a cofibration with the stated properties. Fix a filler

w:Y -+ TA for
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Consider the commtative diagram

v

hom(A[1] ,TY)

hom(A[1],TY),

v

where f is the arrow

g
v
k&
v
=
u

hom(A[0] ,TY) ——> hom(A[1],TY)
and g is the arrow

— £

(hom(A[1],TY) = TY x TY).

Y > TA > TY

Since GTY is fibrant and
Ghom(A[1],Y) = map{A[l],GTY)

Ghom(A[1],Y) = map(A[1],GTY),

it follows that II is a fibration, thus our diagram admits a filler
H:Y - hom(Afl] ITY) .

But Ey is a weak eguivalence, hence Ti o w is a weak equivalence, i.e.,

|cTi| o |Gw| is a weak homotopy equivalence. Assemble the data:

|Gi] | Gw| |Gt |

|Ga| > |GY| > |G|

> |GTY

Because |Gw| ° [Gi| = |Ge,| is a weak homotopy equivalence, one can apply the

sublemma and conclude that |Gw| is a weak homotopy equivalence. Therefore |Gi|
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is a weak homotopy equivalence which means by definition that i is a weak equiv-

alence.

4.6.4 RAPPEL Suppose that L - K is an inclusion of simplicial sets and X + B

is a Kan fibration —— then the arrow

map (K,X) - map(L,X) x map (K,B)

map (L, B)
is a Kan fibration which is a simplicial weak equivalence if this is the case of

L+ Xor X~ B.

4.6.5 THEOREM Equip SIC with its model structure per 4.6.1 and let | | =
cancnical simplicial action (cf. 4.4.11) — then SIC is a simplicial model category.

PROOF Thanks to 4.4.27, | | is closed. This said, we have

Ghom(K,Y) = map(K,GY).
Proof:

® Nat(F(X x K),Y) Nat (X x K,GY)

r

134

Nat (X,map (K,GY)) .

23

o Nat(FX| |K,Y) Nat (FX,ham(X,Y))

&

Nat (X,Ghom(K,Y)).
Iet now L >~ K be an inclusion of simplicial sets and X » B a fibration in SIC.
Apply G to the arrow

hom(K,X) - hom(L,X) x haom (X,B)

hom({L,B)
to get

Ghom(K,X) - Ghom(L,X) x Ghom(K,B)

Ghom(L.,B)
or still,

map(K,GX) > map(L,GK) X |0 o Map(K,GB) .
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Taeking into account 4.6.4 and the definitions, it remains only to quote 4.5.12.

4.6.6 EXAMPLE The hypotheses of 4.6.3 are trivially met if v X, X > %« is a
fibration. So, for instance, SIC is a simplicial model category if C = GR or

BB (cf. 4.4.28).

4.6.7 CONSTRUCTION Retaining the supposition that C is camplete and cocamplete,
let us assume in addition that C has a set of separators and is cowellpowered.
Given a simplicial object X in C, the functor CO° + SET defined by A + (EXHOM (A, X)) _
(n > 0) is representable (view A as a constant simplicial object). Indeed,
HOM (—,X) converts colimits into limits and Ex preserves limits. The assertion is
then a consequence of the special adjoint functor theorem. Accordingly, 3 an object

(Ex X)n in C and a natural isamorphism Mor (A, (Ex X)n) = (ExHOM(A,X) )n. Thus there
is a functor Ex:SIC - SIC, where V X, Ex X([n]) = (Ex X)n n = 0), with BOM(A,Ex X) =
ExHOM(A,X) (since HOM(A,Ex X) = Nat (A|_[Aln],Ex X) = Mor(a, (Ex X) ) = (EXHOM (B, X)) ) -

Iterate to arrive at Ex :SIC > SIC and € :idg . > EX . Now fix a P € Ob C such

that Mor (P,—):C > SET preserves filtered colimits. Viewing P as a constant
simplicial object, define G:SIC + SISET by GX = HOM(P,X) — then G has a left

adjoint F, viz. FK = P|_|K, and G preserves filtered colimits:

{G colim Xi)n ~ HOM(P,colim Xi)n

143

Nat (P|_|A[n] ,colim X,)
= Mor (P, (colim Xi)n)

= Mor (P,colim (Xi) n)
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Q

colim Mor (P, (Xi)n)

R

colim Nat (P|”|A[n] X;)

L3

colim HCI»!((]?,X:.L)n

u

{colim Gxi)n'

In 4.6.3, take T=Ex , € = ¢ . Since

!

HOM(P,Ex X) ~ HOM(P,colim EX'X)

colim HOM(P,EX X)

X

1

<X
Ex HM(P,X),

it follows that v X, e:;:X + Ex X is a weak equivalence and Ex X » * is a fibration.

Therefore SIC admits the structure of a simplicial model category in which a mor-
phism f:X + Y is a weak equivalence or a fibration if this is the case of the

simplicial map f,:HOM(P,X) + HOM(P,Y).

4.6.7 EXAMPLE In the small object construction, take C = SISET —- then every
finite simplicial set P determines a simplicial model category structure on

(2%, STSET] .

4.6.8 RAPPEL Iet C be a camplete and cocamplete model category — then SIC
in the Reedy structure is a model category (cf. 0.27.28).
[Note: For the record, if £:X » Y is a morphism in SIC, then f is a weak

equivalence if v n, fn:xn + Y is a weak equivalence in C, a cofibration if v n,



45.

the arrow Xn (] LnY > Yn is a cofibration in C, a fibration if v n, the arrow
LX
n

Y is a fibration in C.]

4.6.9 LEMMA Suppose further that C is a simplicial model category. Equip
SIC with the closed simplicial action derived from that on C (cf. 4.4.29) —- then
SIC (Reedy Structure) is a simplicial model category.

PROOF It will be convenient to employ 4.5.9. So let A » Y be a cofibration
in SIC and let L - K be an inclusion of simplicial sets — then the claim is that
the arrow

S I T

Al

is a cofibration which is acyclic if A » Y or L » K is acyclic. Thus fix n and

consider the arrow

@7 || Y[Co_ || R R
Al_lL L (Al IK l___l Yl lL)
B A|_|L
or, equivalently, the arrow
@ |l || R )
n '=! T — - — n'— n
n Ll [
LA
n
from which one can read off the assertion.
4.6.10 REMARK Let | | be the canonical simplicial action on SIC —— then || is

closed (cf. 4.4.27) but it is not compatible with the Reedy Structure on SIC.

Specifically: If A - Y is a cofibration in SIC and L -+ K is an inclusion of
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simplicial sets, then the arrow
Al x| Y|[Z|n - vy|T|
AlT|L
is a cofibration which is acyclic if A » Y is acyclic but it need not be acyclic
if L > K is acyclic (take a Reedy cofibrant A and lock at the arrow A|_|A[0] »

A|_|A[1] (in degree 0, this is the map A, ~ 2y ] 2.

4.7 SIMPLICIAL DIAGRAM CATEGORIES

Iet I be a small S-category, C a simplicial model category -- then C can be

regarded as an S-category € ( = | |C) (cf. 4.4.8).

4.7.1 RAPPEL [I,C]S is the category whose objects are the elements of

bfbrS(I,C) and whose morphisms are the S-natural transformations (cf. 4.1.10).

N.B. Given an S-functor F:1 > £, we have

Nat (HOM(i,3) ,HOM(Fi,Fj)) = Mor (Fi| |HOM(i,3),F5),
thus the

F. .:HOM(i,j) - BHQM(Fi,F]j)
i,3

can equivalently be canstrued as morphisms

Fy yFL|ClHOM@, ) > F)

in C. An S-natural transformation Z:F -+ G is then a collection of morphisms

—_

E;:F1 > Gi in C such that the diagram



47.

_ Fi,3
Fi|™ |HOM(i, j) > Fj
E; [_|4a )
Gi|” |HOM(4,3) > Gj
G

commutes.

4.7.2 DEFINITION Iet E € NatS(F,G).

e © is a levelwise weak equivalence if v i € |1, Ei:Fi » Gi is a weak

equivalence in C.

[zl

is a levelwise fibration if v i € |1/, Ei:Fi + Gi is a fibration in C.

is a projective cofibration if it has the LIP w.r.t. those morphisms

{1}

which are simaltaneously a levelwise weak equivalence and a levelwise fibration.

4.7.3 DEFINITION The triple consisting of the classes of levelwise weak equiv-
alences, levelwise fibrations, and projective cofibrations is called the projective

structure on [I,t}s.

4.7.4 THEOREM Suppose that C is a cambinatorial simplicial model category --
then for every I, the proijective structure on [I,i:]S is a model structure that,

moreover, is cambinatorial.

4.7.5 DEFINITION Iet 5 € NatS(F,G) .

e I is a levelwise weak equivalence if v i € |I|, E;:Fi »~ Gi is a weak

equivalence in C.
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®
{1

E is a levelwise cofibration if v i € |I|, E.:Fi > Gi is a cofibration

jng'

[1]

° is an injective fibration if it has the RIP w.r.t. those morphisms

which are simultaneously a levelwise weak equivalence and a levelwise cofibration.

4.7.6 DEFINITION The triple consisting of the classes of levelwise weak equiv-
alences, levelwise cofibrations, and injective fibrations is called the injective

structure on [I,C}S.

4.7.7 THEOREM Suppose that C is a combinatorial simplicial model category --—
then for every I, the injective structure on [I,t]s is a model structure that,

moreover, is combinatorial.

N.B.
® Every projective cofibration is necessarily levelwise, hence is a co-
fibration in the injective structure.
® Fvery injective fibration is necessarily levelwise, hence is a fibration

in the projective structure.

4.7.8 REMARK The category [I,C]s inherits a closed simplicial action from that
on C and is a simplicial model category in either the projective structure or the
injective structure.

[To deal with the projective structure, use 4.5.12, the claim being that
v i€ |1|, the arrow

hom (K,Xi) -+ hom(L,Xi) x hom(K,Bi)

hom(L,Bi)

is a fibration in C which is acyclic if L -~ K or X » B is acyclic. But this is
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obvious (matters are levelwise). As for the injective structure, apply 4.5.9.]

[Note: Spelled out, given F € Mor ¢ (r,¢),

(FITJRi = Fi| |K

F|ZIK; 4 IR |HOME, )

(FL|7IR) | [HOM(, 5)

u

u

Fi| | (X x HOM(i,5))

R4

Fi|_|@aM(i,]) x K)

4

(Fi| |HOM(i,3)) | |K
F, .| ]ia

i,j'— _ _
> B37K = 1705

To proceed further, it will be necessary to cite some facts from enriched
category theory sticking as always to the case when the underlying symmetric
monoidal category is SISET.

The following terms will be admitted without explanation:

S—complete

S—-cocomplete.

E.g.: SISET is S~camplete and S-cocamplete.
4.7.9 RAPPEL If I is a small category, then [I,SET] is complete and cocomplete.

4.7.10 EXaMPLE If I is a small S-category, then S[I,SISET] is S—complete and

S—cocamplete.
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4.7.11 THEOREM Iet I be a small S-category.
e If M is S—complete, then S[I,M] is S—complete.
e If M is S~cocomplete, then S{I,M] is S~cocomplete.
4.7.12 DEFINITION Let #I.M1' be S—categories and let
F:I - 0'
Fl:qt' > 0

be S-functors -~ then F is a left S-adjoint for F' and F' is a right S-adjoint

for F if there exist isomorphisms
HOM(FX,X') =~ HOM(X,F'X")
natural in X € 0, X' € O'.

UF:UM - um'
[Note: Therefore is an adjoint pair.]
UF':Un' - Um

4.7.13 EXAMPLE et C be a simplicial model category ——- then the S-functor

X|_|—=SISET » ¢
is a left S-adjoint for
HOM(X,—) :€ > SISET
and the S-functor
——]: Ke€ » €

is a left S-adjoint for

hom(K,—) :€ > €.

{The simplicial action | | on C is closed, so one can quote 4.4.19.]
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4.7.14 DEFINITION Let 0 be an S-category.

e 0 is tensored if every S—functor

HOM(X,

) :1 ~ SISET
has a left S-adjoint.
[Note: If M is tensored, then v X & v K, there is an object X 2 K € 0 and
isomorphisms
HM(X € K,Y) = map(K,HM(X,Y)).]
e 1l is cotensored if every S~functor
HOM(—,X) :8 ~ SISET

has a left S—adjoint.

[Note: If W is cotensored, then v X & V K, thereisanobjectXKGOand

iscmorphisms
HME (x5,Y) = map (K, HM(Y,X)) . ]

4.7.15 LFMMA Iet Ml be an S-category.
® Suppose that I is tensored — then Vv K, the correspondence
X=+-X@K
induces an S-functor I - .

® Suppose that W is cotensored -- then v K, the correspondence

X > x

induces an S-~functor M - H.

E.g.: SISET is tensored and cotensored:

X8 K=XxK

X

il

map (K,X) .
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4.7.16 EXAMPLE Iet I be a small S-category —- then S[I,SISET] is tensored
and cotensored.
[Iet F:I » SISET be an S-functor.
e Given K, put

(FR K1 =Fi x K

and define
(F 8 K), j:HOM(.i,j) -+ map((F & K)i, (F & K)j)
by
F. .
i3
HOM(i,j) ———> map(Fi,F]j)
(— &K ps

> map(Fi x K,Fj x K).
e Given K, put
(F)i = map (K,Fi)
and define

(F), S3HOM(,3) > map((F)1, (F)3)

F. .
i,3
HOM(1i,3)} ——— map(Fi,Fj)

K

> map{map (K,Fi) ,map(X,Fj)).]

4.7.17 EXAMPLE S-CAT is an S-category (cf. 4.3.9). BAs such, it is tensored
and cotensored.

[The cotensored situation is this. If K is comnected, then |I%| = |I| and

s ®) (1,5) = map (K, HM(1,3)) -
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In general,

where K is a component of K, thus

11%] =

|
(o]
»
e

[Note: Take K= A[n] — then

a2 (3 35y = map(AIn],HOM®,5))

Aln] _ @)

N.B. We have

T & K| = |1| x moK) = n0<1<)-]1!.

4,7.18 THEOREM Let Ml be an S-category. Assume: M is tensored and cotensored.
e N is S~-complete iff UM is camplete.

e N is S-cocamplete iff UM is cocamplete.

4.7.19 REMARK Iet C be a category. Assume: C admits a closed simplicial
action | | — then the S—category | |C is tensored and cotensored (cf. 4.4.20).

Recalling that U|_|C is isomorphic to C, it follows that

|_IC is S-camplete iff C is complete
|_|c is S-cocamplete iff C is cocamplete.

[Note: This applies in particular if C is presentable.]
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I
4.7.20 THEOREM Iet be small S-categories and let M be a tensored and
J

cotensored S-category. Suppose that K:I -+ J is an S-functor and

K*:S[J,m] - S[1,m]
is the induced S~functor.

o If @l is S-camplete, then K* has a right adjoint
K_'_‘:S[i:m] g S[J:m] -
e If M is S-cocomplete, then K* has a left adjoint

K,:S[Z,m - S[3,m.

So, if M is S-complete and S-cocomplete (as well as tensored and cotensored),

then

K* = UK*:US[J,m] - US[Z,m]
has a right adjoint

K+ = UKT:US[I,IR] - US[J,m]
and a left adjoint

K, = UK, :US[1,m] -~ US[J,M].
But

us[J,ml = [J,ﬂl]s-

Therefore the constituents of the setup became

K*: (3,0 ~ (1,01
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and
K+: [I,m] S > [J,IR] S
 Kplnmlg > 3l
Assume now that C is a combinatorial simplicial model category —-— then the
S—category € (= l:]g) is tensored and cotensored, S—camplete and S—cocomplete

(cf. 4.7.19). The preceding machinery is thus applicable (replace Ml by ).
Accordingly, bearing in mind 4.7.4 and 4.7.7, we see that 0.26.16 and 0.26.17 go

through with no change, i.e.,
(K, ,K*) is a model pair (Projective Structure)

(K*,K%) is a model pair (Injective Structure).

4.7.21 THEOREM If K:I + J is a DR-equivalence, then the model pairs

(K, ,K*)

(K* K,)

are model equivalences (cf. 0.26.18).
4.8 REALTZATION AND TOTALTIZATION
Let C be a simplicial model category. Assume: C is complete and cocomplete.
4.8.1 DEFINITION Given an X in SIC, put

x| = s x| 7|am.

¥ Dwyer-kan, Annals of Math. Studies 113 (1987), 180-205.
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Then |X| is called the realization of X.
N.B. The assignment X -|X| is a functor SIC - C.
4.8.2 LEMMA | | admits a right adjoint sin:C - SIC, where
sin Y = hom(A[n],Y).

PROCOF In fact,

23

Mor (|X|,Y) mor (1] X |_[An],Y)

R

f[n] mr(xnl:lA[n] Y

n

f[n] Mor (Xn,han(A[n] /Y))

i

I [n] Mor (Xn,sinnY)

R

Nat (¥X,sin Y).

4.8.3 EXAMPLE Take C = CGH, thus

Now let X be a simplicial set thought of as a discrete simplicial space, i.e., as

SICGH + CGH.

an object dis X of SICGH —— then

|ais x| = [x|,
the entity on the RHS being the geometric realization of X.
4.8.4 EXAMPLE Take C = SISET and let X be a simplicial object in C. One can

fix [m] and form [X; |, the geometric realization of [n] + X([n],[m]), and one can

fix [n] and form |XX}, the geometric realization of [m] - X([n],[m]). The
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m] > X 'S

assignments define simplicial objects in CGH and their
v v
_ [n] > X | X
. e
realizations are homeomorphic to the geometric realization of |X|.
x|

4.8.5 REMARK In 4.4, sin Y was denoted by the symbol ¥ | and there it was
shown that
nom(k,¥) = Y2 Mok (cf. 4.4.25).
Therefore

M sin ¥ = MnYA[ T2 hom(A[n],Y)  (cf. 4.4.23).

4.8.6 THEOREM Equip SIC with its Reedy structure -— then the adjoint situation

(| |,sin) is a model pair.

PROOF It suffices to show that sin preserves fibrations and acyclic fibrations.

So let Y >~ Y' be a fibration in C and consider the arrow

sinnY - Mnsin Y x sinnY !
M sin Y!
n
or still, the arrow

hom(A[n],Y) - hom(A[n],Y) x . hom(A[n],¥').
hom(An] ,¥Y")

Then this arrow is a fibration in C that, moreover, is acyclic if ¥ » ¥' is acyclic

(cf. 4.5.12).

4.8.7 COROLIARY The realization functor

|

:SIC (Reedy Structure) -~ C
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preserves cofibrations and acyclic cofibrations.

4.8.8 LEMVA Iet X be a simplicial object in C -- then
‘X[ o~ COllman‘n'
where

x| = f[k] |7 A Tk] {n).
n Kl

PROCF The functors X | | — are left adjoints, hence preserve colimits, so
x|= 0 x [Tjam]
~ sl Xn[[ colim Aln] (k)

s [n]

I

colim X | |An] (k)

0

colim_ s x |Zjapeg @

~ colim_ |X
n

-

4.8.9 IEMMA V n > 0, there is a pushout square

L X|”|An] U X || Aln] >

I, X|_|AM] -

| l

X [_|an] >1X]

X}n—l

4.8.10 1EMMA Tf X is a cofibrant object in SIC (Reedy Structure), then

v n > 0, the arrow ]X]n_l > ]xln is a cofibration in C.
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PROOF The latching morphism L X - X is a cofibration in C. Therefore the

arrow

L X | " |Aln] L ' X [:]:&[n]
L X|_|Aln]

> X |”|Aln]

is a cofibration in C (cf. 4.5.9), from which the assertion.

N.B. If X is a cofibrant object in SIC (Reedy Structure), then both LX and
X are cofibrant objects in C, thus Lnxl:[z'&[n] » LX|_|aln], and X [:[;_\,[n] are
cofibrant objects in C, so
L X|"|Aln] E . X |”|an]
L X|_|Aln]

is a cofibrant object in C (cf. 4.5.10).

X
4.8.11 LEMMA Suppose that are cofibrant objects in SIC (Reedy Structure)
Y

and £:X »~ Y is a weak equivalence -- then the arrow
L X|_|Aln] - X |”|Aln]
L X|_[Aln]
_ LnY|_|A[n] E . Yn]__]A[n]
L Y| |Aln]
is a weak equivalence in C.

PROCF The functor L :SIC - C sends acyclic cofibrations between cofibrant

objects to weak equivalences, hence preserves weak equivalences between cofibrant

objects (cf. 2.2.4). This said, consider the commutative diagram
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L X|7]aln] <— L X||An] > X_|Z|An]

| | |

L v|7|8n] < L Y| 7| A >Y_|Z|Aln].

Then the horizontal arrows are cofibrations (¢f. 4.5.10) and the vertical arrows

are weak equivalences (cf. 4.5.19). Now apply 0.1.20.

X

4.‘8.12 THEOREM Suppose that are cofibrant objects in SIC (Reedy

Y

Structure) and f£:X + Y is a weak equivalence — then |f

-
.

X| + |Y| is a weak equiv-

alence.
%lp = % Xl — Xl
PROOF Since and since V n, is a
_ I¥lg=1, I g L V)
B {]X[n:n > 0}
cofibration in C (cf. 4.8.10), one may view as cofibrant objects
{lYln:n > 0}

in FIL(C) (cf. 0.1.13). So, to prove that |£]:

X| + |Y| is a weak equivalence, it

need only be shown that V n, lf[n: X[, > lYln is a weak equivalence. To this end,

work with
xn1:|A[n]< L X|”|aln] E X |_|Am] —> !x}n__l
l Lnxl_!A[n] l
Ynl:]A[n]< LnYEI&[n] EJ_. YnI:\A[n] —_— !Y!n-l
L Y| |An]

and use induction.
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4.8.13 EXAMPLE Take C = SISET (Kan Structure) and suppose that f£:X -~ Y is a

weak equivalence, i.e., VY n, fn:Xn -> Yn is a simplicial weak equivalence -- then

|£

X| - |Y| is a simplicial weak eguivalence.
[All simplicial objects in _Z_\ are cofibrant in the Reedy structure (a.k.a.

structure R).]
Let C be a simplicial model category. Assume: C is complete and cocamplete.

4.8.14 DEFINITION Given an X in COSIC, put

tot X = f[n hom (A [n] ,Xn) .

1
Then tot X is called the totalization of X.

N.B. The assignment X -+ tot X is a functor COSIC - C.

4.8.15 LEMMA tot admits a left adjoint cosin:C + COSIC, where

cosin Y = ¥ _|_[A[n].
PROOF In fact,
Mor (Y, tot X) = Nbr(Y,f[n} hom(A[n], X))
= f[n] Mor (Y, hom(A[n] X))
~ f[n] Mor (Y| |Aln] X )

L4

i [n] Mor (cosi_nnY ,xn)

Nat{cosin ¥,X).

r

4.8.16 EXAMPLE Take C = SISET and in 4.4.9, let I = A — then

HM(F,G) = f[n] map (F[n],G[nl).
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I§‘=Yé

Specialize to , thus
G=X

u

HCM(YA,X} f[n] map(YA[n] X[n])

14

f[n] map(A[n] :Xn)

i

frop hom(A[n],X)

[n]

u

tot X.

4.8.17 EXAMPLE Given a simplicial set K and a compactly generated Hausdorff

K
space X, let X~ be the cosimplicial object in CGH with (xK)n =XP —— then X

RftotXK.

K|

4.8.18 REMARK There are cbvious analogs for tot of 4.8.6 and 4.8.12: Take
COSIC in its Reedy structure —- then the adjoint situation (cosin, tot) is a model
pair and if f:X » Y is a weak equivalence, where X,Y are fibrant, then tot f:tot X »

tot Y is a weak equivalence.
4.8.19 NOTATION Given a simplicial set X, put

AK = gro, K (a.k.a. iAK (= A/K))

and let QOPK be its opposite —— then there are functors
AK:AK - SISET

and

2Pr:n Pk > SISET .
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4.8.20 NOTATION Given a category C, write K-SIC for the functor category

[_Z;OPK,{_J} and K-COSIC for the functor category [AK,C].

4.8.21 DEFINITION A K-simplicial object in C is an object in K-SIC and a

K-cosimplicial object in C is an object in K-COSIC.

[Note: Take K = A[0] to recover SIC and COSIC.]

4.8.22 LEMMA AK and QOPK are Reedy categories.

[Note: Generalizing 0.27.39, take I = A”'K to realize 0.27.35 and take

I = AK to realize 0.27.37.]

Consequently, if C is a complete and cocomplete model category, then

K-SIC and K-COSIC
are model categories (Reedy Structure).
Assume now that C is, in addition, a simplicial model category.
® There is a realization functor

| |geK-SIC »

that sends X to
AK

x| =/ X|Z[sx,

where
x| | axep%Pk K+ ¢

is the composite

X x AK
AKX AK ————> C x SISET

> C.
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e There is a totalization functor

toty :K-COSIC » C
that sends X to

totKX = féK hom(AK,X) ,

where

hom(AK,X) :ATK x AK + C

is the composite

oP 2OPR x x opP hom
AP x MK 5 STSET x C

let pK:K -+ A[0] be the canonical arrow —— then
AK ~ AA[O] = A
and

2% > 1%Pat0] = %

i
1>

e The induced map
SIC - K~-SIC
has a left adjoint

lanK :K-SIC » SIC

and there is a commutative diagram
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N.B. | |K admits a right adjoint
sing:C + K-SIC
and the adjoint situation (| 1K,si.nK) is a model pair.

e The induced map

COSIC -~ K~COSIC

has a right adjoint

ranK:K—COSIC - COSIC

and there is a commutative diagram

Ty

R-COSIC —r—e——>  COSIC

totKl
¢

tot

e

10

N.B. tot, admits a left adjoint

cosiny:C ~ K-COSIC

and the adjoint situation (cosinK,totK) is a model pair.

X
4.8.23 THEOREM Suppose that are cofibrant objects in K-SIC (Reedy

Y

Structure) and f:X + Y is a weak equivalence — then |flK|X|K - IYIK is a weak

eqguivalence.

X

4.8.24 THECREM Suppose that are fibrant objects in K-COSIC (Reedy

Y

Structure) and f£:X + Y is a weak equivalence -~ then toth:totKX > totyy is a
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weak equivalence.
4.9 HOMOTOPICAL ALGEBRA

4.9.1 NOTATION Iet I be a small category -- then

4/I = p/ner I = gro, ner I = i, ner I = A ner I.

A

Abbreviate and call any of these renditions AI, thus AI is isomorphic to the comma

category

o Define T I -+

1
‘E»
(1]
g

u

H]

u{m).

Tl( {m] > I)

e Define o_:

u

i

0y ([m] > I) = u(0).
4.9.2 EXAMPLE We have

opP

I
9
=
il
[

|&
I
(1
g
a
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4.9.3 LEMMA Iet C be a complete and cocomplete model category. Suppose that
F:I -~ C is a functor such that Vv i € Ob I, Fi is cofibrant (fibrant) -- then

F oo, (Fo 1;) is a cofibrant (fibrant) object in [QOP_I_,Q] (IAL,Cl) (Reedy

Structure) (cf. 4.8.22)).

Iet C be a simplicial model category. Assume: C is complete and cocamplete.

Fix a small category I.

e The uncorrected homotopy colimit of a functor F:I -~ C is the coend

IOP

/7 F| |ner(—1),
denoted

hocolimIF .

e The uncorrected homotopy limit of a functor F:I -+ C is the end

J; bom(ner (1/—) ,F),
dencted

holimIF.

4.9.4 EXAMPLE Take C = SISET (Kan Structure) -- then (cf. 4.5.2)

Fi| |ner(i\I) = Fi x ner(i\I)
and

hom(ner(1/1) ,Fi)

i

map (ner(1/i) ,Fi).

4.9.5 EXAMPLE Take C = CGH (Quillen Structure) —- then (cf. 4.5.3)

Fi|_|ner (i\I) = Fi x B(i\I)
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and

B(I/i)
hom(ner (I/i) ,Fi) = Fi

4.9.6 APPLICATION

® Iet F:I - SISET be a functor -— then

Ifi Fi x ner(i\I)|

[hocolim |

4

fi}Fi x ner (i\I) |

i

fi[Fi| X B(NI)

u

hocom, |F|,
a natural homeomorphism of compactly generated Hausdorff spaces.
e ILet F:I +~ CGH be a functor — then

B(1/i)

sin fi Fi

sin holimIF

B(I/i)
f:i_ sin Fi

1}

&

J; map(ner(1/i),sin Fi)

I'u:)limI sin F,
a natural isomorphism of simplicial sets.

[Note: If K is a simplicial set and if X is a campactly generated Hausdorff

space, then

sin XPK] ~ map (K,sin X).
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Proof:

I,

sin x| (1) ~ c(a®,x

[

123

c(® X [K|,X)

I

C(|Aln] x K|,X)

I

Nat(K x A[n],sin X)

n

map (K,sin X).]

4.9.7 EXAMPLE Take C = CAT (External Structure) —— then (cf. 4.5.4)

Fi| |ner(i\I) = Fi x cat o ner(i\I)

Fi x i\I

Q

and

I

hom(ner (1/1i) ,Fi) [cat ¢ ner(I/i),Fil]

4

[1/i,Fi].

[Note: Therefore

1

hocolimf

MIF (cf. B.5),

a conclusion that is in agreement with B.8.13. Here is another point:

holi.mI ner o F = fi map (ner (I/i) ,ner Fi)

I

fi ner[I/i,Fi]

1

ner (f; [1/i,Fil).]
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N.B. One can also explicate matters for CAT (Internal Structure) (cf. 4.5.5).

4,9.8 REMARK The functor

hocolim,: [1,C] + C

has a right adfint, viz.

hom(ner (—\I) ,—)
and the functor

holim :[I,C] + C
has a left adjoint, viz.

—|Tlner (/) .

4.9.9 IEMMA Fix F € Ob[I,C] —-- then

AT

hocolim F = /= F o o | |mner I (= [F oo )

I lner I
and

holm:_[F = fA_I hom(Aner I,F o ’c;) (= tot_ . 1 F o ’L‘l:) .

4.9.10 THEOREM Iet F,G:I » C be functors and let EZ:F -+ G be a natural trans-

formation. Assume: Vv i, Ei:Fi + Gl is a weak eguivalence — then
hocolj_mIE :choljJnIF -+ hocolimIG

T OFi
is a weak equivalence if v i, is cofibrant and
Gi

holimIE :holimlf‘ - holimIG
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Fi
is a weak equivalence if v i, is fibrant.
Gi

PROOF Apply 4.8.23 and 4.8.24 (4.9.3 and 4.9.9 set the stage).
[Note: Take C = CAT (External Structure) (cf. 4.9.7) — then 4.9.10 does not

specialize to B.7.1 (the latter makes no cofibrancy assumptions).]

4.9.11 EXAMPIE Iet F:I -+ OGH be a functor such that v i, Fi is cofibrant —-

then there is a natural simplicial weak equivalence

hocolJ'mI sin F » sin }mcolimIF.
[Consider the natural transformation |sin F| - F: v i, |sin Fi| is cofibrant

and the arrow |sin Fi| - Fi is a weak homotopy equivalence, thus the arrow
hocolim, |sin F| » hocolim F

is a weak homotopy equivalence (cf. 4.9.10). But
hocolim . sin F| = hocolim, |sin F| (cf. 4.9.6),

so taking adjoints leads to the conclusion.]

[Note: In the same vein, if F:I > SISET is a functor such that v i, Fi is

fibrant, then there is a natural weak homotopy equivalence

[holimIFl > holiml |F|.1

4.9.12 REMARK A corollary to 4.9.10 is the fact that

mcolimf‘ ~ |lan I (F o Oz)‘
and
hollmIF = tot ran . I (F o TI) .
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4.9.13 IEMMA (SIMPLICIAL REPLACEMENT) Fix F € Ob [I,C]. Define || F in

SIC by
lm,= ]| Ffo.
£
[n] >~ I
Then
Il F=lan 1 (F o OE).
[Note: Therefore
hocolim F = | || F|.]

4.9.14 LEMMA (COSIMPLICIAL REPIACEMENT) Fix F € Cb [I,C]. Define TT F in

COSIC by

arm, = 1T F.

£
[n] ~ I
Then
TTF = ranner I {F o ’rz).
[Note: Therefore
holim F =~ tot 17 .1

4.9.15 EXAMPLE Given X:A¥ > SISET, define dia X:A” - SET by

dia X([n]) = X([n]) ([n]).

op

But also, by definition, |X|:A™ - SET and, up to natural isomorphism, dia and

| | are the same (both are left adjoints for sin). Now form || X per 4.9.13,
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thus
|| x:a%F » s1sET.
And then
hOGOlim&OPX = | || X| = dia || x.
APPENDIX

Recall that I is a small category and C is a simplicial model category which
is both complete and cocamplete.

If F:I ~C is a functor, then

IOP
hocolim F = /©  F|_|ner(—\I)

is its uncorrected homotopy colimit and
holJ.mEF = [ I hom(nexr (I/—) ,F)
is its uncorrected homotopy limit. Here we shall explain the origin of this

terminology and for that it will be enough to consider hocolimI.

RAPPEL View C as a cofibration category and place on [I,C] its injective

structure, so [I,C] is a cocomplete cofibration category (cf. 2.5.3).

Let p:I > 1 be the canonical arrow — then pf has a left adjoint Pryr viz.

colim :[I,C} ~ C,
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that in turn admits an absolute total left derived functor
Leolim. :6-1[1,C] » Wie  (cf. 2.5.7)
m]‘]-: - E re et . o wte Fi
the "true" homotopy colimit.

Now refer back to 4.9.10. Since the weak equivalences in [I,C] are levelwise

and since the cofibrant objects in [I,C] are levelwise, it follows that
hocolim, : [I,Cl ~ C

also admits an absclute total left derived fumctor

Lhocolim :0i ' IL,C] » W7C  (cf. 2.2.4).
And, on general grounds, if F € Ob[I,C] is cofibrant, then the natural map
LhocolimIF > hocolimIF
is an iscmorphism in w“lg.
ASSUMPTION The w.f.s.

{(cof, W n fib)
is functorial {cf. 0.19.3).

NOTATION Given F € Ob[I,C], define LF levelwise:

(IF) (i) = L(Fi).

N.B. The functor
F - hocolim LF
is a morphism

(IL,C1,0p) + (C,0)
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of category pairs (cf. 4.9.10), thus there is a unique functor

for which the diagram

hocolim, o L:W7'(I,cl - 0he

hocolim, ° L
[Erc_:] - >4 9
L
1 Ly
Y1
Wit iz,Cl > Wi
hocolim, ° L
comutes {(cf. 1.4.5).
’I‘HEOREM* The functor
hocolimI °L
“isll
LcolJ'.mI.

REMARK Changing the cofibrant replacement functor from L to L' leads to

another model for Lcol:imI.

.f.

Shulman, arXiv:math/0610194; see also Gonzalez, arXiv:1104.0646
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CHAPTER 5: CUBICAL THEORY

5.1 |

:DEFINITION AND PROPERTIES

Given an integer n > 0, let I” be the set-theoretic product {0,1}".

v

e Fornz=1,1=<1

IA
N

n’ € = O;ly defjne

s :In-l >
i,e
by
8T (x ) = (x € )
i's l,nonyxn_l l,...xi"l’ ,Xi,...,Xn_l -
e Forn =90, 1< i< n+l, define
Gg:1n+l N In
i
by

n —
ci(x ""'Xh+l) = (X ”"'Xi—l'xi+l""'xn+l)'

5.1.1 DEFINITION | | is the category whose objects are the 1" and whose mor-

phisms are generated by the 6? e and the 02.

[Note: | | has a final object, viz. 193

5.1.2 ILEMMA We have

ie ® %1, WD




and
T on -1 . .
8i,e ° 94-1 @ <3
n+l : . s
0? ° 61,8 = J.dIn (i=173)
n -1 X .
. J.—l,eegr;';l (1> 3).
N.B. In particular
- 0 1 _
°1° %107 Mo
o 1 _ .
_ o) ° 61'1 = ldIO .
5.1.3 LEMMA || is a strict monoidal category.
[Define
e: | [ x || ~ ||
by

(Im' In) N Im 2 In - Im—i—n
0
and let e = 17,]
5.1.4 DEFINITION Let (V,R,e) be a strict monoidal category —- then a cylinder
in V is a 4-tuple (I,do,dl,p), where I € Ob V and do,dl:e + I, p:I + e are morphisms

of V such that

pd, = id_ = pd;.

e



5.1.5 EXAMPIE Take V = || (cf. 5.1.3) — then (I, 57, 0,51 109 is a cylinder

5.1.6 LEMMA Iet (V,8,e) be a strict monoidal category -- then the association

:| | >V to the 4-tuple

1 1 1 0
(r(I )'F(‘Sl,o) ,F(él'l) ,F(ol))

is a bijection between the set of strict monoidal functors from | | to V and the

cylinders in V.

7] > caT with I" » [117.

5.1.7 SCHOLTIM There is a strict monoidal functor c:

1
1,0

1
ll

1

1,1 -

[Send IT to [1], &% . to &1, & . to ao, and cg to o

OO

5.1.8 LEMMA || is a Reedy category.

[Put
deg(I™) =n

and let

[ ¥

" | = subcategory of | | generated by the 61

£

1

= subcategory of | | generated by the Gr.:.]

I

5.1.9 LEMMA || is a local test category per W_.

[The functor c: [:[ - CAT satisfies the finality hypothesis, thus it is enough

to prove that nerc[l] satisfies the G-condition (cf. C.10.14), i.e., that the



categories

il_l (|_J ) x ner_[11) = |Z|/(|"|(n) x ner_[11) (n > 0)

are aspherical. But it is possible to proceed homotopically and construct an

equivalence between

170”1 (n) x ner_[11) and |_|/|"| (n),

which suffices (since | |/| | (n) has a final object, hence is aspherical).]

5.1.10 REMARK Consequently, (W) is a |_|-localizer (cf. C.9.1) and C.9.5

[u]

is applicable: |:1 admits a cofibrantly generated model structure whose class of weak

equivalences are the elements of (W ) . and whose cofibrations are the monomorphisms.

[N

[Note: The | |-localizer generated by the arrows | |(n) » | |(0) (n 2 0) is
W) . .1

Il

N.B. This model structure on | | is proper (cf. C.9.10).

5.2 CUBICAL SETS

% > ser.

5.2.1 DEFINITION A cubical set is a functor X:



5.2.2 NOTATION CUSET is the category whose objects are the cubical sets and

whose morphisms are the natural transformations between them.

[Note: A morphism in CUSET is called a cubical map.]

The cubical standard n—cube is the cubical set || (n) = Mor(—,I"). If X

is a cubical set and if X = X (I, then
Mor (| | (n),X) = X .

N.B. If a:I™ > I, then

Tl Tl > [T

A cubical subset of a cubical set X is a cubical set Y such that Y is a sub—

functor of X, i.e., Yn < Xn for all n and the inclusion Y » X is a cubical map.

5.2.3 DEFINITION The frontier of | |(n) is the cubical subset 3| |(n) (n = 0)
of | |(n) given by

37 m) (I = {£: 1™ > I™:3 a factorization £:1% > I* > I® (k < n)}.

5.2.4 RAPPEL Suppose that C is a small category — then M < Mor é is the class

of monomorphisms.

5.2.5 EXAMPLE Iet C = A and let

M= {A[n] - A[n]:n = 0}.

M=1pRPM)) = cof M (cf. 0.20.5).

5.2.6 LEMMA Iet C = | | and let

M= {3] | > | |(m):m = 0}.



M= LIP(RIP(M)) = cof M.

N.B. Expanding on 5.1.10, one can take for "I" the set

{37 |tm) » [T]m):mn = 0}.

5.2.7 REMARK Iet T[’f.L1 . (m>1,1=<4iz<n, e=0,1) be the cubical subset of
14

|_ (n) given by

T Iiw"e(lm) = {£:1™ > "3 a factorization f£:I" - In_:L ———%In (o = 6% ).

Then one can take for "J" the set

(T~ Tl

In the current setting, the machinery of Kan extensions assigns to each

T € Ob| l:i,é] its realization functor I', € Obl I ,_/S] , itself a left adjoint for the

o~

singular functor sinT:_g_ > .

Specialize and let T be the composite

. c ner ~
|| — car > A.
Put
cl = I‘ner o C
x 3
_ c Smner o o
Then




So V¥V n,

¢, |Zlm = amm”

and V X € Ob A,

(c*x) Mor (A[117,X) .

It

5.2.8 REMARK If C is a small category, then

4

nerc(_l C*ner C.

In fact,

(c*ner C) | Mor (A[1]%, ner &)

2

Mor (cat A[117,Q)

Mor ((cat A[1)",0)

u

31

Mor ([117,0)

ner _(C) (™.

’~

Equip | | with its Cisinski structure and Z&_ with its Kan structure.

5.2.9 LEMMA The adjoint situation (c,,c*) is a model pair.

More is true: The model pair (c,,c*) is a model equivalence. Therefore the

categories

H| |

=8

are canonically equivalent.



APPENDIX

CATEGORICAL BACKGROUND



TOPICS

DEFINITIONS AND NOTATION
EXAMPLES

COMMA CATEGORIES

FUNCTOR CATEGORIES

YONEDA THEORY

MORPHISMS

IDEMPOTENTS

SEPARATION AND COSEPARATION
INJECTIVES

SOURCES AND SINKS

LIMITS AND COLIMITS
PRODUCTS AND COPRODUCTS
EQUALTZERS AND COEQUALIZERS
PULLBACKS AND PUSHOUTS
FILTERED CATEGORIES AND FINAL FUNCTORS
COMPLETENESS AND COCOMPLETENESS
PRESERVATION

PRESENTABILITY
ACCESSIBILITY

ADJOINTS

THE SOLUTION SET CONDITION
REFLECTORS AND COREFLECTORS
ENDS AND COENDS

KAN EXTENSTONS



CATEGORICAL BACKGROUND

DEFINITIONS AND NOTATION

Given a category C, denote by Ob C its class of objects and by Mor C its
class of morphisms. If X,Y € Ob C is an ordered pair of cobjects, then Mor (X,Y)

is the set of morphisms (or arrows) from X to Y. 2An element f € Mor(X,Y) is said

to have domain X and codomain Y. One writes f:X - Y or X £ > Y. Composition

X >y 257
is denoted by g o f.
A morphism f£:X - Y in a category C is said to be an isomorphism if there

exists a morphism g:Y¥ - X such that g o £ = idX and £ e g = idY. If g exists,

then g is unique. It is called the inverse of f and is denoted by £L, Objects
X,Y € Ob C are said to be isomorphic, written X = Y, provided there is an isomor-
phism f:X +~ Y. The relation "isomorphic to" is an equivalence relation on Ob C.

A functor F:C + D is said to be faithful (full) if for any ordered pair

X,Y € Ob C, the map Mor (X,Y) - Mor (FX,FY) is injective (surjective). If F is full

and faithful, then F reflects isomorphisms or still, is conservative, i.e., f is

an isomorphism iff Ff is an isomorphisam.
A functor F:C » D is said to be an isomorphism if there exists a functor

G:D > C such that G o F = id, and F ¢ G = id,. A functor is an isomorphism iff

it is full, faithful, and bijective on objects. Categories C and D are said to
be isomorphic provided there is an iscmorphism F:C - D.
[Note: An isomorphism between categories is the same as an iscmorphism in

the "category of categories".]




A functor F:C + D is said to be an equivalence if there exists a functor

G:D ~ C such that G ° F = id, and F ° G = id,, the symbol = standing for natural

isomorphism. A functor is an equivalence iff it is full, faithful, and has a

representative image, i.e., for any Y € Ob D there exists an X € Ob C such

that FX is isomorphic to Y. Categories C and D are said to be equivalent provided
that there is an equivalence F:C + D. The object isomorphism types of equivalent
categories are in a one-to-one correspondence.

[Note: If F and G are injective on objects, then C and D are isamorphic
(categorical "Schroeder-Bernstein").]

N.B. If C,D are eguivalent and D,E are equivalent, then C,E are equivalent.

A category is skeletal if isomorphic objects are equal. Given a category C,
a skeleton of C is a full, skeletal subcategory C for which the inclusion C + C
has a representative image (hence is an equivalence). Every category has a skeleton
and any two skeletons of a category are isomorphic.

A category is said to be discrete if all its morphisms are identities. Every
class is the class of objects of a discrete category.

[Note: A category is small if its class of objects is a set; otherwise it

is large. A category is finite (countable) if its class of morphisms is a finite

{countable) set.]

EXAMPLES

Here is a list of caommonly occurring categories.
(1) SET, the category of sets, and SET,, the category of pointed sets. If
X,Y € Ob SET, then Mor(X,Y) = F(X,Y), the functions from X to ¥, and if (X,xo),

(Y,yo) € Ob SET,, then Mor((X,xO},(Y,yO)) = P(X,x ;Y,yo), the base point preserving



functions from X to Y.

(2) TOP, the category of topological spaces, and TOP,, the category of
pointed topological spaces. If X,Y € Ob TOP, then Mor(X,Y) = C(X,Y), the con-

tinuous functions from X to ¥, and if (X,xo) , (Y,yo) € Ob TOP,, then Mor((X,xo) ,

(Y,yo)) = C(X,xO;Y,yo) , the base point preserving continuous functions from X to Y.

(3) HTOP, the homotopy category of topological spaces, and HTOP,, the
homotopy category of pointed topological spaces. If X,Y € Ob HTOP, then Mor (X,Y) =

[X,¥], the homotopy classes in C(X,Y¥), and if (X,xo), (Y,yo) € Ob HTOP,, then
IVbr((X,xo) ’ (Y,yo)) = [X,xO;Y,yo] , the homotopy classes in C(X,xO;Y,yo) .

(4) HAUS, the full subcategory of TOP whose objects are the Hausdorff spaces

and CPTHAUS, the full subcategory of HAUS whose objects are the compact spaces.

(5) X, the fundamental groupoid of a topological space X.

(6) GR, AB, RG (A-MOD or MOD-A), the category of groups, abelian groups,
rings with unit (left or right A-modules, A € Ob RG).

(7) 0, the category with no objects and no arrows. 1, the category with
one object and one arrow. 2, the category with two objects and one arrow not
the identity.

(8) CAT, the category whose objects are the small categories and whose mor-
phisms are the functors between them.

(9) GRD, the full subcategory of CAT whose objects are the groupoids, i.e.,
the small categories in which every morphism is invertible.

(10) PRECAT, the category whose objects are the small precategories (a.k.a.

graphs) and whose morphisms are the prefunctors between them.




EXAMPLE Every arrow f£:X - Y of C appears as an arrow fOP:Y -+ X of COP.
This said, define a functor OP:CAT -+ CAT on objects by

(o) = ™
and on morphisms F:C > D by
fOP
P (v > x) = (FE) .

Then

QP o OP = ldCAT'

EXAMPLE The assignment

is a functor.

[Note: A continuous function £:X - Y induces a functor Ff:HX - 1Y, viz.

Fex = £(x), Felyl = [£ o vl (v € C([0,11,X).]

In this book, the foundation for category theory is the "one universe"
approach taken by Herrlich—Strecker%

The key words are "set", "class", and
"conglomerate".

Thus the issue is not only one of size but also of membership

(every set is a class and every class is a conglomerate). Example: {Ob SET}

is a conglomerate, not a class (the members of a class are sets).

A metacategory is defined in the same way as a category except that the
objects and the morphisms are allowed to be conglomerates and the requirement

that the conglamerate of morphisms between two objects be a set is dropped.

¥ Category Theory, Heldermann Verlag, 1979.



While there are exceptions, most categorical concepts have metacategorical analogs
or interpretations.

[Note: Every category is a metacategory. On the other hand, it can happen
that a metacategory is isomorphic to a category but is not itself a category.
Still, the convention is to overlook this technical nicety and treat such a meta-
category as a category.]

N.B. Additional discussion and information can be found in Shulmn+

NOTATION €AT, the metacategory whose objects are the categories and whose

morphisms are the functors between them.

COMMA CATEGORIES

T:A > C
Given categories A,B,C and functors , the comma category |T,S|
_ S:B=>C
T XedbaA
is the category whose objects are the triples (X,f,¥):
Y€ Ob B

& £ € Mor(TX,SY) and whose morphisms (X,f,¥) - (X',f',Y') are the pairs

¢ € Mor(X,X")
($,9) : for which the square
U € Mor(¥Y,Y'")
£
™M —— 8Y
™ | s
™' - > SY?
fl

T arXiv:0810.1279



commutes. Composition is defined componentwise and the identity attached to
X,£,Y) is (idx,idY).

ILEMMA There are functors

P:

7,5] > A

Q:

T,S| > B

and a canonical natural transformation
T o P >S5 o Q.
PROOF Iet

P(X,£,Y)

il
>
i
s

X, £,Y)

Po,p) =¢ | Q) =
and define
E € Nat(T o P,S o Q)
by

&£ =

[Note: In general, the diagram

Q
7,8 ——> B
d s
A ————>¢
T

does not commute. ]

(A\C) Iet A € Ob C and write K, for the constant functor 1 - C with

value A —— then

A\C = ]KA,idgl



is the category of objects under A.

(C/B) Let B € Ob C and write K, for the constant functor 1 ~ C with

value B -- then
¢/B = Iidg,KB}

is the category of objects over B.

N.B. The comma category ]KA,KB] is Mor (A,B) viewed as a discrete category.

The arrow category C(») of C is the comma category [idc,idC] .

FUNCTOR CATEGORIES

™
10
¥
o

Iet be functors ~— then a natural transformation % from F t© G
G:

10

5

e

is a function that assigns to each X € Ob C an element € Mor (FX,GX) such that

“x
for every £ € Mor(X,Y) the square

X
X > GX
Ffj le
Fy - > GY
“y

commates, Z being termed a natural isomorphism if all the EX are isomorphisms,

in which case F and G are said to be naturally isomorphic, written F = G.

C
Given categories T, the functor category [C,D] is the metacategory
D

whose objects are the functors F:C -~ D and whose morphisms are the natural



transformations Nat(F,G) from F to G. In general, [C,D] need not be isomorphic
to a category, although this will be true if C is small.
[Note: The isomorphisms in [C,D] are the natural isomorphisms.]

N.B. The identity idF € Nat(F,F) is defined by (idF)X = idFX and if

= Q
F-—> G, G —> H are natural transformations, then ) o Z:F -+ H is the natural

transformation that assigns to each X the composition QX ° EX:FX -+ HX.
(K*) Let K:A ~ C be a functor — then there is an induced functor

K¥*: [(_'_3:[__)_] d [3_\12]
given on objects by
K*F = F o K

and on morphisms by

given on objects by

LF=LoF
and on morphisms by
(L,‘:)X = L::x.
T EK ~ R*E
Write in place of , 80 L{EK) = (LE)K -— then
_LE _ LE
B E(K o K') = (EK)K' N (L' o L)E = L' (L&)
and

(E' o E)K = (E'K) o (EK) _ L(E' ° E) = (LE") o (L8),




YONEDA THEORY

Associated with any object X in a category C is the functor Mor(X,—) €
Ob[C,SET] and the functor Mor(—,X) € Ob[C,SET]. If F € Ob[C,SET] is a

functor or if F € Ob[gOP,SET] is a functor, then the Yoneda lemma establishes
a bijection 1y between Nat(Mor (X,—),F) or Nat(Mor(—,X),F) and FX, viz.

X > Mor{X,—
1X(E) = Ex(idx) . Therefore the assignments lead it functors
X » Mor{—,X)

¢ > [¢,sET]

that are full, faithful, and injective on objects, the Yoneda

¢ » ¢, seT]

embeddings. One says that F is representable (by X) if F is naturally isomorphic

to Mor(X,—) or Mor(—,X). Representing objects are isomorphic.

EXAMPLE The forgetful functor U:TOP - SET is representable:
v X, Mor{{%},X) = UX.
The forgetful functor U:GR + SET is representable:
Y X, Mor(Z,X} = UX.
The forgetful functor U:RG -+ SET is representable:

v X, Mor(Z[t],X) = UX.

It is traditional to write

A
C= [QOP,SET]
A
and call an object of C a presheaf (of sets) on C.

EXAMPIE We have

I
u
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Given X € Ob C, put

i

Mor {(—,X) .

by

1

Mor{X,Y)

Nat (hy,hy)

and in this notation the Yoneda embedding

Q>

Y.:C ~

sends X to hX

EXAMPLE Let F:SET - SET be the functor that sends X to 2% (the set of all

_l.

subsets of X) and sends £:X + Y to £ ~:2°

> 2X -— then F is representable:

F =z h{o,l}'

EXAMPLE Iet F:TOPOP -+ SET be the functor that sends X to Ty {the set of open

subsets of X) and sends f:X + Y to £ i1, » T, -— then F is representable:

Y X

F = h{o,l}’

{0,1} being Sierpinski space.

[Note: This fails if TOP is replaced by HAUS.]
MORPHISMS

A morphism f:X -~ Y in a category C is said to be a monomorphism if it is

left cancellable with respect to cowposition, i.e., for any pair of morphisms
u,v:Z + X such that £ e u=f o v, there follows u = v.
A morphism £:X + Y in a category C is said to be an epimorphism if it is

right cancellable with respect to camposition, i.e., for any pair of morphisms
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u,v:Y » Z such thatu ¢ £ = v o £, there follows u = v.

A morphism is said to be a bimorphism if it is both a monomorphism and an
epimorphiam. Every isomorphism is a bimorphism. A category is said to be balanced
if every bimorphism is an isomorphism. The categories SET, GR, and AB are balanced

but the category TOP is not.

EXAMPIE In SET, GR, and AB, a morphism is a monomorphism (epimorphism) iff
it is injective (surjective). In any full subcategory of TOP, a morphism is a
monomorphism iff it is injective. In the full subcategory of TOP, whose objects
are the comnected spaces, there are monomorphisms that are not injective on the
underlying sets (covering orojections in this category are monomorphisms). In
TOP, a morphism is an epimorphism iff it is surjective but in HAUS, a morphism
is an epimorphism iff it has a dense range. The homotopy class of a monomorphism

(epimorphism) in TOP need not be a monomorphism (epimorphism) in HTOP. In CAT,

a morphism is a monomorphism iff it is injective on objects and fully faithful.
On the other hand, in CAT there are epimorphisms which are surjective on objects

but which are not surjective on morphism sets.

LEMMA Let C be a small category — then a morphism Z in [C,SET] is a mono—

morphism iff v X € Ob C, £, is a monomorphism in SET.

X

[Note: This can fail if SET is replaced by an arbitrary category D.]

Given a category C and an object X in C, let M(X) be the class of all pairs
(Y,f), where £:Y - X is a monomorphism. Two elements (Y,f) and (Z,g) of M(X) are
deamed equivalent if there exists an isamorphism ¢:¥Y - Z such that f =g ¢ ¢. A

revresentative class of monomorphisms in M(X) is a subclass of M({X) that is a
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system of representatives for this equivalence relation. C is said to be well-
powered provided that each of its objects has a representative class of monomor-
phisms which is a set.

Given a category C and an object X in C, let E(X) be the class of all pairs
(¥,f), where f:X - Y is an epimorphism. Two elements (Y,f) and (Z,g) of B(X)
are deemed equivalent if there exists an isomorphism ¢:Y + Z such that g = ¢ ¢ £f.

A representative class of epimorphisms in E{X) is a subclass of E(X) that is a

system of representatives for this equivalence relation. C is said to be cowell-
powered provided that each of its cbjects has a representative class of epimorphisms

which is a set.

EXAMPLE SET, GR, AB, TOP (or HAUS) are wellpowered and cowellpowered.

THEOREM CAT is wellpowered and cowellpowered.

A monomorphism £:X + Y in a category C is said to be extremal provided that in
any factorization £ = h ¢ g, if g is an epimorphism, then g is an isomorphism.

An epimorphism f£:X + Y in a category C is said to be extremal provided that in
any factorization £ = h ¢ g, if h is a monomorphism, then h is an isomorphism.

In a balanced category, every monomorphism (epimorphism) is extremal. In any
category, a morphism is an isomorphism iff it is both a monomorphism and an extremal

epimorphism iff it is both an extremal monomorphism and an epimorphism.

EXAMPIE In TOP, a monomorphism is extremal iff it is an embedding but in HAUS,
a monomorphism is extremal iff it is a closed embedding. In TOP or HAUS, an epi-

morphism is extremal iff it is a quotient map.

A morphism r:Y + X in a category C is called a retraction if there exists a
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morphisn i:X > Y such that r o 1 = idX, in which case X is said to be a retract

of Y.

T f € Mor (X,X")
EXAMPLE Consider the arrow category C(») and suppose that -

_ g € Mor(Y,Y')
then to say that f is a retract of g means that there exists a pair
i€ Mor(X,Y)
(i,i%):

i' € Mor(xX',Y")

and a pair
T r € Mor(Y,X)
{(r,r'):
r' € Mor(Y',X")
such that
(r,x') o (i,i') = idf
or still,

. . Cen s .
(roi, r' o 1i") —(ldX'ldx,)'

In other words, there is a commtative diagram

i r
X > Y > X
el 9] ]
X' - > ¥ > X',
it r!

whererOi=idX,r'0i'=id .
XI

[Note: If g is an isomorphism and if f is a retract of g, then f is an

iscmorphism, ]
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TDEMPOTENTS

A morphism e:X -~ X in a category C is idempotent if e ¢ e = e. 2An idempotent
e:X » X is gplit if 3 Y € Ob C and morphisms ¢:X ~ ¥, Y:Y > X such thate =y ° ¢
and¢0gb=idy.

EXAMPLE Every idempotent in SET is sgplit.

Given a category C, there is a category § in which idempotents split and a
functor E:C ~ C that is full, faithful, and injective on objects with the following
property: Every functor from C to a category in which idempotents split has an

extension to C, wnique up to natural isomorphism.
SEPARATION AND COSEPARATION

Given a category C, a set U of objects in C is said to be a separating set

£
if for every pair X — Y of distinct morphisms, there exists a U € U and a mor-
9

phism 0:U + X such that £ ¢ 0 # g o 0. 2An object U in C is said to be a separator
if {U} is a separating set, i.e., if the functor Mor(U,—):C - SET is faithful.

If C is balanced, finitely complete, and has a separating set, then C is wellpowered.
Every cocomplete cowellpowered category with a separator is wellpowered and complete.
If C has coproducts, then a U € Ob C is a separator iff each X € Ob C admits an

epimorphism || U + X.

[Note: Suppose that C is small -- then the representable functors are a

separating set for [C,SET].]
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EXAMPLE Every nonempty set is a separator for SET. SET x SET has no separators

but the s=t {(4,{0}), ({0},8)} is a separating set. Every nonempty discrete topo-
logical space is a separator for TOP (or HAUS). Z is a separator for GR and 2B,
while Z[t] is a separator for RG. In A-MOD, A (as a left A-module) is a separator

and in MOD-A, A (as a right A-module) is a separator.

Given a category C, a set U of objects in C is said to be a coseparating set

£
if for every pair X — Y of distinct morphisms, there exists a U € U and a
g

morphism 0:Y > U such that g o £ # 0 o g. An object U in C is said to be a co-
separator if {U} is a coseparating set, i.e., if the cofunctor Mor (—,U):C > SET
is faithful. If C is balanced, finitely cocomplete, and has a coseparating set,
then C is cowellpowered. Every complete wellpowered category with a coseparator
is cowellpowered and cocomplete. If C has products, then a U € Ob C is a coseparator

iff each X € Ob C admits a monomorphism X » || U.

EXAMPIE Every set with at least two elements is a coseparator for SET. Every
indiscrete topological space with at least two elements is a coseparator for TOP.

Q/Z is a coseparator for AB. None of the categories GR, RG, HAUS has a coseparating

set.

INJECTIVES

Given a category C, an cbject Q in C is said to be injective if the cofunctor
Mor (—,Q) :C - SET converts monomorphisms into epimorphisms. In other words: Q is
injective iff for each monomorphism f£:X - Y and each morphism ¢:X » Q, there exists

a morphigm g:Y > Q such that g o £ = ¢. A product of injective objects is injective.
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A category C is said to have enough injectives provided that for any X € Ob C,

there is a monomorphism X -~ Q, with Q injective. If a category has products and

an injective coseparator, then it has enough injectives.

EXAMPLE The injective objects in the category of Banach spaces and linear
contractions are, up to isomorphism, the C(X), where X is an extremally disconnected
compact Hausdorff space. In AB, the injective objects are the divisible abelian
groups {and Q/Z is an injective coseparator) but the only injective objects in GR

or RG are the final objects.
SOURCES AND SINKS

A source in a category C is a collection of morphisms fi:X > X indexed by

a st I and having a common domain. An n-source is a source for which #I = n.

A sink in a category C is a collection of morphisms fi:Xi + X indexed by a

set I and having a common codomain. An n-sink is a sink for which #I = n.
LIMITS AND COLIMITS

A diagram in a category C is a functor A:I -+ C, where I is a small category,

the indexing category. To facilitate the introduction of sources and sinks

associated with A, we shall write Ai for the image in Ob C of i € COb I.

(1im) Iet A:I -» C be a diagram -- then a source {fi:x > Ai} is said to

§
be natural if for each § € Mor I, say i » i, A&ofi=fj. A limit of A is a

natural source {)Zi:L -+ Ai} with the property that if {fi:X - Ai} is a natural

source, then there exists a unigue morphism ¢:X - L such that fi = ?‘i o ¢ for all
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i € Ob I. Limits are essentially unique. Notation: L = limIA (or 1im A).
(colim) Iet A:I > C be a diagram —— then a sink {fi:Ai + X} is said t

$

be natural if for each § € Mor I, say i ~ Jj, fi=fj o AS. A colimit of A is a

natural sink {Ei:zli + L} with the property that if {fi:Ai + X} is a natural sink,
then there exists a unique morphism ¢:L » X such that £,=09c° ﬂi for all i € Ob I.
Colimits are essentially unique. Notation: L = colimIA (or colim A).

There are a number of basic constructions that can be viewed as a limit or

colimit of a suitable diagram.
PRODUCTS AND COPRODUCTS

Iet I be a set; let I be the discrete category with Ob I = I. Given a
collection {X;:i € I} of objects in C, define a diagram A:I > Cby A, =X, (1 € I).
(Products) A limit {Iii:L > Ai} of A is said to be a product of the X;.
Notation: L =T X, (or Xt if X, =X for all i), f’i = Pr;, the projection from
i

T X; to X;. Briefly put: Products are limits of diagrams with discrete indexing
i

categories. In particular, the limit of a diagram having 0 for its indexing cate-
gory is a final object in C.
[Note: 2n object X in a category C is said to be final if for each objectY
there is exactly one morphism from ¥ to X.]
{Coproducts) A colimit {Iii:Ai + L} of A is said to be a coproduct of the

X;. Notation: L= i_LXi (for I - X if X, = X for all i), ¢; = in,, the injection
i



18.

fram Xi to _U_ X.. Briefly put: Coproducts are colimits of diagrams with discrete

1
indexing categories. In particular, the colimit of a diagram having 0 for its

indexing category is an initial object in C.
[(Note: An object X in a category C is said to be initial if for each object

Y there is exactly one morphiam from X o Y.]

EXAMPLE In the full subcategory of TOP whose objects are the locally connected
spaces, the product is the product in SET equipped with the coarsest locally
connected topology that is finer than the product topology. In the full subcategory
of TOP whose objects are the compact Hausdorff spaces, the coproduct is the Stone-

Sech compactification of the coproduct in TOP.

EQUALTZERS AND COEQUALTZERS

a
Iet I be the category 1 e " @ 2. Given a pair of morphisms u,v:X +~ Y in C,
b
'—A1=X T MAa=u
define a diagram A:I -+ C by & .
A2=Y Ab = vy

(Equalizers) An equalizer in a category C of a pair of morphisms u,v:X + Y
is a morphisn £:2 ~ X with u o £ = v o f such that for any morphism f£':2' + X with
ue f' = v o £' there exists a unique morphism ¢:2' » 2 such that £' = £ o ¢. The

£ ue f £
2-source X < Z > Y is a limit of A iff Z » X is an egualizer of u,v:X > Y.

Notation: 2 = eg{u,v).
[Note: Every equalizer is a monomorphism. A monomorphism is regular if it is

an equalizer. A regular monomorphism is extremal.]
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(Coequalizers) A coequalizer in a category C of a pair of morphisus
u,v:X >~ Y is a morphian f:¥Y - Z with £ e u = f ¢ v such that for any morphism
£f':¥ » 2" with f' o u= f' o v there exists a unique morphism ¢:2 -+ Z' such that

f fou f
f' = ¢ o £f. The 2-sink ¥ > 2 < X is a colimit of A iff Y » 2 is a

coequalizer of u,v:X + Y, Notation: 2 = coegf(u,v).
[Note: Every coequalizer is an epimorphism. 2n epimorphism is reqular if

it is a coequalizer. A regular epimorphism is extremal.]

REMARK There are two aspects to the notion of equalizer or coequalizer,
namely: (1) Existence of f and (2) Uniqueness of ¢. Given (1), (2) is equivalent
to requiring that f be a monomorphism or an epimorphiam. If (1) is retained and

(2) is abandoned, then the terminology is weak equalizer or weak coequalizer. For

example, HTOP, has neither equalizer s mor coegualizers but does have waak equalizers
and weak coequalizers.

EXAMPLE Given objects C, D in CAT and morphisms F,G:C » D in CAT, their

equalizer eq(F,G) is the inclusion inc of the subcategory of C on which F,G coincide:

F
inc —_—
———
where
" Obeq(F,G) = {X € Ob C:FX = GX}
Mor eq (F,G) = {f € Mor C:Ff = Gf}.

EXAMPLE Take C

I

SET and consider a pair of morphisms u,v:X - Y. Iet ~ be
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the equivalence relation generated by {(u(x),v(x)):x € X} -~ then the canonical

map Y » Y/~ which assigns to each y € Y its equivalence class [y] is a coequalizer

of u,v.
PULLBACKS AND PUSHOUTS
a b T OfiX > 2
Iet I be the category 1 ¢ —> ® «<—— @ 2. Given morphisms in
3 gy > 2
bh=%X |~ ma-=t¢
C, define a diagram A:I -+ C by b, =Y & .
- _ bb=g
B A3 = Z
£ g
(Pullbacks) Given a 2-sink X > 2 < Y, a comutative diagram
n
P > Y
gl n!
«il lg is said to be a pullback sguare if for any 2-source X <— P'—— Y
X - > Z
f

with £ ¢ £' = g o n' there exists a mmique morphism ¢:P' + P such that £§' = £ o ¢

2 n
and n*' = 1n o ¢. The 2-source X < P ——> Y is called a pullback of the 2-sink
£ g
X > 7 < Y. Notation: P =X Xy Y. Limits of A are pullback squares and
conversely.
a b T f:Z2 > X
Iet I be the category 1 @ <— e ——> ® 2. Given morphisms in
3 gz » X
by =X T pra=f
C, define a diagram A:;I + C by by =Y & .
Z _p=g
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£ g
(Puslouts) Given a 2-source X «—— 2 —— Y, a commutative diagram

g

Z > Y
g' n'
£ l l n is said to be a pushout gpare if for any 2-sink X > P'< Y

X > P

€

with £' ¢ £ = n' o g there exists a unique morphism ¢:P -~ P' such that £' = ¢ o &

€ n
and n' = ¢ en. The 2-sink X —> P < Y is called a pushout of the 2-source

£ g
4

X < > Y. Notation: P = X Y. Colimits of A are pushout squares and
Z

conversely.

REMARK The result of dropping wniqueness in ¢ is weak pullback or weak pushout.

Examples are the commutative squares that define fibration and cofibration in TOP.

EXAMPIE Iet X and Y be topological spaces. Iet A » X be a closed embedding

and let f:A - Y be a continuous function -~ then the adjunction space X Llf Y

f
corresponding to the 2-source X <«— A > Y is defined by the pushout square
f
> Y
X > X uf Y,

f being the attaching map. Agreeing to identify A with its image in X, the

T X -A
restriction of the projection p:X || ¥ + X e ¥ to l is a homeomorphism
Y
- X~-A ~ open - p(X-Aa)
of onto an subset of X uf Y and the images
4 _ closed p(Y)

partition X Uf Y.
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FILTERED CATEGORIES AND FINAL FUNCTORS

Iet I 2 0 be a small category —— then I is said to be filtered if

(Fl) Given any pair of objects i,j in I, there exists an object k and
i-+k
morphisns ;
_ i~k
(Fz) Given any pair of morphisms a,b:i -~ j in I, there exists an object
k and a morphiam c:j > k such that c ¢ a = ¢ ° b,
Every nonempty directed set (I,<) can be viewed as a filtered category I,

where Ob I = I and Mor(i,j) is a one element set when i < j but is empty otherwise.

EXAMPLE Iet [N] be the filtered category associated with the directed set
of non-negative integers. Given a category C, denote by FIL(C) the functor cat-

egory [[N],Cl —- then an object (X,f) in FIL(C) is a sequence {Xn,fn}, where
X €O0bCa&f €Mor(X X, ), and a norphian ¢: (X,£) + (¥,g) in FIL(C) is a

sequence {¢ }, where ¢ € Mor(X ,Y ) &g o ¢ =¢ .4 °f.

(Filtered Colimits) A filtered colimit in C is the colimit of a diagram

A:I » C, where I is filtered.

(Cofiltered Limits) A cofiltered limit in C is the limit of a diagram

A:I ~ C, where I is cofiltered.
[Note: A swall category I # 0 is said to be cofiltered provided that _ZEOP

is filtered.]

EXAMPLE A Hausdorff space is compactly generated iff it is the filtered
colimit in TOP of its compact subspaces. Every compact Hausdorff space is the

cofiltered limit in TOP of compact metrizable spaces.
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Given a small category C, a path in C is a diagram o of the form X0 ->

2 TR SR T S (n = 0). One says that ¢ begins at X and ends at X
The quotient of Ob C with respect to the equivalence relation obtained by de-
claring that X' ~ X'' iff there exists a path in C which begins at X' and ends

at X'' is the set U (C) of components of C, C being called connected when the
cardinality of Ty (C) is one. The full subcategory of C determined by a component

is conmnected and is maximal with respect to this property. If C has an initial
abject or a final object, then C is connected.

[Note: The concept of "path" makes sense in any category.]

EXAMPIF. The assignment
TOP -+ SET

X > Ty (1IX)

is a functor.

[Note: The elements of Ty (IX) are the path components of X.]

Iet I # 0 be a small category -- then I is said to be pseudofiltered if

a:i »j
(PFl) Given any pair of morphisms in I, there exists an object
b:i »k
T e+ 2
£ and morphisms such that ¢ e a =4 o b;
d:k » £

(PF2) Given any pair of morphisms a,b:i + j in I, there exists a morphism
c:j »k such that c o a=c¢c o b.

I is filtered iff I is connected and pseudofiltered. I is pseudofiltered

iff its components are filtered.
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i

Given smll categories » a functor V:J » I is said to be final provided
J

that for every i € Ob I, the comma category ]Ki,vl is nonempty and connected. If

J is filtered and V:J > I is final, then I is filtered.

[Note: A subcategory of a amll category is final if the inclusion is a
final functor.]

Iet V:J > I be final. Suppose that A:I » C is a diagram for which colim A o V
exists —— then colim A exists and the arrow colim A o V » colim A is an isomorphiam.

Corollary: If i isa final cbject in I, then colim A = A,.

[Note: Analogous considerations apply to limits so long as "final" is re-

placed throughout by "initial".]

REMARK Iet I be a filtered category —— then there exists a directed set (J,<)

and a final functor V:J - I.

Limits commute with limits. In other words, if A:I x J > C is a diagram, then

wmder the obvious assawptions
lJ.m:-[ 11m§ Az lJ_m]-._x‘2 A= l:.m‘le A= l:.m‘z lJ_mE A.

Likewise, colimits commute with colimits. In general, limits do not commute
with colimits. However, if A:I x J - SET and if I is finite and J is filtered,
then the arrow cc:‘].;tm‘2 llml A~ l:un;[. col.nng A is a bijection, so that in SET
filtered colimits commute with finite limits.

[Note: It is also true that in GR or AB, filtered colimits commute with finite

limits. But, e.g., filtered colimits do not commute with finite limits in SET:.]



COMPLETENESS AND COCOMPLETENESS

A category C is said to be complete (cocomplete) if for each small category

I, every A € Ob [I,C] has a limit (colimit). The following are equivalent.

(1) C is complete (cocomplete).
(2) C has products and equalizers (coproducts and coequalizers).

(3) C has products and pullbacks (coproducts and pushouts) .

EXAMPLE The categories SET, GR, and AB are complete and cocomplete. The same

holds for TOP and TOP, but not for HIOP and HTOP,.

[Note: HAUS is complete; it is also cocamplete, being epireflective in TOP.]

THEOREM CAT is complete and cocomplete.

[Note: 0 is an initial object in CAT and 1 is a final object in CAT.]

A category C is said to be finitely complete (finitely cocomplete) if for each

finite category I, every A € Ob [I,C] has a limit (colimit). The following are

equivalent.
(1) € is finitely camplete (finitely cocomplete).
(2) C has finite products and equalizers (finite coproducts and coequalizers).

(3) C has finite products and pullbacks (finite coproducts and pushouts).

EXAMPLE The full subcategory of TOP whose objects are the finite topological
spaces is finitely complete and finitely cocamplete but neither complete nor co-

complete. A nontrivial group, considered as a category, is neither finitely com-

plete nor finitely cocamplete.

If C is small and D is finitely camplete and wellpowered (finitely cocomplete

and cowellpowered), then [C,D] is wellpowered (cowellpowered).
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EXAMPLE SET(*), GR(*), AB(*), TOP(+) f{or HAUS (+)), CAT(+) are wellpowered
and cowellpowered.

[Note: The arrow category C(+) of any category C is isomorphic to [2,C].]
PRESERVATION

Iet F:C » D be a functor.

(@) F is said to preserve a limit {Ei:L > Ai} (colimit {Ki:Ai + L}) of
a diagram A:I > C if {F{,:FL > FA;} ({F€;:FA; + FL}) is a limit (colimit) of the

diagram F o A:I - D.
(b) F is s=id to preserve limits (colimits) over an indexing category I
if F preserves all limits (colimits) of diagrams A:I -~ C.
{¢) F is said o pressrve limits {colimits) if F preserves limits (colimits)

over all indexing categories I.

EXAMPLE The forgetful functor TOP - SET preserves limits and colimits. The
forgetful functor GR ~ SET preserves limits and filtered colimits but not coproducts.
The inclusion HAUS + TOP preserves limits and coproducts but not coequalizers.

The inclusion AB ~ GR preserves limits but not colimits.
Mor (X,—)
There are two rules that determine the behavior of with respect

Mor (—,X)
to limits and colimits.

(1) The functor Mor (X,

) :C » SET preserves limits. Symbolically, there-
fore, Mor({¥X,lim A} = lim(Mor (X,—) < A).
(2) The functor Mor {(—,X) :QOP + SET converts colimits into limits. Sym—

bolically, therefore, Mor(colim A,X) = lim(Mor (—,X) o A).
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Limits and colimits in functor categories are computed "object by obiject”.
So, if C is a small category, then D (finitely) complete => [C,D] (finitely)

camplete and D (finitely) cocamplete => [C,D] (finitely) cocomplete.

In particular: (3 = [COP,SET] is complete and cocomplete.

—_—

[Note: An initial object #. in (:2 is the constant presheaf with value #.
C

A final object %, in é is the constant presheaf with value {x}.]

@]

N.B. The Yoneda embedding YC:_(_: > (f; preserves limits; it need not, however,

preserve finite colimits. E.g.: Suppose that C has an initial object ﬁc -— then

h, and @ are not isomorphic.
2 C C

EXAMPIE Iet G be a nontrivial group, considered as a category G —— then the

category of right G-sets is the category IQOP,SET] , thus is complete and co-

complete.

THEOREM Let C be a small category -- then every presheaf F is a colimit of
representable presheaves: There exists a small category EF and a functor

Apiln ~ C such that
colim Y(_Z ° AF = F.

[Let _:I_IF be the category whose objects are the pairs (X,x), where X € Ob C
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and x € FX, and whose morphisms (X,x) » (X',x') are the f € Mor(X,X") such that
(Ff)x' = x -~ then _IEF is a small category and the assignment
(XIX) R X

((X,x) >(X',x")) » £

defines a functor AF:;F ~ C with the stated properties. In this connection, bear
in mind that
Nat (hx,F) <«—> FX,

s0 each (¥X,x) € Ob I determines a natural transformation = :hX > F and
~F (X,x)

v £:(X,x) » X',x"), we have

{11
1]

° Yg(f} .

(X,x) ~ T(X',x")

[Note: Take F = hX -— then _I_bX has a final object, namely the pair

(X,idy) -]

REMARK Iet C/F = I, —- then the canonical arrow

A I
C/F + C/F

is an equivalence.

[Note: Some authorities write gro, F for I, and call it the Grothendieck

construction on F.]
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PRESENTABILITY

Fix a regular cardinal « and let I # 0 be a small category — then I is said
to be k-filtered if

(Fl - k) Given any set {iu:oe € A} of objects in I with #A < k, there exists

an object k and morphisms ia - k;

f
a

(F, - ) Given any set {i

> jia € A} of morphisms in I with #A < g,

there exists an object k and a morphism £:j - k such that f o fcx is independent of .

N.B. Take k = §; — then §~filtered = filtered and «—filtered => filtered.

Let C be a cocomplete category -- then an object X € Ob C is k—definite if
Mor (X,—) preserves k~-filtered colimits, i.e., if for every x-filtered category I
and for every diagram A:I - C, the canonical arrow
c:ol:.ml Mor(x,Ai) > IVk)r(X,oolJ_m_I‘ Ai)
is bijective.
[Note: Obviously, if «' > k (k' regular), then
X k—definite => X k'-definite.]

EXAMPLE Take C = SET —- then X is k—definite iff #X < k. On the other hand,

in C = TOP, no nondiscrete X is k—definite.

Let C be a cocomplete category — then C is said to be k-presentable if up to

isomorphism, there exists a set of k—definite objects and every object in C is a
k-=filtered colimit of k~definite objects.

N.B. If C is k-presentable and if «' > k (k' regular), then C is k'-presentable.
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[Note: This becomes clear in view of the following characterization: A
cocamplete category C is k-presentable iff it admits a set {Gi} of strong sep-

arators, where each Gi is k—definite.]

EXAMPIE SET and CAT are ﬁo—presentable but TOP is not k-presentable for

any «.

In SET, k-filtered colimits commute with k-limits.
[Note: In this context, "k-limit" means the limit of a fumctor F:C - SET,

where C is a small category with #Mor C < «.]

LEMMA Suppose that C is k-presentable —- then Vv X € Cb C, there exists a

regular cardinal Ky such that X is k,~definite.

X
PROOF Fix a k-filtered category I and a diagram A:I - C such that X = colim A,

where V 1, Ai is k-definite. Choose a regular cardinal Ky =z k' > k such that

#or I < ' —— then Vv i, A; is k'-definite and for any k'-filtered category I' and

any diagram A':I' -+ C, we have

colim Mor(X,A' )
Il il

143

coZlemI ' Mor (COlm; Ai A

')

1

u

: : [
COlmI’ lJmI Mor (z’li,Ai')

13

1i colim Mor (A, ,A'
:un;_ I' l' i!)

-

12

llm;_ Mor(Ai,collmI'A;‘}
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&4

Mor(colimI Ai,colim AY )
= I' i

0

Mor (X,colim A' ).
I' it

If C is k-presentable, then for all A,B € Ob C, the categories A\C, C/B are
K=-presentable.

If C is k-presentable and if I is a small category, then [I,C] is k-presentable
and the k-definite objects in [I,C] are the functors A:I - C such that v i € Ob I,

Ai is k~definite. So, e.g.,

C k-presentable => C(+) x-presentable.

EXAMPLE If C is a small category, then

= 1c®,sem

12>

is }{o—presentable.

[Note: Every full, reflective subcategory of C which is closed under the

formation of k-filtered colimits is k-presentable.]

A category C is presentable if it is k-presentable for some <. Every

presentable category is complete and cocamplete, wellpowered and cowellpowered.

EXAMPLE Suppose that C is a Grothendieck category with a separator —- then C

is presentable.
ACCESSIBILITY

Iet k be a regular cardinal. Suppose that C is a category which has k-filtered
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colimits —— then C is said to be x-accessible if up to isomorphism, there exists

a set of k-definite objects and every object in C is a k~filtered colimit of
k-definite cbjects.

[Note: Obviously,
C k-presentable => C k-accessible.]

EXAMPLE The category C whose objects are the sets and whose morphians are the

injections is g-accessible but not presentable.

REMARK If k' > k {k' regular), then it need not be true that
C k—accessible => C k'-accessible.
Still, there is a transitive relation >> on the reqular cardinals such that
K' >> gk => k' >«
and if k' >> K, then
C k-accessible => C «'-accessible.

In addition, for any set K of regular cardinals, one can find a regular cardinal

k' such that ' >> ¢ for all Kk € K.

A category C is accessible if it is k-accessible for some k.
[Note: On the basis of the foregoing, there exist arbitrarily large regular

cardinals k such that C 1s k-accessible.]

REMARK In an accessible category, idempotents split. On the other hand, every

small category in which idempotents split is accessible.

N.B. Suppose that C is accessible -— then V X € Ob C, there exists a reqular
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cardinal Ky such that X is Kx—definite.

LEMMA The following conditions on an accessible category C are equivalent.
(a) C is presentable.
(b) C is cocomplete.

(c) C is camplete.

If C is accessible, then for all A,B € Gb C, the categories A\C, C/B are
accessible.

If C is accessible and if I is a small category, then [I,C] is accessible.

[Note: In contrast to what happens in the presentable situation, the degree
of accessibility of [I,C] may be strictly larger than that of C. However, in the

special case when C = 2, we have

C k-accessible => C(+) xk-accessible. ]

Suppose that C and D are k-accessible —- then a functor F:C + D is k-accessible

if F preserves k-filtered colimits.
[Note: F is accessible if it is k-accessible for some «.]

E.g.: If C is accessible, then the Mor(X,—) (X € Ob C) are accessible.

LEMMA A functor F:C + SET is accessible iff F is a colimit of representable
functors:

F = ColimI Mor (Xi,-——} .

EXAMPLE Take C = SET, D = SET and let F:SET ~ SET be the functor that sends

X to ZX {(the set of all subsets of X) and sends f:X - Y to the arrow
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-- then F is not accessible.
A - £(A)

LEMMA Let C and D be accessible categories -— then a functor F:C -~ D is
accessible iff v Y € Ob D, the composition Mor(Y,—) ° F:C - SET is accessible.

If {Fi:i € I} is a set of accessible functors, then there exist arbitrarily
large regular cardinals « such that each F. is k~accessible and preserves k-definite

objects (i.e., X k—-definite => Fix k=definite) .

ADJOINTS
T c T FiC D
Given categories , functors are said to be an adjoint pair
_ D _GD~-¢
T Mor o (FOP x id) op
if the functors = from ¢ x D to SET are naturally isomorphic,
Mor ¢ (id x G)
OP
- €
Xeob g
i.e., if it is possible to assign to each ordered pair a bijective map
Y € 0b D

E'X Y:E»br(Fx,Y) - Mor (X,GY) which is functorial in X and Y. When this is =0, F is
4

a left addint for G and G is a right adpint for F. AMAny two left (right) adjoints

for G (F) are naturally isomorphic. Ieft ad-joints preserve colimits; right adjoints
preserve limits. In order that (F,G) be an adjoint pair, it is necessary and

Tue€ Nat(idC,G o F)

and sufficient that there exist natural transformations
V € Nat(p o G,idD)
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il

(Gv) o (UG) idG

subject to . The data (F,G,y,v) is referred to as an
(VE) o (Fu) idF

i

u:idc—>G o F

adjoint situation, the natural transformations - being the arrows
viF e G » J'.d.D

of adjunction.

¥ X€EObC
N.B. , we have
VY€EObD
X > GFX
Yy
__FGY > Y.
(Gv) o (UB) = idG

Therefore, when explicated, the relations become

(VF) o (Fu) = id,

- Yoy Gvy
GY > GFGY > GY
Fuy VFX
KX > FGFX > FX
with
B! = id

v ° Yoy cY

Vpx © FHy = idgy.

REMARK Given an adjoint situation (F,G,u,v), VX €0 C& Vv Y € 0b D,
::X’Y:l‘br(FX,Y) -+ Mor (X,GY)

sends g € Mor (FX,Y) to Gg o By € Mor(X,GY), so v £ € Mor(X,GY) there exists a
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unique g € Mor (FX,Y) such that £ = Gg ¢ Ve Conversely, starting from

EX Y:Mor FX,Y) - Mor (X,GY),
’
specialize and take Y = FX — then the

My = SX,X(ldFX) € Mor (X,GFX)

are the components of a u € Nat(idC,G o ).
-1 .
[Note: The story for © © and v is analogous.]

LEMMA Iet I be a smll category, C a complete and cocomplete category —— then
the constant diagram functor K:C - [I,C] has a left adjoint, viz. colim :[I,C] » C,

and a right ad pint, wviz. limI: [I,Cl »~C.
EXAMPLE The forgetful functor U:GR - SET has a left adpint that sends a set
X to the free group on X.

EXAMPLE The forgetful functor U:TOP - SET has a left adjint that sends a set
X to the pair (X,7), where 1 is the discrete topology, and a right adpint that

sends a set X to the pair (X,1), where 1 is the indiscrete topology.

EXAMPLE The forgetful functor U:CAT - PRECAT has a left adpint that sends a

precategory G to the free category generated by G.

EXAMPLE Iet wO:CAT -+ SET be the functor that sends C to TTO(Q) , the st of

component s of C; let dis:SET - CAT be the functor that sends X to dis X, the
discrete category on X; let ob:CAT -+ SET be the functor that sends C to Ob C, the

set of objects in C; let grd:SET - CAT be the functor that sends X to grd X, the
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category whose objects are the elements of X and whose morphisns are the elements

of X x X — then To is a left adjoint for dis, dis is a left adjoint for ob, and

ob is a left adjint for grd.

[Note: T, preserves finite products; it need not preserve arbitrary products.]

EXAMPLE Iet iso:CAT - GRD be the functor that sends C to iso C, the groupoid
whose objects are those of C and whose morphisms are the invertible morphisms in
C — then iso is a right adjoint for the inclusion GRD » CAT. Iet 7w

l:CA’I‘ - GRD

be the functor that sends C to T (€), the fundamental groupoid of C, i.e., the

localization of C at Mor C —- then ™ is a left adjoint for the inclusion GRD -+ CAT.

EXAMPLE Suppose that C has finite products and finite coproducts -- then the

diagonal functor A:C + C x C has the coproduct |

:C x C »> C as a left adjoint and

the product x:C x C »~ C as a right adjoint.

EXAMPLE Let X%:TOP, - TOP, be the suspension functor and let Q:TOP, - TOP, be
the loop space functor — then (Z,0) is an adjoint pair and drops to HTOP,:[IX,Y] =
X, 1.

An adjoint equivalence of categories is an adjoint situation (F,G,u,v) in

which both yu and v are natural isomorphisms.

IEMMA A functor F:C - D is an equivalence iff F is part of an adjoint equiv-

alence.

REMARK Replacing categories by equivalent categories need not lead to equiv-

alent results.
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COMPOSITION 1AW Let

Flzg +D
{FlIGlIUl’\)l)
B Gl:l_f_) + C
and
- F,tD~>E
(FZ’GZ’UZI\)Z)
Gzzg > Q

be adjoint situations -- then their composition is the adjoint situation
® © Fyr G © Gyr Hpyr Vpp)s

where Moy is computed as

Hy G HoFy

> G, o G, ©F, o F

1 2 2 1

F2OFlOGlOGZ—w———?FZ°ldQOG2=F2°G2 >:LdE.

SPECIAL ADJOINT FUNCTOR THEOREM Given a complete wellpowered category D which

has a coseparating set, a functor G:D + C has a left adjoint iff G preserves limits.

EXAMPLE A functor from SET, AB or TOP to a category C has a left adjoint iff

it preserves limits.

LEMMA Every left or right adjoint functor between accessible categories is

accessible.
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THE SOLUTION SET CONDITION

Iet C and D be categories and let F:C + D be a functor — then F satisfies

the solution set condition if for each Y € Ob D, there exists a source {gi:Y > E’Xi}

such that for every g:Y » FX, there is an i and an f:Xi + X such that g = Ff o g;

93
Y ——— FX;
gl lFf
FX ———  FX,

E.g.: BEvery accessible functor satisfies the solution set condition.

GENERAL ADJOINT FUNCTOR THEOREM Given a complete category D, a functor
G:D » C has a left adjoint iff G preserves limits and satisfies the solution set

condition.

ADJOINT FUNCTOR THEOREM Given presentable categories C and D, a functor
G:D ~ C has a left adjoint iff G preserves limits and k-filtered colimits for some

regular cardinal «.

A full, isomorphism closed subcategory C' of an accessible category C is

accessibly embedded if there is a regular cardinal k such that C' is closed under

k-filtered colimits.

THEOREM Let C be an accessible category and let C' be an accessibly embedded
subcategory — then C' is accessible iff the inclusion functor C' - C satisfies

the solution set condition.
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A full, isomorphism closed subcategory C' of an accessible category C is

said to be an accessible subcategory if C' is accessible and the inclusion functor

1':C' + C is an accessible functor.

REMARK If C' is an accessible subcategory of C, then C' is accessibly
embedded in C and 1' satisfies the solution set condition.
If C is an accessible category and if {Ci:i € I} is a set of accessible sub-
categories, then .21 Ci is an accessible subcategory of C.
1
If F:C »~ D is an accessible functor and if D' is an accessible subcategory of

D, then the inverse image Ft (D') is an accessible subcategory of C.

[Note: Define F T (D') by the pullback square

F_l @1 ) N ]-'J'

£

1Y ~—

>

-]

REFLECTORS AND COREFLECTORS

A full, isomorphism closed subcategory D of a category C is said to be a

reflective (coreflective) subcategory of C if the inclusion D + C has a left (right)

adjoint R, a reflector (coreflector) for D.

[Note: A full subcategory D of a category C is isomorphism closed provided

that every object in C which is isomorphic to an object in D is itself an object

in D.]

EXAMPIE Fix a topological space X — then the category of sheaves of sets on
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X is a reflective subcategory of the category of presheaves of ssts on X.

EXAMPLE The category CG of compactly generated topological spaces is a co-
reflective subcategory of TOP, the coreflector k:TOP -~ OG sending X to kX, its

compactly generated modification.

Iet D be a reflective subcategory of C, R a reflector for D —- then cne may

attach to each X € Ob C a morphigm ry:X -+ RX in C with the following property:

Given any Y € Ob D and any morphisn f:X + Y in C, there exists a unique morphism

g:RX+Yin]_)_suchthatf=g°rX. Iftherxareepinoxphims, then D is said

to be an epireflective subcategory of C.

EXAMPIE AB is an epireflective subcategory of GR, the reflector sending X to

its abelianization X/[X,X].

A reflective subcategory D of a camplete (cocomplete) category C is camplete
{cocomplete) .
[Note: Let A:I + D be a diagram in D.
(1) To calculate a limit of A, postcompose A with the inclusion D + C and

let {£;:L ~ A} be its limit in C — then L € Ob D and {£,:L + A;} is a limit of A.

(2) To calculate a colimit of A, postcompose A with the inclusion D~ C
and let {KizAi + L} be its colimit in C —- then {rL ° Ei:Ai + RL} is a colimit

of A.]

EPIREFLECTIVE CHARACTERIZATION THEOREM If a category C is complete, well-
powered, and cowellpowered, then a full, isomorphism closed subcategory D of C
is an epireflective subcategory of C iff D is closed under the formation in C of

products and extremal monomorphisms.
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ENDS AND COENDS

ILet I be a small category, A:E_OP x I + C a diagram.

{(Ends) A source {fi:X - 'ﬁ‘i i} is said 1o be dinatural if for each § € Mor I,
A e as =
§

say i >3,

A(id,8) o fi = A(S,id) o fj.

An end of A is a dinatural source {ei:E > A i} with the property that if

{fi:X - Ai i} is a dinatural source, then there exists a unique morphian ¢:X - E

such that fi =€ o ¢ for all i € Ob I. Every end is a limit (and every limit is

an end). Notation: E=fiAii (orfl A) .

r

(Coends) A sink {fi:Ai e X} is said to be dinatural if for each § € Mor I,
¥
8

sy i >3,

fi o A(§,id) = fj o A(id,d).

A coend of A is a dinatural sink {ei:&i i E} with the property that if
D I 4

{fi:Ai ;7 X} is a dinatural sink, then there exists a unique morphism ¢:E »> X
I 4

s;chthatfi=¢oeiforallieob_§. Every coend is a colimit (and every
i I
colimit is a coend). Notation: E = [ Ai i or [ N).

There are a number of basic constructions that can be viewed as an end or

coend of a suitable diagram.
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F:I ~»
EXAMPLE Iet I be a small category and let be functors -- then the
G:I ~»

I+
10

@'

assignment (i, j) - Mor(Fi,Gj) defines a diagram _]_:OP x I » SET and Nat(F,G) is the

end fi Mor (Fi,Gi).

EXAMPLE Suppose that A is a ring with unit -- then a right A-module X and a
left A~-module Y define a diagram AOP x A -~ AB (tensor product over /) and the
coend JAX@YisxﬁAY, the tensor product over A.

[Note: In context, view A as a category with one object.]

IEMMA Let I be a small category, C a complete and cocomplete category.

(L) Iet
g > 1% x 1, ¢

be the functor given on objects by
IX(1i,]J) = Mor(i,j) - X.

Then L is a left adjoint for

(R) Let

be the functor given on objects by

RX(J_,]) - XMor(jli) .

Then R is a right adjoint for
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INTEGRAL YONEDA LEMMA Iet I be a small category, C a complete and cocomplete

category —- then for every F € Ob[_I,OP,_Q] '

i . o .
I Mor (-—,1) Fi = F = fi Pi

[We shall verify the first of these relations. So take G € Ob[EOP,(_i] and

compute:

Nat (L Mor(—,1i) - Fi,q)

144

I8 Mor (f* Mor (3,i) - Fi,G3)

t

fj J; Mor (Mor (3,1) - Fi,GJ)

0

S5 fj Mor Mor (j,1) -+ Fi,GJ)

Mor (j,1)

1

fi fj Mor (Fi,G3)

0

Iy fj Mor (Mor (j,1) ,Mor (Fi,G3j))

143

fi Nat(hi,Mor {Fi,G—))

n

J i Mor (Fi,Gi) (Yoneda lemma)

= NatF,G).
Since G is arbitrary, it follows that

™ Mor(—,i) - Fi = F.]

EXAMPIE If X is a simplicial set, then



45.

P o (i) g mx s s e teE (L)

KAN EXTENSIONS

0

THEOREM Given small categories , a camplete category S, and a functor
D

K:C ~ D, the functor K*:[D,S] ~ [C,S] has a right adjoint K.:[C,S] ~ [D,S].

Let T € Ob[C,S8] -- then K.T is called the right Kan extension of T along K.

In terms of ends,

_ r (Y ,KX)
(KDY = [, v e )

Vip

There is a canonical natural transformation X,T o K

- > T. It is a natural

isomorphign if K is full and faithful.
[Note: In general, the diagram

K

N
v
v}

3
N e

U —
&
M

does not commute. ]

17

THEOREM Given small categories , a cocamplete category S, and a functor

1o

K:C ~ D, the functor K*:[D,S] » [C,S] has a left adjoint K,:[C,S] » [D,S].

Iet T € Ob[C,S] —— then KT is called the left Kan extension of T along K.
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In terms of coends,

(K,TY = /& Mor (KX,Y) - TX.

u
There is a canonical natural transformation T . > (K !T) ¢ K. It is a natural
igomorphian if K is full and faithful.
[Note: In general, the diagram
K
>
KT

N «— 1o

does not commute. ]

EXAMPLE Suppose that C and D are small categories and let K:C + D be a

functor -- then KOP:(_;OP - EOP and the precomposition functor D -+ C has a left

adjoint C > D, call if K (technically, K = (K),). Given X € Ob C and G € Ob D,

we have

Nat((K o Y) (X),6)

= Nat (K (hy) ,G)
= Nat(hx,G o KOP)
=~ GERX) .

n the otler hand,

Nat((YD o K} (X} ,G)

134

Nat (hKX'G)

G(RX) .

34



47.

Therefore

Ro¥, =Y oK.

1y
lw

[Note: One can arrange matters so that

KeoY,= EOK.]

REMARK The functor K,:[C,S] + [D,S] preserves colimits but it need not pre-

grve finite limits. E.g.: Take C = d2 (the discrete category with two objects),

D=1, S= SET — then K, is the arrow

SET X SET + SET

that sends (X,Y) to X || Y and coproducts do not cammte with products in SET.

The construction of the right (left) adjoint of K* does not use the assumption
that D is small, its role being to ensure that [D,S] is a category. For example,

the functor Yé:[t_:‘,g] -+

[C,S] has a left adjoint that sends T € Ob[C,S] to I‘T € 0b[C,S], where T = I‘T ° YC.

if C is small and S is cocomplete, then taking K = YC'

On an object F of C,

ILF =/ Nat(¥.X,F) - TX
™ o
~ X Nat (b, F) - TX
= fx FX - TX.

N.B. I‘T is the realization functor; it is a left adjoint for the singular

functor sinng + C which is defined by the prescription
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(sinTY)X = Mor (TX,Y).

[Note: The arrow of adjunction FT o ST - ids is a natural isomorphism iff

S is full and faithful.]

EXAMPLE While not reflected in the notation, the pair (I‘T,ST) depends, of
course, on the choice of S. E.g.: Take S=C -- then v T € Ob[C,C],

Ry T .

I F = colim(groc F > C > C),

T 9TO0, F -~ C the projection. Specialize further and take T = YC:

I, Fe0bC
e

and VY € Cb C,

i

(Ty F)Y i Y

e

124

fx FX - Mor(Y,X)
= fX FX x Mor (¥,X)
= ./'X Mor (Y,X) x FX

fXMor(Y,X) - FX

3]

xQ

FY (integral Yoneda lemma).

I.e‘ :

3
e
a2

v F =z colnn(grog F > C > C}.

o]
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REMARK Take S = CAT and let y € Ob[C,CAT] be the functor that sends X to

C/X — then the realization functor FY assigns to each F in C its Grothendieck

construction:

FyF - grog F.

From the definitions,

Nat(K,T,T') = Nat(T,K*T') = Nat(T,T' ¢ K},
where

T € Ob[C,S]
T € Ob[D,S].

So, V o € Nat(T,T' o K), there is a unique B € Nat(K,T,T') such that

oa=K*8°uT=BK°uT.

c
Now drop the assumptions on and S and suppose that they are arbitrary.
D
Iet K:C »~ D be a functor and let T:C +~ S be a functor —— then a left Kan extension

of T along K is a pair (L;T,up), where L,T:D » S is a functor and
g € Nat(T,.I_;KT o K), with the following property: v T' € Ob[D,S] and

¥ o € Nat(T,T' o K}, there is a wnique B € Nat(;.KT,T') such that o = BK »© Hrpe

Schematically:
T T
“I:JKT o K > T o K.
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N.B. If (L%T,u,i,), ({._%'T,u,i,') are left Kan extensions of T along K, then 3
a unique natural isomorphism E:I‘-‘KT - g_.f(‘T such that u,i' = 5K o u,i,.

[Note: Conversely, given a left Kan extension (I;.I'(T,u,i,) of T along K, a

' ' - L ":. fad : ——
functor L‘K T € Ob[D,S] and a natural isomorphism ...I_.%‘I‘ > H('T' put u&,' = %K o u,i,
then (EI'('T'“&") is a left Kan extension of T along K. Proof: Determine

B & Nat(;.l'{T,T‘) uniquely per a € Nat(T,T' o K) and write

-1

(B oE )KOp,i“=(BoE_l)K°EKOp&,
= BK o T Ko Ko yh=gKo (50 o E)Ko
= - T - - T
= (Bo=tomKo =Koy =0
= = T T~ %

which settles existence. Uniqueness is clear.]
LEMMA Suppose that K:C - D has a right adjoint L and let
¢:id§ + L oK

w:KOL»idD

be the arrows of adjunction -- then the pair (T o L,T¢) is a left Kan extension

of T along K.

REMARK The notion of a right Kan extension (BKT,\)T) is dual.
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