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Scnre say follow th= rroney, I say follow the arrows. 



ABSTRAcr 

Thi s l::xx>k an account of certain development s in categorical hoJro topy 

't:lEory that have taken place since the year 2000. Serre aspects have been given 

the complete treat:n:ent (i.e. I proofs in all detail) I \\1hile others are rrerely 

survejed. 'Iherefore a lot of ground is covered in a relatively compact rnarmer, 

thus giving tre reader a feel for the "big picture" without getting bogged down 

in the "ni tty-gri tty" . 
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MATTERS SIMPLICIAL 

VEF1 NIT1 ONS ArlV NOTA T1 ON 

~ is the category wmre objects are t.."1e ordered rets [n] :: {O,l, ..• ,n} 

(n ;<: 0) and whore rrorphisns are the order preserving maps. In~, every rrorphism 

can be written as an ep.im:>rphisn followed by a rronorrorphism and a rrorphisn is a 

rronorrorphisn (ep.im:>rphisn) iff it is injective (surjective). The face opera iDrs 

are the rronorrorpbisns o~: [n - 1] -+ [n] (n > 0, 0 $ i $ n) defined by omitting 

the value i. The degeneracy operaiDrs are the ep.im:>rphisns or:: [n + 1] -+ [n] 
1 

(n ;<: 0, 0 $ i $ n) defined by repeating the value i. Suppressing supers::::ripts, 

if a E Mor{ [m], [n]) is not the identity, then a has a mique faciDrization 

a= (0. 0 ... 0 6. ) 0 (0. 0 . .. 0 o. ) , 
11 ]. Jl Jq P 

where n ;<: i l > . . . > i ;<: 0, 
P 

0 $ jl < ... < j < m, q and m + p = n + q. Each 

a E .Mar ( [m] , [n]) determines a linear transfonra tion rrn+ 1 
-+ Rn+ 1 which restric ts 

a m n ? n iD a map t:.:/:i. -+ Ii. Thus there is a fmctor t:..:Q -+ 'lOP that rends [n] to Ii 

and a to /1a. Since the objects of Q are themselves sma.ll categories, there is 

ala::> an inclusion l:/1 -+ CAT. 

Given a category ~, write SIC for the filllctor category [QOP ,~] and COSIC 

for the fmctor category [Q,~J -- then by definition, a simplicial object in ~ 

is an object in SIC and a cosimplicial object in g is an object in COSIC. 

EXAlYJPLE The Yoneda en:itedding 

Y/1 E Ob[Q,QJ, 
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A 

SO Y /J. is a cosimplicial object in ~. 

SIMPLICIAL SETS 

Specialize to £ = SET -- then an object in SISET is called a simplicial set 

and a rrorphisn in SISET is called a simplicial map. Given a simplicial set X, 

putX = X([n]), so for a:[m] + en], Xa:X + X. n -n m 

si are connected b¥ the simplicial identities: 

d. 0 d. = d. 1 0 d. 
~ ] ]- ~ 

(i < 

(i ~ 

j) 

, 
j) 

d. 0 s. = 
~ ] 

If 

s. 1 ]-

d. = Xo. 
~ ~ 

s. = Xa, 
~ ~ 

o d. 
~ 

, then d. and 
~ 

(i < j) 

id (i = j or i = j + 1) . 

s. 0 d. 1 
] ~-

(i > j + 1) 

'Ihe simplicial standard n-simplex is the simplicial set /J. en] = M::>r (-, en] ), so 

for a: em] + [n], /J. [a] :/J. em] + /J. en] • CMing to the Yoneda lerma, if X is a simplicial 

set and if x E Xn ' then there exists one and only one simplicial nap !J.x:!J.[n) + X 

that takes id en] to x. 

THEOREM. SISET is carrplete and cocarrplete, 'Wellpowered and COWE!llpowered. 

[Note: S dmi . l' OP whe dOP d OP ) SI ET a ts an lnVO ut~on X + X, re. = ., s. = s .• 
~ n-~ ~ n-~ 

let X be a simplicial set - then one writes x E X when one rreans x E U xn. 
n 

wi th this tmderstanding, an x E X is said to be degenerate if there exists an 

epirrorphism a = id and ayE X such that x = (Xa)y; otherwise, x E X is said to 
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re nondegenerate. The elerrents of Xo (= the vertexes of X) are nondegenerate. 

Every x E X admits a unique representation x = (Xcl.)y, where ex. is an epirrorphisn 

and y is nondegenerate. The nondegenerate elerrents in Mn] are the rronorrorphisns 

ex.: [m] -+ [n] (m:; n) • 

A simplicial subset of a simplicial set X is a simplicial set Y such that 

Y is a subfunctor of X, i.e., Yn C Xn for all n and the inclusion Y -+ X is a 

simplicial map. 

SKELETONS 

The n-Skeleton of a simplicial set X is the simplicial subset x(n) (n ~ 0) 

of X defined by stipulating that x(n) is the set of all x E X for 'Which there 
p p 

exists an epirrorphisn ex.: [p] -+ [q] (q s n) and ayE Xq such that x = (Xex.) y. 

Therefore x(n) = X (p s n) ; furtrerrrore, X(O) c x(l) c ••• and X = colim x(n). 
p p 

A proper simplicial subset of l':. [n] is contained in /::,. [n] (n-l), the frontier 1 [n] 

of Mn]. Of course, X(O) is isarrorphic to Xo . MO]. In general, let X# re the 
n 

set of nondegenerate elerrents of Xn ' Fix a collection {l':.[n] :x E X#} of sirnplicial x n 

standard n-simplexes indexed by x! -- then the sirrplicial maps l':.x:Mn] -+ X (x E X~) 

determine an arrow X~ . l':. [n] -+ X (n) and the corrmutative diagram 

1 
___ > x(n) 

is a pushout square. Note tcx::> that MnJ is a coequalizer: Consider the diagram 
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O~i<j~ 

4. 

u 

Mn - 2] .. ----'S _II 
]., J v 

f:::,[n - 1]" 
]. 

where u is defined by the MO~-ll] and v is defined by the f:::, [ot;-l] -- then the J- ]. 

Mot;] define a simplicial map f: II Mn - 1], + Mnl that induces an iEOrrorphisn 
]. --]. 

. 
coeq(u,v) + f:::,[n]. 

REMARK Call f:::, the full SJbcategory of f:::, whose objects are the [m] (m ~ n) . -n -

Given a category C, denote by SIC the functor category [f:::,OP ,C]. The objects of 
- ---n -n -

SIC are the "n-truncated simplicial objects" in C. Eirploying the notation of Kan 
---n -

extensions, take for K the inclusion f:::,0P + f:::,0P and write tr (n) in place of K*, EO 
-n -

tr (n) :SIC +~. If ~ is corrplete and cocornplete, then tr (n) has a left adjoint 

sk (n) :~ + SIC, where 'if X in SIC
n

, 

(sk (n)X)m = calim ~, 

[m] + [kl 

k~n 

and a right adj:>int cask (n) :SIC + SIC, where 'if X in SIC, 
---n - ---n 

(cask (n)X)m = lim ~. 

[k] + em] 

k~n 

[Note: The colimit and limit are taken over a corrma category.] 
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EXAMPLE let £ = SET -- then for any simplicial set X, 

GEOMETRIC REALIZATION 

? 
The realization f'lIDctor r ? is a flIDctor SISET -+ 'lOP such that r ? 0 Y A = 1:::. •• 

1:::.. 1:::.' D 

It assigns to a simplicial set X a topological space 

the georretric realization of X, and to a simplicial map f:X -+ Y a continuous 

flIDction I f I : I X I -+ I Y I, the georretric realization of f. 

In particular: Il:::.[n] I = I:::.
n and II:::.[(1J I = 1:::.(1. 

EXAMPLE The pushout EqUare 

. 
I:::.[n] > 1:::.[0] 

1 1 
I:::.[n] > Sin] 

defines the simplicial n-sphere S in] • Its georretric realization is h.omeorrorphic 

A simplicial map f:X -+ Y is injective (surjective) iff its gea:retric reali­

zation If I : Ixi -+ Iyl is injective (surjective). Being a left adjoint, the f'lIDctor 

I :SISET -+ 'lOP preserves colimits. 

THEOREM let X be a simplicial set - then Ixi is a CW corrplex with CW structure 

{Ix(n) I}. 
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PRCXJF I x (0) I is discrete and the carrroutati ve diagram 

x* • ~[n] 
n X 

(n-l) 
-> 

1 1 
x# • 6[n] _> X (n) 

n 

is a pushout square in SISET. Since the gearretric realization functor is a left 

adj::>int, it preserves colimits. Therefore the carrroutative diagram 

x* . ~n _--'> Ix(n-l) I 
n 

1 1 
x* . 6,n ----> Ix(n) I 

n 

is a pushout s::.ruare in 'lQP, which rreans that Ix(n) I is obtained from Ix(n-l) I by 

attaching n-cells (n > 0). !>1oreover, X = colim x(n) => Ixl = colim Ix(n) I, so 

IXI has the final topology determined by the inclusions Ix(n) I -+ Ixl. Denoting 

now by G the identity ca:nponent of the horrearorphism group of [0,1], there is a 

left action G x Ixl -+ Ixl and the orbits of G are the cells of Ixl. 

[Note: If Y is a simplicial subset of X, then lyl is a subcamplex of lxi, 

thus the inclusion I y I -+ I X I is a clored cofibra tion. ] 

Therefore "gearetric realization" can be vielNed as a functor SISET -+ am. 

REMARK A colimit in am is calculated by taking the ma.xi.mal Hausdorff quotient 

of the colimit calculated in 'lQP. 

THOOREM The functor I I :SISET -+ CGH preserves finite limits. 

N.B. I I :SISET -+ CGH does not preserve arbitrary limits. E.g.: The arrow 



7. 

IMl]WI -+- It.[l.] IW is not a horreanDrphisn (w the first infinite ordinal)" 

SHJGULAR SETS 

'!he singular functor S ? is a functor rop -+- SISET that assigns to a top::>­
t." 

logical space X a s.implicial ret sin X, the singular ret of X: sin X ([n]) = 

sin X = C (t.
n 

,X) • I I is a left adjJint for sin. 
n 

REMARK There is a functor T from SIAB to the ca tegory of chain complexes 

d d d 
of abelian groups: Take an X and let TX be XO<-- Xl <-- ~<'-- " •• , where 

n . 
1 d = L: (-1) d. (d.:X -+- X 1). That d 0 a ::: a is implied by the s.implicial a 1 1 n n-

identities. One can then apply the mrrology functor H* and end up in the category 

of graded abelian groups. 01 the other hand, the forgetful functor AB -+- SET has 

a left adjJint FAB that s::mds a ret X to the free abelian group FABX on X. Extend 

it to a functor F AB:SISET -+- SIAB. In this tenninology, the singular horrology H* (X) 

of a top::>logical space X is H* (TF AB (sin X» . 

THEOREM let X be a topological space - then the arrow of ad junction I sin X I -+-

X is a weak honotopy equivalence. 

REMARK '!he class of CW spaces is precirely the class of top::>logical spaces 

for which the arrow of adjunction I sin xl -+- X is a honotopyequivalence. 

THEOREM let X be a simplicial set - then the gecmetric realization of the 

arrow of ad junction X -+- sin I X lis a honotopy equivalence. 
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CATEGORICAL REALIZATION 

'It1e realization functor r is a functor SISET -+ CAT such that roY A = 1. 
1 1 u 

It assigns to a simplicial a::t X a small category 

cat X = f{n] X • [n] 
n 

called the categorical realization of X. In particular, cat Mn] = [n]. In 

general, cat X can be represented as a quotient category ex; ~. Here, ex is the 

category whose objects are the elem:mts of Xo and whoa:: rrorphi3I1S are the finite 

concatenation and the en:pty sequences are the identities. 'It1e relations are 

REMARK 'It1e functor cat:SISET -+ CAT preserves finite products but does not 

preserve finite limits. 

NERVES 

The singular functor S is a functor CAT -+ SISET that assigns to a small 
l --

ca tegory ~ a sinplicial a::t ner ~, the nerve of ~: ner C( [n]) (= ner C) = 
- n -

.r-Dr ([n] ,~), thus nerO ~ = Ob ~ and nerl ~ = .r-Dr ~. cat is a left adjoint for ner • 

Since ner is full and faithful, the arrOitl of adjunction cat 0 ner -+ idCAT is a 

na tural isarrorphism. 

EXAMPLE Viewing [n] as a snall category, the definitions irrply that ner en] = 

MnJ. 
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N.B. \Ie have 

OP OP 
ner £ = (ner £l . 

Let C .l::e a snaIl category -- then its classifying space B£ is the georretric 

realiza tion of its nerve: 

BC - Iner £1. 

LEMMA If C is a sna.ll category, then 

OP 
OC::::BC • - -

[This identification is canonical but, in general, is not realized by a functor 

OP 
from £ to £ .] 

LEMMA If £ and 12 are sna.ll categories, then in a:;H, 

[In fact, 

ner(£ x 12) :::: ner £ x ner 12.] 

SIMPLEX CATEGORIES 

Let X .l::e a simplicial set -- then X is a cofunctor ~ -+ SET, thus one can form 

the Grothendieck cons truction grot:. X on X. So the objects of grot:. X are the 

([n] ,x) (x EX) and the norphisms (In] ,x) -+ ([m] ,y) are the a.: In] -+ 1m] such that n 

(Xa.)y x. One calls grot:. X the si:rrplex category of X. It is isarorphic to the 

COImla. category 

Mn] :> Mm] 

1 1 
X----X. 

N.B. 'ltle association X -+ grot:. X defines a flIDctor 
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• In SISET, a simplicial -weak equivalence is a simplicial map f:X -+ Y 

Slch that I f I : I X I -+ I y lis a lnrrotopy equivalence. 

• In CAT, a simplicial -weak equivalence is a functor F:~ -+ Q such that 

Iner FI :Pf -+ BQ is a lDrrotopy equivalence. 

LEMMA There are na'bJral sirrplicial -weak equivalences 

ner (gro fl X) -+ X 

[For instance, the first arrow is the rule nerp (gro ~ X) -+ Xp tha t sends 

--> ... > ([n ], x) to (Xa) xp ' 
p p 

where a: [p] -+ [n ] is defined by a (i) == a 1 0 ••• 0 o',. (n.) (0 ~ i ~ p) 
p p- 1 1 

(a (p) = n ).] 
p 

EXAMPLE Put 

'I'1.1tm there is a na 'bJral simplicial -weak equivalence 

ner ~ [n] -+ MnJ. 

If X and Y are simplicial sets and if f:X -+ Y is a simplicial map, tl:en there 

is a corcmutative diagram 

Iner (gro fl X) I --> I X I 

1 - 1 If I 

I ner (gro fl Y) I --> IYI, 
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from which it follOW's that f is a simplicial weak equivalence iff grail f is a 

5tmplicial weak equivalence. 

EXP01JENTI AL OBJECTS 

CAT is cartesian closed: 

where 

D 
Mor(£ x Q,~) ~ Mor(£,~-), 

S1SET is cartesian closed: 

. 

Y 
Nat(X x Y,Z) ~ Nat(X,Z ), 

Y Z ([n]) = Nat(Y x il[n],Z) • 

EXAMPLE Let " = M 0] and * = il [0] -- then the four exponential objects asSJ-

_0 " * * cia ted with" and * are Jt! = *, * = *," = ~, * = *. 

LEMMA The fmc i.Dr 

ner:CAT + S1SET 

preserves exponential objects. 

PROOF V [n] E 1;:., 

~ Mor (ner ([n] x £) ,ner ~) 

~ Mor(ner[n] x ner £,ner Q) 
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~ Ibr (ner £ x ner [n] ,ner Q) 

~ MJr (ner £ x I'::,. [n] ,ner Q) 

ner C 
= (ner Q) - ([n] ) • 

Th3refore 
ner C 

ner([£,Q]) - (ner Q) -

REr4ARK Given a srall category £ and a simplicial ffit X, the map 

ner(cat X) X 
(ner £l --> (ner £l 

induced by the arrow X -+- ner (cat X) is an iSJITOrphisn. 

NOI'ATICN Given sjroplicial sets X and Y I write map (X, Y) in place of -0. 
[Note: The elenents of map (X,Y)0 :::: Nat(X,Y) are the simplicial maps X -+- Y.] 

SEMISIMPLICIAL SETS 

Let MI'::,. be the set of n:onorrorphisns in MJr ~; let EI'::,. be the set of ep:inorphisns 

in .r-br ~ -- then every a E MDr ~ can be written tmiquely in the form a = a # 0 a b
, 

# b 
where a E MI'::,. and a E ED.. 

- -
~ is the category with Ob ~ = Ob ~ and .r-br ~ = MD.' lM:~ -+- ~ being the 

inclusion. 

OP 
write SSISET for the ftmctor category [n ,SET] -- then an object in SSISET 

-M -
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is called a semi.siroplicial set and a norphisn in SSISET is called a semisimplicial 

map. There is a ccmnutative diagram 

Y/1 o tM 
A -

~ > /1 -

y~ 1 1\ o t.r.1 

A A 

~ ~, 

where ry 0 t is the realization functor corresponding to Y/1 0 t
M

• It assigns to 
/1 M -

a semisimplicial set X a simplicial set PX, the prolongment of X. Explicitly, the 

elerrents of (PX)n are all pairs (x,p) with x E Xp and p: [n] -+ [p] an ep.inorphisn, 

thus (PXa.) (x,p) = «X(p 0 ex) #)x, (p 0 ex) b ) if the codomain of ex is [n]. And P 

PX -+ py 
assigns to a semisimplicial map f:X -+ Y the simplicial map Pf: 

(x,p) -+ (f(x) ,p) 

A A 

The prolongment functor is a left adjoint for the forgetful functor U:~ -+ ~ (the 

singular functor in this setup). 

Put 

I 1M = I lop. 

'Ihen (I IM,u 0 sin) is an adjoint pair and 1M is the realization functor deter-

? 
mined by the composite /1" 0 t

M
, i.e., 

I 1M = r ? 
/1" o 1 

M 
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THEOREM For any simplicial ret X t the arrow I ux I M -+ I X lis a horrotopy 

equivalence. 

SUBDIVISION 

Given n, let "E[n] be the simplicial ret defined by the following conditions. 

(Db) "E[n] assigns to an object [p] the ret ~[n] of all finite sequences p 

lJ = (lJ a' ..• t lJp ) of ItDIlOI1:Orphi ens in Q having codorna.in [n] SIch that 'If i, j 

(0 ::; i ::; j ::; p) there is a IIDI10rr0rphisn lJ .. with lJ. = lJ. 0 lJ ..• 
1J 1 J 1J 

(~-Dr) ~[n] assigns to a IIOrphisn a: [q] -+ [p] the map "E[n] -+ "E[n] taking 
p q 

"-

Call ~ the functor ~ -+ Q that sends [n] to ~[n] and a: [m] -+ [n] to "E[a] :"E[m] -+ 

- - # # Mn], where Ma]v = «a 0 Va) , ••• , (a 0 Vp ) ). The aSSJeiated realization functor 

r is a functor SISET -+ SISET such that roy 6 == 6. It assigns to a simplicial 
"E "E 

ret X a simplicial ret 

Sd X == f[n] X • ~[n], 
n 

the subdivision of X, and to a simplicial map f:X -+ Y a simplicial map Sd f:Sd X -+ 

Sd Y, the subdivision of f. In particular, Sd Mn] = "E[n] and Sd Ma] == "E[a]. 

en the other hand, the realization functor ry associated with the Yoneda embedding 
6 

Y 6 is nab..1rally isorrorphic to the identity functor id on SISET: 

X == f[n] X . 6[n]. 
n 
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dnlJ E /::, [n] p :dnlJ (i) = lJi (mi) (lJi: [mi ] ..... [n]), then the dn dete:rmine a natural trans­

forma.tion d:li ..... Y/::" which, by f1.ll1ctoriality, leads 10 a natural transforma.tion 

d:r_ ..... ry • Tl.1.US, V X,Y and V f:X ..... Y, there is a carornutative diagram 
/::, /::, 

Sd X ----------'> X 

Sd Y ---------~> Y 

THEOREM For any simplicial ret X, the arrow l<ixl: ISd xl ..... Ixi is a h0rr01opy 

equivalence. 

REMARK It can be sh:Jwn that for any simplicial ret X, there is a honeom::>rphisn 

[Note: ~ is not natural but is h0rr01opic to l<ix I which is natural.] 

EXAMPLE let X be a s:i.rrplicial ret -- then Ixi is h.orreon:orphic to B(cat Sd
2 

X). 

Therefore the geonetric realiza tion of a simplicial oot is hon:eorrorphic to the 

classifying space of a small category. 

[Note: The horreo.rrorphism is not natural.] 

EXTENSION 

Sd is the realization f1.li1ctor r. The ass:x::iated singular f1.ll1ctor S is 
Z Z 

denoted by Ex and referred to as extension. Since (Sd,Ex) is an adjoint pair, 
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there is a bijective map 2x y:Nat(Sd X,Y) -+ Nat(X,Ex Y) which is functorial in , 

X and Y. Put ex = 3x ,x (~) - then ~:X -+ Ex X is the s:implicial map given by 

eX (x) =!J.. 0 d (x EX), hence e.. is injective. x n n x 

THEDREM For any s:implicial ~t X, the arrow I~I: Ixi -+ lEx xl is a :torrotopy 

equivalence. 

Denote by Ex co the colimit of id -+ Ex -+ Ex2 
-+ ••• -- then Ex

co 
is a functor 

SISET -+ SISET and for any s:implicial ffit X, t:tere is an arrow e;:x -+ Ex
co 

X, the 

georretric realization of which is a horrotopyequivalence. 

COFIBRATIONS 

A simplicial map f:X -+ Y is S3.id to be a cofibra tion if its georretric reali-

zation If I : Ixi -+ lyl is a cofibration. 

LEMMA The cofibrations in SISET are the injective s.implicial maps or still, 

the rrononorphi sns. 

A cofibra tion is S3.id to be acyclic if it is a s.implicial 'Weak equivalence. 

EXAMPLE let X be a simplicial ~t - then the arrow of ad junc tion X -+ sin I X I 
is an aCjClic cofibration. 

EXAMPLE let X be a simplicial ~t - th:m ex:X -+ Ex X is an aCjClic cofibration, 

• co co 
as 1S ex:x -+ Ex X. 

LEMMA Suppo~ that f:X -+ Y is an acyclic cofibra tion -- then Sd f is an acyclic 

cofibra tion. 
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PRCOF Consider the commutative diagram 

Sdf 
SdX ----------.,> Sd Y 

x -----------> Y. 
f 

Since Sd preserves injections, Sd f is a cofibration. But '\ and ~ are sim­

plicial weak equivalences. 

Given n ~ 1, the kth-horn A[k,n] of ~[n] (0 ~ k ~ n) is the simplicial subset 

of ~ [n] defined by the condition that A [k ,n] is the set of ex: [ro] -+ [n] whose 
ro 

:image does not contain the set [n] - {k}. 

N.B. IfI.[k,n] I = Ak,n is the subset of IA[n] I = ~n consisting of those 

(to"" , t ) :t. = 0 (3 i ~ k), thus Ak,n is a strong deforma.tion retract of ~n. 
n ~ 

LEMMA. '!he inclusions A [k,n] -+ ~ [n] (0 ~ k ~ n, n ~ l) are acyclic cofibrations. 

KAN FIBRATIONS 

Let p:X -+ B be a simplicial map -- then P is said to be a Kan fibration if it 

has the RLP w.r.t. the inclusions A[k,n] -+ Mn] (o:s; k :s; n, n ~ 1). 

EXAMPLE Let 
X 

be topological spaces, f:X -+ Y a continuous function -- then 
Y 

f is a Serre fibration iff sin f:sin X -+ sin Y is a Kan fibration. 
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LEMMA let p~X -+ B be a Kan fibration - then Ex p:Ex X -+ Ex B is a Kan 

fibration. 

A sfulplicial s=t Xis said to be a Kan complex if the arrow X -+ * is a Kan 

fibration. The Kan complexes are therefore tms= X Slch that every simplicial 

rna.p ·f:A [k,n] -+ X can be extended to a simplicial rna.p F:t.[n] -+ X (0 ::;; k ::;; n, n ;?: 1) • 

N.B. 6. [n] (n ~ 1) is not a Kan complex. 

EXAMPLE let X be a top::>logical .sp:ice - then sin X is a Kan canplex. 

EXAMPLE let C be a snaIl category - th:m ner g is a Kan complex iff ~ is a 

group::> ide 

00 

EXAMPLE let X be a simplicial sat - then Ex X is a Kan complex. 

LEMMA Supp:>sa that L -+ K is an inclusion of simplicial sets and X -+ B is a 

Kanfibratdon -- tren the arrow rna.p(K,X) -+ rna.p(L,X) xmap(L,B) rna.p(K,B) is a Kan 

fibration. 

[Pass from 

A[k,n] ------,;> rna.p (K,X) 

! l ' 
6.[n]~> rna.p(L,X) Xrna.p(L,B)rna.p(K,B) 

A[k,n] x K U 6.[n] x L --;>x 

i1 1 
6.[nJ x K ------i;>B.] 

&:>, as a spacial casa, if Y is a Kan complex, then SJ is rna.p(X,Y) V X. 
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COMPOUENTS 

let <2n> be the category whore objects are the integers in the interval 

[0,2n] and whore norphisns, apart from identities, are depicted by 

e->e<-ooo->e<-e. 
o 1 2n-1 2n 

Put 12n = ner<2n>: 112nl is hoIreorrorphic to [0,2n] 0 Given a simplicial ret X, 

a r:ath in X is a simplicial map 0:12 + X. Q1e says that 0 begins at 0 (0) and --- n 

ends at 0(2n). Wr"ite TIO(X} for the quotient of Xo with reSfJect to the equivalence 

relation obtained by declaring that Xl ~ Xii iff there exists a path in X which 

begins at Xl and ends at Xl I -- then the assigrment X + TIO (X) defines a f1.IDctor 

TIO:S1SET + SET which preserves finite products and is a left adpint for the 

f1.IDctor si:SET + S1SET that sends X to si X, the constant simplicial set on X, 

Le., siX([n)) =X& (V n) • 

[Note: Tte georretric realization of si X is X equipped. with the discrete 

top:>logy. ] 

Given a simplicial ret X, the decomposition of Xo into equivalence c1asres 

determines a partition of X into s.implicial subrets Xi. The Xi are called the 

comp:ments of X and X is connected if it has exactly one component. 

[Note: X = II X. => Ixi = II Ix.', Ix. I r1.IDning tlrough the components 
~ ~ ~ ~ 

i. i. 
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EXAl'1PLE A s:nall ca tegory ~ is connec ted iff it s nerve ner ~ is oonnec ted or, 

equivalently, iff its classifying space :a:.2 is connected (= path connected) • 

!..EMMA Tl'E. comp:ments of a Karl c:omplex are Karl. 

RAPPEL let K and L be CW complexes -- then a oontinuous flIDction f:K -+ L is 

a harotDpy equivalence iff for every CW complex Z, tie arrow 

is bijective. 

[Note: ve have 

'IT rf"lP (L, Z) ------> 'IT <fE-P (K,Z) 

~ r r ~ 
----> 'IT <fE-P (K, I sin Z I ) • 

Therefore the top horizontal arrow is a bijection iff tiE oottom horizontal arrow 

is a bijection.] 

!..EMMA let 
X 

be simplicial rets. Assure.: Y is a Karl corrplex -- then 
Y 

there is a weak ham::>tnpy equivalence 

lmap (X, Y) I -+ map ( Ix I ' IY j) • 

PRCX)F The ase.:u:nption that Y is a Karl corrplex implies that the arrow 

lmap {X, Y} I -+ lmap {X, sin Y} I is a ham::>topy equivalence. But map (X, sin !Y I) :::: 

sin map ( I X I, I Y I) and the arrow of ad junc tion 

is a weak ham::>topy equivalence. 

[Note: Here map ([xl, Iy I) = kC {IX [ , Iy I} (corrpact open to:fX)logy) .] 
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CRITERIOO A s:i.nplicial map f :X
l 

-+ ~ is a simplicial 'IAleak equivalence iff for 

every Kan complex Y, the arrow 

11' craP (~ , Y) -+ 11' a-oo-p (Xl' Y) 

is bijective. 

['!he arrow If I : Ixll -+ I~ I is a hom::>lopy equivalence iff for every CW complex 

Z, the arrow 

is bijective. en the other hand, 

and since sin Z is a Kan complex, 

11' 0 I rrap (Xl' sin Z) I :::: 'IT cfEP ( I XII, I sin Z I ) 

11'Olrrap(~,sin Z) I :::: 11'Orrap(I~I,lsin zl).] 

CATEGORICAL WEAK EQUIVALENCES 

A weak Kan cornplex is a s:i.nplici.al ret X such that every s:i.nplicial rrap 

f:J\[k,n] -+ X can be extended 10 a s.iroplicial rrap F:Mn] -+ X (0 < k < n, n > 1). 

[Note: Every Kan complex is a weak Kan cornplex.] 

N.B. If Y is a weak Kan complex, then s:> is rrap (X, Y) V x. 

EXAMPLE Let ~ be a s:na.ll category - then ner S is a 'Weak Kan corrplex. 

LEMMA Suppore that X is a 'Weak Kan corrplex -- th::m X is a Kan complex iff 

cat X is a groupoid. 
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Denote by 

the functor that sends X to the ret of is::J.l1Orphisn clasres of objects of cat X. 

LEMMA Co prererves finite products. 

PR(X)F cat and TIO preserve finite products. '!his said, oboorve that Co is 

the cornposi te 

cat is::> 1 ner TIo 
SISET :> CAT :> GRD --> CAT :> SISET > SET. 

LEMMA If X is a Karl cOII'ij?lex, i:1En 

N. B. I t therefore follows that if Y is a Karl complex, then \J X 

crp (X,Y) = TIrp (X,Y) • 

DEFINITION A simplicial map f:Xl -+ ~ is a categorical weak equivalence if 

for every weak Karl complex Y, the arrow 

is bijective. 

EXAMPLE The inclusion A[k,n] -+ Mn] (0 < k < n, n > 1) is a categorical weak 

equivalence. 

LEMMA T:te functor cat:SISET -+ CAT sends a categorical weak equivalence to a 

categorical equivalence. 



23. 

THEOREM Suppose that f:~ -+ Xl is a categorical weak equivalence -- then 

f:~ -+ Xl is a simplicial \..eak: equivalence. 

PRCX)F For every Kan complex Y, the arrow 

is bijective. But 

from which the assertion. 

POINTEV SIMPLICIAL SETS 

A simplicial pair is a pair (X,A), where X is a simplicial set and A c X is 

a simplicial subset. ExaIrple: Fix Xo E Xo and, in an abuse of notation, let Xo 

(n "? 1) -- then (X,X
O

) is a simplicial pair. 

A pointed simplicial set is a simplicial pair (X,X
O
). A pointed sinplicial 

:nap is a base point preserving simplicial :nap f:X -+ Y, i.e., a simplicial :nap 

f:X -+ Y for which the diagram 

MO] ======= MO] 

X -------'> Y 
f 

corrmu tes or, in brief, f (xO) = yO. 
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S1SEl'* is the category "more objects are the pointed sirrplicial sets and 

\vmse norphisns are too rx:>inted s:irrplicial maps. OP 
Thus S1SEl'* = [~ ,SET*] and 

t:ha forgetful functor S1SEl'* -+ S1SEl' has a left ad:pint that sends a sfuplicial 

set X to the rx:>inted s:irrplicial set X+ = X _II *. 

[Note: The vertex inclusion eO:MO] -+ Ml] defines the base point of Ml], 
. 

hence of Ml].] 

MO] is a zero object in S1SET* and S1SEl'* has the obvious products and co­

products. In addition, the pushout ::quare 

X v Y ---~ 6[0] 

t 
XXY---~X#Y 

defines the sna.sh product X # Y. Therefore S1SET* is a closed. category if X ~ Y = 
. 

X#: Y and e = Ml]. Here, the internal hom functor sends (X,Y) to ma.p*(X,Y}, the 

silnplicial subset of rna.p(X,Y) whose elenents in degree n are the f:X x Mn] -+ Y 

\vith f (x
O 

x 6[n]) = YO' i.e., the pointed simplicial rna.ps X # 6[n]+ -+ Y, the zero 

rrorphisn 0xy being the bare point. 

SIMPLICIAL HOMOTOPY 

Given simplicial sets X and Y, simplicial rna.ps f,g E Nat(X,Y) a..""e said to be 

simplicially h.arrotopic (f "" g) provided that there exists a simplicial rna.p 
s 

H:X x 6 Il] -+ Y such that if 



then 

Hoi = g 
1 

, where 
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H 
-------'> X x t; [1] --> Y 

-------> X x Ml] --> Y, 
i~ x e l H 

are the vertex inclusions per 

The relation '" is reflexive but it needn't be symretric or transitive. 
s 

[Note: Elerrents of ma.p(X,Y) 1 correspond to simplicial hom::>topies 

H:X x t;[l] -+ Y.] 

EXAlI.1PLE Take X = Y = Mn] (n > 0). let cO:Mn] -+ Mn] be the projection of 

t;[n] onto the Oth vertex, i.e., send (aO, ••• ,ap ) E t;[n]p to (0, ••. ,0) E t;[n]p' 

° 
1 

Claim: Co ~ id
Mn

]. 'lb see this, consider the simplicial ma.p H:t;[n] x Ml] -+ Mn] 

defined by H( (aO"" ,ap)' (0, ••. ,0,1, .•• ,I)} = (0, ••• ,O,ai +l , ••• ,ap ) so that 

then H is a simplicial hom::>topy between Co and id
Mn

]. On the other hand, there 

is no simplicial hom::>topy H between idt;[n] and CO' For suppose that H«l,l}, (O,l)} = 

(fl, v) E Mn] r .Apply dl & dO to get fl = 1 & v = 0, an impossibility. 

LEMMA Suppose that 
C 

are small categories. let F ,G:g -+ 1:2 be functors, 
D 

E:F -+ G a natllral transfonoation -- then E induces a functor EH:g x [1] -+ 1:2 given 
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on objec ts by 

(X,O) = FX, =li(Y ,1) = G'f 

and on n:orpbisns by 

f Ff g Gg 
::H(X --> Y,O ->O} = FX --> FY'::H(X --> Y,l ->1) = GX > G'f 

h :::'y 0 Fh 

::H(X --> y,O --/'..L =FX >G'f 

or still, 

h Gh 0 ~X 

::H(X --> Y,O --/..L =FX >G'f. 

Therefore 

is a simplicial hom:rtDpy :between ner F and ner G. 

Suppose that 

\! E Nat(F 0 G,i~) 

F:C -+ D 
- - are an adjoint pair with arrows of adjunction 

G:D -+ C 

- then 

idner C ~ ner Goner F 

ner F 0 ner G ~ idner D 

or still, in the topological category, 



I.e. : 
BC 

BD 
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i~ ~ lner GI 0 Iner FI 

lner FI 0 lner GI ~ i~. 

have the same horrotopy type. 

CONTRACTIBLE CLASSIFYING SPACES 

DEFINITIOO A topological space X is contractible if the identity map of X 

is horrotopic to SOIte constant map of X to itself. 

FACl' A topological space is contractible iff it has the horrotopy type of a 

one point space. 

FACl' Two contractible spaces have the same horrotopy type. 

FACl' Any continuous map betVJeen contractible spaces is a horrotopy equivalence. 

A small category 9 is contractible if its classifying space Bg is contractible. 

EXAMPLE ! is contractible (B! is a one point space) . 

LEMMA 9 is contractible iff the arrow 9 -+ ! is a simplicial weak equivalence. 

N.B. The arrow ~ -+ 1 is an equivalence of categories iff ~ ~ Q and every object 

is a final object. 

LEMMA If ~ has a final object, then C is contractible. 

[For then the functor 9 -+ 1 has the obvious right adjoint ! -+ g, thus Be and 

B! have the SanE horrotopy type.] 
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[Note: If ~ has an initial object, then ~ is contractible. Proof: COP has 

a final object and Bf :::: B£OP.] 

EXAMPLE /'-,. is contractible ([0] is a final object) . 

REMARK If the flIDctor C + I is an equivalence of categories, then C is con-

tractible. 

Suppose that ! is a filtered category and let /'-,.:! + CAT be a flIDctor -- then 

since filtered coliroits comnute with finite limits in SET, we have 

ner colim /'-,. :::: colim ner /'-,. .• 
1 

o 
Assl.lIte now that V TIDrphism i -->j in !, the induced functor MS: /'-,.. + /'-,.. is a 

1 J 

simplicial weak equivalence -- then V i, the flIDctor /'-,.i + colim /'-,. is a simplicial 

weak equivalence. 

LEMMA Every filtered category! is contractible. 

PROOF Define a functor /'-,.:! + CAT by sending i to yi - t..l-ten I :::: colim /'-,.. 

But V i, !/i has a final object, hence is contractible. 

Let ~ be a small category, let X E Ob ~, and let F:~ + ~ be a functor. 

LEMMA If there is a natural transforrration from ide to F and if there is a 

na tural transfonration from the constant functor ~ + ~ at X to F, then Be is 

contractible. 

'It> illustrate this point, given a small category !, let Y! be the category 
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whose objects are the pairs {m, u}, where m ~ 0 is an integer and u: [m] + ! is a 

functor, a rrorphism {m,u} + {n,v} being a rrorphism f: em] + [n] of 11 such that the 

diagram 

f 
em] > (n] 

I I 

COImn.ltes. 

FACI' If ! has a final object i O' then fY! is contractible. 

[Define a functor F:~/! + fY! as follows. 

• On objects, 

F{m,u) = {m + l,u+}, 

where 

u{k} if k ::; m 

iO if k = m + 1. 

• On rrorphisms, 

f{k} if k ::; m 

Ff{k} = 
n + 1 if k = m + 1. 

let KO:.¥! + til be the constant functor at (O,K. ) -- then '3 
- - ~O 

a E Nat(id~!,F} 
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a.: The inclusion [rn] -+ lrn + 1] (k -+ k) induces a natural transformation 

id~V! -+ F. In fact, 

a. (rn,u) 
----> F(rn,u) 

is a norphisn since the diagram 

[rn] -------,> [rn + 1] 

1------1 
ccmw.tes (u(k) = u+ (k) if k s rn) • 

§: The inclusion [0] -+ frn + 1] (0 -+ rn + 1) induces a natural transformation 

KO -+ F. In fact, 

S (rn,u) 
KO (rn,u) ------:> F(rn,u) 

is a norphisn since the diagram 

[0] ------:> frn + 1] 

1==========1 
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CHAPTER 0: MODEL CATEGORIES 

0.1 ELEMENTS 

It is presuppored that the reader is familiar with the theory in SJ far as 

it is prerented in TI'HT. So in this rection ~ shall simply establish notation 

and recall SCIre standard fac ts. 

0.1.1 DEFJNITION" let i:A -+ Y,P: X -+ B be norphisns in a category £ -- then i 

is S3.id 1D have the left lifting propert.l with re::pe.c t to p (LIP w. r. t. p) and p 

is S3.id 1D have the right lifting property with respact to i (RLP w.r.t. i) if 

for all u:A -+ X, v:Y -+ B such that p 0 u = v 0 i , there is a w:Y -+ X such that 

w 0 i = u , pow = v I Le" tl':e commutative diagram 

u 
A-----> X 

Y-----> B 
v 

admits a filler w:Y -+ X. 

0.1.2 EXAMPLE Take C = 'IDP -- then i:A -+ Y is a cofibration iff V X, i has 

the LIP w.r.t. Po:PX -+ X and p:X -+ B is a Hurewicz fibration iff V Y, P has the 

RLP w.r.t. iO!Y -+ IY. 

[Note: As usual, 

PX = C( [0,1] ,X) 

IY = Y x [0,1].] 
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Consider a category g equipped with three composition cloood clasres of 

rro:rphisms tentEd. ~ak. equivalences (denoted -=-> ), cofibrations (denoted >-> ), 

and fibrations (denoted -» ), each containing the isono:rphisrns of g. Agreeing 

to call a rro:rphism which is roth a ~ak. equivalence and a cofibration (fibration) 

an acyclic cofibration (fibration), C is said to be a rrod.el category provided that 

the following axians are satisfied. 

(Me - 1) g is finitely conplete and finitely coconplete. 

(Me - 2 ) Given composable rro:rphisms f, g, if any two of f, g , g 0 f are ~ 

equivalences, so is the third. 

(Me - 3) Every retract of a ~ak. equivalence, cofibration, or fibration is 

again a ~ak. equivalence, cofibration, or fibration. 

(Me - 4) Every cofibration has the LLP w.r.t. every acyclic fibration and 

every fibration has the RIP w.r.t. every acyclic cofibration. 

(Me - 5) Every rro:rphism can be written as the composite of a cofibration 

and an acyclic fibration and the composite of an acyclic cofibration and a fibration. 

0.1. 3 NOI'ATICN 

W = class of ~ equivalences 

cof = class of cofibrations 

fib = class of fibrations. 

N.B. The term rrod.el structure on a finitely corrplete and finitely cocarrplete 

category g refers to the specification of W, cof, fib subject to the asS'llITq?tions 

a1:x>ve. 

0.1.4 REMARK A ~ak. equivalence w:X -+ Y which is a cofibration and a fibration 

is an isono:rphism. Proof: The comnutati ve diagram 
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x -------C> X 

y ------------~C> Y 

admits a filler Y + X. 

0.1. 5 EXA.TV.!PLE Every finitely complete and finitely cocorrplete category g 

admits a rrodel strucb.lre in which the weak equivalences are the' iSJIIDrphisns and 

cof = Mer C 

fib = Mer C. 

A rrodel category g has an initial object (denoted~) and a final object 

(denoted *). An object X in g is said to be cofibrant if ~ + X is a cofibration 

and fibrant X + * is a fibration. 

0.1.6 LEM:MA Suppose that g is a rrodel category. let X E Ob C -- then X is 

cofibrant iff every acyclic fibration Y + X has a right inverse and X is fibrant 

iff every acyclic cofibration X + Y has a left inverse. 

0.1. 7 EXAMPLE Take g = 'IOP -- then 'IOP is a m:xlel category if \\eak equivalence = 

lnnDtopyequivalence, cofibration = closed cofibration, fibration = Hurewicz fi-

bration. All objects are cofibrant and fibrant. 

[Note: We shall refer to this rrodel strucb.lre on 'IOP as the Str¢m structure.] 

Addendum: ex; has a str¢m strucb.lre if \\eak equivalence = horrotopy equivalence, 

cofibration == closed cofibration, fibration = ex; fibration. 

Given a rrodel category g, gOP acquires the structure of a rrodel category by 
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stipula ting that fOP is a weak equivalence in (];OP iff f is a weak equivalence in 

tha fOP, fib" OP 'ff f' fib '. J-l..._ OP, (];, t 19 a co lration In (]; 1 1S a lration In (];, and Ul.CI.t f 19 a 

fibration in cOP iff f is a cofibration in C. - -
Given a m:x1el category ~ and objects A,B in ~, the categories A\~, £IE are 

again nodel categories, a rrorphism in either case being declared a weak equiv-

alence, cofibration, or fibration if it is such when viewed in (]; alone. 

0.1.8 EXAMPLE Take (]; = TOP (Str¢m Structure) -- then an object (X,x
O

) in 

'IDP * (= *\TOP) is cofibrant iff * '+ (X,x
O

) is a closed cofibration (in IDP), i.e., 

iff (X,x
O

) is wellpointed with {x
O

} c X closed. 

0.1.9 THEOREM let (]; be a m:x1el category. 

(1) The cofibrations in ~ are the rrorphisns that have the LLP w.r. t. acyclic 

fibra tions. 

(2) The acyclic cofibrations in (]; are the rrorphisns that have the LLP w.r.t. 

fibrations. 

(3) The fibrations in (]; are the rrorphisms that have the RIP w.r.t. acy'clic 

cofibra tions. 

(4) The acy'clic fibrations in ~ are the rrorphisms that have the RIP w.r.t. 

cofibrations. 

0.1.10 NOI'ATICN let ~ be a category and let C c !-br ~ be a class of rrorphisms. 

• Wri te LLP (C) for the class of rrorphisns having the left lifting property 

w.r.t. the elements of C. 

• Write RIP(C) for the class of rrorphisms having the right lifting proper1::¥ 

w.r.t. the elements of C. 
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0.1.9 THEOREM (bis) Let £ be a m::xlel category -- then 

cof = LLP(W n fib), W n cof = LLP(fib), 

fib = RLP(W n cof), W n fib = RLP(cof). 

O. 1.11 SCHOLIUM In a m::xlel category £, any tw::> of the clasEes of \..eak equi v-

alences, cofibrations, and fibrations detennines the third. 

[NotE: SUPPOsE that 

are t\\D m::xlel structures on C and let denote their classes of fibrant 

objec ts -- then 

And 

In a m::xlel category £, the classes of cofibrations and fibrations possess a 

number of "closure" properties. 

(Coproducts) If V i, f. :X. -+ Y. is a cofibration (acyclic cofibration), then 
~ ~ ~ 

II f. :Jl X. -+ 11 Y. is a cofibration (acyclic cofibration) . 
- ~ ~ ~ 
iii 

(Products) If V i, f. :X. -+ Y. is a fibration (acyclic fibration), then 
~ ~ ~ 

TT f. :IT X. -+ TT Y. is a fibration (acyclic fibration). . ~. ~ . ~ 
~ ~ ~ 
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f g 
(Pushouts) Given a 2-source X <-- Z --::> Y, define P by the pushout 

g 
Z '> Y 

In. AsS1.ll:re: f is a cofibration (acyclic cofibration) -- then 

X ::> P 
~ 

n is a cofibration (acyclic cofibration). 

f g 
(Pullbacks) Given a 2-sink X --'> Z <-- Y, define P by the pullback 

n 
P '> Y 

19. AsS1.ll:re: g is a fibration (acyclic fibration) -- then E;, 

X ::> Z 
f 

is a fibration (acyclic fibration). 

(Sequential Colimits) If V n, fn:Xn -+ Xn+l is a cofibration (acyclic co-

fibration), then V n, i :X -+ colim X is a cofibration (acyclic cofibration) . n n n 

(Sequential Limits) If V n, f :X +1 -+ X is a fibration (acyclic fibration), n n n 

then V n, p :lirn X -+ X is a fibration (acyclic fibration). n n n 

[Note: It is assl.lI'OOd that the relevant coproducts, products, sequential 

colimits, and sequential limits exist.] 

Q.l.12 EXAMPLE (Pushouts) Fix a m::rlel category g. let! be the category 

a b 
1 • <-- • --::>. 2 -- then the functor category [!,~] is again a rrod.el category. 

3 

f g 
'rhus an object of r!,~] is a 2-source X <-- Z --::> Yanda rrorphism :::: of 2-sources 
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is a carrmu tati ve diagram 

f g 
X <--- Z ----'> Y 

1 1 1 
X'<--- z' ----> Y'. 

f' g' 

Stipulate that ::: is a weak. equivalence or a fibration this is the case of each 

of its vertical constituents. Define nOW' PL, P
R 

by the pushout squares 

f g 
X <--- Z 

1 1 
P <-- Z' 

L 

Z--> Y 

I 

let PL:P
L 

...". X·, PR:PR ...". y' be the induced nnrphisns, and call::: a cofibration 

provided that Z ...". Z', P
L

, and P
R 

are cofibrations. With theS3 choices, [!/~] is 

f g 
a nndel category. The fibrant objects X <-- Z --'> Y in [!/~] are those for 

f g 
which X, Y I and Z are fibrant. The cofibrant objects X <-- Z --> Y in [!,~] 

f:Z ...". X 
are those for which Z is cofibrant and are cofibrations. 

g:Z ...". Y 

[Note: The story for pullbacks is analogous.] 

0.1.13 EXAMPLE Fix a nndel category ~ -- then FIL(~) is again a rrodel category. 

'Ihus let ¢: (~,f) ...". C~,g) be a nnrphism in FIL(~). Stipulate that ¢ is a ~ak. 

equivalence or a fibration if this is the case of each ¢n' Define nOW' P n+ 1 by the 
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pushout square 

f n 
X > Xn+l n 

~nl 1 
Y > Pn+l , n 

let Pn+l :Pn+l -+ Yn+l be t..~ induced IIDrphisrn, and call ¢ a cofibration provided 

that CPo and all the Pn+l are cofibrations (each CPn (n > 0) is then a cofibration 

as well). With these choices, FIL(~) is a Irodel category. The fibrant objects 

(~,~) in FIL(C) are those for which Xn is fibrant V n. The cofibrant objects 

q~:,~) in FIL(~) are those for which Xo is cofibrant and V n, fn:Xn -+ Xn+l is a 

cofibration. 

[Note: The story for 'IDV (£) is analogous.] 

0.1.14 DEFINITlOO Given a Irodel category ~, objects Xl and XI' are said to 

be weakly equivalent if there exists a path beginning at X I and ending at X I I : 

Xl = Xo -+ Xl +- ••• -+ ~n-l +- X2n = X" , where all the arrows are weak equivalences. 

0.1.15 EXAMPLE Take £ = 'IDP (Str¢m Structure) -- then X I and X" are weakly 

equivalent iff they have the Satre horrotopy type. 

0.1.16 CCMPOSITlOO LEMMA Consider the corrmutative diagram 

• ---->. ---->. 

1 1 1 
• ---->. ---->. 
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in a category~. Suppose that roth the s:;ruares are pushouts -- then the rectangle 

is a puSlout. Conversely, if the rectangle and the first ~ are pushouts, t:ll=n 

the S9cond square is a puSlout. 

0.1.17 APPLICATICN Consider the commutative cube 

in a category~. Suppose that too top and the left and right hand sides are push-

ou ts -- the the rottorn is a puSlout. 

f g 
0.1.18 LEMMA Let ~ be a m:x1el category. Given a 2-oource X <-- Z --> Y, 

define P by the pushout EqUare 

g 
Z -----> Y 

x --------'> P. 

Assume: f is a cofibration and g is a 'Weak equivalence -- then s is a weak equiv-

alence provided that Z & Y are cofibrant. 

[Note: There is a parallel staterrent for fibrations and pullbacks. J 

0.1.19 EXAMPLE W:Jrking in TOP (StrjZhn StrucbJre), suppose that A -+ X is a 

closed cofibration. Let f:X -+ Y be a horrotopy equivalence - then the arrow 

X -+ X Uf Y is a homotopy equivalence. 
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O. 1. 20 LEMMA let C be a m:::xiel category. Suppose given a carmuta ti ve diagram 

f g 
X < Z ,. Y 

1 1 1 
x, < Z' > Y' , 

ft g' 

f 
where are cofibrations and the vertical arrows are \\eak equivalences -- then 

f' 

the illduced no.rphism P -+ P I of pushouts is a \\eak equivalence provided that z & Y 

and Z I & Y I are cofibrant. 

[Note: There is a parallel staterrent for fibrations and pullbacks.] 

A-+X 
0.1.21 EXAMPIE Working ill 'lOP (Str¢rn Structure), suppoEe that are 

AI -+ X' 

f:A -+ Y 
closed cofibrations. let be contilluous ftmctions. Assurre that the 

fl :A' -+ Y' 

diagram 

f 
x <---- A ----> Y 

1 1 1 
X' <---A' ---'> Y' 

fl 

comnut:es and that the vertical arrows are horIDtopy equivalences -- then the illduced 

map X U
f 

Y -+ X I U
f 

I Y I is a horIDtopy equivalence. 

0.1. 22 DEFINITIOO let g be a m:::xiel category. 

• C is said to be left proper if the following condition is satisfied. 
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f g 
Given a 2-source X <-- Z --> Y, define P by the pushout ~ 

g 
Z > Y 

X > P. 
l; 

Ass.me: f is a cofibration and g is a weak equivalence -- then l; is a weak equiv-

alence. 

• £ is said to be right prop:r if the following condition is satisfied. 

f g 
Given a 2-sink X --> Z <-- Y, define P by the pullba.ck square 

n 
P > Y 

X > Z. 
f 

AsSJll1e: g is a fibration and f is a weak equivalence - then n is a weak equiv-

alence. 

N.B. £ is proper if it is roth left and right prop:r. 

0.1.23 LEMMA If all the objects of £ are cofibrant, then £ is left prop:r 

(cf. 0.1.18) and if all the objects of £ are fibrant, then ~ is right prot;er (cf. 

0.1.18). 

0.1.24 EXAMPIE The str¢m strucb.:ire on 'lOP is prop:r (all objects are cofibrant 

and fibrant). 

0.1.25 No:rATION Given a m::xlel category ~, write He in place of W-l~ and call 
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it the horrotopy category of ~ (cf. 2.3.6). 

-
[Note: OJ is necessrri1y SCl.b..lrated, i.e., OJ = OJ (cf. 2.3.20).] 

0.1.26 EXM1PLE Take ~ = 'lOP (Str¢m Strucb..lre) -- then B'IDP "is" I.:rIOP. 

0.1.27 THEOREM Suppose that ~ is a m::xle1 category -- then He is a category 

(and not just a netacategory) (cf. 2.4.4). 

0.1.28 EXM1PLE Consider the arrow category ~(-+) of a rrode1 category ~ -­

then ~(-+) can be equipped with ~ distinct rrode1 category strucb..lres roth having 

the sane class of VJeak equivalences, hence the sane horrotopy category. '!hus let 

(cp,IjJ): (X,f,Y) -+ (XI ,fl ,yl) be a norphism in ~(-+), so 

cp 
X > Xl 

fi if' 
Y > yl 

1jJ 

corrmutes. In the first strucb..lre, call (cp , 1jJ) a \Yeak equivalence if cp & 1jJ are VJeak 

equivalences, a cofibration if cp and Xl il y -+ yl are cofibrations, a fibration if 
X 

cp & 1jJ are fibrations and, in the second structure, call (cp,1jJ) a VJeak equivalence if 

cp & 1jJ are VJeak equivalences, a cofibration if cp & 1jJ are cofibrations, a fibration 

if 1jJ and X -+ Xl X Y are fibrations. 
yl 

[Note: 

~ proper => ~(-+) proper.] 

0.1.29 LEMMA If S is a set and if 



13. 

is a nodel strucb.lre on a category C (s E S), then 
-s 

w = TT Ws' cof = TT cof s' fib = TT fibs 
s s s 

is a nodel struc b.lre on g :: IT gs and the canonical arrow 
s 

HC -+ 11 HC --s 
s 

is an equivalence of categories. 

0.2 TOP:QUILLEN STRUCTURE 

Take g = TOP -- then TOP is a nodel category if 'It/E!ak equivalence = 'It/E!ak 

borrotopyequivalence, cofibration = retract of a "countable corrposition " X -+ Y, 

where X = Xo -+ Xl -+ ••• , Y :: collin Xk, and v k, the arr<JW' Xk -+ Xk+l is definec:l by 

the pu S'loU t s;ruare 

_II J1 Sn-l ----:> Xk 

1 1 
_It 11 !fl -------':> Xk+ l' 

fibration = Serre fibration. Every ON complex is cofibrant (and every object is 

'It/E!aklyequivalent to a CW complex). Every cofibrant object is a compactly generated 

Hausdorff ON space {the quotient [O,ll/[O,l[ is compactly generated (and contractible) 

but not Hausdorff, hence not cofibrant). Every object is fibrant. 

N.B. If (K,L) is a relative ON complex, then the inclusion L -+ K is a cofibration 

in the Quillen structure. Every cofibration in the Quillen structure is a closad 
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cofibration, thus is a cofibration in the str¢m strucbJre. And the Quillen strucbJre 

is proper (even though not every object is cofibrant) . 

Addendum: CG, 6.-cG, and CGH each has a Quillen strucbJre (definitions per 

those for 'TOP) which, noreover, is proper. 

0.3 SISET:KAN STRUCTURE 

Take £: = SISET -- then SISET is a nodel category if weak equivalence ::: 

sinplicial weak equivalence, cofibration ::: injective sinplicial map, fibration = 

Kan fibration. Every object is cofibrant and the fibrant objects are the Kan 

canplexes. 

[Note: It is a corollary that SISET* = 6. [0] \SISET is a nodel category.] 

N.B. Recall that a sinplicial map f:X + Y is a simplicial 'Weak equivalence 

if If I : Ixi + Iyl is a honotopy equivalence. 

0.3.1 LEMMA '!he Kan strucbJre is proper. 

PROOF Since all objects are cofibrant, half of this is automatic (cf. O.1.23). 

'Ibis said, consider a pullback square 

n 
P -------c> Y 

x ----> Z 
f 

in SISET. Assurre: g is a Kan fibration and f is a 'Weak equivalence -- then n is 

a 'Weak equivalence. In fact, 

Inl 
---->Iy\ 

1 Igl 

---->Iz\ 
If I 
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is a pullba.ck s::ruare in CGH, Igl is a Serre fibration, and If I is a weak hc:trotopy 

equivalence. Therefore In I is a weak hc:trotnpy equivalence. 

0.3.2 REMARK Let fib stand for the class of f such that Exn(f) is a Kan 
n 

fibration (n ~ 0, Ex° (f) = f) - then the conta:inrrent 

is strict and there is a rrodel structure W , cof , fi b on S1SET who~ weak equiv-
n n n 

alences are tho~ of the Kan struc'hlre (Le., V n, Wn = W
O

) and whose fibrations 

are the elerrents of fib. Eottom line: S1SET can be equipped with a comtable 
n 

collection of distinct nodel struc'hlres all having the s:ure horrotnpy category. 

[Note: The contai.n:rrent 

is strict, thus for n > 0, not every object is cofibrant. en the other hand, 

objects which are not fibrant in the Kan struc'hlre can becorre fibrant in struc1llre 

"n" (n > 0), e.g., the Mm] (m ~ 1) .J 

0.4 S1SET:JOYAL STRUCTURE 

Take £ = S1SET -- then S1SET is a rrodel category if weak equivalence = 

categorical weak equivalence, cofibration = injective simplicial map, fibration = 

all simplicial :rraps which have the RLP w.r.t. those cofibrations that are cate-

gorica1 weak equivalences. Every object is cofibrant and the fibrant objects are 

the weak Kan complexes. 

N.B. Every weak equivalence :per the Joyal strucWre is a -weak equivalence 

:per the Kan structure: 

"categorical weak equivalence" ::::> "simplicial weak equivalence". 
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0.4.1 REMARK The Joyal structure is left proper. However, it is not right 

proper. 

0.5 SISET:HG-STRUCTURE 

Take C = SISET and fix a nontrivial abelian group G -- then SISET is a m:::xlel 

categolY if weak equivalence = HG-equivalence, cofibration = HG-cofibration, 

fibration = HG-fibration. EvelY object is cofibrant and the fibrant objects are 

the HG-local objects, i.e., those X such that X -+ * is an HG-fibration. 

0.5.1 RAPPEL let f:X -+ Y be a simplicial map - then f is said to be an 

HG-equivalence if V n ~ 0, Ifl*:H <lxl:G) -+ H <IYI:G) is an isonnrphism. Agreeing n n 

that an HG-cofibration is an injective simplicial map, an HG-fibration is a siro-

plicial map which has the RIP w.r.t. all HG-cofibrations that are HG-equivalences. 

N.B. Every HG-fibration is a Kan fibration, hence evelY HG-local object is 

a Kan complex. 

0.5.2 REMARK The HG-structure is left proper (but it need not be right proper 

(e. g., when G = Q». 

0.6 SISET:p-STRUCTURE 

Take g = SISET and fix an inclusion p:A -+ B of simplicial sets -- then SISET 

is a m:::xlel category if weak equivalence = p-equi valence, cofibration = p-cofibration, 

fibration = p-fibration. Every object is cofibrant and the fibrant objects are the 

p-local objects. 
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0.6.1 RAPPEL Working within the Kan structure, a Kan conplex Z is said to 

be p-local if p*:nap(B,Z) -+ nap (A,Z) is a ~ equivalence. .i).breover, there is 

a functor L :S1SET -+ S1SET and a natural transfornation id -+ L , \vhere V X, L X 
P P P 

is p-local and t :X -+ L X is a cofibration such that for all p-local Z, the a:rro.il 
P P 

nap (L X, Z) -+ nap (X,Z) is a weak equivalence. 
p 

0.6.2 RAPPEL let f:X -+ Y be a simplicial map -- then f is sa.id to be a 

p-equivalence if L f:L X -+ L Y is a weak equivalence. Agreeing that a p-cofibration p p p 

is an injective simplicial nap, a p-fibration is a simplicial nap which has the 

RLP w.r.t. all p-cofibratians that are p-equivalences. 

N.B. Every p-fibration is a Kan fibration. 

0.7 S1GR:FORGETFUL STRUCTURE 

The free group functor F :SET -+ GR extends to a ftnlctor F :S1SET -+ S1GR gr- gr--

which is left adjoint to the forgetful functor U:S1GR -+ S1SET. Call a m:::>rphism 

f:G -+ K of simplicial groups a ~ equivalence if uf is a weak equivalence, a 

fibration if Uf is a Kan fibration, and a cofibration if f has the LIP w.r.t. 

acyclic fibrations - then with these choices, S1GR is a m::.>del category. 

[Note: Every object in S1GR is fibrant but not every object in S1GR is 

cofibrant. D:.finition: A simplicial group G is said to be free if V n, Gn is a 

free group with a specified basis Bn such that SiBn c Bn+l (0 $ i $ n). Every 

free simplicial group is cofibrant and every cofibrant simplicial group is the 

retract of a free simplicial group.] 
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0.8 SISETG:FORGETFUL STRUCTURE 

Fix a nontrivial group G. IEnote by ~ the group:>id having a single object 

* with M:>r(*,*) = G - then the category SETG of right G-sets is the flIDCtor 

OP 
category [~ ,SET] and the category of sinplicial right G-sets SISET

G 
is the 

functor category 

OP OP OP 
[~ , [~ ,SET]]:::: [(~ x~) ,SET] • 

So, if X is a sinplicial right G-set, then V n, Xn is a right G-set and the actions 

are ccmpatible with the simplicial structure maps. 'Ibis said, let 

U :SISETG -> SISET 

be the forgetful functor and call a rrorphism f:X -+ Y of simplicial right G-sets a 

~ equivalence if Uf is a weak equivalence, a fibration if Uf is a Kan fibration, 

and a cofibration if f has the LIP w.r.t. acyclic fibrations -- then with these 

choices, SISET
G 

is a nodel category. 

[Note: Every object in SISET
G 

is fibrant, the cofibrant objects being those 

X such that V n, Xn is a free G-set.] 

0.8.1 REMA.,-q:(( U has a left adjoint FG which sends X to X x si G. 

0.9 CXA:CANONICAL STRUCTURE 

let ~ be an abelian category. Write CXA for the abelian category of chain 

complexes over~. Given a rrorphism f:X -+ Y in CXA, call f a weak equivalence if 

f is a chain harotopy equivalence, a cofibration if V n, fn:Xn -+ Yn has a left 
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inverse, and a fibration 'if n, f :X -+ Y has a right inverse -- tbe:n with n n n 

these choices, CXA is a rrodel category. 

0.10 CXA;;:O:STAtVVARV STRUCTURE 

let ?! 00 an arelian category with enough projectives. {.v.t:'ite CXA~O for the 

full subcategory of CXA wh::>se objects have the property that X = a if n < O. 
--- n 

Given a rrorphism f:X -+ Y in CXA;;:O' call f a '\iVeak equivalence if f is a horrology 

equivalence, a cofibration if 'if n, f :X -+ Y is a rrononorphism with a projective n n n 

cokernel, and a fibration if 'if n > 0, f :X -+ Y is an epirrorphism -- tbe:n with n n n 

thee choices, ~O is a proper rrodel category. Every object is fibrant and the 

cofibrant objects are thoe X such that 'if n, X is projective. 
n 

0.11 CXA:BEKE STRUCTURE 

let ?! 00 a Grothendieck category with a separator -- tbe:n ?! is presentable, 

as is CXA. Given a norphian f:X -+ Y in CXA, call f a "'leak equivalence if f is a 

horrology equivalence, a cofibration if f is a rronarorphism, and a fibration if f 

has the RLP w.r.t. those cofibrations that are honology equivalences -- then with 

thes= choices, CXA is a proper m:x1el category. Every fibration is an epirrorphism 

(but not conversely). 

0.12 CAT:ItVTERNAL STRUCTURE 

Take £ = CAT, let '\iVeak equivalence = equivalence, stipulate that a functor 
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F:C -+ D is a cofibration if ti-)e map 

Ob~->ObQ 

X > FX 

is injective and a fibration if V X E Db ~ and V is:m.:>rphism 1jJ:FX -+ Y in Q, 3 an 

is:m.:>rphisn <P:X -+ XI in ~ such that F<P = 1jJ -- b"'1en CAT is a m::x1el category in 

which all objects are cofibrant and fibrant. 

[Note: There definitions restrict to give a m::x1el strucb.lre on GRD.] 

0.13 CAT:EXTERNAL STRUCTURE 

Take ~ = CAT, call a fl.IDctor F:~ -+ Q a 'Weak equivalence if Iner FI:13£ -+ BQ 

is a horrotopy equivalence, a fibration if Ex
2 

0 ner F is a Kan fibration, and a 

cofibration if F has the LLP w.r.t. all fibrations that are 'Weak equivalences -

then CAT is a proper m::x1el category (but not all objects are cofibrant nor are all 

objects fibrant) . 

[Note: These definitions restrict to give a m::x1el struc"bJre on GRD. J 

0.14 CAT:MORITA STRUCTURE 

Take ~ = CAT, let the 'Weak equivalences be those fully faithful functors 

F:~ -+ Q such that every object in Q is the retract of an object in the image of F, 

let the cofibrations be the F:~ -+ Q which are injective on objects, and let the 

fibrations be the F:~ -+ Q which have the RLP w.r. t. acyclic cofibrations -- then 

CAT is a left proper m::x1el category (but CAT is not right proper). Every object 

is cofibrant and the fibrant objects are the small categories with the property 

tha t every id.errp:>tent splits. 
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0.15 EQU:LARUSSON STRUCTURE 

let rou be the category 'I'Nho~ objects are the pairs (X,-x), where X is a S3t 

and -X is an equivalence relation on X, and 'I'NhoS3 rrorphisus are the maps f: (X,-x) -+ 

(Y/~y), where f is a rrorphisu in SET that S3I1ds equivalent elenents in X to equiv-

alent elerrents in Y. Call f a weak equivalence if f induces a bijection X/-x -+ 

Y/-y' a cofibration if f is injective, and a fibration if f maps each equivalence 

class in X onto an equivalence class in Y -- then rou is a rrodel category. Every 

object is cofibrant and fibrant. 

Fix a sma.ll category! -- then the functor category [!,SISET] admits t:!No 

proper rrodel category strucb1res. However, the weak equivalences in either structure 

are the sane, ID roth give rire to the s:rrre horrotopy category ~[!,SISET] . 

(L) Given functors F,G:! -+ SISET, call::: E Nat(F,G) a weak equivalence if 

v i, :::. :Fi -+ Gi is a sinplicial weak equivalence, a fibration if V i, :::. :Fi -+ Gi 
1 1 

is a Kan fibration, a cofibration if ::: has the LLP w.r. t. acyclic fibrations. 

(R) Given functors F,G:! -+ SISET, call::: E Nat(F,G) a weak equivalence if 

V i, :::. :Fi -+ Gi is a sinplicial weak equivalence, a cofibration if Vi::::. :Fi -+ Gi 
1 1 

is an injective simplicial map, a fibration if ::: has the RIP w.r. t. acyclic co-

fibra tions. 

[Note: When! is discrete, structure L = structure R (all data is levelwise).] 

Since the argtlllSlts are dual, it will be enough to outline the proof in the 

case of structure L. 
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0.16.1 NOTATION Let f:X + Y be a simplicial map -- then f admits a functorial 

if TIf factorization X -----'> Lf --> Y, where if is a cofibration and TI f is an acyclic 

If Pf 
Karl fibration, and a functorial factorization X ---'> Rf ----'> Y, where If is an 

acyclic cofibration and Pf is a Karl fibration. 

N.B. 'Ihes: factorizations extend 1eve1wise to factorizations of S:F + G, viz. 

i_ 
F --::!-> L~ > G and F > R~ > G. 

Write !cu.s for the discrete category underlying I -- then the forgetful functor 

U: Q;,SISET] + [:r..:l' ,SISET] has a left adjoint that sends X to fr X, where 
-u.~S ---" 

fr X. = lL M:>r(i,j}' Xi. 
J iEOb I 

0.16.2 I..ElI1MA Fix an F in I!, SISET] • Suppose that \II: UF + X is a cofibration in 

[~s I SISET] and 

fr \II 
----------------~> fr X 

lu 

F -----------------~> G 

is a pushout square in [!,SISET] - then the corrq::osite 

lL. Uu 
. X > Ufr X --> UG 

is a cofibration in [!cu.s' SISET] . 
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[The cannutative diagram 

Xj Xj 

1 l(~)j 
I I Fi) _I I Fj --'> ( il Fi) Jl Xj --> (il Xi) Jl Xj 

o o 0 
i-+j i-+j 
o>cid. o>cid. 

J J 

i -+ j 
o >c id. 

J 
u. 

J 

Fj ---------> Xj ---------> Gj 
<il. 

J 
u. 0 (u..). 

J . x J 

tells the tale. Indeed, the middle reM is a factorization of (fr <il). (suppression 
J 

of "U"), the bottom &JU,a.re on the right is a pushout, and a coproduct of cofibrations 

is a cofibration.] 

II 
[Note: As usual, are the ambient arreMS of ad junction. J 

v 

Consider any 1::F -+ G. Claim: 1: can be written as the composite of a cofibration 

and an acyclic fibration. Thus define F I by the pushout &JU,a.re 

fr Uio:; 
fr UF > fr ULo:; 

VFl 1 
F > Fl· 
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Then there is a carrmutative diagram 

fr Ui;::; fr U1T;::; 

fr UP :;:. fr UL;::; 

I 

1 vF! 
F > 

11 1 
L;::; L;::; 

struc tion to obtain a ~ence F = F 0 -+ F I -+ 

:;:. fr UG 

lVG 

:> G 

1 
L;::; 

-+ F of objects in [!,SISET], 
w 

taking F = coliro F. T'nis leads to a COIl1I1lltative diagram w n 

F ------:> F 

G========G 
Here, iw is a cofibration (since the Fn -+ Fn+l are). Moreover, iw is a weak equiv-

alence whenever ~ is a weak equivalence and in that situation, i has the LLP w.r.t. 
w 

all fibrations. To see that ~ is an aC:iClic fibration, look at the interpolation 
w 

UG====UG====UG====UG==== 
in [Idi ,SISET]. Thanks to the lem:na., the horizontal arrows in the top row are - s~=;;;;.; 



25. 

cofibrations. en the other hand, t.l:e arrows UL;:; -'I- UG are acyclic fibrations. 
11 

But then UB is an acyclic fibration per [J:..:J' ,SISET], Le., B is an acyclic w -u.1S W 

fibration per r!,SISET]. Hence the claim. 

'Ib finish the verification of r~c - 5, one has to establish that B can be 

written as the composite of an acyclic cofibration and a fibration. This, l1o\..vever, 

is irm:ediate: Apply i:.ffi claim to 1;:;0 MC - 4 is equally clear. For if B is a 

cofibration, then B is a retract of i , so if B is an acyclic cofibration, then w 

w has the LIP w. r. t. all fibra tions. Propriety is obvious. 

N.B. In all of the arove, it is understo:::>d that 

[I..:J' ,SISET] :::: 
-u.1S ---' 

TT SISET 
ObI 

carries the product structure of 0.1.29, where SISET itself is taken in its Kan 

struc ture. 

0.16.3 EXAMPLE A functor F;I -'I- SISET is said to be free if 3 functors 

B :I..:J~ -'I- SET (n 2: 0) such that V j E Ob I:B j c (Fj) & s.B j c B +lj (0 ::; i ::; n), n -uJ..S -- n n 1 n n 

with fr B :::: F (F j = (Fj) ). Every free functor is cofibrant in structure L and n n n n 

every cofibrant functor in structure L is the retract of a free functor. E:xanple: 

ner(Y-) is a free functor, hence is cofibrant in structure L. 

Consider the functor category [!,S], where (I,::;) is a finite nonempty directed 

set of cardinality 2: 2 and S is a rrociel category. Stipulate that a rrorphism 

B E Nat(F ,G) is a weak equivalence or a fibration if this is true levelwise, Le., 
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if ViE Ob I, E. :Fi -+ Gi is a ~ak equivalence or fibration. As for the co­
- 1 

fibra tions, given i E Ob I, let 1. be the SJbcategory of I whose elen:ents are the 
- -1 -

j E I such that j < i -- then there is a conmutative diagram 

col~. Fj ------C> col~. Gj 

1-
1 

1-
1 

Fi -----------'> Gi 

and one deems E a cofibratian if ViE Ob !, the arrow 

Fi _L-______ ~_ 

col~. Fj 
-1 

col~. Gj -C> Gi 
-1 

is a cofibration. Using induction on the cardinality of I, it thus follows that 

with these choices, [!,g] is a m:x1el category. 

0.18 WEAK FACTORIZATION SYSTEMS 

Let g be a category. 

0.18.1 DEFINITlOO A ~ak factorization system (w.f.s.) on g is a pair (L,R), 

where 

L c Mor C 

R c Mar C 

are classes of maps such that 

L = LLP(R) 

R=RLP(L) 
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and every f E IIDr £ admits a factorization f = p 0 A with A E L, pER. 

0.18.2 EXAMPLE Suppose that £ is a nodel category - then the pairs 

(cof, W n fi b) 

(W n cof, fib) 

are w.f.s. on C (cf. 0.1.9 (bis». 

0.18.3 LEMMA let (L,R) be a w.f.s. on £ -- then L and R are closed under the 

formation of retracts and each contains the isom::>rphisms of £. 

[Note: The intersection L n R is the class of isarorphisms of £. Proof: let 

f E L n R, say f:X -to- Y, and consider the lifting problem 

x :> X 

if 
y 0> Y . ] 

idy 

0.18.4 EXAMPLE let £ be a finitely corrplete and finitely cocamplete category -­

then every w.f.s. (L,R) on £ gives rise to a nodel structure on £, viz. the triple 

(IIDr £, L, R) • 

E.g.: Take C = SET and let L = the IlDnorrorphisms, R = the epiITD:rphisms. 

0.18.5 DEFINITICN let ~ be a cocorrplete category. Fix a class C c IIDr C • 

• C is closed 1.ID.der the fonnation of pushouts for every pushout square 
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2S. 

g 
Z ----> Y 

in ,f E C => n E C. 

x----:> p 

• C is closerl under the formation of transfinite comIDsitions if for every 

wellorderro set I with initial element 0 and for ever:y f'Lll1ctor ~:I -+ C such that 

\f i :> 0, the arrow 

coLim. . ~. -+ ~. 
)<1) 1 

is an elanent of C, the arrow 

is an elanent of C. 

0.lS.6 DEFlNITION Let g be a cocomplete cate:rory. SUPIDse tl"lat C c lIDr g is 

closro under comIDsition and oontains the isorror:t;:hisms of g -- then C is stable if 

it is close:i under the formation of p..lshouts and transfinite comIDsitions. 

0.18.7 LEMMA Let S be a oocomplete cate;pry -- then every stable class 

C c ~br g is closro under the formation of copcoducts (taken in £. (-+». 

0.18.8 DEFINITION Let g be a cocomplete cate:rory -- then a class C c Mer C is 

retract stable if it is stable and close:i under: the formation of retracts. 

0.18.9 EXAMPLE Let £. be a small cate;pry - then the class M c r~r C of rrono­

rror};:hisns is retract stable. 
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[NJte: The fair (M,RLP(M)) is a w.f.s. on g.] 

0.18.10 'IHEOREM SuPIDse that g is a cxxnmplete categ:>ry - thm for any class 

C c MJr g, LLP (C) is retract stable. 

In p:rrticular: If g is a:x:omplete and if (L,R) is a w.f.s. systan on g, then 

L is retract stable. 

Let g and g I be cate::JOr iES. 

0.18.11 LEMMA Suppose that 

F:C -+ C' 

F' :C' -+ C - -

f E MJr C 

are an adjoint piir. Let - then Ff has the LLP w.r. t. f' f 

f' E MJr C' 

has the LLP w.r.t. F'f'. 

PRCOF There is a one-to-one rorresp::mdence between the COImD.ltative SquarES 

FX ----> X' X -------'> F' X' 

FY ----> Y' Y -------'> F' y' 

and their fillers. 

0.18.12 LEMMA Suppose that 

F:C -+ C' 

F' :C' -+ C 
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are an adjoint }:air. Let 

(L,R) be a w.f.s. on g 

(L' ,R') be a w.f.s. on ct. 

FL c L' <=> F'R' c R. 

c 
SUPIDse that are categorie; and 

D 

g admits Plshouts 

Q admits p..1llbacks. 

there is a corrmutative diagram 

etA 
FIA >FI'-

Flf 1 1 F2f 

and a can:mical arrow 

defining thereby a functor 

FIB '> F2B 
etB 

et.f:FIB FI ~ FI'- -> F2B, 
1 

et :C(+) + Q(+) • . -
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there is a camJUtative diagram 

Bx 
G2X GlX 

G2g1 lG1g 

G2Y 
By 

> GlY 

and a canonical arrCM 

defining thereby a functor 

Assume ncJW that 

are adjoint p:rirs. 

---- B generates a natural transforma.tion 

Proof: V A E Ob C -
=> 



32. 

=> 

=> 

Put 

--- a generates a natural transfonration 

Proof: V X E Ob D 

=> 

=> 
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=> 

Put 

0.18.13 LEMMA Suppose that a = 81 ,2 and 8 = a2,1 -- then 

are an adjoint rair. 

Accordingly, under these conditions, there is a one-to-one corresp:nrlence 

between the comnutative squares 

A ------>G~ 

g f 

------>y B 

arrl their fillers. 

0.19 FUNCTORIALITY 

Let s= be a category. Consider its arrow category S(+) -- then there are 

functors 

dom:~(+) -> C 

o::.X1:~ (+) -> C 
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that project to the domain an:1 codomain respectively and a natural transfonnation 

=:dam ~ cod, viz. =f = f. 

[Note: There is also an enbaiding functor E:g ~ g (~). On obj ects, EX = ~ 

an:1 on morphisms, 

f 
X > Y 

f (f, f) : ~1 1~ E(X --> Y) = 

X > Y . ] 
f 

0.19.1 DEFINITION A w.f.s. (L,R) on C is functorial if there are functors 

such that 

dam 0 L = dam 

&codoL=dam o R 

codoR=cod 

and V f E Mer g, f = Rf 0 Lf with Lf ELand Rf E R. 

N.B. Put 

F = cod 0 L = dam 0 R. 

Then there are natural transfonnations 

A E Nat(dam,F) 

P E Nat(F ,cod) 
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and the factorization of f E M::lr g is givffi by 

dam f -------> cod f 

Ff Ff. 

[Note: Let (</l,ljJ): (X,f,Y) -+ (X' ,f' ,Y') be a I1Drfhism in g{-+), so 

X ----> X' 

Y ----> yl 

corrmutes -- then the diagram 

X----> X' 

F{</l,W) 

• > • 

Pfl lpf. 

Y > Y' 
W 

com:nutes. ] 
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0.19.2 DEFINITION The triple (F,A,p) is calle:l a functorial rffilization of 

the w. f. s. (L, R) • 

0.19.3 EXM-1PLE Let ~ be a rrodel category. SUPIDse that the w.f.s. 

(cof,W n fib) (cf. 0.18.2) 

is functorial -- t.."'en V X _f_> Y there is a carmutative diagram 

JJ JJ 

1 F(idJJ,f) 1 
x' > y' 

1 1 
x > y, 

f 

XI Xl -+X 
where are cofibrant and the arrows are acyclic fibrations. 

y' y' -+y 

assigrnnent X -+ X' is calle:l the cofibrant replacenent functor, denote it by ~, 

thus by construction, there is a natural transformation ~ ----=->irlc and V X, 

SX:!:X -+ X is an acyclic fibration. 

• V f E L, the lifting problan 

Af 
X >. 

£1 h 
y y 

has a solution s, thus Af = s 0 f, Pf 0 s = ide 

The 
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• V g E R, the lifting problan 

W W 

Ag1 19 
• > Z 

Pg 

has a solution t, thus P = g 0 g t, t 0 A = id g • 

0.19.4 IDTATION Given a functional realization (F, A, p) of the \v. f . s. (L, R) , 

let 

~ = {f:3 s st Af = s 0 f, Pf 0 s = id} 

~ = {g:3 t st Pg = got, t 0 Ag = id}. 

If f E ~, g E ~, then the lifting trOblan 

u 
.----> • 

• ~--->. 
v 

can be solved by taking w = t 0 F (u,v) 0 s. 

0.19.5 W~1A We have 

L = ~ 

R =~. 
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0.20 COFIBRANTLY GENERATED W.F.S. 

Let g be a coa::>mplete cat63"ory. 

0.20.1 NOrATION Let C c Mor g be a class of rrorPlisms -- then by cell C we 

shall understarrl the smallest stable class containing C. 

0.20.2 NOTATION Let C c lbr C be a class of rrorPlisms -- then by cof C we - ~ 

shall understand the smallest retract stable class containiI)J C. 

0.20.3 LEMMA We have 

C c cell C c cof C c LLP(RLP(C» (cf.0.18.10). 

0.20.4 LEMMA Supt:Ose that g is pr-esEntable - then for €Nery set I c Mer g, 

cof I = LLP(RLP(I». 

A-

0.20.5 EX.:M-1PLE Let g be a small cate;pry and let M c M::>r S be the class of 

rronorrorPlisms - then there exists a set M c M such that M = LLP (RLP ~~) ), hence 
A 

M = cof M (£ being pr-esentable). 
A 

(1) Take g = .! - then .! :::: SEI' and we can let M = {,0 -+ *}. 

(2) Take g = ~ -- then ~ :::: SISEI' arrl we can let M = {~[n] -+ Mn]:n ~ O}. 

0.20.6 NOI'ATION Given a class C c ~br g, let £. be the full subcat63"ory of 

g(-+) having C as its objects. 

0.20.7 LEMMA Supp:>se that g is presentable (hence that g(-+) is pr-esentable) 

then for €Nery set I c M::>r g, RLP (I) is an accessible subcategory of g (-+) • 

0.20.8 REMARK In gEneral, cof I c g(-+) is not accessible. 
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0.20.9 DEFINITION let £ be a cocomplete category - then £ is Slid to admit 

the snaIl obj ec t argurrent it has the follow:ing troparty: Given any ret 

(LIP (RIP (I) ), RIP (I) ) 

is a func10rial w.f. s. on C. 

[ID tE: ve rave 

RLP (LIP (RIP (I») = RIP (I). ] 

0.20.10 CRI'IERION let £ be a cocanplete category. AsSJme: V X E Ob £, tha::'e 

exists a rejUlar cardinal KX SlCh trat X is Kx-definite -- then £ admits tie snaIl 

object argument. 

N.B. In r;articular, every !:X"eSEntable cate::]ory admits tre s:nall object argument. 

0.20.11 REMARK 'IOP is not !:X"es:mtable, fence does rnt fall within tre p.n:view 

of 0.20.9. Nevertheless, 'IOP does admit the snaIl object argument (Garner t). 

0.20.12 REMARK If £ is treSEntable, then in general, £OP is not pres=ntable, 

thls it is not automa.tic that £OP admits the snaIl object argurrent. 

[Note: If £ and {JP are both !:X"es=ntable, then fur (X, Y) has at rrost one 

element for each p:llr X,Y E Ob £.] 

0.20.13 DEFINITION Let (L,R) be a w.f. s. on a rocomplete cate;Jory £ -- tren 

(L,R) is rofibrantly generated if there exists a fet I c L such that 

R = RIP (I) (=> L = LLP (RIP (I) ) ) • 

[Note: ve srall refer to I as a generating ret for (L, R) .] 

t arXiv:07l2.0724 
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N.B. Accordmgly, if ~ admits the snaIl objoct argument, then a oofi1:rantly 

generatal w.f. s. (L,R) on ~ is necesearily func1:Drial. 

0.20.14 DEFINITION Let ~ be a cocanplete node! category - th:n ~ is 

cofibrantly generaterl if tie w.f. s. 

(cof, W n fi b) 

(w n cof, fib) 

I 
are oofibrantly generaterl with generat.Jng s:ts 

J 

Here are a feiN examples. 

0.20.15 EXAMPLE Take C = 'lOP (Quillen Structure) -- then ~ is oofibrantly 

genera tal. 

[Let I be the a::t of mclusions Sn-l -7- If- (;n ~ 0, DO = {O} and S-l =,0) and 

let J be the! ret of inclusions iO: [O,l]n + [O,l]n x [0,11 (;n ~ 0).] 

0.20.16 EXAMPLE Take C = SISET (Kan Struc ture) -- tten C is cofibrantl y gen-

era tal. 
. 

[Let I be t:te ret of inclusions !::, [n) -7- !::, [n) (;n ~ 0) and let J be the a::t of 

mclusions A[k,n) -7- Mn) (O:$; k :5 n, n ~ 1).] 

0.20.17 EXAMPLE Take ~ = CAT (Internal Strucmre) -- tten ~ is cofibrantly 

genera terl. 

[In addition to the categories 0, I, and 2, let d2 be the diaxete category 
.... - - -

with 1:wJ objects, and let ~ be the category with bvo objects and bvo parallel 
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arrows -- tlen tre canonical functors 

u:.Q --> 1 

v:d2 -> 2 

w;p2 -> 2 -

are cofibrations and we can take I = {u,v,w}. Turning to J, let iso
2 

denote tre 

a B 
category with objects a,b and arrows ida' i~, a -> b, b -> a, w:tere a 0 8 = 

iit , (3 0 CI. = id -- then we can take J = {TI}, where n:l + iso"l (n (*) = a) .] 
-0 a - -:co 

0.20.18 EXAMPLE Take C = CAT (External Structllre) -- then g is cofibranUy 

generated. 

2· 2 
[Let I be the set of arrows cat Sd !:J. [n] + cat Sd !:J. [n] en ~ 0) and let J be 

2 2 the set of arrows cat Sd II. [k,n] + cat Sd Mn] (0 s k s n, n ~ 1) .] 

0.20.19 EXAMPLE Take g = EQU (Iaruss:::m Structllre) -- then g is cofibrantly 

generated. 

[(he can take I = {f, g}, J = {h}, where f:91 + {*}, g is the identity map 

from {a,b} (dis:rete }?Crrtition) to {a,b} (indis:rete }?Crrtition), and h:{ *} + {a,b} 

(indis:rete partition) s:nds * to a.] 

0.20.20 EXA.?1PLE Take C = CAT and let L be the class wlnse elements are the 

full functors - tren the pair (L, RLP (L» is a w. f. s. which is not cofibrantly 

generated, thus there are m:xiel categories that are presentable but not cofibrantly 

generated (apply 0.18.4). 
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0.20.21 REMARK The Str¢m structure on TOP is not cofibranUy generated 

(Raptis t). 

0.20.22 LEMMA If S is a set and if 

is a cofibrantly generated m:xiel structure on gs (s E S) with generating sets 

Is 
sets , then the rn:::xiel strucbJre on C = n ~ per 0.1. 29 is cofibranti y 

~ - s 

generated with generating sets 

I = U (I x "IT id.0 ) 
sES s t~s t 

J = U (J s x Tf id.0 ), 
sES t~s t 

where id.0 is the identity map of the initial object .0t of gtO 
t 

0.21 ClSTNSKltt THEORY 

A 

let C be a s:nall category -- then the class M c Mer g of rronorrorphisns is 
A 

retract stable and the pair (M,RLP (}\{» is a w.f. s. on g (cf. 0.18.9). 

[I\bte: For i:h= record, recall that a norphisn 2 in C is a rronOIlOX'Phisn iff - -
v X E Ob g, 2X is a m:::marrorphisn in SET.] 

N.B. Elements of RLP (M) are called trivial fibrations. 

t Homology. Homotopy Appl. 12 (2010),211-230. 

tt Mt~que 308 (2006). 
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A 

0.21.1 DEFINITION A cofilirant1y generated nodel structure on C is said to be 

a Cisiru:ki structure if ttE cofibra tions are tIe rronorrorphisns. 
A 

[I'ote: TIe ac:yc1ic filirations of a Cisinaci structure on C are the trivial 

f ilira tion s. ] 

0.21.2 EXAMPLE Take £ = t:. -- then the Karl structure on SISET is a Cisinski 

str:ucb..lre (cf. 0.20.16). 

A 

0.21. 3 LEMMA A Cisinaci strucb..lre on C is determined by its class of fibrant 

objects (cf. 0.1.11). 

A A 

0.21.4 DEFINITION Consider a cate:pry:pair (£,W) -- then W is a C-loca1izer 

providerl the fo11CMing conditions are met. 

(1) W EBtisEies ttE 2 out of 3 oondition (cf. 2.3.13). 

(2) W oontains RIP (M) • 

(3) W n M is a stable class. 

N. B. If 

W, cof = M, fib = RIP(W n M) 

A A 

is a nodel structure on £, tren W is a £-localizer. 

A "-

let e c :Mer £ -- tren the £-localizer generated bye, denoted W (e), is tte 
A A 

interrection of all ttE £-localizers containing e. The minimal C-localizer is 

W (.0) (jj tre anpty a::t of rrorphisns) . 

A 

0.21.5 DEFINITION A C-localizer is admissilile if it is generated by a a::t of 

rrorphisns of C. 

A A 

0.21. 6 EXAlV1PLE :Mer £ is an admissible £-localizer. In fact, 
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A 

W ( (,0 A -+ * ,) = Mor C. 
C C - -

" 0.21. 7 'IHEOREM let (~,W) be a category pair -- then W is an admissible 
A A 

~-localizer iff there exists a cofibrantly generated :nodel structure on ~ whore 

class of weak equivalences are the elenents of W and whose cofibrations are the 

rronorrorpbisms • 

[Note: The cofibrantly generated :nodel structure on § determined by W is 

left proper (but it need not be right proper) . ] 

0.21. 8 SCHOLIUM The map 

W -+ W, M, RIP (W n M) 

A 

induces a bijection bebJeen the class of admissible ~-localizers and the class of 
A 

Cisinski structures on C. 

A 

[Note: The partially ordered class of ~-localizers has a maximal elenent 

and a minimal elerrent. Furthenrore, if I is a set and if \~i (i E I) is an admissible 

§-localizer, then the intersection n W. is an admissible C-localizer.] 
iEI 1 -

0.21.9 REMARK It follows a posteriori that the stable class W n M is retract 

stable. In addition, W is necessarily sablrated, Le., W = W (cf. 2.3.20). 
A 

[Note: Every ~-localizer is the filtered tm.ion over the class of the admissible 
A 

~-localizers contained therein, thus, by a sinple argument, is sablrated.] 

0.21.10 EXAMPLE Consider SISET (Joyal Structure) - then W is the class of 
A 

categorical weak equivalences and is an admissible ~-lcx:::alizer: 

W = W({I[n] -+ ~[nJ:n ~ OJ). 
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Therefore tiE Joyal strucrure is cofibrantly generated. 

[Here I [n] is the sinplicial subset of Ll [n] generated by t:tE edges (k, k+l) 

(0 s k s n-l) (take 1[0] = 6[1]), so there is a pushout s;J1..lGI.re 

6[0] > 6[11 

1 1 
I[n] I[n+l].] 

A 

[Note: The Kan structm:e on SISET is cofibrantly generated and its ~-localizer 

is generated by the :ma.ps6[n] + 6[0] (n?: 0).] 

0.21.11 REMARK The HG-Strucb.lre on SISET is cofibrantly generated, thus its 
A 

Ll-localizer is admissible. 

A 

0.21.12 DEFINITICN The Cisinski strucb.lre on g corresponding to wun is called 
A 

the minimal nonic m:iiel strucrure on C. 

A 

0.21.13 EXAMPLE Take g = ! -- then ! ~ SET and W(~) is the class 

{~+~} U {f:X + Y (X ~ ~)}. 

A 

0.21.14 LEMMA The minimal IIDIlic m:iiel strucb.lre on g is proper. 

0.21.15 EXAMPLE Take C = Ll -- then t:tE minimal IIDIlic m:iiel structure on SISET 

has fewer weak. equivalences than the Joyal strucb.lre (cf. 0.4.1). 

A 

0.21.16 Nal'ATIClN Given an admissible g-localizer W and a small category !, 
A 

denote by WI C r-Dr [!,gl the class of norphisrns ~:F + G such that ViE Ob !, 

:Fi + Gi is in W. 
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A 

0.21.17 THEOREM 'lhe category [!,g] carries a cofibrantly generated m::x1el 

structure whose \\eak equivalences are the elerrents of WI and whose cofibrations 

are the IlDI1.OlIDrphi SrtIS. 

[Identifying I!,g] with the category of presheaves on !OP x g, observe that 

WI is admissible and then invoke 0.21.7.] 

[Note: If 2:: F + G is a fibration in this rcodel structure, then 'if i E Ob !, 
A 

2:
i 

:Fi + Gi is a fibration in the mJdel structure on g per W (but, in general, not 

conversely) .] 

0.21.18 EXAMPLE Take C = ~ and consider SISET in its Kan structure (hence 
A 

the admissible ~-localizer W is the class of simplicial weak. equivalences) - then 

for any!, the specialization of 0.21.17 to this situation gives rise to structure 

Ron I!,SISET] (cf. 0.16). 

0.22 MODEL FUNCTORS 

let g and £:' be m::x1el categories. 

0.22.1 DEFIDITICN A left adjoint functor F:g + £:' is a left rcodel functor if 

F preserves cofibrations and acyclic cofibrations. 

0.22.2 DEFINITICN A right adjoint fl.IDctor F' :~' + g is a right rcodel fl.IDctor 

if F' preserves fibrations and acyclic fibrations. 

0.22.3 LEMMA Suppose that 

F:C + C' 

F' :C' + C 
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are an adj:Jint pair - then F is a left node1 functor iff FI is a right rrode1 

functor. 

0.22.4 DEFINITION" Anode1 pair is an adjoint situation (F,F I
), where F is 

a left rrode1 functor and FI is a right node1 functor. 

0.22.5 EXAMPLE Consider "t:l'"e setup 

cat 
------':;> 

SISET (Joyal Struc'blre) CAT (Internal Struc'blre) . 

<----
ner 

Then (cat, ner) is a node1 pair. 

[Note: The inclusion 1 :GRD -+ CAT admits a left adjoint 'IT1 : CAT -+ GRD and a 

right adjoint iso:CAT -+ GRD. This being ro, consider the EEtup 

1 0 'IT
1 

0 cat 

> 

SISET (Kan Structure) CAT (Internal Structure). 

<-------
ner 0 1 0 iso 

Then (1 0 'IT 1 0 cat, ner 0 1 0 iso) is a node1 pair.] 

0.22.6 EXAMPLE Consider the setup 

id..rop 

-----':;> 

TOP (Quillen Structure) 
<----
i~p 

TOP (str¢m Struc'blre) . 

Then (id..rop' id..rop> is a :rrode1 pair (take FI = id.:rop> ~ 
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0.22. 7 LEMMA The adjoint situation (F,F') is a nodel pair iff F preserves 

cofibrations and F' preserves fibrations. 

0.22.8 LEMMA The adjoint situation (F ,F') is a nodel pair iff F preserves 

acyclic cofibrations and F' preserves acyclic fibrations. 

Recall now that gcof is a cofibration category and g' fib is a fibration 

category, the setup of 2.2.6 thus becoming 

F 

1 
---'> 

1 ' 
C'<----

<---
F' 

0.22.9 SCHOLIUM 

• 'lb ensure the existence of (LF, \)F)' it suffices to require that F send 

acyclic cofibrations :between cofibrant objects to weak equivalences. 

• 'lb ensure the existence of (RF' ,l1p,), it suffices to require that F' 

send acyclic fibrations :between fibrant objects to weak equivalences. 

so, if the adjoint situation (F,F') is a nodel pair, then the functors 

LF:HC -+ HC' 

RF' :HC' -+ HC 

exist and are an adjoint pair. 

a b 
0.22 .10 EXA.~LE Fix a nodel category g, let ~ be the category 1 • <-. -) • 2, 

3 
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and equip [f,g] with its m:x1el category structure per 0.1.12. let colim: [f,g] + C 

f g 
be the functor that on objects assigns to each 2-source X -E- Z + Y it pushout P: 

g 
Z ----> Y 

ft 1 
X ----> P. 

'Ihen colim has a right adj:Jint, viz. the constant diagram functor K:g + [f,g]. 

But it is obvious that K preserves fibrations and acyclic fibrations. Therefore 

Lcolim 
the adj:Jint situation (colim, K) is a m:x1el pair, thus exist and 

(Lcolim,RK) is an adj:Jint pair. 

[Note: The story for pullbacks is analogous.] 

Given a m:x1el category g and objects A,B in g, the categories A\g, £lB are 

again m:x1el categories, a rrorphism in either case being declared a -weak equivalence, 

cofibration, or fibration if it is such when vieW2!d in C alone. 

0.22.11 EXAMPIE let g be a m:x1el category and let X, Y E Ob g - then each 

f:X + Y induces a functor 

which sends an object X + Z of X\g to its pushout along f: 

X ----'> Z 

1 
Y -----'> P. 

l'breover, f! is a left ad j:Jint for the functor 
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which sends an object Y -+ W of y\g to its precorrposition with f and it is irrnediate 

that f* preserves fibrations and acyclic fibrations: 

y-----y x-----x 

f* ~ I; of 1 
W --------'> W' W ------'> W 

g g 

'Iherefore the adjoint situation (f! ,f*) is a rrodel pair, tlrus exist and 
Rf* 

(Lf!,Rf*) is an adjoint pair. 

[Note: The story for £IX, g/Y is analogous.] 

0.22.12 EXAMPLE Define a functor ~:Q -+ SISET by the rule ~[n] = ner TIl[n] --

then 

r ~:SISET -> SISET 

sin~ :SISET -> SISET 

is an adjoint pair. But 

r~:SISET (Kan Structure) --> SISET (Joyal Structure) 

is a left rrodel functor. 'Iherefore the ad joint situation (r ~,sin~) is a rrodel 

Lr~ 
pair, thus exist and (Lr~,Rsin~) is an adjoint pair. 

Rsin~ 

0.22.13 EXAMPLE In the notation of 0.7, 

F : SISET -> SIGR gr. ~ 

u:~. __ > SISET 
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is an ad joint pair. Since F preserves cofibrations and U preserves fibrations, 
gr 

LFgr 

it follows that exist and (LF gr' RU) is an adpint pair. 
RU 

A m:Jdel pair (F,F I) is a m:x1el equivalence if the ad joint pair (LF, RF') is 

an ad joint equivalence of hon:otopy categories. 

0.22.14 LEMMA The adpint pair 

LF:HC -+ HC' 

RF' :HC' -+ HC 

per 

F 

1 > 
1 ' 

~cof > C C' < ~'fib 
< 

F' 

is an adjoint equivalence of horrotopy categories if 

X E Ob ~cof 

X' E Ob Q'fib' 

an arrow-

¢ E Mor (FX,X') 

is a 'Weak. equivalence iff its adjoint 

l}J E Mor(X,F'X'} 

is a 'Weak. equivalence. 
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['Ibis is a special case of 1. 7 • 3. ] 

N.B. Since 

LF 

RF' 

are an adj:>int pair, ~ left derived functor LF is an equivalence iff the right 

derived functnr RF' is an equivalence. 

0.22.15 EXAMPLE Take EQU as in 0.15 and equip SET with its nroel structure 

-per 0.1.5, hence the weak equivalences are the bi jections and 

cof = M:>r SET 

fi b = M:>r SET. 

let Q:EQU -)- SET be the functor that on objects sends (X,~ ) to X/- -- then Q has X X 

a right adj:>int Q' :SET -)- mu that on objects endows a set with its discrete par­

ti tion. It is clear that Q preserves cofibrations and Q' preserves fibrations. 

LQ 
'Iherefore the adjoint situation (Q,Qt) is a m:del pair, thus exist and 

RQ' 

(LQ, RQ') is an adjoint pair. Since the arrow of adjtmction 

is the projection X -)- X/~X' an arrow 

is a bijection iff its adjoint 

l/J E M:>r( (X,~X) ,Q'X') 
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is a bijection on quotients, so the adjoint pair (LQ, RQ') is an adjoint equivalence 

of horrotopy categories: 

------'> 
HEQU HSET, 

<--

where BEET is iSJITDrphic to SET itself (cf. 1.1.8). 

0.22.16 EXAMPLE In the theory aOOve, take g = SISET (Kan Structure), g' = 'IOP 

(Quillen Structure) and let F = I I, F' = sin - then from the definitions, I I 
preserves cofibrations and sin preserves fibrations, thus the ad joint situation 

(I I, sin) is a m:xlel pair which, in fact, is a m:xlel equivalence. Therefore the 

adjoint pair (L I I, Rsin) is an adjoint equivalence of harotopy categories: 

--> 
HSISET H'roP. 

<'--

[We shall sketch the classical argurrent. Consider the bijection of adj1IDction 

::x,Y:C( Ix I, Y) -+ Nat (X, sin Y) , 

sin f 
so ::X, yf is the canposi tion X -+ sin I X I ~----'> sin y -- then the arrow X -+ sin I X I 

is a sinplicial ~ak equivalence. Proof: The diagram 

Ixl --> 

id1xd 
Ixl 

Isinlxll 

1 
Ixl 

COImnltes and the vertical arrow on the right is a ~ak horrotopy equivalence. Con-

sequently, :::x,yf is a sinplicial ~ak equivalence iff sin f is a simplicial ~ak 
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equivalence. But there is a comnrutative diagram 

IsinlXl1 
ISin fl 

? I sin yl 

1 1 
Ixi > Y 

f 

And the vertical arrows are weak. lDrcotopyequiva1ences, hence sin f is a simplicial 

-weak equivalence iff f is a weak lDrcotopyequiva1ence. Finally, t11=n, 3X,yf is 

a simplicial weak. equivalence iff f is a weak. honntopyequiva1ence and 0.22.14 is 

applicable. ] 

['NOte: All objects in SISET are cofibrant and all objects in 'IDP are fibrant.] 

0.22.17 REMARK Let HCW be the honntopy category of CW complexes -- then HeW 

is equivalent to H'IDP ('IDP in its Quillen structure). 

[Note: There are t:wo points to be kept in mind. 

(1) If K and L are CW complexes and if f:K -+ L is a weak lDrcotopyequiva1ence, 

then f is a lDrcotopyequiva1ence. 

(2) If X is a topological space, then there exists a CW complex K and a 

weak horrotopy equivalence f:K -+ X.] 

0.23 PROPRIETY 

Let ~ be a node1 category. 

f 
0.23.1 DEFINITION A weak equivalence X -->Y is proper to the left if for 

every co fibration X -+ Z tJ::e arrow Z -+ Z U Y is a weak equivalence. 
X 
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N.B. g is left proper iff all its ~ equivalences are proper to the left. 

f 
0.23.2 LEMMA A ~ equivalence X --> Y is proper to tJ:e left tie m:xie1 

pair (f!,f*) of 0.22.11 is a node1 equivalence or, equivalently, iff the functor 

Rf*:!! (y\g) -+!! (X\g) is an equivalence. 

0.23.3 THEOREM let g be a m:xie1 category -- then g is left proper iff for every 

f 
~ equivalence X --:> Y the functor Rf*:!i(Y\S:) -+ H (X\C) is an equivalence. 

0.23.4 REMARK The upsb:.:>t is that 1I1eft proper" can be formulated without tie 

use of cofibrations. So if W, cof, fi b is a node1 structure on g which is left 

proper, then 00 is any other node 1 structure W, cof', fib'. 

[Note: The story for "right proper" is analogous.] 

0.24 TRANSFER OF STRUCTURE 

I 
let g be a cofibranUy generated m:xie1 category with generating sets 

J 

thus 

W n fib = RIP(I) 

fib = RIP (J) • 

let C' be a finitely complete and finitely cocomp1ete category. Supposa that 

F:C -+ C' 

F' :C' -+ C 

are an adjoint pair. 
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• Assurre: 

(LLP(RLP(FI», RLP(FI» 

is a w.f.s. onC' . 

• Assune: 

(LLP (RLP (FJ) ), RLP (FJ) ) 

is a w. f. s. on C'. 

SUPJ;X)se further that 

F' (LLP (RIP (FJ») c W. 

Put 

W' = {f' E tDr gl ;Ftf' E W} 

fib' = {f' E MDr C':F'f' E fib} 

and set 

cof' = LLP(W' n fib'). 

0.24.1 THEOREM 'ttE data 

W', cof', fib' 

defines a cofibrantly generated rrode1 structure on g' with generating !:ets 

PRCX)F Ckle has only to note that from t.l"e assumptions 

- W n fi b' = RIP (FI) 

fib' = RIP (FJ) 

and 

coP = LLP (RLP (FI) ) 

WI n cof' = LLP (RIP (FJ» • 

FI 

FJ 
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[Note: The detail that is not quite im:rediate is the relation 

WI n cof ' = LLP(RLP(FJ)). 

However, by hypothesis, 

F' (LLP (RLP (FJ) )) c W, 

so 

LLP(RLP(FJ) c W' n cof'. 

Conversely, given f' :X' -+ yl in W' n cof', write f' = p 0 A, where A:X' -+ Zl is 

in LLP (RLP (FJ» and p: Z, -+ y' is in RLP (FJ) -- then 

f',A E W' => pEW' 

=> pEW' n RLP(FJ) = W' n fib'. 

But since f' E COf', the conmutative diagram 

x' -----> z' 

f'l 
Y' ------Y' 

admits a filler r:Y' -+ Z I , thus the conmutative diagram 

X' X' X' 

f·l Ai 1 f' 

Y' > z' '> Y' 
r p 

exhibits f' as a retract of A, inplying thereby that f' E LLP (RLP (FJ».] 
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N.B. The adjoint situation (F,F') is a nodel pair (for by construction, F' 

IF 
is a right nodel functor), thus exist and (IF, RF') is an adjo:int pair. 

RF' 

0.24.2 EXAMPLE Take 

c = SISET 

C' = CAT 

and 

2 F = cat 0 Sd 

2 F' == Ex 0 nero 

Then ~, ~' are pres:mtable and (F,F') is an ad joint pair. r.breover, all the 

assumptions of 0.24.1 are satisfied and the resulting cofibrantly generated nodel 

structure on CAT is its external structure. 

• v X E Ob SISET, the arrow of ad jlmction 

is a simplicial weak equivalence. 

• V ~ E r.br CAT, ner ~ is a simplicial weak equivalence iff Ex2 
0 ner ~ 

is a simplicial weak equivalence. 

Consider now the bijection of adjunction 

2 
2 2 Ex 0 ner ~ 2 

X -)- Ex 0 ner 0 cat 0 Sd X i> Ex 0 ner C. 

Then ~x,~~ is a simplicial weak equivalence iff ~ is a simplicial weak equivalence. 

So, in view of 0.22.14, ~ nodel pair (F ,F') is a nodel equivalence, i.e., the 
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adjoint pair (LF,RF') is an adjoint equivalence of haootopy categories: 

--~ 

HSISET HCAT. 
<---

[Note: '!he main reason for working with (cat 0 Sd2 , Ex
2 

0 ner) rather than 

(cat,ner) (or (cat 0 Sd, Ex 0 ner» is that the arrow of adjunction X "* ner(cat X) 

(or X "* Ex 0 ner 0 cat 0 Sd X) need not :be a sirrplicial 'Weak equivalence.] 

0.24.3 REMARK Recall first that there are natural simplicial 'Weak equivalences 

ner(grot! X) "* X 

gro II (ner g) "* c . 

• In CAT, let W denote the class of simplicial weak equivalences, i.e., 
00 

the class of functors F:C "* D such that Iner F 1:13£ "* BQ is a harot0p'J equivalence. 

N.B. Woo is the class of 'Weak equivalences per CAT (External Structure) and 

• In SISET, let W denote the class of simplicial 'Weak equivalences, i.e., 
00 

the class of sirrplicial maps f:X"* Y such that Ifl:lxl "* lyl is a homotopy equiv-

alence. 

N.B. W is the class of 'Weak equivalences per SISET (Kan Structure) and __ 00 

W-1SISET = HSISET. 00 __ 

Since ner Woo c Woo' there is a ccmnutati ve diagram 
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ner 
CAT----~ SISET 

1 1 
HCAT ~ HSISET 

ner 

and since gro~ Woo c Woo' there is a corrmutative diagram 

gro6 
SISET ~ CAT 

1 1 
HSISET ~ HCAT. 

gro6 

Takin;;r into account the natural isorroq:i1isms 

ner a gro6 -+ id 

gro6 a ner -+ id, 

it follows that ner in::luces an 8:JUiva1ence 

HeAT -+ HSISET 

of honotow categories. 

N.B. Take 'lOP in its Quillen structure, SISET in its Kan structure, and CAT 

in its exte:rnal structure -- then HCW is equivalent to HTOP (cf. 0.22.17), HTOP is 

equivalent to HSISET (cf. 0.22.16), and HSISET is equivalent to HCAT (by the above). 

[Note: let [CAT] be the category with Ob[CAT] = Ob CAT and whoa:! norpbisns 

are is:::mnrphisn classes of functors (Le., in [CAT], M:>r <!,~) is the set of 



61. 

isorrorphism classes of objects in I! ,~]) -- then the canonical projection 

CAT -+ [CAT] 

is a localization of CAT at the class W whose elerrents are the equivalences of 

snaIl categories, thus when CAT is equipJ?ed with its internal structure, 

HCAT = [CAT]. 

Given a srra.ll catego:ry ~.t write !CUS for the discrete category l.lllderlying 

! -- then for any cocanplete category S, the forgetful ftmctor U: I!,S] -+ I!ms'S] 

has a left adjoint that sends X to fr X, 'Where 

fr Xj = 11 Mar(i, j) ·Xi. 
i E Ob I 

0.24.4 EXAMPLE Take £ = SISEr (Kan Structure) and consider the adjoint pUr 

fr: [J:..:l' ,SISEr] -+ II,S1SEr] 
-ul.S - ----::..: 

U:[I,S1SEr] -+ [1..:l' ,SI5Er]. 
- -ul.S -----' 

Thm I!ms,SISEr] is a cofibrantly generated. rrode1 cat6:JOry (cf. 0.20.22) and all 

the assumptions leading to 0.24.1 are satisfie::1 (F = fr, F I = U). The resulting 

rofibrantly galerate::1 rrode1 structure on I!,S1SET] is structure L (cf. 0.16). 

0.24.5 LEMMA Let g,~ E db GRO, f:g -+ ~ a morphism -- then f is a simplicial 

weak equivalence iff f is an equivalence. 

0.24.6 LEMMA Let G,H E Ob GRD, f:G -+ H a rrorphism -- then Ex
2 

0 ner f is a -- -...,-

-----------....... --.~ 
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Y..an fibration iff ner f is a Karl fibration iff f has the RLP w.r.t. 'IT:! -+ iso
2 

(cf.0.20.16). 

0.24.6 SCHOLIUM The external and internal rrode1 strucblres on CAT restrict 

to the sane rrode1 strucWre on GRD. 

0.25 COMBHJATORIAL MOVEL CATEGORIES 

let £ l::e a cofibrant1y generated rrode1 category. 

0.25.1 DEFINITION £ is canbinatoria1 if in addition £ is presentable (hence 

complete and cocomp1ete). 

SUpp::>fe that S is canbinatoria1 -- then there exist sets 

such that 

I c cof 

J c (!J n cof 

W n fib = PJP{I) 

fib = RLP(J). 

0.25.2 REMARK The cofibrant1y generated w.f.s. 

(cof,W n fi b) 

(W n cof,fib) 

are functorial (£ l::eing presentable) and t:lE functors 

can l::e taken accessible. 

L:£{-+) -+ C{-+) 

R:£(-+) -+ £(-+) 
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N.B. Recall that 

£ presentable => £(-+) presentable. 

0.25.3 LEMMA SUPrx>se that £ is combinatorial - ... then 

W n fib 

fib 

are accessible subcategories of S (-+). 

[This is an application of 0.20.7.] 

0.25.4 LEMMA SUPrx>se that £ is combinatorial - then ~ is an accessible sub­

category of £ (-+) • 

PROOF ~rk with 

1- L:£(-+) -+ £(-+) 

R:£ (-+) -+ £ (-+) 

per (W n cof,fib) and note that 

Wi:! tum now to the "recognition principle" for combinatorial rrodel categories. 

Thus fix a presentable category £, a class W c MDr £, and a set I c Mor C • 

.Make the following assumptions. 

(1) W satisfies the 2 out of 3 condition (cf. 2.3.13). 

(2) ~ c £(-+) is an accessible subcategory of £(-+). 

(3) The class RLP (I) is contained in W. 

(4) The intersection W n cof I is a stable class. 
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N.B. The closure of W under the fonnation of retracts is automatic (cf. (2». 

0.25.5 THEO~l Under the preceding hypotheses, g is a combinatorial m:x:1el 

category with 'Weak equivalences W, cofibrations cof I, fibrations RLP{W n cof I). 

The key is to construct a set JeW n cof I such that cof J = W n cof I. 

Granting this for the ITO.I.l'eIlt, it is not difficult to check that £ is in fact a 

m:x:1el category, the remaining claim :being that 

But 

and 

W n fib = RLP{I) 

fib = RLP{J) • 

W n fib = RLP{cof) 

= RLP(LLP{RLP{I») 

= RLP{I) 

fib = RLP(W n cof I) 

= RLP{cof J) 

= RLP(LLP{RLP{J») 

= RLP(J) • 

There are b.lo steps in the construction of J. 

(cf. 20.4) 

(cf. 20.4) 

0.25.6 J:...EM.iA Suppose that JeW n cof I is a set with the following property: 

Every canrnu tative diagram 

x----> A 

1 1 
Y ----> B, 
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where 

(X -+ Y) E I 

(A -+ B) E W, 

can be factored as a conrnutative diagram 

X --> W ---:> A 

111 
Y --> Z ----'> B, 

where 

(W -+ Z) E J. 

cof J = W n cof I. 

[It suffices to sh:Jw that every fEW admits a factorization as hog, w:tere 

g E ce 11 J and h E RLP (I). 'lb thi s end I fix a regular cardinal K such that the 

domains of the elerrents of I are K-definite and proceed by transfinite induction.] 

Since ~ is an accessible subcategory of ~(-+), the inclusion functor ~ -+ ~(-+) 

satisfies t:te SJlution set condition: Given any object X -+ Y in ~·br ~, there exists 

a SJurce 

U. 
1 

X 

> Ii 
1 ( (X. -+ Y.) E W) 

1 1 

Y > Y. 
1 

V. 
1 

such that for every commutative diagram 

X >A 

1 1 «A -+ B) E W) I 

Y > B 
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there is an i, an arrow 

X. ;> A 
1 

1 1 
Y. > B 

1 

in s: (-+), and a canmu tati ve diagram 

U. 
1 

X -----:> X. ----> A 
1 

I 
-t 1 1 

Y -----'> Y. ----> B. 
V. 

1 

1 

0.25.7 LEMMA '!here exists a set J c:: W n cof I which has the property set forth 

In 0.25.6. 

PROOF Start with a cormn.rtati ve diagram 

where 

and factor it as above 

X ----'> A 

1 1 
Y ---.....,> B, 

(X -+ Y) E I 

(A -+ B) E w, 

X -----> X. ___ ---c> A 
1 

1 1 1 
Y -----'> Y. ----;> B. 

1 
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SO, to draw the desired conclusion, it suffices to factor the s:;ruare on the left 

by an elen:ent of W n cof I. For this purpose, fonn tre pushout s:;ruare 

X -------'> X. 
1. 

1 1 
Y -----> Y U X. 

X 1. 

and note that the arrow X. + Y U X. is in cof I. 
1. X 1. 

:Next, fac tor the arrow Y U X. + Y. 
X 1. 1. 

as an elerrent Y U X. + Z. of cof I followed by an elerrent Z. + Y. of RLP (I) 
X 1. 1. 1. 1. 

(permissible since C admits the snaIl object ar<JllIlBlt) -- then the conmutative 

diagram 

factors t:h3 s::ruare 

X ---> X. X. 
1. --- 1. 

1 1 1 
Y ---> Z. -----'> Y. 

1. 1. 

X -------'> X. 
1. 

1 1 
Y -------'> Y. 

1. 

by an arrow X. + Z. in W n cof I. 
1. 1. 

and 

[Note: To check tre last fOint, intrcxluce serre labels: 

w. 
1. 

X. > Y. 
1. 1. 

f. 
1. 

cp. 
1. 

X. ---> Y U X. ---> Z. -----'> Y .• 
1. X 1. 1. 1. 
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T:ten 

w. = l/J. 0 <p. 0 f .• 
1. 1. 1. 1. 

fut 

l/J. E RLP(I) c W => <p. 0 f. E W. 
1. 1. 1. 

en the other hand, 

f. E cof I,<p. E cof I => <p. 0 f. E cof I.] 
1. 1. 1. 1. 

0.25.8 EXAMPLE Take £ = SISET, let W be the class of categorical weak equiv-
. 

alences, and let I be the ~t of inclusions ~[n] -+ ~[n] (n;::: 0) -- then this data 

satisfies the asamptions of 0.25.5, which thus provides a route to the construction 

of the Joyal strucbJre on SISET. 

[Note: I am unaware of a specific description of IIJII.] 

0.25.9 m<lARK Working \vi thin the frarre'WOrk of 0.21, let £ be a small ca tego:ry 

and let W c Mar § be an admissible §-localizer -- then 

W, M, RLP(W n M) 

is a cofibrantly generated TIDdel structure on §, thus is combinatorial (§ being 
"-

presentable). 'lllerefore!i is an accessible &lbcategoryof f(-+) (cf. 0.25.4). 'lb 

"-

reven::e matters, fix a ~t M c M:M = cof M (cf. 0.20.5) and suppo~ that ~ c Mar £ 

is a class satisfying assumptions (1) through (4) arove (with I replaced by ri) --

then 

RLP (M) = RLP (cof M) 

= RLP (LIP (RLP 0\)1) ) ) (cf. 0.20.4) 

= RLP (H) c \4, 

so W is a £-localizer. 
A 

But the cofibrantly generated TIDdel strucbJre on s: proouced 
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by 0.25.5 ha.s W for its weak equivalences and M for its cofibrations. Accordingly, 

on tJ:e basis of 0.21. 7, W is necess:rrily admissible. 

0.25.10 THEOREM Keep I fixed and let Wk (k E K) be a set of classes of nor-

phisns of S. Supr:ose that V k E K, the pair (Wk,I) satisfies assumptions (1) 

through (4) above - then S is a combinatorial nodel category with weak. equivalences 

n Wk , cofibra tions cof I, fibra tions RLP (n Wk n cof I). 
kEK kEK 

[The r:oint }:ere is that an intersection of a set of accessible subcategories 

is an accessible subcategory.] 

0.26 VIAGRAM CATEGORIES 

Fix a sna.ll ca tegory !. 

0.26.1 DEFINITION let S be a nodel category and rupr:ose tlBt E E ~r[!,s] I 

say E:F -+ G. 

• E is a levelwise weak equivalence if ViE Ob !, :Fi -+ Gi is a -vJeak 

equivalence in S. 

• E is a levelwise fibration if ViE Ob I, E. :Fi -+ Gi is a fibration in C. - ~ -
• E is a projective cofibration if it has the LLP w.r.t. those norphisus 

which are simultaneously a levelwise weak equivalence and a levelwise fibration. 

0.26.2 DEFINITION The triple consisting of the classes of levelwise weak equiv-

alences, levelwise fibrations, and projective cofibrations is called the projective 
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Question: Is the projective structllre a IIDdel strucbJre on [!,£]? 

a b 
0.26.3 EXAMPLE let ! be the category 1 • <--. --~ • - then the m:x.lel 

3 2 

strucbJre on [!,£] per 0.1.12 is the projective structllre. 

0.26.4 EXAMPLE Suppose that (I,::;) is a finite nonernpty directed set of 

cardinality ~ 2 - tb:m the IIDdel structure on [!,£] per 0.17 is the projective 

structure. 

0.26.5 THEOREM Suppose that £ is a canbinatorial m:x.lel category - then for 

every !, the projective structllre on [!,£] is a m:x.lel structure that, rroreover, is 

canbinatorial. 

0.26.6 EXAMPLE Take £ = SISET in its Kan structure -- then the projective 

strucbJre on [!,SISET] is a canbinatorial m:x.lel strucbJre {it coincides with 

structllre L (cf. 0.16». 

0.26.7 DEFINITICN let £ be a m:x.lel category and suppose that = E M:>r[!,£] , 

say :::F -+ G. 

• = is a levelwise weak equivalence if ViE Ob !, 

equivalence in £. 

:Fi -+ Gi is a weak 

• = is a levelwise cofibration if ViE Ob !, =i :Fi -+ Gi is a cofibration 

in c. 

• :: is an injective fibration if it has the RIP w.r.t. those rrorphisms 

which are simultaneously a levelwise weak. equivalence and a levelwise cofibration. 
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0.26.8 DEFINITION The triple consisting of the classes of 1eve1wise weak 

equivalences, 1eve1wise cofibrations, and injective fibrations is called the 

injective structure on [!,gJ. 

Question: Is th.e injective structure a node1 strucbrre on [!,gJ? 

a b 
0.26.9 EXAMPLE let I be tre ca tegory 1 • --:> • <--. 2 -- then the rrode1 

- 3 
structure on [!,gJ per 0.1.12 is t:te injective structure. 

A 

0.26.10 EXAMPLE let S be a anal1 category -- then 9 is presentable and t:te 
A 

Cism~i structures on 9 are in a one-to-one corresp::>ndence with the class of 
"'-

admissible C-1ocalizers. Each Cismski structure is cofibrant1y generated and 
"'-

the mXle1 strucbrre on [!,g] per 0.21.17 is the mjective structure. 

[Note: Recall th:3.t rere nonorrorphisns are 1evehlise.] 

0.26.11 THEOREM Suppose that 9 is a combinatorial node1 category - then for 

every!, the injective structure on [!,gJ is a node1 structure that, rroreover, is 

combina torial. 

0.26.12 EXAMPLE Take 9 = SISET - then the injective strucbrre on [!,SISETJ 

is a combinatorial node1 structure (it coincides with strucbrre R (cf. 0.16)}. 

0.26.13 LEMMA Take g combinatorial - thm 

- [!,gJ (Projective Structure) 

9 left proper => left proper 

_ [!,gJ (Injective Structure) 
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and 

[!,g] (Projective Structure) 

g right proper => right proper. 

[!,gJ (Injective Structure) 

N.B. 

• Every projective cofibration is necessarily levelwhe, hence is a 

cofibration in the injective structure. 

• Every injective fibration is necessarily levelwisa, h:mce is a fibration 

in the projective structure. 

0.26.14 I...EM'-fA Take C combinatorial and consider the setup 

------> 

[!,g] (Projective Structure) [!,g] (Injective Structure). 

<------

PRCX)F '!he \'Jeak equivalences are the same and 

0.26.15 REMARK If C and C' are combinatorial and if - -
F 

---''> 

C C' 

<---
F' 

is a nodel pair, then ccmposition with F and F' dete:rmines a nodel pair 
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------:> 

<------
F' 

I 

w.r. t. either the projective structure or the injective structure. 

let I and J be sma.ll categories, K:I -+ J a functor, and take C combinatorial --- - - - -
then ~ is complete and cocornplete, ED the functor K*: [~,g] -+ [!,gJ has a right 

adjoint 

and a left adjoint 

0.26.16 LEMMA Consider the setup 

--------';:, 

[!,g] (Projective Structure) [~,gJ (projective Structure). 

<------

K* 

Then (K! ,K*) is a rrodel pair. 

PRCX)F K* preserves levelwise weak equivalences and levelwise fibrations. 

0.26.17 LEMMA Consider the setup 

K* 
------:> 

[~,g] (Injective Structure) 
r!,~] (Injective Structure) . 

<------

-------.. ----
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Then (K*IKt ) is a model pair. 

PROOF K* preserves levelwise weak equivalences and levelwi9:l cofibrations. 

0.26.18 THEOREM The nodel pairs 

(K! ,K*) 

are nodel equivalences if K is an equivalence of categories. 

since K* preserves levelwise weak equivalences, there is a carmutative diagram 

K* 

1 
K* 

and adpint pairs 

(Projective StJ:ucbJ.re) , 

0.26.19 DEFINITION The functor 

is called "tl'e hom:>topy colimi t of K. 

RK t 

>[!,£] 

1 
> !.![!I~] 

(Injective StrucbJ.re). 

[Note: Take,:! = ! -- then in this case, LK! is called the h:J.rrotopy colimit 

functor and is denoted by h::xx>l~.] 
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0.26.20 DEFINITION The functor 

is called the horrotopy limit of K. 

[Note: Take -l = ! - then in this case, RK
t 

is called the honntopy limit 

func tor and is denoted by hol~.] -
Is it true that for every snaIl category f and m::x:iel category g, the func tor 

category [f,g] admits a m::x:iel structure WIDse weak equivalences are the levelwise 

-weak. equivalences? As far as I can tell, ibis is an open question. But oorre 

information is available. 'l'hus let g (cof) stand for g viewed as a cofibration 

category and let g(fib) stand for g viewed as a fibration category -- then 

[f,g (cof)] in its injective structure is a harrotopically cocornplete cofibration 

category (cf. 2.5.3) and [f,g(fib)] in its projective structure is a horrotopically 

complete fibration category (cf. 2.5.6). Furthenrore, since every nodel category 

is a \veak m::x:iel category, 2.7.5 and 2.7.6 are applicable and serve to equip [fig] 

wi th bvo \veak nodel strucbJres. 

0.27 REEVY THEORY 

let f be a snaIl category. 

0.27.1 DEFINITION f is said to be a direct category if there exists a function 

deg:Ob f + Z~O such that for any nonidentity rrorphism i ~> j, \ve have deg(i) 

< deg(j). 

a b 
0.27.2 EXAMPLE The category 1 • <--. --> • 2 is a direct category. 

3 
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0.27.3 THEOREM Suppose that S:: is a cocarrplete rrodel category - then for 

every direct category !, the projective structure on [!,S::] is a rrodel structure. 

0.27.4 DEFlNITIOO ! is said to be an inverse category if there exists a 

o 
function deg:Ob I -+ Z~O such that for any nonidentity rrorphisu i --~j, 'We have deg(i) 

> deg(j). 

a b 
0.27.5 EXAMPlE The category I • --;:> • <-- • 2 is an inverse category. 

3 

0.27.6 THEOREM. Supoose that C is a complete nodel category -- then for every - -
inverse category!, the injective structure on [;£,S::] is a rrodel structure. 

0.27.7 DEFINITIOO Let ! be direct and let i E ob ! -- then the latching 

category a (!Ii) is the full subcategory of !Ii containing all the objects except 

for the identity map of i. 

f 
If ! is direct, then a q/i) is also direct with deg(i I --> i) = deg(i') , 

thus all the objects of a (!Ii) have degree < deg (i) . 

0.27.8 LEMMA Suppose that! is direct -- then for any rrorphisu f:i' -+ i, 

there is a canonical isarorphism 

of categories. 

0.27.9 DEFINITIOO Let ! be inverse and let i E Ob ! - then the matching 

category a (i '!) is the full subcategory of i '! containing all the objects except 
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for the identity map of i. 

If ! is inverse, then 8(i\!) is also inverse with deg(i _f_,> il) == deg(il), 

thus all the objects of 8 (i \!> have degree < deg (i) • 

0.27.10 LEMMA Suppose that I is inverse - then for any rrorphism f:i + ii, 

there is a canonical isorrorphi an 

8(f\8(i\!» ~ 8(i'\!) 

of categories. 

0.27.11 DEFINITICN Fix a cocorrplete category £, a direct category !, and an 

i E Ob I. Let 

8U/i:8 (Vi) + ! 

l:e the forgetful functor -- then the latching fmctor L. is the composite 
---";::"""'---.,1 

(8U/i)* colim 
------''> [8 (!/i) ,£1 ----';> C. 

N.B. Given F E Ob[!,£], the latching object of F at i is LiF and the latching 

rrorphian of Fat i is the canonical arrow L. F + Fi. 
1 

0.27.12 'IHEOREM Suppose that £ is a cocomplete rrod.el category -- then for any 

direct category .!' a rrorphism 3:F + G in [.!,£] is a cofibration (acyclic cofibration) 

in the projective strucb.lre (cf. 0.27.3) iff ViE Ob !, the induced norphism 

Fi II L.G + Gi 
- 1 

L.F 
1 

is a cofibration (acyclic cofibration) in C. 
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0.27.13 DEFmITIOO Fix a complete category £, an inverse category !, and an 

i E Ob r. let 

di\U:d(i\!) -+ ! 

be the forgetful fmctor -- then the natching functor M. is the composite 
1. 

(ai \U) * 
----;;> [d(i\!),£] 

lim 
---::> C. 

N.B. Given F E Ob[I,C], the ma.tching object of F at i is M.F and the natching 
-- -- 1. 

llOrphisn of F at i is the canonical arrow Fi -+ MiF. 

0.27.14 THEOREM SUppose that £ is a complete m::xiel category -- then for any 

inverse category !, a norphism ~:F -+ G in [!,£] is a fibration (acyclic fibration) 

in the injective structure (cf. 0.27.6) iff ViE Ob !, the induced llOrphism 

Fi -+ M.F x G Gi 
1. Mi 

is a fibration (acyclic fibration) in c. 

0.27.15 DEFINITIOO A small category! is said to be a Reedy category if the 

following conditions are satisfied. 

-+ -+ 
I ObI=ObI - -

• There exist subcategories with such that 
-+- -+-
I ObI=ObI - -

-+ -+- -+ -+ 
every f E Mor ! admits a mique factorization f = f 0 f, where f E MJr I and 

-+- -+-
f E MJr I. 

• There exi.sts a ~ction deg:Ob I -+ Z 0 such that - z 

-+ 
V i --», E MJr I (0 ;t id), deg(i) < deg{j) 

o -+-
V i -->j E Mor 1; (6 ;t id), deg(j) < deg(i). 
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+ + 
N.B. Therefore! is a direct category and ! is an inverse category. 

[Note: Conversely, every direct category is a Reedy categor'l.l and every 

inverse category is a Reedy category.] 

0.27.16 R:ElI.IARK The only iso.rcorphiSJll.s in a Reedy category are the identities. 

0.27.17 REMARK The notion of Reedy category is not invariant tmder the equiv-

a1ence of categories. 

0.27.18 LEMMA If !. is a Reedy category, then lOP is a Reedy category: 

<--

lOP = (!)OP. 

0.27.19 LEMMA If ! and ~ are Reedy categories, then ! x J is a Reedy category: 

:> + + 
I x J= I x J 

< + + 
I xJ= I x J. 

0.27.20 EXA.1I.:1PLE ~ is a Reedy category: deg( [n]) = n with 

+ 
I'l the injective maps 

+ 
~ the surjective maps. 

Fix a Reedy category !. 
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0.27.21 DEFINITICN let F E Ob[!,£], where £ is co.rrplete and cocanplete. 

• The latching object of F at i is Li F, where Li is carrputed per 

-+ 
d (!/i), and the latching rrorphism of F at i is the canonical arrow LiF -+ Fi. 

• The rratching object of F at i is Mi F, where Mi is co.rrputed per 
+-

d (i \!), and the rratching rrorphism of F at i is the canonical arrow Fi -+ MiF. 

0.27.22 EXAMPLE Take I = ~OP and given a sir£plical object X in SIC (= [~Op ,£]) , 

put 

Then 

and 

M X(= M X) = (cosk(n-l)X) • 
n [n] n 

[Note: Therefore LOX is an initial object in £ and MaX is a final object in £.] 

0.27.23 DEFINITICN let £ be a co.rrplete and cocamplete rrodel catego:ry and 

suppose that ~ E M:>r [I ,C], say ~:F -+ G. 

• E is a levelwise weak equivalence if viE Ob !, Ei :Fi -+ Gi is a weak 

equivalence in £. 

• E is a Reedy cofibratian if ViE Ob !, the induced rrorphism 

Fi [I L.G -+ Gi - ~ 
L.F 
~ 
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is a cofibration in C. 

• ~ is a Reedy fibration if ViE Ob !, the induced rrorp:usm 

is a fibration in C. 

0.27. 24 m~ SUPPJse that :::F -+ G is a Reedy cofibration -- thm ViE Db !, 

E. :Fi -+ Gi is a cofibration in C. 
1 -

[Note: In addition, the induce:.i rrorp:usm L.E:L.F -+ L.G of latching objects 
111 

is a cofibration in S which is acyclic if :: is a level wise weak equivalence.] 

0.27.25 LEMMA SUp:pJse that 3:F -+ G is a Reedy fibration -- then ViE Ob !, 

::. :Fi -+ Gi is a fibration in C. 
1 -

[Note: In addition, the induced rrorp:usm M. E:M.F -+ M.G of ma.tching objects 
111 

is a fibration in S which is acyclic if E is a levelwise weak equivalence.] 

0.27.26 APPLICATICN Every projective cofibration is a Reedy cofibration and 

every injective fibration is a Reedy fibration. 

0.27.27 DEFINITICN The triple consisting of the classes of levelwise weak 

equivalences, Reedy cofibrations, and Reedy fibrations is called the Reedy structure 

0.27.28 THEOREM The Reedy strucb.lre on [!,S] is a rrodel structure. And 

S left proper => [!,S] (Reedy Structure) left proper 

S right proper => [f,S] (Reedy Structure) right proper. 
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[Note: Let E E M:>r[!,£], say E:F -+ G. 

• E is roth a levelwise weak equivalence and a Reedy cofibration iff 

ViE Db !, the arrow 

is an acyclic cofibration in £. 

Fi il L.G -+ Gi 
L.F 1 

1 

• E is 00th a levelwise 'Weak. equivalence and a Reedy fibration iff 

ViE Ob !, the arrow 

is an acyclic fibration in £.] 

Fi -+ MiF xM.G Gi 
1 

0.27.29 REMARK It follows from 0.27.12 that if ! is direct, then 

[!,£] (Projective Structure) = [!,£] (Reedy Structure) 

and it follows from 0.27.14 that if ! is inverse, then 

[1,£] (Injective Structure) = [!,£] (Reedy Structure) • 

0.27.30 THEOREM Suppose that £ is combinatorial - then [!,£] (Reedy Structure) 

is combinatorial. 

0.27.31 !..EMMA Take £ combinatorial and consider the setup 

------::> 

[!,£] (Projective Structure) 

<------
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[W::>rking from left to right, the weak equivalences are the sane and every 

projective cofibration is a Reedy cofibration.] 

0.27.32 UMMA Take C combinatorial and consider the S3tup 

id[I C] 
-'------_ ..... > 

[!,S:J (Injective Structure) . 

<~------

[W::>rking from right to left, the weak equivalences are the saIIE and every 

injective fibration is a Reedy fibration.] 

0.27.33 EXAMPLE Take £ = 0., s: = SISET -- then every projective cofibration 

is a Reedy cofibration (cf. 0.27.26) and the containment is strict since, e.g., 

" Y /:), is a cosiroplicial object in 9. which is cofibrant in the Reedy structure but not 

in the projective structure (a.k.a. structure L) • 

0.27.34 'lHEOREM If ! and ~ are Reedy categories, then for any complete and 

cocornplete rrodel ca tegory S, 

[! x ~ ,S] (Reedy Structure) 

is tte sane as 

[!, [~,SJ (Reedy Structure)] (Reedy Structure) . 

let ! be a Reedy catEgory, S a complete and cocomplete rrodel catEgory, and 
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let K:g + [f,g] be the constant diagram functDr. Equip [f,g] with th:! Reedy 

structure. 

0.27.35 LEMMA The adj:>int situation (K,lirn:r) is a nodel pair iff \;j i E Ob f, 

+ 
the latching category d (!Ii) is eit:1Er connected or empty. 

0.27. 36 REMARK. let I be a s:na.ll category, C a combina tDrial nodel category --- -
then [f,g] admits a nodel structure such that the adjoint situation (K,lirn:r) is 

a nodel equivalence. 

0.27.37 LEMMA The adj:>int situation (col~,K) is a nodel pair iff \;j i E Ob f, 

+-
the matching category d (i\f) is either connected or empty. 

0.27.38 REMARK. let f be a s:na.ll category, g a combinatorial nodel category -­

then [f,g] admits a nodel structure such that the adjoint situation (colirn:r,K) is 

a nodel equivalence. 

0.27.39 EXAMPLE Take I = 60P to realize 0.27.35 and take I = 6 tD realize - - - -
0.27.37. 

The theory outlined above is "classical" and certain important examples do 

not fall wi thin its scope Ie. g. Segal's category !: or Connes' s category~. 'lb 

aCconm::xlate these (and others of significance) it is necessary to extend the notion 

of Reedy category 00 as to allow for nontrivial iSOJIDrphisms (cf. 0.27.16). For 

a s.ysteroatic account, consult B:rrger-Moerdijk t. 

t arXiv:0809.334l 
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0.28 EXAMPLE:rSISET* 

I is the category who::e objects are the fillite rets g == {O,l, ••• ,n} (n 2: 0) 

with bas: :p:>int 0 and wh:::>s: rrorphisns are the bas: :p:>illt prerervillg ma.ps. 

[Note: SUPIDse that y:~ -+ g is a rroq:hism in I -- then the p3.rtition 

_II =m 

of m determilles a permutation e:~ -+ ~ such that Y 0 e is order preserving. There-

fore y has a unique factorization of the fonn a. 0 (J, where a.:~ -+ g is order pre-

s:rving and (J:~ -+ ~ is a bare :p:>illt prerervillg pennutation which is order prererving 

ill the fibers of y.] 

Wri te rSISET* for the full subcategory of [[,SISET*] whJs: objects are tre 

X: [ -+ SISET* such t.h::tt Xo ::::: * (Xn ::::: X (g) ) • 

0.28.1 EXAMPLE let G be an abelian semigroup with unit. Using additive no­

tation, view d'- as the ret of bare :p:>illt prerervillg functions!! -+ G -- then the 

rule Xn == si d'- defilles an object ill rSISET*. Here the arrow c:fU -+ d'- attacred 

to y:~ -+ g rends (gl' •• ' ,~) to (gl"'. ,%), where gj ::::: L: 
y{i)=j 

g. = 0 if y-l{j) ::::: ~. 
J 

Let Sn (SISET*) be the category whos: objects are the :p:>inted simplicial left 

Sn-rets - then Sn (_SI_S_ET~*) is a nodel category (cf. 0.8). 

[Note: '!he group of bare :p:>int preservillg permutations n_ -+ n is S and for 
- n 

any X ill rSISET*, X is a :£X)illted simplicial left S -ret.] n n 
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let In be the full ~tegory of I whose objects are the ~ (m :::;; n). 

Assigning to the symbol InSISET* the obvious interpretation, one can follow 

the uSlal procedure and introduce tr (n) :rSISET* -+ InSISET* and its left (right) 

ad :Pint S<. (n) (coS<. (n) ) • 

0.28.2 NCYl'ATlOO Given an X in rSISET*, put 

sk (n)x = sk (n) (tr (n)X) 

and write 

for the 

objects of X at!! (cf. 0.27.22). 

= (cosk (n-l)X) 
n 

latching 

matching 

0.28.3 DEFINITICN SUpJ;:ose that f E Mor rSISET*, say f:X -+ Y. 

• f is a weak equivalence if V n ~ I, f :x -+ Y is a weak equivalence n -11 n 

• f is a cofibration if V n ~ 1, the induced IlDrphisn x II L Y -+ Y 
-11 - n n 

LnX 

is a cofibration in Sn (SISET*) • 
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• f is a fibration if V n ~ 1, the induced rrorphian X -+ M X x
MY 

Y 
n n -n n 

is a fibration in Sn (SISET*). 

Call theS3 croices the Reedy strucWre on rSISET*. 

0.28.4 THEOREM rSISET* in the Reedy strucWre is a proper rrodel ca't:e30ry. 

0.29 BISIMPLICIAL SETS 

Tre ca tegory [~op ,SISET] carries three propar combinatorial rrodel strucWres: 

Tre projective strucWre (= strucWre L) (cf. 0.26.6) 

'!'he Reedy strucWre 

The injective strucWre (= strucWre R) (cf. 0.26.12). 

0.29.1 ~ Tre projective strucWre is not tre s:me as the Reedy structllre 

but tre Reedy strucWre is the same as tre injective strucWre (hence all objects 

in the Reedy structllre are cofibrant) • 

Given a category £, write BISIC for the functor category [(~ x ~) OP ,£] -- then 

by definition, a bisimplicial object in £ is an object in BISIC. 

X 
0.29.2 EXAMPLE Supr:xJS3 that g has finite products and let be simplicial 

Y 

objec ts in C -- then the assignrrent Un], [m]) -+ Xn x Ym defines a bisliTplicial 

object X ~ Y in £. 

Specialize to g = SET -- tren an object in BISISET is called a bisirnplicial 

S3t and a rrorphian in BISISET is called a bisirnplicial map. Given a bisirnplicial 
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set X, put X = X ([n] ,[m]) 
n,m -- tlEn th:rre are rorizontal operators 

h 
d.:X + X 1 

1 n,m n- ,m 

(0 :0; i :0; n) 

h 
s.:X + X 1 

1 n,m n+ ,m 

and vertical operators 

d'::x .... X 
J n,m n,m-l 

(0 :0; j :0; m). 

v s.:x .... X 
J n,m n,m+l 

The rorizontal operators carrmute with i:l'E vertical operators, the simplicial 

identi ties are satisfied rorizontallyand vertically, and thanks to tie Yoneda 

lerrma., Nat (t. [n,m] ,X) :::: X ,where Mn,m] = Mn] x Mm]. 
n,m -

[Note: Every simplicial s:t X can be regarded as a bisimplicial s:t by 

trivializing its structure in eith:rr the horizontal or vertical direction, Le., 

X = X or X = X .] n,m m n,m n 

0.29.3 EXAMPIE Every functor T:~ .... CAT gives ris: to a functor XT:CAT .... BISlSET 

by writing 

or still, 

y- ([n] , [m]) = nern ([T[m] ,!,]) 

ner [T em] ,~!J ([n]) 

~ Nat (t.[n] ,ner[T[m] ,!]) 

::: Nat (ner[nJ ,ner[T[mJ ,!,J) 

:::: M::>r ern] , [T[m] ,~.J ) 

;::: Mor( [n] x T[m] ,!) 
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~ Mor(T[m] x [n] ,!) 

~ Mor (T [m] , [[n] ,!] ) 

::;: (ST[ [n] ,I]) , - m 

ST the singular func tor. 

0.29.4 REMARK There are tID canonical identifications 

ttat a:nd a bisimplicial ret X to the cofunctors 

[n] -+ X 
n,* 

[m] -+ X 
*,m. 

Each bisimplicial map f:X -+ Y induces simplicial naps 

f :X -+ Y 
n,* n,* n,* 

f :X -+ Y 
*,m *,m *,m 

and it can tappen that V n, f is a simplicial 'Weak equivalence but for s:::me m, 
n,* 

f is not a simplicial 'Weak e::ruivalence. 
*,m 

[Take X = t. [1], Y = {*} and let f be the unique bi simpl icial nap from 
n,* n,m 

X to Y -- then V n, f :X -+ Y is tt'e s:implicial nap Ml] -+ MO], which is 
n,* -11,* n,* 

MO] 11 MO] -+ MO], which is not a simplicial 'Weak equivalence.] 

[Note: The projective (injective) structure on [~Op ,SISET] gives rise to 
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~ m:xiel structures on BISISET. In the one, a bisimplicial map f:X + Y is a 'Weak 

e:::ruivalence if V n, f :X + Y is a simplicial 'Weak equivalence and in the 
n,* n,* n,* 

other, a bisimplicial map f:X + Y is a weak equivalence if V m, f :X + Y 
*,m *,m * ,m 

is a simplicial weak equivalence. The point then is that tlEse m::xlel structures 

are not the sane.] 

and 

0.29.5 LEMMA let X be a bisimplicial ret - then 

X :::: f [n] f [m] M:>r (-, ([n] , [m] ) ) • X 
n,m 

X :::: f [n] f [m] (Xn,m)M:>r « [n] , [m]) ,-) 

[The::e fonnulas are instances of the integral Yoneda lemna..] 

[Note: .Here M:>r is <JOIT{)uted per ~ x ~ (and not (~ x ~) OP) .] 

. the . f . ....~1, AOP AOP OP ( )OP) Usmg notat1on 0 Kan extenSlOns, \,.CU'>.e g = ~ , Q = ~ x ~ (:::: ~ x ~ , 

§ = SET, and let K be tlE diagonal ~ OP + ~ OP x !1 OP -- then the flmctor K*: BISISET + 

SISET is denoted by dia, thus 

the operators being 

(dia X)n = X([n], [n]) = X n,n 

h v v h d. = d.d. = d.d. 11111 

h v v h 
Sl' = S. s. = s. S .• 1 1 1 1 



and 

91. 

0.29.6 E::XN-1PLE let X,Y be simplicial sats - tlEn 

dia(X ~ Y) = X x Y (=> dia 6[n,m] = 6[n] x 6[m]). 

0.29.7 L'EM>1A. let X be a bisimplicial sat -- then 

dia X z f [n] f [m] {Mar (-, [n]) x M:>r (-, [m]) • X 
n,m 

:::: f in] ~br (-, [n]) x X 
n,* 

;::; f [m] M::>r [m]) x X 
*,m 

dia X :::: f f (X /br ([n] ,-) x M::>r ( [m] ,-) 
in] [m] n,m 

:::: f (X )M:>r ([m] ,-) • 
[m] * fm 

0.29.8 DEFINITION The simplicial sat 

f in] 1-br (-, [n]) x X 
n,* 

~ f in] X x 6 in] (X == X ) 
~ n n n,* 

is called. the realization of X, written Ixl. 
[Note: Its geometric realization is tl:'e coend 
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0.29.9 LEMMA. let f:X -+ Y be a bisimplicial ma.p. AsSJme: V n, f :X -+ Y 
n,* n,* n,* 

is a simplicial weak equivalence -- then I f I : I X I -+ I Y I is a simplicial weak equiv-

alence, thus dia f:dia X -+ dia Y is a s:implicial weak. equivalence. 

0.29.10 I..J!M.1A let f:X -+ Y ba a bisimplicial rra.p. Asanne: dia f:dia X -+ dia Y 

is a Kan fibra tion - then 

V m, f :X -+ Y 
*,m *,m *,m 

are Karl fibra tion s. 

['!he converoo is faloo, i.e., it can happen that 

V m, f :X -+ Y 
*,m *,m *,m 

are Karl fibrations but dia f:dia X -+ dia Y is not a Karl fibration. In fact, there 

are bisimplicial fEts X ruch tlat tre X ,X are Karl complexes but dia X is not 
n,* *,m 

a Karl complex.] 

Tre functor dia:BISISET -+ SISET has a left adjoint 

dia!:SISET -+ BISISET 

and a right ad joint 

diat:SISET -+ BISISET. 

• let A be a siroplicial oot -- then 

(dia !A) ([n] , [m] ) 

= J [k] !-Dr OP op (K[k] , ([n] , [m]) • A[k] 
/::, x /::, 
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== J [k] :r.Dr OP OP ( ([k] I [k] ) I ([n] I [m] )) • ~ 
D. x D. 

== J [k] :r.Dr D. x D. ( ( [n] I [m] ) I ([k] I [k] )) • ~ 

= J [k] (:r.Dr ( [n] I [k]) x:r.Dr ( [m] I [k])) • ~. 

[Note: 'Ib run a reality cJ::eck, let X be a bisimp1icia1 ret and compute: 

:r.Dr (A/dia X) == Nat (A I dia X) 

:::: J [k] :r.Dr (A [k] Idia X ( [k] ) ) 

_ J :r.Dr (A. J J (X ):r.Dr ( [n] I [k]) x:r.Dr ([m] I [k] ) ) 
- [k] -lei [n] [m] n/m 

:::: J [n] J [m] J [k] MDr (~ x ]br ([n] I [kJ) x Mor( [m] I [k]) ,Xn/m) 

:::: J [n] J [mJ :r.Dr (! [k] (:r.Dr ([n] I [k]) x:r.Dr ([m] I [k])) • ~/Xn/m) 

0.29.11 EXAMPLE Take A = D.[n] -- then 

dia!D.[n] z D.[n/n] (= D.[n] ~ D.[n]). 

[For any bisirrp1icial ret X, we have 

en the other h:md, 

]br (dia.I D. [n] ,X) :::::r.Dr (D. [n] ldia X) :::: X • 
n/n 

:r.Dr(D.[n/n] ,X) ~ X .] 
n/n 
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• let A be a simplicial set - then 

(diatA) ([n] , [m] ) 

r-hr OP OP « In], [m]) ,K[k]} 
IJ. x IJ. 

= I [k] (A[k]) -

r-hr OP OP « In] , [m]) , ([k] , [k]» 
IJ. x IJ. 

= I [k]~) - -

M:>r IJ. x IJ. ( ( [k] , [k] ) , ( In] , [m] ) ) 

= I[k] (~) - -

(A)~4>r([k],[n]) x r-hr([k],[m]) 
= I [k] -K 

I (A) IJ. In] [k] x IJ. [m] [k] 
= [k] -K 

= I[k] r-hr(lJ.[n] [k] x lJ.[m] [k],~) 

~ Nat(lJ.[n] x lJ.[m],A) = Mor(lJ.[n] x lJ.[m],A). 

[Note: 'It> run a reality check, let X be a bis:i.nplicial set and compute: 

Mor(dia X,A) = Nat(dia X/A) 

~ I [k] Mor(dia X( [kJ) ,A[k]) 

~ I [k] r-hr (J In] I [m] (r-hr (Ik] , [n]) x r-hr ( [k] I [m] » • Xn,m'~) 

~ I I I Mbr(X (A )1J.[n] [k] x lJ.[m] [k]) 
In] Im] Ik] n,m' ~K 
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::::: J J rcbr (X J (A- ) 8 en] [k] x 8 [m] [k] ) 
[n] [m] n,m' [k]-lc 

::::: J [ ] J [ ] fur 0< ,fur (8 en] x 8 [m] ,A) ) n m n,m 

-0.30 THE W-CONSTRUCTION 

Using the notation of Kan extensions, take ~ == ~OP x ~OP (~ (£: x ~) OP) , 

OP OP OP OP. Q == £: ' § == SET, and let K be the ordmal sum ~ x ~ -+ ~ (1. e., ([n], [m]) -+ 

[n+m+l]) -- then the functor K*;SISEI' -+ BISISET is denoted by dec, thus 

(dec X) ([n] , [m]) == Xn+m+ 1 ' 

the operations being 

and 

sj = sn+l+j :Xn+m+l -+ Xn+m+l+l (0::;; j ::;; m) • 

0.30.1 EXAMPLE ve have 

(dec 8[n]) ([k],[n-k]) == 8[n]n+l (0 $ k ~ n). 

-
Put W = dect , hence 

W:BISET -+ SISET. 
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N.B. For any bisimplicial ret X, 

n 
(Me) = {(x x) E IT X. ·dVx. - d

h x. (0 ~ k < n)}. n O,n"'" n,O k=0 -~,n-k' 0 K,n-k - JK+l K+l,n-k-l 

(0 ~ i ~ n) 

are the pres::::riptions 

v v h h 
d.x = (d.xO , •.. ,dlx. 1 '+l,d.x·+l . l,···,d.x 0) 1- 1,n 1- ,n-1 1 1 ,n-1- 1 n, 

v v h h 
s.x = (s.xO , ••• ,sOx. n_;'s.x. ., ••• ,s.x 0)' 1- 1,n 1, ~ 1 1,n-1 1 n, 

where 

x = (xO , ••• ,x 0). - ,n n, 

[Note: To shorten ma.tters, the elerrents of (Me)n can be regarded as 

(n+l) -tuples 

n 
(xO ' ••• ,x ) E 1T X. -k n k=0 -~,n 

such that 

v h 
doXk = <lk+lXk+l (0 ~ k < n).] 

0.30.2 LEMMA The rule that assigns to each bisimplicial set X the simplicial 

nap 



97. 

given by 

defines a natural transformation 

3:dia -+ W. 

0.3 0.3 THEOREM For every X, 

is a simplicial weak. equivalence. 

0.30.4 DEFINITION A bis.implicial nap f:X -+ Y is a diagonal weak equivalence 

if dia f is a simplicial weak equivalence. 

[Note: Recalling that 

there is a conmut3.tive diagram 

Ilxll 

~ 1 
Idia xl 

are the realizations of 

Ilflt 
-------'> II y II 

1 ~ 
-----> I dia y I , 

Idia fl 

x 
(cf. 0.29.8), 

y 

so f is a diagonal weak. equivalence iff I f I is a simplicial weak equivalence.] 

0.30.5 LEMMA let f:X -+ Y be a bisfutplicial map -- then f is a diagonal '!NE!a.k 

equivalence iff WE:Wx -+ Wi is a simplicial weak equivalence. 

PROOF Consider t:1"e ca:rmut3.tive diagram 

dia X 

dia fl 
dia Y 

H 

~X ------:> 'ViK 

lWi 
-----> Wi 
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and quote 0.30.3. 

0.31 BISISET:MOERVIJK STRUCTURE 

Given a bisimplicial nap f:X -+ Y, call f a 'Weak equivalence if f is a diagonal 

'Weak equivalence, a fibration if dia f is a Kan fibration, and a cofibration f 

has the LIP w.r.t. acyclic fibrations - then with these croices, BISISET is a 

proper combinatDrial nodel category. 

N. B. Every cofibration in the M:>erdijk struc'blre is a rronorrorphisn. 

0.31.1 REMARK TlE MJerdijk structure on BISISET is not tte sarre as the induced 

projective or injective sb:uc'blres. '!his is because the 'Weak equivalences in tlEse 

strucblres are necessarily 'Weak equivalences in the M:::>erdijk sb:uc'blre (cf. 0.29.9) 

but not conversely. 

0.31. 2 LEMMA Consider the setup 

------> 
SISET (Kan Struc'blre) BISISET (M::lerdijk Struc'blre) . 

<------
dia 

Then (dia! ,dia) is a IIOdel pair. 

[One has only to note that by consb:uction, dia is a right IIOdel functor.] 

Ldia! 

Therefore exist and (Ldia!, Rdia) i s an ad joint p:iir. 

Rdia 

0.31. 3 W1HA Tl:E IIOdel p:!.ir (dia! ,dia) is a nodel equivalence. 
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Therefore tIE ad.j:>:int pair (Ldia !,Rdia) is an adj:>:int EqUivalence of l:xJrrotopy 

ca te;rories: 

------::;:. 

HSlSET HBISISET • 

<------

There is another proper combinatorial m::xlel structure on BISISET that is 

analogous to the l'berdijk structure, '\:h:::! role of "dia" be:ing played by "W'. Thus 

the 'Weak equivalences are again the diagonal \'.leak equivalences but now a bisimplicial 

:rra.p f:X -+ Y is a fibration if WE is a Kan fibration and a cofiocation if it has t.te 

LLP w.r.t. acyclic fibrations. 

[N:>te: ve shall refer to this m::xlel strucillre on BISISET as t.te W-structure.] 

N.B. EV'ery cofibration :in the W-structure is a I1Dn.om::>rphisn. 

0.32.2 LEMMA let f:X -+ Y be a bisllnplicial :rra.p. Ass..:rrre: dia f is a Kan 

fibration - then WE is a Kan fibration. 

Therefore 

cof (W-Structure) c cof ~berdijk Structure) • 

0.32 BISISET:OTHER MOVEL STRUCTURES 

0.32.1 NOTATJ:CN let 

M c Mar BISlSET 

be tre class of m:::m.orrorphisns and let M c M be tre set of inclusions 

. . 
~[n] x ~[m] u ~[n] ~ ~[n] -+ ~[n] x ~[m]. 

0.32.2 LEMMA ve have 

M = LLP (RIJ? (M) ) (cf.0.20.5). 
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0.32.3 THEOREM '!here is a node! strucb.lre on BISISET in which tie weak 

equivalences are the diagonal vveak equivalences and tie cofibrat:i.ons are the 

rronorroqhi s:ns. 

[Note: This structure is ptOfer and combinatorial.] 

o. 32.4 THEOREM '!here is a rrodel struc"bJre on BISISET in which tie weak 

6:IUivalences are the bisimplicial maps f:X -+ Y Slch tlat V n, 

is a simplicial weak equivalence and tiE cofibrations are tre ItOnOlIDrphis:nS. 

[l'bte: This structure is proper and combina1:Drial.] 

0.32.5 THEOREM 'I'hare is a rrodel structure on BISISET in which the weak 

equivalences are the bisimplicial maps f:X -+ Y Slch that V m, 

f :X -+ Y 
*, m *,m *,m 

is a categorical weak 6:IUivalence and the cofibrations are the rronorrorphians. 

[Note: This strucb.lre is left proper and combinatorial.] 

0.33 MODEL LOCALIZATION 

let £ be a rrode! category and let C c Mer £ be a class of rrorphians. 

0.33.1 DEFINITION A nodel localization of ~ at C is a pair (~C~,LC)' where 

~C£ is a rrodel category and LC:£ -+ ~C£ is a left rrodel func1:Dr ruch that V f E C, 

this property, Le., for any nodel category £' and for any left rrodel functor 

F:£ -+ £' such that V f E C, LFLwf is an is::mr:::>rphis:n in He', there exists a unique 
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left nod.el functor F:~Cg -+ g' such that F = F 0 LC. 

0.33.2 EXAMPLE Take C = W and let LCC = C, LC = idc - then tha pair (C,id ) 
- - - - C 

is a nod.el localization of C at W. 

Given g and C, the central question is the existence of the pair (~cg, Le) 

(uniqueness up to is::m:o:rphism is clear) and for this it will be necessary to impo::e 

a::>rre conditions on C and C. 

ASSI.:lIte : 

• g is left proper and combinatorial. 

• e is a 9:!t. 

0.33.3 NorATIOO let We be the s:na.llest class S.lbject to: 

(1) Wc contains W and C. 

(2) We S3.tisfies the 2 out of 3 condition (cf. 2.3.13). 

(3) W C n cof is a stable class. 

0.33.4 THEOREM Under the preceding hypotheses, g is a left proper combina­

torial nod.el category with 'Weak equivalences WC' cofibrations cof, fibrations 

RLP(We n cof). 

[The proof hinges on 0.25.5, the key pomt bemg tha.t We c g (-+) is an 

accessible S.lbcategory of g (-+) • ] 

write ~cg for g equipped with the nod.el structure per 0.33.4 and let Le = idC. 

0.33.5 THEOREM The pair (~eg,Lc) is a model localization of g at e. 
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[Let F:g -+ g' be a left m:Xlel functnr. Since F = F 0 Le' it suffices to 

che:::::k that F is a left m:Xlel functor when viEWe:l as a fuoctor from ~cg to g'. 

'Ihe fact that F Ireserves cofibrat:ions is obvious, the fact the F Ireserves acyc:lic 

cofibrations beirg sHghtly less 9:).] 

0.33.6 DEFINITION A presentat:ion of a m:Xlel category g is a snaIl cata;Jory!, 

a s=t S c :M::>r [!, SISET], and a m:Xlel eJUivalence 

~S [!,SISET] (Projective Siructure) -+ C. 

[N:> te: Recall tha t 

[!,SISET] (Proje:::::tive Siruc-ture) 

is a left proper::- combinatnrial m:Xlel category (cf. 0.26.6 and 0.26.13), S) LS'" 

makes EEnS3.] 

0.33.7 THFDREMt Every combinatorial nodel category h:l.s a preS3l1tation. 

0.33.8 NO':mTION Given a srall category!, let PREI = [!OP,SET] (=!) and p.lt 

OP SPREI = [! ,SISET]. 

N.B. There is a canonical arrow 

I ---> PREI ---> SPREI 

which will be de:lota:i by SY'I' 

0.33.9 RAPPEL let £ be a cocornplete category - then for every T E Ob[!,gl 

t Dugger, Adv. Math. 164 (2001),177-201. 
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'" there exists r T E Ob[!,,£] Slch that T :::: r T 0 Y1 • 

O. 33.10 LEMMA Supp:> re tha t £ is a cocomplet.e llDdel ca te:Jory and let. T:!, -+ £ 

be a funcior -- then there exists a functor sr T:SPRE1 -+ £ and a natural trans­

forma.tion 

Slch that ViE Db !" 

is a weak equivalence. 

0.34 MIXING 

let £ be a finitely complete and finitely rocomplet.e category. SuPlDse tmt 

C carries 00 llDdel structures 

O. 34.1 THEORll1 As9.lrlE 

Then 

is a llDdel structure on C which is left (right) prop:rr- if this is the case of M2" 
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0.34.2 DEFINITION Tre rrodel strucblre arising from 0.34.1 is said to be mixffi. 

0.34.3 EXAMPLE Take ~ == TOP - then TOP carries its Str¢m strucbJre and its 

Quillen structllre. Sillce a lnrrotopyequivalence is a weak h:>rrotopy equivalence 

and smce a Hurewicz fibration is a Serre fil:ration, -t:h=re is a mixed nodel struc­

ture on TOP wh::>se weak equivalences are tre weak lnrrntopy equivalences and wIDse 

fibrations are tre Hurewicz fibrations. 

[N.Jte: ve shall refer to this rrodel strucbJre on TOP as the Cole structllre. 

Con sider the setup 

----------------~> 

TOP (Cble Structllre) < _________ _ TOP (Str¢m Strucblre) • 

id.rop 

0.34.4 LEMMA X is cofibrant ill the mixed rrodel strucblre iff X is cofibrant 

in rrodel structure Ml and there exists an arrow wI :X' -+ X, where wI E WI and X' 

is rofibrant ill rrodel strucbJre M2• 

0.34.5 EXAMPLE Consider th:! Cole structllre on TOP -- then every cofibrant X 

is necessrrily a CW !:pace. In fact, for ruch an X, 3 an arrow w:X' -+ X, wh:rre w 

is a IDm:>topyequivalence and X' is cofibrant ill the Quillen strucbJre. But X' 

is a CW space (cf. 0.2.1), renee the S3Jre h::>lds for X. 

0.35 HOMOTOPY PULLBACKS 

let ~ be a right proper rrodel category -- then a corrmu.tative diagram 
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w -----'> Y 

x -----'> Z 
f 

in £: is S3.id to be a honotopy pullback if for SJme factorization Y -=-> Y --»z 

of g, the induce::1 norphisn W -+- X Xz Y is a weak a:jUivalence. This definition is 

ess:ntiall y independent of the doice of the factorization of g since any tw::> such 

factorizations 

Y -=-> Y' --»z 

Y -=-> Y" --»z 

lead to a corrmutative diagram 

W > X r~ Y' 
II 
w > • 
II 1-
w > X x Y" z 

and it does not rratter whetrer one factors g or f. 

[Note: Too dual notion is hom:rtopy pushout.] 

0.35.1 LEMMA A pullback s;ruare 

p----> Y 

X -------'> Z 
f 
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is a h:mo topy Plllba.ck pmvided g is a fibration. 

['lake Y = Y and fac tor gas Y 
g 

Y ---'> z.l 

0.35.2 LEM4A A ronmu ta. tive diagram 

n 
w------.;> y 

~l 
X ----'> Z , 

f 

n 
w:ter"e f is a weak equivalence, is a mrcotnpy p.1llba.ck iff i:.h:= arrow vJ Y is a 

'iMXIk equivalence. 

f -g 
PRCDF Fac tor gas Y --> Y --> z and form the ro:mmuta tive diagram 

n 
w > Y 

- if 
p n 

w X Xz Y > Y 

~1 19 

X ========= X > z , 
f 

w:tEr"e p is the induced rcorphisn and E;" n are tJ:e pr-ojections -- tlEn the claim is 

that P is a v.eak equivalence iff n is a 'IA.ea.k equivalence. Since £ is right pr-or:er 

and g is a fibr-ation, it follows that n is a 'We3k equivalence. fut f 0 n = n 0 p 

and f is a weak equivalence. Therefore 

p w.e. => n 0 p w.e. =? f 0 n w.e. => n w.e. 

n w.e. => f 0 n w.e. => n 0 p w.e. => p w.e. 
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0.35.3 CCMPOSITION I..EMMA Consider the commutative diagram 

• --:> • ----'> • 

1 1 1 
• -----'> • -----'> • 

in a right proper node1 cat.e;pry g. Supp:>se that roth tie s:;ruares are lurrotopy 

:r;:ullbacks -- then the rectangle is a l::om:>topy pullback. Converl:e1y, if the rectangle 

and the second ~e are h:motopy p.li.1ba.cks, then tba first s:;ruare is a h:motopy 

p.ll1ba.ck. 

g 
0.35.4 LEMMA SuPtnS9 that g is a right proper node1 category. let Y Z 

be an arrow in g -- tl:en. tba following a::>nditions are equivalent. 

f 
(1) For every arrow X --> z, the p.lllback s:ruare 

X Xz Y ------'> Y 

1 19 

X --------"» Z 
f 

is a ronotopy pullback. 

u f 
(2) For every weak equivalence Xl --> X and for every arrow X --> Z, 

the arrow 

in the ccmrnltative diagram 
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v 
Xl X z Y ----> X X z Y ------'> Y 

1 1 19 
XI ---------~> X --------~> Z 

u f 

is a weak equivalence. 

PROOF 

U) => (2) The aSSlIllpt.:ions, in conjunct:ion with 0.35.3, :imply that tre 

s::ruare v 

Xl -------~> X 
u 

is a rorrotopy p.1l1ba.ck. Therefore v is a weak equivalence (cf. 0.35.2). 

f 
(2) => U) Given an arrow X -----.:>Z, factor it as X ---> X ---»z and 

con sider ~ corrmu ta tive diagram 

-
X Xz Y -------'> X Xz Y ----> Y 

1 1 
X ---------> X ----» Z • 

Then the first SIUare is a lnrrotopy p.1l1ba.ck (cf. 0.35.2), as is ~ second ~e 

(cf. 0.35.1). Therefore the rectangle is a h::m::>tnpyp.1llba.ck (cf. 0.35.3). 

g 
O. 35. 5 DEFINITION let C be a rrodel ca tapry -- then an arrow Y --> Z ill C 

is Slid to be a lDrrotopy fibrat:ion if ill any conmutative diagram 
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v 
x' X z y :> X X z Y :> Y 

1 1 19 
x, :> X :> Z , 

u f 

v is a weak equivalence whenever u is a weak equivalence. 

N.B. If £: is right proper, then every fibration is a h:motnpy fil:ration rut, 

in general, there will be h:motnpy fibrations that are not fibrations. 

0.35.6 EXAMPLE Take £: = 'lOP (Str¢rn Structure) -- then fibration:::: Hurewicz 

fibration. en the 0 t.ller hmd, the pullba.ck spare 

n 
P '> Y 

"1 19 
x '> Z 

f 

is a h:motnpy pullba.ck provided g is a :COld fibration. 

{N:>te: Recall that Hurewicz => :cold but :COld 'I> Hurewicz.] 

0.35.7 EXAMPLE Take £: :::: SISET (Kan Structure) -- then fibration = Kan fibration 

and the fibrant objects are tJ::e Kan complexes. Still, for every simplicial ret y, 

t:te arrow Y -)- * is a h:motnpy fibration. 

0.35.8 LEMMA The class of lnnotnpy fibrations is cloS3d under cornp::>sition and 

the fonna.tion of retracts and is pullback stable. 
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A: FIBERED CATEGORIES 

A.l GROTHENVIECK FIBRATIONS 

let £: and Q be categories and let F:£: -+ Q re a flmctor. 

A .1.1 DEFINITION Gi veIl Y E Ob Q, the fiber ~ of F over Y is the subcategory 

of g wIDse objects are the X E Ob g such that FX = Y and whose rrorphisms are the 

arrows f E MJr £: such that Ff = idy. 

[Note: In general, ~ is not full and it nay very well be the case that Y 

and y' are isarrorphic, yet ~ ::;; Q and £: ;t 0 (cf. A.1. 20) .] 
y' 

N.B. There is a pullback square 

1 ----> D. 

A.1.2 NOI'ATION Given X,X' E Ob~, let MJry(X,x') stand for the set of 

rrorphisns X -+ X' in ~. 

A.1.3 DEFINITION let X,X' E Ob g and let u E MJr(X,X') -- then u is pre­

horizontal if V rrorphism w:XO -+ X' of g such that Fw ::;; Fu, there exists a 1.IDique 

norphisn v E MorFX (Xo ,X) such that u 0 v = W: 
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u 
x -----;> X' 

[Note: let 

Then there is an arrC>'lN' 

viz. v -+ u 0 v (in fact, F(u 0 v) = Fu 0 Fv = Fu 0 i~ = Fu) and the condition 

that u be prehorizontal is that V Xo E ~, this arrow is bijective.] 

A.1.4 DEFINITICN let x,X' E Ob g and let u E Mar(X,X') -- then u is preop-

horizontal if V rrorphism w:X -+ Xo of g such that Fw = Fu, there exists a tmique 

rrorphism v E Mar (X' ,XO) such that v 0 u = w: 
FX' 

u 
X ----> X, 

[Note: let 

Then there is an arrow 

viz.v-+ V 0 u (in fact, F(v 0 u) = Fv 0 Fu = id 
FX' 

o Fu = Fu) and the condition 
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that u be preophorizontal is that v Xo E S ' this arrow is bijective.] 
FX' 

A.L 5 liEMMA The isonorphisrns in S are prehorizontal (preophorizontal). 

A.L 6 REMARK The CCXT:POsite of two prehorizontal (preophorizontal) rrorphisms 

need not be prehorizontal (preophorizontal). 

A.L 7 DEFINITION The functor F:S -+ Q is a Grothendieck prefibration if for 

any object X' E Ob S and any norphism g:Y -+ FX', there exists a prehorizontal 

norphism u:X -+ X' such that Fu = g. 

A.La DEFINITION The functor F:S -+ Q is a Grothendieck preopfibration if for 

any object X E Ob S and any norphism g:FX -+ Y, there exists a preophorizontal 

norphism u:X -+ x' such that Fu = g. 

A.I .• 9 LEMMA The functor F:S -+ Q is a Grothendieck prefibration iff V Y E Ob Q, 

the canonical functor 

has a right adjoint. 

A.LIO W~ The functor F:S -+ Q is a Grothendieck preopfibration iff 

V Y E Ob Q, the canonical functor 

(X -+ (X,i<1y» 

has a left ad joint. 

A.LII DEFINITICN Let X,X' E Ob ~ and let u E MJr (X,X') -- then u is horizontal 
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if V rrorphism w:XO -)- X' of C and V factorization 

Fw=Fuox 

there exists a unique rrorphism v:xO -)- X such that Fv = x and u 0 v = w. 

Scherm tically: 

w Fw 

Xo • .> X ---> X' 
V u 

FXo -----'> FX ---> FX' 
Fu x 

N.B. If u is horizontal, then u is prehorizontaI. Proof: For Fw = Fu => 

A.I.l2 DEFINITICN let X,X' E Ob g and let u E Mer (X,X') -- then u is ophor­

izontal if V rrorphism w:X -)- Xo of g and V factorization 

Fw=xoFu (x E M:>r (FX' ,FXO) ) , 

there exists a unique morphism v:X I 
-)- Xo such that Fv = x and v 0 u = w. 

Scherm tically: 

w Fw 

, I FX -----'> FX'---> FXO 
Fu 

I X ---> Xl •••• > Xo 
u v x 

N.B. If u is ophorizontal, then u is preophorizontaI. Proof: For Fw = Fu => 

FXo = FX', so we can take x = id , hence Fv = id => v E M::>r (XI ,X
O
). 

FX' FX' FX' 

A.I.l3 DEFINITICN '!he functor F:g -)- Q is a Grothendieck fibration if for any 

object Xl E Ob g and any rrorphism g:Y -)- FX', there exists a horizontal rrorphism 

u:X -)- X' such that Fu = g. 
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N.B. If u:X -+ X' is another horizontal norphism such that Fi:i = g, then :3 a 

unique isorrorphism f 

[YE have 

-X • 
v 

X -
v 

Here 

T'nerefore 

so 

E Mar ~ such that u = u ° f. 

u 

.> X 
u 

u 

-> X 
u 

FU 
-> X' FX > FX 

idy 

Fu 
I -

> X' I FX >FX 
idy 

Fv=idy&uov=u 

FV = idy & U 0 v = u. 

-uovov=uov=u 

u 0 v 0 v = u 0 v = U, 

v 0 v = id_ 
X 

-v 0 v = i~.] 

> FX' 
Fu 

> FX' 
Fi:i 

A.1.14 DEFINITICliJ The functor F:S -+ !2 is a Grothendieck opfibration if for 

any object X E Ob S and any norphi an g: FX -+ Y I there exis ts an ophorizontal nor­

phism u:X -+ Xl such that Fu = g. 

N.B. If u:X -+ XI is another ophorizontal rrorphisn such that Fi:i = g, then :3 
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a unique is.JIrOrphisn f E t-br ~ such that ii = f 0 u (cf. supra). 

A.l.IS LEMMA The functor F:C -+ D is a Grothendieck fibration iff the functnr 

FOP : gOP -+ "Q0P is a Grothendieck opfibration. 

A.l.16 EXAMPLE The functor PC:g -+ ! is a GrothendieCk fibration. 

[Note: The functor 0 -+ C is a Grothendieck fibration (all requirerrents are 

satisfied vacuously) .] 

A.1.17 EXAMPLE The codomain functnr 

cod:[~,g] ( ~ g(-+» -+ g 

is a Grothendieck fibration provided g has pullbacks. 

[Note: The fiber [~,g]x of cod over X E Db g can be identified with g/x.] 

G 
A.l.la EXAMPLE Given groups 

H 

single object * with 

, denote by 
G 
- the groupoids having a 
H 

-- then a group horroIrorphism (j):G -+ H can 

be regarded as a functor p.:§ -+ !! and, as such, p. is a Grothendieck fibration iff 

(j) is surjective. 

[Note: The fiber §* of (j) over *: "is" Ker (j).] 

A.l.19 EXAMPLE let U:'roP -+ SET be the forgetful functor -- then U is a 

Grothendieck fibration. 'Ib see this, consider a rrorphism g:Y -+ UX·, where Y is 
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a set and XI is a topological space. Denote by X the topological space that 

arises by equipping Y with the initial topology per g (i.e., with the srrallest 

topology such that g is continuous when vievoed as a f1.ll1ction from Y to XI) --

then for any topological space Xo ' a f1.ll1ction Xo -+ X is continuous iff the compo-

sition Xo -+ X -+ X' is continuous, from which it follows that the arrow X -+ XI is 

horizontal. 

[Note: The fiber 'lOP¥' of U over Y is the partially ordered set of topologies 

on Y thought of as a category.] 

A.l.20 REMARK Suppose that F:g -+ !2 is a Grothendieck. fibration. Let Y,Y' E Ob D 

and let \ji: Y -+ Y I be an isorrorphism -- then g = Q => c;, = Q. 
yl -

['lb get a contradiction, assume :3 X E Ob g:PX = Y. 
-1 

Since \ji :Y' -+ Y = FX, J 

-1 
a horizontal u' :X' -+ X such that Fu' = \ji ,hence PX' = Y'.] 

A.l. 21 LEMMA The isorrorphisms in g are horizontal (ophorizontal). 

A.l.22 LEMMA Let u E Mor(X,X'), u l E Mor(X' ,X' '). Assurre: u l is horizontal 

then u lOU is horizontal iff u is horizontal. 

[Note: Therefore the class of horizontal rrorphisms is closed under composition 

(cf. A.l.6).] 

A.l.23 LEMMA Suppose that F:g -+ !2 is a Grothendieck. fibration. Let 

U E Mor(X,X' ) be horizontal. Assurre: Fu is an isooorphism -- then u is an iso-

rrorphism. 

PRCX)F In the definition of horizontal, take Xo = XI, W = id ,and consider 
Xl 
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FW == id 
FX' 

-1 = Fu 0 (Fu) 
-1 

(x = (Fu) ) • 

Choose v:X' -+ X accordingly, thus u 0 v = id , so v is a right inverse for u. 
X' 

But thanks to A.l. 21 and A.l. 22, v is horizontal. Since Fv == (Fu) -1, the argurrent 

can be re-peated to get a right inverse for v. 'Itl.erefore u is an isorrorphism. 

A.1.24 RAPPEL Consider CA.T (Internal Structure) (cf. 0.12) -- then by def-

ini tion, a functor F: ~ -+ Q is a fibration if \if X E Ob ~ and \if isorrorphism \jJ:FX -+ Y 

in Q, :3 an isorrorphism cp:X -+ X I in ~ such that Fcp = \jJ • Equivalently, a functor 

F:C -+ D is a fibration iff \if X' E Ob C and \if isorrorphism \jJ:Y -+ FX' in Q, :3 an 

isorrorphism cp: X -+ X' in ~ such that Fcp \jJ. 

[Note: In this connection, observe that F is a fibration iff FOP is a 

fibration. ] 

A .1.25 THEOREM let ~ and Q be small categories -- then a Grothendieck fibration 

F:~ -+ Q is a fibration in CA.T (Internal Structure). 

PRCX)F let \jJ:Y -+ FX' be an isorrorphism in Q -- then there exists a horizontal 

rrorphism cp:X -+ X' such that Fcp = \jJ. But, in view of A.1.23, cp is necessarily an 

isorrorphism in ~. 

[Note: '!he same conclusion obtains instead F:C-+ D is a Grothendieck. 

opfirbration. ] 

Suppose that F:~ -+ Q is a Grothendieck fibration. 

A.1.26 LEMMA COnsider any object Xl E Ob ~ and any rrorphism g:Y -+ FX'. 

Suppose that u: X -+ X' is prehorizontal and FU == g -- then u is horizontal. 
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PROOF Choose a horizontal u:X + XI such that Fu = g -- then u is prehorizontal 

so :3 a unique isorrorphism f E :r-br Sy such that u = u 0 f. Therefore u is horizontal 

(cf. A.l.2l and A.l.22) . 

A.l.27 THEORn-1 let F:C + D be a funcmr -- then F is a Grothendieck fibration 

iff 

1. V X' E db £ and V g E :r-br(Y,FX'), 3 a prehorizontal u E Mar(X,X'):FU = g; 

2. The co.rrpJsi tion of two prehorizontal rrorphisms is prehorizontal. 

PRCX:lF The conditions are clearly necessary (for point 2, cf. A.lo26 and 

recall A.lo22). Turning to the sufficiency, one has only to prove that the u of 

point 1 is actually horizontal. Consider a rrorphism w:Xa + Xl of £ and a factor­

ization 

F\1=FUox 

u 
Xa --> X -----'> X' 

and 

But li 0 lia is prehorizontal, thus there exists a unique rrorphism "a E Mar _ (Xa,Xa ) 
FXa 

such that li 0 lia 0 "a = W: 

Xa --------------> XI 

Vol 
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- - -u 0 Uo 0 Vo = w. 'Ib establish that v is tmique, let Vi :XO -+ X be another rrorphism 

with Fvl = x and u 0 Vi = w. Since Uo is prehorizontal and since Fv l == x == FilO' 

the diagram 

- -
Xo > X 
A 

Iv' 
Vi' • 

Xo Xo 

admits a unique filler V'I E M:>r _ (Xo,Xo):u
O 

0 Vi' = Vi. Finally 
FXO 

u 0 Uo 0 Vi I = U 0 Vi W 

=> Vi I == V ==> v == U 0 v = u 0 Vi' = v'. o 000 

A.lo28 THEOREM Suppose that F:~ -+ !2 is a Grothendieck fibration. let 

L == the rrorphis:ns rendered invertible by F 

R == the horizontal rrorphis:ns. 

'llien the pair (L,R) is a w. s. on c. 

A.lo29 EXAMPLE Ass'l.llIe that g has pullbacks and work with cod:g(-+) -+ C 

(cf. A.l.l?). oansider a rrorphism (¢,~):(X,f,y) -+ (X' ,f' ,Y') in g(-+), so 

Y ________ > yl 
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corrrnu tes -- then (cjJ , t/J) is horizontal iff this square is a pullback s;:ruare. There-

fore the category g(-+) admits a w.f.s. (L,R) in which R is th= class of pullback 

squares. On the other hand, (cjJ,t/J) E L iff t/J is invertible. 

Fix a category Q -- then by FIfHQ) we shall understand the metacategory 

whose objects are the pairs (g,F) , where F:g -+ Q is a Grothendieck fibration, and 

whose rrorphisms <P: (g,F) -+ (g' ,F') are the functors <P:C -+ C' that send horizontal 

arrows to horizontal arrows subject to F' 0 <P = F. 

[Note: Such a <P is called a fibered functor from C to g'.] 

N.B. V Y E Ob Q, <P restricts to a functor <Py:Cy -+ ey. 

A.l.30 EXAMPLE Take Q = ! -- then FIB(!) is CA~. 

A.I. 31 DEFINITIOO Suppose that F:g -+ Q and F' :g' -+ D are Grothendieck fi-

brations -- then a fibered functor <P:C -+ C' is said to be an equivalence if there 

exists a fibered functor <P' :C' -+ C and natural isorrorphisms 

<P 0 <P' -+ id 
C' 

A.l.32 LEMMA The fibered functor <P:g -+ g' is an equivalence iff V Y E Ob Q, 

the functor <pY:~ -+ gy is an equivalence of categories. 

Because of A.l.15, in so far as the theory is concerned, it suffices to deal 

with Grothendieck fibrations. Still, Grothendieck opfibrations are pervasive 

(cf. B.2.6). Here is a specific instance. 
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A.I. 33 EXAMPLE let £ be a category -- then the twisted arrow category £ (~» 

of £ is the category whose objects are the arrows f:X -+ Y of £ and whose rrorphisms 

¢ E MJr(X' ,X) 

for which the square 

1jJ E MJr (Y , Y I ) 

f 
X ------>Y 

Xl ------>YI 

f' 

corrmutes, thus 

[):mote by the canonical projections 

hence 

Sc 
and - are Grothendieck opfibrations. 

tc 
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[Note: 'Ih.e functor 

that rends f to f and (¢,1jJ) to (1jJ,¢) is an isorror:phism of categories and 

s OP 0 A = tc 
C 

t OP 0 A sc'] 
c 

N.B. If F:~ -+ Q is a functor, then the prescription 

f -+ Ff 

(¢ , lP ) -+ (F¢, FlP ) 

defines a functor rendering the diagram 

tc 
'> C cOP 

Sc 
~(~» 

F~ 1 
1 IF 

nOP i Q{~» '> n 
~ iTI -

corrmu ta ti ve. 

A.I. 34 REMARK 'Ib rela tivise the preceding setup, let g,Q be categories and 

let F:g -+ Q be a functor -- then ~(~» is the category whose objects are the 

triples (X,f,Y), where X E Ob ~, Y E Ob Q, f:Y -+ FX, and whose norphisms (X,f,Y) -+ 

¢ E M:>r{X,X') 

(X' ,f' , Y') are the pairs (¢ ,1jJ) : for which the square 

1jJ EMor (Y' , Y) 
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f 
Y -------:> FX 

wl iF. 
yl _____ ----::> FX' 

fl 

comnut:es, thus 

id(X,f,Y) = (i~,idy) , (¢I,lji') 0 (¢,lji) = (¢' 0 ¢,lji 0 ljil). 

~ 
Ienote by the canonical projections 

~ 

hence 

~(X,f,y) = X, 

~ 

OP 
~(-» -+ D 

~(¢,lji) = lji 

~(¢,lji) = ¢, 

and are Grothendieck opfibrations. 

~ 

[Note: Take g = Q, F = ide' and SINi tch the labeling of the data to get 

!ec(-» = g(-».] 

A.2 CLOSURE PROPERTIES 

A.2.1 I.av1MA If F:g -+ Q and G:Q -+ ~ are Grothendieck fibrations, then g) is 
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their C01tp)sition G 0 F:C -+ E. 

A. 2.2 m-1MA The pro jec tion fmc tor 

CxD-+D 

is a Grothendieck fibration. 

A.2.3 I..EMMA If F:~ -+ Q and F' :£' -+ D' are Grothendieck fibrations, then the 

product fmc tor 

F x F':C x C' -+ D X D' 

is a Grothendieck fibration. 

A.2.4 I..EMMA If 

C' > C 

F'I IF 
D' > D 

is a pullback square in tAt, then 

F a Grotffindieck fibration => F' a Grothen.dieck fibration. 

A. 2.5 EXAMPLE let ?! be a category, a:A -+ C a fmc tor -- then there is a pull-

reck square 

------'» ~ (-+) 

A-------> ~ 

and g.t a is a Grothendieck fibration. 
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A.2.6 LEMMA let F:C -+ D :be a Grothendieck fibration and let I be a small - - -
ca tegory -- then 

is a Grothendieck fibration. 

A.2.7 EXAMPLE Defme <!,g> by the pullback square 

<!,g> > [!,g] 

j IF< 
D > [!,Q]. 

K 

Then the arrow <!,g> -+ Q is a Grothendieck fibration. 

[Note: let Y E Ob Q -- then the objects of the fiber <!,g>y are those 

functors Ll:! -+ g such that F*Ll = KY (the constant diagram functor at Y).] 

A.3 CATEGORIES FIBEREV IN GROUPOIVS 

A.3.l DEFINITICN SUPfX)se that F:g -+ Q is a Grothendieck fibration - then g 

is fibered m groupoids by F if V Y E Ob Q, ~ is a groupoid. 

A. 3.2 RAPPEL let G be a topological group, X a tofX)logical space. Suppose 

tha t X is a free right G-space: -- then X is said to be !::::.::::~~ 
(x,g) -+ x • g 

provided that the contmuous bijection e:x x G -+ X x x/G X defmed by (x,g) -+ 

(x,x • g) is a h.oJ:rearrorphism. 
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let G be a topological group -- then an X in 'IDP/B is eid to be a principal 

G-space over B X is a principal G-space, B is a trivial G-space, the pro~ction 

X -')- B is open, sur~ctive, and equivariant, and G operates transitively on tre 

fibers. There is a commutative diagram 

X X 

1 1 
X/G > B 

and the arrow X/G -')- B is a har:neo.rrorphism. 

A.3.3 NOl'ATION let 

PRINB,G 

be t:t:e category who!:e objects are the principal G-spaces over B and whose rrorphisms 

are the equi variant continuous functions over B, thus 

X------> X, 

1 1 
B------B, 

with cp equivariant. 

A.3.4 FAcr Every rrorphism in PRINB,G is an i sarorphi sm. 

A.3.5 EXAMPLE let G be a topological group -- then the classifying stack of 

G is the ca tegory PRIN (G) whose objec ts are the principal G-spaces X -')- B and 

whose rrorphisms (cp,f): (X -')- B) -')- (XI -')- B') are the commutative diagrams 

X------> X' 

1 1 
B ------:> B' , 

f 
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where cp is equivariant. De.fine now a f1.IDctor F:PRIN(G) -+ 'IOP by F (X -+ B) = B 

and F(cp,f) = f -- then F is a Grothendieck fibration. Moreover, PRIN(G) is 

fibered in groupoids by F: 

which is a groupoid by A.3.4. 

A. 3. 6 LEMMA If ~ is fibered in groupoids by F, then every nnrphism in ~ is 

horizontal. 

PROOF ret f E !-br(X,X') (X,X' E Db g>, thus Ff:FX -+ FX', so one can find a 

horizontal uO:XO -+ Xl such that FuO = Ff. But Uo is necessarily prehorizontal, 

hence there exists a 1.IDique nnrphism v E Mor
FX 

(X,X
O

) such that u 0 v == f: 
o 

u 
Xo --------'> XI 

VI 

X ========== X. 

Since u is horizontal and v is an iSOIlDrphism, it follows that f is horizontal 

(cf. A.l.2l and A.l.22). 

N. B. Suppose that 

~ is fibered in groupoids by F 

~ I is fibered in groupoids by Fl. 

Then every f1.IDctor <P:C -+ CI such that F' 0 <P = F is automa.tically a fibered f1.IDctor 

fram C to C'. 
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A. 3. 7 LEMMA let F: C -+ D be a f1..IDctor. Assurre: Every arrow in ~ is hori­

zontal and for any norphisn g:Y -+ FXI, there exists a norphisn u:X -+ XI such 

that Fu = g -- tren F is a Grothendieck fibration and C is fibered in groupoids 

by F. 

PRCXlF Tt:e conditions obviously imply that F is a Grot.hendieck fibration. 

Consider now an arrow f:X -+ X, of ~ for sarre Y E Ob !? - then f is horizontal, 

so there exists a 1..IDique norphien v E MJry(X I ,X) (FX = y = FX') such that f 0 v = 

id 
X' 

f 
X ------> Xl 

VI l
id 

Xl 
(cf. A.I. 3) • 

X' Xl 

Therefore every arrow in ~ has a right inverse. But this means in particular that 

v must have a right inverse, thus f is invertible. 

let F:C -+ D be a Grothendieck fibration. Denote by ~r the subcategory of 

~ whose objects are the objects of ~ and whose rrorphisms are the horizontal arrows 

of C. Put 

F = Flc. hor =hor' 

A. 3. 8 LRMMA Fho:C. -+ D is a Grothendieck fibration and c. is fibered in r =nor - =nor 

groupoids by F hor' 

A.3.9 RAPPEL A category is said to be discrete if all its norphiens are 

identities. 
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[Note: Ftmctors between discrete categories correspond to functions on their 

underlying classes.] 

A.3.10 EXAMPLE Every class is a discrete category and every set is a small 

discrete category. 

A.3.11 LEMMA A category s;: is equivalent to a discrete category iff s;: is a 

groupoid with the properq that \I X,X' E Ob S;:, there is at rrost one rrorphism fran 

X to X'. 

Every discrete category is, of course, a groupoid. So, if F:S;: -+- ~ is a 

Grothendieck. fibration, then the staterrent that s;: is nfibered in discrete categories 

by F" (or, in brief, that s;: is discretely fibered by F) is a special case of A.3.1. 

A.3.12 EXAMPLE Given a category S;:, \I X E Ob S;:, the canonical functor Ux:S;:/X -+- s;: 

is a Grothendieck. fibration. Moreover, £IX is discretely fibered by Ux (\I Y E Ob S;:, 

the fiber (£IX) Y is the discrete groupoid whose set of objects is fur (Y ,X) ) . 

A.3.13 ~~ Let F:S;: -+- ~ be a functor -- then s;: is discretely fibered by F iff 

for any rrorphisn g:Y -+- FX', there exists a unique rrorphism u:X -+- X' such that Fu = g. 

PROOF AsS1.lITe first that s;: is discretely fibered by F, choose u:X -+- X· per g 

and consider a second arro:N U:X -+- Xl per g - then FU = Fu. since u is horizontal 

(cf. A. 3.6), thus is prehorizonta1, there exists a unique rrorphism v E furFX(X,X) 

sucht that u 0 v = u: 

u 
X ------'':> x' 

vi IU 
x =======x. 
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But the fiber ~ is discrete, hence X = X and v is the identity, EO U = u. In 

the other direction, consider a setup 

w Fw 

Xo ...• > X ---> X' FXo ---> FX -----'> FX. 
Fu u x 

T·"th "x" play~""g the role of fig", let v·X -+ X be the """~que ""'"'rphism such that n./..""'" • 0 ................, 

Fv = x -- then 

u 0 v:xO -+ X' => F(u 0 V):FX
O 

-+ FX' 

w:Xo -+ X' => F (w) :FXO -+ FX' • 

.Accordingly, by tmiqueness, u 0 v = w. Therefore every arrCM in £ is horizontal 

which implies tha t £ is fibered in groupoids by F (cf. A. 3. 7). Tha t the fibers 

are discrete is clear. 

A.4 CLEAVAGES ANV SPLITTINGS 

let F:C -+ D be a Grothendieck fibration. 

A.4.l cnNSTRUcrION Suppose that g:Y -+ Y' is an arrow in Q. 

case 1: 

case 2: 

= Q -- then take g*:£ -+ £y as the canonical inclusion. 
Y' 

~ 0 -- then for each X' E Ob C ,choose a horizontal u: X -+ X' 
-Y' 

and define g*: C -+ £y as follows. 
-Y' 

• en an object X', let g*X' = X. 

• en a rrorphian <jl:X' -+ X', noting that F(<jl 0 u) = F<jl 0 Fu = id 0 Fu = 
Y' 

g = Fli, let g*<jl be the tmique filler for the diagram 
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~ 

u 
~ 

X :> x' 
A 

r~ g*<I> . o u 

X X. 

A.4.2 LEMMA g*:C -+ £y is a functor. 
-Y' 

Needless to say, the construction of g* hinges on the choice of the horizontal 

u:X -+ X'. 

A. 4. 3 DEFINITICN A cleavage for F is a function a which assigns to each pair 

(g,X'), where g:Y -+ FX', a horizontal rrorphism u = o(g,X') (u:X -+ X') such that 

Fu = g. 

N.B. The axiom of choice for classes implies that every Grothendieck fibration 

has a cleavage. 

A.4.4 REMARK If g is discretely fibered by F, then there is only one cleavage 

for F (cf. A.3.l3). 

Consider now a pair (F ,a), where F:g -+ !2 is a Grothendieck fibration and a is 

a cleavage for F - then there is an association l:F, a 

9 g* 
Y -> £y, (Y --> Y') --:>(C ---'>~) 

-Y' 

OP from Q to CAt that, however, is not necessarily a functor for rrore or less obvious 
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reag:>ns. Still, we do have: 

• V Y, there is an is::m:>rphian E:y:iCJY -+ id~ of fl.IDctors ~ -+ ~. 

g gl 
• V Y --> y' ------'> Y' I, there is an iSOJ.1Drphian a. :g* 0 gl * -+ 

g,gl 
(g' 0 g) * of fl.IDcmrs C -+ C 

-yl' -yl 

A.4.S DEFINITION A cleavage a is split if the following conditions are 

satisfied. 

1. aCid ,X'} = id 
FX' X' 

2. a(g' 0 g,X") = a(gl,x"} 0 a(g,g'*X"). 

[Note: A Grothendieck fibration is split if it has a cleavage that splits 

or, in brief, has a splitting.] 

A.4.6 EXNv1PIE In t,;.Je notation of A.l.18, assl.llOO that <p:G -+ H is surjective, 

hence that :±!:~ -+ ~ is a Grothendieck fibration -- then a cleavage a for ~ is a 

subEet K of G which maps bijectively onto H and <p is split iff K is a subgroup of 

G. Therefore <p is split iff <p is a retract, i.e., iff 3 a h.orrorrorphisu I/J:H -+ G 

such that <p 0 I/J = i~. 

A. 4. 7 LEMNIA The association 

is a fl.IDcmr iff F is split. 

N.B. It is a fact that every Grothendieck fibration is equivalent to a split 

Grothendieck fibration. 

A.4.8 REHARK In the world of Grothendieck opfibrations, the te:rm cleavage 

is replaced by opcleavage but there is no "op" in front of split or splittings. 
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B : INTEGRATION 

B.l REALIZATION OF PRESHEAVES 

Given a ana.ll ca tegory ~, let y: ~ -+ CAT re the func tor tha t sends X to ~/x --
A 

then tl1e realization functor r assigns to each F in C its Grothendieck construction: y -

r F ::::: groc F. 
y -

[Note: Recall that y ~ r y 0 YC' thus V X E Ob ~, 

yx = C/X :::: r h .] - y-x 

B .1.1 LEMMA The pro j3ction 

is a Grothendieck fibration and groc F is discretely firered by TIFo 

In the sequel, -we shall write £IF in place of groc F and organize matters 

functorially. 

B.1.2 NarATION Given F E Ob ~, let £IF re the sma.ll category whore objects 

are the pairs (X, s), where X E Ob ~ and s E Nat(~,F) <-> FX, and wmse rcorphisrns 

(X, s) -+ (Y, t) are the arrows f:X -+ Y such that th
f 

= s. 

A 

B.l.3 Nar~ON Given F,G E Ob ~ and 3:F -+ G, let 

re the functor that sends (X,s) to (X,3 0 s). 
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B.1.4 NOTATION Let 

be the functor defined on objects by 

and on rrorpbisrns by 

-;:; -+ Ci/O;:; 
- f--

A 

Let *A be a final object in g -- then iC(*',J = g, so there is a factorization 
C - C 

A 

C -------> CAT 

u the forgetful functor. 
C 

B .1. 5 LEMMA The func tor 

is fully faithful. 

B.1.6 LEMMA The functor 

is faithful. 

[The forgetful functor 

is faithful.] 
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B. 1. 7 IEMr4A The func tor 

preserve s l:imi ts and colimi t s. 

B.l.8 LEMMA The functor 

preserves colimi ts. 

[The forgetful functor 

preserves col:imits.] 

B.l.9 Lfl~ The functor 

preserves pullbacks. 

[The forgetful func tor 

preserves pullbacks.] 

N.B. Therefore ic preserves rronom::>rphisns. 

f 
[Note: In any category, A --> B is a IIOnClltOrphism iff 

A --------'> A 

A ------>B 
f 

is a pullback square.] 



B.1.10 ID-1MA The functDr 

that rends I to F
I

, where 

is a right ad :Pint for i c' 

[NotE: let 

00 the arrows of adjunction. 

• Given F, 

i.e. , 

But Nat(~,F} <-> FX and 

is the map that sends s to £/s. 

i.e. , 

4. 

/'. 

i*:CAT -+ C c- -

(X E Ob £) , 
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An object in £/FI is a pair (X,s), where X E Ob C and s E Nat(hx,F
I

) <-> FI (X) = 

s 
vI (X,£!X --> D = s (X, i~) • ] 

B .l.ll DEFINITION Let £ be a small category -- then a sieve in C is a full 

subcategory!:! of £ with the following property: 

cod f E Ob U => dan f E Ob U - - (f E ~br £). 

B.l.12 LEMMA The functors F:C + [1] are in a one-to-one correspondence with 

the sieves in C via the map F + F-l (0) • 

'" B.l.13 EXAMPLE Put LC = i~[l] - then for any F in £, there are functorial 

bijections 

~ Mer (£/F, [1] ) 

~ {sieves in £IF} ~ Sub", F, 
C 

the symbol on the RHS standing for the subobjects of F. Therefore LC represents 

Sub"" 
C 

[Note: LC is called the object of Lawvere.] 

B.l.14 THEOREM. For any small category £, the canonical arrow 
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is an equivalence. 

Specialize, taking g = (}. and F = X (a simplicial set) -- then the objects of 

IJ/X are the pairs ([n] ,x) (x E Xn) and 

the simplex category of X. 

Given a small category !, consider the canposite 

A 
jL\ ner 

I ----'> CAT/! ---> SISET/ner !. 

Since ner is fully faithful, it follows from B.l.5 that ner 0 jL\ is fully faithful. 

A 

B .l.15 LEMMA let F E Ob I -- then 

ner I/F:::: n -
_..L..-_____ -L-_ Fi . 

n 

[Note: '!his iSOTIOrphism is natural in n.] 

let 

be the functor defined by 

_..L..-_____ -L-_ Fi _> _..L..-_____ -L-_ *) • 
n 

hence NI is fully faithful. 

-+ i 
n 

-+i 
n 
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B.l.l6 DEFINITION The composite 

A 

I --> SISET/ner ! ---:> SISET 

is called the ~licial replacerrent ftmctor. 

In B.l.l4, let C = !;;, F = ner I -- then 

'" A 

(Wner~) -+ !;;/ner ! ;::: SISET/ner !. 

[Note: 'lb explicate matters, let 

F: (!;;/ner !) OP -+ SET 

'IT 

be a presheaf - then the object X --> ner ! corresponding to F is given in degree 

n by 

X = _.1.--_____ ---1.._ Fa, 
n a 

Mn] -> ner I 

where 

'IT (a) = a (id[ ]) n n n (a E Fa) .] 

B.l.l7 RAPPEL For any erall category !, there is a natural simplicial -weak 

equivalence 

~/ner ! ( = gr0L'l ner !) -+ I. 

N. B. The induced ftmctor 

'" I -+ (~/ner!> -+ SISET/ner ! 
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B.2 THE FUNVAMEtfTAL CONSTRUCTION 

ret .I be a small category IF:! -+ CAT a ftmcmr. 

B.2.l DEFINITION The integral of F over .I, denoted INTrF , is the category 

whose objects are the pairs (i,X), where i E Ob .I and X E Ob Fi, and whose rror-

phisns are the arrows (a ,f) : (i,x) -+ (j, Y), where a E Mer (i, j) and f E M::>r( (Fa}X,Y) 

(composi tion is gi veIl by 

(a',f') 0 (o,f) = (a' 0 a, f' 0 (Fa'}f». 

B.2.2 NOTATION ret 

8 :INT F -+ I 
F-r -

be the functor that sends (i,x) to i and (o,f) to 0. 

by 

viz. 

B. 2.3 LEMMA The fiber of 8F over i is isorrorphic to the category Fi. 

PR<X>F Define 

1. :Fi -+ INTrF 
~ --

1.X = (i,x) (X E Ob Fi) 
~ 

l.f = (id. ,f) (f E Mer Fi). 
~ ~ 

[Note: There is a natural transformation 

~;::l. -+ 1. 0 Fo, 
u ~ J 

~a,X = (a,id(Fa)X) : (i,X) -+ (j,(Fa)X). 
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~ = (~ Fo) 0 ~~'~'d = id .] 
0 1 0 0 0 1 U ~ i li 

N. B. There is a pullback l:qU.are 

Fi ------,> INTI' 

1 
1 

l~ 
-----'> I 

K. 
~ 

B. 2. 4 LETYlMA The preophorizontal rrorphisrns are the (0, f), where f is an iso-

rrorphism. 

[Note: The composition of two preophorizontal rrorphisms is therefore preop-

horizontal. ] 

B.2.5 LEMMA. GF is a Grothendieck preopfibration. 

B. 2 . 6 THEOREM GF is a Grothendieck opfibration. 

PRCX)F In view of B.2.4 and B.2.5, one has only to cite A.1.27. 

B.2.7 LEMMA. G
F 

is a split Grothendieck opfibration. 

PRCX)F Define of by 

0F(O, (i,x» = (o,i~ox): (i,X> -+ (j,FoX). 

B.2.8 EXAMPIE If F J:! -T CAT is the constant functor with value ~, then 

-----_.-_. 
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[Note: In particular 

B.2.9 EXAMPLE Given a small category !, let 

be the functor (j,i) -+ M:>r(j,i), where the set M:>r(j,i) is regarded as a dis:rete 

category - then 

can be identified with ! (~» (cf. A.1. 33), 0
HI 

l:ecoming the functor 

let F,G:! -+ CAT be functors, =::F -+ G a natural transfonnation. 

B.2.l0 DEFINITION '!be integral of =: over !, denoted INT
I

=:, is the functor 

defined by the prescription 

(INTI!!) (i,X) = (i,!! .X) 
]. 

[Note: Since f: (F6)X -+ Y E M:>r Fj, it follows that 

=: . f : =: . (Fo) X -+ =:. Y E M:>r Gj. 
J J J 
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But there is a carmutative diagram 

.:!i 
Fi > Gi 

Fol lGO 

Fj > Gj, 
':!j 

(0,3 .f): (i,3.X) + (j,3.Y) 
J ~ J 

Obviously, 

and, in fac t, 

INT13 :INTr + INT1G 
- - -

is an apfibered flIDC tor • 

B. 2.11 LEMMA The association 

defines a flIDctor 

::; + INT ::; 
- -1-

[Note: Suppose that !. and ~ are sma.ll categories and K:~ + ! is a flIDci:or --

then there is an induced flIDctor 
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and v F:! -+ CAT, there is a pullback ~ 

~*F '> INT;f' 
-

0K*F 1 1~ 
J '> I . ] 

K 

let 

00 the functor given on objects (~,p) (p:~ -+ p by 

[Note: There is a pullback s::J:U.are 

yi --------''> I .] 

B.2.12 LEMMAt r I is a left adjoint for INTI. 
- -

PROOF It suffices to exhibit natural transformations 

t Nico, Hou&ton J. Math. 9 (1983), 71-99. 
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idINT 
-I 

l!: let (~,p) be an object of CAT/!. 'Ib define a functor 

II (~,p) : ~,p) -+ INT1r I ~,p) 

<P 
over !, notJe tmt the objects of INTrr I (~,p) are the triples (i,a,pa --:> i), wrere 

i E Ob !, a E Ob~, <p E M::>r I and the rrorphisms of INT1r I (~,p) are the arrows 

<p <P' 
(o,f): (i,a,pa --:> i) -+ (i' ,a' ,pal --:> it), 

wffire 0 E Mar (i, i ') and f: a -+ a' is a norphism of ~ for which tie diagram 

pa 

$1 
i 

conmutJes. '!his eid, let 

pf 

0 

id pa 

> pat 

1$' 
:> it 

ll(~,p)a = (pa,a,pa ---> pa) 

V: let F be an object of [!,CAT]. 'Ib define a natural ttansfonnation 
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or still, to define a f1.IDctor 

VF ,:INT1F/i -+ Fi 
,J. --_ 

0 1 

functorial in i, note that the objects of INT1F/i are the triples (i' ,X' ,i I --> i) , 

where i' E Ob !" Xl E Fi', 6 1 E M:>r I and the norphisms of INT1F/i are the arrows 

0 1 o I I 

(o,f): (i' ,XI ,i' __ > i) -+ (ill ,XI I ,i' I ---> i), 

where 0 E Mor(i',i") and f:(Fo)X ' -+ X" is a norphian of Fi" for which the diagram 

corrmutes. '1bi.s said, let 

( 'I Xl 'I v
F 

. J., ,J. 
,J. 

i' ___ -'> ill 

i-----i 

0 1 

----'> i) = (Fo I )X I 

V
F 

. (o,f) = (Fo ' ')f: (Fo')X I -+ (FO")X". 
,J. 

'!he verification that 11 and v have the requisite properties is straightforward. 

B.2.13 REMARK Given small categories !" ~ and a functor K:!, -+~, let 

be the induced f1.IDctor -- then the functor 

r J 0 CAT/K:CAT/!, -+ CAT/~ -+ [~,CAT] -
is a left adjoint for the functor 
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the proof being an easy extension of the preceding considerations (take r = ~, 

K = idr to recover B.2.12). 

The category INTrF has a tmiversa1 mapping property. 

B.2.14 THEOREM. Fix a sna11 category ~. Suppose given functors cp. :Fi -+ C 
1 

a 
(i E Ob !) and natural transforrrations =A':Cp. -+ cp. 0 Fa (i -> j E Mor r) such that 

u 1 J 

a loa = (= Fa) 0 =a' ~id. = id~ .. 
a' 1 ~l 

Then there exists a unique ftmcmr 

SJch that 

cp. = ¢ 0 1. (1. :Fi -+ INTrF) 
111 ---

PROOF Define ¢ by 

¢(i,X) = cp.x 
1 

(~A':1. -+ 1. 0 Fa) 
u 1 J 

(X E Ob Fi) 

(cf. B.2.3). 

[Note: As regards the definition of ¢(a,f), observe that 

=A' x:cp·x -+ cp.FaX. 
u, 1 J 
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en the other hand, f: (Fa)X + Y, where (Fa)X, Y E Ob Fj, so 

<p .f: <p • (Fa) x + <p. Y , 
J J J 

thus 

<f> (a, f) : <f> (i ,X) ( = <p. X) + <f> (j , Y) ( = <p. Y) 
1 J 

as desired.] 

B.2.15 EXAMPLE Consider the natural sink U i :Fi + col~F}, hence li = lj 0 Fa -­

then. there exists a unique functor 

such that 

[Note: Spelled out, 

let ~ be a snaIl category, F:I + C a functor -- then 

F iC 
~ -

I --> C --> CAT - -

and there is an arrow 
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B. 2 .16 LEMMA Kic! is a Grothendieck fibration. 

Let (X,s) be an object of WcoliInr' (so X E Ob g and s:~ + coliInr') -- then 

the fiber 

of Kic! over (X,s) admits an external description. In fact, V i in Ob !, there is 

an arrow i<fi :g/Fi + Wcolim:rF and V 6:i + j in M:>r !, there is an arrow 
- -

(g/Fi) (X, s) + (g/Fj) (X, s) • 

write 

for the functor thus detennined. 

B.2.17 LEMMA We have 

[The verification is tautological.] 

B.3 THE CANONICAL EQUIVALENCE 

Fix a small catego:ry 12 -- then by SO(Q) we shall understand the catEgory 
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whose objects are the triples (£,F ,a), where £ is snaIl and F:£ -+ !2 is a split 

Grothendieck opfibration with splitting a, and whose rrorpbisms <l>: (£,F ,a) -+ (£' ,F' ,a') 

are the flmctors <l>:£ -+ £' such that for any object X E Ob £ and any norpbism 

g:FX -+ Y, 

subject to F' 0 <l> = F. 

Cefine now the aSSJeiation 

<l>{a{g,X» = a' (g,<l>X) 

EF :D -+ CAT ,a - --

as in A.4.7 (recast for opfibrations) -- then EF,a is a flmctor (a being split). 

B.3.l NOTATION Let 

be the flIDctor given on an object (£,F ,a) by 

and on a norpbism 

<l>:(£,F,a) -+ (£',F',a') 

by 

[Note: The tacit assumption is that 

But, from the definitions, 
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l: Y = c.._ F,a ;;.y 

l: y=gy 
F' ,a' 

and for any g:Y + Y', there is a carrmutative diagram 

~ :>gy 

EF,agl 1 E g 
F' ,a I 

C :> C I . ] 
-Y' <P -y l 

y' 

Ma tters can be reversed. Thus let G: D + CAT be a functor -- then 

is a split Grothendieck opfibration with splitting a
G 

(cf. B.2. 7), so the triple 

is an object in SO(!2). Furtherrrore, if Q:G + G' is a natural transforrna.tion, th:m 

(INT
D
G',0 ,a 

- G' G' 

is a rrorphisn in so (!2) • 

Accordingly, these considerations lead to a functor 

B. 3. 2 THEOREM The categories SO (!2), [!2, CAT] are equivalent: 
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----> SO q;~) 

with 

B.4 cor NTEGRALS 

OP let ! be. a small category, F:I -+ CAT a f\IDctor. 

B. 4.1 DEFINITION 'llle cointegral of F over!, denoted INTIF, is the category 

'Whose objects are the pairs (i,x), where i E Ob ! and X E Ob Fi, and 'Whose norphisms 

are the a.rrov.rs (0, f) : (i ,X) -+ (j, Y), where 0 E MJr (i, j) and f E MJr (x, (Fo) Y) 

(composition is given by 

(o',f') 0 (o,f) = (0' 0 o,(Fo)f' 0 f». 

A 

B. 4.2 REMARK let g be. a small category and suppose that F E Ob g -- then 

F:COP -+ SET. 'Ihinking of SET as a subcategory of CAT (every set is a small cat­

egory whem viewed disc:retely), it follows that 

INTIF = groc F = g/F. 
- -

B.4.3 NOTATION let 
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be the filllctor that rends (i,x) to i and (o,f) to o. 

B.4.4 THEOREM 0F is a split Grothendieck fibration. 

What has been said about integrals can be said about cointegrals, thus no 

additional elaboration on this score is necessary. 

B. 4. 5 LEIYJMA ~~ have 

and 

[Note: 

=> 

(0 l OP (INT OP 0 F)OP -+ !.] 
-OP 0 F : - OP 

I 

N. B. FOP is not the sa:rre as OP 0 F. 

B. 4. 6 REMARK '!'he involution 

OP:CAT -+ CAT 

induces an is::morphi an 

and there is a con:mu ta tive diagram 
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INTI 

[!OP ,CAT] :> CAT/! 

0P*1 lop!! 
[!OP ,CAT] :> CAT/!OP • 

INT OP 
I 

Let ! and ~ be small ca tegories, F: lOP x J -+ CAT a functnr -- then trere are 

functnrs 

arising from term-by-tenn operations and in this context 

are natural transfonna.tions (treat the targets as constant functors). 

B. 4. 7 LEMMA There is a corrmuta tive diagram 

INTI~ 
~ 

:> INT JINT IF 
-

=!~1 1~ 
I x J > J x I --
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B.4.8 NOTATION Given functors 

F:I -+ CAT 

OP 
G:.!. -+ CAT, 

define INTI (F ,G) by the pullback sg:uare 

% 
(F ,G) > INTIG 

PFf 18: 
INT? I - . 

e 
F 

N.B. Using the notation of B.2.8, 

INTI (F,Gl ) ~ INTIF 
- -

B. 4. 9 LEMMA The functor PF is a Grothendieck fibration and the functor % is 

a Grothendieck opfibration (cf. A.2.4). 

B.5 ISOMORPHIC REPLICAS 

Let I be a sna.ll category. 

B.5.l NOTATION Given functors 

OP 
G:.!. -+ CAT, 
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put 

an object of CAT. 

[Note: One can realize G 0
1 

F as 

coeq( II Gj x Fi II Gi x Fi).] 
i +j --> T 

N.B. It is clear that - 0 r is fW'lC torial in F and G and behaves in the 

obvious way w.r. t. a functor I -7 J. 

B.S.2 EXAMPLE let G be constant with value 1 - then 

Specialize and take for G the fW'lctor ,!OP -7 CAT tbat s:mds i to i\! -- then 

the · ( ..). . d f' d' lOP I ""'\1 aSSLgnm:mt ]., J -7]. \! x FJ e mes a ].agram _ x -7 '-MoT. 

B.S.3 cc:NSTRUCI'ICN ViE Ob !, there is a canonical fW'lctor 

f.:i\I x Fi -7 INTrF. 
]. - ---

6 
• Ilefine f. on an object (i --> j,X) (X E Ob Fi) by 

]. 

o 
f. (i ,X) = (j, (Fo) X) • 

]. 

[Note: 

a Fa 
i -->j => Fi > Fj 

=> (Fa)X E Ob Fj.] 
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• Define fi on a rrorphism 

o (A,f) 0' 
(i -->j,X) ----> (i --> j' ,X'), 

where A: j -+ j' (A 0 0 == 0') and f: X -+ X I (f E Mer Fi), by 

[Note: 

But 

Therefore 

f.(A,f) == (A,(Fo')f):(j,(Fo)X) -+ (j',(Fo')X'). 
]. 

(Fo) f 
Fo:Fi -+ Fj (Fo)X ----> (Fo)X' 

=> 

Fo' :Fi -+ Fj' (Fo')X ----> (Fo' )X'. 
(Fo') f 

A 0 <5 == 0' => FA 0 Fo = Fo'. 

(Fo')f: (FA) (Fo)X -+ (Fo')X'.] 

B. 5.4 LEMYJA The collection 

is a dinablral sink: V i --~>l in Mer ~!> there is a corrmutative diagram 

i\! x Fi 

I 
j\! x Fi 

f. 
]. 

> INTrF 

I:j 
> j\! x Fj. 
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B. 5.5 LEMMA Suppose that {y.: i \I x Fi -+ r} is a dinatural sink (r E Ob CAT) --
1 - -

then there is a tmique ftmctor <p: INTIF -+ r such that y. = <p 0 f. for all i E Ob I. 
- 1 1 

[The verification is elementary but fastidious.] 

B. 5.6 SOfOLIUM we have 

-\! QI F ::::: INT1F. 
- -

[Note: let K:I -+ J be a ftmctor -- then for all G E Ob [~,CAT], 

-\! QJ G ::::: INT1K*G, 
- -

where in this context -\I sends j to j\!. 

OP B.5.7 REMARK If F:! -+ CAT, then 

F QI !/- ::::: INTIF. 
- -

[Note: let K: I -+ J be a ftmctor -- then for all G E Ob [~OP ,CAT] , 

G QJ !/-::::: INTI(KOP)*G, 
- -

where in this context y- sends j to y j. ] 

B.6 HOMOTOPICAL MACHINERY 

Recall: 

• In SISET, a simplicial weak equivalence a simplicial map f:X -+ Y 

such that I f I : I X I -+ I Y I is a lxnotopy equivalence. 

• In CAT, a simplicial weak equivalence is a ftmCtor F: ~ -+ 12 such that 

I ner F I :P£ -+ BI2 is a hJrrotopy equivalence. 
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N.~ Therefore a functor F;S -+ 12 is a simplicial -weak equivalence iff 

ner F:ner S -+ ner 12 is a simplicial weak equivalence. 

B.6.1 I.EM-1A If F:S -+ 12 is a functDr and if ner F:ner S -+ ner 12 is sirnplicially 

horrotDpic in a simplicial weak equivalence, then F:C -+ D is a simplicial weak 

equivalence. 

B.6.2 NOTATICN let Woo denote the class of simplicial weak equivalences in 

CAT (a.k.a. the class of weak equivalences per CAT (External Structllre) (cf. 0.13». 

B.6.3 EXAMPLE Suppose that F:S -+ 12 is a Grothendieck prefibration -- then 

v Y E Ob 12, the canonical functor Sy -+ Y\S is a simplicial weak equivalence 

(cf. A.l.9). 

B.6.4 EXAMPLE Suppose that F:g -+ 12 is a Grothendieck preopfibration -- then 

v Y E Ob 12, the canonical functDr Sy -+ S/Y is a sirnplicial 'Weak equivalence 

(cf. A.l.IO). 

B.6.5 THEORF11 Fix a small category! and let 

p 
C )0 I 

q 
D )0 I 

be objects in CAT/!_ Suppose that 1>: (S,p) -+ (12,q) is a rrorphism in CAT/! (q 0 1> = p) 

such that ViE Ob !, the arrow 

1>/i:£li -+ 12/i 

is a simplicial weak equivalence -- then 1> is a sirnplicial weak equivalence. 
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PR(X)F 

• The elem3l1ts of ner eli are the pairs n-

«Xo + ••• + X ),pX + i), 
n n 

where PXn + i is a rrorphism in!. This said, define a bisimplicial set Te by 

• The elerrents of ner D/i are the pairs n-

«Yo + ••• + Y ),qY + i), n n 

where qYn + i is a rrorphism in !. This said, define a bisimplicial set TD by 

Then there is a map 

of bisimplicial sets given on vertexes by 

••• + i ) 
m 

= «~X + ••• + ~X ),q~X + i ,iO + ••• + i ). 
o n nOm 

Fixing the second variable leads to a comnuta ti ve diagram 

Te(-, (m]) --------------'> TD (-, em] ) 

1 
_-'---_____ ....l __ ner yio --------'> 

io + + im 

1 
--'--------'--- ner Wio. 

i + ••• + i o m 

By h:ypothesis, the horizontal arrow on the botton is a si.mplicial weak equivalence. 
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Since the vertical arrows are isorrorphisrns, it follows that the horizontal arrow 

on the top is a simplicial weak equivalence. Therefore 

dia T¢:dia TC + dia TD 
- -

is a simplicial 'WIaak. equivalence. On the other hand, 

and since 

~ --~--------~-ner qYn\! 
Y + ••• + Y o n 

pX \1 
n -

qY \1 
n -

have initial objects, the arrows 

__ --1.... _____ ---'_ ner PX \1 --> _..1...-_____ ----1... __ ner 1 
n-+X 

n 
+X 

n 

_........L _____ ---'_ ner qY
n 

\ I --> --'----------------'-- ner 1 
Y + ••• + Y YO + ••• + Y o n n 

are sinplicial 'Weak. equivalences. 'Iherefore 

are simplicial weak equivalences. FOnTI now the carmutati ve diagram 
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dia Tel> 
------------'> dia TD 

r 
ner C --------------------> ner Q 

ner el> 

to conclude that ner el> is a simplicial weak equivalence. 

B.6.6 APPLIC'ATlOO Let £,Q be sma.ll categories and let F:£ -+ Q be a functor. 

Assu:cre: V Y E Ob Q, the arrow £IY -+ ! is a simplicial weak equivalence -- then 

F is a simplicial weak eq:uivalence. 

[In B.6.S, take ! = Q, p = F, q = i~: 

F 
C > D - -

P = F 1 lq = i~ 

D D. -
'With F playing the role of el>, consider the diagram 

FlY 
£/Y ---> Q/Y 

1 1 
1 1. 

The vertical arrOW' on the left is a simplicial weak. equivalence (by assumption) , 

while the vertical arrow on the right is a simplicial weak. equivalence (Q/Y has 

a final object). 'Iberefore F/Y is a sinplicial weak eq:uivalence. As this is true 

of all Y E Ob Q, it remains only to quote B.6.S.] 

B.6.7 EXAMPLE Suppose that F:£ -+ Q is a Grothendieck preopfibration. 
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AsSl..ID:e: V Y E Ob Q, ~ is contractible -- then F is a simplicial "Weak equivalence. 

[Bearing in mind B. 6.4 I consider the diagram 

~ ;:. g/y 

1 1 
I I .J 

B. 6. 8 LEM[l.1A Fix a small category ! and let 

p 
C----> I 

D---.....:> I 
q 

be Grothendieck preopfibrations. Suppose that ip: (g,p) -+ (Q,q) is a norphism in 

CAT/! (q 0 ip = p) such that viE Ob !, the arrow of restriction 

ip. :C. -+ D. 
1 -1 -1 

is a simplicial weak. equivalence -- then ip is a simplicial Wl9ak equivalence. 

PRCX:>F The horizontal arrows in the corrmutative diagram 

C. ;:. g/i 
-1 

Oil lO/i 

D. 
-1 > Q/i 

are simplicial Wl9ak equivalences (cf. B.6.4), thus ip/i is a simplicial weak. equiv-

alence from which the assertion (cf. B.6.5). 

B.6.9 LEMMA ret 
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n 
P ----''> Y 

X -----''> Z 
f 

be a pullback square in CAT. Suppose that f is a Grothendieck fibration and that 

for all z E Ob ~, the category yz is contractible - then for all x E Ob~, the 

category Vx is contractible, hence ~ is a simplicial 'Ii\lE!ak equivalence (cf. B.6.6). 

B.6.10 LEMMA Let 

n 
P '> Y 

X '> Z 
f 

be a pullback square in CAT. Suppose that f is a Grothendieck fibration and g is 

a Grothendieck opfibration with contractible fibers - then ~ is a simplicial 'Ii\lE!ak 

equivalence. 

PROOF The assumption on g implies that the ~/z are contractible (cf. B.6.4), 

hence that the E/x are contractible (cf. B.6.9). But ~ is a Grothendieck opfi­

bration (cf . A. 2 . 4), thus its fibers are contractible (cf • B • 6.4), so ~ is a 

simplicia11illE!ak equivalence (cf. B.6.7). 

What follows next is a list of results that dualize B.6.5 - B.6.10. 

B. 6.11 THEOREM Fix a small category ! and let 

p 
C '> ! 

q 
D '> I 
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be objects in CAT/!,. Suppose that <I:>: (~,p) -+ <!~,q) is a rrorphism in CAT/!, 

(q 0 <I:> = p) such that ViE Ob !" the arrow 

i\<I:>:i\C -+ i\D - -

is a simplicial weak equivalence -- then <I:> is a simplicial weak equivalence. 

B.6.12 APPLICATICN let ~,Q be small categories and let F:~ -+ Q be a functor. 

Assurre: V Y E Ob Q, the arrow Y\ ~ -+ ! is a simplicial weak equivalence -- then F 

is a simplicial weak equivalence. 

B.6.13 EXAMPLE Suppose that F:~ -+ Q is a Grothendieck prefibration. Assurre: 

V Y E Ob Q, ~ is contractible -- then F is a simplicial weak equivalence. 

B.6.14 LEMMA Fix a small category!, and let 

p 
C--> I 

q 
D--> I 

be Grothendieck. prefibrations. Suppose that <I:>: (~,p) -+ (Q,q) is a rrorphism in CAT/!, 

(q 0 <I:> = p) such that ViE Ob !" the arrow of restriction 

<I:>. :C. -+ D. 
1 -1 -1 

is a simplicial weak equivalence -- then <I:> is a simplicial weak equivalence. 

B.6.15 LEMMA let 

n 
P > ~ 

x > ~ 
f 
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be a pullback square in CAT. Suppose that f is a Grothendieck opfibration and 

that for all z E Ob ~, the category z\'~ is contractible -- then for all x E Ob e, 
the category x\P is contractible, hence E;, is a simplicial weak equivalence 

{cf. B.6.l2}. 

B.6.l6 LEMMA Let 

n 
P '> !: 

x '> Z 
f 

be a pullback square in CAT. Suppose that f is a Grothe:ndieck opfibration and g 

is a Grothe:ndieck fibration with contractible fibers -- then E;, is a simplicial 

weak equivalence. 

B.7 INVARIANCE THEORY 

Let ! be a snaIl category. 

B. 7.1 THEOREM Suppose given functors F,F I :! + CAT and ~ E Nat{F ,F' } . 

Assune: ViE Ob !, 

::::. :Fi + F'i 
~ 

is a simplicial weak equivalence -- then 

INT :::::INT~F + INTj'1 -;[ -r -r - - -
is a simplicial weak equivalence. 
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8 :INT F + I F-I -

8 :INT F' + I 
FI --! 

are Grothendieck opfibrations (cf. B.2.6) and 

!"breover, ViE Ob ~, 

with 

(INTIF). ::::: Fi -- ]. 

(INTIF'). :::: Fli - ]. 

i <-'> ~i· 

(cf. B. 2.3) 

'!hat INTI!:! is a siIrplicial weak equivalence thus follows fram B.6.8. 

B. 7.2 REMARK Consider CAT in its extem.al sb:ucture -- then CAT is cornbina-

torial, as is r~,CAT] when equipJ?ed with its projective structure (cf. 0.26.5). 

Since the weak equivalences per I!, CAT] are levelwise, the composite 

----> CAT/~ ---> CAT 

induces a functor 

at the level of homotopy categories (cf. B.7.1). But it is not difficult to see 
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that intI is a left adjoint for the functor 

associated with the arrow PI:! -+ !. Therefore 

(cf. 0.26.19). 

B. 7.3 THEOREI.I1 Suppose given functors F ,F' :! -+ CAT and E! E Nat(F ,F') plus 

OP 
functors G,G':! -+ CAT and Q E Nat(G,G'). Assune: 'if i E Ob !, 

:Fi -+ F'i 

Q. :Gi -+ G'i 
1 

are simplicial 'irJ'eak equivalences -- then the induced arrow 

is a simplicial 'irJ'eak equivalence. 

PRCOF There is a corrmutati ve diagram 

E!lid 
INTI (F,G) ------'> INTI(F' ,G) 

INTI (F' ,G') INTI (F' ,G') 

from which the factorization 

and the claim is that E I id and id I Q are simplicial 'Weak equivalences. In view of 
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B. 4. 9, the projections 

are Grothendieck opfibrations and 

CJG 0 =:Iid = %. 

The objects of INTrG are the pairs {i,y}, where i E Db ! and Y E Db Gi, and from 

the definitions I 

with 

INT!(F,G} (i/Y) ~ Fi 

INT!{F',G) (i,Y) Z F'i 

(=:Iid) (i,y) <--> 3i · 

'Ihat =: lid is a simplicial weak equivalence thus follows from B.6.B. And analo­

gously for idl~ (use B.6.l4). 

B.B HOMOTOPY COLIMITS 

Let (£l'Wl ), (£2'W2 ) be category pairs, where Wl ,W2 satisfy the 2 out of 3 

condition. Suppose that 

are an adjoint pair with arrows of adjunction 
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ll:id
e 

+ G 0 F 
-1 

v:F 0 G + ide • 
-2 

B. 8.1 LEMMA The following conditions are equivalent. 

PRCX)F 

• (1) => (2) Given Xl E Ob gl' we have 

But vFX E W2 , i'\x E W2 , so, since W2 satisfies the 2 out of 3 condition, 
1 1 

Fllx E W2 , hence llX E WI' There rema.ins the contention that W2 = G-
1 

(WI)' Given 
1 1 

an arrow f2 :X2 + Y2 in IVbr £2' consideration of the ccmnutative diagram 

F'GX:2 ----> X2 

FGf2 1 1 f2 

FGY
2 
-----> Y2 

ffo\.VeVer, by hypothesis, FGf2 E W2 iff 

• (2) => (1) 
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B.8.2 LEMMA SUppose that the equivalent conditions of B.8.l are in force --

then 

thus 

are rrorphisms of category pairs, S') there are unique functors 

- -1 -1 
F:Wl ~l + W2 ~2 

- -1 -1 
G:W2 ~2 + Wl ~l 

for which the diagrams 

F G 

~l > ~2 ~2 > ~l 

Lwll 1 LcrJ2 Lw2 1 1 Lw 1 

-1 
Wl ~l 

-1 
W2 ~2 

-1 
W2 ~2 

-1 
> Wl ~l 

F G 

conmute (cf. 1. 4.5) . 

B.8.3 LEMMA SUPPOlE that the equivalent conditions of B.8.l are in force -
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are an adjoint pair (cf. 1. 7 .1) and the induced arrcMS of adjl.ID.Ction 

v:F 0 G -+ id -1 
W2 g2 

are natural isc:m::>rphisrns, thus the adjoint situation (F ,G,~,v) is an adjoint 

equivalence of rretacategories. 

[Note: Bear in mind that 

let ! be a small category. 

• Denote by WOO,! the levelwise simplicial weak equivalences in ~oc>r [!,CAT], 

i.e., the E E Nat(F,F') such that ViE db!, 

:Fi -+ F'i 

is a simplicial weak equivalence. 

• Denote by Wd! the local simplicial weak equivalences in M::>r CAT/!, 
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i.e., the g'J E .M::>r( (~,p), (Q,q)) such that viE Ob !, 

g'J/i:~/i + Q/i 

is a sirrplicial 'Weak equivalence. 

Recall now the setup of B. 2 .12 which produced an ad joint pair 

r I:CAT/! + [!,CAT] 

The claim then is that the equivalent conditions figuring in B.8.1 are realized by 

this data. 

B.8.4 LEMMA W3 have 

B. 8.5 LEMMA let P E Ob [! ,CAT] -- then viE Ob !, the ftmctor 

(cf. B.2.12) 

is a sirrplicial weak equivalence. 

PROOF It suffices to show that \lp . admits a right adj::>int 
,1 

J:efini tion : 

Pp . :Pi + INT_F Ii. 
,1 -!-

id. 
1 

Pp'X (i,x,i --.....,;> i) (X E Ob Pi) 
,1 

p .f = (idl.,f) (f E.M::>r Fi). P,l 
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'lherefore the first condition of B.a.l is satisfied and, as a consequence, 

B.a.3 is applicable. 

B. a. 6 THEOREM 'lhe ad joint pair 

INTI 

is an ad joint equivalence of categories: 

Let ! and ~ be SIn3.ll categories, K: I -+ J a functor. 

B. a. 7 LEMMA. The functor 

PRO'JF If nEW J' then v j E Ob ~, n. is a simplicial weak equivalence, so 00,_ J 

ViE Ob I, 

(K*Q)i = ~ 

is a simplicial weak equivalence. 
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Therefore 

is a rrorphian of category pairs, thus there is a unique functor 

for which the diagram 

K* 

-1 
--------------~~ Woo r[!,CAT] , 

corrmutes. 

Now take CAT in its external structure. Since CAT is combinatorial, the 

functor categories 

in their projective structure are also corrbinatorial (cf. 0.26.5) and we have an 

instance of the setup of 0.26.16: 

K! 
----........;..---~ 

[!,CAT] (Projective Strucrure) [!l,CAT] (Projective Structure). 
<--------------

'nlerefore K* admits a left adjoint 
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the homotopy colimit of K (cf. 0.26.19), the explication of which will be carried 

out below. 

B.8.8 ~~ The functor 

PROJF Consider 

C------>D 

I-------I 

J-------J 

where q 0 iP = P and ViE Ob f, 

iP/i:g/i ~ Qli 

is a simplicial VJeak equivalence, the claim being that V j E Ob ~, 

iP/j :g/j ~ Q/j 

is a simplicial VJeak equivalence. 'Ib see this, form the c:an:mutative diagram 

iP/j 
g/j -------c> Q/j 

lqjj 
I/' I/' 
_ J ========== _ J 
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and let (i,g) be an object of Yj (g:Ki -+ j) -- then 

(£Ij)/(i,g) ~ £Ii 

(g/j)/(i,g) ~ g/i 

and 

(~/j)/(i,g) <--? ~/i. 

Consequently, 

is a simplicial ~ak equivalence (cf. B. 6 .5) • 

Therefore 

is a rrorphism of category pairs, thus there is a unique functor 

for which the diagram 

CAT/K 
~/!----------------------~~ CAT/~ 

1 Iwol':! 
1 CAT/K 

(WcxI!) - CAT/! -----------'~ (WcxI~) -ICAT/~ 

corrmutEs. 

B. 8 • 9 NOI'ATION Write K ( !) for the ccmposi te 

rJ 0 CAT/K 0 INTI' - -
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so 

[Note: K ( !) is not to be confused with K! (the left adjoint of K*) .] 

B. 8.10 Nal'ATIOO Write LK (!) for the ccmposi te 

f J 0 CAT/K 0 INTI' 

so 

B. 8.11 THEOREM LK (!) is a left ad joint for K*, thus LK (!) "is" LK!. 

PIO.)F Start with the adjoint pair 

f
J 

0 CAT/K 

(cf. B.2.l3). 

o K* 

Mor(LK(! )X,Y) 

= Mor(f J 0 CAT/K 0 INTI X,Y) 

Z Mor(INTI X, INTI 0 K* Y) 
- -

z Mor(f I 0 INTI X, K*Y) 

(cf. B.S.6) 
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= Mor (X,K*Y) • 

B.8.12 SCHOLIUM The composite 

r
J 

0 CAT/K 0 

is the honDtopy colimit of K. 

B.8.13 ~1PLE Take ~ = 1 and let K = PI (the canonical arrow! + 1) -- then 

p~:CAT + [!,CAT] is the constant diagram flIDctor and its left adj:>int PI! is 

hocol~ = L col~, 

(cf. B. 7 .2) • 

E.g.: Suppose that F = F
J 

(cf. B.2.8) -- then 

[Note: Given F E Ob[!,CAT], put NF = ner 0 F, so NF:I + SISET. Denote by 

11 NF the bisinplicial set for which 

are the pairs of strings 

<_II NF) ([n], [mn 

o n-l f m-l 

where the ~ E Ob FiO and the fk E Mor(FiO,Fio) (o::;; k ::;; m), supplied with the 
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evident horizontal and vertical operations. Using 8.2.14, one can show that for 

any snal1 category ~, 

from which, 

:Mer (cat dia Jl NF I~) :::::Mer (!NT? I~) I 

thus 

cat dia _II NF :::: !NT? 

en the other hand, there is an arrow of adjunction 

dia 11 NF -> ner cat dia _II NF 

-=-> ner !NT? 

and 'Ihomason t proved that it is a simplicial weak equivalence.] 

Keeping still to the assumption that K:! -+ ~ is a functor, there is an arrow 

of adjunction 

(cf.8.8.11) 

and 

K 
I --> ~ -> ;h => PI = PJ 0 K 

t Math. Pnoc. Cambnidge Phllo~. Soc. 85 (1979),91-109. 
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8.8.14 LEMMA The functor K:I + J is a simplicial weak equivalence iff the 

na tural transfo:r:ma tion 

LPI (!) 0 P~ + LPJ (!) 0 P5 
- -

is a natural is:::m:orphisn. 

PROOF Given a snall category g, the arrow 

I x e -

~ (LP
1 

(1) 0 p~) (Leu g) 
00 

+ (LP
J

( 1) 0 pj) (Lc~ g) 
00 

~ ~ x g = Lw (~ x g) 
00 

is preciooly Lw (K x ide) which is an isorrorphisn iff K x ide is a simplicial weak 
00 

equivalence (W is saturated (cf. 2.3.20)}. 
00 

[Note: The product of two simplicial weak equivalences is a sinplicial weak 

equivalence. On the other hand, if v g, K x ide is a simplicial weak equivalence, 

then K is a simplicial weak equivalence (take g = ;!).] 

The posi tian of the ad joint pair 
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is clarified if CAT is equipped with its internal structure (cf. 0.12) (which is 

inherited by CAT/!) and [!,CAT] is given the aSEk)Ciated projective structure (thus 

the ~ak equivalences are levelwise as are the fibrations). 

B.8.15 LEMMA The adjoint situation (rI,INTr ) is a m::xlel pair. 
- -

PROOF If F,G E Ob[!,CAT] , if E E Nat (F,G) , and if ViE Ob!, :Fi -+ Gi is 

an equivalence of categories, then the opfibered ftmctor 

INTr 2:INTrF -+ INTrG 
- - -

is an equivalence (cf. A.1.32). Accordingly, ~ have only to show that INTr 

preserves fibrations. So suppose that 2:F -+ G is a levelwise fibration, the claim 

being that 

INTrE:INTrF -+ INTrG 
- - -

is a fibration in CAT/! (Internal Structure). 'Ib establish this, let (i,X) E 

Ob INT? and let lj.!: (INTrE) (i,X) -+ (j, Y) be an isooorphism in INTrG -- then 
- - -

(INTrE) (i,X) = (i,E.X) 
- 1 

and lj.! (a,g), where a:i -+ j is an isorrorphism in I and g: (Ga)E.X (= 
- 1 

(FalX) -+ Y 

is an isom::>rphism in Gj. Since E. :Fj -+ Gj is a fibration, 3 an isom::>rphism 
J 

y: (FalX -+ x' in Fj such that EjY = g. Now put ¢ = (a,y), thus ¢: (i,X) -+ (j,X') and 

B.8.16 REMARK If ! is a groupoid, then the :rrodel pair (r I,INTr ) is a :rrodel 

equivalence. 
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C: CORRESPONDENCES 

C.l FUNVAMENTAL LOCALIZERS 

Suppose that (CAT,W) is a category pair, where W c .M:>r CAT is W'eakly 

sa tura ted (cf • 2. 3.14) . 

[Note: 'n1erefore W contains the iSJIIOrphisrns of CAT.] 

C .1.1 DEFINITIOO W is a fundaJ:rental localizer provided: 

(1) If f E Ob CAT admits a final object, then the canonical arrOlN' PI: f -+ ! 

is in W. 

(2) If ! E Ob CAT, if 

p 
c--> I - -

q 
D--> I 

are objects in CAT/f, and if <!?: (~,p) -+ (~,q) is a norphism in CAT/! (q 0 <!? = p) 

such that ViE Ob f, the arrow 

<!?/i:Sli -+ ~/i 

is in W, then <!? is in W. 

C.l.2 EXAMPLE 'n1e class Wtr consisting of all the elements of Mor CAT is a 

fundaJ:rental localizer, the trivial fundaJ:rental localizer. 

C.l.3 EXAMPLE 'n1e class W consisting of idO:O -+ 0 and all functors F:_I -+ J_, 
gr - - -

where I 7 Q and ~ 7 Q, is a fundamental localizer, the coarse fundaJ:rental localizer. 
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N.B. If W is a fundamental localizer and if 

then either W = Wgr or W = Wtr (cf. C.5.2). 

C .1. 4 EX1\MPLE Woo is a fundamental localizer. 

[W is sablrated (being the 'Weak equivalences for CAT (External Structure), 00 _ 

so 2.3.20 can be cited), hence W is -weakly saturated (cf. 2.3.15). 
00 

Ad (1): If! has a final object, then ! is contractible and the canonical 

arrCM PI:! -+ ! is a simplicial 'Weak equivalence. 

Ad (2): This is B. 6.5 verbatim.] 

C.l.5 RAPPEL If X and Y are simplicial sets and if f:X -+ Y is a simplicial map, 

then f is an n-equivalence (n ~ 0) if 'ITO (f) : 'ITO (X) -+ 'ITO (Y) is bijective and if 

v x E XO' f induces an isorrorphisn 

(1 :::;; k :::;; n) 

of harrotopy groups. 

C.1. 6 EX1\MPLE '!be class W n (n ~ 0) consisting of those functors F:! -+ ~ such 

that ner F:ner ! -+ ner ~ is an n-equivalence is a fundamental localizer. 

N.B. We have 

W eWe W c Wo eWe W (m :::;; n) 
00 n m gr tr 

and 

W = n W. 
00 n 

n~O 
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C.1. 7 EXAMPLE Given a fun.da:rrEntal localizer W, fonn the deri va tor D (CAT, W) 

(cf. 3.2.1) -- then 

(cf. 3.5.2) 

coincides with W (cf. C.1.13). 

[Note: FtmdaJ:rental localizers are necessarily sa:brrated (cf. C. 9. 3) • J 

C.1.8 REMARK Suppose that D is a right (left) horrotopy theory - then WD is 

a fundamental localizer (cf. 3.5.17). 

let C c: M)r CAT -- then the fun.da:rrEntal localizer generated by C, denoted 

W(C), is the intersection of all the fundaJ:rental localizers containing C. The 

minbna.l fundaJ:rental localizer is W un (1' the empty set of norphisms) . 

N.B. It turns out that W{1') = W (cf. C. 7 .1) • __ 00 

C.1.9 DEFINITION A fundaJ:rental localizer is admissible if it is generated by 

a set of norphisms of CAT. 

C .1.10 EXAMPLE W tr is an admissible fundaJ:rental localizer. In fact, 

C .1.11 EXAMPLE W gr is an admissible fundaJ:rental localizer. In fact, 

W(illll -+ l}) = tv (cf. C.5.4). 
- - gr 

The fonnal aspects of "fundaJ:rental localizer theory" are spelled out in 

sections C. 2 and C. 3 below. Here I want to point out that certain important 

results that were stated and proved earlier for W = W are true for any W. In 
00 

particular: 'Ibis is t..~e case of B. 7.1, B. 8.6, and B. 8.11. 



4. 

C.1.12 EXAMPLE Take W == Wo - then V .! E Ob CAT, TIO induces an iSOllDrphism 

If K:.! -;.. ~ is a functor, then 

is identified. with the functor 

and the functor 

is identified with the functor 

C.l.13 ~~ Since W is saturated (cf. C.9.3), B.8.14 goes through with no 

change. 

C.2 SORITES 

Fix a fundamental localizer W. 

C. 2.1 DEFlNITION A functor F:.! -;.. ~ is aspherical if V j E Ob ~, the functor 

F/j:yj -;.. !yj 

is in W. 

{Note: It then follows that F itself is in W (specialize condition (2) of 

C.l.l in the obvious way (cf. B.6.6)).] 
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C. 2.2 DEFINITIQ."l An object ! E Db CAT is aspherical if PI:! ->- 1 is aspherical 

(or, equivalently, if PI:! ->- 1 is in W). 

[Note: Condition (1) of C.l.l thus says that if ! admits a final object, 

then ! is aspherical.] 

C. 2.3 REe1ARK If W ;r Wt,r' then 

! aspherical => ! ;r Q (cf. C.S.l). 

C.2.4 I..iEr+lA The functor F:! ->- ':I is aspherical iff 'if j E Db ':I, the category 

!/ j is aspherical. 

PROOF Since ':I/j has a final object, it is aspherical, thus the arrow ':I/j ->- 1 

is in w. This said, consider the carrmutative diagram 

F/j 
Yj ------> ':I/j 

Ip,r/j 

1============1 

C.2.S LEMMA Suppose that the functor F:! ->- ':I admits a right adjoint G:':I ->- ! --

then F is aspherical. 

PROOF 'if i E Ob I and 'if j E Ob ':I, we have 

Mbr(Fi,j) ~ I~r(i,Gj). 

Therefore the category Yj is isarrorphic to the category !/Gj. But YGj has a 

final object, thus !/Gj is aspherical, hence the sane is true of !/j and one nay 

then quote C.2.4. 
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C.2.6 EXAMPLE An equivalence of snaIl categories is asphericaL 

C.2.7 LEM-11\. If ! E Ob CAT admits an initial object io' then ! is aspherical. 

PR(X)F The functor PI:! + 1, is a right ad joint for the functor Ki : 1, + !. 
- 0 

Therefore K. is aspherical (cf . C. 2 • 5) • 
10 

aspherical, Le., ! is asphericaL 

C. 2. 8 LEMMA Let g,!? be small categories, F: C + D a functor. Assl.llre: F is a 

Grothendieck preopfibration -- then F is aspherical iff V Y E Ob !?, the fiber ~ 

is asphericaL 

PROOF The canonical functor 

(X + (X, idyl) 

has a left adjoint g/y + ~ (cf. A.LIO), which is therefore aspherical (cf. C.2.S). 

Taking into account C. 2.4, consider the ccmnutati ve diagram 

gjY C>~ 

1 1 
I I . 

C. 2.9 LEMMA Let F: I + J be a functor -- then F is in W iff FOP: !OP + ~OP is 

in W. 

PR(X)F Consider the commutative diagram 

lOP < 
sI 

! (~» ------------~> I 

FOP 1 1 ~ (cf. A.l.33). 

J OP< ~( -» ------------~C> J 

SJ 
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Here too arrows SI' ~, SJ' t J are Grothendieck opfibrations and since their fibers 
- - - -

admit an initial object, it follows from C.2.7 and C.2.8 that sI' ~, sJ' t.r are 
- - - -

aspherical, hence are in W (cf. C.2.l). Accordingly, if F is in W, tlen the 

unlabeled vertical arrow is in W, which implies that FOP is in W and conversely. 

C.2.l0 APPLICATION let ! E Ob CAT - than ! is aspherical iff lOP is aspherical. 

C.2.ll J..EM.IlA let F:I -+ J be a functor. Assurre: F is a Grothendieck pre-

fibra tion and V j E Ob J, the fiber I. is aspherical - then F is in W. - -]-

[The functor FOP :!OP -+ ~OP is a Grothendieck preopfibration and V j E Ob ~, 

C.2.l2 I..EMr1A Suppose that ! is aspherical -- then V ~, the projection 

I x J -+ J is in W. 

PROOF It suffices to shaw that V j E Db ~, the category (!, x ~)/j is aspherical 

(cf. C.2.4). But 

(!, x ~)/j :::: ! x (¥j) 

and there is a corrmuta tive diagram 

I x (¥j) > I 

1 1 
1========1 

so, since PI:! -+ ! is aspherical by hypothesis, one has only to prove that the 

arrow ! x (¥j) -+ I is in W. And to this end, it suffices to show that viE Db !, 



8. 

the ca t:egory 

(! x (~j»/i 

is aspherical (cf. C.2.4). But 

(! x (~/j»/i ~ !Ii x ~/j 

and the category on the RHS admits a final object, hemce is aspherical. 

C.2.13 LEMMA If <I>:C -+ D is in W, then V !, the arrow 

C x I -------''> D x I 

is in W. 

['Ihis is the relative version of C.2.12 (take £ = !, ! = ~, Q = 1., <I> = PI) 

and its proof runs along similar lines. J 

C.2.14 LEMMA If ! E Ob ~T, if 

p 
C '> I 

q 
D '> I 

are objects in ~T/!, and if <I>: (£,p) -+ (Q,q) is a norphisn in ~T/! (q 0 <I> = p) 

which is aspherical, then ViE Ob !, the arrow 

<I>/i:£Ii -+ Q/i 

is aspherical. 

C.2.IS LEMMA If I E db ~T, 

p 
C '> I 

q 
D ::> I 
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are ob~cts in CAT/~, and if ¢: (~IP) -+ <!~,q) is a rrorphism in CAT/! (q 0 ¢ = p) 

which is aspherical , then P is aspherical iff q is aspherical. 

PRCDF Given i E Ob ;!;'I consider the COImlUtative diagram 

¢/i 
5;'i ;:. £Ii 

P/il lq/i 
!Ii !Ii 

T'nen ¢/i is aspherical (cf. C.2.14) I hence is in W. Therefore p/i is in W iff 

q/i is in W, ro p is aspherical iff q is aspherical. 

C.2.16 DEFINITICN Let Fq -+ ~ be in W -- then F is l.U1iversally in W if for 

every pullback square 

I' :> I 

J' > ~ I 

F' is in W. 

C.2.17 EXAMPLE If PI:;!;. -+ ! is in W, then PI is l.U1iversally in W (cf. C.2.12) 

and conversely. 

C.2.18 LEMMA If F:;!;. -+ ~ is l.U1iversally in W, then F is aspherical. 

PRCDF V j E Ob ~ I there is a pullback square 

!lj ----::> I 

F/j 1 
~j --.....;;:. J . 
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C.3 STABI LTTY 

Fix a f1..U1darrental localizer W. 

C.3.l I.iEMMA If ~ (k = 1, ••• ,n) are aspherical, then so is their product 

n 
TI !k' k=l 

PROOF Take n = 2 -- then the projection !l x !2 ~!2 is in W (cf. C.2.l2). 

But PI :!2 ~ ! is in W, thus 
-2 

is in W. 

C.3.2 I.iEMMA If 

are aspherical, then so is their product 

PROOF Take n = 2 and let (jl,j2) E Ob ~l x ~2 -- then 

But the produc t on the RHS is aspherica1 (cf. C. 3.1), thus FIX F 2 is aspherica1 

(cf. C. 2.4) • 

C.3.3 LEM-1A If 
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are in W, then so is their product 

PROOF Take n = 2, decanpose 

as the canposition 

!l x !2 ------> ~l x !2 ------> ~l x ~2' 

and apply C.2.l3.] 

C.3.4 LEMMA If S is a s;;t and if V s E S, F :Is -+- J is in W, then s:::> s - -s 

their coproduct 

_II F s: J1 !s -+- _II ~s· 
s 

PROOF let F = 11 F s and let 

I == 

s 

s 
I -s 

J == _II J. 
s 

Then there is a comnutative diagram 

F 
I ------,> J 

1 1 
disS dis S 

s 

and V s E Ob dis S, the arrow F/s:ys -+- :!Is can be identified with the arrow 
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F:I -+ J. Therefore F is in W (recall condition {2} of C.l.l). s -s -s 

C.3.5 LEMMA SupfX)se that ! is a filtered category and F,G:! -+ CAT are 

functors. let E:F -+ G be a nablral transforIIB.tion with the property that 

If i E Ob I, ::. :Fi -+ Gi is in W - then - ~ 

colim ::; colim F -+ colim G 

is in W. 

C.3.6 REMARK It follows that W is closed under the fo:rma.tion of retracts 

(take for! the category with one object and two no:r:phisms {idI,p}, where p2 = p) . 

[Note: This is alsn a corollary to the fact that W is saturated. (cf. C. 9. 3) .] 

e 
C. 3. 7 LEMMA SupfX)se that are small categories. let F ,G:S -+ Q be 

D 

functors, :::F -+ G a natural transfornation -- then F is in W iff G is in W. 

PROJF Pass to the functor 

and denote by 

the obvious arrows -- then 

e ::::: e x [OJ 

e ::::. e x [OJ 

~:S x [1] -+ D 

eo: [0] -+ [lJ 

e l : [OJ -+ [1] 

ide x eo 
-----;'> e x [11 

----> e x [1] 
ide x e 1 -

H 

II 
'> Q 

'> D 
H 

~H 
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with 

G == 0:; 0 
rI 

Since [1] has a final object, it is aspherical, thus the projection 

pr 
C x [1] :> C 

is in W (cf. C.2.l2). But 

are in W. Therefore F (G) is in W iff !:!H is in W. 

C.4 SEGMENTS 

Fix a fundamental localizer W. 

C.4.l DEFINITION A segrn:mt in CAT is a triple (H, dO' dl ) where H E Ob CAT 

C.4.2 EXAMPLE The triple ([I] ,eO,el ) figuring in C. 3.7 is a segrrent. 

Given a seg:roont (11, dO' ( 1 ) and a snaIl category ~, let pr:~ x H -r ~ be the 
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projection -- then pr is in W (cf. C. 2 .12) • 

C • 4 • 3 LEMMA I;J ~ E Ob CAT, the rrorphisms 

are in W. 

PRtXlF One has only to note that 

pr 0 (ide x dO> = ide = pr 0 (ide x dl >. 

e 
C. 4 • 4 DEFINITION ret (11, dO' d 1) be a sag:rren.t in CAT. Suppose that are 

samll categories and let F,G: g + !2 be functors - then F,G are said to be 

H-horrotopic if 3 a rrorphism H:g x 11 + !2 such that 

C.4.5 LEMMA If F,G:g + !2 are I1-homotopic, then LwF = LwP· 

PR.(X)F Since LWpr is an isorrorphism in W-1CAT, 

=> 

D 
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Therefore 

v = ¥ 0 LW(idC x dO} = ¥ 0 Lw(idC x dl } = Lr,p. - -
[Note: It follows that F and G are hclrrotopic in the sense of 1. 3.1. 1 

C. 4. 6 LEMMA If F ,G:£ -+ Q are I1-hclrrotopic, then F is in W iff G is in W. 

PRCX)F In view of C.4.3, F(G) is in W iff H is in W. 

C.4.7 LEMMA Suppose that idc is I1-horrotopic to ~ 0 Pc (3 X E Ob £) -- then 

£ is aspherical. 

PRCX)F Because (£,W) is a category pair, idc is in W, thus ~ 0 Pc is in 

W (cf. C.4.6). en the other hand, the composition 

~ Pc 
1 ---> C ---? ! 

is idr So, since W is ~ly sablrated, Pc is in W, Le., £ is aspherical. 

C.4.8 THEOREM Suppose that S E Nat(idc'~ 0 pc) (3 X E db £) -- then C is 

aspherical. 

PRCX)F In fact, idC is I1-horrotopic to ~ 0 PC' where 

[Note: Bear in rn:ind that [11 has a final object, hence is aspherica1. 1 

C. 4.9 EXAMPLE Consider the category ¥! which is defined and discussed on 

pp. 28-30 of MATTERS SIMPLICIAL -- then, under the assumption that ! has a final 

object i O' "We exhibited 
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a E Nat(idW!,F) 

B E Nat(KO,F). 

Here 

So, with 

id Q/! is l1-h.an:otopic to F via 1f and KO is l1-hctrotopic to F via SH' Therefore 

F is in W, thus KO is in W (cf • C • 4 • 6). Reasoning nOW" as in C. 4. 7, the conclusion 

is that p ~/! is in W or still, that Q1! is aspherical. 

C.S STRUCTURE THEORY 

C.S.l LEMMA If W is a fund.an:ental localizer and if W ~ Wtr , then 

! aspherical => ! ~ Q. 

PROOF Suppose that Q is aspherical. Since 'r/ ! E Ob CAT, there is a pullback 

square 

0------,> 0 

1 
I ----->! 

it follov.rs that the arrOW" 0 -+ I is in W (cf. C.2.l7), hence PI is in W, Le., 
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! is aspherical. But t..l'lis rreans that every rrorphism F:£ -+- Q in CAT is in W 

(wri tE Pc = Po 0 F), s::> W = Wtr , a contradiction. 

C. 5.2 APPLICATION If W is a fundamental localizer and if W ::> W gr' then 

W = Wtr or W = Wgr' 

[Suppose that the contai:rnrent W ::> Wgr is proper, hence that there exists an 

arrow 0 -+- I in W (:f ;z: Q). Consider the commutative diagram 

PI 
I > 1 

o 0 

'!hen PI is in W , thus is in W. Therefore Po is in W or still, Q is aspherical, _ gr 

C.5.3 LEMMA If W is a fundamental localizer and if W ;z: Wtr,Wgr' then 

PRCX)F owing to C. 5.1, one has only to show that :f is connected. Suppose 

false -- then there is a decorrp:>sition :f = :fo 11 :fl' where :fO,:fl ;z: Q. Choose 

iO E Ob :fo' i l E Ob !l and let 

be the corresponding constant functors 
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K. :1 + I 
1 - -o 

K. :1 + 1. 
1 - -

1 

'Ihen (~, dO' ( 1 ) is a segm;mt q beillg aspherica1 by assurrption). Take now 

C E Ob CAT (g ~ 2) and fix X E Ob c. ]):mote by 

the project1ons and define 

by 

'Ihen idc is ;h-harrotopic to K:x 0 PC' thus £ is aspherica1 (cf. C.4. 7). Therefore 

every functor between nonerrpty categories is in W, so W ::> W , a contradiction. 
gr 

C. 5.4 APPLICATlOO ve have 

[per W({! J1 ! + !}), ! ! is aspherical, thus argumg as ill C.5.3, one 

finds that every functor between nonerrpty categories is in W ({! ! + !}), so 

W(f! 11 ! + !l) ::> W • gr 

On the other hand, 1 'I 1 + 1 is in W , so 
-~- - gr 

Wgr ::> W({! _I' ! + !l) .] 
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C.5.5 LEMMA If W is a fundarrental localizer and if W ~ Wtr,Wgr' then W cWO' 

[Note: Recall that Wo consists of those F:! -+ ~ such that 'lTD (F) : 'lTD (f) -+ 'lTD (~) 

is bijective.] 

C.6 PASSAGE TO PRESHEAVES 

Fix a fundarrental localizer W. 

C.6.l DEFINITION let g be a smelll category. Given F,G E Ob g and :::F -+ G, 

call :: a W~qui valence if 

is in W. 

C.6.2 NOTATION Write W for the class of W-equivalences in ~lJor §, thus e 

[Note: It is clear that (C,W,,J is a category pair and W" satisfies the 2 
- e e 

out of 3 condition. J.Vbreover, 

ie:(g,W,,) -+ (CAT,W) 
- e 

is a Il'()rphism of category pairs, thus there is a functor 

-1" ·.w-le" -+ W-l l""'1\IT (f 1 4 5) ] e"- _ ......... _ c .••. 
- e 

C.6.3 REMARK 'lb resolve a smelll matter of consistency, take W = Woo and let 

g = ~ -- then a simplicial map f:X -+ Y is a simplicial weak equivalence iff 
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gro /}, f: gro /}, X -+ gro /}, Y is a sinplicial weak equivalence or still, in different but 
- - -

equivalent notation, iff illf:¥X -+ t;YY is a sinplicial weak equivalence. Therefore 

(cf. 0.24.3). 

C.6.4 LEMMA W" is weakly saturated. 
C 

C. 6. 5 LEMMA W.h. is closed lIDder the fo:r:ma.tion of retracts. 
C 

PROOF Suppose that _ is a retract of Q, say 

1 P 
F '> G '> F 

"1 n1 "1 
FI '> GI '> FI, 

11 pi 

where pOl = i~, pi 0 11 = id , and Q E W" -- then iCE: is a retract of iCQ• 
FI C -

But i~ E W and W is closed under the fo:r:ma.tion of retracts (cf. C.3.6), so 

E W". 
C 

C.6.6 THEOREM W" n M is a stable class. 
C 

A-

C.6.? REMARK Recall the definitian of g-localizer (cf. 0.21.4) -- then W" 
c 

satisfies conditions {l} and (3). However condition (2), which here "WOuld read 
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A 

"eve:ry rrorpbism of presheaves having the RLP w.r.t. the class M c Mor C of rrono-

rrorpbisrns is in WAil, need not be true (for a characterization, cf. C.9.l). 
C 

C.6.8 LEMMA WI'. n M is a retract stable class. 
C 

[Both W A and M are stable 1.U1der the formation of retracts.] 
C 

C.6.9 APPLI~TION Let 

be a set of rrorphisms -- then 

cof J = LLP(RLP(J» c WI'. n M 
C 

A 

[Note: Bear in mind that £ is presentable.] 

C.7 MINIMALITY 

(cf. 0.20.4). 

Our objective in this section is to establish the following result (conjectured 

by Grothendieck and proved by Cisinski t) • 

C. 7.1 THEORa1 If W is a fundarrental localizer, then 

W c W. 
00 

Postponing the details for now, if W is a fundan:ental localizer, then ¥! 

t Cahi~ Topolog~e G~om. Vin6~entielle XLV-2 (2004),109-140. 
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is aspherical provided! has a final object (cf. C.4.9). 

N. B. , From the definitions I 

Y! = yner ! = grot-. ner ! = it-.ner !. - -
E.g.: 

Write 

for the functor that sends (m, u) to u (m) • 

C. 7.2 LEMMA A functor F:I -+ J induces a functor 

~/F:Y! -+ ~/~ «m,u) -+ (m,F 0 u» 

and t..1-te diagram 

(;}./F 
Y! ------'e> yJ 

lT~ 
I ---------'> ~ 

F 

carrnutes. 

c. 7.3 LEMMA The functor 

is aspherical. 

PROOF ViE Ob !, 

(Y!}/i ~ Y(!li). 
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But !/i has a final object, so ~/(¥i) is aspherical (cf. C.4.9), from which the 

assertion (cf. C.2.4). 

C. 7.4 LEMMA ve have 

-1.-1 
W = ner 1l::,. W, 

Le. , 

-1 W = ner WA • 

l::,. 

PR(X)F Supp::>se that F:! -+- ~ is a functor -- then in the comnuta ti ve diagram 

rYF 
rY! C> b./~ 

T!l lT~ 
I :> J -

F 

the vertical arrCJI'Ns are aspherical (cf . C. 7 • 3), hence are in W. 'lherefore F is in 

W iff fYF is in W or still, F is in W iff il::,.ner F is in W. 

C. 7 • 5 THEOREM If W is a fundamental localizer, then 

.-1 W c W (= lA W). 
00 A u l::,. 

.M:mit this result m:::m:mtarily -- then 

C. 7 • 5 => C. 7 .1. 

Proof: 

-1 -1 W = ner iA W (cf. C.7.4) 
00 u co 
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-1 = ner W (cf. C.6.3) 
00 

-l.-lW (cf. C.7.5) 
c ner 11'::,. 

= W (cf. C.7.4). 

" 'Ib deal with C.7.5, take an f E Woo and using the Kan structure on I'::,. (= SISET), 

factor f as the composite of an acyclic cofibration and a Kan fibration (which is 

then necessarily acyclic). 

C.7.6 FACT Acyclic cofibrations are in WA ' 

I'::,. 

[let J be the set of inclusions A[k,n] -+ I'::,.[n] (0 ~ k ~ n, n;:: 1) -- then J 

is contained in W" n M (cf. infra), hence 
I'::,. 

cof J = LLP(RLP(J» c W" n M 
I'::,. 

(cf. C.6. 9) • 

But cof J is precisely the class of acyclic cofibrations (cf. 0.20.15).] 

[Note: '!he categories iI'::,.A[k,n], il'::,.Mn] are aspherical, thus the arrow 

is in W.] 

C. 7.7 I..Ef).tIIA For every sinplicial set X, the projection X x Ml] -+ X is in W
A

' 

I'::,. 
PRCOF It suffices to show that the functor 

il'::,.{X x !::"[l]) -+ i!::,.X 
- -

is aspherical and for this, 'We shall apply C.2.4. So let ([n] ,s) be an object of 

i X -- then 
Ii 

(¥(X x Ml]) )/({n],s) 

~ ¥(I'::,.[n] x 1'::,.[1]) 
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~ ~/(ner[n] x ner[l]) 

~ ~/ner([n] x [1]}. 

Since the category en] x [1] has a final object, 

Q!ner( In] x [I]} ::: Q!CIn] x [1J) 

is aspherical (cf. C.4.9). 

C. 7.8 FAcr Acyclic Kan fibrations are in W",. 
!:. 

[let p:X -r B be an acyclic Kan fibration. Because ~ -r B is a cofibration, 

the ca:rmutative diagram 

~ ----> X 

1 
B======B 

has a filler s:B -r X, hence p 0 s = i~. We then claim that sop is in W", which, 
!:. 

in view of C.6.4, will inply that p is in W",. 'Ib see this, denote by 
!:. 

cp:X _II X -r X 

the arrow arising from consideration of 

X -------'> X J1 X <---- X 

X ===================== X 
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Proceed next from 

x x MO] :::: X ---'> X _II X <--- X :.::: X x MO] 

i~ x eO 1 1 ~ x e1 

X x MO] X x MO] 

to get a cofibration 

h 
X il X --'> X x 6 [1] • 

Let 

H:X x Ml] -+ X 

be a filler for the carrmuta ti \Ie diagram 

x_II X ------'> X 

X x 6 [1] '> X --'> B • 
pr p 

Then H is a simplicial hcm:"topy bet~ i~ and s () p. 

'therefore, arguing as in C. 3. 7 , 

i~ E W A => S () pEW A.] 
6 6 

C.8 TEST CATEGORIES 

Fix a funda:rrental localizer W. 

But pr E WA (cf. C.7.7). 
6 

C.8.l EXAMPLE Take W = Wtr -,.... then W-1CAT is equivalent to !. 
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C.B.2 EXAMPLE Take W = W - then W-1CAT is equivalent to [lJ. 
gr -

C. B. 3 EXAMPLE Take W = Wo -- then W -lCAT is equivalent to SET. 

C.B.4 EXAMPLE Take W = W -- then W-1CAT is equivalent to HaY. 00 _ _ 

C. B • 5 LEMMA. Let g be a s:rrall category. AsSl..:UTe: The arrow 

-. -1'" -1 
lC:W", g + W CAT 

- C 

is an equivalence of :rretacategories - then g is aspherical. 

PROOF 'Ib prove that PC:g + ! is in W, consider the cOImnltative diagram 

'" 
ic 

C > CAT 

\1 l~ 
-1'" 

W'" s: -1 
> W CAT. 

C -r-

lC 

'!hen it need only be shown that lwPc is an isorro.tphism (W being saturated (cf. C.9.3». 

From the definitions, i c {*''') = g. 
- c 

And 

But LW (*,J is a final object in W:lc {cf. 1.9.2} and since 
'" c c c -

is, by hypothesis, 
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an equivalence, hence rends final objects to final objects, it follows that Lw(£> 

is a final object in W-ICAT. However LW(!> is also a final object in W-ICAT 

(cf. 1. 9.2), so 

is an isarorphism. 

C. 8. 6 DEFINITION let £ be a sma.ll category -- then £ is said to satisfy 

condition 't if V ! E Ob CAT, the arrow of adjunction 

is in W. 

C.8.7 REMARK let 

and 

v :i i*I -)- I 
I e e- -

'" e = e , WI = WA -1 - e 

'Ihen under the supposition that £ satisfies condition 't, condition (1) of B.8.1 

.-1 
is in force (by definition, W", = ~e W). 'Iherefore 

e 
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A 

and V F E Ob S:' the arrow of adjunction 

is in OJ A • Furthe:r:nore 
C 

- -1 lA 
i*:W CAT ---> W- C C A _ 

C 

are an adjoint pair and the adjoint situation (ic,ic'~'v) is an adjoint equivalence 

o£ metacategories. 

C.8.8 CRITERICN Given s: E Ob CAT, to verify condition l for an arbitrary OJ, 

it suffices to verify condition ~ for Woo (cf. C.7.1). 

C.8.9 ~F.MMA If s: satisfies condition t, then £ is aspherical. 

[This is .i.rrplied by C.8.5, in conjunction with what was said above.] 

C.8.10 DEFINITICN A small category ~ is a local test category if V X E Ob ~, 

~/X satisfies condition ~. 

N. B. If ~ is a local test category, then V X E Ob ~, ~/X is a local test 

category. 

A 

C.8.11 LEMMA If C is a local test category, then V F E Ob ~, ~/F is a local 

test category. 
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PRCXJF Given (X,s) E Ob £IF, there is a canonical iscm::>rphism 

(£IF)/(X,s) z £Ix. 

[Note: 'Ibis property is characteristic: If C is a small category such that 

" V F E Ob g, £IF is a local test category, then C is a local test category.] 

C. 8 .12 DEFINITION A small category g is a test category if 

(1) g is a local test category 

and 

(2) C satisfies condition t. 

N.B. If C is a test category, then the arrolN' 

is an equivalence of matacategories. 

C.8.l3 LEMMA SUppose that g is a local test category - then g is a test 

category iff g is aspherical. 

C.8.l4 EXAMPLE Take W = W
tr 

-- then every small category is a test category. 

C. 8 .1S EXAMPLE Take W = W - then the test categories are the small nonempty 
gr 

categories. 

[In view of C.S.l, a small category g is aspherical iff it is nonempty.] 

C.8.l6 LEMMA Suppose that g admits a final object -- then g is a local test 

category iff £ is a test category. 
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C.8.17 LEMMA A small category S is a local test category iff V X E Ob S, the 

category SIX is a test category. 

A 

C. S .1S RAPPEL Gi veIl a small category S, M c Mer C is the class of rronooor-

phisrns and the elements of RLP(M) are called. the trivial fibrations (cf. 0.21). 

C.S.19 THEOREM let S be a small category -- then S is a local test category iff 

RLP (M) c W". 
C 

C.S.20 EXAMPIE t:; is a test category. '!hus note first that t:. has a final object 

(viz. [0]), hence is aspherical. So, to establish that t:. is a local test category, 

it is enough to prove that t::, is a test category per W (cf. C.S.S). To see this, _ 00 

" consider t:. in its Kan structure - then M is the class of cofibrations, RLP (M) is 

the class of acyclic Kan fibrations, and 

'1llerefore 

and C.S.19 is applicable. 

[Note: Here it::, = grot::, and there is a corrmutati ve diagram 

grot::, 

SISET :> CAT 

1 1 (cf. 0.24.3), 

HSISET :> HCAT 

grot::, 
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where gro /::,. is an equivalence of harotopy categories.] 

C.8.21 REMARK ~ is aspherical and satisfies cond.tion l!. Still, if 

W :;:. Wtr,Wgr' then ~ is not a local test category. 

[Supp::>se that ~ is a local test category -- then the sarre is true of 

V[O] ;:::!. But V ! E Ob CAT, iIi!! = !ms (the discrete category with objects 

those of !). In particular: The discrete category {a ,I} = iIi! [1] would be 

VI 
aspherical ([1] is aspherical and the arrOW' {O,l} [1] is in W). This, 

however, is possible only if W = W tr or W = W gr (cf. C. 5.3) .] 

C. 8.22 LEMMA Suppose that g is a local test category - then for every snaIl 

category Q, the product g x Q is a local test category. 

C. 8.23 LEMMA Suppose that g is a test category - then for every srrall aspher­

ical category Q, the product g x Q is a test category. 

[Recall that the product of two aspherical categories is aspherical (cf . C. 3.1) .] 

C.8.24 EXAMPLE ~ x ~ is a test category. 

C.9 CISINSKI THEORY (bis) 

Fix a fund.arrental localizer W. 

C.9.1 THEOREM let g be a snaIl category - then g is a local test category 

"" iff W"" is a C-localizer. 
C -
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PROOF Taking into account C. 6. 7 I one has only to quote C. 8.19. 

C. 9.2 LEMMA let F:! -+ ':"! be a lll.:)rphism in CAT -- then F is in W iff i? is 

PRCX)F owing to C. 8.20, ~ is a test category, hence satisfies condition t 

(cf. C.8.l2). 'Iherefore 

Consequently, 

W = (i!)-lWA (cf. C.8.7). 
f). 

FEW <=> F E (i!)-lWA <=> i!F E WA ' 

f). - f). 

C.9.3 W is saturated: W = W. 

PRCX)F since 

is a lll.:)rphism of category pairs (cf. C. 9. 2) I there is a ccmnutati ve diagram 

.* If). 
A 

CAT > f). 

~1 1~~ 
W-1CAT -1" 

:> W" ~ • 

'"'"* If). 
f). 

Sup:r;x>se nCM that ¥ is an isarorphism in W-1CAT - then i!L,J' is an isarorphism 
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A 

But WA is a ~-localizer 
~ 

(cf. C.9.l), hence is saturated (cf. 0.21.9). 'Iherefore i? E W
A 

or still, 
- ~ 

FEW. 

C. 9. 4 REMARK '!he functor 

is conservative. 

C. 9.5 THEOREM SUpp::>Se that W is an admissible fun.danental localizer and g is 
A 

a local test category -- then g admits a cofibrantly generated rrodel structure 

whose class of -weak equivalences are the elerrents of W A and whose cofibrations are 
C 

the m:narorphisms: 

WA , cof = M, fib = RLP(WA n M). 
c c 

A 

'!he central point is to establish that WA (which is a g-localizer (cf. C.9.l)) 
c 

is necessarily admissible (for then one can cite 0.21. 7). '!his is done in two steps. 

Step 1: Prove it in the special case when g = ~. 
A 

[Note: If WA is an accessible sul:x:::ategory of M+), then WA is necessarily 
~ - ~ 

admissible (cf. 0.25.9) but accessibility is not an a priori property.] 

Step 2: Finesse the general case. 

N • B. '!he CC'Il1?Osi tian 
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preserves colimits and nnnon:orphisms. In addition, 

C.9.6 LEMMA Let ~l'~2 be small categories and let F:§l ~ §2 be a functor that 

preserves colimi ts and :rronorrorphism.s. Suppose that W 2 is a g2 -localizer and that 

W2 admissible => WI admissible. 

['lhe argurrent is a lengthy workout in set-theoretic gynnastics.] 

'" C. 9. 7 RAPPEL Let ~ be a small category -- then the Cisinski structures on C 

are left proper (but not necessarily right proper). 

C. 9.8 DEFINITICN An admissible fund.am:mtal localizer W is proper if for every 

'" test category ~, W", is proper, i. e., if the Cisinski structure on ~ detennined by 
C 

W" is proper. 
C 

C.9.9 LEMMA If W", is proper, then W is proper. 
l::.. 

C. 9.10 EXAMPLE The minimal fun.dan:ental localizer Wex:> is admissible (being equal 

to W Uf) and proper. 

[In fact, 

-1 (W) = i W = W 00& l::.. 00 00 
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A 

and the Cisinski structure on !::. detennined by W is the Kan structure which is 
- 00 

proper (cf. 0.3).] 

C.9.ll REMARK It turns out that if W is proper, then for every local test 

category ~, W A is proper. 
C 

C. 9.12 THEOREM Suppose that W is an admissible fundarrental localizer. let 

~,~' be local test categories and let F:~ -+ ~' be an aspherical functor. Equip 

A 

C with its Cisinski structure per W", 
C 

e r wi th its Cisinski structure per WAr' 

C 

Then the adjoint situation 

is a nodel pair that, rroreover, is a rrodel eq:uivalence. 

C.9.l3 DEFINITION A '1hcmason cofibration is a cofibration in CAT (External 

Structure) . 

C. 9.14 THEOREM Suppose that W is an admissible fundarrental localizer -- then 

CAT admits a cofibrantly generated nodel structure whose class of weak. equivalences 

are the elen:ents of W and whose cofibrations are the Thomason cofibrations. 

N.B. The proof is an elaboration of that used to equip CAT with its external 

structure (cf. 0.24.2). 

C. 9.15 REMARK The cofibrantly generated nodel structure on CAT detennined by 

OJ is left proper and is right proper iff W is proper. 
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C.IO CRITERIA 

Fix a fundamental localizer W. 

C.IO.I ~ let S be a small category. Assurre: V I E Ob CAT which admits 

a final object, the category 

is aspherical -- then S satisfies condition t. 

PRCX)F For any ! E Ob CAT, the arrow of ad junction 

\)I:icfc! -+ ! 

is aspherical, hence is in W (cf. C.2.1). In fact, ViE Ob !, 

and !/i has a final object. Nc1It.T apply C.2.4. 

"-

C.IO.2 DEFINITION let S be a small category -- then a presheaf F E Ob g is 

said to satisfy the rl-con.dition if V X E Ob S, the category gl (~ x F) is aspherica1. 

A 

[Note: If S admits a final object * C' then h* is a final object for Sf 
C 

"-

hence V F E Ob S, h* x F :::: F.] 
C 

"-

N.B. Given an X E Cb g and an F E Cb g, let F I (SIX) be the presheaf induced 

by F on g/X - then 

(g/X)/(FI (SIX)) :::: S~ x F). 



38. 

C .10.3 LEMMA let £ be a small category. Assume: V! E Ob CAT which admits 

a final object, the presheaf i c ! satisfies the n-condition -- then £ is a local 

test category. 

PRCX)F '!he claim is that V X E Ob £, £IX satisfies condition t (cf. C.8.10). 

orb establish this, it suffices to show that V ! E Ob CAT which admits a final object, 

the category 

is aspherical (cf. C.IO.l). But 

(£/X) /ig;x! 

~ (£/X) / (ic! I (£/X» 

:::: £/(~ x i c!) 
and the latter is aspherical by assumption. 

C.IO.4 CRITERION let £ be a small category. Assume: ic[l] satisfies the 

n-condi tion -- then £ is a local test category. 

C.IO.S REMARK Using this criterion, Maltsiniotisf has given a direct elenentary 

derronstration of the fact that ~ is a local test category (cf. C.8.20). 

[Note: Here i! [1] ::: ner [1] = Ml], so it is a question of proving that 

~/(8In] x ~Il]) is aspherical for all n ~ 0.] 

let £ be a small category, 1: £ -+ CAT a functor -- then the nerve of 1 is the 

t MtVvuque. 301 (2005), 49-50. 
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functor 
A 

ner :CAT -+- e 
1- -

defined by 

ner (I) (X) = Mor(lX,I) (X E Ob e). 
1 - - -

N .B. If l:e -+- CAT is the functor X -+- g/X, then g;x :::: glhx and 

Therefore 

ner l ~ ic (cf. B.1.10). 

C .10.6 EXAMPLE Take e = 6. and let 1 be the inclusion 6. -+- CAT -- then V en] E 

Ob ~, 

ner (I) ([n]) = Mor([n],_I) = ner I. 
1 - n-

C.10.7 DEFINITION The functor l:g -+- CAT satisfies the finality hypothesis 

if V X E Ob g, \X has a final object eX. 

C.10.8 EXAMPLE The inclusion 6. -+- CAT satisfies the finality hypothesis: n E Ob en] 

is a final object for [n]. 

C.10.9 LEMMA Suppose that l:g -+- CAT satisfies the finality hypothesis -- then 

there is a natural transfODUation 

PRCX)F let I E Ob CAT and recall that 

ieonerI 
1-

is the small category whose objects are the pairs (X, s), where X E Ob e and 
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S:lX -+ ! is a functor, and whose rrorphisms (X,s) -+ (Y,t) are the arrows f:X -+ Y 

such that t 0 1 (f) = s (cf. B.1.2). This said, define the functor 

on objects by 

and on norphisms by 

Explicated: 

=> 

=> 

=> 

But 

so 

Jl :iC 0 ner I -+ I --r 1--

~(X,S) ::: s{~) 

JI1 (f) ::: S (~) ---> t (~) . 

1 (f) : lX -+ 1 Y 

l(f) (~) E Ob lY 

3! 
l(f) (~) > ~ 

t{3! ) 

s(~) = t(1 (f) (~», 

fX,y::: t(3!). 

C .10 .10 EXAMPLE Take g = ~ and let 1 be the inclusion !J. -+ CAT -- then 
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v ! E Ob CAT, ~ is the canonical arrow 

gro II (ner !) -+ 1. 

C.10.ll LEMMA Suppose that l:g -+ CAT satisfies the finality hypothesis -­

then the following conditions are equivalent: 

(1) V ! E Ob CAT which admits a final object, the category 

C/ner I 
- 1-

is aspherical. 

(2) V I E Ob CAT, the functor 

is in W. 

(3) V ! E Ob CAT, the functor 

is aspherical. 

PROOF It is clear that (3) => (2) (cf. C.2.l). As for (2) => (1), bear in 

mind that 

iC 0 ner I = C/ner I 
1- - 1-

and consider the carmutati ve diagram 

glner I 
1-

~1 
------'> 1 

I ----------~> !. 

Since! has a final object, the arrow I -+ 1 is in W. 'Iherefore the arrow 



42. 

C/ner I -+ 1 
- 1- -

is in W, i. e. , 

C/ner I 
- 1-

is aspherica1. Finally, (1) => (3). 'Ib see this, it suffices to show that 

ViE Ob !, the category 

(C/ner I)/i 
- 1-

is aspherical (cf. C.2.4). But 

(C/ner I)/i ~ C/ner (I/i) 
- 1- - 1-

and !/i has a final object. 

C.IO.12 REMARK Maintain the asstmTptions of C.IO.ll - then 

'" ner : (CAT,W) -+ (C,W",> 
1 - - C 

is a rrorphism of category pairs, thus there is a functor 

and a natural isarrorphism 

-- -1 -1'" ner : W CAT -+ W C 1 _ "'-
C 

(cf. 1.4.5) 

o ner -+ id 1 
1 W- CAT 

[Note: The last point requires additional argurrentation and is not an a priori 

part of the overall picture. One is then led to ask: Is ner
1 

an equivalence? 

'!he answer is affinrative if C satisfies condtion tJ; (under this supposition, 

is an equivalence (cf. C.B.7).] 
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C.10.13 LEMMA Suppose that l:£ ~ CAT satisfies the finality hypothesis. 

Ass1.l'l'l:e: V I E Ob CAT which admits a final object, the pre sheaf ner I satisfies 
l-

the r2-condition -- then C is a local test category. 

C.10.14 CRITERION Suppose that l:C ~ CAT satisfies the finality hypothesis. 

AsS1.l'l'l:e: ner [1] satisfies the r2-condition -- then C is a local test category. 
1 

N.B. If 1:£ ~ CAT is the functor X ~ £IX, then 1 satisfies the finality 

hypothesis. Therefore C.10.13 encompasses C.10.3 and C.lO.l4 encompasses C.lO.4. 

C.lO.lS REMARK Keeping to the setup of C.lO.l3, ass1.l'l'l:e in addition that £ 

admits a final object -- then £ is aspherical, hence is a test category (cf. C.B.13), 

so by definition, £ satisfies condition~. On the other hand, V ! E Db CAT, 

thus 

is aspherical. Therefore 

h* x ner I z ner I, 
1- 1-

C 

£Iner1! 

--- -1 -1"­
ner1:W CAT ~ W" £ 

C 

is an equivalence of categories (cf. C.lO.12). 

C.lO.16 EXAMPLE Take W = Woo' C = f!, 1:f! ~ CAT the inclusion, ner
1 

= ner, and 

i b. = gro b. -- then 
- -

--- -1 -I" ner:W CAT ~ W b. 
00 ___ 00 -

is an equivalence of categories and there are natural isarorphisms 
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grot, o ner --> id 
W-1CAT - 00 __ 

(ef. 0.24). 

ner 0 grot, -> id -1"" 
W t, 

00 -
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D: LOCAL ISSUES 

D.l A LOCAL CRITERION 

D .1.1 DEFINITIOO let W be a ftmdarrental lcx::alizer -- then a ftmctor F: I -+ J 

is lcx::all y constant if for every rrorpbism j -+ j' in ~, the filllctor 

Yj -+ Yj I 

is in W. 

D.1.2 EXAMPLE If F:! -+ ~ is aspherical, then F is lcx::ally constant. 'Ib see 

this, consider the conmutative diagram 

F/j 
Yj > ~/j 

1 1 
II " _ J 

FijI 
> :Yj'. 

Then the horizontal arrows are in W (F being aspherical). Furthenrore, both 

~/j I 

have final objects, thus are aspherica1. Therefore the arrow ~I j -+ :Yj I is in W, 

hence the arrow Yj -+ Yj' is in W. 

D .1.3 EXAMPLE let F: I -+ CAT be a ftmctor with the pro:perty that for all rror-

hi ,a '. the f F' P sms ~ -> J ~ !, tmctor ~ Fa > Fj is in W -- then the Grothendieck 

opfibration 

is locally constant. 

G :INT_F -+ I 
F-r -
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D .1.4 THEOREM Take CAT in its external structure and let W = W. Suppose 
00 

that F:I -+ J is locally constant -- then V j E Ob ~, the pullback square 

!/j -----::> I 

Fiji 
~jj ---:> J 

is a harotopy pullback. 

[This is Cisinski's fonnulation of Quillen's "'Iheorern B" (cf. D.3.3 ff.).J 

D.l. 5 REMARK Within the setting of D.l. 4, the converse is valid, a corollary 

being that the locally oonstant functors (per W ) are COItlfOsition stable. 
00 

D.1.6 RAPPEL In a right proper m:xlel category g, a carrmutative diagram 

X :> Z , 
f 

n 
where f is a weak equivalence, is a horrotopy pullback iff the arrow W -> Y is a 

weak equivalence (cf • O. 35. 2) . 

0.1. 7 APPLlCATlOO Take CAT in its external structure and let W = Woo. Suppose 

tha t F:! -+ ~ is locally oonstant and a simplicial weak equivalence -- then F:! -+ ~ 

is aspherical. 

[According to 0.1.4, V j E Ob~, the pullback square 
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Yj ---::>1 

F/j 1 
~/j ---:> J 

is a horrDtopy pullba.ck. But CAT (External Structure) is right pro}?er, so the 

contention is implied by D.1. 6. ] 

D.l.8 THEOREM Suppose that W c Wo (cf. C.5.5) is a fundamental localizer. 

Assurre: Every locally constant functor in W is aspherical -- then W = W • 
00 

Since W c W (cf. C. 7 .1), it suffices to show that 
00 

Proof: 

.-1 WA = ~/). W c W . 
/). 00 

-1 
W = ner W

A 

-1 
c ner W 

/). 

00 

(cf. C. 7.4) 

-1 .-1 = ner ~/). Woo (cf. C.6.3) 

= W (cf. C.7.4). 
00 

D.l. 9 LEMMA Let p:x -+ Y be a Ran fibration. Assurre: 

Granted this result, it is easy to conclude matters. 

P E WA -- then pEW • 
11 00 

'!bus given f E W
A

, write 
/). 

f = Pf 0 if' where if is an acyclic cofibration and Pf is a Ran fibration. So: 



fEW" 
f.. 

N. B. For use below, recall that 

preserves pullbacks (cf. S.1.9). 

" 

4. 

0.1.10 DEFINITION Let W be a ~-localizer -- then a simplicial map p:X + y 

is locally constant if given any diagram 

g 
f..[n] Xy X ----""""":> f..[m] Xy X --:> X 

1 1 
f..[n] -------> f.. [m] --> y, 

f 

the arrow g is in W. 

0.1.11 LEMMA A simplicial map p:X + Y is locally constant iff for any diagram 

g 
K Xy X :> L Xy X :> X 

1 1 lp 
K > L :> Y 

f 

with fEW, co there follows g E W. 

" 0.1.12 LEMMA Take f.. in its Kan structure and let W = W -- then p:X + Y is _ co 
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locally constant iff for every simplicial map Z ~ Y, the pullback square 

Z > Y 

is a horrotopy pullback. 

0.1.13 APPLICATI(N p:X ~ Y is a Karl fibration, then p is locally constant 

(per W) (cf. 0.1.12). So, in the notation of 0.1.11, 
00 

But Woo c W~ (cf. C.7.5). 
fl 

fEW => g E W (via propriety). 
00 00 

Therefore p is locally constant (per W ~) • 
fl 

0.1.14 LEMMA Take W = W
A 

-- ti1en a simplicial map p~X ~ Y is locally constant 
fl 

(per w..J iff iflP:itl ~ iflY is locally constant (per W) • 
fl - - -

PRCDF let ([n] ,s), ([m] ,t) be objects in t;:,/Y -- then a rrorphism ([n] ,s) ~ 

( [m] , t) corresponds to a diagram 

Mn] ~ Mm] ~ Y 

of simplicial sets and the pullback squares 

.6[n] Xy X -----> fl fm] xY X ----'> X 

1 1 lp 
Mn] ----------~> fl[m] ---':> Y 

in SISET induce pullback squares 
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t/(ll[n] xy X) > t/ (l1[m] xy X) > ~/x 

1 1 1 QJp 

~/l1rn] > ~/ll[m] > ~/Y 

in CAT. The functor 

(¥X)/([n] ,s) --> (~/X)/( [m] ,t) 

is therefore isorrorphic to the functor 

In particular: If p:X -+ Y is a Kan fibration, then i l1P:il1X -+ i l1Y is locally 

constant (per W) (for p is locally constant (per W
A

) (cf. 0.1.13». 
11 

0.1.15 LEMMA Let p:X -+ Y be a simplicial map. Assume: p is locally constant 

(per W",) and in W A -- then for any pullback square 
11 11 

p' is in W",. 
11 

X' = Y' x X ---> X 
Y 

p'l 
Y' ----> Y , 

PROOF Pass to the pullback square 

1 il 
---> i

l1
Y 
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in CAT -- then if.,p is locally constant (per (tJ (cf. 0.1.14) and in W, thus is 

aspherical (by hypothesis) (cf. 0.1.8). '!he claim is that if.,p' is in W and for 

this, it will be enough to prove that i f.,P' is aspherical. Abusing the notation, 

let y' E Ob i /} Y I and let y E Ob i /} Y be its irna.ge. Consider the diagram 

i X'/y' 
/1 > i/}X/y > if.,X 

-1 -1 li~p 
i Y'/yl f., > if.,Y/y > if.,Y 

of pullback ~es. Because i f.,P is aspherical, the arrow 

is in W. On the other hand, both if.,Y'/Y' and if.,Y/y have final ohjects, hence 

arrow 

if.,Y/y' -+ if.,Y/y 
- -

is in W c W. Now apply ner to get a diagram 
00 

ner i X'/y' f., > ner if.,X/y > ner if.,X 
-

1 1 1ner 
if}p 

ner i Y'/y' f., ::> ner if.,Y/y > ner if.,Y 

of pullback squares in SISET. Since ner i f.,P is locally constant (per w',J and 
f., 

since the arrow 
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is in W , it follows that the arrow 
00 

ner i~X'/Y' + ner i~X/y 

is in W
A 

(cf. 0.1.11). Therefore the arrow 
6. 

i6.X'/y' + i6.X/ y 
- -

is in W (cf. C. 7 • 4), which implies that the arrow 

i X'/y' + i Y'/y' 
6. ~ 

is in W, so i ~p' is aspherical. 

Consequently, if p:X + Y is a Kan fibration and if p is in W".1 then for any 
6. 

pullback square 

'7' = Y' x X > X .. Y 

p'l lp 
Y' > Y , 

0.1.16 EXAMPLE Let X be a Kan complex. Suppose that the arrow X + MOl is in 

W A -- then the projections 
~ 

prl:x x X + X 
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[Consider the pullback square 

x x X --------~> X 

1 
X -----> MO] .] 

0.1.17 LEMr-1A Suppose that f:X -+ Y is in W", - then 1f0 (f) :1f0 eX) -+ 1f0 (Y) is 
b, 

bijective. 

PR(X)F Consider the carrrnutati ve diagram 

ner ib,X > X 

ner ilf if 

ner ib,Y > Y 

Since the horizontal arrows are sinplicial weak equivalences, 1f0 (f) is bijective 

by hypothesis, W c Wo (cf. 0.1.8», hence 1fO(ner ib,f) is bijective. 

0.1.18 RAPPEL let X be a Kan conplex - then the arrow X -+ b, [0] is a sirrplicial 

weak equivalence iff X is connected, none:n:pty, and V x E Xo & V n ;;:: 1, 1fn (X,x) 

is trivial. 

0.1.19 LEMMA let X be a Kan corrplex. AssUll'E: '!he arrOlil1 X -+ MO] is in W'" -­
b, 

then the arrOlll1 X -+ b, [0] is in W • 
00 
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PR(X)F CMing to D .1.17, :fhr 0 (X) = 1, thus X is nonempty. This said, fix x E XO. 

Since X is Kan, the canonical arrow 

q 
map (t:. [1] ,X) --'> nap (Ml] ,X) ;::: X x X 

is a Kan fibration and the vertical arrows in the diagram 

Q(X,x) '> 0(X,x) '> nap (t:. [1] ,X) 

1 1 lq 
MO] '> X '> X x X 

x 

1 
(i~,x) 

1 pr2 

MO] '> X 
x 

are Kan fibrations. 'l11e cOI'!pOsite 

nap (t:. [1] ,X) -+ X 

is an acyclic Kan fibration, hence is in W" (cf. C. 7 .5). On the other hand, 
t:. 

pr2:X x X -+ X is in WA (cf. 0.1.16). 
t:. 

'l11erefore q is in W A • 

t:. 
But q is also locally 

constant (per W,,) (cf. D.l.13). 
t:. 

Therefore the arrow Q(X,x) -+ MO] is in W". 
t:. 

Proceeding from here by iteration, one obtains a sequence {rf (X,x)} of Kan com-

plexes such that V n ?: 1, the arrow W(X,x) -+ MO] is in W
A

• And V n ?: 1, 
t:. 

#1Tn (X,x) = 1. 'lbat the arrow X -+ M 0] is in W is then implied by D .1.18 • 
00 

[Note: In the above, ex is the ma.pping space of (X,x) and QX is the loop 

space of (X,x): 
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0.1.20 LEMMA Let p:X + Y be a Kan fibration. Assume: PEW" -- then pEW 
8 00 

(cf.0.1.9). 

PROOF First, TIO(p):TIO(X) + TIO(Y) is bijective (cf. 0.1.17). Therefore it 

need only be shown that V x E Xo and V n 2: 1, 

'Ib this end, recall that the fiber X of p over y is the Kan complex defined by 
y 

the pullback square 

MO] ----> Y • 
y 

Since p is locally constant (r:>er W .. ..J (cf. 0.1.13) and Ln W" (by hypothesis), t.~e 
~ ~ 

arrow X + 8[0] is in W" (cf. O.l.lS), hence is in W (cf. 0.1.19). So, V n 2: I, 
Y 8 00 

TIn (Xy'x) is trivial (cf. 0.1.18). Conclude by applying the long exact sequence in 

horrotopy. 

0.2 fAILURE Of UBIQUITY 

Fix a proper funda:rrental localizer W c Wo (cf. C.S.S) and equip CAT with the 

cofibrantly generated rrodel structure determined by W (cf. C.9.14) (itself necess-

arily right proper (cf. C.9.1S)}. 

0.2.1 THEOREM Assume: For every locally constant functor F:! + :I and 
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v j E Ob ~, the pullback square 

!/j -----;:> I 

Fiji 

~/j -----;:> J 

is a honotopy pullback -- then W = W • 
00 

PROOF If F:! -+ ~ is locally constant and in W, then V j E Ob ~f 

F/j:Yj -+ ~/j 

is in W (cf. 0.1. 7). 'Iherefore F is aspherical and one can quote 0.1. 8 • 

M:>ral: In the world of proper fundarrental localizers W c WOf Woo is character­

ized by the validity of "Theorem B II • 

0.3 THEOREM B =;:> THEOREM B 

Take SISET in its Karl structure and CAT in its external structure. 

o. 3.1 CRITERICi'SI A corrmutati ve diagram 

x ;:.Y 

1 1 
x' ;> Y' 

of sirrplicial sets is a h.cm:>topy pullback (per W ) iff the can:mutati ve diagram 
00 

i;:,X ;> i;:,Y 

1 1 
i;:,X' ;:> i Y' ;:, 
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of small categories is a horrotopy pullback (per W ) • 
co 

D.3.2 LEMMA The functor 

ner:CAT + SISET 

preserves horrotopy pullbacks. 

PROOF Suppose that 

C > D 

1 1 
C' > D' 

is a horrotopy pullback in CAT - then the claim is that 

ner C > ner D -
1 1 

ner C' > 118r ;)' -

is a horrotopy pullback in SISET and for this, it need only re shown. that 

is a horrotopy pullback in CAT (cf. D. 3.1) . 'Ib begin with, i 6 = gro 6' thus there 

are simplicial weak equivalences 
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• Consider the ccmnuta ti ve diagram 

i ner C'--> C'--> D'. 
6 - - -

'!hen the first square is a harrotopy pullback (cf. 0.35.2), as is the second square 

(by hypothesis). Therefore the rectangle 

is a harrotopy pullback (cf. 0.35.3). 

• Consider the commutative diagram 

i&T ~ > i&T ~ > D 

1 
i 6ner g' > i 6ner Q' > D'. 

'!hen the rectangle is a horrotopy pullback (by the above), as is the second square 

(cf. 0.35.2). Therefore the first square 

i&T £ > i~T Q 

i 6ner g' ___ ----0> i 6ner Q' 

is a harrotopy pullback (cf. O. 35 • 3) • 

D. 3 . 3 THEOREM B Let!, ':I E Ob CAT and let F;! -+ ':I l::JEl a ftmctor. Ass'l.llte: F is 
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locally constant -- then II j E Ob ~, the pullback square 

ner !/j ---> ner I 

ner F/j 1 iner F 

nerVj ---> ner J 

is a honotopy pullback. 

[In view of D.3.2, this is inmedi.ate (cf. D.1.4).] 

'lb complete the picture, we shall outline an approach to D .1. 4. 

D. 3.4 let g be a small category, F: g -+ CAT a ftmctor. Assume: For every 

arrOW" f:X -+ Y in g, Ff:FX -+ FY is a sirrplicial weak equivalence -- then the 

Grothendieck. opfibration 

is a honotopy fibration (cf. o. 35. 5) . 

D. 3.5 EXAMPLE let ~ be a small category. Consider the ftmctor 

J -+ CAT 

j -+ ~/j. 

Then Vj has a final object, hence is contractible. So, for every rrorphism j -+ j 1 

in~, the arrOW" Vj -+ Vj t is a sirrplicial weak equivalence. Therefore the 

Grot.hendieck opfibration 

8~/_:~/--+ ~ 

is a harrotopy fibration. 
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0.3.6 EXAMPLE Let !,~ be small categories, F:! + ~ a locally constant functor. 

Consider the functor 

J + CAT 

j + yj. 

Then by definition, for every norphism j + j' in ~, the functor 

!/j + Yj' 

is a simplicial weak equivalence. Therefore the Grothendieck opfibration 

0;!/_: INT:l!/- + ~ 

is a harotopy fibration. 

[Note: Needless to say, O. 3 . S is a special case of O. 3. 6 (take ! = ~ and 

F = id
J
).] 

O. 3. 7 RAPPEL Given a sma.ll category S and a functor F: S + CAT, there is a 

canonical arrow-

KF:~ + col1rncF (cf. B.2.1S). 

0.3.8 LEMMA If !,~ are sma.ll categories and if F:! + ~ is a functor, then 

Ky_: INT ~:!/- + colim:lY- = ! 

is a Grothendieck fibration with contractible fibers. 

0.3.9 REMARK It follows that 

Ky_: INT g:Y- + COlim~Y- = ! 

is a simplicial weak equivalence (cf. B.6.l3). 
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Here nQIIl is the data for the proof of D.1.4: 

!/j »INTJ~/-
~/-

» I 

Fiji 1 iF 
~/j »~/- » J 

1 h/-
K~_ 

1 » J -
K. 

J 

Each of the s:;ruares in this corrmutati ve diagram is a pullback square and the cornpo-

sition 

INTJY- --->~/-

e~_ 
----..;» J 

is e~V- . 

• Since e~_ is a hornotopy fibration (cf. D.3.5), the pullback square 

Jj' _ J »~/-

1 1 
1 » J 

K. 
J 

is a hornotopy pullback (cf. 0.35.4). 

• Since 8y _ is a homotopy fibration (cf. D.3.6), the pullback s:;ruare 

Yj » INTJY-

1 10
!1-

1 > J 
K. 

J 

is a homotopy pullback (cf. o. 35 .4) • 
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Therefore the pullback square 

is a homotopy pullback (cf. 0.35.3). 

• Since are simplicial weak equivalences (cf. D.3.9), the 

K~/_ 

pullback square 

INTJ!/-

1 
~-

is a homotopy pullback (cf. 0.35.2). 

'Rlerefore the pullback square 

~/-
'> I 

1 
'> J 

K~/_ 

Yj -----''> I 

FijI 
~j -----> J 

is a homotopy pullback (cf. 0.35.3), the contention of D.l.4. 
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CHAPTER 1: DERIVED FUNCTORS 

1.1 LOCALIZATION 

let £ be a category and let W c MJr £ be a class of nnrphisms. 

1.1.1 DEFlNITICN (£,W) is a category pair if W is closed under canposition 

and contains the identities of £, the elenents of W then being referred to as the 

\\eak equivalences. 

E.g. : If W .... ~,... is the class of identities of C and if W is MJr C itself, u.......... - max -

then (C,W . ) and (C,W ) are category pairs. 
- IDJ..l1 - max 

[Note: An internediate possibility is to take for W the class of iSOllOrphisms 

of £.] 

N.B. A category pair can be regarded as a subcategory of £ with the sane 

objects. 

1.1. 2 DEFINITICN Given a category pair <g,W}, a localization of £ at W is 

-1 -1 -1 
a pair (W g, Lw)' where W £ is a metacategory and LW:£ + W £ is a fu~tor such 

Hat V w E W, Lww is an iEOIrorphisu, (W-
l £, LW) beir:g initial arocmg all pairs 

ra.ving this property, i.e., for any metacategory Q am for any functor F:g + Q 

. . - -1 such that V w E W, Fw is an isanorphism, Here exJ..sts a umque functor F:W g + !? 

such tl"at F = F 0 LW' 

1.1.3 THEOREM Localizations of ~ at W exist and are unique up to isorrorphism. 

MJreover, there is a representative (W-l~, Iw) having the sane objects as £ and 

for which Lw is the identity on objects. 
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1.1.4 EXAMPLE Take C = 'IOP and let OJ c M::>r C be the class of horrotopy equi v-- - -
-1 alences -- then W C = H'IOP. 

1.1.5 D~ What follows is an outline of the proof of 1.1.3. 

Step 1: Given X,Y E Ob 5;, a word 

cormecting X to Y is a finite chain of objects and nnrphisms of the form 

:> - ••• 
Wn- l e<--- ~-2 

f W 
~> X2n- l < n Y 

in which -> and <- alternate and the w. are in W. Write Q(X,Y) for the class 
]. 

of all words cormecting X to Y. 

Step 2: 'lWo words w,w' E Q(X,Y) are deerred equivalent (w ~ w') if there is 

a finite sequence 

of words with the pro:perty that each wi is obtained fran wi - 1 (or fram wi +1) by 

one of the following operations. 

(a) Replace 
f g v 

e->e<-e->e<-e 

uf vv 
e->e<-e 

if there is a ccmnutati ve diagram in g 

II g 
e<--e->e 

e-----e 

with vv in W. 
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(b) Replace 

f v g 
e <--e --> e <--e --> e 

~u gv 
e<--e-->e 

if there is a canrnutati ve diagram in g 

f v 
e-->e<--e 

e=====e 

with ~u in W. 

(c) Replace 

f1 id f2 
e->e<--e-->e 

or vice-versa. 

(d) Replace 

W1 id w2 e <--e --> e <--e 

or vice-versa. 
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Step 4 : Given 'WOrds 

let 

'lhen the *-product is associative and the equivalence class of w * w I depends 

only on that of w and WI. 

-1 
Step 5: Now stipulate that the netacategm:y W £ has for its objects those 

of £ and for its roorphisrns fran X to Y the elerrents [w] E Q(X,Y)/~. Here cam-

position is defined by 

[WI] Q [w] = [w * WI] 

and the identity in Q{X,Y)/~ is 

i~ i~ 
[X --> X <-- XL 

-1 
As for the functor Lw:£ -+ (JJ £, on objects 

y=X 

and on rrorphisrns 

f ~ 
Lwf = [X --> Y < Y] • 

Step 6: Given a 'WOrd w E Q(X,Y), suppose that its rrorphisrns in either 

direction are elements of W -- then [w] is an isorcorphism in w-l £, its inverse 

reing represented. by w written in reverse order. In particular: V W E W, ltJJw 
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is an isarorphisn. 

Step 7: let F:£ -+ ~ be a functor such tra.t V w E W, Fw is an isrnnrphism. 

- -1 -1-Define F:W C -+ 0 on t.J::e X E db W £ = Ob £ by FX = FX and given a 'WOrd 

put 

F-,·\ -- F(W ) -1 0 Ff F( ) -1 Ff 
W n nO ... 0 wI 0 1· 

Then 

w ~ WI => Fw = Fw I • 

'Iherefore the assignment 

-[wl -+ Fw 

is welldefined. - -1 And F:W C -+ 0 is a functor. 

step 8: V X E Ob g, 

(F 0 Lw)X = Fy = Fx = FX 

and V f E Mor(X,Y) , 

f i~ 

= FIX --> Y <-- YJ 

. -1 
= (~'\y) 0 Ff = Ff. 

r.tJdulo uniqueness (which will be left to the reader), the proof is thus 

canplete. 
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1.1.6 REMARK In general, the Q{X,Y)/- need. not be sets and W-l £ need. not be 

iSClIIDrphic to a category (but it will be if e is small). 

1.1. 7 LEMMA Every word 

is equivalent to 

* (X2n- 2 

Therefore 

f 
n 

--? X2n-
l 

<,---

id
2n

_
l w 

n 
X2n- l ) * (X2n- l -----'? X2n- l <-- Y) • 

1.1.8 LEMMA SuptX>se that (£,W) is a category pair whose weak. equivalences are 

iSClIIDrphisms -- then LW:g -+ w-lg is an iSClIIDrphism. 

PRCOF V w E W, idew is an iSClIIDrphism, hence there is a unique functor 

<I>:W-lg -+ £ and a factorization ide = <I> 0 Lw. Meanwhile, Lw = LW 0 ide = 

-
1.1.9 DEFINITION Let (g,W) be a category p::iir - then the saturation W of W 

is the class of rrorphisms of g which are sent by Lw to iSCll10rphisms in w-lg. 

N.B. (g,W) is a category pair. 
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1.10 LEMMA There is a canonical isorrorphism 

of rretacategories. 

- -1 --1 PRCOF Since W c W, there is a unique functor lJ.: W s: -+ W s: such that 

L_ = lJ. 0 Lw. On the other hand, Lww is an isorrorphism for all W E W, so there 
W 

- --1 --1 -
is a unique functor lJ.:W s: -+ W s: such that Lw = lJ. 0 L. Therefore 

iiJ 

-
L = lJ. 0 Lw= lJ. 0 lJ. 0 L 
W w 

Lw= X 0 L = lJ. 0 lJ. 0 

Lw W 

=> 

D. 0 lJ.= id __ 
1 

W C 

lJ. 0 lJ.= id -1 . 
W C 

1.11 LEMMA let <s:,W} be a category pair -- then for every rretacategory)2, the 

preCOJll?Osi tion arrCM 

corresponding to LW induces an isorrorphism from [W-1S:,)2] onto the full subrreta­

category [g,Ql W of [g,Ql whose objects are the functors F:g -+ Q such that v w E W, 

Fw is an isorrorphism of )2. 

1.2 CALCULUS OF FRACTIONS 

let <g,W} be a category pair -- then under certain conditions, the 
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description of the localization «(lr\~, rw) can be simplified. 

1.2.1 DEFINITIOO W is said to admit a calculus of left fractions if 

w f 
(LFl ) Given a 2-source x' <- X ----::> Y (w E W), there exists a canmutative 

f 
X >Y 

w 1 1 w' 

X' > Y' , 
f' 

where w' E W; 

(LF2) Given f,g:X -+- Y and WI :X' -+- X (WI E ttl) such that fowl = g 0 WI' there 

[Note: Reverse the arrows to define "calculus of right fractions". J 

1.2.2 REMARK If ttl admits a calculus of left fractions, then every norphism 

1 -1 
in W- £ can be represented in the fo:rm (rww) 0 LWf (cf. 1.1. 7) • 

1.2.3 LEM-1A Suppose that V (w,w') :w' 0 w E W & w E W ::::;:> Wi E W -- then W 

w f 
admits a calculus of left fractions if every 2-source X' <- X ---::>Y (w E W) can 

be canpleted to a weak. pushout square 

f 
X )0 Y 

w 1 1 Wi 

Xl > Y' , 
fl 

where Wi E w. 
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1.3 HOMOTOPY 

1. 3.1 DEFINITION let (£ ,W) be a category pair - then rrorpbisms f,g:X -+ Y 

in £ are hcmJtopic (written f ~ g) if ltvf = ltvg • 

1.3.2 REMARK If W admits a calculus of left fractions, then f ~ g => 

3 w E W:w 0 f = w 0 g. 

The horrotopy relation ~ is an equivalence relation on .M:>r(X,Y) and me 

writes [X,Y] for .M:>r(X,Y)/~. 

Suppose that f ~ g:X -+ Y -- then for u:X' -+ X, f 0 u ~ g 0 u and for v:Y -+ y' , 

v 0 f "" v 0 g. Ccrlsequently, there is a category !!2w£ whose objects are those of 

9 and whose rrorpbisms from X to Y are the quotients .M:>r (X, Y) / ~. .M:>reover, there 

is a functor!!9w£ -+ W-l £ and ltv factors as the canposition £ -+ !!9w9 -+ W-l £_ 

1.3.3 DEFINITION A rrorpbism f:X -+ Y is a hcmJtopy equivalence if there exists 

a rrorphism g: Y -+ X such that fog ~ idy and g 0 f '" i<lx. 

Write E(W) for the class of f that are hcmJtopy equivalences -- then E(W) c W 

(cf. 1.1.9)_ 

1.3.4 LEMMA E(W) = W iff L
W
:£ -+ w-lg is full. 

PRCXF Suppose first that LW is full, the claim then being that iii c E(W). 

- -1 
But V fEW, Lwf has an inverse and (LWf) = Luf-l for sane g, thus fEE (W) • 

. -1 
Turning to the converse, recall that a generic rrorpbism fw] m W f can be factored: 

(cf. 1.1. 7) • 
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hence 

for sa:re z. E W. 'Itlerefore 
1 

so Lw is full. 
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W. EWe W = E(W), 
1 

-1 
(L.W.) = L.o2. 
-W 1 -W-l 

1. 4 TOTALITY 

If (g,W) isa category pair and if F:g + ~ is a functor such that V W E W, 

Fw is an isarro:rphism, then there is a COIIl1'D.ltative diagram 

c c -

~1 r (cf. 1.1.2)" 

W-lc > D 

F 

1.4.1 DEFlNITICN Let (g,W) l::e a category pair but let F:g + ~ l::e arbitrary -­

then a right derived functor of F is a left Kan extension of F along Lw, hence 

is a pair (~F'llF)' where ~WF:W-lg + ~ is a functor and l1p E Nat(F,~F 0 Lw), 

with the following property: V F' E Ob[W-lg,~] and V Ci. E Nat(F ,F' 0 Lw), there 

is a unique S E Nat(~F,F') such that Ci. = 8Lw 0 llF" 
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1.4.2 NOTATION Tb simplify, let 

RF = ~F 

if no confusion is likely. So 'We have 

F - F 

]JF 1 1 a 

RF aLa! :> FI a 111)-
SLW 

1.4_ 3 DEFINITION A right derived functor RF of F is said to be absolute if 

for every functor <P: Q -+ Q I I the pair (<p 0 RF, <PlJF ) is a left Kan extension of 

<P a F along rw-

1.4.4 EXAMPLE If F:g -+ Q is a functor such that V w E W, Fw is an isarrorphism, 

then (F, i~) is an absolute right derived functor of F (cf. 1.11). 

1. 4 • 5 DEFINITION A rrorphism 

of category pairs is a functor F:gl -+ g2 such that FWl C W2, thus there is a 

. - -1 -1 
lIDl.que flIDctor F:Wl gl -+ W2 g2 for which the diagram 

F 

F 

oammutes (cf. 1.1.2). 
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be arbitrary -- then a total right derived functor of F is a right deriveCi functor 

of Lw 0 F, which, to minimize the notational load, will be denoteCi as above by 
2 

-1 -1 
(RF ,]..IF) altb:>ugh in this context RF:Wl ~l ..,r W2 ~2 and ]..IF E Nat (Lw 0 P, RF 0 Lw ), 

2 1 

-1 -1 
so V F' E Ob [Wl ~l' W2 g2J and Va E Nat(Lw 0 F, F' 0 Lw ), there is a unique 

2 1 

8 E Nat (RF ,F t
) such that a = 8Lw 0 J..Ip. 

1 

N.B. 'Ihe designation "absolute" total right derived functor is to be assigneCi 

the obvious interpretation. 

1.4.7 EXAMPLE If 

is a IlOrphism of catego:ry pairs, then (F, i~ 0 p) is an absolute total right 

2 
derived functor of F. 

1.4.8 REMARK 'Ihe terms left derived functor, absolute left derived functor, 

total left deri veCi functor, absolute total left derived functor are dual, as is 

1. 5 EXISTENCE 

then the problem is to find conditions which ensure that F p:>ssesses an absolute 

total right derived functor (RF, J..Ip) • 
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1.5.1 DEFINITION Let 

re a rrorpbism of category pairs - then K is resolvable to the right if 

V Xl E Ob ~h' 3 Xo E Ob ~o and an arrO'Vl WI :Xl -+ KXO' where WI E WI· 

N.B. Fix Xl E Ob ~l - then the category of K-resolutions to the right of 

Xl has for its objects the arrO'VlS WI :Xl -+ KXO' where WI E W, a rrorpbism 

Xl Xl 

W1 1 1 wi 

KXo c> KXI 

KWo 
0 

comnutes. 

Let (~l,Wl) be a category pair -- then a derivability structure to the right 

of category pairs, where K is resolvable to the right, plus additional conditions 

on the data that serve to imply the validity of the following assertion. 

1. 5.2 THEOREM Fix a derivability structure to the right on (~l ,WI) - then 
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is a rrorphism of category pairs, F admits an absolute total right derived functor 

On the other hand, 

'Ihis said, the existence of a derivability structure to the right on (~h,Wl) 

inplies that there is a canonical isorrorphism 

-1 
in W2 g2 and a canmutati ve diagram 

'Where canonical refers to the category of K-resolutions to the right of Xl: 
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Xl Xl RFxl RFxl 

W
1 1 1 wi > : 1 1 : 

KXo > KXI FKXo > FKXo . 
KWo 

0 
FKwo 

The specific choice of the conditions figuring in a derivability struc'bJre 

to the right depends on the details of the situation at hand and on ones ultimate 

objective. Accordingly, foregoing any pretence of a general theoretical sb.ldy, 

we shall zero in on just one particular instance that will be of use in the sequel. 

1.5.4 DEFTIUTION Iet(gl'Wl ) be a category pair - then a right approximation 

of category pairs, where K is resolvable to the right, such that for any 2.-source 

WI fl Wo 
KXO <-- Xl ----'> KXO (WI E WI)' there is a 2-source Xo <-- Xo I -->Xo 

WI fl 

KXO< Xl > KXI 
0 

Wi'l 

KXO < KX I ' 0 > KXc, • 

KWa Kfa 
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-
In addition, if (wO,fO,w'i> is another choice, then 

1.5.5 THEOREM A right approximation 

to (£l'Wl ) is a derivability structure to the right on (gl'Wl ), 

[For the proof, which we shall anit, consult RaduleScu-Banut .] 

Therefore the existence of a right approximation to (£l'Wl ) forces 1.5.2 

and 1. 5. 3. But here there is a oonus. 

1.5.6 THEOREM 'lhe induced. functor 

is an equivalence of IlEtaca tegories. 

1.5.7 REMARK 'lhe terms resolvable to the left, derivability structure to the 

left, left approximation are dual. 

1. 6 COMPOSIT1 ON 

The result in question is this. 

t arXiv:math/0610009 
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are derivabili ty structllres to the right. ret F:gl -+ g', F' :C' -+ g2' and 

F 0 : go -+ go be fmc tors • Ass1.:.U'Ie : 

K'F == FK o 

'Ihen F, F', and F' I = F' 0 F admit absolute total right aerived fmctors (RF 'l-p) , 

(RF' ,]J ), and (RF",]J ). Furthenrore 
F' F" 

PROOF First of all 

RF":::: RF' 0 RF. 

F"KW = F'FKW c F'K'W' c W2. 000 

So, thanks to 1.5.2, (RF,~), (RF',]J ), and (RF" dl exist. Next, by univer-
F' F" 

sali ty, :3 a unique 

such that 

~ E Nat(RF" ,RF' 0 RF) 

(RF'~) 0 (]J F) = 
F" 

]J , 
F' , 
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and to conclude that 

RF" ::: RF' 0 RF, 

it need only be shown that V Xl E Ob gl' 

I-I 
in W g' , 

. -1 
and l.n W2 g2' 

But 

and 

-1 
'It1erefore, by 1. 5.3 again I in W2 ~, 

Consequently I 

which, if unraveled, is ~X • 
1 
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1. 7 AVJOINTS 

are an adjoint pair with arrows of adjunction 

Assurre: 

]l:ide -+ G 0 F 
-1 

v:F 0 G -+ ide • 
-2 

F admits an absolute total left derived f1.ll1ctor (LF,v
F

) 

G admits an absolute total right derived f1.ll1ctor (RG, ]lG) • 

1. 7.1 THEOREM The f1.ll1ctors 

are an ad joint pair and one can choose the arrows of ad j1.ll1ction 

so that the diagrams 

g:id -1 --;;. RG 0 LF 
- Wl ~h 

v:LF 0 RG --> id -1 
W2 g2 
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(RG)v
F 

RG 0 

Lw2 
o F < RG 0 LF °Lw 

1 

~I I tlLw 
1=1 

Lwl 
o G o F < Lw 

LW tl 1 
1 

(LF)tl
G 

LF 0 Lw o G > LF 0 RG 0 Lw 
1 2 

VFG 1 1 ~rw2 
Lw of o G :> Lw 

2 LW v 2 
2 

carrmute. 

:Before establishing the existence of , it will be best to review the 
v 

definitions. 

• (RG,tlG) is an absolute total right derived functor of G, thus is an 

absolute right derived functor of Lw 0 G. 
1 

• (LF , v
F

) is an absolute total left derived functor of F, thus is an 

absolute left derived functor of Lw 0 F. 
2 

'Iherefore 

• (LF 0 RG, (LF) %) is a right derived functor of LF 0 LW 0 G. 
1 

• (RG 0 LF, eRG) VF) is a le:t;t derived functor of RG 0 LW 0 F. 
2 
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Next, by universality, 

-1 -1 
• If ~2:W2 ~2 + W2 ~2 is a functor and if 

32 E Nat(LF 0 Lw 0 G'~2 0 Lw ), 
1 2 

then there exists a unique 

such that 

-1 -1. . 
• If ~1 :W1 ~h + WI ~h 1S a functor and 1f 

then there exists a unique 

such that 

Now specialize and take 

and let 

Lw 1J 1Jc! 
31 = 1Jc! 0 Iw lJ:Lw 1 > Iw 0 G 0 F ---> RG 0 Lw 0 F. 

III 2 



Then there exist lIDique 

such that 
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v E Nat(LF 0 RG, id -1 ) 
W2 ~2 

~ E Nat(id -1 ' RG 0 LF) 
- WI ~l 

thus with these choices the diagrams in 1. 7.1 are carrmutative but, of course, one 

.1! 
still has to prove that are in fact arrows of adjlIDction. I.e. : 

= 

(RG)~ 0 ~(RG) = idRG 

~(LF) 0 (LF)g = idLF • 

We shall verify the first of these relations, the argument for the second 

being analogous. 

'lb begin with 

Proof: 

=> 

llG E Nat(Iw 0 G, RG 0 ~r) ) 
1 2 
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Meanwhile 

Since idRG is characterized by this proper1:¥, it will be enough to show that 

Starting fran the IRS, write 

= «RG)~)L. 0 (~(RG»L. 0 ~G 
- 1W2 - 1W2 

= «RG)~)L. 0 (RG 0 LF)~G 0 ~(L. 0 G) 
- 1W2 - IWI 

= RG(~L. 0 (LF)~G) 0 ~(L. 0 G) 
-1W2 = IWI 
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= (RG 0 Lw )v 0 ~ (F 0 G) 0 (Lw ~)G 
2 G I 

= ~ 0 (L. 0 G)v 0 (L. ~)G 
G ---WI ---WI 

= ~ 0 L < «Gv) 0 (~G)) 
G -WI 

= ~ 0 1. .. (id ) 
G -WI G 

= ~ 0 in 
G LW 0 G 

I 

N. B. Hidden wi thin the preceding chain of equalities are tvvo carrmutati ve 

diagrams. 

#1: 

let 

l:! (1... 0 G) 
- -wI 

B=RGoLF. 
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Fix x E Ob g2' let 

and consider 

Y=LwGX 
1 

Z = RGLw X, 
2 

----~>BY 

1 B(~G)X 
----~> BZ. 

Then lJ E Nat(A,B), thus the diagram comnutes. 

#2 : 

(Lw 0 G)v 
1 

Let 

Lw oG 
1 

----------------,> RG 0 Lw 
2 

(RG 0 Lw )v 
2 

Lw 0 G 0 FoG -----------> RG 0 it!) 0 FoG. 
1 lJG(F 0 G) 2 

A=Lw oG 
1 
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Fix x E Ob g2 and consider 

AX -----------> BX 

AFGX ----------> BFGX. 

'n1en llG E Nat(A,B), tlms the diagram conmutes. 

are an adjoint pair. Assume: 

and 

L 
(g-e' W-e) --> (gl'Wl ) a left approximation 

K 
(g2'W2 ) <-- (C ,W ) is a right approximation -r r 

'n1en the conclusions of 1. 7.1 obtain (cf. 1. 5.5) • 

1.7. 3 LEMMA Suppose that for 



v 

an arrow 

27. 

X EObC, 
r -r 

is a weak equivalence iff its ad joint 

is a weak equivalence -- then the adjoint situation 

(LF,RG,]J,v) 
= = 

is an ad joint equivalence of rretacategories. 

1.8 PARTIAL AVJOINTS 

let ~, !:!, ~, Q be categories (or rretacategories) . 

1.8.1 DEFINITION Consider a diagram. 

A ------>B 

C <,------ D 

of f'lIDctors -- then Fl ,F
2 

is a partial adjoint w.r.t. Tl ,T2 if it is possible to 

A E Ob A 
to assign to each ordered pair a bijective map 

DE Ob D 
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which is functorial in A and D. 

N.B. Take ~ = S, !? = Q, Tl = idA' T2 = i~ to reduce to the usual scenario. 

1.8.2 ID1MA If Tl has a right adjoint 8
1 

and T2 has a left adjoint 82 , then 

PROOF In fact, 

PROOF In fact, 

Let (Cl,W
l
), <S,W2 ) be category pairs. Assurre: 

L 
(S.e,W.e) --> (Sl'Wl ) is a left approximation 

K 
(~,OJ2) <-- <Sr'Wr ) is a right approximation. 
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Suppose further that 

are JIOrphisms of category pairs. Arrange the data: 

<PI 

~l > ~2 

L 1 i K 

~l < C • -r 
<P 
r 

1.8.4 THEOREM. If <PI' <Pr is a partial adjoint w.r.t. L, K, then ~l' <Pr is a 

partial adjoint w.r. t. L, K: 

-1 
<PI 

-1 
WI ~l > W2 ~ 

L 1 r K 

-1 W-lc Wl ~l < 
<P r -r' 
r 

thus 

-1 
Xl E Ob WI ~l 

v 

X E Ob W-lc , 
r r -r 
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30. 

- -1 -1 K:W C -+ W2 C2 r -r -

are equivalences of rretacategories (cf. 1.5.6) I thus i,K is part of an adjoint 

equivalence I say 

let 

- -1 -1 K':W2 C2 -+ W C. 
- r -r 

are an adjoint pair (cf. 1.8.3). 

1. 8.6 LEMMA Suppose that 

- Xl E Ob gl 

v 
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an arrow 

is a weak equivalence iff its partial ad:pint 

is a weak equivalence -- then 

hence VIand V 2 are muh1all y inverse equivalences. 

let 

be category pairs. 

1.9 PROVUCTS 

(C. ,W.) (i = 1, ••• ,n) 
-~ ~ 

1. 9.1 LEMMA The canonical fmctor 

n n 
CIT W.)-l 
i=l ~ 

is an iEOfOC)rphi an of rretacategories. 

n -1 
C. -7- IT w. c. 
-~ i=l ~-~ 

PROOF By induction, it suffices to treat the cae= when n = 2. B.lt bearing 

in mind 1.11, for every rretacategory Q, there are ftmctorial bijections 
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N.B. Therefore the functor 

1. 9.2 lEMMA let <g,W) be a category pair -- then Lw sends final objects in 

g to final objects in w-lg. 

1.9.3 LEr-1MA let (g,W) be a category pair. Assume: g has binary products and 

W is stable under the formation of products of pairs of arrows -- then w-lg has 

binary products. 

PR(X)F Since g has binary products, the diagonal functor l'.C:g -+ g x g has a 

right adpint ITc=g x g -+ g. In addition, 
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are rrorphisns of catego:r.y pairs, so 

-- -1 -1 
TIC: (W x W) (g x g) 4- W C 

exist (cf. 1.4.5) and constitute an adjoint pair (cf. 1. 7.1). But 

-1 -1-1 (W x W) (g x g) = W g x W g (cf. 1.9.1) 

and under this iSOlIOrphism, b.C is identified with the diagonal functor 

which thus has a right adjoint, viz. the functor corresponding to TIc. Therefore 

-1 
W g has binary products. 

-1 
[Note: Lw: g 4- W g preserves binary products: 'if X, Y E Db g, 

Lw (X x Y) ::::: y x LwY.] 

-1 1.9.4 SCHOLIUM let (g,W) be a catego:r.y pair - then W g has finite products 

g has a final object and bina:r.y products and if W is stable under the fornation 

of products of pairs of arrows. 

1. 9. 5 REMARK What has been said above for products admits the obvious refonnu-

lation in tenns of coproducts. 
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CHAPTER 2: COFIBRATION CATEGORIES 

2.1 THE SETUP 

Consider a triple (g,W,cof), where g is a category with an initial abject 

~ and 

W c MJr C 

cof c MJr C 

are two cauposition closed classes of rrorphisms terrred 

weak equivalences (denoted -=-» 
cofibrations (denoted >-». 

Agreeing to call an object X cofibrant if the arrow ~ -+ X is a cofibration and 

a rrorphis:n f:X -+ Y an acyclic cofibration if it is both a weak equivalence and 

a cofibration, g is then said to be a cofibration category provided that the 

followmg axioms are satisfied. 

(COF - 1) '!be initial object ~ is cofibrant. 

(COF - 2) All isorrorphisms are weak equivalences and all isorrorphisms with 

a cofibrant dOI'lE.in are cofibrations. 

(COF - 3) Given cauposable norphisms f,g, if any two of f,g,g 0 f are 

"WE!ak equivalences, so is the third. 
f g 

(COF - 4) Every 2-source X <- Z -> Y, where f is a cofibration (acyclic 

t; n 
cofibration) and Z,Y are cofibrant, admits a pushout X -> P <- Y, where n is 

a cofibration (acyclic cofibration): 
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9 
z ------> y 

x > P. 

(COF - 5) Every norphism with a cofibrant do.ma.in can re written as the 

canposi te of a cofibration and a \\'eak equivalence. 

N.B. (~,W) is a category pair. 

2.1.1 EXAMPLE Take ~ = 'lOP -- then 'lOP is a cofibration category if \\'eak 

equivalence = llonotopyequivalence, cofibratian = cofibration. All objects are 

cofibrant. 

2.1.2 REMARK Given a cofibration category C, denote by C f the full sub-- -co 

category of ~ consisting of the cofibrant objects -- then ~cof is a cofibration 

category. 

INote: ~cof has finite coprcrlucts (but this need not re true of ~). Proof: 

For cofibrant X and Y, consider the pushout square 

¢ >Y 

1 1 
x-->xJlY, 

and observe that all arrows are cofibrations.] 

2.1. 3 DEFINITIOO let ~ re a cofibration category - then ~ is said to re 

horrotopically coccmplete when the following conditions are rret. 
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(H - 1) If f. :X. 7- Y. (i E I) is a set of cofibrations with X. cofibrant 
~ ~ ~ ~ 

vi, then the coproducts Jl. Xi ' Yi exist, are cafibrant, and Jl fi is a ca­
i i i. 

fibra tion which is acyclic if this is the case of the f .• 
~ 

(H - 2) let 

fO fl f2 
Xo >--> Xl >--> ~ > > ••• 

be a countable saquence of cafibrations (acyclic cafibrations) with Xo cafibrant --

then calim Xn exists and the canonical arrow Xo 7- calim Xn is a cofibra tion (acyclic 

cafibra tion) . 

There is als::> the notion of a fibration category, the definition of which, to 

dispel any possible rnistmderstanding, will be provided in detail. 

[Note: For the nost part, the focus in the sequel will be on cafibration 

categories, the results for fibration categories being invariably dual.] 

Consider a triple (£,W, fi b), where £ is a category with final object * and 

WeI-nrC 

fib e MJr C 

are tv.7o COJIIflOsition closed classes of rrorphians tented 

~ egpivalences (denoted--=-> 

fibrations (denoted --» ). 

Agreeing to call an object X fibrant if the arrow X 7- * is a fibration and a 

norphien f:X 7- Y an acyclic fibration it is both a YJeak equivalence and a 
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fibration, £ is then said to be a fibrationca~ provided tilat the following 

axioms are satisfied. 

(FIB - 1) The final object * is fibrant. 

(FIB - 2) All is::::morphisrns are weak, equivalences and all isom:::>rphis:ns with 

a fibrant codomain are fibrations. 

(FIB - 3) Given con:posable :rrorphisms f,g, if any two of f,g,g 0 f are weak, 

equivalences, so is the third. 

(FIB - 4) Every 2-sink X _f_> Z <~ Y, where g is a fibration (acyclic 

fibration) and X,Z fibrant, admits a pullback X <_s_ P 

fibration (acyclic fibration): 

n 
p >Y 

X > Z. 
f 

Y, 'Where s is a 

(FIB - 5) Every :rrorphism with a fibrant codomain can be written as the 

con:posite of a weak, equivalence and a fibration. 

N.B. (£,W) is a category pair. 

2.1. 4 EXAMPLE Take £ = 'IDP -- then 'IDP is a fibration category if weak, 

equivalence = horrotopyequivalence, fibration = Hurewicz fibration. All objects 

are fibrant. 

2.1.5 REMARK Given a fibration category ~, denote by ~fib the full su:tcategory 

of g consisting of the fibrant objects - then gfib is a fibration category. 
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[Note: gfib has finite products (but this need not be true of 9>. Proof: 

For fibrant X and Y, consider the pullback square 

Xxy >Y 

1 1 
X > * 

and observe that all a.rroItVS are fibrations.] 

2.1. 6 DEFINITION let 9 be a fibration ca tegory -- then 9 is sa.id to be 

horrotopically complete wl:en the following conditions are rret. 

(H - 1) If f. :X. -+ Y. (i E I) is a S2!t of fibrations with Y.; fibrant V i, 
~ ~ ~ ..... 

then the products IT x. t IT Y. exist, are fibrant, and 1T f. is a fibration which 
i ~ i ~ i ~ 

is ac~lic if this is the ca::e of the f i • 

(H - 2) let 

be a co1.IDtable saquence of fibrations (ac~lic fibrations) with Xo fibrant -- then 

lim Xn exists and the canonical arrow lim Xn -+ Xo is a fibration (acyclic fibration). 

2.1. 7 REMARK In the tenninology of Cisinski, a cofibration category is a 

category which is derivable to t:h= right and a fibration category is a category 

which is derivable to the left. 

There is a short list of technical facts which are fonnal consequences of the 

axioms. Since the proofs r1.ID parallel to their analogs in m::xlel category theory, 

they can be sa.fely anitted. 
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2.1.8 IJ!M.1A Let C be a cofibration category and let f:X --r Y be a nap between 

cofibrant objects - then f can be written as a co.rrp::>site r 0 ft, where ft is a 

cofibration and r is a weak equivalence which is a left inverse to an acyclic 

cofibration s. 

2.1. 9 LEMMA Let g be a cofibration category. If f.:X. --r Y. (i E I) is a finite 
~ ~ ~ 

set of weak equivalences (cofibrations) between cofibrant objects, then _1_' fi is 
i 

a weak equivalence (cofibration). 

2.1.10 IJ!M.1A Let g be a cofibration category. Given a 2-source x<_f_ Z ~> Y, 

define P by the pushout square 

g 
z ----> Y 

x ----> P. 
t;, 

Assume: f is a cofibration and g is a weak equivalence -- then t;, is a weak equi v-

alence provided Z, Y are cofibrant. 

2.2 APPROXIMATIONS 

Let g be a cofibration category -- then a cofibrant appro:xi.mation to g is a 

pair (go,Ao)' where go is a cofibration category and AO:go --r g is a f'lIDctor 

satisfying the following conditions. 

(CFA - I) All objects of go are cofibrant. 

(CFA - 2) AO preserves initial objects and cofibrations. 

(CFA - 3) A norphism fO E.M::>r go is a weak equivalence iff tufo E.M::>r C 

is a weak equivalence. 



f 
(CFA - 4) If Xo < 0 

cofibratians, thfm the induced a.rrow-

7. 

AQXO il AOYO"" AO (XO Jl YO) 

AOZO Zo 

is an i SJlIDrphism. 

(CFA - 5) Every f:AOXO .... Y factors as f = r 0 AOfO' where fO is a cofibration 

in 9 0 and r is a -weak equivalence in 9. 

N.B. 'Ihe definition of a fibrant approxinatian to a fibration category is dual. 

1 

2.2.1 EXAMPLE 'Ihe inclusion 9cof -> 9 is a cofibrant approxination to 9. 

If Ao:9
0 

.... 9 is a cofibrant approxination to 9, then it is clear that 

is a rrorphisn of category pairs and AO is resolvable to the left. 

2.2.2 LEMMA A cofibrant approxinatian to £: is a left approxina tian to 9, hence 

is a derivability structure to the left on C (cf. 1.5.5). 

2.2.3 'lHEOREM If 1\.0:90 .... 9 is a cofibrant approxination to 9, then the induced 

functor 

is an equivalence of rretacategories (cf. 1.5.6). 
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2.2.4 THEOREM let £ be a cofibration category and let (£l'W
l

) be a category 

pair. Suppose that F:£ -+ £1 is a functor that sends acyclic cofibrations ~ 

cofibrant objects to 'Weak equivalences - then F admits an absolute total left 

derived functor (IF ,v
F

) • 

PROJF COnsider 

1 F 

Scof -> C --> Sr 

'Ib apply 1.5.2, let f:X -+ Y be a 'Weak equivalence, where X and Y are cofibrant --

then the claim is that Flf Ff:FX -+ FY is a 'Weak equivalence. 'Ib see this, use 

2.1.8 and write f = r 0 f'. Since f and r are weak equivalences, the sane holds 

for f'. Therefore f' is an acyclic cofibration between cofibrant objects, thus 

by hypothesis, Ff' is a weak equivalence. en the other hand, r 0 s = id and s 

is an acyclic cofibration between cofibrant objects, so too Fs is a weak equivalence. 

But this implies that Fr is a weak equivalence, hence finally Ff is a weak equiv-

alence. 

2.2.5 THEOREM let S be a cofibration category and let (£l'Wl ) be a category 

pair. let AO:£o -+ £ be a cofibrant approximation to £ and suppose that F:£ -+ £1 

is a functor such that F 0 AO sends ac}Clic cofibrations to weak equivalences --

then F admits an absolute total left derived functor (IF, vp ) • 

let £ be a cofibration category with cofibrant approximation AO:SO -+ £ and 

let C' be a fibration category with fibrant approximation Ao:So -+ £'. Suppose that 

F:C -+ C' 

F' :C' -+ C 
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are an ad joint pair, thus s:herna tically 

F 
------------~-> 

11.' o 
£0 -------> C £' <------ £0' 

<:---------------
F' 

2.2.6 THEOREM Assune that Foli.O sends acyclic cofibrations to weak. equiv-

alences and F' 0 11.0 sends acyclic fibrations to weak equivalences -- then the 

functors 

exist and are an ad. joint pair. 

2.3 SATURATION 

let £ be a cofibration category. 

2.3.1 DEFINITION Suppose that X E Db £ is cofibrant -- then a cylinder object 

for X is an object LX in £ together with a diagram X _1_1 X ~> IX --=--> X tha. t 

fac1Drs the folding map X __ II X ~> X. Write 
il:X -+ IX 

for the arrows 

t 0 ino io 
- then are acyclic cofibrations. 

t 0 inl i l 
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N.B. Cylinder objects exist (in general, nonfunctorially). 

2.3.2 EXAMPLE For any i:oI?Ological space X, the inclusion 

is a clored cofibration, thus if TOP is viewed as a nodel category per its str¢m 

strucillre, then a choice for IX is X x [0,1]. Q1 the other hand, the inclusion 

need not be a cofibration in the Quillen structure but it will be if X is cofibrant 

(e.g., if X is a (ltV complex) • 

2.3.3 DEFINITIOO M::>rphisns f,g:X -+ Y between cofibrant X and Y are said to be 

w 
left horrotopic if 3 a cylinder object IX for X, an acyclic cofibration Y --> y' , 

and a rrorphism H:IX -+ y' such that H 0 io = W 0 f, H 0 i l = W 0 g. Notation: 

2. 3.4 LEMMA Suppose that f ~ g - then f is a '\Neak. equivalence iff g is a 
l 

'\Neak equivalence. 

f ~ g. 
l 

PRCXJF Say, e.g., that f is a '\Neak. equivalence. Since H 0 iO = W 0 f and iO 

is a '\Neak. equivalence, it follows that H is a '\Neak equivalence. But H 0 i l = W 0 g, 

thus g is a weak. equivalence. 

t 2.3.5 THEOREM f,g:X -+ Y are rrorphisms bet'\Neen cofibrant X and Y, then 

f, g are left horrotopic iff they are horrotopic: 

f ~ g <=> f !::: g. 
l 

t Brown, TJtan6. AmeJt. Ma.th. Soc.. 186 (1973), 419-458. 
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2.3.6 APPLICATION let £: re a :m::::rlel category. Suppose that X is cofibrant 

and Y is fibrant - then f !::: g iff 3 a cyl:inder object IX for X and a rrorphism .e 
H:IX + Y such that H 0 iQ = f, H 0 i l = g. 

[Assu.rre first that H exists: 

(3 W E W) 

=> 

=> H 0 iQ !::: H 0 i l => f ~ g. 

Conversely, assurre that f !::: g. ClIoose an acyclic fibration r:Y' + Y with y' 

cofibrant. Since X is cofibrant, the corrmutative diagrams 

~ > y' ~ > y' 

1 lr 1 lr 
X > Y, X > Y 

f g 

admit fillers 

f':X + y' (r 0 ft = f) 

gt:X + y' (r 0 gt = g). 

But 
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=> f I ~ gf 
..e 

(cf. 2.3.5) . 

Wi 

Using tre notation of 2.3.3, fix an acyclic cofibration yl ---> yl I and a 

rrorphisn Ht:IX + yl' such that HI 0 iO = Wi 0 f', HI 0 i
l 

= Wi 0 g'. let 

h:Y' t + Y be a filler for 

r 
yl ----> Y 

1 
yl I ---> * 

and put H = h 0 H' -- then 

Hoi = h 0 HI 0 i = hOWl 0 f' = r 0 f' = f o 0 

H 0 i
1 

= h 0 HI 0 i
1 

= hOW" 0 gl = r 0 g' = g.] 

2.3.7 I...EMY.iA Suppose that X and Y are cofibrant and w:X + Y is a weak equiv-

alence -- then any f E MJr(X,Y) which is harrotopic to w is necessarily a weak 

equivalence. 

PROOF The assumption is that V = Lcl"i or still, that w "'" f. 

(cf. 2.3.5), so 2.3.4 is applicable. 

But then w "'" f 
..e 
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2.3.8 THEOREYlt Every rrorphism [w] in w-lg bet'iNeen. objects X and Y which are 

-1 
cofibrant in C can be written as a left fraction CLww) 0 ~yf, where f is a 

cofibra tion and w is an acyclic cofibration: 

f w 
[w] = [X --> Y' <-- Y] • 

2.3.9 LEMMA Suppose that f:X -+ Y is a rro:r:phism in £ with X and Y cofibrant --

then Y has a left inverse in W-l £ iff there is a cofibration f':Y -+ y' such that 

flO f is a Wi:lak equivalence. 

PROOF The implication <= is obvious. In the other direction, if [w] 0 Lwf = id, 

write, using 2.3.8, 

[w] 

hence 

or still, w :::: f' 0 f. But this rreans that f' 0 f is a Wi:lak equivalence (cf. 2.3.7). 

2.3.10 LEMMA Suppose that f:X -+ Y is a rro:r:phism in £ with X and Y cofibrant --

then 111 is an iaJllOrphism in W-l £ iff there are cofibrations f':Y -+ Y', f" :y' -+ y' , 

such that f' 0 f, f'l 0 fl are ~ak equivalences. 

PROOF First, if f' 0 f = w (w E W), then 

-1 
L~' 0 (L~ 0 (LWW) ) = id, 

so LJ' is a retraction, and second, if f" 0 f' = W' (WI E W), then LJ' is a 

rronon:o:r:phism. Therefore L~' is an ison:o:r:phism, hence L~ is an ison:o:r:phism. The 

t Brown, ibid. 
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converse follows fram a double application of 2.3.9. 

2.3.11 THEOREM let ~ be a cofibration catego:ty and suppose that H - 2 is in 

-
force -- then W = W. 

PROJF It is enough to prove that a cofibration f:X -+ Y in W be'bEen cofibrant 

X and Y is in W. Using 2.3.10, construct by induction a countable sequence of 

cofibra tions 

with Xo = X, Xl = Y, fO = f and such that V n ~ 0, the COIl:JfX)sition 

is an acyclic cofibration -- then there are acyclic cofibrations 

X -+ colim ~n+ 1 

Y -+ colim ~n' 

canonical isarrorphisms 

colim ~+ 1 ::::: colim Xn ::::: colim ~, 

and a camnutative diagram 

colim Xn ---- colim~ 

t t 
X -------> Y. 

f 

Since the vertical arrows are acyclic cofibrations, it follows that f is an acyclic 

cofibration. 

[Note: 'lbe reduction to a cofibration f:X -+ Y between cofibrant X and Y rtIDS 

as follows. 
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W 

Step 1: Fix a cofibrant X I and a weak equivalence Xl --> X -- then 

Lw(f 0 w) = Lul 0 LWWI so if f 0 W E W, then fEW. (he can therefore assume 

that the domain of f is cofibrant. 

Step 2: Write f = r 0 fl I 'Where f' is a cofibration with a cofibrant dornain 

and r is a weak equivalence -- then Lwf = Ltf' 0 Lwf', 50 if f' E W, then fEW. 

(he can therefore asSl.ll1'e that f is a cofibration with a cofibrant dana.in and 

codornain. ] 

2.3.12 DEFlNITION let (g,W) be a catego:ry pair -- then W satisfies the 

2 out of 5 condition if whenever f,g,h E M:>r g have the property that g 0 f, hog 

exist and are in W, then f,g,h are in W. 

2.3.13 REMARK let (g,W) be a catego:ry pair -- then W satisfies the 2 out of 3 

condition if for conposable f,g E MDr g, the assumption that two of f,g,g 0 f are 

in W implies that the third. is in W. '!his said, it is then clear that 

"2 out of 5" => "2 out of 3". 

[Note: In the case of a cofibration catego:ry, the 2 out of 3 condition is 

assumption COF - 3.] 

2.3.14 DEFlNITION let (g,W) be a catego:ry pair -- then W is weakly saturated 

if (rJ satisfies the 2 out of 3 condition and has the following property: 

i:X + Y 
If , if r 0 i = i~, and if i 0 r E W, then i,r E W. 

r:Y + X 

2.3.15 LEMMA If (IJ is saturated, then W is weakly saturated. 

PROOF That W(= (IJ) satisfies the 2 out of 3 condition is obvious. Suppose now 
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that i and r are as above and write 

tD fee that Lwi is an ep:irrorphisn. But 

and 

=> 

Lwr 0 LWi = i~wX 

= Lwi 0 Lw(r 0 i) 

=LwioiV 
=Lwi=i~yoy 

Therefore i E W and lastly r E W. 

2.3.16 LEIYIMA If W satisfies the 2 out of 5 condition, then W is -weakly saturated. 

PROOF Take i and r as above and consider 

i r i 
X --> Y --> X --> y. 

2.3.17 LEMMA If W satisfies t:l:l:! 2 out of 3 condition and is c10EEd mder the 

fonna.tion of retracts, then t~ is -weakly saturated. 

PROOF Take i and r as above and note that th: diagram 
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i<\ i<\ 
y ? Y ? Y 

r 1 i 
• r 1 1 r 

X ? Y ? X 
i r 

exhibits r as a retract of i o r. 

2.3.18 THEOREM. Let g be a cofibration category - then the fo1101017ing are 

equivalent. 

(1) W is weakly saturated. 

(2) W satisfies the 2 out of 5 condition. 

(3) W is closed under the fonna.tion of retracts. 

(4) W is saturated. 

PRCX)F W3 have {2} => (1), (3) => {1}, {4} => {1}, (2), (3), S) the only fX)int 

at issue is (1) => (4) and for this it is enough to prove that a cofibration f:X + Y 

in W between cofibrant X and Y is in W. Put Xo = X, Xl = Y and construct a co-

fibration g:X1 + ~ and a rro:r::phism h:~ + Xl such that g 0 fEW and hog = i~ 
1 

(see below) - then 

so g E W. And 

=> 

rw(g 0 f} = rwg 
0 y, 

hog = i~ => g 0 hog = g 
1 
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=> 

=> 

=> 
g 0 hEW (cf. 2.3.7) 

=> g E W => fEW. 

2.3.19 DETAILS The category ~/Y is a cofibration category (via the forgetful 

functor ~ -+ Y). Denoting by Wy c: fur ~/Y its class of weak equivalences, the 

image of the norphisn 

f 
X-------> Y 

Y Y 

in w;l~/y is an is::::norphism. 01 the other hand, ~ -+ Y is an initial object in 

~/y and there are commutative diagrams 

X 
Since 

Y 

arrows 

~ -----'> X ~ -----'> Y 

1 1 
Y======Y Y======Y 

are cofibrant, the arrows are cofibra tions in g, thus the 
~-+Y 

f 
(~ -> Y) -> (X --> Y) 

(~ -> Y) -> (Y --> Y) 
i~ 
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are cofibrations in g/Y, Le., the objects 

f 
x----> y 

y ----> y 

are cofibrant in g/Y. (he can therefore apply 2.3.10 to g/Y to get a cofibration 

fl 

y ----------~> yl 

(gl 0 fl = idyl 

y y 

in g/Y Slch that 

f' 0 f 
x ------------~> yl 

y =========== y 

is a weak equivalence in QIY. So f' is a cofibration in C and f' 0 fEW. 

Reverting back to tl:'E notation of 2.3.18, let Xo = X, Xl = y, X2 = Y', g f' , 

h = g' -- then 

and 

g 0 f = f' 0 fEW 

hog = g' 0 f' = idy = i~ • 
1 

2.3.20 APPLICATICN Suppose that g is a rrodel category -- then W is cloEed 

under the formation of retracts, hence W is saturated. 
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(Note: For us, a rrodel category is finitely complete and finitely cocomplete, 

s::> it would be illegal in general to quote 2. 3 .11. ] 

2.3.21 THEOREM SUPPOSE that (£,W,cof) is a cofibration category -- then 

-(£,W,cof) is a cofibration category. 

2.4 FIBRANT MOVELS 

let £ be a cofibration category -- then an object Y in S is a fibrant rrodel 

f g 
if for any 2-rource X <-- Z --'> Y, where Z is cofibrant and f is an acyclic 

cofibratian, 3 h:X -+ Y ruch that h 0 f = g. 

N.B. If S has a final object *, then Y is a fib rant rrodel the arrow 

Y -+ * has the RIP w.r.t. all acyclic cofibrations that have a cofibrant domain. 

E.g.: The fibrant objects of a rrodel category are fibrant rrodels. 

2.4.1 RAPPEL Tne functor ~ -+ W-IS is faithful, so V X,Y E Ob £, the induced 

map 

[X, Y] -+ r-br (X, Y) 

is injective. 

2.4.2 LEMMA If X is cofibrant and Y is a fibrant rrodel, then the induced map 

[X, Y] -+.MJr (X, Y) 

is surjective. 

PRCDF let [w] E r-br (X,Y). Fix a cofibrant Y' and a weak equivalence w' :Y' -+ Y --

then 

o {w] E .MJr(X,Y'), 
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s::>, us:ing 2.3.8, we can write 

f w 
= [X __ > y'l < __ yl] , 

thus 

W Wi 

Consider the 2-s::>urce yl I < __ yl --> y. Since by construction w is an ac}t:lic 

cofibration and s:ince y is a fibrant m:Xiel, 3 A:yl I -r Y SJCh that A 0 w = Wi. 

Trerefore 

[w] = Lw(A 0 w) 0 (LwW)-l 0 Lwf 

-1 
= y 0 Lww 0 (Lww) 0 V 

= Lw(A 0 f), 

from which the sur jectivi ty. 

2.4.3 CRI'lERICN Let £ be a cofibration category with the following pro:perty: 

Given any cofibrant X, 3 a fibrant m:Xiel Xl and a weak equivalence X -r X' -- then 

w-l £ is a category (and not just a ITEtacategory) . 

[This is implied by 2.4.2.] 

2.4.4 THEOREM Suppore that £ is a m:Xiel category -- then He is a category 

(and not just a rretacategory) . 

2.4.5 REl.!JARK Let g be a category. Suppose given a conposition closed class 

W c Mar g containing the iSOIIDrphisms of £ such that for composable TIOrphisms f,g, 
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if any two of f,g,g 0 f are in W, so is the third. Problem: -1 
Does W C exist as 

a category? The assurcption that W admits a calculus of left or right fractions 

does not suffice to rerolve the issue. HovJever, one strategy that will work is 

to so.rrehow place on C the structure of a nodel category in which W aJ?P3ars as the 

class of 'Weak equivalences. 

2.5 PRINCIPLES Of PERMANENCE 

Fix a srrall category !. 

2.5.1 DEFINITICN let g be a cofibration category and suppose that = E Mor[!,g], 

say =:F -+ G. 

• = is a levelwise 'Weak equivalence if ViE Ob !, =i :Fi -+ Gi is a "Weak 

equivalence in g. 

• = is a levelwise cofibration if ViE Ob !, =i :Fi -+ Gi is a cofibration 

in C. 

2.5.2 DEFINITICN The injective structure on [!,gl is the pair consisting of 

the levelwise 'Weak equivalences and the levelwise cofibrations. 

2.5.3 THEOREM Suppose that g is a horrotopically cocamplete cofibration category -

then [!,g], equipped with its injective structure, is a horrotopically cocomplete 

cofibration category. 

2.5.4 DEFINITICN let C be a fibration category and suppose that = E Mor[!,gl, 

say =:F -+ G. 

• = is a levelwise 'Weak equivalence if ViE Ob !, =i :Fi -+ Gi is a weak 

equivalence in C. 
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• ... is a 1eve1wioo fibration if ViE Db !, :Fi + Gi is a fibration in C. 

2.5.5 DEFINITION The projective structure on [!,~] is the pair consisting of 

the 1eve1wioo weak equivalences and the 1eve1wioo fibrations. 

2.5.6 THEOREM Suppooo that ~ is a horrotopica11y conp1ete fibration category -­

then [!,~], equipped with its pro~tive structllre, is a horrotopica11y conp1ete 

fibra tion ca tegory. 

let ! and ~ :be s:ra11 categories, K:I + J a functor. Given a category pair 

(~,W), let 

WI = the 1eve1wioo weak equivalences in Mor[!,g] 

(obvious definition) 

W
J 

= the 1eve1wise weak equivalences in Mor[~,~]. 

Then the functor K*: [~,~] + [!,~] preserves 1eve1wise weak equivalences, so there 

is a com:nutative diagram 

K* 
[~,£] > [!,~] 

1 1 
W;l[~,~] > 

-1 
WI [!,~]. 

• If C is a cocarnp1ete cofibration category, then K* has a left adjoint 

• If ~ is a conp1ete fibration category, then K* has a right adjoint 
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2.5.7 THEOREM Suppose that ~ is a cocanplete cofibration category -- then 

K! possesses an absolute total left derived func1Dr (lK! ,V
K

!) and 

are an adjoint pair. 

[Note: The aSSUITg?tion that ~ is COCOlTIJ?lete can be weakened 1D h0rr01Dpically 

cocarplete. Matters then becarre IIDre canplicated as K! need not exist. Neverthe-

less, it is still the case that K* admits a left adjoint which, in an abuse of 

notation, is denoted by lK! and called the h0rr01Dpy colimit of K.] 

2.5.8 THEOREM Suppose that ~ is a complete fibration category - then Kt 

possesses an absolute total right derived func1Dr (RKt,l-X ) and 
t 

RKt 

are an ad joint pair. 

[Note: The assurrption that ~ is canplete can be weakened 1D hOllDtopically 

conplete. Matters then becarre IIDre carrplicated as Kt need not exist. Nevertheless, 

it is still the case that K* admits a right adjoint which, in an abuse of notation, 

is denoted by RKt and called the horrotopy limit of K.J 

2.6 WEAK COLIMITS 

Let (~,W) be a category pair -- then for any small category !, there are arrows 
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-1 
---------> [!, W ~] 

from which an arrow 

rendering the triangle corrmutative: 

[Note: Given:::: E M::>r [!,~], we have 

(i E Ob !>. 

And 

:::: E WI => Ei E W (i E Ob !) .] 

2.6.1 LEMMA If C is a honDtopically cocOl1"!Plete cofibration category, then 

the functor d9fIlr is conservative. 

Suppose that ~ is a ho.rrotopically cocon:plete cofibration category -- then 

-1 W g has coproducts but, in general, does not have coequalizers or pushouts, 

-1 
thus W ~ need not be cocomplete. 

2. 6.2 RAPPEL Let ! be a SITIr3.ll category, C a cocon:plete category -- then the 
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constant diagram functor K:g -+ [!,gl bas a left adjoint, viz. colirn:r: [!,gl -+ g. 

So, for any diagram Il:! -+ g, for any X E Ob ~, and for any rrorphism f: 11 -+ KX there 

exists a unique rrorphism 9:colirn:r1l -+ X such that f = Kg 0 llll: 

11 ----------'> K colirn:r 

fl lKg-
KX, 

where 1l1l:1l -+ K colirn:rll is the arrow of adjunction. 

2.6.3 DEFINITICN let ! be a small category, ~ a netacategory and let Il:! -+ ~ 

be a diagram -- then a weak colimit of 11, if it exists, is an object wcol~1l E Ob ~ 

and a rrorphism 

with the property that for any other object X E Ob g and rrorphism f:1l -+ KX there 

exists a (not necessarily unique) rrorphism g:wcol~1l -+ X such that f = Kg 0 llll: 

Il ----------'> K wcol~1l 

fl lKg-

KX===============KX. 

2.6.4 THEOREM Suppose that ~ is a hcm::>topically cocarnplete cofibration category. 
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Asa.nre: 

is full and has a representative image -- then every diagram ll:! -T w-lg has a 

v.eak coliroit wcoliIn:rll which is unique up to (noncanonical) isamrphism. 

-1 
PROOF Choose ll' E Db WI [!,g1 :d9IDrll' ::::: ll. Taking ~ = ! in the theory developed 

in 2.5, let 

be the arrow of adjunction and put 

'Nhich can be viev.ed as an elen:ent of Db C -- then there is an arrow 

But the diagram 

-1 
dgmJ 

[~, W-l g1 WJ [~,g1 :> 
::::: 

K*l lK* 
-1 -1 

WI [!,gl :> [!,W g1 
d9IDr 

corrmu tes, SJ 

or still, 
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or still, 

(K* ~ K). 

Therefore the pair 

is a 'Weak colimi t of /::". -1 If the process is repeated with /::,. t t E Ob WI [! ,g], thus 

then one can find an f E MJr(/::,. I ,/::" It) such that d9IDrf implerrents the iSJIlDrphism 

But d9ffir is conservative (cf. 2.6.1), hence f is an isarrorphism. Consequently, 

wcol~/::" (as constructed) is unique up to (noncanonical) isarorphism. 

2.6.5 DEFrnITION A small category! is free if it is isorrorphic to a category 

in the iro.:::l.ge of the left ad joint to the forgetful functor U : CAT + PRECAT. 

[Note: A finite, free category is both direct and inverse.] 

2.6.6 LEMMA If ! is a small category which is free and direct, then for any 

honntopically coconplete cofibration category g, the functor 

is full and has a representative iro.:::l.ge. 

2.6.7 EXAMPLE The categories 

a 

1 • .2, 
---> 

b 
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are free and direct. 

2.6.8 APPLlCATlOO Every hom::>topical1y cocornp1ete cofibration category admits 

y;eak coequa1izers and YJeak pushouts. 

[Note: 'Ihe story for horcotopica11y ca:np1ete fibration categories is analogous.] 

2.7 WEAK MODEL CATEGORIES 

let £ be a category and let W, cof, fi b be three canposition closed classes 

of norpbisms such that 

(£,W,cof) 

is a hom::>topica11y cocoop1ete cofibration category and 

(£,W,fib) 

is a hom::>topica11y complete fibration category. 

2.7.1 DEFINITlOO £ is said to be a YJeak mxl.e1 category provided that the 

following axioms are satisfied. 

(WMC - 1) W is closed under the fornation of retracts. 

(WMC - 2) Acyclic cofibrations with cofibrant domain have the LLP w.r.t. 

fibrations with fibrant codorrain. 

(WMC - 3) Cofibrations with cofibrant danain have the LLP w.r.t. acyclic 

fibrations with fibrant codomain. 

2. 7.2 REMARK Every complete and cocornp1ete mxl.e1 category is a YJeak mxl.e1 

category (but not conversely). 

2.7. 3 LEMMA Suppose that Q is a weak mxl.e1 category -- then W is saturated 

(cf. 2.3.18). 
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2.7.4 LEM-1A SuptX:>se that g is a weak. m:x1el category -- then w-lg is a cat­

egory (cf. 2.4.3). 

Fix a small category .f. 

2.7.5 'lHEOREM
t Let g be a 'IiJeak m:x1el category - then [.f,g] admits a weak 

m::xlel structure in which the ~ak equivalences are the levelwise weak. equivalences 

and the cofibrations are the level wise cofibrations. 

[Note: The description of the fibrations is SCI1li2!What involved but they are, 

at least, levelwise.] 

2.7.6 THEOREM t Let g be a weak. m:x1el category -- then [!, g] admits a weak. 

m::xlel structure in which the weak. equivalences are the levelwise weak. equivalences 

and the fibrations are the levelwise fibrations. 

[Note: The description of the cofibrations is somewhat involved but they are, 

at least, levelwise.] 

2.7.7 REMARK In either weak m:x1el structure on [.f,g], WI is the class of weak. 

equivalences and W~l[.f,g] is a category (cf. 2.7.4). 

t Cisinski, Bull:. Soc.. Math. fMn.c.e 138 (2010), 317-393. 
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CHAPTER 3: HOMOTOPY THEORIES 

3.1 THE STAR PROVUCT 

Let F ,F':£ -r Q and. G,G':Q -r :!2 re functors; let 

~ E Nat(F,F I
) 

Q E Nat(G,G'). 

Then V X E Ob £, there is a corrmutative diagram 

(G' 0 F) 
X 

(GE)X 

------------'> (G 0 F') X 

1 (gp'lX 

--------~> (G' 0 F') X. 

3.1.1 DEFINITION The star prcx:luct of Q and E is definErl by 

Q * E = G'E 0 nF 

or still, 

Q * E = QF' 0 GE. 

[Note: The star :product is associative and. in suggestive notation, 

(Q' 0 Q) * (E' 0 E) = (Q' * E') 0 (Q * E).] 

N.B. 

Q * E E Nat(G 0 F, G' 0 FI). 
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3.1. 2 EXAMPLE We have 

3.2 VERIVATORS 

A derivator 0 is a pres:ription that assigns to each sna.ll category! a :rreta­

category D!, to each functor F:I + J a functor 

and to each nabJral tr::ansfonna.tion ?::F + G a natural transfonna.tion 

D?::DG + OF, 

tl:e data be:ing B.lbject to the follow:ing ass.:unpt.ions. 

F G 
• For all !, DidI = idOl and given! --> ~ --> !S, we have 

D(G 0 F) = OF 0 DG. 

- ~ 
• For all F, D~ = idOF and given F --> G --> H, we have 

D(n 0 ?:) = D?: 0 on. 

• If 

F G 

---------~> -----------> 

I 
J K 

----------------> ----------------~> 

FI G I 
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ani if 

then 

1:: E Nat(F ,F') 

QENat(G,G'), 

O(Q * 1::) = 01:: * OQ. 

f O · d' then 't . OOP. ...'1--.. d' tha d N.B. I ~s a er~vator, ~ s OPfOSl.te ~s u..c er~vator t s=n s 

3. 2.1 EXM-1PLE let (g, til) be a ca tegory pa.ir • Given!. E Ob CAT, let til OP be 
I 

the 1eve1wise weak equivalences in ~br[!.OP ,g] - then 

is a category pa.ir, thus itnakes s:mse to form the localization of [!.OP,g] at 

(cf. 1.1.2). 

D=fine now a derivator 0 (g,W) by first specifying that 

OP OP OP Next, given F:!, -+ ~, pa.ss to F :!. -+ ~ and note that the induced functor 

OP* is a rrorphian of category pa.irs (Le., (F ) W OP c: Wop), which leads to a functor 
J I 
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(cf. 1.4.5), 

call it 0 (g,W)F. Finally, fran a natural transforma.tion :!:F -+ G there results a 

na tura1 transforma.tion 

that gives ria: in turn to a natural transforma.tion 

characterized by the proper1:¥ that 

(D(C W)B)LW = L (BOP) * 
_, OP W OP 

J I 

(cf. 1.11). 

[Note: Take I = 1 -- then 

-1 o (C W)! = w g.] 
-' 

3.2.2 LEMMA let 0 be a deri vatnr. Suppose that 

F:I -+ I' 

F':I' -+ I 

are an adjoint pair with arrows of adjunction 

1.1: idI F' 0 F 

1.1 f :F 0 F' -> id 
I' -
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Then 

OF:OI' -+ OI - -
OF' :OI -+ OI' 

are an adjoint pair with arrows of adjunction 

- O~' E Nat(id ,OF' 0 OF) 
OI' 

O~ E Nat(OF 0 OF' ,idOI)' 

PR(X)F Starting from 

we have 

(F'~') 0 (~') = id 
F' 

(~'F) 0 (F~) = i~, 

id = Oid = O(~') 0 O(F'~') = (OF')O~ 0 O~' (OF') 
OF' F' 

idOF = Oi~ = D(F~) 0 O(~'F) = O~(DF) 0 (DF)D~', 

which leads at once to the contention. 

3.2.3 LEMMA let 0 be a deri va tor. Suppose that 

F:I -+ I' 

F':I' -+ I 

are an adjoint pair with arrows of adjunction 

~:idI -+ F' 0 F 

~':F 0 F' -+ id 
I' 



Then 

6. 

F fully faithful => DF' fully faib.'1.ful 

F' fully faithful => DF fully faithful. 

PRCX)F E.g.: If F is fully faithful, then II is a natural iSJIIDrphien, thus 

Dll is a natural iSJIIDrphisn and this, in view of 3.2.2, implies that DF' is fully 

faithful. 

3.2.4 DEFINITION A norphisn ~:D -+ D' of derivators is a pair (11),¢), where V !, 

is a func1Dr, and V F:! -+ ~, 

11> :DI -+ DII 
1--

¢F:D'F 0 ¢J -+ 11>1 0 DF 
- -

is a na rural i s::>rrorphien, there being t:Ir-.Jo conditions on ~. 

[Note: Tm s:xuare p=r ¢F is 

DJ > DIJ 

DFl lD'
F 

DI > D'I . ] 
¢I 
-

F G 
• Given! --> ~ --> !S, \\le have 

~G:DIG 0 ~ > ~ 0 DG 
'!' ""K -- ""J ' 
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from which 

~F(OO}:D'F 0 ~J 0 00 ---> ~I 0 OF 0 DG 

(D'F}~G:D'F 0 DIG 0 ~K --> DIF 0 ~J 0 00. 

en the other hand, 

~ = D'F 0 DIG 0 ~K ~ ~I 0 DF 0 DG. '+'G 0 F 

TIE a ssunption then is th:it 

• Given 3 E Nat(F ,G), we ha.ve 

D3:DG ~ OF 

D' 3:D 'G ~ DIF, 

from which the s:rua,re 

DIG 0 ~J --------'> ~I oDG 

(~I}DB 

'> ~I o OF DIF 0 ~J -------­

~F 

and tb3 supposition is that it coomut:es. 

3.2.5 EXAMPLE Let 

re a norphian of category pairs (cf. 1.4.5) - then F induces a norphian 
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of derivators. 

Given rrorphisns 

<P:D + D' 
~ 

<pI :0' + D'I 

of derivators, it is clear how to define their corrp::>sition 

<pI 0 <P:D + D" - -
which again is a rrorphisn of derivators, thus there is a ItEtacategory DER wmoo 

objects are t.."'1e derivators. 

If now D,D' E Db DER and if 

<P:D + 0' 
E MJr (D, D I ) , 

If':0 + 0' 

then a nablral transfor:rration 3:4> + If' is the assignment to each I of a nablral 

transfor:rra tion 

Slch that V F:! +~, the diagram 

<PF 
DIF 0 <PJ > <PI o DF 

(D'P)";! 1 -1"! (OF) 

D'F 0 If'J > If'J o OF 
WF 

com:nutes. 



9. 

~, !, ~ E Mor(O,O'). 

SUpp:>se that 

are natural transfonrations. Define ~ 0 g by 

«(2 0 E) I = (21 0 - -

Then (2 0 3 is a natural transfonration from iP to 8. - -
PR<XlF It is a question of sh::J\'ling that 

But 

= (2 (OF) 0 ,,, 0 (O'F)E
J I 't'F 

3.2.7 NarATICN Given derivators 0,0', let HCM(O,D') stand for the rretacategory 

w:t:ose objects are the derivator norphisms ~:D + 0' and whore rrorphisns are the 

natural transfonnations Nat(~,!) from ~ to !. 

3.2.8 EXAMPLE let 1 be the constant derivator with value 1 -- then for every 

d.erivator D, HCM(l,D) is equivalent to D!. 
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3.2.9 DEFINITION let ~ E M,)r (D, D ') - then ~ is an equivalence V !, 

is an equivalence of rretacategories. 

3.2.10 LEMMA A rrorphisn ~:D -+ D' is an equivalence iff there exists a rrorphisn 

q>' :D' -+ D such that~' 0 ~ is iSJIIDrphic to idD and ~ 0 ~' is isorrorphic to id . 
D' 

3.2.11 EXAMPLE let £ be a carrplete and cocomplete m:xiel category, W its class 

of weak equivalences - then tffire are rrorphisns 

of category pair s, lEnce induced norphi sns 

D(C W ) -+ D(C_,W) 
-cof' cof 

of derivators that, in fact, are equivalences. 

3.2.12 NOTATION In 3.2.1, take for W the identities in C and write Dc in place 

of D (£,W)' hence V ! E Db CAT, 

3.2.13 EXAMPLE let (£,W) be a category pair -- then W contains the identities 

of ~, so there is a rrorphism 
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of derivators. 

3.2.14 EXAMPLE If F:e -+ e' is a functor and ! E Ob CAT, trnn 

and there is an induced norphism De -+ De' of derivators. 

3.2.15 :r..:E:M-1A Suppose tmt g is snall -- then for every derivator D, there is 

a canonical equivalence 

of rretacategories. 

OP 
[Given ~:De -+ D, let! = g , thus 

and by definition 

<P OP: [g,gl -+ De
OP 

e 

[Note: This is the Yaneda lem:na. for derivators.l 

3.3 TECHN1CAL1T1ES 

3.3.1 DEFINITICN let D be a derivator. 

• A functor K:! -+ ~ admits a right horrotopy Kan extension in D if the 

functor 

DK:DJ -+ DI - -
has a right adj:>int 
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• A flIDctor K:! -+ ~ admits a left horrotopy Kan extension in D if the 

flIDctor 

DK:DJ -+ D1 - -
has a lef t ad ::Pint 

3.3.2 EXAMPLE Take D = DC (cf. 3.2.12). 

• Ass.:.u:ne that £ is oornplete -- then every K:! -+ ~ admits a right horrotopy 

!\an ex ten sion in Dc' 

• As9.l!re tha.t C is cocorrplete -- then every K:! -+ ~ admits a left h::motopy 

!\an extension in DC' 

3.3.3 REMARK Let £ be a rrodel category, W its class of weak equivalences -­

then in tlE context of the derivator D (£,W) (cf. 3.2.1), one UffiS the term horrotopy 

limit of KOP rather than right horrotopy Kan extension of K and the term honntopy 

colimi t of KOP rather than tba term left horrotopy Kan extension of K. 

[Note: '!be explanation for the appearance of KOP is to keep IrIi3.tters consistent. 

'Ibus SJ.pp0ffi tha.t £ is combinatorial -- then in the notation of 0.26.19 and 0.26.20, 

we. introduced 

which we.re called 

the horrotopy colimit of K 

the horrotopy limit of K 
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res:pectively. So here 

D K = LKOP 
(C,W) ! ! 

D K RKOPt. 
(C,W) t = 

See alSJ 2.5.7 and 2.5.8.] 

3.3.4 NOI'ATION' let ! E Ob CAT and let PI:! -+- ! be the canonical arrow. 

• Suppose that PI admits a right honotopy Kan extension in D -- then 

'if X E Ob D!, Ii\e let 

• Suppose that PI admits a left honotopy Kan extension in 0 -- then 

'if X E Ob D!, Ii\e let 

3. 3.5 DEFINITION' A 2-diagram of categories (or rretaca tegories) is a square 

u 
A' ::>A - -

F'l iF 
B' :> B 

v 

together with a natural transformation fran F 0 u to v 0 F' or fran v 0 F' to 

F 0 u. 
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let 0 re a deri vator -- then a 2-diagram 

u 
I' > I -

F'i iF (E E Nat(F 0 u,v 0 F'» 

J' > J - v 

of s:na.ll categor ie s induces a 2-diagram 

Du 
01'< Or 

DF'I IOF 
DJ'< OJ 

Dv 

of :rretaca tegories, where 

Oc: 0 (v 0 F I) -+ 0 (F 0 u). 

N.B. ve have 

o (v 0 F I) = OF' 0 Dv 

o (F 0 u) = Ou 0 OF. 

3.3.6 CCNSTRUCI'ION AsSl.lIIE that ooth F and F' admit a right lDIIDtopy Kan 

extension in O. Starting from the arrow of adjunction OF 0 OFt -+ idOl' proceed to 

Du 0 OF 0 DFt -+ Du 

or still, using 

OE: OF' 0 Dv -+ Du 0 OF, 

to 

OF' 0 Dv 0 OFt -+ Du 
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or still, by ad junction, to 

ill:Dv 0 OFt + OFt 0 Ou, 

leading thereby to another 2-diagram 

Du 
01' < 01 

OF+l lDFt 
OJ' < OJ 

Dv 

of rretaca tegories. 

[Note: The natural transforna.tion ill is called the base change rrorphism 

induced by =:.] 

3. 3. 7 EXAMPLE let F: I + J be a functor. Given j E Ob ~, write !/ j for the 

COImla. category IF,K.I, the objects of which are the pairs (i,g), where i E Ob !, 
J 

g E 1-Dr ~I and g:Fi + j. Consider the s:ruare 

pro. 
J 

------> I 

(pro. (i,g) = i). 
J 

1 ------->J 
K. 

J 

Then there is a natural transfonna.tion 

viz. 

t!(i,g) =g. 
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Assurre now that F admits a right horcotopy Kan extension in 0 and V j E Ob ~, 

Pf/j admits a rightharrotopy Kan extension in O. Accordingly, on the basis of 

3.3.6, there is a natural transfonua tion 

ill:OK.o OFt + DPI/'t 0 DPro .• 
J _ J J 

[Note: From the definitions, 

Dpro .:01 + OI/j, 
J - -

EO V X E Ob 0_1, Dpro.X E Ob OI/j, call it X/j - then 
J -

(cf. 3.3.4.] 

let 0 be a derivator - then a 2-diagram 

u 
II ----> I 

F'l (:: E Nat (v 0 FI,F 0 u» 

JI ---->~ 
v 

of small categories induces a 2-diagram 

Du Of 1< _____ 01 

O~I <----- OJ 
Dv 

of netaca tegories, where 

O:::O(F 0 u) + O(v 0 F'). 
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N.B. w= have 

O(F 0 u) = Du 0 OF 

o (v 0 F I) = OF I 0 Dv. 

3.3.8 <XNSTRucrICN Assume that roth F and F' admit a left horrotopy Kan 

extension in D. Starting from the arrow of adjunction idOI -+ OF 0 OF!, proceed to 

Du -+ Du 0 OF 0 OF! 

or still, using 

03:Du 0 OF -+ OF' 0 Dv, 

to 

Du -+ OF' 0 Dv 0 OF! 

or still, by adjunction, to 

leading thereby to another 2-diagram 

Du 
DI'< DI -

~il l~! 
OJ'< OJ 

Dv 

of :rretacategories. 

[Note: '!he natural transfonna.tion ill is called the base change rrorphism 

induced by 3.] 

3.3.9 EXAMPLE Let F:! -+ ~ be a flIDctor. Given j E Ob ~, write j\! for the 
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CQJ."('('(lCl category IK .,FI, the objects of which are the pairs (g,i), where g E Jlbr ~, 
J 

i E Ob !, and g: j -+ Fi. Consider the s:ruare 

. pro 
J 

j\! ;:. I 

Pj\!l IF (fro (g,i) = i) . 

1 ;:. J 
K. 

J 

Then there is a natural transfonna tion 

K. 0 n'\I -+ F J ... J _ o fro, 

viz. 

!:.(g,i) = g. 

AsSl.lITe now that F admits a left horrompy Kan extension in D and \if j E Ob ~, Pj\! 

admits a left horrompy Kan extension in D, Accordingly, on the basis of 3.3.8, 

t:l-ere is a nabJral transfonnation 

rn:Dpj\~! 0 Dfro -+ DKj 0 DF!, 

[Note: Fram the definitions, 

D.pro:DI -+ Dj\I, 
J - -

so \if X E Ob D!, D:fro X E Ob Dj\!, call it j\X -- then 

(cf, 3,3.4),] 

3.3.10 NOI'ATICN SuPPJse that D is a derivamr - then for all !,~ E Ob CAT, 

there is a canonical funcmr 



19. 

In fact: 

1. There is a functor 

2. There is a functor 

3. There is a functor 

D(! x ~) 

4. There is a functor 

or still, a functor 

So, in conclusion, tlere is a funciDr 

d 0(1 J) + [!OP,O~]. !I~: _ x _ 

[Note: If 0 = 0 (g,~J) ,where (g,W) is a category :pair, then dI is what was 

labeled d9ffir in 2. 6. ] 

3.3.11 LEMMA Suppose that F:! + ~ -- then th= diagram 
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d
J 

[~Op ,D;]:1 OJ » 

DFl 1 (FOP) * 

DI 
dI 

> [!OP ,O;!) 

commutes. 

3.4 AXIOMS 

What follows is a list of conditions that a derivator D might satisfy but 

which are not part of the satup per sa. 

functor 

(DER - 1) For any finite sat !l"'" I of snaIl categories, the canonical -n 

induced by the inclusions 

n 
!t -+ 1L ~ (1 ~ t ~ n) 

k=l 

is an equivalence and DQ is equivalent to !. 

(DER - 2) For any small category!, the functors 

DK. :DI -+ Dl 
~ - - (i E Ob !) 

constitute a conservative family I i.e. I if X,Y E Ob D! and f:X -+ Y is a n:orphism 

such that ViE Ob I, DK. f is an isorrorphism in Dl, then f is an iSO!IOrphism in Dr. - ~ - -

(RDER - 3) Every F E t-t:>r CAT admits a right horrotopy Kan extension in D. 
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(illER - 3) Every F E Mer CAT admits a left horrotopy Kan extension in O. 

(RDER - 4) For any F:! -+ ~ and for any j E Ob ~, 

is a natural isarorphisn. 

(illER - 4) For any F:! -+ ~ and for any j E Ob ~, 

ill:Dp'\I' 0 O.pro -+ OK. 0 OF, J _. J J. 

is a natural isarorphism. 

(OER - 5) For any finite, free category! and for any sma.ll category ~, 

the functor 

d!,~:O(! x ~) -+ [!OP,O~] 

is full and has a representative .iroa.ge. 

N • B. Tacitly, RDER - 4 presupposes RDER - 3 and illER - 4 presupposes illER - 3. 

3.4.1 OEFINITICN let 0 be a deri vator. 

• 0 is said to be a right honotopy theory if OER - 1, OER - 2, RDER - 3, 

and RDER - 4 are satisfied. 

• 0 is said to be a left horrotopy theory OER - 1, OER - 2, illER - 3, 

and illER - 4 are satisfied. 

N.B. 0 is said to be a honotopy theory if 0 is both a right and left harotopy 

theory. 

3.4.2 EXAMPLE let ~ be a category and take 0 = 0c (cf. 3.2.12). 

• AsSUI!E that g is complete -- then 0c is a right honotopy theory. 
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• Assurre that g is cocorrplete - then DC is a left honDtopy theory. 

3.4.3 I...EMr!'lA Suppos= that DER - 1 and RDER - 3 are in force - then V !, 01 

ha s finite products. 

PRCX)F It suffices to prove that g has binary products and a object. 

Recall that O! has b:inary products iff the diagonal functor 

l10I : O! -+ O! x O! has a righ t ad pint. let 'V I:! J1 ! -+ ! be the folding map --

then there is a COITI11Utative diagram 

01 ----> 0 (! _II !) 

l101 

1 1 
DI x DI ----- 01 x Dr. - - -

Since O'VI has a right adjoint and since the vertical arrow on the right is an 

equivalence, it follows that l101 has a right adjoint. 

Recall that O! has a final object iff the functor POI: D! -+ ! has 

a right adPint. let iI:Q -+ ! be the ins=rtion -- then there is a ccmnutative 

diagram 

Oil 
-01 - > DO 

pod 1 
1 !. -
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Since DiI has a right adpint and since the vertical arrovl on the right is an 

equivalence, it follows that PDI has a right adpint. 

3.4.4 LEMMA Suppose that DER - 1 and illER - 3 are in force -- then V !, DI 

has finite coproducts. 

let D be a derivator -- then for any s:nall category! and any i E Db !, there 

is a com:nutative diagram 

DI > I!OP ,D!] 

DKi 1 1 (K?P) * 
~ 

(cf.3.3.11). 

Dl Dl 

3.4.5 LEMMA The derivator D satisfies DER - 2 iff V ! E Db CAT, the functor 

dI is conservative. 

PRCOF The (K~P) * constitute a conservative family. 

[Note: It is clear that the derivator Dc attached to a category g satisfies 

DER - 2 (levelwise is:::morphisms are isorrorphisms).] 

3.5 D-EQUIVALENCES 

let D be a derivator. Suppose that !,~ are small categories and Fq -+ ~ is 

a functor -- then upon application of D, the com:nutative diagram 

F 
I > J -

P!l lp~ 
1 1 - -
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leads to a comnutative diagram 

OF 
01 <---- OJ 

t 
IDp~ 

01 ========== 01 

Eio, for any pair X,Y E Ob O;h, there is an arrOW' 

na:rrely 

i.e. , 

is sent by <Px,Y to 

OFf 
DpIX = OF 0 Dp,:rX --> OF 0 DpJY = DpIY. 

- -

3.5.1 DEFINITION A f'lIDctor F:I -)- J is a O-equivalence v X,Y E Ob O;h, the 

is bijective. 

3.5.2 NOrATICN Write Wo for the class of O-equi valences in MDr CAT. 

N.B. It is clear that (CAT,WO) is a category pair. 
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3.5.3 LEMMA OlD is saturated (that is, OlD = WO (cf. 1.1. 9». 

PRO)F Given X,Y E Ob D!, define a functor 

by the specification 

Accordingly, from the definitions, if F is a D-equivalence, then <Px,1' is a 

bijection, so there is a ccmnutative diagram 

CAT -------- CAT 

1 $x,y 

W-lCAT -------'> SETOP. 
D-

isarorphism or still, <Px,yFo is a bijection. Since this is true of all X,Y E Db D!:, 

it follows that F 0 is a D-equi valence: FOE OlD. 

N.B. It is a corollary b~t OlD is weakly saturated (cf. 2.3.15). 

3.5.4 DEFINITION An object! E Db CAT is D-aspherical if PI=! -)- ! is a 

D-equivalence. 

3.5.5 LEMMA I is D-aspherical iff the functor DpI:D! -)- D! is fully faithful. 
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PROOF Given X,Y E Ob D!, to say that the arrow 

Mor(X,Y) -+ Mor (Dp~,DpIY) 
- -

is bijective arrounts to saying that the functor DpI:D! -+ D! is fully faithful. 

3.5.6 LEMMA. Suppose that ! has a final object - then ! is D-aspherical. 

PROOF If ! has a final object, then PI has a right ad::pint which is necessarily 

fully faithful. Therefore DpI is fully faithful (cf. 3.2.3), s::> 3.5.5 is applicable. 

3.5.7 DEFINITIOO A functor F:! -+ ~ is D-aspherical if V j E Ob~, the functor 

is a D-equivalence. 

3.5.8 LEMMA The functor F:I -+ J is D-aspherical iff V j E Ob~, the category 

!/ j is D-aspherical. 

PROOF Since ~j has a final object, it is D-aspherical (cf. 3.5.6), thus the 

arrow ~/j -+ ! is a D-equivalence. This said, consider the com:nutative diagram 

F/j 
Yj ------'> ~/j 

p!ljl lp~/j 

1==========1 
3.5.9 LEMMA Suppose that the functor F:! -+ ~ admits a right ad::pint G:~ -+ ! -­

then F is D-aspherical. 

PROOF ViE Ob I and V j E Ob ~, we have 

Mor(Fi,j) ~ Mor(i,Gj). 
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Therefore the category !/j is isarrorphic to the category !/Gj. But yGj has a 

final object, thus YGj is D-aspherica1 (cf. 3.5.6), hence the same is true of 

Y j and one ma.y then quote 3.5.8. 

3.5.10 EXAMPLE An equivalence of srra11 categories is D-aspherical. 

Suppose that RDER - 3 is in force. let F:I -+ J be a flIDctor - then the 

com:nu ta tive diagram 

I-----> 1 

J-----> 1 

generates an arrow 

(cf. 3.3.6) 

or still, utJOn postcamposing with DpJt' an arrOVl 

3.5.11 LEMMA Under RDER - 3, a flIDctor F:! -+ ~ is a D-equiva1ence the arrow 

is an isarrorphism (in [D!., D!] ) . 
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PRCX)F If F:! -+ ~ is a D-equivalence, then 'if Y,X E Ob O!, the arrow 

Mor(DpJY'Dp~) -+ I>br(DpIY'Dp~) 
- - --

is bijective or still, by adjunction, the arrow 

is bi jec ti ve, which irrplies that the arrow 

DpJ! 0 Dp~ -+ DpI! 0 Dprx 
- - -

is an isar:rorphisn. Run the argurrent backwards for the converse. 

Henceforth it will be assurred that D satisfies DER - 2, RDER - 3, and RDER - 4. 

3.5.12 LEMr>1A let F: I -+ J be a functor - then the arrow 

is an isar:rorphism (in [D!,~]) iff 'if j E Ob~, the arrow 

OK. 0 DpJ -+ OK. 0 OFt 0 DpI 
J _ J 

is an isarorphism (in [O!,O!]) (cf. DER - 2) • 

is idOl.] 

3. 5.13 LEMMA let F: I -+ J be a functor. Ass1.lIIe: The arrow 

is an isorrorphism - then F is O-aspherical. 
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PRCX)F Given j E Ob ~, consider the diagram 

pro, 
J PI 

I/' _ J > I > 1 

PI /, _ J 1 iF (cf. 3.3.7). 

1 > J 

K, 
J 

PI 0 pro, = PI /' => Dpro, 0 DpI = DpI/'. _ J _ J J _ _ J 

And, thanks to RDER - 4, there is an iscm::>rphism 

or still, an isorrorphism 

or still, an isonorphien 

But this rreans that Dp.!./j is fully faithful (the last arrow being an arrow of 

adjunction), hence Yj is D-aspherical (cf. 3.5.5). since this is the case of 

every j E Ob ~, it follows that F is D-aspherical (cf. 3.5.8). 

3.5.14 LEMMA let F: I -+ J be a functor. AsS'lme: F is D-aspherical - then 

the arrow 
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is an iSJ!lOrphism. 

PR<X>F OWing to 3.5.8, V j E Ob ~, Yj D-aspherica1, thus the functor 

Dp:E/j is fully faithful (cf. 3.5.5). Using the notation of 3.5.13, fonn the 

conmuta ti ve diagram 

DpI 

to see that the arrow 

is an iSJ!lOrphisn. But j E Db ~ is arbitrary, thus the arrow 

is an iSJ!lOrphism (cf. 3.5.12). 

3.5.15 LEMMA If F:I + J is D-aspherica1, then F is a D-equivalence. 

PR(X)F The arrow 

is an isarrorphism (cf • 3. 5.14). 'lilerefore the arrow 

DPJt 0 DP~ + DP~t 0 OFt 0 DPI 

= D(P~ 0 F)t 0 DPI 

is an isarrorphism, so F is a D-equivalence (cf. 3.5.11). 
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3. 5 .16 REMARK Consider a COIJ:IUU ta ti ve diagram 

F 
r > J 

K K 

of small categories. AsSl.lrl:e: V k E Ob!:S, the arrow !/k -+ yk is a D-equivalence -­

then F is a D-equivalence. 

[This is the relative version of 3.5.15 and its proof nms along similar lines.] 

N.B. The developrrents leading to 3.5.15 and 3.5.16 v;ere predicated on the 

suPf.XJsition that D satisfies DER - 2, ROER - 3, and ROER - 4. The sane conclusions 

obtain if instead D sa tisfies DER - 2, illER - 3, and illER - 4. 

3.5.17 THEORErvl Suppose that D is a right (left) horrotopy theo:ry -- then W
D 

is 

a fundarrental localizer. 

PR(X)F Q1e has only to cite 3.5.3, 3.5.6, and 3.5.16. 

3.5.18 REr.tfARK Consequently, if D is a right (left) horrotopy theo:ry, then 

Woo c WD (cf. C.7.1). 

3.5.19 LEMMA Suppose that Dis a horrotopy theo:ry. let F:,! -+ ~ be a functor, 

FOP: ,!OP -+ ~OP its opposite -- then F is a D-equivalence iff FOP is a D-equivalence 

(cf. C.2. 9) . 

3.5.20 LEMMA Supp:::>se that D is a horrotopy theo:ry. let F:,! -+ ~ be a functor, 

FOP rOP JOP 'ts '-I- th F' D 'val 'ff OP. DOP . 1 : _ -+ _ 1 oppos1L.e - en 1S a -eqll1 ence 1 F 1S a -eqll1va ence. 
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D is a lDrrDtopy theory. 
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WD = W OP 
D 

3.6 PRINCIPAL EXAMPLES 

Recall that if (S,W) is a category pair, 't.;en D(S,W} is the derivator that sends 

-1 OP ! E Ob CAT to W OP [! ,S] 
I 

(cf. 3.2 .l) • 

3.6.1 THEOREM Let S be a carrplete rrodel category, W its class of ~ equiv­

alences -- then D (S,W) is a right harcotnpy theory. 

3. 6.2 THEOREM Let S be a cocClltplete m.::xiel category, Wits class of 'IAl'eak equi v­

alences -- then D(S,W) is a left homotopy theory. 

3. 6 • 3 THEOREM Let S be a cClltplete and COCClItplete m::x1el ca tegory, (rJ its class 

of 'IAl'eak equivalences -- then 0 (S,W) is a horrotnpy theory. 

3.6.4 EXAMPLE Using t.."le notation of 0.24.3, ner induces an equivalence 

of harcotopy theories. 

[Note: It is an interesting point of detail that W coincides with the class 
00 

of D(CAT,Woo}-equivalences (cf. B.8.14).] 

Let S,S' be complete and cocomplete m::x1el categories. Suppose that 
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F:C -+ C' 

F' :C' -+ C 

are a rocx:lel pair -- then the functors 

LF:HC -+ Ht' 

RF' :HC' -+ HC 

exis t and are an ad joint pair. 

In general, there are arrows 

F* 
[,!op ,£] » [,!op,£'] 

F' * 
[,!op,£'] » [,!op ,£] 

and these functor categories are corrplete and cocorrplete but there is no claim that 

they are rrodel categories with 'Weak equivalences 

w op 
I 

I 

W OP 
I 

[Note: Recall, l'lo;.;ever, that they are at least weak rocx:lel categories (cf. 2. 7. 5 

and 2.7.6).] 

3. 6.5 THEOREM There exist 
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such that V !, 

is the left derived ftmctor of F * and 

is the right derived ftmctor of F~. Moreover, (FI,Fi) is an adpint pair. 

N.B. These results are due to Ci sin ski t . 

The aSSlDllPtion that ~ is a nndel category (complete, cocomplete, or both) can 

be Slbstantially ~ak.ened. 

3.6.6 THEORll1. let ~ be a horrotopically complete fibra tian category, Wits 

class of ~ak equivalences -- then 0 (~,W) is a right horrotopy theory. 

3.6.7 THEOREM. let ~ be a harotopically cocamplete cofibration category, Wits 

class of 'Weak equivalences -- then 0 (~,W) is a left hom::>topy theory. 

3.6.8 THEORErJ[ let ~ be a weak :m::x'lel category, W its class of ~ak equivalences -­

then D(~,W) is a harotopy theory. 

N.B. tt These resul ts are due to Radulescu-Banu • 

t An.n.. Ma:.t:h. ~e Pa.6c.a.l 10 (2003), 195-244. 

tt arXiv:math/06l0009 



35. 

3.6.9 REMARK All the deri va tors D (£, w) arising above also verify DER - 5. 

Turning to the prcx:>fs, we obviously have 

3.6.6 => 3.6.1 

3.6.7 => 3.6.2 

3.6.8 => 3.6.3 

and, of course, 

3.6.1 + 3.6.2 => 3.6.3 

3.6.6 + 3.6.7 => 3.6.8. 

'lb illustrate the main ideas, we shall consider 3.6.1, the discussion per 

3. 6. 6 being similar but rrore complicated. 

3.6.10 NaI'AT1ON Given a srrall category !, let V! be the category whose objects 

are the pairs (m,u), where m ~ 0 is an integer and u: [m] -+ ! is a functor, a rror-

phism (m,u) -+ (n,v) being a rrorphism f: [m] -+ [n] of ~ such that the diagram 

f 
[m] -------'> [n] 

1------1 

camnutes. 

3.6.11 LEMMA The category V! is direct. 

(Define deg:Ob V! -+ ~~ by deg(m,u) = m.] 
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Write 

for the functor that sends (m,u) to u(m) • 

3.6.12 LEMMA A functor F:I + J induces a functor 

VF:V! + ~l~ «m,u) + (m,F 0 u» 

and the diagram 

~F 

V! > V~ 

T~l lT~ 
I > J 

F 

commutes. 

let £ be a conplete rrodel category, W its class of 'WIeak equivalellces. Put 

3.6.13 LEMMA Given a snaIl category !, the funct.6r 

is fully faithful and has a right adjoint 

[Note: 'lb ground this in reality, take ! = ! - then £!r/! ~ £!r1. But ~ 

is D-aspherical, thus the functor 
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is fully faithful (cf. 3.5.5). Since both ! and ~ are direct, the existence 

of Dp~t is automatic (cf. 3.6.l7).J 

3.6.14 RAPPEL Sup-pose that g is a corrplete m:xlel category and let! be a 

direct category -- then [!op ,gl in its injective structure is a nodel category 

(cf. 0.27.6). 

lid DER - 1: '!he canonical functor 

is bijective on objects, thus it need only be shown that it is fully faithful. 'lb 

this end, fonn the conmutative diagram 

1 

'Itlen the functors 

n 
----> TT o (!k) 

k=l 

1 

o ( .il Tr ) (= 0 (T ) 
k -k _, I !k 

IT DTr 
k -k 

k 

are fully faithful (cf. 3.6.13). en the other hand, 
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and V k, 

is a rocxiel category (cf. 3.6.14). Therefore the arrow 

is an equivalence of categories (cf. 0.1.29). 

[Note: Here DO !.] 

3.6.15 LEMlIA let ! be a srrall category, ~ a rrod.el category. Suppose that 

[!,~] admits a rrodel structure in which the 'Weak equivalences are levelwise -- then 

the 

constitute a conservative family. 

PROOF let f:X -+ Y be an arrow in !:! [!,~] • Replacing X by a cofibrant object 

and Y by a fibrant object, one can asSUIIE that f is an arrow in [!,~] (cf. 2.4.2). 

But then the result is obvious (consider D[r C]) . 
-'-
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Ad DER - 2: let! be a small category and let f E Mer O! be a rrorphism such 

that ViE Ob !, OKi f is an isarrorphism in 01 -- then the claim is that f is an 

isorrorphism in Dr. Given (m,u) E Ob ~/!' 

equals 

And so 

Tr 0 K( ):1 -+ I m,u - -

K ( ):1 -+ 1. u m - -

= OKu(m)f 

is an isarrorphism in 01. But [(V!) OP ,S] is a :m:xiel category (cf. 3.6.14), hence 

the 

constitute a conservative family (cf. 3.6.15). Therefore OTrf is an isorrorphism in 

O~!, thus f is an isorrorphism in Of (cf. 3.6.13) (DTr is fully faithful, hence 

reflects isorrorphisms) . 

3. 6.16 REMARK '1lle generalization of the preceding considerations is ernlxxiied 

in the dual of 2.6.1 (Le., with S a hamotopically complete fibration category). 

3.6.17 RAPPEL Suppose that S is a complete :m:xiel category. let f,~ be direct 

categories and let F:! -+ ~ be a ftmctor. Equip 

[!OP,S] 

[~OP,S] 
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with their injective structures (cf. 3.6.14) -- then the arrow 

has a right adjoint 

(cf. 0.26.17). 

[Note: The supposition in this citation that ~ is canbinatoria1 was made 

there only to ensure the existence of the injective node1 strucblre, thus is not 

needed here. In tenns of the derivator D (~,W)' we have 

Ad RDER - 3: The claim is that for every flIDctor F=! ~~, the flIDctor 

DF:DJ ~ Dr - -
has a right ad joint 

'Ib establish this, fonn the carmutative diagram 

V! C> ~(~ 

T!l lT~ 
I > J 

F 
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and pass to the square 

O~t 
O~! > O~~ 

~!r lOT,rt (cf. 3.6.13) 

Or ,. . . . • > OJ , 
OFt 

OF t being defined as the corrp.::>si tion 

Bearing in rrrind that DTr is fully faithful (cf. 3.6.13), OFt is seen to be a 

right adjoint for OF. 

Ad RDER - 4: Let F:! -+ ~ be a functor and fix j E Ob J -- then the claim is 

that the arrow 

is a natural isorrorphism. 

step 1: Check that the claim holds when r is direct. 

Step 2: Take! arbitrary and consider the 2-diagram (cf. 3. 3. 7) 

pro. 
J 

l------>J 

K. 
J 
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Then by step 1, 

Step 3: Since the flIDcrors DlI and DlI /. are fully faithful (cf. 3.6.13), _ _ J 

it follows that 

DK, 0 OFt::::: DKj 0 OFt 0 Dllt 0 DlI J 

~ OK. o O(F 0 LIlt 0 OlI ~ 

J 

- (Dp~yj)t o Dpro, 0 DlI - J 

::::: DpI/'t 0 Ol_I/J't 0 OlI/' 0 Dpro. _ J _ J J 

::::: DpI/.t 0 Dpro" _ J J 

as desired. 

[Note: 'Ihe canonical arrow 

~(!/j) + (~!)/j 

is an ironorphism and the diagram 

pro. 
J 

~/!/j > ~! 

TYjl IT! 
II' _ J '> I 

pro, 
J 

corrmu tEs. ] 
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3.6.18 EXAMPLE let g be a caup1ete m:xle1 category, W its class of 'il'Jeak equiv­

alences - then D <g,W) is a right horrotopy theory (cf. 3.6.1). Given F:! -+ ~, write 

'Ihen F is a D <g,W) -equivalence iff V X E Ob g ( = Ob HC), the arrow 

ho1im opX -+ ho1im o~ 
J I - -

is an isorrorphism, there being an abuse of notation in that 

3.7 UNIVERSAL PROPERTIES 

Given categories g and ~, write [g,~]! for the full subcategory of [g,~] whose 

objects are the F:g -+ ~ that preserve co1irnits. 

3.7.1 RAPPEL Suppose that g is sma.11 and § is cocaup1ete -- then precomposition 
A 

with YC:~ -+ ~ induces an equivalence 

A 

[g,§J! -+ [g,§J 

of categories. 
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3. 7 . 2 EXJ.I.L'I.1PLE Take C = ! -- then ! ~ SET and there is an equivalence 

b:mce in particular there is an equivalence 

[SET,SET]! -+ SET (F -+ F{*}) 

under which idSET correSI?OIlds to a final object in SET. 

let 0, 0 I be h:Jrro topy theories and let ~ E MDr (0, 0') -- then given F:! -+ ~, 

there is a EqUare 

<PI 

01 :> 0'1 

DF,l lD'F! 

OJ :> O'J 
<P

J 

and a canonical arrow 

O'F 
! 

o <P -+ <P 0 
I J OF 1" 

3. 7. 3 NarATIOO Wri te H<l>1, (0, 0 I) for the full su1::rretaca t::egory of HCM (D , 0' ) --. 

whoffi objects are the ~ such that the arrow 

is an isarrorphism V F:! -+ ~. 

O'F ! 

let 1; be a small ca tegory -- then there is a canonical arrow 

SY
I 

1---:> SPREI (cf. 0.33.8). 
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Here 

SPREI = [!OP ,SISET] , 

which we shall endow with its projective structure (cf. 0.26.6). I.et HOT I be the 

horrotopy theory arising therefrom. 

3. 7 • 4 THEOREM The functor sY I induces a rrorphism 

of derivators and for every horrotopy theory 0, there is an equivalence 

of mataca tegories. 

3.7.5 EXAMPLE Take! = ! and let HOT = HOT1 , thus 

'n1en for every borrotopy theory 0, there is an equivalence 

H~1!(HOT,O) + O! (~+ ~1~[0]) 

of matacategories (cf. 3.2.15) • .Accordingly, choosing 0 = HOT, it follows that up 

to equivalence, 

HCM! (HOT, HOT) 

"is" 

HOT 1 = W-1SISET = HSISET. - 00 __ 

I.et 0 be a horrotopy theory and let C c M:>r O! be a class of IIDrphisms. 
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3.7.6 DEFINITION A horrotopical localization of 0 at e is a pair (LeD, Le), 

where LeD is a lnrrotopy t..""leory and 

sends the elements of e to isorrorphisms in LeD!. and is miversal w.r.t. this 

condition: For every horrotopy theory 0 I, the arrow 

HCM! (LeD,D') -7- HCM1,e(D,0') 

induced by Le is an equivalence of rretacategories, the symbol on the RHS standing 

for the full sub:retaca tegory of HCM I (0,0') wlx>se objec ts ~ have the property that -. 
the fmc tor 

Ii? :01 -7- 0'1 
1 - -

sends the element s of e to isorrorphi sns in 0 I !.. 

3. 7. 7 THEOREM t Let g be a left proper combinatorial m:::x:lel category, e c lvDr C 

a set. Fonn the m:::x:lel localization (~eS,Le) of g at e per 0.33.5 - then 

of horrotopy theories which is a homotopical localization of O(S,W) at Lwe (the 

:i.mage of e in 0 (g,W)!. = HC) • 

t Tabuada, arXiv:0706.2420 
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[Note: '!here fore 

D(L C,W )'] -c- c 

3.7.8 REMARK '!he harotopy theories that are equivalent to the D(S,W)' 'Where 

S is a left proper canbinatorial I'!lJdel category, are the hom:rt:opical lDCalizaticms 

of the HOTr for sare small category! (cf. 0.33.7). 



CHAPTER 4: SIMPLICIAL MODEL CATEGORIES 

4.1 SISET ENRICHMENTS 

4.2 MISCELLANEOUS EXAMPLES 

4.3 S-cAT 

4.4 SIfJPLICIAL ACTIONS 

4.5 SMC 

4.6 SIC 

4.7 SIMPLICIAL DIAGRAM CATEGORIES 

4.8 REALIZATION ANV TOTALIZATION 

4.9 HOMOTOPICAL ALGEBRA 



1. 

CHAPTER 4: SIMPLICIAL MODEL CATEGORIES 

4.1 SISET ENRICHMENTS 

What follows is a review of the terminology employed in enriched catego:r:y 

theo:r:y specialized to the case when the 1.IDderlying syrmetric rronoidal catego:r:y 

is SISET. 

4.1.1 DEFINITION An S-catego:r:y m consists of a class 0 (the objects) and a 

f1.IDction that assigns to each ordered pair X,Y E 0 a simplicial set HCM(X,Y) plus 

simplicial maps 

CX,Y,Z:HOv1(X,Y) x HOv1(Y,Z} -+ HCN.(X,Z} 

and 

satisfying the following conditions. 

(S-l) 'Ihe diagram 

id x C 
HCM(X,Y) x (HOv1(Y, Z) x HCN(Z,W)} > HQ'v1(X,Y) x HCM(Y,W} 

Ai 
(HOv1(X,Y) x HOv1(Y, Z}) x HCM(Z,W} C 

C x idl 
HOv1(X,Z} x HOv1(Z,W) )- HQ\1(X,W} 

C 

COImU.l tes. 
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(S-2) The diagram 

L R 
1'::.[0] x HCM(X,Y) ---> HCl4(X,Y) <:---- HCM(X, Y) x MO] 

lid XI 

HCM(X,X) x HCM(X,Y) --> HCM(X,Y) <-- HCM(X,Y) x HCM(Y,Y) 
C C 

COIT:IlRl oos • 

The tmderlying category urn of an S-category m has for its class of objects 

the class 0, .r.t:>r(X,Y) being the set Nat(MO] ,HCM(X,Y» (= HCM(X,Y) 0). CorrpJsition 

!-t:>r(X,Y) x .r.t:>r(Y,Z) -+ .r.t:>r(X,Z) 

is calculated from 

f x g 
1'::.[0] ~ 1'::.[0] x 1'::.[0] ----> HCl1(X,Y) x HCM(Y,Z) -+ Ha·1(X,Z), 

while ~ serves as the identity in Mor (X,X) • 

4.1. 2 EXAMPLE Every category g can be regarded as an S-category: Replace 

.r.t:>r (X, Y) by 

HCM(X,Y) :: si Mor(X,Y) • 

'rhe associated tmderlying category is then isarrorphic to g. In fact, 

Nat(I'::.IO],si Mor(X,Y» 

~ si .r.t:>r(x,Y)O = .r.t:>r(X,Y). 

4.1.3 LEMMA Fix a class o. Consider the netacategory tAto whose objects are 

the categories with object class 0, the norphisms being the functors which are the 

identity on objects -- then the S-categories with object class 0 can be identified 
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with the simplicial objects in tAtO' 

[An S-category m gives rise to a simplicial object ~:~OP -+ tAto via 

[n] -+ ~1. , where for X,Y E Ob M = 0, Mer
M 

(X,Y) = HCM(X'Y)n' Conversely, a -n -n -n 

simplicial object~:~OP -+ tAto determines an S-category m if for X,Y E 0, 

HCM{X,Y) = {f E Mer M :dam f = X & cod f = y}.] n -n 

N.B. An object of [~oP ,CAT] corresponds to an S-category iff its underlying 

simplicial set of objects is a constant simplicial set, say si 0 for same set O. 

4.1. 4 CCNSTRUCl'ICN Suppose that m is an S-category with object class 0 -- then 

its op];X)site mOP is the S-category defined by 

OP 
• 0 = OJ 

• J:I(MOP (X, Y) = J:I(M (Y ,X) i 

• ~~P -c -X,Y,Z - Z,Y,X 0 THOM(Y,X),HOM(Z,Y); 

OP 
• IX =~. 

4.1. 5 CCNSTRUCl'ICN Sup];X)se that m and m' are S-categories with object classes 

o and 0' -- then their product m x m' is the S-category with object class 0 x 0' 

and 

HOM( (X,X'), (Y,Y'» = HOM(X,Y) X HCM(X' ,Y'). 

[Note: 'll1e definitions of 

c(X,X'),(Y,Y'),(Z,Z') and I(X,X') 

are IIwhat they have to be If • ] 
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4.1.6 DEFINITlrn Suppose that m and m' are S-categories with object classes 

° and 0' -- then an S-functor F:m + m' is the specification of a rule that assigns 

to each object X E ° an object FX E 0' and the specification of a rule that assigns 

to each ordered pair X, YEO a nnrphism 

FX, y:HCM(X,Y) + HCM(FX,FY) 

of simplicial sets such that the diagram 

c 
HCM(X,Y) x HCM(Y,Z) > H<::M (X, Z) 

FX,y x Fy,Z 

1 1 FX,Z 

HCM(FX,FY) x HCM(FY ,FZ) > HG1f(FX,FZ) 
c 

cornnutes and the equality FX,x 0 IX = IFX obtains. 

[Note: The underlying functor UF:Um + unt' sends X to FX and f:t,[O] + HCM(X,Y) 

to FX,Y 0 f.l 

4.1. 7 EXAMPLE For any S-category m, 

HCM:moP 
x m + SISET 

is an S-functor. 

N.B. The opposite of an S-functor F:ffi + m' is an S-functor FOP:mOP 
+ m'oP. 

4.1.8 NarATIrn Let S-tAt denote the n:etacategory whose objects are the 

S-categories and whose nnrphisms are the S-functors between them. 

4.1. 9 DEFINITlOO Suppose that m, m' are S-categories and F ,G: m + m' are 
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S-functors - then an S-natural transfonnation 3 from F to G is a collection of 

simplicial maps 

for which the diagram 

MO] x HCM(X,Y)------~ HCM(FX,GX) x HCM(GX,GY} 

HCM(FX,GY} 

HCM(X,Y} x MO] -------'~ HCM(FX,FY) x HOO(FY ,GY) 

conmutes. 

[Note: Take ro l = SISET (viewed as an S-category :per 4.2.l) -- then here an 

S-natural transfonnation 3 fram F to G is a collection of simplicial maps 

rendering the diagram 

corrmu tati ve. ) 

;;:; ·FX + GX 
~x' 

FX,y 
HCM(X,Y) 

~'Yl 
map (GX,GY) 

0;;:; 
-X 

>- map (FX,FY) 

lV 
~ map(FX,GY) 

4.1.10 NOI'ATICN Given S-categories m,ml, let MarS (m,ml) stand for the 
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S-functors m + m' and given S-functors F,G:m + m', let NatS(F,G) stand for the 

S-natural transfo:rmatians ~ from F to G -- then by [m,m'] S we shall understand 

the rretacategory whose objects are the elerrents of MorS (m,ml) and whose rrorphisms 

are the S-natural transfo:rmations. 

4.2 MISCELLANEOUS EXAMPLES 

One way to produce S-categories is to start with a category ~ and then 

introduce 

HOO(X,Y) '~,Y,Z' and lX, 

subject to S-l and S-2. In sore situations, the underlying category is isorrorphic 

to ~ itself but this need not be the case in general (cf. 4.2.5 infra). 

4.2.1 EXAMPLE SISET is an S-category if 

HOO(X,Y = map(X,y). 

'!he associated underlying category is then isorrorphic to SISET. In fact, 

Nat(~[O],HOO(X,Y» ~ Nat(~[Ol,map(X,Y» 

~ ma.p(X,y)0 

~ Nat (X,Y) • 

4.2.2 EXAMPLE CAT is an S-category if 

HOO(!,~) = ner[!,~]. 

Here C!,~,!5 is the composition 

ner[!,~] x ner[~,!5] 

~ ner([!,~] x [~,!5]) + ner[!,~] 
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and 

is the result of applying ner to the canonical arrow [0] -+ [!,!] (0 -+ idr ). 

[Note: We have 

Nat(~[O],ner[!,~]) ~ Nat(ner[O],ner[!,~J) 

'Iherefore the associated tmderlying category is isorrorphic to CAT.] 

4. 2 • 3 EXAMPLE a:;H is an S-category HOM (X,Y) is the simplicial set which 

at level n is given by 

n 
HOM(X'Y)n = C(X xk ~ ,Y) (n ~ 0). 

'!he associated tmderlying category is then isarrorphic to mH. In fact, 

Nat(~[O],HOM(X,Y» 

~ HOM(X,y)O 

:::: C(X xk MO] ,Y) 

~ C(X,Y). 

4.2.4 REMARK Let g hE:! a category with finite products. Suppose that r:~ -+ g 

is a cosimplicial object such that f(CO]) is a final object in g -- then the pre-

scription 

HOM (X,Y) = Mor(X x f([n]),Y) (n ~ 0) 
n 

equips g with the structure of an S-category whose tmderlying category is isorrorphic 

to c. 
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[Note: 

• Take g = SlSET and let fern]} = ti.[n] to recover 4.2.1. 

• Take C = eM and let f([n]) = [n] to recover 4.2.2. 

V n 2: 0, 

Mor(l x [n],J} z Mor([n] ,[1,J]) = ner [1,J].] 
- - -- n--

n 
• Take g = CGH and let f([n]) = ti. to recover 4.2.3.] 

4.2.4 EXAMPIE Define a functor ~OP -+ S1SET by sending [n] to Ml]n and 

o. to d. 
1. 1. 

(i = 0) 

, where 

cr. to s. 
1. 1. (i = n) 

Now fix a srtlClll category g. Given X,Y E Ob g, let C = C(X,Y) be the cosimplicial 

set specified by taking for C(X,y)n the set of all functors F: [n + 1] -+ C with 

FO = X, Fn+l = Y and letting 

be the assignments 

Ccr. :cf1 -+ en-I 
1. 

-+ (fO, •• ·,f. l,id,f., ••• ,f) 
1.- 1. n 
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Put 

Since 

one can introduce a "composition" rule and a "unit" rule satisfying the axians. 

'Itle upshot, therefore, is an S-category PRC with 0 = Ob g. 

[Note: '1lle underlying category UfRC is the free category on Ob g having one 

generator for each nonidentity rrorpbism in g.] 

4.3 S-cAT 

An S-category is small if its class of objects is a set. 

4.3.1 NOTATION let S-cAT denote the category whose objects are the small 

S-categories and whose rrorpbisrns are the S-fl.mctors between them. 

N.B. Typically, elerrents of S-cAT are denoted by 1,3 ,K, •.. and their object 

sets by 111,131, IKI , •... 

4.3.2 THEOREMt S-cAT is carplete and coccrnplete. 

4.3.3 THEOREMtt S-cAT is presentable. 

4.3.4 LEMMA S-cAT is a syrmetric rronoidal category (cf. 4.1. 5) • 

Suppose that I is a sma.ll S-category and m is an arbitrary S-category -- then 

t Wolff, J. PuJte Appl. A.tgebJut! {1974}, 123-135. 

tt Kelly-Lack, Theoftlj Appl. categ. ~ {200l}, 555-575. 
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MbrS (I,m) is the object class of an S-catego:ry 

S [I,m]. 

Proof: Given S-functors F,G:I -+ m, let HCM(F,G) be the equalizer 

HCM(F ,G) ---~n 

iEIII 

in SISET. 

HCM(Fi,Gi)--~ n rnap{HOM(i,j),HCM{Fi,Gj» 

I I I 

[Note: There is an S-functor 

E:S[I,m] x I -+ m 

called evaluation.] 

N. B. The underlying catego:ry 

uS [I,m] 

is isonorphic to [I,m] S. 

4.3.5 LEMMA If 

F:I -+ SISET 

or if 

F: IOP -+ SISET, 

then in SISET, 

HCM(HCM(i,--),F) ~ Fi 

or 

HOM(HOM(--,i),F) ~ Fi. 

['!his is the "enriched." Yoneda lenma.] 

4.3.6 LEMMA Let I,J,K be small S-categories -- then 

MOrS(I x J,K) ~ MsrS(I,S[J,K]). 
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4.3. 7 SCHOLIUM S-cAT is cartesian closed. 

It is also true that S-cAT is an S-category. 

4. 3. 8 COOSTRIJCl'ICN let I be a srna.ll S-category • Given n ;::: 0, define a srna.ll 

S-category I (n) by stipulating that II (n) I = III and 

'Ihen 

=> 

HOM(n) (i,j) = map(6[n],HOM(i,j». 

map (6[O),HOM(i, j» ([n]) 

~ Nat(6[0] x 6[n],HOM(i,j» 

~ Nat(6[n],HOM(i,j» 

~ HOM(i,j) 
n 

And there are canonical arrows 

I > I (n) (6[n] -> 6[0]) 

I (n) (n) __ > I (n) (6 [nl 
dia 

--~:> Mnl x Mn]). 

Suppose now that I and J are small S-categories -- then the prescription 

HOM(I,J)n = Mor
S 

(I,J(n» (n ;::: 0) 

defines a simplicial set HOM(I,J). 

4.3.9 LEMMA Under the preceding operations, S-cAT is an S-category. 
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['lb define 

CI,J,K:HOM(I,J) x HOM(J,K) ~ Hal(I,K), 

consider 

'!hen one arrives at 

via the diagram 

J K(n) 

1 1 
I __ > J{n)_> K(n) (n) _-----:> K en) .] 

Every small category g can be regarded as a small S-category (cf. 4.1.2) and 

this association defines a functor 

4.3.10 I..EM1A The functor lS has a right adjoint S-cAT ~ CAT, viz. the rule 

that sends a given I E Cb S-cAT to its underlying category UI. 

4.3.11 REMARK Given a small category ~ and an S-category m, there is an iso­

rrorphism 

of categories. 

4. 3.12 LEMMA The functor 1 S has a left adjoint, viz. the rule that sends a 

given I E Ob S-cAT to the category TIOI whose objects are those of I with 

M::>r{i,j) = TIO(HCM{i,j» (i,j E III). 
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4.3.13 DEFINITICN let X, J be small S-categories, F: X -+ J an S-functor -­

them. F is a DK-equi valence if Vi, j E I X I, the simplicial ma.p 

F. ,:HCM(i,j) -+ HCM(Fi,Fj) 
1., J 

is a simplicial weak equivalence and 

is surjective on iSOllDrphism classes. 

4.3.14 EXAMPLE let f,Q be small categories - then the DK-equivalences 

1 S~~ -+ 1 SQ are in a one-to-one correspondence with the equivalences f -+ Q. 

[If X is a set, then the ge<::JIretric realization of si X is X equipped with the 

discrete to:pology. And if A,B are topological spaces, each with the discrete 

to.t;:ology, and if 4>:A -+ B is a hom:::>topy equivalence, then 4> is bijective.] 

4.3.15 DEFINITICN let X, J be small S-categories, F: X -+ J an S-functor -- then 

F is a DK-fibration if vi, j E I X I, the simplicial map 

F .. :HCM(i,j) -+ HCM(Fi,Fj) 
1.,) 

is a fibration in SISET (Karl Structure) and 

is a fibration in CAT (Internal Structure). 

4.3.16 THEOREMt S-cAT admits a cofibrantly generated m:Xlel structure in which 

the -weak equivalences are the DK-equivalences and the fibrations are the DK-fibra-

tions. 

t Bergner, TILan6. AmM. Ma.t:h. Sac. 359 (2007), 2043-2058; see also Lurie, 

Ann~ 06 Ma.t:h. Studi~ 170 (2009),852-863. 
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[Note: We shall refer to this m::::rlel structure as the Bergner structure 

(,which is therefore ca.nbinatorial (cf • 4 • 3. 3) ) .] 

Here are SOI'EE additional facts. 

• If F:! -+ J is a cofibration in the Bergner structure, then Vi, j E I! I , 

F. . :HCM(i, j) -+ HCM(Fi,Fj) 
1,J 

is an injective simplicial map, thus is a cofibration in SISET (Kan Structure). 

• The Bergner structure is proper (Bergner proved right proper and Lurie 

proved. left proper) • 

• A small S-category r. is fibrant in the Bergner structure iff vi, j E I! I, 
HCM(i,j) is a Kan ca:nplex, thus is fibrant in SISET (Kan Structure). 

I 
It is also possible to explicate the generating sets , matters being 

J 

simplest for I. 

4 • 3.17 NCYrATION Given a simplicial set X, let Ex be the small S-category with 

two objects a,b and 

HCM(a,a) = b. [0] HCM(a,b) = X 

HCM{b,b) = b.[O], HCM(b,a) = MOl. 

4.3.18 NCYrATION Let [O]S be the small S-category with one object x and 

HCM{x,x) = b. [0] • 

One can then take for I the arrows E. -+ E b. [n] (n:2: 0) plus the arrow 
Mn] 

~ -+ [0] S (~ the sma.ll S-category with no objects) • 
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{Note: The arrOlNS LArk,n] + LMn] (O ~ k ~ n, n ~ 1) are part of J but the 

full description requires npre input.] 

4. 3.19 DEFINITICN Let 

t:t, + S-cAT 

be the functor that sends [n] to the srrall S-category whose objects are those of 

[n] and with 

t,[l] j-i-l (j > i) 

HCl1(i,j) = MO] (j = i) 

. 
t, [0] (j < i). 

[Note: Let P. . be the poset of all subsets of {i, i + 1, .•. , j} containing i 
~,J 

and j (ordered by inclusion) - then the nerve of P .. is iSOIIDrphic to (Ml] )j-i-l 
~,J 

. 
if j > i, MO] if j = i, and MO] if j < i. Conposition is defined using the 

pairings 

P .. x P. k + P. k 
~,J J, ~, 

given by taking unions.] 

Bearing in mind that S-cAT is, in particular, cocanplete (cf • 4.3.2), pass 

from 

t E Ob [~, S-cAT] 

to the realization functor 
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thus 

and 

4.3.20 LEMMA Let f:X ~ Y be a simplicial map -- then f is a categorical weak 

equivalence iff r Cf: r ex ~ r CY is a DK-equivalence. 

and 

l):mote the singular functor sinC by ner S' so 

nerS:S-cAT + SISET 

4.3.21 REMARK '!here is no a priori connection between ner S 1 and ner Ul. en 

the other hand, for any small category £, 

ner £ ~ nerSl.S£. 

4.3.22 THEOREM Consider the setup 

---> 
SISET (Joyal Structure) S-cAT (Bergner Structure). 

<---
nerS 

Then (r C,nerS) is a rrodel equivalence, thus the adjoint pair (lr C,RnerS) is an 
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adjoint equivalence of horrotopy categories: 

----,,> 

HSISET HS-cAT. 
<.----

[Note: Compare this assertion with that of 0.22.5.] 

4.3.23 REMARK It is not difficult to see that r t preserves cofibrations. 

Accordingly, in view of 4.3.20, (rt,nerS) is at least a nodel pair. FIcMever, the 

verification that (r t,nerS) is actually a nodel equivalence lies deeper (canplete 

details can be found in Dugger-Spivak t) • 

4.4 SIMPLICIAL ACTIONS 

4.4.1 RAPPEL Given a category £, SIC is the functor category [~OP ,£] and a 

simplicial object in £ is an object in SIC. 

4.4.2 DEFINITION Let £ be a category. Suppose that X,Y are simplicial objects 

in £ and let K be a simplicial set - then a fonnality f:xl]K -+ Y is a collection 

of nnrphisms f (k):X -+ Y in C, one for each n ~ 0 and k E Kn' such that 
n n n -

Ya 0 f (k) = f «Ka)k) 0 Xa, n m 

where a: [m] -+ [n]. 

4.4. 3 NOTATION Let 

For(X IK,Y) 

be the set of formalities f:xl=IK -+ Y. 

t arXiv:09ll.0469 
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[Note: As it stands, X[IK is just a symbol, not an object in SIC (but see 

belOW") .] 

4.4.4 EXN1PLE For (X I] MO] ,Y) can be identified with Nat(X,Y) • 

4.4.5 J...EM.1A let ~ be a category -- then the class of simplicial objects in 

~ is the object class of an S-category SIMC. 

PRCX)F Define HCM(X,Y) by the prescription 

HOM(X,Y) = For(XI-I~[n],y) (n ~ 0). n -

[Note: 

Nat(~[O],HCM(X,Y» ~ HOM(X,Y)O 

~ For(xl=I~[O],y) 

z Nat(X,Y) (cf. 4.4.4). 

Therefore the underlying category usn~ is isorrorphic to SIC.] 

4.4.6 DEFINITION Given a category ~, a simplicial action on ~ is a functor 

I]:g x SISET + g 

together with natural isorrorphisms A and R, where 

~,K,L:xl] (K x L) + (X[IK) I]L 

and 

~:X ~[O] + X, 

subject to the follOW"ing assurrptions. 
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(S~) The diagram 

A A 
xl-I (K x (L x M}) --> (XI]K) I] (L x M) ----'> ((XI]K) I]L) I-1M 

id'='Al IAI=lid 
x «K x L) x M) -----------> (xl] (K x L» I]M 

A 

carmutes. 

(~) The diagram 

A 
x I] (b,[0] x K)---->(xl=Ib,[O]) I=IK 

id[lLl lR lid 

X[IK ======= X[IK 

COImD.ltes. 

[Note: Every category admits a simplicial action, viz. the trivial simplicial 

action.] 

N • B. It is autanatic that the diagram 

A 
X (K x MO])----'>{xl]K) MO] 

idl=IRl lR 
X[]K =======X[IK 

COImD.ltes. 

4.4.7 EXAMPLE If is a simplicial action on g, then for every small category 

!, the cam:position 
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is a simplicial action on [!,g]. 

4.4.8 'IHEOREM let g be a category. Assurre: g admits a simplicial action 

I] -- then there is an S-category I]g such that g is iSOlIDrphic to the under­

lying category ul]g. 

PRCX)F Put 0 = Ob g and assign to each ordered pair X, YEO the simplicial 

set HCM(X, Y) defined by 

HCM(X,Y) = Mbr(xl-I~[n],y) (n ~ 0). 
n -

• Given X,Y,Z, let 

CX,Y,Z:HOM(X,y) x HCMCY,Z) + HOM(X,Z) 

be the simplicial map that sends 

f:xl]Mn] + Y 

g:y[IMn] + Z 

to the camposi te 

idl-ldia 
x[IMn] - > x[1 (Mn] x Mn]) 

A fl-lid g 
-->(x[IMn]) I]Mn] - :> Y[I~[n] --> Z. 

• Given X, let 

~:~[O] + HOM(X,X) 

be the simplicial map that sends [n] + [0] to 

R 
x[IMn] + xl]MO] --> x. 

call I]g the S-category arising from this data. That g is isarorphic to 

the underlying category u[lg can be seen by considering the f1IDctor which is the 
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identity on objects and sends a rrorphism f:X -+ Y in g to 

R f 
x[IMO] --> X --> Y, 

an elem:mt of 

Mor(xl=I~(o],y) = HOM{X,y)O ~ Nat(~[O],HOM(X,Y)). 

N.B. If I] is the trivial simplicial action, then 

HOM (X,Y) = si Mor{X,Y). 

4.4.9 EXAMPLE SISET admits a simplicial action: 

KI]L = K x L. 

'lherefore 

HOM(K,L) = map(K,L) (cf. 4.2.1). 

[Note: let! be a sma.ll category - then there is an induced simplicial 

action on [!,SISET], viz. 

(FI=IK)i Fi x K (cf.4.4.7). 

And 

HOM (F,G) ~ fi map (Fi,Gi) • 

In fact, 

HOM (F,G) ~ Nat(FI-\Mn] ,G) n -. 

~ J. Nat(Fi x ~[n],Gi) 
~ 

~ fi Nat(~[n],map(Fi,Gi) 

~ Nat (Mn] ,f. map (Fi,Gi) ) 
~ 

~ (f. map(Fi,Gi» .] 
~ n 
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4.4.10 EX&~LE CGH admits a simplicial action: 

Therefore 

n 
HG1(X'Y)n = C(X ~ Ii ,Y) (n;<: 0) (cf. 4.2.3). 

[Note: CGH is cartesian closed, the exponential object being 0 = kC(X,Y), 

where C (X, Y) carries the compact open topology. Accordingly, 

n n C(X x
k 

Ii ,Y) ~ C(1i x
k 

X,Y) 

~ sin 0 ([n]) , 

so 

Hrn(X,Y) ~ sin 0.] 

4.4.11 THEOREM let g be a category. Assume: g has coproducts -- then SIC 

admits a simplicial action I] such that I]SIC is isonnrphic to SIMC (cf. 4.4.5). 

PROOF Define X[IK by (X[[K)n = Kn • Xn ' thus for a: [m] -+ [n], 

K·X -->K.X -->K ·X. n n n m m m 

'!he syml::x:>l X 1:= I K also has another connotation (cf . 4.4 • 3). 'lb resolve the ambigu­

ity, note that there is a fonnality in:XI]K -+ X[IK, where 

in (k):X -+ (x I-IK) 
n n - n 

is the injection from Xn to Kn • Xn corresponding to k E Kn' r-breover, 
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is bijective and fmctorial. Therefore I]SIC and SIMC are isorrorphic. 

[Note: I] is the canonical simplicial action on SIC.] 

N .B. Take g ". SET - then the canonical simplicial action on SISET is the 

simplicial action of 4. 4 • 9. In fact, 

X[IK = X x K 

and 

(X x K) = X x K :::: K x X = K • X • 
n n n n n n n 

4.4.12 DEFINITIOO A simplicial action I] on a category g is said to be 

cartesian if V X E Ob g, the fmctor 

has a right adjoint. 

4.4.13 LEMMA let g be a category. Assune: g has coproducts - then the 

canonical simplicial action [I on SIC is cartesian. 

PROOF let HCM(X,Y) be the simplicial set figuring in the definition of SIMC, so 

HCM(X,Y) = For(xl-I~[n],y) 
n -

(cf. 4.4.5). 

Dafine 

by 

ev (f) = f (id[ ]):X + Y (n ~ 0). n n n n n 

Viewing ev as "evaluation", there is an induced fmctorial bijection 

Nat{K,HOM{X,Y» + For(xl=IK,Y). 

But 

(cf. 4.4.11). 

-----_ .... __ .. _ .. 
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Therefore I] is cartesian. 

4.4.14 LEMMA Suppose that the simplicial action [Ion C is cartesian - then 

V X E Ob g, 

HCM(X,-) :g -+ SISET 

is a right adjoint for 

PR<X>F The functor x[l- is a left adjoint, hence preserves co1imits. This 

said, given a simplicial set K, write 

Then 

Mbr(X K,Y) ~ Mor(X co1im. LHn.], Y) 
~ ~ 

~ lim. HCM(X,Y) 
~ n. 

~ 

~ lim. Nat(6[n.],HCM(X,Y» 
~ ~ 

~ Nat (co1im. 6[n.],HOM(X,Y» 
~ ~ 

~ Nat{K,HOM(X,Y». 

[Note: Here, of course, we are viewing g as an S-category per 4.4.8.] 

4.4.15 DEFINITIOO A simplicial action I] on a category g is said to be 

closed provided that it is cartesian and each of the functors -1]K:g -+ g has 

a right adjoint X -+ hau(K,X) I so 
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4.4.16 EXAMPLE '!he simplicial action on SISET is closed (cf • 4.4. 9), as is 

the simplicial action on am (cf. 4.4.10). 

4.4.17 EXAMPLE Take C = CAT. Bearing in mind that 

cat: SISET -+ CAT 

preserves finite prcxiucts, define a simplicial action 

b¥ the prescription 

'!hen 

[I :CAT x SISET -+ CAT 

Mor{!I=IK,~) = Mor{! x cat K,~) 

~ Mor(cat K,[!,~]) 

~ Nat(K,ner[!,~J). 

'Ih.erefore 1 = 1 is cartesian and 

HOM{!,~) = ner[!,~] (cf. 4.2.2). 

In addition, [I is closed with 

ham(K,X) = [cat K,XJ. 

4.4.18 EXAMPLE Take C = CAT. since TIl 0 cat preserves finite products and 

l:GRD -+ CAT is a right adjoint, the prescription 

!I=IK = X x 1 0 TIl 0 cat K 

defines a simplicial action 

I] :CAT x SISET -+ CAT. 
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Here 

~ Mor(cat K,l 0 iso[!,~) 

~ Nat{K,ner 0 1 0 iso(!,~) 

from which it follows that I] is cartesian and 

Furtherrrore, I is closed: 

hom{K,X) = [1 0 TIl 0 cat K,X). 

4.4.19 L'EM-1A Suppose that the simplicial action lone is closed -- then 

HOM{xl=IK,Y) ~ rnap(K,HOM{X,Y» ~ HOM{X,ham{K,Y». 

4.4.20 REMARK From the perspective of enriched category theory, this just 

!leans that the S-categ"Ory I] g is "tensored It and n cotensored" (cf. 4. 7 .14) • 

4.4.21 LEMMA. Suppose that I] is a closed simplicial action on g. Assurre: 

K = col.im. K. -- then v X, Y E Ob C_, 
1 1. 

PROOF In fact, 
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4.4.22 ~TION Let g be a complete category. Given a simplicial object X 

in g and a simplicial set K, put 

an object in g. 

4.4.23 EXAMPLE In view of the integral Yoneda lerrma, 

Therefore 

[Note: We have 

X ~ f [k] (~)M:>r( [k] ,-) • 

Xn ~ f [k] (~)M:>r( [k] , [n]) 

;::: f [k] (~) 6 [n] ( [k] ) 

6[n]k 
:::: f [k] (~) 

~ X ~ 6[n]. 

. 
M X :::; X ~ 6 [n] 

n 
(cf. 0.27.22). 

And the inclusion Mn] ~ Mn] induces the canonical arrow X ~ M X.] n n 

4.4.24 EXAMPLE V X E Ob g & V Y E Ob SIC, 

K 
M:>r (X, Y ~ K) ::::: M:>r (X, f [n] (Y

n
) n) 
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K 
~ f[n]Mbr(x,yn ) n 

~ f[ ]Mbr(K ,Mor(X,Y ». n n n 

Suppose that I] is a closed simplicial action on £: - then there is a flIDctor 

£: -+ SIC that sends an object X in £: to ~ [ ], where 

~[ ] ([n]) = han(t,[n] ,X). 

4.4.25 THEOREM Suppose that I] is a closed simplicial action on £:. AsSlllre: 

g is complete -- then 

PRC()F V X, Y E Ob £:, 

ham(K,X) ~ ~[ ] ~ K. 

t, [ ] rh t, [] Kn 
!br(X,Y 'I' K) ~ Mbr(X,f [nJ (Y }n) 

Kn 
~ Mbr(X,f[n] ham(t,[n],Y) ) 

K 
n 

~ f[n] Mbr(X,han(t,[n] ,Y) ) 

K 
~ f[n] Mor(X,han(t,[n],Y}) n 

K 
~ f[n] Mor(xl=It,[n] ,Y) n 

(cf. 4.4.8) 
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z Nat(K,HOM(X,Y» 

::::: nap (K,HCl'1(X, Y) ) 0 

z HOM(xl=IK,y)O (cf. 4.4.19) 

~ J;;br «X I]K) I] MO] , Y) 

::::: J;;br(xl] (K x MO]) ,Y) 

::::: Mor(xl]K,Y) 

~ Mor(X,ham(K,Y». 

4.4.26 NaI'ATION Given a category ~ and a simplicial object X in ~, write hx 
for the functor gOP -r SISET defined by (h __ A) = J;;br (A,X ). -X- n n 

[Note: For all X ,YE Ob 

Nat (X I Y) z Nat (~,hy) (simplicial Yoneda) .] 

4.4.27 THEOREM let g be a category. Ass'l.llYe; ~ has coproducts and is complete -­

then the canonical simplicial action I] on SIC is closed (I] is necessarily 

cartesian (cf. 4.4.13». 

PROOF Given a simplicial set K, write 

K x 6[n] ::::: colim. 6[n.]. 
~ ~ 

Then v A E Ob g, 

::::: lim. M::>r (A,X ) 
~ n. 

~ 

:::: M::>r (A, lim. X ) 
~ n. 

~ 

:::: M::>r(A,ham(K,X) ) I 
n 
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where by definition, 

ham (K,X) = lirn
1
. X • n n. 

1 

In other 'WOrds, hom(K,X)n represents 

A + Nat(K x ~[n],hxA). 

Varying n yields a sircplicial object hom(K,X) in C with 

~om(K,X) :::: rnap(K,~) • 

Agreeing to let ~[IK be the cofunctor ~ + SISET that sends A to ¥ x K, '\Ne have 

Nat(x!=IK,Y) ~ Nat(~I=IK'hy) 

:::: Nat(~I=IK,hy) 

:::: Nat(X,hom(K,Y)}, 

which proves that I] is closed. 

4.4.28 EXAMPLE The canonical simplicial action I] on SIGR or SlAB is closed. 

4.4.29 REMARK If I] is a closed simplicial action on ~, then the co.rtp:>sition 

is a closed simplicial action on I~OP ,~] == SIC. When £ has coproducts and is 
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complete, the canonical simplicial action on SIC is also closed. Hrnvever, in 

general, these two actions are not the same. 

let K be a simplicial set. Assume: £ has coproducts -- then K detennines 

a functor 

by writing 

K·-:C -+ SIC 

(K·X) ([n]) = K ·X. n 

4.4.30 LE»1A Assume: £ has coproducts and is complete -- then K·- is a 

left adjoint for 

PRCX)F V X E Ob £ & V Y E Ob SIC, 

K 
~ f[n] Mor(X,(Yn ) n) 

K 
~ Mor(X,f[nJ (Yn ) n) 

~ Mor(X,Y ~ K). 

4.4.31 LE»1A Assume: £ has coproducts and is canplete. SUppose that 

K = colim. K. -- then for every simplicial object X in C, 
11-

X ~ K :::: lim. X ~ K .• 
1 1 
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PRCX)F Given A E Ob £, let ~ E Ob SIC be the constant simplicial object 

detennined by A, thus 

Mor(A,X ~ K) z Mor(K·A,X) 

:::: Mor(~\]K,X) 

:::: Mor(colim. A\-\K. ,X) 
1 - - 1 

:::: lim. Mor(A\-\K. ,X) 
1 - - 1 

z lim. MJr (K. ·A,X) 
1 1 

:::: lim. Mor (A,X l~ K.) 
1 1 

4.4.32 L'EM!!A Ass'lJll'e: £ has coproducts and is complete - then 

PRCX)F Write 

ham (K,X) :::: X ~ (K x ~[n]). n 

K x ~[n] = colim. ~[n.]. 
1 1 

x ~ (K x ~[n]) z lim. X ~ ~[n.] 
1 1 

(cf. 4.4.31) 

z lim. X (cf. 4.4.23) 
1 n. 

1 

:::: ham(K,X) • 
n 

4.4.33 EXAMPLE Under the preceding assumptions on £, for all simplicial sets 

K and L, 

ham(K,X) ~ L z X ~ (K xL). 
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4.5 SMC 

4.5.1 DEFINITION A simplicial IIOdel category is a IIOdel category ~ equipped 

with a closed simplicial action 1 = 1 satisfying 

(SMC) Suppose that A -+ Y is a cofibration and X -+ B is a fibration - then 

H(l>Il(Y,X) -+ H(l>Il(A,X) x H(l>Il(A,B) H(l>Il(Y,B) 

is a Karl fibration which is a simplicial weak equi'V'alence if A -+ Y or X -+ B is 

acyclic. 

[Note: Associated with I] is an S-category I]~ such that u[l~ is isarorphic 

to C (cf. 4.4.8).] 

N.B. 

• If A is cofibrant, then the arrow 

H(l>Il(A,X) -+ H(l>Il(A,B) 

is a Karl fibration. 'Iherefore the pullback square 

H(l>Il(A,X) x H(l>Il(A,B) H(l>Il(Y,B) 

1 
--> H(l>Il(Y,B) 

1 
H(l>Il(A,X) ----------....... > HCM(A,B) 

is a homotopy pullback (cf. 0.35.1). 

• If B is fibrant, then the arrow 

HOO(Y,B) -+ HCM(A,B) 

is a Karl fibration. 'Iherefore the pullback square 

H(l>Il(A,X) x HCM(A,B) H(l>Il(Y,B) 

1 
----'> HCM (Y,B) 

1 
H(l>Il(A,X) -----------'> H(l>Il(A,B) 
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is a horrotopy pullback (cf. 0.35.1). 

4.5.2 EXAMPLE Take £ = SISET (Kan Structure) and take I] per 4.4. 9 -- then 

is closed and SISET is a simplicial m:::x1el category. 

[Note: SISET is also a simplicial m:::x1el category if the Kan structure is 

replaced by the HG-structure but it is not a simplicial m:::x1el category if the Kan 

structure is replaced by the Joyal structure.] 

4.5.3 EXAMPLE Take ~ := CGH (Quillen Structure) and take [I per 4.4.10 -- then 

1=1 is closed and CGH is a simplicial m:::x1el category. 

4.5.4 EXAMPLE Take £ = CAT (External Structure) and take [I per 4.4.17 -- then 

1= 1 is closed and CAT is a simplicial m:::x1el category. 

4.5.5 EXAMPLE Take £ = CAT (Inte:rnal St:tucture) and take 1=1 per 4.4.18 -- then 

is closed and CAT is a simplicial m:::x1el category. 

4.5.6 REMARK It is not clear whether S-CAT (Bergner Structure) admits a closed 

simplicial action making it a simplicial m:::x1el category. 

4.5.7 EXAMPLE Take £ = [!,SISET] (Structure L) and take I] per 4.4.7 -- then 

1=1 is closed and [!,SISET] is a simplicial m:::x1el category. 

4.5.8 I.JM.1A In a simplicial m:::x1el category C: (l) xl-IMO] ~ X; (2) ha:n{MO] ,X) ~ - -

X; (3) ~ [IK ~~; (4) ha:n{K,*) :::: *; (5) HCM{~,X) ~ MOl; (6) HCM{X,*) R$ MOl; 

(7) x[l~ ~~; (8) han{~,X) :::: *. 

What follows is strictly sori tal. •. • 
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4.5.9 LEMMA Suppose that 1=1 is a closed simplicial action on a model category 

g -- then g is a simplicial model category iff whenever A -+ Y is a cofibration in g 

and L -+ K is an inclusion of simplicial sets, the arrow 

A[]K 1 I yl]L -+ y[IK 

A[IL 

is a cofibration which is acyclic if A -+ Y or L -+ K is acyclic. 

4.5.10 APPLICATION ret g be a simplicial model category. 

(i) SUppose that A -+ Y is a cofibration in g -- then for every simplicial 

set K, the arrow AI=IK -+ yl=IK is a cofibration which is acyclic if A -+ Y is acyclic. 

(ii) Suppose that Y is cofibrant and L -+ K is an inclusion of simplicial 

sets -- then the arrow Y[IL -+ Y K is a cofibration which is acyclic if L -+ K 

is acyclic. 

[Note: In particular, Y cofibrant => yl]K cofibrant.] 

4.5.11 CRITERION Suppose that 1=1 is a closed simplicial action on a model 

category g -- then g is a simplicial model category iff whenever A -+ Y is a co­

fibration in g, the arrows 

AI]Mn] 1 1 Y [I ~ [n] -+ Y [16 [n] (n ~ O) 

A[I~fn] 

are cofibrations which are acyclic if A -+ Y is acyclic and the arrows 

I I (i = 0,1) 

A[IAfi,l] 

are acyclic cofibrations. 
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4. 5.12 LEMJIA Sup:p:::>se that [I is a closed simplicial action on a no::1el category 

~ - then ~ is a simplicial no::1el category iff whenever L -+ K is an inclusion of 

simplicial sets and X -+ B is a fibration in ~, the arrow 

ham (K,X) -+ ham(L,X) x ham(L,B) ham (K,B) 

is a fibration which is acyclic if L -+ K or X -+ B is acyclic. 

4. 5.13 APPLICATION Let ~ be a simplicial no::1el category. 

(i) SUp:p:::>se that L -+ K is an inclusion of simplicial sets and X is fibrant --

then the arrow ham(K,X) -+ ham(L,X) is a fibration which is acyclic if L -+ K is 

acyclic. 

(ii) SUppose that X -+ B is a fibration in ~ -- then for every simplicial set 

K, the arrow hom(K,X) -+ ham(K,B) is a fibration which is acyclic if X -+ B is acyclic. 

[IDte: In particular, X fibrant => ham(K,X) fibrant.] 

4.5.14 CRITERION SUp:p:::>se that 1=1 is a closed simplicial action on a no::1el 

category ~ -- then ~ is a simplicial no::1el category iff whenever X -+ B is a fibration 

in ~, the arrows 

. 
hom(~[n],X) -+ ham(~[n],X) x ham(~[n],B) (n ~ 0) 

ham(t,[n] ,B) 

are fibrations which are acyclic if X -+ B is acyclic and the arrows 

hom(~[l],X) -+ hom(A[i,l],X} x hom(A[i,l],B)ham(~[l],B} (i = 0(1) 

are acyclic fibrations. 

Apart from these structural fonna.lities, there are a few things to be said 

about the 'Weak equivalences. 
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4.5.15 LEMMA let X,Y, and Z be objects in a simplicial :mxlel category £. 

(i) If f:X -+ Y is an acyclic cofibration and Z is fibrant, then 

f*:HCM(Y,Z} -+ HCM(X,Z) is a simplicial weak equivalence. 

(ii) If g:Y -+ Z is an acyclic fibration and X is cofibrant, then 

g*:HCM(X,Y} -+ HCM(X,Z} is a simplicial weak. equivalence. 

4.5.16 I.JM.1A let X,Y, and Z be objects in a simplicial rrodel category £. 

(i) If f:X -+ Y is a weak. equivalence between cofibrant objects and Z is 

fibrant, then f*: HCM (Y , Z) -+ HCM (X, Z) is a simplicial weak. equivalence. 

(ii) If g:Y -+ Z is a weak. equivalence between fibrant objects and X is 

cofibrant, then g*:HCM(X,Y) -+ HCM(X,Z) is a simplicial weak. equivalence. 

4.5.17 EXAMPIE Take £ = 0'.3H (Quillen Structure) - then all objects are fibrant, 

so if g:Y -+ Z is a weak. hom:>topy equivalence and X is cofibrant, then g*:HCM(X,Y) -+ 

HCM(X,Z) is a simplicial weak. equivalence. But 

- HCIJ1 (X, Y) :::: sin (0) 

(cf. 4.4.10) I 

thus g*: 0 -+ ZX is a weak. harrotopy equivalence. 

[Note: '!here is a conmutati ve diagram 

I sin (0) I » I sin (ZX) I 

1 1 
0----» ZX 

and the vertical arrows are weak. honptopy equivalences.] 

------.---.... -~ .. -
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4.5.18 THEOREM Let g be a simplicial m:x1el category -- then a norphism 

f:X + Y is a weak equivalence if for every fibrant Z, f*:HOM(Y,Z) + HOM(X,Z) 

is a simplicial weak equivalence. 

[Note: 'Ihe result can also be formulated in tenns of the arrows g*:HOM(X,Y) + 

HOM (X, Z) (X cofibrant) .] 

4.5.19 APPLICATION Let C be a simplicial m:x1el category. Supp:>se that f:X + Y 

is a weak equivalence between cofibrant objects -- then V K, 

is a weak equivalence between cofibrant objects (cf. 4.5.10). 

[Take any fibrant Z and consider the arrow 

HOM(YI]K,Z) + HCM(xl]K,Z) 

or still, the arrow 

HOM(Y,ham(K,Z» + HCM(X,ham(K,Z». 

Because ham(K,Z) is fibrant (cf. 4.5.13), the latter is a simplicial weak equivalence 

(cf. 4.5.16), hence the same is true of the former. 'lherefore f [I i~ is a weak 

equivalence (cf. 4.5.18).] 

4.5.20 EXAMPLE Fix a small category ! and view the functor category [!Op, SISET] 

as a simplicial m:x1el category (cf. 4.5.7). SU]?pOse that L + K is a weak equivalence, 

where L,KqOP + SISET are cofibrant - then V f:! + SISET, the induced map 

JiLi x Fi + fKi x Fi 

of simplicial sets is a simplicial weak equivalence. 

[To see this, use 4.5.18. '!hus take any fibrant Z and consider the arrow 
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map(JiKi x Fi,z) ~ map(JiLi x Fi,Z), 

i.e., the arrow 

J. map(Ki x Fi,z) ~ J. map(Li x Fi,z), 
1 1 

i. e., the arrow 

J. map(Ki,map(Fi,Z» ~ J. map(Li,map(Fi,Z», 
1 1 

i. e., the arrow 

HCM(K,map(F,Z» ~ HCM(L,map(F,Z» (cf. 4.4.9), 

which is a simplicial weak equivalence (cf. 4.5.16).J 

[Note: Here map (F, Z) is the functor '"fop ~ SISET defined by i ~ ma.p (Fi, Z) , 

thus map(F ,Z) is a fibrant object in f'"fOP ,SISETJ.] 

4.6 SIC 

Let g be a category. Assume: g is complete and cocanplete and there is an 

adjoint pair (F ,G), where 

F: SISET ~ SIC 

G:SIC ~ SISET, 

subject to the requirer:rent that G preserves filtered colimits. 

4.6.1 THEOREM Call a morphism f:X ~ Y a weak equivalence if Gf is a simplicial 

weak equivalence, a fibration if Gf is a Kan fibration, and a cofibration if f has 

the LLP w. r. t. acyclic fib rations -- then with these choices, SIC is a rrodel cat­

egory provided that every cofibration with the LLP w.r.t. fibrations is a weak 

equivalence (cf. infra). 

----... --.... -~ 
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N.B. This result is an instance of the overall theme of "transfer of structure" . 
. 

Thus one 'WOrks with the FMn] -+ Fll[n] (n ~ 0) to show that every f can be written 

as the composite of a cofibration and an acyclic fibration and one 'WOrks with the 

FA [k,n] -+ Fll [n] (0::;; k ::;; n,n ~ 1) to show that every f can be written as the 

composite of a cofibration that has the LLP w.r.t. fibrations and a fibration. 

This leads to MC-5 under the assmnption that every cofibration with the LLP w.r.t. 

fibrations is a weak equivalence, which is also needed to establish the nontrivial 

half of MC-4. In practice, this condition can be forced. 

4.6.2 SUBLEMMA Let 
X 

be tor:ological spaces, f:X -+ Y a continuous function; 
Y 

let ¢:x' -+ x, I/J:Y -+ y' be continuous functions. Asst:.nre: f 0 ¢,I/J 0 f are weak hono-

topy equivalences -- then f is a weak homotopy eg:ui valence. 

4.6.3 LEMMA Suppose that there is a functor T: SIC -+ SIC and a natural trans-

fonnation £:idsIC -+ T such that V X, £X:X -+ TX is a weak eg:uivalence and TX -+ * 

is a fibration -- then every cofibration with the LLP w.r.t. fibrations is a weak 

equivalence . 

PIroF Let i:A -+ Y be a cofibration with the stated properties. Fix a filler 

w:Y -+ TA for 

A----~> TA 

1 
Y -------'> * . 

------~ ..... ----



41. 

Consider the cornmutati ve diagram 

f 
A ~ hom(~[l],TY) 

. 
y ~ hom(~Il],TY}, 

g 

where f is the arrCM 

i Sy 
A --> Y --> TY :::: hom(6{O] ,TY) -> hom(6{l] ,TY) 

and g is the arrCM 

. 
(hom(~[l],TY) :::: TY x TY). 

w Ti 
Y ----'~ TA --> TY 

since GTY is fibrant and 

Gham(~Il],y) :::: map{~[l],GTY} 

. 
Gham{~[l] ,Y) :::: map{~[l],GTY), 

it follCMS that II is a fibration, thus our diagram admits a filler 

H:Y ~ hom{~Il],TY). 

But Sy is a -weak equivalence, hence Ti 0 w is a weak equivalence, Le., 

IGTij 0 IGwI is a '\'Neak h.om::>topy equivalence. Assemble the data: 

IGil 
--> IGYI 

IGwI 
-------,~ I GTA I 

IGtil 
--~IGTYI· 

Because IGw I 0 IGi I = I GSA I is a weak harotopy equivalence, one can apply the 

sublerrma. and conclude that I Gw I is a -weak ho.rrotopy equivalence. Therefore I Gi I 
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is a weak ha:rotopy equivalence which means by definition that i is a weak equiv­

alence. 

4. 6. 4 RAPPEL S\lpJ?ose that L -+ K is an inclusion of simplicial sets and X -+ B 

is a Kan fibration - .... then the arrow 

map (K,X) -+ map(L,X) x map(L,B) map (K,B) 

is a Kan fibration which is a simplicial weak equivalence if this is the case of 

L -+ K or X -+ B. 

4.6.5 THEOREM Equip SIC wi th its rrodel structure per 4.6.1 and let I] = 

canonical simplicial action (cf. 4.4.11) - then SIC is a simplicial rrodel category. 

PR(X)F 'Ibanks to 4.4.27, I] is closed. This said, we have 

Proof: 

Ghom(K,Y) "" map (K,GY) • 

• Nat(F(X x K),Y) ~ Nat(X x K,GY) 

~ Nat(X,map(K,GY» • 

• Nat(FX I]K,Y) ~ Nat (FX,han(K,Y) ) 

~ Nat{X,Ghom(K,Y». 

let now L -+ K be an inclusion of simplicial sets and X -+ B a fibration in SIC. 

Apply G to the arrow 

ham(K,X) -+ han(L,X) x ham(L,B) ham (K,B) 

to get 

Ghom(K,X) -+ Gham(L,X) x Gham(L,B) Ghom{K,B) 

or still, 

map (K,GX) -+ map(L,GX) x map(L,GB) ma.p(K,GB). 
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Taking into account 4.6.4 and the definitions, it remains only to quote 4.5.12. 

4.6.6 EXAMPLE 'Ihe hypotheses of 4.6.3 are trivially rret if 'V X, X -+ * is a 

fibration. So, for instance, SIC is a simplicial nod.el category if ~ = GR or 

AB (cf. 4.4.28). 

4.6. 7 CCI\lSTRUcrIOtil Retaining the supposition that ~ is canplete and cocanplete, 

let us assl..llle in addition that ~ has a set of separators and is cowellpowered. 

Given a simplicial object X in c, the functor cOP -+ SET defined by A -+ (ExHCM{A,X» 
- - -- n 

(n ~ 0) is representable (view A as a constant simplicial object). Indeed, 

HCM{-,X) converts colimits into limits and Ex preserves limits. '!be assertion is 

then a consequence of the sIJE3cial adjoint functor theorem. Accordingly, 3 an object 

(Ex X) in C and a natural isaro:r:phism M:>r{A, (Ex X) ) :::: (ExHCM{A,X» • '!bus there 
n - n n 

is a functor Ex:SIC -+ SIC, where 'V X, Ex X{[n]) = (Ex X) (n ~ 0), with :HCM(A,Ex X) :::: 
- n 

ExHCM(A,X) (since HCM(A,Ex X) ~ Nat(AI-Il';[n],Ex X) :::: Mor(A, (Ex X) ) ~ (ExHCM{A,X» ). 
n - n n 

• co 00 • 00 
Iterate to arrlve at Ex : SIC -+ SIC and £ ndSIC -+ Ex. Now fix aPE Db C such 

that M:>r(P,-}:~ -+ SET preserves filtered colimits. Viewing P as a constant 

simplicial object, define G:SIC -+ SISET by GX = HCM(P ,X) -- then G has a left 

adjoint P, viz. FK = pl]K, and G preserves filtered colimits: 

(G col:iro x. ) :::: HCM (P ,col:iro x. ) 
J.n In 

:::: Mor (P, (col:iro X.) ) 
1 n 

:::: Mor(P,col:iro(X.) ) 
In 
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In 4. 6. 3, take T = Ex , E: = E:. Since 
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~ colim M::Ir (P, (X.) ) ]. n 

~ colim Nat (P \-\6. [n] ,X. ) - ]. 

~ colim HCM(P ,X. ) ]. n 

:::: (co lim GX.) • ]. n 

~ colim HCM(P,Ex~) 

00 

~ Ex HCM(P ,X) , 

it follows that v X, E:~:X -+ ExooX is a 'It."l9ak equivalence and ExooX -+ * is a fibration. 

Therefore SIC admits the structure of a sinplicial m:Jdel category in which a rror-

phism f:X -+ Y is a 'It."l9ak equivalence or a fibration if this is the case of the 

sinplicial map f*:HCM(P,X) -+ HQM(P,Y). 

4.6.7 EXAMPLE In the small object construction, take ~ = SISET -- then every 

finite sinplicial set P determines a sinplicial m:Jdel category structure on 

4. 6.8 RAPPEL let ~ be a canplete and cocanplete m:Jdel category - then SIC 

in the Reedy structure is a rrodel category (cf. 0.27.28). 

[Note: For the record, if f:X -+ Y is a nnrphism in SIC, then f is a weak 

equivalence if V n, f :X -+ Y is a 'It."l9ak equivalence in C, a cofibration if V n, n n n -
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the arrow X U L Y -+ Y is a cofibration in C, a fibration if V n, the arrow n LX n n -
n 

x -+ M X x M Y Y is a fibration in C.] n n _ n -
n 

4.6.9 LEMMA Suppose further that g is a simplicial nodel catego:ry. Equip 

SIC with the closed simplicial action derived from that on g (cf. 4.4.29) -- then 

SIC (Reedy Structure) is a simplicial m:x1el catego:ry. 

PR<XlF It will be convenient to employ 4.5.9. So let A -+ Y be a cofibration 

in SIC and let L -+ K be an inclusion of simplicial sets - then the claim is that 

the arrow 

AI-IK 1 I YI]L -+ YI]K 
AI]L 

is a cofibration which is acyclic if A -+ Y or L -+ K is acyclic. ':rhus fix n and 

consider the arrow 

or, equivalently, the arrow 

(An I_I LnY) I-_'IK I_I Y I-IL -+ Y I-IK, 
- I I L Y) I-IL n - n -L A (An n-

n LA 
n 

fran which one can read off the assertion. 

4.6.10 REMARK let be the canonical simplicial action on SIC -- then [I is 

closed (cf. 4.4.27) but it is not compatible with the Reedy Structure on SIC. 

Specifically: If A -+ Y is a cofibration in SIC and L -+ K is an inclusion of 



46. 

simplicial sets, then the arrow 

A[IK I I yl]L -,)- yl]K 
AI]L 

is a cofibration which is acyclic if A -,)- Y is acyclic but it need not be acyclic 

if L -,)- K is acyclic (take a Reedy cofibrant A and look at the arrow A[If;[O] -,)­

A[I f; [1] (in degree 0, this is the ma.p AO -,)- Au J1 AO) ) . 

4.7 SIMPLICIAL VIAGRAM CATEGORIES 

let I be a small S-categ-ory, g a simplicial lllJdel category -- then g can be 

regarded as an S-categ-ory t ( = I]g) (cf. 4.4.8). 

4.7.1 RAPPEL [I, t] S is the category whose objects are the elements of 

M::lrs (I,C) and whose m::>rphisms are the S-natural transfonnations (cf. 4.1.10). 

N.B. Given an S-functor F:I -,)- C, we have 

thus the 

Nat(HOM(i,j),HOM(Fi,Fj» z r~r(Fil=IHOM(i,j),Fj), 

F .. :HCl1(i,j) -,)- HOM(Fi,Fj} 
1., J 

can equivalently be construed as m::>rphisms 

in C. An S-natural transfonnation :=:F -,)- G is then a collection of m::>rphisms 

:=. :Fi -,)- Gi in C such that the diagram 
1. -
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F .. 
J., J 

------;:> Fj 

Gi HCN(i,j) -------.;;:> Gj 
G .. 

J.,J 

camru.tes. 

4.7.2 DEFINITION let S E Nats (F ,G) • 

• S is a level wise weak equivalence if ViE II I, S. :Fi -+ Gi is a weak 
J. 

equivalence in g. 

• ~ is a level wise fibration if ViE I I I, S. :Fi -+ Gi is a fibration in c. 
J. -

• ~ is a projective cofibration if it has the LLP w.r.t. those norphisms 

which are simultaneously a levelwise weak equivalence and a levelwise fibration. 

4.7. 3 DEFINITION The triple consisting of the classes of level wise weak equi v-

alences, level wise fibrations, and projective cofibrations is called the projective 

structure on [I,C]S' 

4.7.4 THEOREM SUppose that g is a canbinatorial simplicial :m::del category -­

then for every I, the projective structure on [I,C]S is a m:xlel structure that, 

rroreover, is canbinatorial. 

4.7.5 DEFINITION let 3 E NatS(F,G). 

• S is a levelwiseweak equivalence if ViE lxi, 3i :Fi -+ Gi is a weak 

equivalence in g. 
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• _ is a levelwise cofibration if ViE I I I, E. :Fi -+ Gi is a cofibration 
~ 

• E is an injective fibration if it has the RIP w.r.t. those m:ll:phisrns 

which are simultaneously a levelwise 'Weak equivalence and a levelwise cofibration. 

4.7.6 DEFINITICN '!be triple consisting of the classes of levelwise 'Weak equi v-

alences, levelwise cofibrations, and injective fibrations is called the injective 

structure on [I,C] S. 

4.7.7 THEOREM Suppose that £ is a combinatorial simplicial model category -­

then for every I, the injective structure on [I,C] S is a model structure that, 

rroreover, is combinatorial. 

N.B. 

• Every projective cofibration is necessarily levelwise, hence is a co-

fibration in the injective structure. 

• Every injective fibration is necessarily levelwise, hence is a fibration 

in the projective structure. 

4.7.8 REMARK '!be category [I,C]S inherits a closed simplicial action fram that 

on £ and is a simplicial model category in either the projective structure or the 

injective structure. 

[To deal with the projective structure, use 4.5.12, the claim being that 

ViE III, the arrow 

hom (K,Xi)+ hom(L,Xi) x ham(L,Bi) ham(K,Bi) 

is a fibration in £ which is acyclic if L -+ K or X -+ B is acyclic. But this is 
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obvious (matters are levelwise). As for the injective structure, apply 4.5.9.] 

[Note: Spelled out, given F E MJr
S 
(l,t), 

and 

:::: Fi [I (K x HCM(i,j» 

::; Fi [I (HClvt(i, j) x K) 

z (Fi!=IHClvt(i,j» I=IK 

F .. I-lid 
1,J --

----'> Fj I]K z (FI]K)j.] 

'Ib proceed further, it will be necessary to cite sorre facts from enriched 

category theory sticking as always to the case '\iVhen the underlying syn:metric 

nonoidal category is SISEI'. 

The following terms will be admitted without explanation: 

S-canplete 

S-cocamplete. 

E.g.: SISET is S-camplete and S-cocanplete. 

4.7.9 RAPPEL If ! is a small category, then [!,SEI'] is complete and cocamplete. 

4.7.10 EXAMPlE If 1 is a small S-category, then S [1, SISEI'] is S-canplete and 

S-cocanplete. 
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4.7.11 THEOREM let ! be a small S-category . 

• If m is S-cornplete, then S[I,m] is S-cornplete. 

• If m is S-cocarnplete, then S(I,m] is S-cocornplete. 

4.7.12 DEFINITICN let m,m' be S-categories and let 

F:m -+ m' 

F' :m' -+ m 

be S-functors - then F is a left S-adjoint for F' and F' is a right S-adjoint 

for F if there exist isorrorphisms 

HCM(FX,X') ::::: HCM(X,F 'X') 

natural in X E 0, X' E 0'. 

UF:unt -+ unt' 

(Note: 'lherefore is an adjoint pair.] 

UF' :unt ' -+ um 

4.7.13 EXAMPLE Let ~ be a simplicial rocx:1e1 category -- then the S-functor 

xl=I--:SISET -+ t 

is a left S-adjoint for 

HOM{X,--):t -+ SISET 

and the S-functor 

is a left S-adjoint for 

hom{K,--) : t -+ c. 

[The simplicial action I] on ~ is closed, so one can quote 4.4.19.] 
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4.7.14 DEFlliITION let m be an S-category. 

• m is tensored if every S-fmlctor 

HQ\1(X,-) :m + SISET 

has a left S-adjoint. 

[Note: If m is tensored, then V X & V K, there is an object X 9 K E 0 and 

isarorphisms 

HCM(X 9 K,Y) ::: map (K,HCM(X,Y) ).] 

• m is cotensored if every S-filllctor 

HCM (-,X) :mOP + S1SET 

has a left S-adjoint. 

[Note: If m is cotensored, then V X & V K, there is an object if E 0 and 

iscm:::>rphisms 

OP _-'K ~ 
HCM (:x--, Y) ~ map (K,HCM (Y,X» .] 

4.7.15 LEMMA let m be an S-category. 

• Suppose that m is tensored - then V K, the correspondence 

X+X~K 

induces an S-functor m + m. 

• SUppose that m is cotensored -- then V K, the correspondence 

x+0 
induces an S-fmlctor m + m. 

E.g.: SISET is tensored and cotensored: 

X®K=XxK 

if = map (K,X) • 



52. 

4.7.16 EXAMPLE let I be a small S-category -- then SII,SISE"f] is tensored 

and cotensored. 

[let P:I -+ SISET be an S-functor • 

• Given K, put 

(P Q K}i = Pi x K 

and define 

(P Q K)i,j:HCM(i,j) -+ ma.p«f Q K)i, (P Q K)j) 

by 

• Given K, put 

and define 

by 

P .. 
1./J 

HCM(i,j) -~-"'-;i> roap (Pi, Pj ) 

(- all K)p' P' 
l., J 

------...--.'> roap (Pi x K,Pj x K). 

(FK)i = map(K,Pi) 

P .. 
l., J 

HOvl(i,j} ------> map (Pi,Pj ) 

K 
«-) )p' p' 

l., J 
~-----> map (map (K,Pi) ,map(K,Pj».] 

4.7.17 EXAMPLE S-cAT is an S-category (cf. 4.3.9). As such, it is tensored 

and cotensored. 

[The cotensored situation is this. If K is connected, then I IKI III and 

HOM(K) (i,j) = map(K,HOM(i,j». 

----- .--.-~. 
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In general, 

IK = TT I~, 
kETIO (K) 

where ~ is a canponent of K, thus 

TIo (K) 
= III .J 

[Note: Take K = Ll[nJ - then 

HCM(Ll[n]) (i,j) = map (Ll[n] ,HCM(i,j» 

=> 

ILl[n] = 1 (n) .] 

N.B. We have 

4.7.18 THEOREM Let m be an S-category. Assi.lIle: m is tensored and. cotensored. 

• m is S-complete iff urn is complete. 

• m is S-cocamplete iff urn is cocomplete. 

4.7.19 REMARK Let g be a category. Assume: g admits a closed simplicial 

action I] - then the S-category [Ig is tensored and. cotensored (cf. 4.4.20). 

Recalling that ul=lg is isomorphic to g, it follows that 

C is S-camplete iff g is complete 

1=lg is s..cocamplete iff g is cocamplete. 

[Note: This applies in particular if g is presentable.] 



54. 

l 
4. 7 • 20 TfIEX)REM ret be small S-categ"Ories and let m be a tensored. and 

J 

ootensored. S-categ"Ory. SuPJ:X)se that K: l -+ J is an S-functor and 

K*:S[J,ml ~ S[l,ml 

is the induced S-functor. 

then 

• If m is S-camplete, then K* has a right adjoint 

Kt:S[I,ml -+ S[J,ID]. 

• If m is S-cocamplete, then K* has a left adjoint 

K!:S[l,ml -+ S[J,m]. 

So, if m is S-camplete and S-cocanplete (as well as tensored. and cotensored.), 

K* = uK*:US[J,m] -+ uS[l,ml 

has a right adjoint 

and a left adjoint 

But 

uS[I,ml Z [l,m]S 

uS [J,ml Z [J,ml S' 

'Iherefore the constituents of the setup became 

K*:[J,ml S -+ [l,ml S 
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and 

Assume. now that S is a combinatorial simplicial nodel category - then the 

S-category t (= [IS) is tensored and cotensored, S-canplete and S-cocamplete 

(cf. 4.7.19). The preceding machinery is thus applicable (replace m by t) • 

Accordingly, bearing in mind 4.7.4 and 4.7.7, 'He see that 0.26.16 and 0.26.17 go 

through with no change, i. e. , 

(K! ,K*) is a nodel pair (Projective Structure) 

(K* ,Kt ) is a nodel pair (Injective Structure). 

4.7.21 THEOREMt If K:I -+ J is a DK-equivalence, then the nodel pairs 

(K! ,K*) 

(K* ,K
t

) 

are nodel equivalences (cf • O. 26.18) • 

4.8 REAL1ZAT10N ANV TOTAL1ZAT10N 

ret S l:e a simplicial nodel category. Assume.: S is complete and cocomplete. 

4.8.1 DE:FINITION Given an X in SIC, put 

t ~r-Kan, AI1na.t6 06 Ma-th. Str.uLieo 113 (1987) ( 180-205. 
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Then I x I is called the :realization of X. 

N.B. The assignment X -+IXI is a functor SIC -+ g. 

4.8.2 LEMMA I I admits a right adjoint sin:~ -+ SIC, where 

PROOF In fact, 

;::; f [nJ M::>r(xn,han(Mn] ,Y» 

;::; f [ ] !-br (X ,sin Y) n n n 

::::l Nat (X, sin Y) • 

4.8.3 EXAMPLE Take 9 = mH, thus 

I : SICGH -+ mHo 

NOw let X be a simplicial set thought of as a discrete simplicial space, i.e., as 

an object dis X of SImH -- then 

ldis xl ::::l !xl, 

the entity on the RHS being the geometric realization of X. 

4.8.4 EXAMPLE Take 9 = SISET and let X be a simplicial object in ~. One can 

fix [m] and form 1x?1, the geon:etric realization of [n] -+ X ( [n] , [m] ) , and one can 
m 

fix [n] and form Ix~l, the geometric realization of Im] -+ X ( [n] , [m] ) • The 
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[mJ -). 12f I m 
assignrrents define simplicial objects in CGH and their 

realizations are horreorrorphic to the gearetric realization of I X I . 

4.8.5 REMARK In 4.4, sin Y was denoted by the symbol y!:::' [ ] and there it was 

shcMn that 

(cf. 4. 4.25) • 

Therefore 

M sin Y =M yD.I ]::::: hom(~ [n] , Y} 
n n (cf. 4.4.23). 

4.8.6 THEOREM Equip SIC \'lith its Reedy structure - then the adjoint situation 

(I I,sin) is a m:xiel pair. 

PROOF It suffices to show that sin preserves fibrations and acyclic fibrations. 

So let Y -). Y' be a fibration in C and consider the arrow 

sin Y -). M sin Y )( 
n n M sin y' 

n 

or still, the arrow 
. 

hom(!:::'[n],Y) -). hom(~[n],y) x • 

sin Y' n 

hom(/:::,[n] ,Y') . 
hom(~ [nJ , Y') 

'!hen this arrow is a fibration in £ that, rroreover, is acyclic if Y -). y' is acyclic 

(cf. 4.5.12). 

4.8. 7 coroLLARY '!he realization functor 

I I :SIC {Reedy Structure} -). C 
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preserves cofibrations and acyclic cofibrations. 

4.8.8 LEMMA Let X be a simplicial object in ~ -- then 

where 

PROOF The functors Xn I] - are left adjoints, hence preserve co1.imits, so 

z I[n] xnl=1 co1~6[n] (k) 

z I[n] co1~xnl=16[n] (k) 

z co1im
n 

I[k] XkI=16[k] (n) 

:::: co1im Ixi. n n 

4. 8 • 9 :r.JMI.IIA V n > 0, there is a pushout square 

U 

L xl-I~[n] 
n -

1 1 
Xn [16[n] --------'> Ix In 

4.8.10:r.JMI.IIA If X is a cofibrant object in SIC (Reedy Structure), then 

V n > 0, the arrow Ixi 1 + Ix! is a cofibration in C. n- n -
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pR(X)F 'Ihe latching norphisrn L X -+ X is a cofibration in C. 'Iherefore the n n -

arrOlilT 

Lnxl]Mn] U xn[IMn]--> Xn[IMn] 

LnX I]~[n] 

is a cofibration in C (cf. 4.5.9), from MUch the assertion. 

N.B. If X is a cofibrant object in SIC (Reedy Structure),. then both L X and 
- n 

X are cofibrant objects in C, thus L X I-I~[n], LX 1-IMn],. and X 1-11[n] are n - n - n - n-

cofibrant objects in S, so 

Lnxl]Mn] U 

LnX [I~[n] 

is a cofibrant object in S (cf. 4.5.10). 

x 
4.8.11 LEMMA Suppose that are cofibrant objects in SIC (Reedy Structure) 

y 

and f:X -+ Y is a v.reak equivalence -- then the arrow 

is a v.eak equivalence in S. 

PR(X)F 'Ihe functor L :SIC -+ C sends acyclic cofibrations between cofibrant 
n -

objects to v.eak equivalences, hence preserves weak equivalences betv.1een cofibrant 

objects (cf. 2.2.4). This said, consider the carrmutative diagram 



60. 

Then the horizontal arrcM'S are cofibrations (cf. 4.5.10) and the vertical arrows 

are weak equivalences (cf. 4.5.19). Now apply 0.1.20. 

x 
4. 8.12 THEOREM Sup];X)se that are cofibrant objects in SIC (Reedy 

y 

Structure) and f:X -+ Y is a weak equivalence - then I f I : I X I -+ I y I is a weak equi v-

a1ence. 

PRCX)F Since and since V n, 

cofibration in C (cf. 4.8.10), one nay view 

Iyln --> lyl n+1 

{Ixln:n 2 O} 

is a 

as cofibrant objects 

{Iyl :n 2 O} 
n 

in FIL(g) (cf. 0.1.13). So, to prove that If I : Ixl -+ Iyl is a weak equivalence, it 

need only be shown that V n, If I : Ixl -+ Iyl is a weak equivalence. 'Ib this end, n n n 

'INOrk with 

x 1-,1[n] -> Ixl n - n-1 

1 
u y '-11[n] -> Iyl n - n-1 

L YI-11[n] n -

and use induction. 
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4.8.13 EXAMPIE Take S = SISET (Kan Structure) and suppose that f:X -+ Y is a 

~ equivalence, i. e., V n, f :X -+ Y is a s:i.nplicial weak equivalence -- then n n n 

I f I : I X I -+ I Y I is a s:i.nplicial weak equivalence. 
A 

[All s:i.nplicial objects in ~ are cofibrant in the Reedy strucblre (a.k.a. 

struc blre R) .] 

Let S be a s:i.nplicial m:x:lel category. AsSURe: S is complete and cocomplete. 

4.8.14 DEFINITION Given an X in canc, put 

tot X ::: J [n] hom (t:, [n] ,Xn) . 

Then tot X is called the totalization of X. 

N. B. The assignrrent X -+ tot X is a flIDctor COSIC -+ S. 

4.8.15 LEMMA tot admits a left adjoint cosin:S -+ COSIC, where 

PR(X)F In fact, 

Mor{Y,tot X) ~ M:>r(Y,J [n] hom{/::,[n] ,Xn» 

~ J [n] !-hr {Y ,hom (t:, [n] ,Xn» 

~ J[ ] M:>r{cosin Y,X ) n n n 

~ Nat{cosin Y,X) . 

4.8.16 EKAMPIE Take S = SISET and in 4.4.9, let! = !::. -- then 

HOM{F,G) ~ J[n] map{F[n],G[n]). 
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Specialize to , thus 

G=X 

:::: tot x. 

4.8.17 EX.AMPLE Given a simplicial set K and a corrpactly generated Hausdorff 

space X, let .;< be the cosimplicial object in CGH with (.;<) n = xKn -- then X I K I 

"<I tot .J<. 

4.8.18 REMARK There are obvious analogs for tot of 4.8.6 and 4.8.12: Take 

CQSIC in its Riaedy structure - then the adjoint situation (cosin, tot) is a n:od.el 

pair and if f:X -+ Y is a weak equivalence, where X,Y are fibrant, then tot f:tot X -+ 

tot Y is a weak equivalence. 

4.8.19 NarATlOO Given a simplicial set K, put 

t::.K = gro/), K (a.k.a. i/),K QlK)} 

and let t:.0PK be its opposite - then there are functors 

M: M -+ SISET 

and 
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4.8.20 NOTATICN Given a category Q, write K-SIC for the functor category 

OP 
[~ K,Q] and K-COSIC for the functor category [~,g]. 

4.8.21 DEFINITICN A K-siroplicial object in g is an object in K-SIC and a 

K-cosiroplicial object in ~ is an object in K-COSIC. 

[Note: Take K = tHO] to recover SIC and COSIC.] 

4 8 22 and OP Reed . •• . LEMMA ~ ~ K are y categorl.es. 

[Note: Generalizing 0.27.39, take I = l:,0PK to realize 0.27.35 and take 

I = l:,K to realize 0.27.37.] 

Consequently, if ~ is a complete and cocarrplete nod.el category, then 

K-SIC and K-COSIC 

are nod.el categories (Reedy Strucbrre) . 

AsSUIre ncM that ~ is, in addition, a siroplicial :m:x:lel category_ 

• There is a realization functor 

tha t rends X to 
l:,K 

Ixl K = f- xl=Il:,K, 

where 

is the composite 

X x & 
l:,0PK x & ----> C x SISET ---> C. 

--- .... --... --.... -~ ... 
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• 'lbere is a totalization functor 

that sends X to 

where 

is the composite 

toy = f 11K hom(I1K,X), 

OP 
hom(I1K,X):~ K x ~ + g 

~OPK x X ham 
~OPK x 11K -----> SISETOP xC> C. - -

let PK:K + ~[O] be the canonical arrow -- then 

~ + ~[O] = ~ 

and 

• 'Ihe induced map 

SIC + K-SIC 

has a left adjoint 

and there is a corrmutative diagram 

l~ 
K-SIC --------''> SIC 

11 I 

C ====-==-==-=== C 
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N.B. IK admits a right adjoint 

s~:g -+ K-SIC 

and the adjoint situation (I IK'~) is a m:::x:1el pair. 

• The induced map 

COSIC -+ K-a:>SIC 

has a right adjoint 

r~:K-a:>SIC -+ COSIC 

and there is a corrmuta ti ve diagram 

r~ 

K-C08IC -----> COSIC 

C ============ C. 

N.B. to"X admits a left adjoint 

cos~:g -+ K-CQSIC 

and the ad joint si tl.la tion (cos~, to~) is a m:::x:1el pair. 

x 
4.8.23 THEOREM Suppose that are cofibrant objects in K-SIC (Reedy 

Y 

Strucb.lre) and f:X -+ Y is a weak. equivalence - then IfIK: IxlK -+ IYI K is a ~ak 

equivalence. 

x 
4.8.24 THEOREM Suppose that are fibrant objects in K-COSIC (Reedy 

Y 

Struc'b.lre) and f:X -+ Y is a ~ak equivalence -.- then t0~f:toy -+ to"XY is a 
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~ equivalence. 

4.9 HOMOTOPICAL ALGEBRA 

4.9.1 NarATICN let ! re a ::mall category -- then 

~I = ~ner ! = gro~ ner I = i~ ner ! = ~ ner I. 
- -

Abbreviate and call any of these renditions ~I, thus ~I is isom::>rphic to the carrma 

category 

f 
[ro] :> [n] 

Il,~1 : u 1 1 V 
(1:~ ""* CAT) 

I I 

and 

u 
T

I
( [m] --> I) = u(m). 

u !> = u(D). 

4. 9.2 EXAMPLE 'We have 
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4.9.3 :LEMMA Let g be a complete and cocomplete :m:x:1el category. Suppose that 

F:f -+- g is a functor such that ViE Ob I, Fi is cofibrant (fibrant) -- then 

Fool (F 0 T I ) is a cofibrant (fibrant) object in [~OPI,g] ([,~I,g]) (Reedy 

Structure) (cf. 4.8.22». 

Let g be a sirrplicial :m:x:1el ca tEgory. Assurre: g is complete and cocomplete. 

Fix a srrall category I. 

• The uncorrected h.arrotopy colimit of a functor F:,! -+- g is the coend 

lOP 

!- F\]ner(-\I)' 

denoted 

• The uncorrected harrotopy limit of a functor F:f -+- g is the end 

! I hom (ner (!/-) ,F) , 

denoted 

4.9.4 EXAMPLE Take C = SISET (Kan Structure) -- then (cf. 4.5.2) 

Fi\-\ner(i\I) = Fi x ner(i\I) 
- - -

and 

hom(ner(!ji),Fi) = map (ner(!ji) ,Fi). 

4.9.5 EXAMPLE Take g = 03H (Quillen Structure) -- then (cf. 4.5.3) 
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4.9.6 APPLICATION 
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B(I/i) 
ham(ner(!/i),Fi) = Fi -

• let F: I -+- SISET l:e a functor - then 

~ ;iIFi x ner(i\!) I 

a natural h.omaonprphism of corrpactly generated Hausdorff spaces. 

• let F:I -+- CGH l:e a functor - then 

B<.Yi) 
sin holiJnt' = sin J i Fi 

B(I/i) 
~ J. sin Fi -

~ 

~ J i map (ner(Yi) ,sin Fi) 

= hol~ sin F, 

a natural isorrorphism of simplicial sets. 

[Note: If K is a sirnplicial set and if X is a compactly generated Hausdorff 

space, then 

sin xIK/ ::::: ma.p(K,sin X) . 



Proof: 

69. 

:::: C ( I Mn] x K I ,X) 

:::: Nat(K x ~[n] ,sin X) 

~ map (K,sin X).] n 

4.9.7 EXAMPLE Take ~ = CAT (External Structure) -- then (cf. 4.5.4) 

~ Fi x i\I 

and 

hom (ner <!/i) ,Fi) = [cat 0 ner (Vi) ,Fi] 

~ [Yi,Fi]. 

[Note: Therefore 

a conclusion that is in agreerrent with B.8.13. Here is another point: 

hol~ ner 0 F = J i map (ner (Yi) ,ner Fi) 

:::: J. ner[I/i,Fi] 
1 -

:::: ner (f . [Iii ,Fi] ) .] 
1 -



70. 

N.B. One can also explicate matters for CAT (Internal Structure) (cf. 4.5.5). 

4.9. B REMARK The functnr 

has a right ad :Pint, viz. 

horn (ner (-\!> 

and the functor 

has a left ad :Pint, viz. 

-[] ner (~/-). 

~r 

hocolim? :::: r- F 0 or 1-' Mer! (= IF 0 Or Iner r) 

and 

4.9.10 THEOREM let F,G:! -+ g be functors and let ~:F -+ G be a natural trans-

formation. Assun:e: V i, ~. :Fi -+ Gi is a weak equivalence - then 
1. 

hocol~~ :hocolim:rF -+ hocol~G 
- - -

Fi 
is a 'I.\1E!ak equivalence if Vi, is cofibrant and 

Gi 

hol~~ :holinl? -+ hol~G - - -
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Fi 
is a -weak equivalence if Vi, is fibrant. 

Gi 

PROOF Apply 4.8.23 and 4.8.24 (4.9.3 and 4.9.9 set the stage) • 

[Note: Take g = CAT (External Structure) (cf. 4.9.7) -- then 4.9.10 does not 

specialize to B.7.1 (the latter makes no cofibrancyassumptions).] 

4.9.11 EXAMPLE let F:! -+ a;H be a functor such that Vi, Fi is cofibrant -

then there is a nabJral simplicial -weak equivalence 

hocol~ sin F -+ sin hocol~F. 
- -

[Consider the nabJral transfonnation Isin FI -+ F: V i, Isin Fil is cofibrant 

and the arrow I sin Fi I -+ Fi is a 'Weak honotopy equivalence, thus Ute arrow 

hocol~ I sin F I -+ hocol~F 
- -

is a -weak honotopyequivalence (cf. 4.9.10). But 

hocol~ sin F I RI hocol~ I sin F I (cf. 4.9.6), 

so taking adjoints leads to the conclusion.] 

[Note: In the sa:rre vein, if F:! -+ SISET is a functor such that Vi, Fi is 

fibrant, then there is a natural 'Weak honotopy equivalence 

I hol:i.rot' I -+ hol~ I Fl· ] 

4.9.12 REMARK A corollary to 4.9.10 is the fact that 

and 

hol:i.rot' :::: tot ranner I (F 0 T I) • 



72. 

4.9.13 LEMMA (SIMPLICIAL REPI.AC»1ENT) Fix F E Ob [!,£]. Lefine _" F in 

SIC by 

[Note: Therefore 

(li F)n = li FfO. 
f 

[n] + I 

4.9.14 LEMMA (COSIMPLICIAL REPIACEMENT) Fix F E Ob [!,£]. Lefine TT F in 

COSIC by 

':£hen 

[Note: Therefore 

TT Ffn. 

f 
[n] + I 

ho1inY ::! tot TT F.] 

4.9.15 EXAMPLE Given X:~OP + SISET, define dia X:~OP + SET by 

dia x ([n]) = X ([n]) ([n]) • 

But also, by definition, Ixl :~OP + SET and, up to natural isarrorphism, dia and 

I I are the sarre (l:x>th are left ad joints for sin). Now' fonn li X per 4. 9.13, 
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thus 

And then 

hocolim OpX ::::: I _, I X I ::::: dia 11 X. 
/:, 

APPENDIX 

Recall that ~ is a small category and g is a simplicial model category which 

is both conplete and coconplete. 

If F =! -+ g is a functor, then 

lOP 

hocol~F = f- FI=lner(--\~) 

is its uncorrected horrotopy colimit and 

hol~F = f I hom (ner (!I-) ,F) 
- -

is its uncorrected h.anotopy limit. Here we shall explain the origin of this 

terminology and for that it will be enough to consider hocol~. 

RAPPEL View g as a cofibratian category and place an [~,gl its injective 

structure, so [r,g] is a cocomplete cofibratian category (cf. 2.5.3). 

let PI: ~ -+ ! be the canonical arrow - then Pt has a left ad joint PI!' viz. 
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that in turn admits an absolute total left derived ftmctor 

the "true" :harotopy colimit. 

Now refer back to 4.9.10. Since the \Eak. equivalences in Q;',£l are levelwise 

and since the cofibrant objects in [!,£1 are levelwise, it follows that 

also admits an absolute total left derived ftmctor 

Lhocol~:W~lI!,£] + W-
l

£ (cf. 2.2.4). 

And, on general grotmds, if F E Ob[!,£] is cofibrant, then the natural ma.p 

ASSUMPTIOO The w. f. s. 

(cof, W n fib) 

is ftmctorial (cf. 0.19.3). 

NOl'ATlOO Given F E Ob[.!>£l, define LF levelwise: 

(~) (i) = ~(Fi). 

N .B. The ftmctor 

is a norphism 
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of category pairs (cf. 4.9.10), thus there is a tmique ftmctor 

for which the diagram 

hoco1im:r 0 L 

----------------------~> C 

_______________ > W-1c 

hoco1im:r 0 L 

commutes (cf. 1.4.5). 

hoco1im:r 0 L 

"is" 

Lco1im:r. 

REMARK Changing the cofibrant replacement ftmctor from !! to L' leads to 

another m:xle1 for Lco1im:r. 

t Shulman, arXiv:math/0610194; see also Gonzalez, arXiv:1104.0646 



CHAPTER 5: CUBICAL THEORY 

5.1 1=1: VEfINITION ANV PROPERTIES 

5.2 CUBICAL SETS 



1. 

CHAPTER 5: CUBICAL THEORY 

5.1 :VEFINITION ANV PROPERTIES 

Given an integer n ~ 0, let In be the set-theoretic product {O,l}n. 

• Fbr n ~ 1, 1 ~ i ~ n, £ = 0,1, define 

by 

n o. (x1 '···,x 1) = (x1 '···x. l'£'x., .•• ,x 1)' 1,£ n- 1- 1 n-

• For n ~ 0, 1 ~ i ~ n+1, define 

by 

5.1.1 DEFINITICN I] is the category whose objects are the In and whose nor-

phisms are generated by the or: and the cP.. 1,£ 1 

[Note: I] has a final object, viz. 1°.] 

5.1.2 LEMMA We have 

o~ 0 or:-1 = or: 0 ~-11 
),n 1,£ 1,£ )-,n 

cP. 0 cP.+1 
) 1 

(i < j) 

(i ~ j) 



and 

N.B. In particular 

n ",n.+l = (J. 0 u 
] l.,E 

2. 

or; 0 cf.-l
l l.,E ]-

on 0 rP.-l 
i-l,E ] 

5.1.3 I..El1MA I] is a strict rronoidal category. 

[refine 

by 

o 
and let e = I .] 

~: x I] -+ 

(i < j) 

(i = j) 

(i > j). 

5.1.4 DEFINITION let (y,~,e) be a strict rronoidal category -- then a cylinder 

in Y is a 4-tuple (I,dO,dl,p), where I E Ob Y and dO,dl:e -+ I, p: I -+ e are rrorphisms 

of V such that 
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5.1.5 EXAMPLE Take y = 1 

in I]. 

5.1.6 m~ let <y,9,e) l:e a strict m:moidal category -- then the association 

that sends a ftmc tor F: + Y to the 4-tuple 

is a bijection between the set of strict rronoidal functors fram I] to y and the 

cylinders in y. 

5.1. 7 SOIOLIUM There is a strict rronoidal functor c: [I + CAT with In + [l]n. 

5.1. 8 LEMMA I] is a Reedy category. 

[Put 

and let 

+ 

n deg(I ) = n 

I] = subcategory of I] generated by the C~,E 

+-
I-I = subcategory of I-I generated by the ar;.] - - ~ 

5.1.9 LEMMA I-I is a local test category per W • _ 00 

[The functor c: I] + CAT satisfies the finality hypothesis, thus it is enough 

to prove that nerc[l] satisfies the n-condition (cf. C.IO.14), i.e., that the 
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categories 

i ( I-I (n) x ner Il]) = I-II ( I-I (n) x ner [1]) (n ~ 0) I] - c --=- _. c 

are aspherical. But it is possible to proceed hanotopically and construct an 

equivalence between 

I]/( [I (n) x nerc[l]) and II [I (n), 

which suffices (since I I] (n) has a final object, hence is aspherical).] 

5.1.10 REMARK Consequently, (W) is a '-_I-localizer (cf. C.9.l) and C.9.5 
co A 

I] 

is applicable: I] admits a cofibrantly generated :m:x:iel structure whose class of \'Jeak 

equivalences are the elements of (W ) and whose cofibrations are the rronarrorphisrns. 
co A 

[I 

[Note: '!he [I-localizer generated by the arrows [I (n) -+ [I (0) (n ~ 0) is 

N.B. This :m:x:iel structure on 1=1 is proper (cf. C.9.l0). 

5.2 CUBICAL SETS 

5.2.1 DEFINITION A cubical set is a f1IDctor X: I] OP -+ SET. 
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5.2.2 NOTATIOO CUSET is the category whose objects are the cubical sets and 

whose rrorphisns are the natural transfonna.tions between them. 

[Note: A rrorphism in CUSET is called a cubical map.] 

The cubical standard n-cube is the cubical set I] (n) = !<lor(-, In). If X 

is a cubical set and 

m n 
N.B. If a: I -+ I , then 

r-br( I] (n) ,X) :::; X • 
n 

I] (a) : I] (m) -+ I] (n) • 

A cubical subset of a cubical set X is a cubical set Y such that Y is a sub-

flIDctor of X, i.e., Yn C Xn for all n and the inclusion Y -+ X is a cubical map. 

5.2. 3 DEFINITIOO The frontier of I] (n) is the cubical subset a 

of I] (n) given by 

(n) (n ~ 0) 

5.2.4 RAPPEL Suppose that ~ is a small category - then M c r-br § is the class 

of nnnorrorphisms. 

5.2.5 EXAMPLE Let ~ = ~ and let 

M = {8[n] -+ ~[n] :n ~ oJ. 

Then 

M = LLP (RIP (M» = cof M (cf. 0.20.5). 

5.2.6 LEMMA Let ~ = I] and let 

M = {a I] (n) -+ I] (n):n ~ OJ. 
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M LLP (RLP (M» = cof M. 

N.B. Expanding on 5.1.10, one can take for "I" the set 

{a I] (n) -r I] (n):n z oJ. 

5.2.7 REMARK ret 1T r; (n z 1, 1 :$ i :$ n, E: = 0,1) be the cubical subset of 
1,E: 

I] (n) given by 

1T n. (rm) {rm rn f . . rm rn- l a rn n} = f: -r : 3 a actor1zatl.On f: -r -> (a ~ o. ) . 
1,£ 1,6 

Then one can take for "J" the set 

{ 1T r; -r I] (n) }. 
1,£ 

In the current setting, the machinery of Kan extensions assigns to mch 

T E Ob[ I] ,~] its rmlization functor r
T 

E Ob[ I~I ,~], itself a left adjoint for the 

singular functor s~: ~ -r I]. 

Spa::!ialize and let T be the CClm}:X)si te 

c ner A 

I] -> CAT --::> 11. 

Put 

c = r ! neroc 

c* = sin ner 0 c' 

Then 

c*:~ -+ [I. 
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So V n, 

A 

and V X E Db Q, 

5.2.8 REMARK If ~ is a small category, then 

In fact, 

ner e :::: c*ner e. c- -

n (c*ner e) = Mor(~[l] ,ner e) -n -

n 
~ Mor(cat ~[l] ,~) 

n ;::: Mor( (cat ~ [1]) ,~) 

n = ner (e) (I ). 
c -

A 

Equip I] with its Cisinski structure and ~ with its Kan structure. 

5.2.9 LEMMA The adjoint situation (c! ,c*) is a nodel pair. 

More is true: The nodel pair (c1,c*) is a nodel eq:uivalence. Therefore the 

cate:rories 

H 

are canonically e::ruivalent. 
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CATEGORICAL BACKGROUND 

DEFINITIONS AND NOTATION 

Given a category g, denote by Ob g its class of objects and by M:>r g its 

class of rrorphisns. If X, Y E Ob g is an ordered pair of objects, i:len Mar (X, Y) 

is the set of rrorphisns (or arrows) from X to Y. An elerrent f E Mor (X,Y) is sa.id 

to have dorcain X and codorcain Y. O:1e writes f:X -+ Y or X _f_> Y. CoIrlfosition 

f g 
x-->Y-->z 

is denoted by g 0 f. 

A rrorphisn f:X -+ Y in a category g is sa.id to be an isan:orphisn if there 

exists a rrorphisn g:Y -+ X such that g 0 f = i~ and fog = i~. If g exists, 

then g is unique. It is called the inverse of f and is denoted by f-l • Objects 

X,Y E Ob g are said to be irorrorphic, written X ~ Y, provided there is an iSOI1Dr­

phisn f:X -+ Y. The relation "irorrorphic ton is an equivalence relation on Ob g. 

A functor F:g -+ Q is said to be faithful (full) if for any ordered pair 

X,Y E Ob g, the map Mor(X,Y} -+ Mor(FX,FY} is injective (surjective). If F is full 

and faithful, i:len F reflects iSOI1Drphisns or still, is conservative, i.e., f is 

an iSJrrorphisn iff Ff is an is::!IDrphism. 

A functor F:g -+ Q is said to be an iSOI1Drphism if there exists a functor 

G:D -+ e such that G 0 F = ide and FoG = i~. A functor is an iSOI1Drphism iff 

it is full, faithful, and lDijective on objects. categories g and Q are said to 

be iSOI1Drphic provided there is an iSOI1Drphism F:g -+ Q. 

[Note: An iSOI1Drphisn between categories is the san:e as an iSOI1Drphism in 

the "category of categories".] 
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A functor F:~ -+ Q is said to be an equivalence if there exists a functor 

G:Q -+ ~ such that G 0 F :::: ide and FoG :::: i~, the symbol ::::: standing for natural 

isorrorphism. A functor is an equivalence iff it is full, faithful, and has a 

representative image, Le., for any Y E Ob Q there exists an X E Ob e such 

tha t FX is isorrorphic to Y. Categories ~ and Q are said to be equivalent provided 

that there is an equivalence F:~ -+ Q. '!he object isom::>rphism types of equivalent 

categories are in a one-to.-one correspondence. 

[Note: If F and G are injective on objects, then ~ and Q are iSOlIDrphic 

(categorical "Schroeder-Bernstein").] 

N.B. If ~,!2 are equivalent and Q,E; are equivalent, then ~,E; are 9:JUivalent. 

A category is skeletal if iSOlIDrphic objects are equal. Given a category ~, 

a skeleton of £ is a full, skeletal subcategory g for which the inclusion g -+ ~ 

has a representative image (hence is an equivalence). Every category has a skeleton 

and any two skeletons of a category are isorrorphic. 

A category is said to be discrete if all its rrorphisms are identities. Every 

class is the class of objects of a discrete category. 

[Note: A category is small if its class of objects is a set; otherwise it 

is large. A category is finite (countable) if its class of rrorphisms is a finite 

(countable) set.] 

EXAMPLES 

Here is a list of CCllTJTOnly occurring categories. 

(1) SET, the category of sets, and SET*, the category of pointed sets. If 

X,Y E Ob SET, then r-tlr(X,Y} = F(X,Y), the functions from X to Y, and if (X,xO)' 

(Y,yO) E Ob SE.'T*, then MJr( (X,XO) r (Y,yo}) = F{X,XO;Y'YO)' the base point preserving 
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functions from X to Y. 

(2) TOP, the category of topological spaces, and 'lOP * I the category of 

pointed topological spaces. If X,Y E Ob TOP, then Mor(X,Y) = C(X/Y), the con­

tinuous functions from X to Y, and if (X,xO), (y,yO) E Db TOP *, then Mer ( (X,X
O

) , 

(Y,yO» = C(X,XOiY,YO)' the base point preserving continuous functions from X to Y. 

(3) HTOP, the horrotopy category of topological spaces, and HTOP *, the 

horrotopy category of pointed topological spaces. If X, Y E Db HTOP, then Mer (X, Y) = 

[X,Y], the horrotopy classes in C(X,Y), and if (X,x
o
), (y,yo) E Db HTOP*, then 

Mor«X,xO)'(Y'YO» = [X,XOiY,yol, the horrotopy classes in C(X,Xo;Y,yo)' 

(4) HAUS, the full subcategory of TOP whose objects are the Hausdorff spaces 

and CPTHAUS, the full subcategory of HAllS whose objects are the canpact spaces. 

(5) ITX, the fundan:ental groupoid of a topological space x. 

(6) GR, AB, RG (A-IDD or MOD-A) I the category of groups, abelian groups, 

rings with unit (left or right A-m:xlules, A E Db RG). 

(7) Q, the category with no objects and no arrows. ;h, the category with 

one object and one arrow. ~, the category with two objects and one arrow not 

the identity. 

(8) CAT, the category whose objects are the smaIl categories and whose rror­

phisrns are the functors between them. 

(9) GRD, the full subcategory of CAT whose objects are the groupoids, Le., 

the small categories in \I1hi.ch every rrorphism is invertible. 

(10) PRECAT, the category whose objects are the small precategories (a.k.a. 

graphs) and whose rrorphisms are the prefunctors between them. 
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EXA.P.1PLE Every arrow f:X -+ Y of ~ appears as an arrow fOP:y -+ X of ~oP. 

'!his said, define a functor OP:CAT -+ CAT on objects by 

and on rro:rpbisms F: s: -+ !? by 

Then 

OP 0 OP = id
CAT

• 

EXAMPlE The assig.rnrent 

'lOP -+ GRD 

X -+ TIX 

is a functor. 

[Note: A continuous function f; X -+ Y induces a functor F f: TIX -+ IIY, viz. 

Ff' = f(x), Ff[Y] = [f 0 y] (y E C([O,l] ,X».] 

In this 1:x>ok, the foundation for category theory is the "one universe" 

approach taken by Herrlich-Strecker t . The key words are "set t1, "class", and 

"conglClItErate". Thus the issue is not only one of size but also of nenbersbip 

(every set is a class and every class is a conglClItErate). Exan'ple: {Ob SET} 

is a conglClItErate, not a class (the rrenbers of a class are sets) . 

A metacategory is defined in the sarre way as a category except that the 

objects and the rro:rpbisms are all~ to be conglClItErates and the requirerrent 

that the congl<::merate of rro:rpbisms between bYo objects be a set is dropped. 

t CategoJt.y Thea/tlj, Heldennann Verlag, 1979. 
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While there are exceptions, rrost categorical concepts have netacategorical analogs 

or interpretations. 

[Note: Eve:ry category is a metacategory. On the other hand, it can happen 

that a netacategory is isorrorphic to a category but is not itself a category. 

Still, the convention is to overlook this technical nicety and treat such a neta­

category as a category.] 

N. B. Additional discussion and infonnation can be found in Shulman t . 

NarATICl'l CAl, the netacategory whose objects are the categories and whose 

rrorphisms are the functors be~ them. 

COMMA CATEGORIES 

T:A + C 

Given categories ~,~,g and functors , the corrma category IT,S I 

S:B + C 

X E Ob A 

is the category whose objects are the triples <X,f,Y): 

Y E Ob B 

& f E r-ilor{TX,SY) and whose rrorphisns (X,f,Y) + (X' ,f' ,Y') are the pairs 

<p E Mor (X,X' ) 

for which the s:ruare 

ljJ E Mer (Y 1 y' ) 

f 

TX' ----.> SY' 
f' 

t arXiv:0810.1279 
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commutes. Composition is defined carrp::>nentwise and the identity attached to 

(X,f,Y) is (i~,i~). 

I..EM£vIA There are functors 

P: IT,sl + A 

Q:IT,sl +B 

and a canonical natural transfonrra. tion 

ToP + S 0 Q. 

PR<X>F Let 

P(X,f,Y) = X Q(X,f,Y) = Y 

P (¢,l/J) = ¢ 

and define 

~ E Nat(T 0 P,S 0 Q) 

by 

:!(X,f,Y) = f. 

[Note: In general, the diagram 

Q 
IT,sl - > B 

P 1 1 s 

A > C - T 

does not commute.] 

(A \~) Let A E Ob ~ and write KA for the constant functor 1 + C with 

value A - then 
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is the category of objects under A. 

(g/B) let B E Ob g and write ~ for the constant functor 1 -+ C with 

value B -- then 

is the category of objects over B. 

N. B. '!he comma category I KA, KB I is MDr (A, B) viewed as a discrete category. 

The arrow category g (-+) of C is the comna category I idc , idc I • 

FUNCTOR CATEGORIES 

F:C -+ D 

let te functors -- then a natural transfonnation :.;:: from F to G 

G:C -+ D 

is a function that assigns to each X E Ob g an elerrent :.;::X E Mer (FX,GX) such that 

for every f E MDr (X, Y) the s:::ruare 

FX ------'> GX 

FY ----> GY 

corrmutes, :.;:: teing tenred a natural isorrorphism if all the 3X are isorrorphisms, 

in which case F and G are said to te naturally i9JI'OC)rphic, written F :::: G. 

C 
Given categories r the functor category [C,D] is the rretacategory 

D 

'Whose objects are the functors F:g -+ Q and 'Whose :m:::>:rphisms are the natural 
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transfo:mations Nat (F ,G) from F to G. In general, [~,!2] need not be isorrorphic 

to a category, although this will be true if ~ is small. 

[Note: The isorrorphisms in [~,!2] are the natural iscnorphisrns.] 

N.B. The identiq i~ E Nat(F,F) is defined by (i~)x = i~ and if 

M Q 
F --> G, G --> H are natural transfo:mations, then Q 0 3:F -+ H is the natural 

transfo:mation that assigns to each X the CClIJ:tX)sition n.x 0 Ex:FX -+ HX. 

(K*) let K:A -+ C be a functor - then there is an induced functor 

given on objects by 

K*F == F 0 K 

and on rrorphisms by 

(K*';;) - ';; - A - -KAo 

(L*) let L:D -+ B be a functor -- then there is an induced functor 

given on objects by 

L7==LoF 

and on rrorphisms by 

K*3 

Write in place of , so L{EK) == (L3) K -- then 

LE 

3 (K 0 K') (3K)K I (LI 
0 L) E == LI (LE) 

and 

(E' 0 E)K (E'K) 0 (3K) L(E' 0 E) == (LEI) 0 (LE), 
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YONEVA THEORY 

Associated with any object X in a category g is the functor Mor(X,-) E 

OP functor Mor(-,X} E Ob[g ,SET]. If F E Ob[g,SET] is a 

functor or if F E Qb[gOP ,SET] is a functor, then the Yoneda lemna. establishes 

a bijection lX between Nat(M:>r(X,-) ,F} or Nat(J.IIJor{-,X} ,F} and FX, viz. 

1- X -+ Mar (X,-) 
Therefore the assignrrents I lead to functors 

X -+ Mer {-,X} 

that are full, faithful, and injective on objects, the Yoneda 

g -+ [gOP ,SET] 

embeddings. One says that F is representable (by X) if F is naturally isonnrphic 

to Mor (X,-) or Mor (-,X). Representing objects are isorrorphic. 

EXAMPLE 'Ihe forgetful functor U: TOP -+ SET is representable: 

V X, Mer({*},X} Z UX. 

'Ihe forgetful functor U:GR -+ SET is representable: 

V X, Mer(Z,X} z UX. 

The forgetful functor U :RG -+ SET is representable: 

V X, J.IIJor(Z[t],X} z UX. 

It is traditional to write 

A 
and call an object of g a presheaf (of sets) on C. 

EXAMPLE We have 
A 
o = I - -
A 
I z SET. 
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Given X E Ob ~, put 

~ = fvbr(-,X) . 

fvbr(X,Y) ~ Nat(~,hy) 

and in this notation the Yoneda embedding 

sends X to ~. 

EXN.lJPLE ret F:SETOP 
-+ SET be the fimctor that sends X to 2X (the set of all 

-1 Y X subsets of X) and sends f:X -+ Y to f :2 -+ 2 - then F is representable: 

EXAMPLE ret F:TOPOP 
-+ SET be the functor that sends X to TX (the set of open 

... 1 
subsets of X) and sends f:X -+ Y to f :Ty -+ TX -- then F is representable: 

{o ,I} being Sierpinski space. 

[Note: '!his fails TOP is replaced by HAUS.] 

MORPHISMS 

A rrorphism f:X -+ Y in a category ~ is said to be a rronorrorphism if it is 

left cancellable with respect to composition, Le., for any pair of rrorphisms 

u,v:Z -+ X such that f 0 u = f 0 v, there follows u = v. 

A rrorphism f:X -+ Y in a category ~ is said to be an ep:in'crpbism if it is 

right cancellable with respect to composition, Le., for any pair of rrorphisms 
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u,v:Y + Z such that u 0 f = v 0 f, there follows u = v. 

A norphisrn is said to be a binorphisrn if it is both a nononorphien and an 

epinorphien. Every isonorphien is a binorphisrn. A category is said to be balanced 

if every binorphien is an i sonorphi en. The categories SET, GR, and AB are balanced 

bu t the category '!OP is not. 

EXAMPLE In SET, GR, and AB, a norphisrn is a rrononorphism (epinorphisrn) iff 

it is injective (surjective). In any full subcategory of '!OP, a rrorphisrn is a 

rrononorphisrn iff it is injective. In the full subcategory of '!OP* whose objects 

are the connected spaces, there are nononorphisms that are not injective on the 

tmderlying sets (covering projections in this category are nononorphisms). In 

'!OP, a norphisrn is an epinorphisrn iff it is surjective but in HAUS, a norphisrn 

is an epinorphisrn iff it has a dense range. The horrotopy class of a nononorphisrn 

(epinorphisrn) in '!OP need not be a nononorphisrn (epinorphisrn) in HI'OP. In CAT, 

a norphisrn is a rrononorphien iff it is injective on objects and fully faithful. 

en the other hand, in CAT there are epinorphisms which are surjective on objects 

but which are not surjective on norphien sets. 

m~ let g be a SIIlo3.ll category - then a norphisrn 3 in [g,SET] is a none­

norphisrn iff V X E Ob g, 3x is a rrononorphisrn in SET. 

[Note: This can fail if SET is replaced by an arbitrary category !2.] 

Given a category g and an object X in g, let M(X) be the class of all pairs 

(Y,f), where f:Y + X is a nononorphisrn. Two elerren.ts (Y,f) and (Z,g) of M(X) are 

deerred equivalent if there exists an isonorphism ¢: Y + Z such that f = g 0 ¢. A 

representa ti ve class of no:nanDrphisms in M (X) is a subclass of M (X) that is a 
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system of representatives for this equivalence relation. C is said to be well­

;powered provided that each of its objects has a representative class of IIDIlaror­

phisms which is a ret. 

Given a catego:ry £ and an object X in £, let E(X) be the class of all pairs 

(Y,f), where f:X -+ Y is an epirrorphisn. 'IWo elerrents (y,f) and (Z,g) of E(X) 

are deemed equivalent if there exists an ioorrorphisn <p:Y -+ Z such that g = <p 0 f. 

A representative class of epirrorphisms in E (X) is a subclass of E (X) that is a 

system of representatives for this equivalence relation. C is said to be CO\<Jell­

~ provided that each of its objects has a representative class of epinorphisrns 

which is a set. 

EXAMPLE SET, GR, AB, TOP (or HAUS) are well~d and cowellpJwered. 

THEOREM. CAT is wellpalll1ered and cowellpJwered. 

A IIDIlarorphisn f:X -+ Y in a catego:ry S is said to be extrema.l provided that in 

any factorization f = hog, if g is an epirrorphism, then g is an iSOITOrphism. 

An epirrorphism f:X -+ Y in a catego:ry £ is said to be extrema.l provided that in 

any fact.orization f = hog, h is a rronorrorphisn, then h is an isarorphism. 

In a balanced catego:ry, eve:ry rronarorphism (epirrorphism) is extrema.l. In any 

catego:ry, a rrorphism is an iSOITOrphism iff it is both a IIDIlarorphism and an extremal 

epirrorphism iff it is both an extrema.l IIDIlOITOrphism and an epirrorphism. 

EXAMPLE In TOP, a nonarorphism is extrema.l iff it is an embedding but in HAUS, 

a IIDIlOITOrphism is extrema.l iff it is a closed embedding. In 'lOP or HAUS, an epi­

norphism is extrema.l iff it is a quotient map. 

A rrorphism r: Y -+ X in a ca tego:ry £ is called a retraction if there exists a 
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rrorphisn i:X -+ Y such that r 0 i = i~, in which case X is said to be a retract 

of Y. 

f E .M:>r (X,X' ) 
EXA.\1PLE Consider the arrc:>"\'N ca tegory s: ( -+) and suppose that 

g E !.t::>r (Y, Y') 

then to say that f is a retract of g rreans that there exists a pair 

i E M:>r(X,Y} 

(i,i'): 

i' E Mer (X' , Y , ) 

and a pair 

r E Mer(Y,X) 

(r,r') : 

r' E Mer (Y' ,X') 

such that 

(r,r') 0 (i,i') = idf 

or still, 

(r 0 i, r' 0 i') = (i~, id ). 
X' 

In other 'NOrds, there is a camnutative diagram 

i 
X - ). Y 

f 1 g 1 
x' ---). Y' 

i' 

where r 0 i = i~, r' 0 i' = id 
x' 

r 
). X 

f 1 
> x', 

r' 

[Note: If g is an isarrorphisn and if f is a retract of g, then f is an 

isorrorphism. ] 
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IVEMPOTENTS 

A rrorphisn e:X -+ X in a category S is iderrpotent if e 0 e = e. An idempotent 

e:X -+ X is split if :J Y E Ob S and rrorphisrns cp:X -+ Y, l/!:Y -+ X such that e = l/! 0 cp 

and cp 0 l/! = idy. 

EXAMPLE Every idempotent in SET is split. 

Given a category S, there is a category g in which idempotents split and a 

functor E:C -+ C that is full, faithful, and injective on objects with the following 

propert:Y: Every functor from £. to a category in which ide:rnpotents split has an 

-extension to C, unique up to natural i sorrorphi sm. 

SEPARATION AND COSEPARATION 

Given a category S, a set U of objects in S is said to be a separating ~t 

f 
for every pair X -> Y of distinct rrorphisms, there exists a U E U and a rror­

-> g 

phism (J: U -+ X such that f 0 (J ;It g 0 (J. An object U in S is said to be a separator 

if {U} is a ~parating ~t, i.e., if the functor l-Ibr(U,-) :£. -+ SET is faithful. 

If S is balanced, finitely corrplete, and has a ~parating set, then £. is wellpowered. 

Every cocomplete CQ\\1\911powered category with a separator is -wellpowered and corrplete. 

If £ has coproducts, then a U E Ob £ is a separator iff each X E Ob £ admits an 

epirrorphism J1 U -+ X. 

[Note: Suppose that £. is small -- then the representable functors are a 

separating set for [£.,SET].J 
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EXAMPLE Every nonempty set is a separa1:Dr for SET. SET x SET has no separa1:Drs 

bu t the set {(.0, { 0 }}, ( { 0 }, .0}} is a separa OOg set. Every nonerrpty di s:rete topo­

logical S}?ace is a separator for 'IDP (or HAUS). Z is a separator for GR and AB, 

-while Z[t] is a separa1:Dr for RG. In A-MOD, A (as a left A-nodule) is a separa1:Dr 

and in ~o)-A, A (as a right A--nodule) is a Sl9parator. 

Given a category £, a Sl9t U of objects in £ is said 1:D be a coSl9paraOOg set 

f 
if for every pair X Y of distinct :rrorphiems, there exists a U E U and a 

9 

:rrorphisn cr:Y -+ U such that (J 0 f ;t; cr 0 g. An object U in £ is said to be a co­

separa1:Dr if {U} is a coseparating set, i.e., the cofunc1:Dr M::>r (-,U) :£ -+ SET 

is faithful. If £ is balanced, finitely cocomplete, and has a coSl9parating set, 

then £ is co\\ellpo\\ered. Every complete \\ellpowered category with a cosepara1:Dr 

is cowellp0\\ered and coconplete. If 5: has products, then a U E Ob 5: is a coseparator 

each X E Ob 5: admits a rronorrorphiem X -+ U. 

EXAMPLE Every set with at least tw:::> elerrents is a coSl9para 1:Dr for SET. Every 

indiscrete topological ~ace with at least two elerrents is a coseparator for TOP. 

Q/Z is a coSl9para1:Dr for AB. None of the categories GR, RG, HAUS has a coseparating 

set. 

INJECrrVES 

Given a category 5:, an object Q in 5: is said to be injective thecofunctnr 

M::>r(-,Q}:5: -)- SET converts rronorrorphiems into epiIIDrphisms. In other words: Q is 

injective iff for each rronorrorphian f:X -+ Y and each norphisn </I:X -+ Q, there exists 

a norphisn g:Y -+ Q such that 9 0 f :: </I. A product of injective objects is injective. 



16. 

A category g is S9.id to have enough injectives provided that for any X E Ob g, 

there is a nonorrorphisn X -+ Q, with Q injective. If a category has products and 

an injective co separa tor, then it has enough injectives. 

EXAMPLE The injective objects in tffi category of Banach spaces and linear 

contractions are, up to isorrorphisn, the c (X), where X is an extrerrally disconnected 

corrpact Haus:lorff space. In AB, ~ injective objects are the divisible arelian 

groups (and Q/Z is an injective coseparator) but the only injective objects in GR 

or RG are t1:E final ob jects. 

SOURCES ANV SINKS 

A source in a category C is a collection of norphisns f. :X -+ X. indexed by 
- 1 1 

a set I and having a conm::m demain. An n-source is a source for which #1 = n. 

A sink in a category C is a collection of norphisns f. :X. -+ X indexed by a 
-- . - 11 

set I and having a conm::m codemain. An n-sink is a sink for which #1 = n. 

LIMITS ANV COLIMITS 

A diagram in a category g is a functor L'l:! -+ g, where! is a snaIl category, 

the indexing category. 'lb facilitate the introduction of sources and sinks 

assxiated with L'l, we shall write L'l. for ~ image in Ob C of i E Ob I. 
1 --

(lim) let L'l:! -+ g be a diagram - then a source {fi:X -+ L'li} is sUd to 

o 
be natural if for each 0 E M:>r 1_, say i -+ j, M 0 f. = f.. A limit of L'l is a 

1 J 

natural source {ii:L -+ L'li} with the pro~rty that if {fi:X -+ L'li} is a natural 

rource, tlEn there exists a unique norphisn <I>:X -+ L such that fi = ii 0 <I> for all 
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i E Ob I. Limits are esrentially unique. NOtation: L = l~lI (or lim M. 

(colim) let lI:!, -+ ~ be a diagram -- then a sink {fi :lIi -+ X} is said to 

be natllral 
o 

for each 0 E Nor !, say i -+ j, f. = f. 0 M. A colimit of II is a 
1 J 

natllral sink {.t. :lI. -+ L} with the prop:rty that if {f. :lI. -+ X} is a na'bJral sink, 
1 1 1 1 

tl:en there exists a unique norphisn <I>:L -+ X Slch that fi = <I> 0 .ti for all i E Ob I. 

Colimits are esrentially unique. NOtation: L = col~lI (or colim M. 

There are a mnnber of basic constructions that can be vieweCl. as a limit or 

colimit of a suitable diagram. 

PRODUCTS ANV COPROVUCTS 

let I be a set; let! be t:re dis:::::rete category with Ob ! = I. Given a 

collection {x.:i E I} of objects in C, define a diagram lI:I -+ C by /:'. = X. (i E I). 
1 - - - 1 1 

(Products) A limit {l.:L -+ lI.} of II is said to be a product of the X .• 
111 

NOtation: L = rr x. (or if if X. = X for all i), l. = pr., the projection from 
ill 1 1 

rr X. to X.. Briefly put: Products are limits of diagrams with discrete indexing 
.11 
1 

categories. In particular, the limit of a diagram having Q for its indexing cate­

gory is a final object in £. 

[Note: An object X in a category £ is said to be final if for each object y 

there is exactly one norphisn from Y to X.] 

(Coproducts) A colimit {L :6. -+ L} of II is said to be a coproduct of the 
1· 1 

X. . NOtation: L = II X. (or I • X 
1 - 1 

X. = X for all i), .t. = in., the injection 
111 -

i 
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from X. to II X.. Briefly put: Coproducts are colimits of diagrams with discrete 
~ - ~ 

i 
indexing categories. In par ticu1ar, the colimit of a diagram having Q for its 

llldexing category is an initial object 1...11. g. 

[Note: An object X in a category g is Eaid to be j.nitial if for each object 

y t:lEre is exac tly one norphign from X to y.] 

EXAMPIE In tte full sul:x::a tegory of 'IDP WID a: ob jec t:s are tte locally connec ted. 

spaces, tt:e product is th= product in SEl' equipped. with the coarsest locally 

connected tor:ology that is finer th:m tte product tor:ology. In the full subcategory 

of 'IDP whoa: objects are tte compact Haus10rff spaces, the coproduct is the Stone­

Cech cornpac tifica tion of the coproduc t in 'IOP. 

EQUALIZERS ANV COEQUALIZERS 

let ! be the category 1 • _> • 2. Given a pair of rrorphisns u,v:X + Y in g, 
b 

!:J. =X ta=u 1 
define a diagram !:J.:! + ~ by & 

!:J. =Y !:J.b=v 2 

(Equalizers) An equalizer in a category g of a pair of norphisns u, v:X + Y 

is a ITOrphign f:Z + X with u 0 f = v 0 f such that for any rrorphisrn f' :Z' + X with 

u 0 ff V 0 f' there exists a unique norphisn ¢:ZI + Z such that f' = f 0 ¢. The 

f u 0 f f 
2-source X <-- Z ----> Y is a limit of !:J. iff Z + X is an equalizer of u,v:X + Y. 

Notation: Z = eq(u,v) . 

[Note: Every equalizer is a rronOD'Drphis:n. A IrOIlOD'Drphisn is regular if it is 

an equalizer. A regular rronOD'Drphisn is extremal.] 
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(Coequalizers) A coequalizer in a category ~ of a pair of rrorphians 

u,v:X -+ Y is a rrorphian f:Y -+ Z with f 0 u = f 0 v such that for any rrorphisn 

f':Y -+ z' with f' 0 u = fl 0 v there exists a tmique rrorphism cp:Z -+ Z' such that 

f f 0 u f 
f' = <I> 0 f. The 2-sink Y --> Z < X is a colimit of IJ. iff Y -+ Z is a 

coequalizer of u,v:X -+ Y. Notation: Z = coeq(u,v). 

[Note: Every coequalizer is an epirrorphian. .An epinorphian is regular 

it is a coequalizer. A regular epirrorphi an is extrerral.] 

REMARK There are two aspec ts to "t;]:)3 notion of equalizer or coeql.:lalizer, 

narrely: (1) Existence of f and (2) Uniqueness of cp. Given (1), (2) is equivalent 

to requiring that f be a rrononorphisn or an epinorphisn. If (1) is retained and 

(2) is abandoned, then the te.rnrinology is weak equalizer or weak coequalizer. For 

example, H'IDP* :tas neitha: e:J.Ualizers lilor ooe:;:{U'llize:-s but does llave wmk ecp:;.tlizers 

and weak: coequalizers. 

EXAMPLE Giv"eIl objects ~, 12 in CAT and rrorphisns F,G:g -+ 12 in CAT, their 

equalizer eq(F,G) is the inclusion inc of the SJbcategory of ~ on which F,G coincide: 

where 

inc 
eq(F,G)---> ~ 

F 
----> 

----> 

Ob eq(F,G) = {X E Ob g:FX = GX} 

Mar eq(F,G) = {f E Mar ~:Ff = Gf}. 

EXAMPLE Take g = SET and consider a pair of m::>rphisns u,v:X -+ Y. let ~ be 
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the equivalence relation generated by {(u(x) ,v(x}} :x E X} -- then the canonical 

map Y -+ Y/~ which assigns to each y E Y its equivalence class [y] is a coequalizer 

of u,v. 

PULLBACKS ANV PUSHOUTS 

a b 
let I be the category 1 • -> • <-. 2. Given nnrphisns 

- 3 

£, define a diagram t\:! -+ £ by 

t\ = X 
1 

t\ = Y & 2 
t\ = Z 3 

f g 

t\a = f 

t\b = g 

f:X -+ Z 
in 

g:Y -+ Z 

(Pullbacks) Given a 2-sink X --> Z <-- Y, a COIrnD.ltati ve diagram 

Tl 
P > Y 

1;' Tl' 
is said to be a pullback &:JUa.re if for any 2-source X <- P'-> Y 

X ---> Z 
f 

with f 0 1;' = g 0 Tl I there exists a lITlique nnrphi s:n ¢: P , -+ P such that t;' = t; 0 ¢ 

F, Tl 
and Tl' = Tl 0 ¢. '!he 2-source X <-- P -> Y is called a pullback of the 2-sink 

f g 
X --> Z <-- Y. Notaticn: P = X X z Y. Limits of t\ are pullback squares and 

conversely. 

a b 
let ! be the category 1 • <- • -> • 2. Given nnrphisns 

3 

£, define a diagram t\:! -+ £ by 

t\l = X 

t\ = Y & 2 
t\ = Z 3 

t\a = f 

tb = g 

f:Z -+ X 
in 

g:Z -+ Y 
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f g 
(Puslnuts) Given a 2-rource X <- Z --;> Y, a corrmutative diagram 

g 
z --;> Y 

X--> P 
~ 

~I n' 
is S3.id to be a pushout square if for any 2-sink X _> pi <-- Y 

with ~ I 0 f = n r 0 g there exi sts a unique rrorphisn ¢:P -). p' 9.1ch tha t ~ I = ¢ 0 t; 

t; n 
and n r = ¢ 0 n. The ;2 .... s:ink X -> P <- Y is called a pushout of the 2-rource 

f g 
X <-- Z --;> Y. Notation: P = X U Y. Colirnits of !J are pushout s:ruares and 

Z 
converrely. 

REMARK The re 9.11 t of dropping uniqueness in ¢ is 'iNelak pullback or 'iNelak pushout. 

Examples are tffi corrmutative s:ruares that define fibration and cofibration in 'IDP. 

EXAMPLE let X and Y be topological spaces. let A -). X be a closed embedding 

and let f:A -). Y be a continuous function -- tffin the adjunction space X ~ Y 

f 
corresponding to the 2-source X ~- A --> Y is defined by the puslDut s:ruare 

f 
A----> Y 

1 1 
X---""",,>X Y, 

f being the attaching nap. Agreeing to identify A with its image in x, the 

X-A 
restriction of tffi projection p:X 11 Y -). X ~ Y to is a han:eonorphisn 

Y 

X-A 
of onto an 

Y 

partition X Uf Y. 

open 
subret of X U

f 
Y and the ima.ges 

closed 

p(X-A) 

p(Y) 
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fILTEREV CATEGORIES ANV fINAL fUNCTORS 

let f ;c .Q be a srall category -- then f is said to be filtered if 

(Fl ) Given any pair of objects i , j in f, tl"ere exists an object k and 

i-+k 
nnrphisns 

j -+ k 

(F2) Given any pair of nnrphisns a/b:i -+ j in f, there exists an object 

k and a nnrphisn c: j -+ k such that c 0 a = cOb. 

Every nonempty directed ESt (I,::;) can be viewed as a filtered category f I 

where Ob f = I and Mer (i I j) is a one elenent set when i ::; j but is empty otherwise. 

EXAMPLE let [N] be the filtered category ass::x::iated with the directed ESt 

of non-negative integers. Given a category £, denote by FIL(~) tha functor cat;­

egory [[N] ,e] - t1::en an object (X/f) in FIL (e) is a sequence {X ,f }, where 
- - - -- n n 

X E Ob e & f E Mer (X ,X +1) I and a nnrphisn <p: (X, f) -+ (Y ,a) in FIL (e_) is a n - n n n -- -.;;! 

sequence {<p }, whare <p E Mer (X , Y ) & g 0 <p = <p +1 0 f • n n nn n n n n 

(Fil tered Colimits) A filtered colimit in £ is the colimit of a diagram 

~:f -+ £, wrere f is filtered. 

(Cofil tered Limits) A cofil tered limit in £ is tha limit of a diagram 

~: f -+ £, whare f is cofil teredo 

[Note: A srall category f ;c .Q is S3.id to be cofil tered provided that lOP 

is filtered.] 

EXAMPLE A Haus:lorff space is conpactly generated iff it is the filtered 

colimit in 'lOP of its compact subspaces. Every canpact Hausdorff space is the 

cofil tered limit in 'lOP of compact :rretrizable spaces. 

-------- .-. __ ... --
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Given a snaIl category ~, a path in ~ is a diagram cr of the fonn Xo -+ 

X+-··· -+ x... +- x_ (n 2: 0). 1 -~n-l -~n Cile says that cr 1:.Jegins at Xo and ends at ~n. 

'Ite quotient of Ob ~ with respect to the equivalence relation obtained by de­

claring that Xl ~ XII iff there exists a path in ~ which 1:.Jegins at Xl and ends 

at XII is the set 'lTo (9 of corrpanents of ~, ~ being called connected when the 

cardinality of 'lTo (9 is one. The full su1:x::::ategory of ~ determined by a corrpanent 

is connected and is maxiJ:nc:tl with respect to this property. If C has an initial 

abject or a final abject, then ~ is connected. 

[Note: The concept of Ilpathllmakes sense in any category.] 

EXAMPLE The assign:n:ent 

'lOP -+ SET 

is a functor. 

[Note: The elerrents of 'IT 0 (IIX) are the path corrpanents of X.] 

let ! ~ Q be a small category -- then ! is said to be pseudofil tered if 

(PF 1) Given any pair of rrorphisrns 

c:j -+ l 

a:i -+ j 
in I, there exists an abject 

b:i -+ k -

l and rrorphisrns such that c 0 a = d 0 b; 
d:k -+ l 

(PF2) Given any pair of rrorphisms a,b:i -+ j in !, there exists a rrorphism 

c:j -+ k such that c 0 a = cob. 

! is filtered iff ! is connected and pseudofiltered. ! is pseudofiltered 

iff its ca:nponents are filtered. 
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I 
Given sna.ll ca tegories , a functor V:J -+ I is said to be final provided 

J 

tha t for every i E Ob !, tile corrma ca tegory I Ki ,'11 is nonempty and connec ted. If 

~ is filtered and V:~ -+ ! is final, then ! is filtered. 

[Note: A SJbcategoryof a sna.ll category is f.inal if the inclusion is a 

final func tor. ] 

let V:J -+ I be final. Suppore that 6:! -+ ~ is a diagram for which colim 6 0 V 

exists -- then colim 6 exists and tile arrow colim 6 0 V -+ colim 6 is an is:morphian. 

Corollary: If i is a final object in I, t:J:en colim 6 :::: 6 .• 
- 1 

[Note: Analogous considerations apply tD limits ro long as "final" is re-

placed throughout by "initial It.] 

REMARK let ! be a filtered category -- then there exi sts a direc ted ret (J, s) 

and a final functor V:J -+ 1. 

Limits conmute with limits. In otiler \\lOrds, if 6:1 x ~ -+ ~ is a diagram, tl1en 

under the obvious as9.ll'l'lptions 

l~ limJ 6 :::: l~xJ 6 :::: limJXI 6 :::: limJ l~ 6. 
- - - - --

Likewire, colimits COImn.ltE with colimits. In general, limits do not conmute 

with colimits. However, 6:! x ~ -+ SEr and if ! is finite and ~ is filtered, 

then the arrow colimJ l~ 6 -+ l~ colimJ 6 is a bijection, ro that in SEI' 

filtered colimits COImn.lte with finite limits. 

[Note: It is also true that in GR or AB, filtered colimits comnute with finite 

limits. But, e.g., filtered colimits do not conmute with finite limits in SEr°P.] 
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COMPLETENESS AND COCOMPLETENESS 

A category g is said to be conplete (coa:::nplete) if for each snall category 

!, every !J. E Ob [!,gJ has a limit (colimit). 'ltle follOW'ing are equivalent. 

(1) g is conplete (coconplete). 

(2) g has products and equalizers (coproducts and coequalizers). 

(3) g has products and pullbacks (coproducts and pushouts) . 

EXAMPLE The categories SET, GR, and AB are conplete and coconplete. 'ltle S3Il'e 

OOlds for TOP and 'IDP * but not for H'IOP and H'IDP *. 

[Note: HAUS is conplete; it is alB) cocarnplete, being epireflective in 'IDP. J 

THEOREM CAT is complete and cocomplete. 

[No1:e: .Q is an initial object in CAT and ! is a final object in CAT. J 

A ca 1:egory g is said to be finitely complete (finitely cocornplete) if for each 

finite category!, every !J. E Ob [!,gJ res a limit (colimit). 'ltle following are 

equivalent. 

(1) g is finitely canplete (finitely coconplete) • 

(2) g has finite products and equalizers (finite coproducts and coequalizers). 

(3) g has finite products and pullbacks (finite coproducts and pushouts). 

EXAMPLE 'ltle full SJ.bca tegory of TOP whose objects are the finite topological 

spaces is finitely conplete and finitely cocornplete but neither complete nor co­

con:plete. A nontrivial group, considered as a category, is neither finitely c0m­

plete nor finitely cocornplete. 

If g is anall and Q is finitely ccmplete and wellpawered (finitely cocomplete 

and cowellpawered), then [g,QJ is wellpowered (cowellpowered). 

---------.--....• -~. 
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EXAMPLE SET(-+) , GR(-+) , AB(-+) , 'IOP 

and cowellp::>v.ered. 

(or HAUS (-+) ), CAT (-+) are -wellr;:owered 

[Note: Tre arrow category ~(-+) of any category ~ is is:morphic to [~,,£].] 

PRESERVATION 

let F:C -+ D be a flIDctor. 

(a) F is said to pree=rve a limit te .. :L -+ 6.} (colimit {l. :6. -+ L}) of 
].]. ]. ]. 

a diagram 6:!, -+ ~ if {Fli:FL -+ F6i } ({Fli :F6i -+ FL}) is a limit (colimit) of the 

diagram F 0 6:!, -+ Q. 

(b) F is mid to pree=rve limits (colimits) over an indexing catEgory !, 

F pree=rves all limits (col imit s) of diagrams 6:!, -+ ~. 

(c) F is s:tid to preserve limits (colimits) if F pree=rves l.llnits {col imit s) 

over all indexing categories 1. 

EXA.~LE T"ne forgetful flIDctor 'IOP -+ SET pree=rves limits and colimits. The 

forgetful flIDctor GR -+ SET preserves limits and filtered colimits but not coprcx:1ucts. 

The inclusion HAUS -+ 'lOP preserve s limit s and coprcx:1ucts but not coequalizers. 

The inclusion AB -+ GR pree=rves limits but not colimits. 

MJr(X,-} 
There are tw:> rules that detennine the behavior of with respec t 

~br(-,X) 

to limits and colimi ts. 

(1) The flIDctor Mor (X,-) :~ -+ SET pree=rves limits. Symlx:>lically, there­

fore, MJr(X,lim 6) :::: lim(M:>r(X,-) 0 M. 

(2) The flIDctorMor (-,X) :~OP -+ SET converts colimits into limits. S:YJ.U­

l:x:>lically, therefore, M:>r(colim 6,X) ::::: lim(J.'br(-,X) 0 M. 
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Limits and colimits in functor categories are conputed "object by object". 

So, if g is a small category, then Q (finitely) complete => [g,Q] (finitely) 

complete and Q (finitely) cocon:plete => [g,Q] (finitely) cocomplete. 

In particular: 
A OF g = [g ,SET] is complete and cocarrplete. 

[Note: An initial object fdA in 2 is the constant presheaf with value fda 
e -

A final object * A in 2 is the constant presheaf with value {*}.] 
e -

A 

N. B. The Yoneda embedding Ye:g -+ g prese:rves limits; it need not, 1:nwever, 

preserve finite colimits. E.g.: Suppose that g has an initial object fd
e 

-- then 

~ and fdA are not isorrorphic. 
e e - -

EXAMPLE Let G be a nontrivial group, considered as a category g -- then the 

OF category of right G-sets is the category [g ,SET], thus is carrplete and co-

complete. 

THEOREM Let g be a small category -- then every pre sheaf F is a colimit of 

representable presheaves: There exists a small category !F and a functor 

~:~ -+ g such that 

colim Ye 0 ~ ~ F. 

[Let !F be the category whose objects are the pairs (X,x), where X E Ob e 
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and x E FX, and whose norphisms (X,x) -+ (X' ,x') are the f E :Mer (X,X') such that 

(Ff)x' ::: X -- then !F is a Stall category and the assignm:mt 

(X,x) ~> X 

f 
«X,x) ---->(X' ,x'» -+ f 

defines a functor ~:!F -+ s: with the stated properties. In this cormection, bear 

in mind that 

so each (X,x) E Ob !F determines a natural transfonnation 2 (X,X):~ -+ F and 

v f: (X,x) -+ (X' ,x'), we have 

~(X,x) ::: =(X',x') 0 Yc(f). 

{Note: Take F ::: ~ -- then !~ has a final object, nanely the pair 

(X,i~) .J 

REMARK let s:/F = !F -- then the canonical arrow 

is an equivalence. 

[Note: Sorre authorities write groc F for !F and call it the Grothendieck 

construction on F. J 
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PRESENTASI LITY 

Fix a regular cardinal K and let ! ;t. Q be a small ca tego:ry - then ! is said 

to be K-fil tered if 

(Fl - K) Given any ret {i :a E A} of objects in I with #A < K, there exists 
a -

an objec t k and rro:r:phisms i + k; 
a 

f 
a 

(F
2 

- K) Given any set {i --> j:a E A} of rro:r:phisms in ! with #A < K, 

there exists an objec t k and a rro:r:phism f: j + k such that f 0 f is independent of a. 
a 

N.B. Take K = .flo -- then }fa-filtered = filtered and K-filtered => filtered. 

let £ be a cocamplete catego:ry -- then an object X E Ob £ is K-definite if 

M::>r(X,-) prese:rves K-filtered colirnits, Le., if for every K-filtered catego:ry ! 

and for eve:ry diagram !::,:! + ~, the canonical arrow 

is bijective. 

[Note: Obviously, if K' > K (K' regular), then 

X K-definite => X K'-definite.] 

EXAMPLE Take C = SET -- then X is K-definite iff #X < K. On the other hand, 

in ~ = TOP, no nondiscrete X is K-definite. 

let £ be a cocomplete catego:ry - then £ is said to be K-presentable up to 

isorro:r:phism, there exists a set of K-definite objects and eve:ry object in ~ is a 

K-filtered coliroit of K-definite objects. 

N.B. If £ is K-presentable and if K' > K (K' regular), then C is K'-presentable. 
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[Note: 'Ihis becarres clear in view of the following characterization: A 

cocauplete category £: is K-presentable iff it admits a set {Gi } of strong sep­

arators, where each Gi is K-definite.] 

EXAMPLE SET and CAT are ~o -presentable but 'lOP is not K-presentable for 

any K. 

In SET, K-fil tered colimits comrute with K-limits. 

[Note: In this context, "K-limit" means the limit of a functDr F:£: -+ SET, 

wl:ere C is a s:nall category with #l>lor £: < K.] 

LEMMA Suppose tha t ~ is K-presentable -- then V X E Ob g, there exists a 

regular cardinal KX such that X is Kx-definite. 

PRCOF Fix a K-filtered category :± and a diagram .6::± -+ g such that X = col~ .6i , 

whe:r:re V i, .6
i 

is K-definite. Choose a regular cardinal KX KI > K such that 

#t-br I < KI -- then V i, .6. is KI-definite and for any K'-filtered category II and 
- 1 -

any diagram .6 I ::± I -+ £:, \'lie have 

colim t-br(X,.6I 
I' i' 

::::: colim t-br (col~ .6.,.6 I ) 
II _ 1 i' 

:::: colim lirrI Mer (.6. ,.6' ) 
I' - 1 i' 

::::: lirrI colim 
- I' 

t-br (.6. ,.6' ) 
1 . I 

1 

::::: lirrL Mar (.6. , colim .6 I ) 
-.1 1 I' ., 
- . 1 
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;:::: Mer (col.inL 6., colim 6 I ) 
i]. II 'I - ]. 

;:::: Mor(X,colim 6 1 ). 

II i 1 

If g is K-presentable, then for all A,B E Ob g, the categories A\g, g/B are 

K-presentable. 

If g is K-presentable and if ! is a srrall category, then [!,gl is K-presentable 

and the K-definite objects in [!,gl are the functors 6:! -+ g such that ViE Ob !, 

6. is K-definite. So, e.g., 
]. 

g K-presentable => g(-+) K-presentable. 

EXAMPIE If C is a small category, then 

is Mo -presentable. 

[Note: Every full, reflective subcategory of g which is closed under the 

fonIlt3.tion of K-filtered colimits is K-presentable.l 

A category g is presentable if it is K-presentable for sorre K. Every 

presentable category is corrplete and COCOIT'Plete, wellpowered and CO'WI9llpowered. 

EXAMPLE Suppose that £ is a Grothendieck category with a separator -- then £ 

is presentable. 

ACCESSIBI LITY 

let K be a regular cardinal. Suppose that £ is a category which has K-filtered 
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colimits - then S is said to be K-accessihle if up to iSOllOrphism, there exists 

a set of K-definite objects and every object in £ is a K-fil tered colimit of 

K-definite objects. 

[No te: Obviously, 

£ K-presentable => £ K-accessible.] 

EXAMPLE The category £ whose objects are the sets and wl:ose norpbians are the 

injections is HO-accessible but not presentable. 

REMARK If K' > K (K' regular), then it need not be true that 

C K-accessible => C K I -accessible. - -
Still, there is a transitive relation» on the regular cardinals such that 

K' » K => K' > K 

and if K' » K, then 

C K-accessible => C K'-accessible. - -
In addition, for any ret K of regular cardinals, one can find a regular cardinal 

K' such that K' » K for all K E K. 

A category g is accessible if it is K-accessible for s::me K. 

[Note: en the basis of tie foregoing, there exist arbitrarily large regular 

cardinals K such that g is K-accessible.] 

REMARK In an accessible category, idernpotents ~lit. en the otter hand, every 

s:nall category in which idernpotents split is accessible. 

N.B. Suppore that £ is accessible -- then V X E Ob Sf there exists a regular 
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cardinal KX such that X is Kx-definite. 

LEMMA The following conditions on an accessible category g are equivalent. 

(a) g is presentable. 

(b) g is cocanplete. 

(c) g is canplete. 

If g is accessible, then for all A,B E db g, the categories A\g, £/B are 

accessible. 

g is accessible and if ! .is a snaIl category, then [!,g1 is accessible. 

[Note: In contrast to what happens in the presentable situation, the degree 

of accessibility of [!,g1 may be strictly larger than that of C. Hovvever, in the 

special case when g = ~, vve have 

g K-accessible => g(+} K-accessible.1 

Suppos; that g and Q are K-accessible -- then a functor F:g + Q is K-accessible 

if F preserves K-filtered col:imits. 

[Note: F is accessible if it is K-accessible for SO!lE K. 1 

E.g.: If g is accessible, then the MJr(X,-) (X E db 9 are accessible. 

LEMMA A functor F:C + SET is accessible iff F is a col:imit of representable 

ftmctors: 

F = col~ MJr (Xi ,-) • 

EXAMPLE Take g = SET, 0 = SET and let F:SET + SET be the functor that sends 

X to 2X (the set of all subsets of Xl and sends f:X + Y to the arrow 
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-- then F is not accessible. 

A -+- f(A) 

LEl1r-1A let g and Q be accessible categories -- then a functor F:g -+- Q is 

accessible iff V Y E Ob Q, the corrposi.tion ~Ifor (Y,-) 0 F:g -+- SET is accessible. 

If {Fi:i E I} is a ret of accessible functors, then there exist arbitrarily 

large regular cardinals K such tlat each Fi is K-accessi.ble and preserves K-definite 

objects (i.e., X K-definite => F.X K-definite). 
1 

AVJOINTS 

C F:C -+- D 
Given categories , functors 

D G:D -+- C 
are mid to be an ad joint pair 

~br 0 

if the functor s 
Mar 0 

(FOP x i~) 
- from COP x Q tD SET are na tllrall y i s::::m:::>rphic , 

(id OP x G) 
C 

i.e., if it is :possible to assi.gn to eaCi~ ordered pair 
X E Ob C 

- a bijective map 
Y E Ob D 

~,y:~.Ifor(FX,y) -+- l.lfor (X,GY) which is functorial in X and Y. vi'h,m this is ro, F is 

a left adpint for G and G is a right adjoint for F. Any t:lATo left (right) adjoints 

for G (F) are natllrally isarrorphic. left adj::>ints prererve coliroitsi right adj::>ints 

preserve limits. In order that (F ,G) be an adjoint pair, it is necessary and 

- ~ E Nat(idc,G 0 F} 

and sufficient that there exist natllral transfo:rmations 
\) E Nat(F 0 G,i~} 
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subject to The data (F ,G,l-!,v) is referred to as an 
(vF) 0 (F~) = i~ 

~:idC -+ G 0 F 

adpint situation, the natural transforrrations - being the arrows 
v:F Q G -+ i~ 

of ad junc tion. 

'v'XEObC 
N.B. , we have 

'v'YEObD 

~x 

X :> GFX 

Therefore, when explicated, the relations 
(Gv) 0 (~G) = id

G becon:e 
(VF) 0 (~) = i~ 

~GY GVy 
GY :> GFGY :>GY 

F~ v
FX 

FX > FGFX >FX 

with 

vFX 0 ~X = i<\x. 

REMARK Given an adjoint situation (F ,G,~, v), 'v' X E Ob g & 'v' Y E Ob Q, 

3:x y:MDr(FX,Y) -+ M:>r(X,GY) 
( 

sends g E M:>r (FX, Y) to Gg Q ~ E M:>r (X,GY), so 'v' f E MDr (X,GY) there exists a 
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unique g E }-br (FX,Y) SIch that f ::::: Gg 0 llX' Conversely, starting fran 

=X, y:}-br (FX, Y) -+ }-br (X,GY) , 

SfeCialize and take Y ::::: FX - then the 

llx = =X,X (i~) E rvtJr (X,GFX) 

are the cOIl.'l];Onents of a II E Nat(idc,G 0 F). 

[Note: TIe story for =-1 and v is analogous.] 

LEMMA let ! be a s:na.ll ca tegory, £; a complete and cocomplete category - then 

the constant diagram functor K:£; -+ [!,£;] has a left adpint, viz. col~: [!,£;] -+ £;, 

and a right ad pint, viz. lim:r: [!,£;] -+ c. 

EXA.NJPLE The forgetful functor U:GR -+ SET has a left adpint tmt sends a set 

X to tte free group on X. 

EXAMPLE The forgetful functor U:'lDP -+ SET has a left adjJ.int tmt EEtlds a set 

X to tte :p3.ir (X,T), where T is the discrete top::>logy, and a right adpint that 

EEtld s a set X to the pair (X, T) , vlhere Tis the indi screte top::>logy. 

EXAMPLE TIe forgetful functor U:CAT -+ PRECAT has a left adpint that sends a 

preca teg"ory ~ to the free ca tegory genera ted by ~. 

component s of £; i let dis: SET -+ CAT be the functor that send s X to dis X, the 

discrete category on Xi let ob:CAT -+ SET be the functor that EEtlds C to Db g, ~ - - ,-

set of objects in C; let grd:SET -+ CAT be the functor that EEtlds X to grd X, the - - -
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category wIDre objects are the elerrents of X and whore :rrorphisns are the elerrents 

of X x X -- t1::en 'IT 0 is a left ad pint for di s, dis is a left ad pint for ob, and 

ob is a left adpint for grd. 

[Note: 'ITO prererves finite products; it need not prererve arbitrary products.] 

EXAMPLE let iso:CA.T -+ GRD be the functor that EEnds £ to iso £, t:lE grouJ:X)id 

WIDe: objects are tm~ of £ and wIDre :rrorphisns are the invertible nnrphisns in 

£ - then is) is a right adpint for the inclusion GRD -+ CA.T. let 'IT : CA'r -+ GRD 
1- -

be the functor that rends £ to 'ITI (£), ~ fundarrental groUflOid of £, i.e., the 

localiza tion of £ a t ~br £ -- then 'IT 1 is a left ad pint for the inclusion GRD -+ CA.T. 

EXAMPLE Suppore that £ has finite products and finite coproducts -- then the 

diagonal functor l1:g -+ £ x g has the coproduct _'_':£ x C -+ C as a left adjoint and 

the product x:£ x £ -+ £ as a right adjoint. 

EXAMPLE let E : TOP * -+ TOP * be the suspension functor and let n:TOP * -+ TOP * be 

the loop space functor - then (E,m is an adjoint pair and drops to HTOP*: [EX,Y] :::: 

[X,QY] • 

An adjoint equivalence of categories is an adpint situation (F,G,11,V) in 

which roth 11 and v are natural iSCllIDrphisms. 

LEMMA A functor F:£ -+ Q is an equivalence iff F is part of an adjoint equiv-

alence. 

REr>1ARK Feplacing categories by equivalent categories need not lead to equiv-

alent resul ts. 
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COMPOSITION lAW let 

and 

be adjomt situations -- tren their composition is the adjoint situation 

and \)21 is computed as 

SPECIAL ADJOINT FUNCIDR 'lHEOREM Given a complete -well}?O'W'ered category Q which 

has a co::eparating ::et, a functor G:Q + ~ has a left adjJint iff G pre::erves limits. 

EXAMPLE A functor from SET, AB or 'IDP to a category g has a left adjoint iff 

it pre::erves limits. 

LEM-1A Every left or right adjJint functor between accessible categories is 

accessible. 
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THE SOLUTION SET CONVIT10N 

let £ and ~ be categories and let F:£ -;. ~ be a functor -- then F s:ttisfies 

the rolution set condition if for each Y E Db D, there exists a aJurce {g.:Y -;. FX.} 
- 1 1 

such that for every g:Y -;. FX, there is an i and an f:Xi -;. X such tha.t g = Ff 0 gi: 

g. 
1 

Y----:> FXi 

9 1 1 Ff 

FX -----FX. 

E.g.: Every accessible functor satisfies the rolution set condition. 

GENERAL ADJOINT FUNCl'OR THEOREM Given a COIIij?lete category :Q, a functor 

G:D -;. C has a left adjoint iff G preserves limits and satisfies the rolution set 

condition. 

ADJOINT FUNCl'OR THEOREM Given presentable categories £ and ~, a fmctor 

G:~ -;. £ has a left adjoint iff G preserves limits and K-filtered colimits for s:JITe 

regular cardinal K. 

A full, isorrorphism clored subcategory £' of an accessible category £ is 

accessibly embedded there is a regular cardinal K such tha. t C' is closed mder 

K-fil tered colimits. 

THEOREM let £ be an accessible category and let £' be an accessibly embedded 

subcategory - then £' is accessible iff the inclusion fmctor C' -;. C satisfies 

the solution set condition. 
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A full, isorrorphisn clored subcategory £' of an accessible category £ is 

said to be an accessible sul:x::ategory if £' is accessible and the inclusion functor 

l' :C' -+ C is an accessible functor. 

REMARK If C' is an accessible subcategory of £, then £' is accessibly 

embedded in C and 1.' satisfies the s::>lution ret condition. 

If C is an accessible category and if {C.:i E I} is a ret of accessible sub-
1. 

categories, then n C. is an accessible subcategory of C. 
iEI 1. -

If F:£ -+ Q is an accessible functor and if Q' is an accessible subcategory of 

Q, then the inverre mage F-
l (Q') is an accessible subcategory of £. 

[Note: D=fine F-
l (Q') by i:l'E pullback square 

------,> 0' 

1 1 
C ---> Q.] 

REFLECTORS ANV COREFLECTORS 

A full, is::morphisn clored subcategory Q of a category £ is said to be a 

reflective (coreflective) subcategory of £ if the inclusion 0 -+ C ha.s a left (right) 

adpint R, a reflector (coreflector) for Q. 

[Note: A full subcategory Q of a category £ is is::mor:phisn clored provided 

that every object in £ which is is::morphic to an object in Q is itrelf an object 

in Q.] 

EXAMPLE Fix a topological space X .,....- then the cate.gory of s.~ves of rets on 
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X is a reflective sul::x::ategoryof tre category of preshaaves of sets on X. 

EXAMPLE 'l11e category c::; of corrpactly generated topological spaces is a co­

reflective sul::x::ategory of 'IDP, the coreflector k:'IDP -+ c::; sending X to kX, its 

compactly genera ted nodification. 

let Q be a reflective subcategory of S, R a reflector for Q -- then one may 

attach to each X E Ob S a m:>I:phisu rx:X -+ RX in S with the following property: 

Given any Y E Ob Q and any norphisn f:X -+ Y in S, there exists a unique norphisn 

g:RX -+ Y in Q such that f = g 0 r X• If the rX are epinorphisms, then D is said 

to be an epireflective sul::x::ategory of S. 

EXAMPLE AB is an epireflective sul::x::ategory of GR, the reflector sending X to 

its abelianization X/[X,X]. 

A reflective subcategory Q of a carplete (cocomplete) category S is complete 

(cocomplete) . 

[Note: let fl:! -+ Q be a diagram in Q. 

(1) 'lb calculate a limit of fl, postcornpose fl with the inclusion D -+ C and 

let {t.:L -+ fl.} be its limit in C -- then L E Ob D and {t.:L -+ fl.} is a limit of fl. 
1 1 - - 1 1 

(2) 'lb calculate a colimit of fl, postcorcp::>oo fl with the inclusion Q -+ S 

and let {t. :fl. -+ L} be its colimit in C -- then {rL 0 .e. :fl. -+ RL} is a colimit 
1 1 1 1 

of fl.] 

EPIREFLECrIVE CHARACl'ERIZATION THEOREM If a category S is complete, TJ\lell­

powered, and cowellpowered, then a full, is:morphism cloood subcategory Q of S 

is an epireflective subcategory of S iff Q is cloood under the fonration in C of 

produc ts and extrema.l rrono.m::>rphi sus. 
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ENVS ANV COENVS 

Let ! be a STIalI category, IJ.: !OP x ! -+ ~ a diagram. 

tEnds) A s::>urce {f.:X -+ IJ.. i} is said to be dinatural if for each 0 E MJr !, 
1 1,_ 

o 
say i -->j, 

IJ.(id,O) 0 f. = IJ.(o,id) 0 f .• 
1 J 

An end of IJ. is a dinab.lral rource {e.:E -+ IJ. .. } with the prop:rty that if 
1 1,1 

{f.:X -+ IJ. .. } is a dinab.lral s:>urce, then there exists a unique rrorphisn ¢:X -+ E 
1 1,1 

Slch that f. = e. 0 ¢ for all i E Ob I_. Every end is a limit (and every limit is 
1 1 

an end). Notation: E = f. IJ. . . (or II !J.). 
1 1,1 _ 

(Coends) A sink {f. :IJ. . • -+ X} is said to be dinatural if for each 0 E MJr !, 
1 1,1 

o 
say i -->j, 

fi 0 IJ.(O,id) = fj 0 IJ.(id,o). 

A coend of IJ. is a dinatural sink {e. :IJ. . • -+ E} with the property that if 
1 1,1 

{f.:IJ. .. -+ X} is a dinatural sink, then there exists a unique rrorphisn ¢:E -+ X 
1 1,1 

Slch that f. = ¢ 0 e. for all i E Ob 1. Every coend is a colimit (and every 
1 1 

I 
oolimit is a coend). Notation: E = J1 IJ.. . (or J- !J.). 

1,1 

There are a number of basic constructions that can be viewed as an end or 

coend of a suitable diagram. 
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EXAMPLE let I be a atall category and let 
F:I -+ C 

- - be functors -- then the 
G:I -+ C 

assignrre.nt (i, j) -+ .Mor(Fi,Gj) defines a diagram fOP x ! -+ SET and Nat(F,G) is the 

end Ii .Mor(Fi,Gi). 

EXAMPLE Sup:p:>re that A is a ring with unit -- then a right A-mJdule X and a 

left A-IrOdule Y define a diagram AOP 
x A -+ AB (tensor proouct over Z) and the 

coend fAx e Y is X ~ Y, the tenSJr product over A. 

[Note: In context, view A as a category with one object.] 

LEMMA let ! be a small category, £ a complete and cocomplete category. 

(L) let 

be the functor given an objects by 

LX(i,j) = .Mor(i,j) • X. 

'!hen L is a left ad joint for 

(R) let 

R:C -+ [!oP x !,£] 

be the functor given an objects by 

RX(i,j) = ~r(j,i). 

'!hen R is a right adjoint for 

OP 
coend: [! x !,£] -+ C. 
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INTEGRAL YOOEDA LEMMA let ! l::::e a snaIl category, ~ a complete and cocomplete 

OP 
category -- then for every F E Ob[! ,~], 

[ve shall verify tlE first of thesa relations. So take G E Ob[!OP ,~] and 

compute: 

Nat{fi M:::>r (-,i) • Fi,G) 

::::: J. !vbr {fi lbr (j,i) • Fi,Gj) 
J 

::::: J j Ji ~br(M:::>r{j,i) • Fi,Gj) 

::::: J. J. M::>r (M:::>r (j,i) • Fi,Gj) 
1. J 

~ J. J. M::>r(Fi,Gj)M::>r(j,i) 
1. J 

::::: J i J j M:::>r {M:::>r (j, i) ,M:::>r (Fi ,Gj» 

~ f. Nat(h.,~r(Fi,G-» 
1. 1. 

~ J. M:::>r(Fi,Gi) 
1. 

~ Nat(F ,G) • 

(Yoneda lem:na) 

Since G is arbitrary, it follows that 

Ji M:::>r(--,i) • Fi ~ F.] 

EXAMPLE If X is a simplicial sat, then 
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f [n] Mer (-, [n]) . Xn :::: X ;::: f [n] (X
n

) ~1or ( [n] ,-) • 

KAN EXTENSIONS 

c 
THEOREM Given small categories , a carrplete category §, and a fmctor 

D 

let T E ObI£,§] -- then KtT is called the right Ran extension of T along K. 

In terms of ends, 

'rhere is a canonical natural transfonnation KtT 0 K --:> T. It is a natural 

isorrorphisn if K is full and faithful. 

[Note: In general, the diagram 

K 
C > D 

does not comnu te. ] 

C 
THEOREM Given s:nall categories , a cx:camplete category §, and a fmctor 

D 

let T E ObI£,§] -- then K, T is called the left Kan extension of T along K • . 
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(K!T)Y = jK Mor(KX,Y) • TK. 

llT 
There is a canonical nab..lral transfonnation T -----c> (K !T) 0 K. It is a nab..lral 

i rorrorphi s:n if K is full and faithful. 

[Note: In general, ~ diagram 

does not conmute.] 

EXAMPLE Suppore that g and 12 are snall categories and let K:g -+ 12 be a 

DPOP OP A A 

functor -- tren K :g -+ 12 and the precomposition functor Q -+ g has a left 

A 

adj:>int £ -+ Q, call if i< (teclmically, K = (K
DP

)!). 

we have 

Given X E Db C and G E C1::> 12, 

en too 0 trer hand, 

A 

Nat( (K 0 Yc) (X) ,G) 

A 

::::: Nat(K (~) ,G) 

::::: G (KX) • 

Nat( (Yn 0 K) (X) ,G) 

::::: Nat(~,G) 

::::: G(KX) .< 
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Therefore 

[Note: Q1.e can arrange rna tter s so tha t 

K 0 Y = Y 0 K.] e D - -
REMARK T:te fmc1Dr K!: rg,§] -+ [Q,§] prese:rves colimits but it need not pre-

re:rve finite limits. E.g.: Take e = d2 (the disc:rete category with two objects) , 

SET x SET -+ SET 

that rends (X,Y) to X Y and coproducts do not ccmnute with produc ts in SET. 

The construction of the right (left) adjoint of K* does not ure the asamption 

that Q is snaIl, its role being to ensure that [Q,§] is a category. For example, 

" 
if g is snaIl and § is cocorrplete, then taking K = Ye, tl'e fmc1Dr YC: [g,§l -+ 

- -

A 

Q1. an object F of £, 

rTF == jX Nat(YcX,F) . TX 

- .fA Nat(~,F) . TX 

N.B. r T is the realization fmctori it is a left adjoint for the singular 

" ftmctor s~:§ -+ g which is defined by the prescription 

---- ..... --~ .. ~. 
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[Note: Tre arrow of adj1.mction f T 0 ST + ids is a natural iSJIIDrphism iff 

ST is full and faithful.] 

EXAMPLE While not reflected in the notation, the pair (fT,ST) depends, of 

cour~, on the choice of S. E.g.: Take ~ = ~ -- then v T E Ob[~,~] , 

TIF T 
f rr! :::: colim(groc F ;> ~ --;> ~), 

TIF:groc F + ~ the projection. Specialize further and take T = YC: 

and V Y E Ob ~, 

I.e. : 

(fy F)Y = r FX • Yc(X) 
c -

:::: r FX • Mor(Y,X) 

:::: r FX x Mor (Y,X) 

X ::::! Mor(Y,X) x FX 

::.: r Mor(Y,X) • FX 

~ FY (integral Yoneda lerma) • 

TIF YC 
fy F :::: F :::: colim(groc F -> c ------,> C). 

c 
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REMARK Take § = CAT and let y E Ob[g,CAT] be the fmctor that s:mds X to 
A 

C_/X - then the realization functor r assigns to each F in C its Grothendieck y -

construction : 

r F ~ groc F. 
Y -

From the definitions, 

Nat(K!T,TI ) ~ Nat{T,K*T') = Nat(T,T' 0 K), 

where 

So, V ex. E Nat(T,T' 0 K), there is a unique 13 E Nat{K! T,T') such that 

ex. = K*B 0 ~ = 13K 0 ~T. 

C 
Now drop the assumptions on - and § and suppose that they are arbitrary. 

D 

let K:C -7- D be a functor and let T:C -7- S be a functor -- then a left Kan extension - - - -
of T along K is a pair (~T'~T)' where ~T:Q -7- § is a fmctor and 

~ E Nat(T,~T 0 K), with the following property: V Tl E Ob[Q,§] and 

V ex. E Na t(T ,T' 0 K), there is a unique B E Nat(~T,TI) such that ex. = 13K 0 ~T. 

SclEmatically: 

T--------T 

!:KT 0 K ------'> T' 0 K. 
13K 
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N.B. If (bKT,l1.r), (bK'T'llT') are left Kan extensions of T along K, then 3 

a unique natural isom:rrphism :5: bKT -+ bK' T such that 11.r' = :5K 0 11.r. 

[Note: Conversely, given a left Kan extension (bKT'llT) of T along K, a 

functor !1K'T E Ob[Q,~] and a natural isarorphism :5:!1KT -+ !:KIT, put 11.r' = :5K 0 llT --

then (bK' T , 11.r ') is a left Kan extension of T along K. Proof: Detennine 

B E Nat(~T,T') uniquely per a E Nat(T,T' 0 K) and write 

-1 = (8 0:5 0 :5)K 0 11.r = 8K 0 11.r = a, 

which settles existence. uniqueness is clear.] 

LEMMA Suppose that K: 5: -+ Q has a right ad joint L and let 

l/J:K 0 L -+ i~ 

l:e the arrows of adjunction - then the pair (T 0 L,T<j» is a left Kan extension 

of T along K. 

REMARK The notion of a right Kan extension (~T,vT) is dual. 
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