
Elementary Aspects of the Theory of Hecke Operators 

by 

Garth Warner* 

University of Washington 

Seattle, Washington 98195 

* Research supported in part by the National Science Foundation. 



§1. Introduction 

§2. The Hecke Algebra 

§3. The Hecke Operators 

§4. The Fundamental Problem 

§5. The Uniform Case 

§6. The Nonuniform Case 

Appendix 

Contents 



1 

§1. Introduction 

For some time now, I have felt that it would be a good idea to assemble in one spot the 

various elementary formalities governing the theory of Hecke operators. This, therefore, 

is the primary purpose of the present note, the thrust of which is to prepare the way for 

later work. 

Let G be a reductive Lie group, r a lattice in G, both subject to the usual conditions. 

Fix an element ~ in the commensurator of r in G - then one may associate with ~ a 

bounded linear transformation 

H(r~r): L 2 (G/r)-+ L 2 (G/r), 

known as a Hecke operator. H(r~r) intertwines the left G-action and the fundamental 

problem of the theory is to compute, in explicit terms, 

tr(H(r~r) • Ltlir(a)), 

where, say, a is a K-6.nite function in C~(G). Note that when ~ E r, the fundamental 

problem reduces to that of the Selberg trace formula itself. 

In fact, I believe it was Selberg [16-(a), pp. 68-70] who, following up on ideas of Hecke 

[4] and others, was the first to pose the problem in just this way. Its importance was 

stressed once again by him in [16-(b ), pp. 188-189]. 

My original impression was that the calculation of 

tr(H(r~r) • Ltljr(a)) 

was somehow a more involved undertaking than the calculation of 

tr( L t}jr( a)). 

However, I have since changed my mind and no longer think this to be the case. Of 

course, various technical complications do crop up but they seem to be tractable and offer 

no real additional difficulties. To support this contention, I have included an example in 

the Appendix (viz., rank(r) = 1). While no attempt has been made at an exhaustive 

discussion, nevertheless what is said there does serve to illustrate the kind of changes that 

actually do occur. 

Regarding the organization, in §§2-3, the various definitions and some of their simple 

consequences are collected. The fundamental problem in addressed in §4. In §5, the 

uniform case is considered, there being in principle at least, a positive solution in this 
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situation, while, in §6, the nonuniform case is considered, it being a question here of 

merely setting the stage, so to speak, for a more serious investigation to be conducted 

elsewhere. 

As a convenient general reference, I shall use the monograph 

The Theory of Eisenstein Systems, Academic Press, N.Y., 1981, 

henceforth abbreviated to TES. 

Acknowledgements. My thanks to Osborne for a number of penetrating remarks and 

to Ringseth for a variety of helpful comments and criticisms. 
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§2. The Hecke Algebra 

Let G be a reductive Lie group, r a lattice in G, both subject to the usual conditions 

(cf. TES, p. 62) - then one may attach to the pair ( G, r) its Hecke algebra JI ( G, r), the 

definition and propert.ies of which will be reviewed below. 

We shall agree that the volume of the fundamental domain of any lattice in G is to 

be calculated with respect to some fixed determination of the Haar measure on G via 

compatible normalization of the quotient measure and the counting measure. 

Recall that two subgroups H 1 and H 2 are said to be commensurable if their intersec

tion H 1 n H 2 is of finite index in each: Symbolically, H 1 rv H 2. 

Put now 

Com(r) = fr e G: ~r~-1 
rv r}, 

the commensurator of r in G. Com(r) is a subgroup of G containing the normalizer 

of r in G. Depending on the circumstances, it can happen that Com(r) = r or that 

G f:. Com(r) f:. r or that Com(r) = G. Com(r) may or may not be discrete and can be 

dense. Obviously, 

~ E Com(r) iff vol( G/r n ~r~-1 ) < +oo. 

This said, the Hecke ring J/z ( G, r) attached to the pair ( G, r) is the free abelian group 

on the double cosets r~r(~ E Com(r)) equipped with the following law of multiplication 

(cf. Shimura [18-(a), pp. 304-305]): If 

then 

{
r~'r 

r~"r 

=II ~:,r 
"' = 11 ~::,r, ,,,, 

r~'r * r~"r = E m(r~'r, r~"r; r~r)r~r, 
r 

where the sum is taken over all those double cosets r)r contained in r~'r)"r and 

m(r~'r,r~"r; r~r) 

is the number of pairs ( i', i") such that 

The multiplication is independent of the choice of representatives. It is associative but 

need not be commutative; also, rir serves as the identity element. That being, let 

J/(G,r) = J/z(G,r) ® c. 
z 
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Then by definition, Jl(G,r) is the Hecke algebra attached to the pair (G,r). 

One may also look at Jl(G,r) as a convolution algebra (cf. lwahori [7, p. 2181). For 

this purpose, let 2l be the set of all r-right invariant subsets of Com(r) - then 2l is a 

u-algebra. Given A E 2l, put 

µ(A)= #(Afr). 

Then µ is a measure on 2l. As such, it is clearly left invariant under Com(r). Consider 

the set 

Cc(r\Com(r)/r) 

of all complex valued functions on Com(r) that are biinvariant under rand supported by 

a finite number of double cosets mod r. The elements of 

Cc(r\Com(r)/r) 

are 2l-measurable and µ-integrable. In addition, if 

</>, t/J E Cc(r\Com(r)/r), 

then their convolution 

</> * tfa(?) = 1 </>(?~ )tfafr-l )dµfr) 
Com(r) 

is again in 

Cc(r\Com(r)/r). 

The characteristic functions xr~r of the double cosets r~r form a basis for 

Cc(r\Com(r)/r) 

over C. They can be used to implement an obvious identification 

Jl(G,r) ~ Cc(r\Com(r)/r) 

which preserves the multiplication. To check this point, write 

Then 

xr~'r * xr~"r = E µ(r~'r, r~"r; r~r)xr~r
~ 

xr~'r * xr~,,r(~) = µ(r~'r, rs-"r; r~r) 

= µ(r~'r n S"(r~"r)- 1 
), 
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an integer, nonzero (hence positive) iff r~r is a subset of r~'r~11r. There is a disjoint 

decomposition 
r~'r n ~(r~"r)- 1 = II ~:,r n dr~"r)- 1 , 

,,, 

so that 
µ(r~'r, r~"r; r~r) = µ(r~'r n dr~"r)- 1 ) 

= E µ(~:,r n dr~"r)-1 ). 
,,, 

However, ~:,r is contained in dr~"r)- 1 iff there exists an i" such that 

Accordingly, 

as claimed. 

' "r r ~,,,~,,,, = ~ . 

= m(r~'r, r~"r; r~r), 

For ~ E Com(r), write 

{ 
indR(d = # of right cosets off inf ~f 
indL(d = # of left cosets of r in r~r. 

Then, in our situation, 

This is a standard remark. Its verification simply depends on the fact that vol( G /r) < +oo. 

Thus, we have 

from which 

or still 

{ 
vol(G/r n ~r~- 1 ) = vol(G/r) • [r: r n ~r~- 1 ] 
vol(G/r n ~- 1r~) = vol(G/r) • (r: r n ~- 1r~] 

{ 
vol(G/r n ~r~-1 ) = vol(G/r) • indRfr) 
vol(G/r n ~- 1 r~) = vol(G/r) • indL(~). 

Since the volumes on the left hand side are equal, it follows that 

indR(~) = indL(d. 
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Calling their common value indfr) then determines a r-biinvariant function 

ind : Com(r) -+ N 

satisfying 

ind(r) = indfr-1 ). 

Plainly, 
indfr) = µ(r~r) 

= { Xrfrdµ. 
lcom(r) 

It should also be noted that the equality of indR and indL implies that it is always possible 

to choose a common set of representatives ~i such that 

an observation sometimes useful in calculations. 

The Hecke algebra )( ( G, r) admits an adjoint operation </> -+ </>*: 

such that 

(i) (</> + ¢)* = </>* + ¢*; 

(ii) ( c</>) * = c</> *; 
(iii) (</> * ¢)* = ¢* * </>*; 
(iv) ( </>*)* = </>. 

</>*(~) = </>(~-1) 

Otherwise said, )((G,r) is a *-algebra. Norming )((G,r) by the prescription 

114>11 ~ { l</>fr)ldµ(~), 
lcom(r) 

the equality of ind at ~ and ~- 1 gives 

114>11 = 114>*11· 

Finally, 

II</>* tPll ::; 114>11•11¢11· 
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The construction of the Hecke algebra}{ ( G, r) is perfectly general and can be conven

iently carried out in other contexts as well. For a case in point, let P be a r-cuspidal split 

parabolic subgroup of G - then one may form the Hecke algebra Jl(P,r n P) even though 

r n P is not a lattice in P (if P ~ G). Of course, 

p /(r n P). A. N +-+ M /rM 

and rM is a lattice in M. Suppose that 

~ E Com(r) n P. 

Then 

is a lattice in G, so 

is a lattice in S. From this, we conclude that 

~ E Com(r n P), 

the commensurator of r n P in P. There is therefore an injection 

r n P\Com(r) n P /r n Pc...+ Ji(P, r n P). 

Because 

~ = m(a(nc ~ m, E Com(rM), 

one can also define a map 

r n P\Com(r) n P/r n P-+ Ji(M,rM) 

that in general, however, fails to be injective. It is for this reason preference is given to P 

rather than to M. 
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§3. The Hecke Operators 

Let Fnc(G/r) be the space of complex valued functions I on G/r - then one may 

associate with each </> E JI ( G, r) an endomorphism 

.H(<P): Fnc(G/r) -t Fnc(G/r), 

commonly referred to as a Hecke operator. Historically, Hecke {14]) took 

G = SL(2, R), r = SL(2, Z) 

and considered the special elements 

in the commensurator. 

Thus write 

(n = 1, 2, ... ) 

</>=I: Crxrs-r· 
r 

Then, to define H(¢>), we need only specify the effect of r~r, which we do by letting 

H(r~r)/ = I: Jo R7r, 
7Er /rnr rs- - 1 

R the right translation operator. It is clear that if 

then 

Indeed, 

=> 

r~r = II '")',,~r (~" = '"Yi~). 

Fnc(G/r) is actually an Jl(G,r)-module, i.e., V</J, t/J E Jl(G, r), 

H(</J * ¢) = H(<P)H(t/J). 
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To see this, it will be enough to show that 

H(r~'r * r~"r) = H(r~'r)H(r~"r). 

But, in the notation of §2, 

H(rr'r)H(rr"r)/ = E (EI o Re::.) o Re:. 
,,, "" 

= H(r~'r * r~"r)/, 
the contention. 

Let us examine the terms figuring in the definition 

Obviously, 

Moreover, 

Put 

Then still 

and 

(r: r n ~"r~,,- 1 ] < +oo. 

[r: rfr)] < +oo 

L:k,,r~,_- 1 : r(dJ 
ind(s") = " [r: r(~)] 

Therefore the set of cuspidal (percuspidal) split parabolic subgroups of G is the same for 

both rand r(d (cf. TES, p. 37), although, of course, the number of cusps may very well 

be different. In particular: r and r(d share the same Siegel domains. 

Here are some examples of N(G, r)-submodules of Fnc(G/r). 

(1) Let 

{ 
S(G/r) 
R(G/r) 
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{ 
slowly increasing functions 
rapidly decreasing functions 

on G /r (cf. TES, p. 77) - then each of these spaces is Ji ( G, r)-stable. In fact, 

so 

{
IE S(G/r) *I 0 R,, E S(G/~,,r~,,- 1 ) 
IE R(G/r) *I 0 R,, E R(G/~,,r~,,-l ), 

{
IE S(G/r) * H(r~r)/ E S(G/r(~)) 
IE R(G/r) * H(r~r)/ E R(G/rfr)). 

Since H(r~r)/ is f-invariant, it follows that 

{ 
H(r~r)/ E S(G/r(~)) * H(r~r)/ E S(G/r) 
H(r~r)/ E R(G/rfr)) * H(r~r)/ E R(G/r). 

(2) Let 2l(G/r) be the space of automorphic forms on G/r then 

2l(G/r) = u 2l(G/r, F, I), 
F,I 

where, in the notation of TES (pp. 77-78), 2l(G/r,F, I) is the finite dimensional subspace 

of 2l{ G /r) comprised of those f such that 

(F c K) 

(I c 3). 

We claim that 2l(G/r,F,I) is Jl(G/r)-stable, hence that 2l(G/r) is too. In fact, if 

then 

f e 2l(G/r,F, I), 

{ 
XF * H(r~r)/ = H{r~r)(xF * /) = H{r~r)/ 
I* H(r~r)/ = H(r~r)(I * /) = o. 

That the growth condition obtains is a consequence of what was said in the first example. 

The Hecke algebra Ji ( G, r) also operates on L2 ( G fr). It is in fact easy to check that 

IE L2 (G/r) * H(r~r)/ E L2 (G/r), 

the assignment 
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being actually a bounded linear transformation. Because 

the adjoint of H(r~r) is H(r~-1 r), that is, 

H(r~r)* = H((rs"r)*). 

In other words: The action of Jl(G,r) on L2 (G/r) gives rise to a *-representation of 

Jl(G, r). Since 

H(</>) • La1r(z) = La1r(z) • H(</>) (z E G), 

the H( </>) are intertwining operators. Consequently, 

H(</>)I =I * Dq,, 
G/r 

Dq, a distribution on G /r, left invariant under r. 

The Hecke operators associated with the) in the normalizer of rare unitary (~r = r) ). 

E.g.: If r 0 is a normal subgroup of finite index in r, then V) Er, 

is unitary. 

As is well-known (cf. TES, p. 28), there is an orthogonal decomposition 

L2 (G/r) = EESL2(G/r;c), 
c 

parameterized by the association classes C. Since Hecke operators respect Eisenstein series 

(cf. §6), each of the 

is invariant under J( ( G, r). The same is thus true of 

L~15 (G/I')(= L2 (G/r; {G}): the discrete spectrum 
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and 
L~0n(G/r)(= L <IJL2 (G/r; C)): the continuous spectrum. 

C~{G} 

We can, moreover, split L~is(G/r) into an orthogonal direct sum of 

L~us(G/r) (the space of cusp forms on G/r) 

and 

L~es(G/r) (the space of residual forms on G/r), 

both of which are again invariant under Ji ( G, r). 
The above space are modules for cgo(G) or C1 (G), qua La/r· Either action commutes 

with that of Jl(G, r) and our chief concern in the sequel is with the interplay between them; 

cf. infra. 

It is sometimes necessary to relativize the considerations supra from G to P. No 

problems arise in so doing since the general theory provides us with an analysis of 

L2 (G/(r n P). A. N) 

and JI. ( P, r n P) operates on 

Fnc(G/(r n P). A. N) 

in the obvious fashion. 
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§4. The Fundamental Problem 

Consider the following statement. 

Main Conjecture (MC). The operator LtJjr(a) is trace class for every K-tinite a in 

C~(G). 

This conjecture is a theorem when rank(r) = 0 (cf. TES, p. 355) or when rank{r) = 1 

(cf: Donnelly [2, p. 349D and is undoubtedly true in general although this has yet to be 

proved. It is implied by various natural assumptions {cf. (15-(e)), [15-(g)]). For a short 

account, see [20-(b)J. 
Throughout the remainder of this article, MC will be admitted as a working hypoth

esis. Owing to the theory of the parametrix (cf. TES, p. 21), it then automatically holds 

for all K-6.nite a in C1 ( G). 

Let now <PE N(G,r) - then 

H ( <P) • L tJir {a) = L ~ir (a) • H ( <P) 

is still a trace class operator. This being so, the fundamental problem of the theory is to 

compute 

tr(H(<P) • Lt]jr(a)) = tr(L~ir(a) • H(<P)). 

Needless to say, it is enough to work just with 

<P = xr~r· 

In the event that ~Er, the fundamental problem reduces to the calculation of 

tr(L~ir (a)), 

which, of course, is precisely the question of the Selberg trace formula itself. As we shall 

see, the elementary facts connected with the latter situation can be carried over without 

essential difficulty to the general case. 
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§5. The Uniform Case 

Suppose that r is uniform in G - then the quotient space G /r is compact and 'Va, 

La1da) = L a(z)La1r(z)da(z) 

is an integral operator on L2 (f!/r)· with kernel 

Ka (z, y) = E a(z')'y-1 
). 

· ,,er 

Fix a ~ E Com(r) - then 

H(r~r) • (LG/r(a)/)(z) = LLG/r(a)f(z~d 
i 

= E 1 K.,(z~,, 11)f(y)da(11) 
i G/r 

= 1 (EEa(z~,')'y-1 ))/(y)da(Y) 
G/r ' . ,,er 

= 1 ( E a(z')'y-1 ))/(y)da(y). 
G/r ,,errr 

This means that 

H(r~r) • LG1r(a) 

is an integral operator on L2 ( G /r) with kernel 

Ka(~; z, y) = E a(x')'y-1 
). 

,,errr 

One may now perform the usual manipulations to conclude that 

tr(H(r~r) • LG/r(a)) = f Ka fr; x, z)dG(z) 
lair 

= E vol( G7 /r 7 ) • 1 a(z')'z-1 )da/a.., (z ). 
{ '7}r , G/G,., 

Here, the sum is taken over the r-conjugacy classes { ')' }r in r~r. Moreover, as is customary, 

{ 
G7 = centralizer of ')' in G 
r '7 = centralizer of ')' in r. 
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To interpret this conclusion, we need a simple remark (cf. Moscovici [12, p. 337]), viz.: 

Let 'YE r~r - then 'Y is semisimple. To be complete, let us run through the argument. It 

suffices to prove that the set 

{z1z-1 
: x E G} 

is closed in G. For this purpose, suppose that Xn 1x;;:1 -+ x. Write G = n • r, n compact. 

Let Xn = Wn"fn (wn En, 'Yn Er) - then we can and will assume that Wn-+ w En, thence 

I.e.: x is a G-conjugate of/. 

Accordingly, 

tr(H(r~r) • LG1r(a)) 

is given in terms of orbital integrals 

per the I E r ~ r, all of which are semisimple. The Fourier transform, in the sense of 

Harish-Chandra, of an orbital integral with respect to a semisimple element of G is known, 

thanks to the work of Herb [5], thus one does in fact have·an explicit formula for 

tr(H(r~r) •Laid a)), 

thereby providing a positive solution to the fundamental problem in the uniform case. 

Denote by 

the isotypic component of L2 (G/r) corresponding to U E G - then H(r~r) leaves each 

such invariant. Agreeing that lu signifies restriction to 

we can say that 

tr(H(r~r) • La1r(a)) = I: tr(H(r~r) lu •La1da) lu)· 
"' UEG 



16 

The calculation of the local traces 

is a difficult problem of some importance, about which little is known. We shall give one 

example. 

Suppose that rank( G) = rank(K), so that the discrete series Gd for G is not empty. 

Fix an integrable U0 E Ga operating on a Hilbert space Jjo and let 

ao(z) = du0 (Uo(z)vo, vo) (vo E JJo, vo K-finite, llvoll = 1), 

du0 the formal degree of U0 - then (cf. Osborne (14, p. 47]), VU I- Uo, 

U(ao) =0, 

implying that VU f: U0 , 

Therefore 

tr(H(r~r) • LG/r(ao)) = tr(H(r~r) lu
0 

•LG/r(ao) luJ· 
Let m(U0 ,r) be the multiplicity of U0 in L2 {G/r). Write 

for the set of all 

intertwining U0 and LG/r luo - then 

is canonically an m(U0 , r)-dimensional Hilbert space. H(r~r) determines an endomor
phism 

H(r~r: Uo) 

of 

via the rule 

T-+ H(r~r) lu
0 

•T. 
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Plainly, 

tr(H(r~r) lu
0 

•LG1dao) luJ = tr(H(r~r: Uo)). 

On the other hand, by the Selberg principle, 

unless 7 is elliptic. There are but finitely many elliptic r-conj ugacy classes { 7 }r in r ~ r. 

If 

is the sum over these, then 

(E) E 
b}r 

tr(H(r~r: Uo)) = (E) E vol(G~rfr 7 ) • f o:o(z7z-1 )dG/G,.,(z). 
{7}r jG/G,., 

Owing to classical theorems of Harish-Chandra and Langlands, the orbital integrals on the 

right can be evaluated in closed terms. The familiar specifics need not be detailed. All 

told, then, we end up with an explicit expression for 

tr(H(r~r : Uo )). 

One can use it to recover certain standard results from the theory of modular correspon

dences. This is because the duality theorem (cf. Maurin and Maurin [11-(b)] or Olshanskii 

[13]) guarantees that 

is isometrically isomorphic to 21.(U0 , r), the set of all continuous r-invariant linear func

tionals on the space of differentiable vectors for U0 , a set that admits various concrete 

realizations under specialization of the assumptions (cf. Mackey [10] or Maurin and Mau

rin {11-(a)]). In particular, when ~Er, 

H(r~r: Uo) =ID 

and 

tr(H(r~r: U0 )) = m(Uo, r), 

leading to the formula of Langlands [9-(a), p. 255] for the multiplicity m(U0 , r). 
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§6. The Nonuniform Case 

Suppose that r is nonuniform in G - then the quotient space G /r is not compact but 

has finite volume and Va, 

LG/r(a) = L a(x)LG/r(x)dG(x) 

is an integral operator on L 2 ( G /r) with kernel 

Ka(x, y) = L a(x1y-1
) 

,,.er 

but this time it is no longer necessarily true that 

Write 

K~is (x, y) = K0 (x, y) - K~0n(x, y). 

Then, on the basis of MC (cf. §4), 

and 

tr(LtJjr(a)) = { K~is(x, x)dG(x). 
jG/r 

In this connection, recall that the kernel K~0n(x, y) of L~;f.(a) is given by 

where 

and 

with 

2j Ka(x, y: C), 

c 

K 0 (x, y: C) = L K 0 (x, y: O; C) 
0 



19 

m,n 

The details are spelled out in TES (pp. 356-357). 

Fix a ~ E Com(r) - then 

H(r~r) • La1r(a) 

is an integral operator on L2 ( G /r) with kernel 

In addition, 

Kafr; z, y) = L a(vyy-1 
). 

"fEf~f 

{ 
H(r~r) • L~jr(a) 
H(r~r) • L~1~(a) 

are integral operators on L2 
( G /r) with kernels 

Of course, 

The description of 

is a fairly straightforward matter, modulo a little bit of preparation to which we shall now 

direct our attention. 

Let t>i E £(5, Oi) - then attached to ~i is the Eisenstein series 

That being, there exists a map 

characterized by the relation 

It turns out that H(d is an entire function of Ai, slowly increasing on Re(Ai) = 0. 
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We remark that for cuspidal Eisenstein series, the existence of H(~) can be established 

directly at level 1 by means of the theory of the L(z) spaces (cf. Harish-Chandra (3, p. 91]), 

then at level n by induction. The general case is handled by the residue taking process. 

An example may be found in the Appendix. 

Because H(r~r) intertwines La/r, one should expect that H(d jntertwines 

lnd~;•A;•N;· Indeed, on the one hand, 

La;r(a). H(r~r)E(PilAi: ~i: Ai :?) 

=La1r(a)E(PilAi: H(~: PilAi : Ai)~i: Ai :?) 
·a 

=E(PilAi: lndM .. •A••N•((Oi, .A.i))(a) • H(~: PijAi: Ai)~i: Ai:?), 

while, on the other hand, 

H(r~r). La1da)E(PilAi: ~i : Ai :?) 

=H(r~r)E(PilAi: Ind~;•A;•N;((Oi,Ai))(a)~i: Ai:?) 

=E(PilAi: Hfr: PijAi: Ai)• lnd~,•A;•N,((Oi,Ai))(a)~i: Ai:?). 

So (cf. TES, p. 313), 

. G 
H(~: PilAi: Ai)• lndM;•A;•N;((Oi, Ai))(a) 

= lnd~;•A;•N;((Oi, Ai))( a)• Hfr: Pi IA,: Ai)· 

There is also a connection between Hfr) and the c-functions. Thus, using the func

tional equations, we have 

E(PilAi: c(PilAi: PijAi: wii: Ai)• Hfr: PdAi : Ai) 

X c(PilAi: PilAi: wj/: WjiAi)~i: WjiAi :?) 

_=E(PdAi: Hfr: PilAi: Ai)• c(PilAi : PilAi: wj/ : WjiAi)~i; Ai:?) 

=H(r~r)E(PilAi: c(PilAi: PilAj: w;/: WjiAi)~i: A./:?) 

=H(r~r)E(PjlA;: c(PjlAj: PilAi: Wji: Ai) 

x c(PilAi: P1IA1: wj/ : WjiAi)~i: WjiAi :?) 

=H(r~r)E(PilA; : ~j: w1iAi :?) 

=E(P1IA1: H(~: P1IA1 : WjiAi)~; : WjiAi :?). 

So (cf. TES, p. 313), 

c(P1IAi: PilAi: Wji : Ai)• H(~: PilAi : Ai) 

=H(~: P;IA;: wiiAi) • c(PilA;: PilAi : wii: Ai). 
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It is then easy to prove that 

where 

and 

K~0n(~ : z, 11) = lj, K,.(~; z, 11: C), 

c 

Ka(~; z, 11: C) = E Ker(~; z, 11: O; C) 
0 

1 1 r 1 Ker(~; z, Y: O; C) = (2r)l • •(C) •I: . _ Kerfr; z, Y: O,, Ai)ldAif, 
i=l Re(A,)-0 

with 

Ka(~; z, y: Oi, Ai) 

= I: Cmn(a : O,, Ai)E(PilAi : Hfr : PtlAi : Ai)e:n : Ai : z)E(PilAi : e~ : At : y). 
m,n 

Now bring in the truncation operator QH (cf. [15-(b)]) - then VH E GQ, 

is equal to 

or still 
d 1 1 r 

Lf (2ir)l • *(C) • E ~ 
c 0 '-1 

This sets the stage for the calculation of 

tr(H(r~r) • Ltljr(a)). 

While the difficulties are considerable, it nevertheless seems to be a certainty that a positive 

solution to the fundamental problem in the nonuniform case will eventually be obtainable 

------------- ------~---
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by utilizing variants of the methods developed by Arthur and Osborne and Warner for 

the derivation of the Selberg trace formula itself. At present, the contribution from the 

continuous spectrum to 

tr(L~ir (a)) 

is known (cf. [15-(g)]). To oQtain the same for 

tr(H(r~r) • L~ir(a)), 

it is first necessary to get an analogue of the main result from [15-(f)]. This is indeed 

possible but will be dealt with elsewhere. 
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Appendix 

Here, by way of an example, we shall briefly consider the simplest case, viz. the 

situation when rank(r) = 1. Since a treatment in extenso would be quite lengthy, thus 

out of place, we shall settle for a sketch of how things go, leaving aside some of the details 

and omitting altogether a pursuit of the matter to the bitter end. 

Agreeing to use without con:iment the notation of [15-(a)], let us assume for simplicity 

that r has one cusp only. Fix a ~ E Com(r) - then 

are both r-percuspidal, hence r-conjugate to P. So: 3')'~ Er such that 

-Ip p -1 p p -1 -1 p 
~ ~ = '"Yr "Y~ ~ = ~'"Yr "Y~ ~ => ~I'( E . 

I.e.: ~ne can always multiply ~ on the right by an element from r to force ~ into P. In 

the decomposition 

there is therefore no loss of generality in assuming that ~" = m,a,n, E P, giving 

Let fr, 0 } be a subset of fr,} for which 

r~r n P = II(r n P)~,0 (r n P). 

Then 

(r n P)~,0 (r n P) =II ~,(r n P), 

where the ~" on the right have the property that 

(r n P)~,0 (r n P) = (r n P)~,(r n P). 

The injection 

r n P\r~r n P/r n P '--+ Jl(P,r n P) 

produces from the ~"o a finite sum of Hecke operators, namely 
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a bounded linear transformation on 

L 2 (G/(r n P). A. N). 

Recall now the following statement from reduction t.heory (cf. [15(a), p. 21]): Let C 

be a compact subset of G - then there is a number ec > 0 such that if 

a(t)la(-t) EC 

for some I Er and some t < logec, then necessarily / Er n P. The replacement for 

this assertion in the current setting is: Let C be a compact subset of G - then there is a 

number e c > 0 such that if 

a( t)~1a(-t) E C 

for some I Er and some t < logec, then necessarily ~/ E P. In fact, suppose first that 

~ E P - then 

a(t)~1a(-t) = a(t)~a(-t) • a(t)la(-t). 

Since 

a(t)~a(-t) = m~a~a(t)n~a(-t) 

stays bounded for t < 0,. we can apply the lemma of reduction to push I into r n P, thence 

~I E P. In general, there is a /~ E r such that ~/~ E P. This said, write 

and then reason as above. In passing, note that ec ostensibly depends on ~· We can, 

however, come up with an ec that works simultaneously for all of the ~', a uniformity that 

is sufficient for the applications. 

Let a be a K-finite function in cgo(G) - then 

tr(H(r~r) • Ltljr(a)) = H~oo tr(QH o H(r~r) • L~jr(a) o QH) 

= lim [1 Qf';_)Q~)Ka(~; z, z)da(z) -1 Q[1_)Q~)K~0n(~; z, z)da(z)]. 
H-+-OO G/r G/r 

Each of these integrals contains a singularity which must be isolated and cancelled. 

We have (cf. [15-(a), p. 15]) 

{ 
fa;r Qff)Q~)Ka(~; z, z)da(z) = fa;r Q[i)Kafr; z, z)da(z) 

fa;r Qf';_)Q~)Kafr; z, z)da(z) = fa;r Q~)Ka(~; z, z)da(z). 
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In contrast to what was done in [15-(a), p. 35] when ~ Er, it is better to work with the 

second of these relations rather than with the first. That being, let z E 6t
0

,w
0 

- then, by 

definition, 

QH K ( . ) _ {Ka(~; z, z) - JN/Nnr Ka fr; z, xn)dN(n) if z E 6tH,wo 
(2) a ~' z, Z - K (r· ) if d ~ 

a '.), z, Z Z y;: OtH ,w0 • 

Because a is compactly supported, if H < 0, then 

{ Ka(~; z, zn)dN(n) 
JN/Nnr 

= f ( E a(z7n-1z-1 ))dN(n) 
JN/Nnr 7Ercr 

= { ( E E a(vyq-1n-1z-1))dN(n) 
JN/Nnr 7ercr/rnN ,,ernN 

= 1 ( E a(z7n-1 z-1
) )dN(n) 

N 7ErcrtrnN 

= 1 ( E a(z7nz-1
) )dN(n) 

N 7ErcrtrnN 

= 1 ( E E a(z~8nz- 1 ))dN(n) 
N 7Ercr/rnP 6ernP/rnN 

= 1 ( E E a(z75nz-1 ))dN(n) 
N '1ErcrnP/rnP c5ErM 

= J, (E E a(z~._8nz- 1 ))dN(n). 
N ._ 6ErM 

Proceeding at this point exactly as in [15-(a), pp. 36-38], fix Ho < 0. Assuming that 

H < H 0 , we get 

1 Qfz)Ka(~; z, x)dG (z) 
G/r 

= [ (Q~) -Q~))Ka(~;z,z)da(z)+ [ Qg)Ka(~;z,z)dG(z) 
JG/r lair 

= [ ( E a(z7z-1 ))da(z) + o(Ho) 
JoHo 7Ercr 

+ >.~~o) • f (E E aP(mm,,a,,8m-1 ))dM(m) 
JM/rM " 6ErM 

- .Xl(~I) • { (E E aP(mm,,a,,8m-1 ))dM(m), 
JM/rM " 6ErM 
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where 

aP(ma) = £ aK(man)dN(n). 

As usual, o(Ho) is some function of Ho such that 

lim o(Ho) = 0, 
Ho--+-oo 

thus is effectively ignorable. The integral over M /r M may be viewed as the trace of a 

certain Hecke operator in }{(M,rM)· 
One must now go back and look more closely at 

or still (cf. §6) 

( ' ? ) b . ' •m, ·n emg 

1 Qff)Q~)!(~0nfr; x, x)dG(x) 
G/r 

_!_ • L { L Cmn(o:: 0, A)• (?m,_?n)ldAj, 
411" 0 JRe(A)=O m,n 

1. Q8 E(PjA: H(~: PIA: A)em : A: x)QHE(PIA: en: A: x)da(x). 
G/r 

Owing to the Langlands inner product formula (but suppressing the orbit type from the 

notation), (?m, ?n) is equal to the sum of 

_ A(H) . . 
2fXI • (H(~. PIA. A)em,en) 

and 
d 

(c(PIA: A)* dA c(PIA: A)• H(~: PIA: A)em, en) 

and 

- 2A(~>..) {t!f(HA)/l>..i • (H(i : PIA: A)em, c(PIA: A)e,.) 

-tH-2A(H~)/l>·I • (H(~: Pf A: A)em, c(PIA: A)*en)}, 

tH the exponential of .X(H). Consequently, 

m,n 

is equal to the sum of 

-2>.f:il • tr(H(i : PIA: A)• Ind~(( 0, A))( a)) 
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and 
d 

tr(Hfr: PIA: A)• lnd~((O,A))(a) •c(PjA: A)*dA c(PIA: A)) 

and 

- 2A(~>.) {t~(Hi)/l>.I • tr(H(~: PIA: A)• lnd~((O,A))(a) • c(PIA: A)*) 

-t;2A(H.\)/l.>il • tr(H(~: PIA: A)• lnd~((O, A))(a) • c(PIA: A))}. 

In order to treat the singular term, we shall need a formula for Hfr). Let 

ti; E £(5, 0) - then 

H(r~r)E(PIA: •:A :?)(z) = E(PIA: H(~ : PIA: A)t»: A: z). 

To make the determination, it will be enough to confine our attention to 6t0 ,wo, assuming 

that Re(A) < -p (in the obvious sense). Let C-T stand for constant term - then, with 

we have 

Therefore 

But also 

z = ka(t)mn E 6t0 ,w0 = K • A{to] • Wo, 

H(r~r)E(PIA:.: A :?)(z) 

= C-T(H(r~r)E(PIA:.: A :?))(z) 

+ ( H(r~r)E(PIA:.: A :?)(z) - C-T(H(r~r)E(PIA:.: A :?))(z)) 

= (H(~: PIA: A)t»)(km)a(t)A-p 

+(c(PIA: A)• H(~: PIA: A)t»)(km)a(t)-A-p + o(t) (t-+ -oo). 

lim a(t)P-A(H(r~r)E(PIA: •:A :?)(z)) = (H(~: PIA: A)t»)(km). 
t--oo 

H(r~r)E(PIA:.: A :?)(z) 

= L L a(z~il)A-p • t»(z~i1') 
" 'YEr/rnP 

= L L a(Z1'i~..)A-p • t»(z')',,~,,) 
" 7,er,/r,nP 

if for short 

r,, = ~,r~,- 1 . 
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Then 

This means that 
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L a(z')',~,,)A-p • Cl,(z')',,) 
,.,er,/r ,nP 

= a~-P • E(PIA: ct,: A: z). 

H(r~r)E(PIA: ct: A :?)(z) = L a~-P • E(PIA: 4>i : A : z), 

so too 

lim a(t)P-A (H(r~r)E(PIA: 4>: A :?)(z)) = L a~-P • 4>,(km). 
t--oo 

i 

In other words, qua an endomorphism of £ (o, 0), 

By analytic continuation, the formula retains its validity for all A and, in addition, admits 

a ready interpretation: 

H(~ : PIA: A)4> = L a~0-P • H((r n P)~,0 (r n P) )4>, 
io 

a linear combination of Hecke operators vis-a-vis P. Naturally, one must observe that 

a triviality. 

To discuss 

(r n P)~,0 (r n P) = (r n P)~,(r n P) 

Ltr(H(~: PIA: A)• lnd~((O,A))(a)), 
0 

we argue as on p. 42 of [15-(a)], eliminating the sum over 0 by induction in stages and 

then using the cor_responding formula for the kernel, thereby reducing the evaluation to 

that of 
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In the context at hand, the mechanism of Fourier transformation is 

{
/(A) = JA /(a)a-A+pdA(a) 

/(a) = 2~ • fRe(A)=o /(A)aA-pJdAJ. 

Accordingly, 

4
1 

• J. (L tr(Hfr: Pf A: A) •Ind~(( 0, A))(a ))) jdAj 
1r Re(A)=O 0 . 

equals 

~ • l (L L aP(mm,,a,5m-1 ))dM(m). 
M/rM ' 6Er.M 

By inspection, the cancellation is then immediate. 

The Dini analysis offers no new surprises at least if one admits an assumption on the 
c-functions akin to that on p. 49 of [15-(a)J. 

The upshot of all this is the conclusion that mod o(H
0

) 

tr(H(r~r) • L~ir(a)) 

is equal to 

1 ( L a(x1x-1 ))dG(x) 
0

Ho 7Errr 

+ ,\~~o) • [ (L L aP(mmiai5m-1 ))dM(m) 
JM/r.M i 6ErM 

_ _!__•!. (Ltr(Hfr: PIA: A)•lnd~((O,A))(a)•c(PJA: A)*dd c(PIA: A)))ldAJ 41r Re(A)=O O A 

_! • Ltr(Hfr: PIA: 0) • lnd~((O, O))(a) • c(PIA: 0)). 
4 0 

The third and fourth terms represent the contribution to 

arising from the continuous spectrum, thus require no additional analysis. As for the first 
and second, they contain the contribution to 

tr(H(r~r) • L~ir(a)) 
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associated with the r-conjugacy classes in rs"r an~ we can proceed, in essence, along the 

same lines employed in [15-(a), pp. 56-SOJ when ~ Er to cancel out the A(Ho) ending 

up, after substantial elaboration, with orbital integrals (weighted and unweighted) and so 

forth. Of course, one must start by drawing up a classification of the elements of r~r. 

This is not difficult (cf. [15-(a), §51). Still, there is a fair amount of detail involved and 

since it is not especially illuminating, we shall not stop to provide it, being content instead 

to close with a few simple remarks. 

Needless to say, we can and will assume that r~r # rir. Moreover, we might just as 

well suppose that 

For otherwise, if 

r~rnzG #0, 

then it is permissible to take ~ central, giving 

The calculation is therefore cover~d by the Selberg trace formula applied to a a L, rather 

than a. 

Put 

(r~r)s = {7 e r~r: {7}r n P = 0}. 

Then Lemma 5.5 on p. 20 of [15-(a)J remains valid if rs is replaced by (r~r)8 . It follows 

as there that the elements of (r)r)s are semisimple. Furthermore, if 7 e (r~r)s, then r 7 

is a uniform lattice in G 7 • Denote by (r)r)P the complement to (r)r)s in r~r - then 

1 ( L: a(x7x-1 ))da(z) = (S) L: vol(G7 /r7 ) • 1 a(z')'z-1 )da(z) 
0 no ,.,errr { 7 }r G/G.., 

+ 1 ( L: a(z')'z:_1 ))da(x), 
0Ho 7E(r,r)P 

the symbol 

(S) L 
h}r 

standing for a sum over the r-conjugacy classes of the elements of (r)r)8 • It remains to 

delineate (r~r)p. In this regard, things run pretty much as expected so long as one takes 

into account the fact that r~r nA may very well be nonempty, in contrast to what is true 

for r. One must also remember that the elements of Com(r M) are semisimple (cf. §5). 
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