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§1. ASSOC I A 11 VE ALGEBRAS 

1: DEFINITION An associative algebra over C is a finite dimensional 

vector spa.ce A over C equipped with a bilinear nap 

µ : A x A ~ A, (x, y) ~ µ (x, y) xy 

such that (xy) z = x (yz) • 

2: DEFINITION An associative algebra A is said to be unita.l if there 

exists an element e E A with the property tha.t xe = ex = x for all x E A. 

[Note: Such an e is called an identity element and is denotErl by 1 A.] 

3: N. B. Identity elanents are unique. 

4 : EXAl.'1PLE I.et V be a finite d.llnens.ional vector s:r;a.ce over C -- then 

Hom {V) (the set of all C-linear naps of V) is a unital associative algebra over 

C (nultiplication being com:p:>sition of linear transfonnat.ions and identity element 

xv>. 
I.et A be an associative algebra over C. 

5: DEFINITION A representation of A is a pair (p,V), where V is a finite 

d:imensional vector si;:a.ce over C and p:A ~ Hom(V) is a rrorphisn of associative 

algebras. 

[Note: If A is unital, than it will be assumed that p (lA) = ic\,, thus is a 

rrorphisn of unital associative algebras .. ] 

6: DEFINITION I.et (p,V) be a representation of A -- then a linear subsi;:a.ce 

U c V is said to be p-invariant if v x E A, p{x)U c u. 
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7: N.B. A p-invariant subspace U c V gives rise to bNo representations 

of A, viz. by restricting to U and passing to the quotient V/U. 

8: DEFINITION A representation ( p, V) of A is irreducible if V ~ { O} 

and if the only p-invariant subspaces are {0} and V. 

9: NOI'ATION Given a representation {p,V) of A, put 

Ker{p) = {x E A:p(x) = O}. 

10: N.B. Ker{p) is a ttvo-sided ideal in A. 

11: DEFINITION A representation ( p, V) of A is faithful if Ker ( p) = { 0}. 

12: DEFINITION I.et ( p, V) , (a, W) be representations of A -- then an inter-

twining operator is a C-linear map T:V + W such that Tp(x) = cr(x)T for all x E A. 

13: NOTATION IA (p,cr) is the set of intertwining operators between (p,V) 

and (cr,W). 

14: EXA.1\1PLE I.et ( p, V) be a representation of A and suppose that U c V is 

a p-.invariant subspace -- then the inclusion map U + V is an intertwining operator, 

as is the quotient map V + V/U. 

15: DEFINITION Representations {p,V) and (cr,W) of A are equivalent if 

there exists an .invertible operator in IA(p,cr), in which case we write 

( p , V) ~ (a , W) (or p ··~ cr). 

"" 16: NorATION A is the set of equivalence classes of irreducible rep-

resentations of A. 
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17: EXAMPLE Take A = Han(V), where V is a finite dimensional complex 

vector space -·- then up to equivalence, the only irreducible representation of 

Han(V) is the representation p given by 

p(T)v = Tv (TE Hom(V)). 
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§2. REPRESENTATION THEORY 

I.et A be a unital asSJCiative algebra over C. 

1: THEOREM I.et (p,V), (CJ,W) be irrErlucible representations of A -- then 

1 if ( p , V) ::::: (CJ, W) 
dim IA (p,CJ) = 

0 ( p , V) 'f. (CJ , W) • 

2: THEOREM Let ( p, V) be an irreducible representation of A -- then p (A) = 

Han(V). 

3: DEFINITI01.\I A representation (p, V) of A is completely reducible if for 

every p-irwariant subspace v1 c V there exists a p-invariant subsp2ce v2 c V such 

4 : LEMMA Supp::>se that (p, V) is a representation of A -- then ( p, V) is 

completely reducible iff there is a decQmfOsition 

where each V. is p-invariant and irreducible. 
1 

5: LEMMA Supp:>se that ( p, V) is a representation of A -- then ( p, V) is 

ccmpletely reducible iff there is a decanp::>sition 

v = u + ••• + u ' 1 t 

where each u. is p-invariant and irreducible. 
J 

6: DEFIN"ITION I.et V be a finite dimensional vector space over C. Given 



2. 

a subset S of Hcm(V), put 

Cam($) = {T E Hcm(V) :Ts= ST v s E $}, 

the cannutant of $. 

7: N.B. Cam($) is a unital associative algebra over C. 

8: THEOREM Suprx:>se that V is a finite dimensional vector space over C and 

let V c Hom(V) be an associative algebra over C with identity i<\,. Assume: v is 

canpletely reducible per the canonical action of V -- then 

Cam(Cam(V)) = V. 

[Note: A priori, 

V c Cam(Cam(V)).] 

9: NDrATICN I.et ( p, V) be a campletel y reducible representation of A. 
A 

Given 8 E A, put 

V = E U, 
o UcV: [U] = 8 

the subspaces U being p-invariant and irreducible, [U] standing for the equivalence 
A 

class in A detennined by U. 

10: THEOm.f Let (p,V) be a canpletely reducible representation of A and 

let 

v = v E9 ••• E9 v 
1 s 

A 

be a deca:ntX>sition, Vlhere each v. is p-invariant and irreducible - then v 8 E A, 
l. 
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thus 

V = E9 ,... Ve/ 
oEA 

[Note: An empty sum is taken to re zero.] 

11: DEFINITION The decomposition 

V = E9 ,... V0 oEA 
is the primary decOOJ;X>Sition of V and V0 is the o-isotypic subspa.ce of V. 

12: DEFINITia'l" The cardinality 11\r(o) of 

{i: [V.] = o} 
1 

is the multiplicity of o in V. 

" 13: NOI1ATION Given o E A, let U(o) be an element in the class o. 

14: LEMMA 
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§3. CHARACTERS 

Let A be a unital associative algebra over C. 

1: DEFINITIOi.~ Let ( p, V) be a representation of A -- then its character 

is the lmear functional 

given by the prescription 

2: LEMMA 

3: LEMMA V x,y E A, 

x :A -+ C 
p 

(x E A). 

4: DEFINITICN Let ( p, V) be a representation of A -- then a COIT.lp)sit.ion 

series for p is a sequence of p-invariant subspa.ces 

{O} = v
0 

c v
1 

c ••• c v = v s 

such that 

is irreducible .. 

{O} ;t. v./V. l 
1. 1.-

5: LEMMA O:rnp::>sition series exist. 

(i = l, ... ,s) 

6: DEFINITION The semi.simplification of ( p, V) is the direct sum 
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s 
Vss = EB (V./V. 1) 

i=l 1 1-

equipped with the canonical operations. 

7: DEFINITION The irreducible quotients v./V. 1 are the ccmp:>sition 
i: 1-

factors of (p,V). 

Let p be the representation of A per V and let p. be the representation 
SS SS 1 

of A per v.;v. 1 . 
1 1-

8: LEMMA 

s 
L: Xp. = Xp· 

i=l 1 

9: LEMMA Supp::>se that (01 ,u1), ••• , (0r,Ur) are irreducible representations 

of A. Assume: (0k,Uk) is not equivalent to (0,e_,U,e_) (k ~ l) -- then the set 

is linearly independent. 

10: SCHOLIUM The canp::>sition factors in a canposition series for p are 

unique up to isarorphism and order of appearance and (pss'Vss> is uniquely 

determined by x up to isomorphisn. p 
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§4,.. SIMPLE ANV SEMISIMPLE ALGEBRAS 

Let A be a unital associative algebra over C .. 

1: DEFTI\J'ITION A is simple if the only tv.x:>-sided ideals in A are {O} 

and A. 

2: LEMMA If V is a finite dimensional vector space over C, then Hom (V) 

is simple. 

3: THEOREM If A is simple, then there is a f.inite d.imensional vector space 

V over C such that A z Hom (V) • 

4: DEFINITION A is ,se.mis.imple if it is a finite direct sum of simple 

algebras. 

Accord.ingly, if A is sanisimple, then there is a finite set L, finite d.imen-

sional complex vector sp:tces VA. (A. E L) , and an irorrorphism 

¢:A ~ e Hom(VA). 
A.EL 

Denote by EA. the element 

oe EBic\r e···EBO 
A. 

and define a representation (pA, VA.) by tre prescription 

(x E A). 

5: LEMMA The ( p A., VA.) are irreducible. 



2. 

6: THEOREM Every irreducible representation of A is equivalent to some 

7 : N. B. Therefore 

"' A<-> L, 

ro the term ":\-isotypic subspace" makes sense. 

Put 

Then e:\ is a central idemp::>tent and 

:\~Le:\ = lA. 

8: THEOREM Supp::>se that A is sanisimple and let ( p, V) be a representation 

of A -- then its :\-isotypic subspace is p ( e:\) V and 

is the primary decanp::>sition of V. 

9: LEMMA I.et A be a unital associative algebra over C and let (p,V) be 

a canpletely reducible representation of A -- then p(A) is se.misimple. 

10: THEOREM I.et A :be a unital associative algebra over C -- then the 

following conditions are eqilivalent: 

1. The left regular representation (L, A) of A is canpletely reducible 

(L(x)y = xy). 

2. Every representation of A is ca:npletely reducible. 

3. A is a semisimple algebra. 



3. 

[l => 3:L(A) is semisimple (cf. #9)_ On the other hand, A~ L(A), L being 

faithful. 

3 => 2: Quote #8 and §2, #4. 

2 => 1: Obvious.] 

11: THEOREM: Every representation of a semi simple algebra is uniquely 

detennined by its character up to isan:orphisn. 
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§1. GROUP ALGEBRAS 

1: NOTATION If X is a finite set, then IX I is the cardinality of x and 

C(X) is the vector sp:ice of complex valued functions on x. 

2: N.B. The functions {o ;x E X}, where x ' 

1 (x = y) 

0 (y) = 
x 

0 (x ~ y) , 

constitute a basis for C(X). Therefore 

dim c (X) = IX I 
and every f E C (X) admits a deco:rnp:>sitfun 

f = L: f (x)o • 
xEX x 

In particular: If 1x is the function on X which is = 1, then 

Let G be a finite group. 

1 = L: o • 
X xEX x 

3: DEFINITION Given f ,g E C(G), their convolution f * g is the elanent 

of C(G) defined by the rule 

(f * g) (x) = L: f(xy-l)g(y) 
yEG 

-1 
= L: f(y)g(y x). 

yEG 
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[Note: v x,y E G, 

0 * 0 = 0 .] x y xy 

4: LEMMA C (G) is an assoc.iative algebra over C. 

5: N.B. If e is the identity in G, then oe is the identity in C(G), 

Ylh.ich is therefore unital. 

6: LEMMA The center of C(G) consists of th::>se f such th:tt 

-1 
f (x) = f (yxy ) (x,y E G). 

[Note: In other VJOrds, the center of C(G) consists of those f that are 

constant on conjugacy classes, the so-called class functions.] 

E.g.: V x E G, the function 

is a class function. 

[Given z in G, 

E o -l 
yEG yxy 

( E o 1 )*o = E o -l 
yEG yxy- z yEG yxy z 

= L: 0 -1 yEG zyx(zy) z 

= l: 
yEG 

-1 zyxy 

= o *( l: o _
1

) .] 
z yEG yxy 
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7 : DEFINITION A representation G is a pa.ir (n,V), where vis a finite 

d.llnensional vector space over C and n:G -+ GL(V) is a norphisn of groups. 

8: SCHOLIUM I.et V be a finite d.imensional vector sp:i.ce over C. 

• Every representation n:G -+ GL(V) extends to a representation p of C(G) 

on V, viz. 

p(f) = L f(x)n(x). 
xEG 

• Every representation p;C(G) -+ Han(V) restricts to a representation TI of 

G on V, viz. 

TI (x} = p ( o ) • x 

[Note: If TI is given, it is custanary to denote its extension "p 11 by n as 

well.] 

9: LEMMA I.et W c V be a 1 inear subspace -- then W is invariant under G 

W is invariant under C (G) • 

10: LEMMA An operator T E Hom(V) comnutes with the action of G iff it 

commutes with the action of c (G). 

11: THEOREM C(G) is semisimple. 

P:RCX:>F I.et (p,V) be a representation of C(G) and sup:r;:ose that v
1 

c V is a 

p-invariant subspa.ce. Fix a 1 :i.near complement U per V 1 : V = V 1 E9 U. I.et P: V -+ V 1 

be the corresµmding projection and put 

1 -1 Q = 1(;T L n(x)Pn(x) • 
1u1 xEG 



Then Q is a projection with range v1 . In addition, v y E G, 

1 -1 1T{y)Q = IGf I 1T{yx)P1T{X). 
1v1 xEG 

1 -1 -1 = 'GT 1 1T {x) P1T {y · x) 
1u1 XEG 

1 
= TGT I 1T (x) P1T (x) (y) 

1\-:l" I xEG 

= Q1T {y) .. 

Consequently, V v EV, 

1T(y) (i<\, - Q)v = 1T(y) (v - Qv) 

= 1T(y)v - 1T(y)Qv 

= 1T(y)v - Q1T{y)v 

= (~ - Q)1T(y)v, 

thus the range V 
2 

of i<\, - Q is a p-invariant canplement per V 
1

• It therefore 

follows that every representation of C(G) is completely reducible, hence C(G) is 

se:nisimple (cf. I, §4, #10). 

12: DEFINITION 

• The left translation representation L of G on C(G) is the prescription 

L(x)f (y) -1 
f(x y) {=> L(x)f = 8 * £). x 

• The right translation representation of G on C(G) is the prescription 

R(x)f(y) = f(yx) (=> R(x)f = f * 8 _
1
). 

x 

13: N.B. Since C(G) is sa:nisimple, lx>th L and Rare canpletely reducible. 
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14: REMARK There is also a representation nL,R of G x G on C{G), namely 

And it too is canpletely reducible {C{G x G) is semisimple). 

intertwining operator is a C-linear map T:V1 + v2 such tha.t TTI1 {x) = n2 {x)T for 

all x E G. 

16: NOTA.TION IG (nl'n2) is the set of intertwining operators between 

17: N. B. On the basis of the def in it ions, 

19: LEMMA Supp::>se that {TI, V) is an irreducible representation of G and 

suppose that TE IG{n,n) -- then T is a scalar multiple of ic\r· 

if there exists an invertible operator in IG{n1 ,n2), in which case we write 

,.. 
21: NarATION G the set of equivalence classes of irreducible repre-

sentations of G. 
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[Note: By convention, the zero representation of G on V = { 0} is not to 

be viewed as irreducible.] 

22: N. B. There is a one-to-one correspondence 

~ ~ 
G:::: C(G). 

A 

In the sequel, II stands for an element of G with representation space V(II) 

of dimension ~- Without loss of generality, it can be assumed :rroreover that IT is 

Wlitary with respect to a G-invariant irmer prcxluct < , >II on V (II) . 

[Recall the argument. Start with an irmer product < , > on V(II) and put 

APPENDIX 

exists an invertible 

Then there exists a Wlitary 

[Let T = u!TI be the polar decomposition of T -- then v x E G, 

Therefore 

-l I 1-1 I I -l Un1 (x)U =TT n1 (x) TT 
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§2. CONTRAGREVIENTS ANV TENSOR PROVUCTS 

1: NarATION Given a finite dimensional vector space V over C, let V* 

be its dual and denote by 

V* x V -+ C 

(V* , V) -+ <v* r V> (= v* (v)) 

tre evaluation pairing. 

Let G be a finite group. 

2: DEFINITION Sup:r;:ose that TI :G -+ GL(V) is a representation -- then its 

contragredient is the representation TI*:G-+ GL(V*) defined by requiring that v x E G, 

thus V v EV, 

-1 
TI*(x)v* = v* o TI(x ) (v* E V*), 

-1 <TI*(x)v*,v> = <v*,TI(x )v>. 

3: N.B. The identification (V*) * ~ V leads to an equivalence (TI*)* ~ TI. 

4: LEMMA (TI, V) is irred.ucilile iff (TI*, V*) is irreducilile. 

A 

5: CONVENTION Given (IT,V(IT)) in G, take 

-1 T V(IT*) = V(IT)*, IT*(x) = IT(x ) • 

6: NarATIOO Given finite d:imensional vector spaces v
1

,v
2 

over C, let 

vl ~ v2 be their tensor product. 
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let G be a finite group. 

then their tenEDr product is the representation n1 ~ n2 :G + GLCv1 ~ v2) defined 

by requiring that V x E G, 

let (TI l' V 1) , (TI 2 , V 2) be representations of G -- then the prescription 

defines a representation n1 , 2 of G on Hom(V1 ,v2). 

8: RAPPEL There is a canonical isanorphism 

[Send v 2 ~ vi to the linear transformation 

Consider 

Then the corresµ:>nding element of Hem (V 1 , V 2) is the assignment 



3. 

9: LEMMA TI2 ~ Tii is equivalent to TI1 , 2• 

[The isonorphism G .intertwines TI 2 ~ Tii and TI l, 2: v x E G, 

sentations -- then their outer tensor product is the representation TI1 ~ TI
2

: 

11: N.B. If G1 = G2 = G, then the restriction of the outer tensor product 

Til ~ TI2 to the diagonal subgroup 

{(x,x) :x E G} 

of G x G is the tensor product TI1 ~ TI2• 

12: REMARK Take G1 = G2 = G and define a representation TI1 , 2 of G x G 

is equivalent to TI1 2• 
' 
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13 : LEMMA If TI 1 and TI 2 are irreducible, then TI 1 ~ TI 2 is irreducible. 

['lb begin with, 

and 

Now make the passage 

Then 

(cf. I , §2 , # 2) • ] 

Conversely: 

14: THEOREM Every irreducible representation of G1 x G2 is equivalent 

to an outer tensor product TI1 ~ TI2• 

15: SCHOLIUM 
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§3. FOURIER TRANSFORMS 

I.et G be a finite group. 

A 

1: DEFINITION Given f E C(G), its Fburier transform f is that element of 

EB Hom (V (II) ) 
,,.... 

IIEG 

whose II-comp:ment is 
A 

f (Il) :: l: f (x) :C:(x) (= II (f)) • 
xEG 

E.g.: V x E G, 

8 (II) = II (x) • 
x 

3: EXAMPLE V x E G, 

-~ ~ A 

L(x)f (II) = o * f (II) = II(x)f(II) 
x 

~ ~ ,,.... -1 
R(x)f (II) = f * 8 (II)= f(II)II(x ). -1 

x 

4 : THEOREM The Fourier transfonn 

A : C ( G) -+ E9 Han (V (II) ) 
A 

is an algebra ioonprphisn. 
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5: APPLICATION 

[In fact, 

d.lln C (G) 

As it stands, C(G) is a 1..ll1ital associative algebra over C. But :rrore is true: 

C(G) is a *-algebra, i.e., admits a conjugate linear antiautonPrphism f + f* 

-1 given by f*(x) = f(x ) (x E G). 

Each T E Hom(V(II)) has an adjoint T* per < ' >II:V vl'v2 E V(II)' 

Therefore 

e Hom(V(II)) 
A 

IIEG 

admits a conjugate linear antiautcm:>rphisn by usmg the arrow T + T* on each 

S1.lltm3.Ild. 

6: N.B. It can and will be assumed that 

V(II*) = V(II) 

(cf. § 2 , # 5) , 

h=nce m tenns of adjoints 

II(x)* = TI(x)-l = II(x-1) = IT*(x). 
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7: LEMMA The Fourier transfonn 

A :C (G) -+ E9 Hom (V (II)) 
A 

IIEG 

preserves the *-<>:i;erations: v f E C(G), 

"' f* = (f)*. 

8: INVERSION FORMULA Given f E C(G), v x E G, 

In prrticular: 

1 -1 A 

f(x) = lGf L"' drr tr(II(x )f(II)). 

1 
f (e) = lGf 

IIEG 

""' L: drr tr (f cm > • 
A 1 

IIEG 

9: PARSEVAL IDENTITY Given f
1 
,f

2 
E C (G), 

PROOF Put f = fl * f 2 -- then 

f (e) 

On the other hand, 

1 A A 

1GT LA arr tr Cf1 (TI) f 2 err» 

IIEG 

1 ~ 
= lGT L: A dJI tr (fl * f2 (II)) 

IIEG 
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A 

10: cc:MPLETENESS PRINCIPLE If f E C(G) and if f (TI) = 0 for all IT, then 

f = o. 
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§4. CLASS FUNC110NS 

Let G be a finite group. 

1: DEFINITION Let (TI ,V) be a representation of G -- then its character 

is the function 

given by tre pres:::ript:ion 

X :G -r C 
1T 

x (x) :=: tr ( 1T (x)) 
1T 

(x E G). 

2: N.B. It is clear that characters are class funct.kms and that equiv-

alent representations have equal characters. 

3: LEMMA V x E G, 

4: N.B. 

5: LEMMA Let 

be representations of G -- then the character of 
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[For the record, the craracter of 

is x + x , implying thereby that a nonnegative inte:Jral l.inear combination of 
Til TI 2 

ctaracters is again a ctaracter.] 

6: EXAMPLE TI112 is equivalent to TI2 e Tii (cf. §2, #9), hence 

XTI = XTI n TI* = XTI XTI* = XTI XTI . 
1,2 2 ~ 1 2 1 2 1 

7: DEFINITION The character of an irreducible representation is called an 

irreducible character. 

[Note: The zero function (i.e., the additive identity of C(G)) is a character 

but it is not an irrOO.ucible character (cf. §1, #21) • ] 

A 

8 ~ N.B. The irreducible characters are thus the xII(II E G). 

A 

9: FIRST ORI'HCGONALITY REIATION Let II. , II . E G -- then 
l J 

1 -1 !GT x~G Xi (x) Xj (x ) = 

where for short 

cS •• ' l] 

10: NOTATION Given x E G, write C(x) for its conjugacy class and G for 
x 

its centralizer. 

11: RAPPEL The number of conjugates of x in G is [G:G J, i.e., 
x 

IC (x) I = [G;Gx] . 
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[l'Iote: The class eg:ua tion for G is the relation 

IGI = L: [G:G ], . x. 
l l 

one x. having been ch:>sen from ea.ch conjugacy class. 
l 

12: SECOND OR'IHCXDNALITY REIATION Let x
1 

,x
2 

E G -- then 

[N:>te: 

!GI 
[G:G ] 

x 

IG I if x = x = x x 1 2 

13: NO'mTION Given f ,g E C {G) , r:ut 

1 -
<f, g > G = ~ L: f (x) g (x) , 

xEG 

the canonical inner product on C (G) • 

1 i£ rr1 = rr 2 

15: SCHOLIUM The irre::lucible characters fo:rm an orthoronnal set, thus 

are lmea.rly indeperrlent (cf. I, §3, #9). 
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Recall row that the Fourier transfonn 

A:C(G) + E9 HomCvcm > 
A 

IIEG 

is an algebra ironorphisn. Sin:!e the center of each Hom (V (II)) consists of scalar 

multiples of the identity operatnr, it follows that an f E C (G) is a class function 
A 

iff V II E G, 
A 

fCrr> =err ic\rcrr> <s-r EC). 

16: INVERSION FORMULA Given a class function f E C(G), V x E G, 

f (x) = z:: /', <f ,xrr>G xrr<x>. 
IIEG 

PROOF 

1 -1 A 

f (x) = -lGT L: A drr tr (II (x ) f ( m ) 
IIEG 

A 

Fjx rr
0 

E G -- then 
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17 : N. B. V x E G, 

f (x) = ~ = E <f,xrr>G Xrr(x) 
A 

IIEG 

= E 
A 

IIEG 

= E"" <f,xrr>G Xrr(x). 

IIEG 

The pr~eiing dis:ussion :rrakes it clear trat a class function f is a character 
A 

iff <f,II>G is a nonne:Jative .inte:Jer for all II E G. 

18: NOI'ATION CON (G) is the set of conjugacy classes of G. 

19: SCHOLIUM The dimension of the sp:i.ce of class functions is equal to 

ICON(G) I or still, is equal to 1a I· 

20: NOI'ATION Given C E CON(G), let Xe be the characteristic function of C: 

Xc(x) = 

21: LEMMA 

1 if x E C 

0 if x ¢. c. 

Xe= E 8. 
yEC y 

22: N.B. The Xe ( C E CON ( G) ) are a basis for the class functions on G 

A 

(as are the Xrr (II E G)). 



6 .. 

23: LEMMA Let c1 , c2 , . . • be the elanents of CON (G) -...- then there are 

nonnegative integers m. . k such tl'at 
i, J, 

Xe y,.. = I: m,. . k~· .''\,;. k l,J, 
l J .. 

[Note: Fixing an xk E Ck' q.ialitatively m. . k is the number of ordered 
l, J' 

:p3.irs (x,y) with x E Ci' y E Cj and xy = xk while quantitatively 

mi,j,k= 
/\ 

ITEG 

/\ 

24 : NO'Il\TION Given IT E G, put 

(cf.. I, §4)) • 

25: LEMMA 

[N:>te: In brief, 

26: LEMMA 

~l * ~2;:::: 

o if n1 ~ n2 . 

27: LEMMA 

cS ;::::; I: en· e t'i 1 

ITEG 
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§5. VECOMPOSITION THEORY 

Let G be a finite group. 

1: c::Di.\l'STRIJCTION Supp::>se that G operates on a finite set S, hence for each 

x E G there is given a bijection s -+ x• s of S satisfying the identities 

e•S = s, X· (y.s) = (xy) •S. 

Let V = {f:S-+ C} and define a representation n:G-+ GL(V) by 

n(x)f(s) = f(x-1 ·s). 

Then 

X-,r(x) = l{s E S:x·s = s} I· 

£ EXAMPLE Take S = G and write x·y = xy -- then the role of V is played 

by C(G) and the role of TI is played by L (the left translation representation of 

G (cf. §1, #12)), hence 

xL(x) = l{y E G:xy = y} 1, 

which is I G I if x = e and is 0 otherwise. 

3: EXAMPLE Take S = G but replace G by G x G, the action being (xl'x2) ·Y = 

x1yx;1 -- then the associated representat.ion is nL,R (cf. §1, #14) and 

X (xl,x2) 
nL,R 

-1 = j{y E G:xlyx2 = y} I 

-1 
= I {y E G:x1 = yx2y } I 

if x1 and x 2 are conjugate and is 0 otherwise. 
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4: DEFINITION I.et (TI, V) be a representatilln of G -- then by complete 

reducibility, there is a direct sum decanp:>sition 

TI = E9 m (II, TI) II, 
A 

IIEG 

the nonnegative mteger m(II,TI) being the multiplicity of II in TI. 

A 

5: LEMMA V II E G, 

6: N.B. 

dim IG(II,TI) = m(II,TI). 

7: REMARK The operator 

is the projection onto the II-iootypic subspace of v. 

A 

8: THEOREM Each II E G is contamed in L with multiplicity drr-

PROOF In fact, 
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9: N.B. It is a corollary that 

(Cf• §3 I # 5) • 

r.. 

PRCX)F V II E G, 

r.. 

or still, v II E G, 

from which the assert.ion. 

11: IRREDUCIBILITY CRITERION A representation TI:G + GL(V) is irreducible 

iff <x 1X >G = 1. 
1T 1T 

PROOF The necessity is implied by the first orthogonality relations and the 

sufficiency follows up:m noting that 

<x 1X >G = 1T 1T 

I.et G1 , G2 be finite groups and let 

2 
l: m(II,TI) • 

A 

IIEG 
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be irreducible representations of G1 , G2 -- then the character Xrr 0 II of 
11 ~ 12 

is the function 

12: LEMMA rr1 ~ rr2 is irreducible (cf. §2, #13). 

PROOF It is a question of applying the irreducibility criterion. 'Ihus 

= 1. 

13: REMl\RK The cardinality of~ is ICDNCG1 x G2) I (cf. §4, *19). 

But 

and the preceding considerations produce 

:pairwise distinct irreducible characters of G1 x G2• Therefore every irreducible 



5. 

representation of G1 x G2 is equivalent to an outer tensor product rr1 ~ rr2, where 
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§6. INTEGRABILITY 

1: DEFINITION An algebraic integer is a complex number A which is a 

root of a p:>lynood.al of the fonn. 

n n-1 
x + a lx + • • . + ao 1 n-

where a. E Z (Os is n-1}. 
]_ 

[Note: Equivalently, an algebraic integer is a ca:nplex number A which is a 

zero of 

det(A - XI} 

for sane square matrix A with entries in Z.] 

2: N.B. The rational algebraic integers are precisely the elements of Z. 

3: LEMMA If µ, v are algebraic integers, then µ + v and µv are also algebraic 

integers. 

Therefore the ret of algebraic integers is a subring of c. 

4: EXAMPLE Roots of unity are algebraic integers. 

Let G be a finite group. 

5: LEMMA I.et (TI,V} be a representation of G, x its character -- then 
1T 

v x E G, x (x) is an algebraic integer. 
1T 

[This is because x (x} is a finite sum of roots of unity.] 
1T 

The center of C (G} (i.e., the class function) is a unital conmutative 

associative algebra over C, thus its irreducible representations are just 
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A 

honarorphisms into C and are indexed by the II E G, say wrr with 

A 

[Note: The err (II E G) are a basis for the class functions on G.] 

6: THEOREM v CE CON'(G), wrr(C) is an algebraic integer. 

PROOF In the notation of §4, #23, 

hence 

=> 

Y~ Y~ = 2: m. . k~' 
"C."C. k l,], 

l J 

= 2: m .. kwrr<Xri ) 
k i,J, i 'K: 

= o. 

But this means that wrr<Xc.) is an eigenvalue of the matrix Ai whose (j ,k) th entry 
l 

is m. . k or still, is a zero of 
l,J' 

det(Ai - XI), 

thus is an algebraic integer. 

7: LEMMA V C E CON(G), 
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(x E C). 

PRCX)F CMing to §4, #25, 

so 

=> 

= E 
yEC 

IG lo x y (Cf• §4 I #12) 

= IG I L 0 
x yEC y 

= IGxlXc (cf. §4, #21). 

A 

Now fix rr0 E G -- then 
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Consequently, v CE CON(G), 

l£l a Xrr (x) 
TI i 

(x E C) 

is an algebraic integer. 

A 

8: THEOREM V TI E G, 

~I E z. 
TI 

PR(X)F In view of §4, #9, 

-1 IGI = L Xrr<x>xrr<x ) • 
xEG 

1 1 

Given c E CON(G), fix an Xe E c -- then 

=> 

M = L clEl c > > c -1> d arr Xrr xe Xrr xe ' 
TI CECON(G) 

hence M is a rational algebraic integer, hence is an integer. 
arr 

In other words' the arr divide I G I • 

9: THEOREM If A is an abelian normal subg"roup of G, then the ~ divide 

[G:A] • 

10: APPLICATION Let Z (G) be the center of G -- then the ~ divide 

[G:Z(G)]. 



§7. INVUCEV CLASS FUNCTIONS 

I.et G be a finite group, r c G a subgroup • 

.!_:_. NOI'ATION CL(G) is the subspa.ce of C(G) comprised of the class 

functions and CL( D is the subspace of C( f) canprised of the class functions. 

0 

2: NDrATION Extend a function <PE C(r) to a function¢ E C(G) by writing 

¢ (x) if x E r 
0 

<P (x) = 

o if x ~ r. 

3 : NOTATIQ.'\J Given a class function <P E CL ( r) , put 

1 ° -1 
Cir -+ G<P> (x) = 111 L: <P (yxy ) 

yEG 

1 -1 
= TfT L: <P (yxy ) • 

I .1. I -1 
yE.G,~ Ef 

4: LEMMA 

the induced class function. 

5: N.B. Therefore 

ir-+ G:CL(r)-+ CL(G). 

[Note: 
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but in general, 

The arrow of restriction C(G) -+ C(r) leads to a map 

rG-+ r=CL(G) -+ CL(f). 

And: 

6: FROBENIUS RECIPROCITY Let cp E CL ( r) , lJ; E CL ( G) -- then 

PROOF 

1 1 ° -1 
= lGf Tff L: L: cp (yxy ) lJ; (x) 

xEG yEG 

1 1 ° -1 
= TfT lGf L: L: cp (x) lJ; (y xy) 

yEG xEG 

1 1 ='GT L: TfT L: cp(y)lJ;(y) 
I u- I yEG I .l I yE f 

7: APPLICA.TION If <P is a character of r, then ir-+ G<P is a craracter of G. 

[If x is a character of G, then rG-+ rX is a character of r, hence 
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is a nonnegative integer for all TI E G or still, 

A 

is a oonne:Jative integer for all TI E G which implies that ir + dp is a character 

of G (cf. §4, #17 ff.). 

8: LEMMA Let ¢ E CL(f), lJJ E CL(G) -- then 

ir + GCCrG + rlJJ><P> = lJJCir + Gcp). 

PR(X)F From the definitions, 

0 

l " I ,,, (yxy-1) ~ (yxy-1) = lfT % rG + f't' 't' 

1 -1 ° -1 = TfT L: lJJ (yxy ) <P (yxy ) 
IL I yEG 

1 ° -1 
= lfT L: lJ;(x)¢(yxy ) 

yEG 

1 ° -1 
= lJ;(x) lfT L: ¢(yxy ) 

yEG 

9: APPLICATION The .image of ir + G is an ideal ill CL ( G) • 

write 
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10: LEMMA Fbr any ¢ E CL(f), 

PROOF In fact, 

1 ° "'.'"'1 
(ir -+ G<P> (x) = TfT l: <P (yxy ) 

yEG 

1 ° -1 
= TfT l: ¢ (y xy) 

yEG 

n 
1 ° -1 -1 

= TfT l: l: ¢(y ~ ~y). 
yEf k=l 

There are then tw:> :i;:oss.ibilities. 

-1 -1 
e y ~xxkyEf 

Therefore the sum I~ I l: disappears, leaving 
yEf 



[Note: If instead, 

then for any cp E CL ( r) , 

(i r -+ Gcp> (x) 

5. 

n 

G = 11 rxk' 
~ 

n o -1 
= L: cf>(~~ ) .] 

k=l 

11: EXAMPLE Let S be a transitive G-set, 1T the ass:>ciaterl representation 

(cf. §5, #1) . Fix a p:>int s E s and let G be its stabilizer -- then s 

where lG E CL(Gs) is = 1. 
s 

[Take s = {l, ... ,n} and s = 1. ·write 

with ~ • 1 = k -- then 

n o -1 
= L: lG (~ ~) 

k=l s 

= E 1 
k, (~) • 1 = xk • 1 
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= l: 1 
k,x · k = k 

= I {k E s :x • k = k} I 

= x (x) (cf. §5, #1) .] 
1T 

[:Note: Here is a "for instance". Take s = G/r and write 

Then G/r is a transitive G-set and 

In p:trticular: Take xk = 1 to get 

n 
G/r = 11 ~r. 

k=l 

thus at a given x E G, Cir -+ Glr) (x) is the number of left cosets of r in G fixed 

by x.] 

12: LEMMA Supp:>se that r1 c r 2 c G. I.et cpl E CL(f1 ) -- then 

PROOF Both sides of the putative equality are class functions, thus it suffices 

to show that 

A 

for all TI E G. But the IRS equals 
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which is the RHS. 

13: NOrATION Given x E G, p..it 

....x -1 -1 
l' = xrx = {xy.x :y E r}. 

The range of 

is containe:.i in the subsp:tce Sr of CL (G) consisting" of those class functions 

f E CL (G) that vanish on 

14: LEMMA 

PR(X)F Assume not, tin.is 

G - U fC. 
xEG 

Then there exists a n:mzero f E Sr which is orthogonal to all functions in 

ir + GCL ( r) : v <P E CL ( r) ' 

or still, v ¢ E CL(r), 
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hence rG + ~ = 0, i.e., f vanishes on r. But f E CL(G), so v x E G, f vanishes 

on ~. Since f E Sr' it then follows tra.t f vanishes on G: f = O, contradicting 

the suptosit.i.on that f is nonzero. 

15: APPLICATION The .inage of ir + G is an ideal in CL(G) (cf. #9). 

I.et ¢ E CL ( r). Given x E G, define cpx E C (I"){) by 

-1 -1 = cp (x xyx x) 

= <P (y) • 

16: LEMMA 

PROOF Let 

Then 

-1 -1 -1 -1 -1 = cp (x (xy1x ) (xyr ) (xy
1 

x )x) 
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17: LEMMA v x E G and v ¢ E CL(r), 

PROJF write 

Then (cf. #10) 

n °x -1 -1 -1 
= L: ¢ ( (xxkx ) y (xxkx )) 

k.=l .. 

n °x -1 -1 -1 = L: ¢ (xxk x yxxkx ) 
k.=l 

n ° -1 -1 -1 -1 = L: ¢ (x (xxk x yxxkx ) x) 
k.=l 

(cf. #4). 



1. 

§8. MACKEY THEORY 

Let G be a finite group, let r l' r 2 c G be subgroups, and let 

be a double coset decomi:osition of G. Given s E S, put 

1: LEMMA Let 

r = u tr .(s} 
l tET(s) 2 

be a left coset decomp:>Sition of r 1 -- then 

-1 = u t(sr2s )s 
ter(s) 

= u tsr 
2 tET(s) 

is a i;:artition of r 1sr2· 

PRCX:>F Supµ:>se that 
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so 

Then 

Meanwhile 

Therefore 

let R(s) = {ts:t E T(s)} = T(s)s and let 

R = U R(s). 
SES 

2: LEMMA R is a set of left coset representatives of r 2 in G. 

PROOF let x E G -- then 

Therefore 

=> x = tsY ( 3 t E T ( s) ) 
2 

=> x = rY (r E R(s), r =ts). 
2 
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Sup:p:>se now th3.t 

Then 

But 

x = ry = r'y' (r E R(s), r' E R(s')) 2 2 

x = tsy2 (t E T(s)) 

=> 

x = t's'y' 
2 (t' ET(s')). 

t E T(s) => t E rl 

=> x E f sf n f s' f => s = s' 1 2 1 2 

t' E T(s') => t' E f 
1 

=> tsy = t'sy' 
2 2 

-1 => ts = t' sy I y = t I sy I I 
2 2 2 

=> t = t' => r = r' . 

Here, by definition (cf. §7, #16), ~s E CL(f~), where 
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3: THEOREM Under the al:x>ve assumptions, 

PROOF Since 

V x E G, 

rG ~ r Cir ~ G~) = E i ( ) r ~ • 
1 2 sES r 2 s ~ 1 s 

G = 11 rr2 , 
rER 

0 -1 
(ir

2 
~ G~) (x) = E ~ (r :xr-) 

rER 

= E 
-1 rER,r y1rEr2 

(Cf• §7 I #10) f 

-1 -1 = E _1 _1 ~(s t y1ts) 
sES,tET(s) ,s t Y1tsEr2 
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(cf. § 7 , # 10) . 

PiroF Taking into account §7, #6, 

5: NarATION Given a subgroup f c G, let lr stand for the function f -+ C 

which is = 1, that is, the chrracter- of the trivial one-dimensional representation 

of r. 
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6: EXAMPLE Take r 1 = r 2 = r -- then 

= I f\G/r I· 

Therefore ir -+ Glr is not irreducible if I f\G/r I > 1 (cf. §5, #11). 

[Note: ir-+ Glr is a character of G (cf. §7, #7).] 
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§9. INVUCEV REPRESENTATIONS 

let G be a finite group, r c G a subgroup. 

1: CONSTRUCTION Let ( 8, E) be a unitary representation of r and denote 

G -1 by Er, 
8 

the sp:1.ce of all E-valuEd functions f on G such that f (xy) = 8 (y ) f (x) 

(x E G, y E r) -- then the pref:Cr iption 

G -1 
(Indr,e(x)f) (y) = f(x y) 

ef . . ndG f G th . f ' d mes a re:presentation I r, 8 o G on Er, 8 , e representation o G mdacEd by 8. 

2: N .B. The mner product 

1 
<f ,g>8 = lGT l: <f (x) ,g (xJ >E 

xEG 

equips E~, 8 with t~ structure of a Hilbert sr:ace and Ind~, 8 is a unitary rep­

resentation. 

3: EXAMPLE Take r = {e} and take 8 to be the trivial representation of 

r on E = C -- then EG = c ( G) and 
r,e 

G 
Indr,e = L, 

the left translation representation of G (cf. §1, #12). 

4: EXAMPLE Take r = G and let (TI,V) be a unitary representation of G. 

Define a linear bijection 

T:~G -+ V 
, 7T 
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by sending f to f (e) -- th:m V x E G, 

T(IndGG (x)f) = (Ind.GG (x)f) (e) 
I TI I TI 

= TI(x)f (e) = TI(x) (Tf). 

Therefore 

T o IndG = TI o T. 
G, TI 

I.e.: 

G is an invertible intertwining operator, thus Ind.G is equivalent to TI. 
I 7f 

[Note: T is unitary. In fact, 

1 
<f,g>TI = lGT x~G <f(x) ,g(x)>v 

1 
= 'Gf l: <f (ex) ,g (ex) >v 

1\.:11 xEG 

1 -1 -1 = lGT l: <TI(x )f(e) ,TI(x )g(e)>v 
xEG 

1 = lGT l: <f(e) ,g(e)>v 
xEG 

= <f(e),g(e)>v 

= <T(f) ,T(g) >v.] 

5: LEMMA 'Ille dimension of E~, e equa,ls 

l~I dim E. 
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PRCX)F Write 

where n = I~/ , and define a bijection 

by the stip.tl.ation that 

from which the assertion. 

G n 
A:Er, e -+ Q) E 

k=l 

For any ch:lracter x of G and for any conjugacy class C E CON (G) , write x (C) 

for the cannon value of x (x) (x E C) (and analog-ously if G is replaceJ. by r). 

Fix:ing C, the intersection C n r is a union of elements of CON(r), say 

c n r = u cl. 
t 

[Note: If C n r = ~, then the sum that follows is empty and its value is O.] 

G 
6: THEOREM Set TI = Ind r, e -- then 

PRCX>F If Xe is the characteristic function of C (cf. §4, #20), then Xe= 

l: 8 (cf. §4, #21). Denot:ing by p the canonical extension of TI to C(G), it thus 
yE.C y 

follows that 
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Fix an orthonormal basis ¢1 , ••• ,cpm in E and in E~18 , let 

But 

f. {x) = 
J 

0 (x ¢ r). 

(x = y E r) 

• The f j (1 $ j $ m) are an orthonormal set in E~, 8• 

• The p{xk)fj (1 $ k $ n, 1 $ j $ m) are an orthonormal basis for E~,e· 

Proceeding 

n rn 
= L L <p(Xc)f.,f.>8 k=l j=l J J 

rn 
= n L <p(Xc)f.,f.>8 j=l J J 

rn 
= [G:f] L <p(Xc)f.,f.>8 j=l J J 

<p(Y~)f.,f.>8 = < L p(o )f.,f.>8 "C J J yEC y J J 
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= L <p(o )f .,f .>
8 yEC y J J 

= L <p(o )f.,f.>
8

• 
yECnr Y J J 

Therefore 

*
m 

= L L L <p(y)f.,f.>8• 
j=l l yEC J J 

l 

But v Yo E r, 
1 -1 

<p(y0)fJ.,f.>8 = -rc;r L <f. <Yo y) ,f. (y)>E 
] iu I yEf ] ] 

1 ff+ -1 -1 = 'GT L r <e Cy Yo> <P. 'e Cy > <P. >E 
1u I yEr J J 

1 fr+ -1 -1 ='GT L r <8(y )S(y0)cp.,ecy )<f>.>E 
1u I yEf ] ] 

1 fr+ ='GT L r <S(yo)<f>.,<f>.>E = <S(yo)<f>.,<f>.>E. 
1u1 yEr J J J J 

Therefore 

fr+ 
m 

= L L L <S(y)cp.,cp.>E 
l yECl j =l J J . 

= '~' E E tr(9(y)) 
l YEC_e 
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I.e.: 

[Note: If e is the trivial representation of r on E = c I then xe= 1 r (the 

function = 1) and matters reduce to 

7: N.B. Take c = {e}: 

=> 

dim E~, 8 = \ ~ \ dim E (cf. # s) • 

G 
8: LEMMA Set TI = Indr I e -- tren for any class function f E CL (G) I 

PRCXJF 

-
1 

E 1c1x (C)f(c) - lGT CEa:N ( G) TI 
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- 1 r jcj IGI r _ft I c -- lGT CECON(G) TFT l lCT Xe C,e)f (c} 

= I~ I r r lc,e lx8 <c,e> f cc> 
CEC'ON(G) l 

= l~I c ~en lc,elx8 Cc,eJfCc,el 
l 

1 - I = TFT r Xe(y)f(y) = <xe,f r>r· 
yEf 

[:Note: One cannot s.fuiply quote §7, #6 •••• ] 

" 9: APPLICATIOO Take f = Xrr (TI E G) am supp:>se that e is irre:iucilile --

then the multiplicity of TI in Ind~, e equals the multiplicity of e in the restrict:ion 

of II to r (cf. § 5, # 5) • 

G 
10: THEOREM Set 1T = Ind.r' e -- then 

· Xe = X • 1 r + G 1T 

PROJF The funct:ion 

" is a class funct:ion on G, as is x , thus it suffices to show' that V II E G, 
1T 

But 
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1 1 ° -1 
= TGT 111 L: L: Xe (x) Xrr (y xy) 

xEG yEG 

11: N.B. It is this result that provides the link with the machinery 

developai in §7 and §8. 

Supµ:>se that r l c r 2 c G are subgroups. Let (61'El) be a unitary representation 

G of r1 -- then one can form Indr
1

, 8. On the other hand, one can first fo:rm e2 = 

12: INDUCI'ICN rn STAGES 

[Apply §7' #12: 
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[Note: Characters determine representations up to equivalence (cf. §5, #10) .] 

14: N.B. Consequently, Ind~,e cannot be irreducible unless 8 itself is 

irreducilile (cf. §10, #3). 

Put 

15: LEMMA If 

x1 is a character of r1 

x
2 

is a character of r 2 , 

then x 1 x2 is a character of r and 
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§10. I'RREVUCTB!LITY OF Ind~,e 

Let G be a finite group. 

then TI1 and TI2 are disjoint if they have no carmon nonzero unitarily equivalent 

subrepresentations. 

2: LEMMA TI1 and TI2 are disjoint iff x and x are orthogonal: 
'Tfl 'TT2 

3: 'IHEOREM Let r be a subgroup of G, (8,E) an irreducible unitary rep-

resentation of r -- then Ind~,e is irreducible iff for every x E G-f, the unitary 

representations 

of the subgroup 

are disjoint. 

-1 y + 8(y), y + 8(x yx) 

r(x) = r n r 
....x -1 

(r = xIX ) 

G PRCX>F Set TI= Indr,e -- then on general grounds, TI is irreducible iff 

<x ,x >G = 1 (cf. §5, #11). 
'TT 'TT 

I.e.: Iff 

(cf. §9, #10) 

or still, if f 

(cf. §7, #6) 
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or still, if f 

Here S = f \G/f and it can be assumed tra.t one el.anent of the sum is s = e in 

which case <xe>s = x8 , r(s) = r, hence 

Each term 

<x 1X >G TI TI 

is nonnegative and per r (s) , 

(cf. 91, #6) 

(cf. §5, #11). 

rr + r(s)Xe is the character of y + e(y) 

-1 <xe>s is the character of y + e(s ys). 

G If now TI= Indr,e is irreducible, then <xTI,xTI>G = 1, thus vs E f\G/r (s ~ r), 
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are orthogonal. Since S can be ch:>sen so that it contains any given element of 

G - r, the disjo.intness cla.im is ma.nttest. Conversely, the orthogonality of 

V s E f\G/r {s (£. f) forces <x 1X >G = l. 
'IT 'IT 
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§11. BURN SI VE RINGS 

Let G be a finite group. 

1: DEFINITION Let x1 , ••• , Xt be the characters of the irreducible unitary 

representations of G -- then the character ring X(G) is the free abelian group on 

generators x1 , •.• , Xt under i;o.intwise addition and multiplication with unit lG 

(cf. §8, # 5) • 

[N::>te: Recall that 

....., 

t = !GI= ICONCG} I= dim CL(G}.] 

2: N.B. The p::>.intwise sum or product of tvx:> characters is a character and 

the canonical arrow 

X(G} ~z C ~ CL{G} 

is an iSJm:>rphisn. 

3: DEFINITION An el anent of X ( G} is called a virtual character. 

4: LEMMA A class function f E CL (G) is a virtual character iff <f, Xrr> G E Z 

for all IT E G. 

5: REMARK The values of a virtual character are algebraic integ-ers 

(cf. §6, #5), h:mce X(G) is a proper subring of CL(G). 

[NOte: On the other hand, a class function wh:>se values are algebraic integers 

nee:i not be a virtual character.] 

6: NarATION I.et H be a collection of subgroups of G with the property that 

H E H & H' c H => H' E H, 
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in which case H is termed. a hereditary class. 

Given ti, let X(G;H) be the additive subgroup of X(G) sp:mned by the 

~-+ G3ii (HEH). 

7: LEMMA X(G;H) is a subring of X(G). 

PROOF Let H1 ,H2 E H -- then the claim is that 

(~ -+ G1if )(~ -+ G3ii ) E ti. 
1 1 2 2 

Put 

and write 

X = ( \r -+ G1n ) 
1 1 

= ~ -+ G ( (rG -+ H X)). 
2 2 

(cf. §7, #8) 

Then, thanks to §8, #3, there are subgroups K1 , ••• ,Kr of H2 such that 

Therefore 

r 
-· (E. l) 
- 1H2-+ G l=l 1xl-+ H2l<l 
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r 

= l:l ~{l + G1i<l 
(cf. §7, #12) 

E X(G;H). 

8: DEFINITION X(G;H) is the Burnside ring of G asSJciated with the 

hereditary class H. 

[:Note: It is not a priori evident that lG E X(G;H) .] 

9: CRITERION Let R be a ring of Z-valued functions on a finite set X 

under p:> intwise operations. Supµ:>se trat for each x E X and each pr .ime p there 

exists f E R such that f (x) t 0 rrod p -- then lx E R. 

[Attach to each x E X the ideal 

I = {f (x) :f E R} c Z. 
x 

Then, in view of the assumption, I = Z so there exists f E R such that f (x) = 1, x x x 

hence 

TI c1 - f ) = o. 
xEX x 

Now expand the product to get 1 as a st:nn of elements of R. ] 

Let G be a finite group. 

10: DEFINITION Let p be a pr.irne -- then G is a p-group if every element 

x E G has order a p:>wer of p. 

[Note: Every p-group is nil p::>tent. ] 
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11: LEMMA G is a p-group iff I G I is a p:>Wer of p. 

12: DEFINITiet:r Let p be a prime -- then a subgroup P of G is a Sylow 

p-subgroup of G if it is a max:imal p-subgroup of G. 

13: THEOREM 

• Sylow p-subgroups exist. 

• All Sylow p-sobgroups are conjugate. 

• Every p-subgroup is containoo in a Sylow p-subgroup. 

14: N. B. The number of Sylow p-subgroups of G is a divisor of IG I · 

15: DEFrnITION Given a prime p, a finite group H is p-elementary if it is 

the direct product of a cyclic group C of order prime to p and a p-group P. 

[Note: Accordingly, c and P are nonnal subgroups~ c n P = { e}, and H = CP.] 

16: ~ Subgroups of p-elanentary groups are again p-elanentary, hence 

the p-elanentary subg'roups of G constitute a hereditary class Ep(G). 

17: DEFINITiet:r A finite group H is elementary if it is p-elanentary for 

some prime p. 

18: Nar.ATiet:r Put 

E(G) = u E (G). 
p p 

19: N .B. Since E (G) is a hereditary class, one can fonn its Burnside ring 

X(G; E (G)). 
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20: DEFINITION Given a prime p, a group H is p-semielanentary if it is 

the sani.direct prcxluct of a cyclic subgroup C of order prime to p and a p-group P. 

[Note: Accordingly, C is a nonnal subgroup, C n P = {e}, and H = CP.] 

21: LEMMA Subgroups of p-sanielementary groups are again p-sanielanentary, 
semi 

hence the p-elementary subgroups of G constitute a hereditary class SEP(G). 
/\ 

22: DEFINITION A finite group H is semielementary if it is p-semielementary 

for some prime p. 

23: NarATION Put 

SE(G) = U SE (G). 
p p 

24: N.B. Since SE(G) is a hereditary class, one can fo:rm its Burnside 

ring X(G;SE(G)). 

25: LEMMA 

lG E X(G;SE (G)), 

i.e., there exist integers ~(H E SE(G)) such that 

PRCXJF It suffices to slnw that the ring X(G;SE(G)) satisfies the assumptions 

of #9: For every x E G and for every prime p, there exists a group H :: H E SE(G) x,p 

such that 

(~ -+ G1tt) (x) "/ 0 mod p. 

a a 
This said, factor the order of x asp n (p.)' n) and let c = <xf> > (hence le!= n, 
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hence is prime top). Let N be the normalizer of C in G, let P be a SylC>'W' 

p-subgroup of N containing x, and let H :: H = CP -- then H is p-sa:nielernentary x,p 

and the claim is that 

(~ -+ G1rJ) (x) 1- 0 nod p. 

By definition, 

But 

yxy-l E H => yCy-l c H 

-1 
=> yCy = C => y E N. 

Therefore 

(~ -+ G1rJ> (x) = (~ -+ rAi> (x) , 

the tenn on the right being the number of left cosets of Hin N fixed by x (cf. §7, 

#11) • Since C is a normal subgroup of N and since C c H, it follOINS that C must 

fix the left cosets of H in N. Thus the x-orbits have cardinality dividing pa, 

thus each nontrivial x-orbit has cardinality divisible by p. On the other hand, 

the number of left cosets of H in N is prime to p (H contains a Sylow p-subgroup 

of N) • canbining these facts then leads to the conclusion that the mmiber of left 

cosets of H in N fixed by x is prime to p, i.e. , 

(~ -+ G1rJ) (x) J- nod p. 

26: DEFINITICN Annna:nial character of a finite group is a character of 

degree 1. 
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27: DEFlliITION A finite group H is sa.id to be an M-group if each irre­

ducible character of H is induced by a :rronomial character of a subgroup of H. 

28: THEOREM Supr:ose that H is a f mite group which is a semidirect 

prcxluct of an abelian nonnal subgroup and a nilp:>tent group (in particular, a 

p-group) -- then H is an M-group. 

29: APPLICATION p-elementary groups and p-se.mielanentary groups are 

M-groups. 
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§12. BRAUER THEORY 

Let G be a finite group. 

1: CHARACI'ERIZATIOO OF CHARACI'.ERS A class funct:iDn f E CL(G) is a 

virtual character (i.e., belongs to X(G)) i£f for every H E E (G), 

rG-+ Hf E X(H). 

2: INDUCTION PRINCIPLE A class function f E CL(G) is a virtual character 

(i.e., belongs to X(G)) iff there exist elementary subgroups H., rronomial characters 
l 

A. . of H . , and integers a . (1 $ i $ n) such that 
l l l 

n 
f = E a. (i__ GA..) • 

. 1 l ti. -+ l 
l= l 

These are the main results. Turning to their proofs, let R be the ring with 

unit lG whose elements are the class functions f on G such that 

for all HE E(G) and let L be the subgroup of X(G) spanned over Z by characters 

of the fonn ~ -+ GA., where A. is a rronomial character of some H E E (G) • 

3: LEMMA Statements 1 and 2 are equivalent to L = R. 

[Note: Obviously, 

L c X(G) c R.] 

4: LEMMA L is an ideal in R. 

PRCX>F Let A E L, say 

A= Ea. (i__ GA..), 
. l tt. -+ l 
l l 
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and let llJ E R -- then 

llJA = E a.llJ(i._ GA.) 
. l. H. + l. 
l. l. 

Since 

there exist integ-ers b. . such that 
l.J 

rG HllJ=l:b .. t_: .. , 
+ . . l.J l.J 

l. J 

t_: . . rurming through the irraiucible characters of H. , hence 
l.J l. 

llJl\ = L: a .b. . ( i._ Gt_: .. ) • 
. . l. l. J tll.. + l. J 
i, J 

(cf. §7, #8). 

But elanentary groups are M-groups (cf. §11, #29), so l; .. is induced by a rronan.ia.l 
l.J 

character of s:me subgroup of Hi. Taking into accolUlt that E (G) is a hered.itary 

class, apply §7, #12 to conclude that lpl\ E L Therefore L is an ideal in R. 

[Note: Operations in R are i:ointwise and, of course, R is conmutative. ] 

Matters thus reduce to showing that lG E L. 'Ib this end, suppose that it 

were possible to write 

where ck E Z and xk is a character of some proIJer subgroup Hk of G. Inductively, 

it can be asamted that #2 holds for Hk_, l'Ence that xk can be written as a Z-linear 

canbination of induced rronomial characters from elements of E (Hk) • But then lG E L, 

as desired. 
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[Note: Nothing need be done if G is elementary to begin with (it being 

autanatic that lG E L) .] 

5: LEMMA If G is not elementary, then lG can be written as a Z-lmear 

combination of induced characters frcm proper subgroups of G. 

Case 1: G is not sanielementary, thus G ¢ SE (G) and the H E SE (G) are proper 

subgroups. The contention then follows from §11, #25. 

Case 2: G is semielanmtary: G E SE (G) , say G = CP for sane prime p. I.et 

N be the nonna.lizer of P in G, hence N = (C n N) x P is p-elementary and it can be 

assume::i that N ~ G {othe:rwise G is elanentary and. there is nothing to prove) • Write 

where the xi ~ lG are irreducilile characters and the ai are positive integers. 

6: N.B. 

{cf. §7, #6) 

7: N.B. Xi{e) > 1 for all i > O. 

[Suppose that Xi (e) = 1 (3 i) • Write 

for sane character x orthcxJona.l to ~ -- then 



And 

= a .. 
l 

4. 

1 = x· (e) = a. + x(e) 
l l 

(cf. §7, #6) 

Recall now that the kernel K. of X· is the proper nonnal subgroup of G consisting 
l l 

of those x E G such th:lt x· (x) = x· (e) or still, consisting of those x E G such 
l l . 

that x . (x) = 1, thus N c K. (since resG NX . = l_ -) • But this is im:i;ossible: P 
l l ~. l ~ 

is a Sylow p-subgroup of K., so G = K. (cf. infra). 
l ·1 

[Note: -1 
Let x E G -- then l:oth P and xPx are Sylow p-subgroups of K., hence 

l 

for some k E K. which .impJ..ies that kx E N c K. , thereby forcing x E K. , so G = K .• ] 
l l l l 

Return to the formula 

Since x. { e) > 1 for all i > 0, the x. are not m::momial. On the other hand, G = 
l l 

CP is semielementary, thus is an M-group, thus each xi is induced by a nonornial 

character Ai of some proper subgroup Hi of G. 'Iherefore 

1 = i_ 1 - l: a. (i__ GA·) , 
G N ~ G~ i>O l tli ~ l 

which completes the proof of #5. 
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§13. GROUPS OF LIE TYPE 

Let k be a finite field. 

1: 

[Note: 

DEFINITION A·k-group is a linear algebraic group defined over k. 

A k-subgroup of a k-group is a subgroup which is a k-group.] 

2: NOI'ATION Given k-groups ~' ~, ~' ••• , denote their group of k-rational 

i::oints ~(k), ~(k), ~(k) ••• , by A, B, C, •••• 

Let g be a connected reductive k-group. 

3: DEFINITION G is said to be a group of Lie type. 

4: N.B. G is, of course, finite and it is rossible to canpute !GI 

explicit! y. 

5: DEFINITION A maximal closed connected solvable subgroup of g is called 

a Borel subgroup. 

[Note: The conditions "closed" and "connected" can be omitted from the 

definition.] 

6: LEMMA 

• Any two Borel subgroups of g are conjugate. 

• Every element of g belongs to sane Borel subgroup of g· 

• Every closed subgroup of g containing a Borel subgroup is equal to 

its own normalizer and is connected. 

• Any two closed subgroups of g containing the same Borel subgroup and 

conjugate in ~ are equal. 
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7: N.B. Since k is finite, g is quasi-split, hence contains a Borel 

subgroup defined over k. 

[Note: Any two such are G-conjugate.] 

let ~ be a Borel k-subgroup of g' let ~ c B be a maximal torus of G defined 

over k, and put 

8: LEMMA ~ is a k-subgroup of g· 

9: NOI'ATION Set 

10: LEMMA 

W ~ N/T. 

[Note: 

~ n ~ = ~ => B n N = T.] 

11: LEMMA W is a finite Coxeter group. 

[Note: Spelled out, W admits a finite system of generators w1 , ..• ,w.t 

(w. ~ 1 and w. ~ w. for i ~ j) subject to the relations 
l l J 

2 m .. 
w. = 1, (w. w. ) 1 

J = 1 
l l J 

where m .. is the order of w.w. (i ~ j) .] 
l] l J 

12: BRUHAT LEMMA 

G = il BwB. 
wEW 

(i ~ j) ' 



3. 

13: DEFINITION A closed subgroup E of g is parabolic if it contains a 

Borel subgroup of g· 

14: LEMMA Let El, E2 be tarabolic k-subgroups of g -- then El = E2 

iff Pl = P2 . 

15: NOTATION Given a parabolic k-subgroup of g, denote its uniµ:>tent 

radical by JJ· 

[Note: Recall trat E is the normalizer of ~.] 

17: DEFINITION Let E be a p:irabolic k-subgroup of g -- then a closed 

connected reductive k-subgroup ~ of E is a Levi subgroup of E if P is the semidirect 

product LU (hence P = LU) • 

18: LEMMA Levi subgroups of E exist and any two such are conjugate by a 

unique element of u. 

19: N .B. L is a group of Lie type. 

20: LEMMA Let El' E2 be p:rrabolic k-subgroups of g -- then the following 

conditions are equivalent. 

• P1 n u2 c u1 , P2 n u1 c u2 

• E1 and E2 have a corrm:m Levi subgroup. 

21: APPLICATION' 
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[For under these circumstances, ~l and ~2 have a cormon Levi subgroup ~' thus 

so one can quote #14.] 

22: DEFINITION Let ~l' g2 be parabolic k-subgroups of g -- then g1 and g2 

-1 
are said to be associate if there exists an x E G such that El and XE2x have a 

carmon Levi subgroup. 

23: N.B. The relation detennined by "to be associate" is an equivalence 

relstion on the set of p::lrabolic k-subgroups of g· 

24: -1 
LEMMA If El, g2 are not associate, then V x E G, El, XE2x are not 

associate. 

-1 
[If there exists x E G such that El and XE2x are associate, then there exists 

-1 -1 
y E G such that El and YXE2x y have a conm:>n Levi subgroup, thus El and E2 are 

associate, contradiction. ] 

25: LEMMA Let El' E2 be parabolic k-subgroups of g· Assume: El and E2 

are associate -- then !P1 I = IP2 I· 

[There is no loss of generality in suptosing that El and E2 have a cormon 

Levi subgroup !t' thereby reducing matters to the claim that I u1 I = I u2 I . ] 

26: DESCENT Fix a parabolic k-subgroup E c g and let !t c E be a Levi sub­

group -- then there is a 1-to-l correspondence between the set of parabolic k-sub-

groups of g contained in E and the set of parabolic k-subgroups of !t· 
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• Given a parabolic k-subgroup E' c Er write E' = ~·~· and put *E = 

E' n ~ -- then *P is a parabolic k-subgroup of !t with unip:>tent radical *~ = 

U' n ~· 

• Given a parabolic k-subgroup *E of !tr write *E = *!t*~ and put !t' = *!tr 

U' = *UU -- then E' = !t'~' is a parabolic k-subgroup of ~ such that P' c P. 

The bijection in question is the assignment E' -+ *E· 

27: N .B. E' and E'' are conjugate by an element of G iff P' n L and 

P'' n L are conjugate by an element of L. 

APPENDIX 

!t2 are conjugate by an element of G. 

-1 
[Choose x E G such trat El and xE2x have a co.rmon Levi subgroup !t· Choose 

u1 E u
1

: 

Then 

=> 
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=> 
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§14. HARISH-CHANVRA THEORY 

Let k be a finite field, g a connocted ra:luctive k-group. 

1: DEFINITION Let E be a p:rrabolic k-subgroup of g -- then P is tennErl 

a cuspidal subgroup of G. 

2: NOTATION Given a cuspidal subgroup P = LU of G and an f E C ( G) , let 

(x E G). 

[Note: If P = G, then 

fG(x) = f (x) (x E G) • ] 

3: DEFINITION I.et f E C ( G) -- then f is said to be a cusp fonn if fp = 0 

for all P ~ G. 

in C(G). 

4: NOTATIOO ltJrite 0c (G) for the set of cusp fonns and p.lt 

0CL(G) = CL(G) n °c(G). 

5: LEMMA 0c(G) is a linear subspace of C(G). 

6: LEMMA 0c(G) is stable under left translations, hence is a left ideal 

7: REMARK If ~ is a torus, then °c (G) = c (G) • 

8: NOTATION Given f E C(G), write fp ~ O if 

2: fp(xl)Cf{l) = 0 
lEL 

for all ¢ E 0c(L) and all x E G. 

-----------------~ --- -------
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[Note: Bear in mind that L is a group of Lie type (cf. §13, #19) • ] 

9: N. B. Matters are independent of the choice of L in P. 

10: LANGLANDS PRINCIPLE If fp ,..., 0 for all cuspidal subgroups P of G 

(including P = G) , then f = 0. 

PROOF Proceerl by induction on the sanis.imple k-rank s of ~' the case s = 0 

being trivial (because then ~ is aniootropic, there is only one P, viz. P = G, 

and L = G, 0c(L) = C(G) ••• ). So assume thats is :p:>sitive and let P =LU be for 

the rranent a proper cuspidal subgroup, thus U ~ {e} and the semisjmple k-rank of 

g is strictly snaller than that of g• Using nON §13, #26, let *P = *L*U be a 

cuspidal subgroup of L -- then P' = L'U' = *LU' is a cuspidal subgroup of G con-

tained in P. Freeze x E G and put g (l) = f P (xl) (l E L) : 

But by assumption, 

g*P (l) = L: g(l*u) 
*uE*U 

= L: fp (xl*u) 
*uE*U 

= L: L: f (xl*uu) 
*uE*U uEU 

= L: f (xlu') 
u'EU' 

= fp 1 (x.l) • 

L fp I (xl*l) ¢(*:[) = 0 
*lE*L 
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for all ¢ E 0c(*L) or still, 

for all ¢ E °C(*L). The induction hyrothesis then implies that g = O, hence 

fp(x) = g(e) = 0. 

Tl}erefore f is a cusp fonn (x E G be.ing arbitrary), i.e., f E 0c (G). Fmally, 

fG ~ 0 => ~ f (xy)¢(y) = 0 
yEG 

for all ¢ E 0c (G) and all x E G. Take x = e to conclude that 

~ f(y)¢(y) = 0 
yEG 

for all ¢ E 0c(G) and then take ¢ = f to oonclude that 

<f ,f>G = 0 => f = 0. 

11: NOTATION Given a cuspidal subgroup P = ill of G, let C ( G; P) be the 

subsp:ice of c (G) oonsist.ing of tmse f such that 

( i) f (xu) = f (x) (x E G, u E U) 

and 

(ii) l -+ f (xl) E 0c (L) (x E G' l E L) • 

[Note: C(G;P) is stable under left translations, hence is a left ideal m 

C (G).] 

12: EXAMPLE 

C(G;G) = °C(G). 

13: SUBLEMMA Fix P -- then V f E C(G;P) and V g E C(G) ,/ 
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4. 

1 = 'GT l: f (x) l: g (xu) 
1u 1 xEG uEU 

1 --= l: 'GT l: f (x)g(x) 
uEU iu1 xEG 

= l: <f ,g>G = lul<f,g>G. 
uEU 

14: RAPPEL Let H be a finite d.llnmsional complex Hilbert sp:ice -- then 

a subset M c H is total if Mlin = H, this being the case iff M1- = { 0}. 

[Note: Subs:i;:aces of H are nocessarily closed •••• ] 

Put 

M = U C(G;P). 
p 

15: LEMMA C (G) is sp:mned by the f E M. 

PRCX)F It suffices to show that if for sane g E C(G), we have 

<f ,g>G = 0 
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for all f E C(G;P) and for all cuspidal P, then g = 0. And to this errl, it neerl 

only be established that gp ~ 0 for all cuspidal P (cf. #10) • So fix x E G and 

let <PE 0c(L). Define f E C(G) as follows: 

Then f E C(G;P), ro 

=> 

Therefore gp ~ 0. 

f (y) = 0 if y ~ xP 

f (xlu) = ¢ (l) (l E L, u E U) • 

1 -
= llJT L: gp (y) f (y) 

1u I yEG 

1 
= WT L: gp < Y> f < Y> 

yExP 

1 =WT L: gp(xlu)f (Xlu) 
l,u 

1 
= WT L: L: gp <x.t> <PTr> 

u lEL 

= L: gp (xl) (j){l) • 
lEL 
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16: CONVENTION Cuspidal subgroups Pl'P2 are said to be asoociate if this 

is the case of ~1 ,~2 . 

17: LEMMA If P
1

,P2 are ass::>ciate, then 

18: LEMMA If P
1

,P
2 

are not asoociate, then C(G;P
1
), C(G;P

2
) are orthogonal. 

Let P 1 , ... , Pr be a set of representatives for the asooc iation classes of 

cuspidal subgroups of G. 

19: THEOREM There is an orthogonal decomp::>sition 

r 
C(G) = ~ C(G;P.). 

i=l l 

20: N.B. #17, #18 can be establisherl with:>ut the use of representation 

thoory but its introduction leads to another approach. 

"' 21: LEMMA Let 11 E G -- then x11 is a cusp fonn iff v cuspidal P ~ G, 

G 
m(rr,Inau,e> = 0, 

where e is the trivial representation of U on E = C. I.e. : Iff 

= o. 
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A 

22: LEMMA Let IT E G -- then x IT is a cusp fonn if f V cuspidal P ~ G, 

23: N.B. Let 

L: IT(u) = 0 .. 
uEU 

V(IT)u = {v E V(IT): L IT(u)v = O}. 
uEU 

Then xIT is a cusp fonn iff v cuspidal P ~ G, 

v cm = v (IT) u· 

A, 

24: DEFINITION Let IT E G -- then IT is 53.id to be in the discrete series 

if its character x IT is a cusp form. 

25: NarATION °G is the subset of a consisting of th:>se IT in the discrete 

series. 

Given P = LU and 8 E 0£, one can lift 8 to P and fonn Ina;,
8 

with character 

(cf • § 9 , # 10) • 

A A 

26: THEOREM Let IT E G - 0G -- then there exists a proper cusp.id.al P = LU 

and a 8 E 0£ such that IT occurs as a subrepresentation of Ina; 
18

: 

(cf • § 5, # 5) • 

PR:X)F Proceed by induction on the sanisimple k-rank s of g, there being nothing 

to prove if s = 0, oo assume that s > 0 -- then there exists a proper cuspidal 

P = LU such that V(II) ~ V(IT)U. Cla.im: V(IT)U is P-invariant: V l
0 

E L, V u 0 E U, 



V v E V(IT): L IT(u)v = 0, 
uEU 

L IT(u)IT(l0u0)v 
uEU 

8. 

= IT(l0) ( L IT(u))TI(u0)v 
uEU 

= IT(t0) L TI(uu0)v 
uEU 

= TI(l
0

) E IT (u)v 
uEU 

Consequent! y, P o~ates on the quotient V (IT) N (IT) u· M:>roover, its :te-

striction to U is trivial: v u0 E U, V v E V (IT) , 

E TI(u) (IT(u0)v-v) 
uEU 

= E IT(uu0)v - E IT(u)v 
uEU uEU 

= L IT(u)v - E IT(u)v 
uEU uEU 

= 0 
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=> 

On the other hand, while its restriction to L neerl. not be irrerl.ucible, there is 

in any event an L-mvariant subspace V of v (II} contaming v (IT) u such that tre 

quotient representation 8 of L on 

V(TI)/V(TI)tfV/V(IT) 0 

:::: V(II} /V 

is irrerl.ucible. Pass riow to Ina;,
8 

and note that TI occurs as a subrepresentation 

of rna;,
8 

(see below). Accordingly, if 8 E 0£, then we are done. If, !nwever, 

0,... 
8 ¢. L, then, thanks to the induction lyp:>thesis, there exists a proper cuspidal 

subgroup *P = *L*U of L and a discrete series representation *8 of *L such that 

8 occurs as a subrepresentation of Ini~P,*8 . Form P' = L'U' = *L*UU, view *8 as 

a representation of P' trivial on U' = *UU, and utilize the induction in stages 

rule (cf. §9, #12) 

G 
map,, *8 ~ Ind(';' L 

·-p Ind*P' *8 

G to conclude that IT, which occurs as a subrepresentation of Inap, 8 , must actual! y 

occur as a subrepresentat:ion of In.a;, , *G: 

L G 
8 c Ind*P,*8 => TI c Inap18 

G 
c Tnd'"" dL . 

---p ,In *P, *G 

[Note; 'Ib confinn that 



define an intertwining operator 

10. 

G 
T:V(IT) + EP ,e 

by assigning to each v E V the function 

given by the prescript.ion 

f :G + V(II)/V v 

-1 
f (x) = IT(x )v + V.] 
v 

A 

This result reduces the problem of describing the elanents of G into two parts. 

• Isolate the discrete series (Deligne-Lusztig theory). 

• Explicate the decomposition of In~,e and detennine its irreducibility 

(Howlett-Lehrer theory). 

We shall pass in silence on the first of these i;:oints (for a recent survey, 

consult arXiv:l404.0861) and settle for a surrmary on the second (cf. §15). 

27 : LEMMA The canonical representation of G on C (G; P) is equivalent to 

G 
~ rnap, 8 , 

where e runs through the elements of 0£. 

28: NOI'ATION Given a parab:>lic k-subgroup ~ of g, let 0c(P) be the 

subspace of C(P) consisting of those f which are invariant to the right under u 

and have the property that the function on P/U thereby definerl belongs to 0c(P/U) • 

29: I.EMMA Let El ,E2 be parab:>lic k-subgroups of ~ and let 



11. 

Then 

unless El and E2 have a connon Levi subgroup ~· 

PRCX>F Ignoring constant factors (signified by~), we have 

~LP n P /P nu f2(x) LP nu /u nu fl (xu). 
1 2 1 2 1 2 1 2 

unless *U = {e}, i.e., unless 
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switching roles leads to 

Therefore the relevant inte:rrals vanish unless El and E
2 

have a connon Levi 

subgroup (cf. §13, #20).] 

30: APPLICATION Assume: El and E2 are :mt asoociate -- then 

that g1 and E2 are not asoociate -- then v 81 E 0£1 , v 82 E 

G G 
TI1 = Inap 8 and TI2 = Indp 8 l' 1 2' 2 

are disjoint: 

PROJF In the notation of §8, #4, 

= L: 
sES 

(cf. §10, #2). 
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where 

But arrl. ~2 are rot asrociate, hence ~l and sE2s-l are not associate (cf. §13, 

#24). Therefore 63.ch of the tenns in the sum Z: must vanish (cf. #30). 
sES 

32: NOTATION Given a p:rra.lx>lic k-.subgroup ~of ~ and a Levi subgroup 

~ c ~, pit 

33: N.B. If ~' is amther Levi subgroup of ~, then there is a unique 

u E u such tret 
-1 

= ¥ , hence there is a car:on:ical irorrorpi.ism 

Set 

w = 
L 

I • 

Then 6'3.Ch w E WL can be rept:esentErl by an elenent nw E NG(~) • 

34: LEMMA The arrow 

given by 

is injective. 

V\, + P\G/P 

w+ Pn P 
w 

35: LEMMA WL oi;erates on °c(P). 
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36: REDUCTION PRINCIPLE Let E:irE:2 be p:rralx>lic k-subgroups of ~ and let 

Assume: E:i and ~2 have a corrtrrDn Levi subgroup ~ ..-- then 

PRCX)F In the notation of §8, #4, 

= L: 
SES 

where 

-1 
The only mnzero terms in the sum are those for which E:i and s~2s have a carmon 

Levi subgroup~· (cf. #31). 
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=> 

On the other hand, 

Therefore the double rosets P1 \G/P2 that intervene are th:>se containing an elenent 

of NG q~), s:> 

~ ~ 1 
N:>ting that g = wMN c w~2w is a Levi subgroup of w~2w- , write 

with unicpeness of ex:i;ression -- then 

-1 L n wU2w = {e}, u1 n L = {e} 

and 
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-1 
where the Slm runs over all x E L arrl all u E u1 n wU2w • Since f 1 and w • f 2 

are invar.iant to the right under u1 n wo2w-
1

, the al:nve expression equals 

And 

1u1 n T.NU2w-1 I 

IP2 (w) I 

=------

2: f 1 (x) (w • f 2) (x) 
x 

-1 
1u1 n T.NU2w I 

ILi 
IP2 (w) I 

1u1 n T.NU2w-1 I· IL I 
= = 1. 

IL I· 1u1 n T.NU2w-l I 

37 : SUBLEMMA Let H be a Hilbert Sp-3.Ce and. let x, y E H. Asst.nne: 

<x,x> = <x,y> = <y,y>. 

Then x = y. 

PR(X)F In fact, 

<x - y,x - y> = <x,x> + <y,y> - <x,y> - <y,x> 

= <x,y> + <x,y> - <x,y> - <x,y> 

= <x, y> - <x, y> = <x, y> -- <x, y> = 0. 

38: APPLICATION If 
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then 

[It follows from #3 6 that 

"' 39: NOTATION Given a cuspidal subgroup P = LU of G and a e E 0L, let 

~(e) = {w E ~:w · Xe= xe}. 

40: THEOREM 

[In #3 6, take ~l = ~2 = ~ an:1 rote that 

equals 1 if w • Xe= Xe arrl eq.ial s o if w · Xe ~ Xe. J 

Let p be the set of p:trabol ic k-subgroups of ~- Decom:pJse P .into asrociat.ion 

A A 

classes: P = Jl C. Given C, take a ~ E C and denote by G(C) the subset of G 

oompr iserl of tlD se II which occur as a subrepresentation of 

for rome e E 0£. 

IncP --p,e 
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A 

41: LEMMA G ( C) is in:lepen:lent of the cm ice of ~ E C. 

PROOF The throry does rot cmrge if ~ is replacErl by ~-l (x E G) , s::> if 

El, E:
2 

are ass::>ciate, then ther-e is ro loss of gener-ality in assuming trat E:l and. 

L c Pl 
A 

~2 have a comnon Levi Slbgroup ~' thus Given G E 0L, lift 

Then 

But 

=> 

Therefore 

L x is the ch:l.racter of rm9 
.Pl -+ G 81 --pl 181 

L x is the craracter of rmpG 8 . 
.P -+ G G 

2 2 2' 2 

(cf. #38) • 

42: LEMMA If c
1 

~ c
2

, then 

A A 

G(C1) n G(C2) = ~ (cf. #30) • 
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Acoordi:ng-ly: 

43: THEOREM There is a disjoint de:::nmp:>sition 

A A 

G = 11 G(C). 

c 

44: NOTATION Given E E P, let [El be the. ass::>ciat.ion class to which E 

belo:ng-s. 

A 

45: EXAMPLE Take E = g -- then the elanents of G ( [G]) comprise the. discrete 

series for G, i.e.' G([G]) = 0G. 

A 

46: EXAMPLE Take E = ~ -- then tre elements of G( [B]) comprise the prin-

cip:tl series for G. 

A A 

4 7: REMARK WL operates on °L, hence 0L breaks up :into WL -orbits. Let 

A 

01 ,0
2 

E 0L -- then there are b\o IXJSSibilities. 

• If 01 , 02 are not on the same WL -orbit, then 

are disjoint. 
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§15. HOWLETT-LEHRER THEORY 

In vie;,v of §14, #40, 

And on general grourrls (cf. §5, #11}, rm; 
18 

is irrerlucilile iff 

1: DEFINITION 8 is unrandf ied if IWL (8) I = 1. 

p 
2: THEOREM In:lG, 8 is irreiucilile iff 8 is unramifiai. 

'Ib dis::uss the de:::omp:>Slbility of rm; 
18

, rote trat TI E G occurs as a sub-

. f rrlG iff rep:-esentat10n o I P, 8 

one-to-one A 

3: LEMMA There is a A corresp:mdence between the TI E G such that 

and the irrerlucible representations p of 

and if IT <-> p, then 

the :i;osit.We :inte:Jer on the r:ight being the multiplicity 

G 
m (IT, map, 

8
> 
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4: THEOREM The sanisimple algebra 

is ironorphic to the sanisimple algebra 

The irrerluc.ible oompments of rm;,
8 

are therefore prrameterizerl by the 

A 

elanents of WL (8): If w E WL (8) arrl jf II (w) E G is the irreducible oomtonent of 

G Indp, 8 correspnrling to w, then 

the dimension of the re:r;:resentation SfE.Ce of w. 
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§16. MOVULE LANGUAGE 

Let G be a finite group, r c G a subgroup. VieN C (G) as a left C (G) -nodule 

arrl as a right C ( r) -nodule. 

1: CONSTRUCTION Let 8: I' -+ GL (E) be a re:presentat.ion of I' -- then the 

tens::>r :product 

c (G) ec cnE 

is a left C(G)-nodule or, equivalently, a representation, the representation Ind~,e 

of G irrlucai by 8 • 

2: N. B. The left act.ion is given by 

( E f (x)8) (8 e X) 
xEG x y 

= E 8 ~ f (x)X 
xEG xy 

(XE E) 

arrl from the def .i.nitions, V y E I', 

3: LEMMA Write 

Then as a va::::tor sp:ice 

[r:-bte: The surrm:url 

8 8 e x = 8 e e (y)x x y x (X E E). 

n 
= E9 

k=l 
(8 ® E). 
~ 
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~ E(o e x <-> x> 
xk 

is the transfonn of o e E z E under the action of o : 
e xk 

The following result justifies tffi notation and the tenn.inology. 

4: G 
THEOREM Set TI = Ind r' e -- then 

(cf. §9, #10) . 

PROOF Let x 1 , ... ,Xd be a basis for E and define 8 ij (y) by 

and write ~ = xly -- then 

e (y)X. = L e .. (y)X .• 
J . l] l 

l 

rr(x) (~ ex.) = o ex. 
xk J xxk J 

= 0 0 9 x. 
X,e_ y J 

= o e 8(y)X. 
xl J 

= cS ~ L 8 .. (y) X. 
xl i lJ l 
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= ~ e .. Cy> o ~ x. 
i 1J xl 1 

-1 = E 8 .. (x 0 xxk) o ~ X .• 
i 1J .{.. xl 1 

0 0 0 

Define 8 on G by 8 ( y) = [ 8 i j ( y) ] ( y E D and 8 (x) = 0 d if x ¢ I' ( 0 d the zero 

d-by-d matrix) , thus the block ma.tr ix representing TI (x) is 

Taking the trace 

finishes the proof. 

0 -1 e (x xx ) 
n n 

5: NarATION M:>D(r) is the category of left C(r)-m:xlules and M:>D(G) is 

the category of left C(G)--nodules. 
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[N:>te: All data is over C and finite d.imensional.] 

6: N.B. M:>q:hisns are intertwining operators. 

7: SCHOLIUM The assignment 

G 
c e , E > + rna. r, 8 

defines a functor 

M:>D ( D + MOD (G) • 

8: NOI'ATION Given a representation (n,V) of G, denote its restriction 

G 
to r by Resr • 

, 1T 

9: SCHOLIUM The a SS jgnment 

(n,V) + ResG r, n 

def .ines a functor 

M:>D(G) + .MOD(f). 

Here now are the fundamental fonnalities. 

10: LEMMA 

11: SI..a;AN The restriction functor is a right adjoint for the inductmn 

functor. 

12: LEMMA 



5. 

13: Sux;AN The restrict.ion functor is a left adjo .int for the induct.ion 

functor. 

1'-bving on: 

14: DEFINITION Let 6: r -+ GL (E) be a representation of r -- then 

Invr(E) ={XE E:6(y)X = x V_y Er} 

is the set of r-.invariants per E. 

15: DEFINITION Let 6: r -+ GL (E) be a representation of f -- then 

COinv r (E) = E/I fE 

is the set of coinvariants per E. 

[Note: Ir c C ( r) is the augmentation ideal, thus I fE stands for the set of 

all f.inite sums E e (y. )X. (o E Ir, x
1
. E E). l 

i l l Yi 

Si;:ecialize and assume that G is a group of Lie type (cf. §13, #3). 

16: NOTATION Given a cuspidal subgroup P = W of G, 

InfL,P:JXl.OD{L) -+ ~D(P) 

is the inflation functor. 

[In other ~rds, given a representation (6 ,E) of L, InfL,Pe is the lift of 

e to P, i.e. , E viewerl as a left c {P) -:rrodule with trivial u-action.] 

17: DEFINITION The comp:> site 

IndG,- 0 I f ----p n L,P 
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defines a functor 

~,P:I~D(L) + IDD(G) 

termed Harish-charrlra irrluction. 

18: THEOREM If P 1 = LU1 , P 2 = LU 2 are cuspidal subgroups of G, then the 

functors 

are naturally iS)norphic. 

[J:\bte: Acoordillgly, the left C (G)-nodule is:>rroqil.isn class of ~,P (8 ,E) 

depends only on e (it being irrlependent of the fE.rtlcular cuspidal subgroup P = LU).] 

19: LEMMA 

[J:\bte: For any left C(P)-rrodule M, the set Invu(M) is can:mically a left 

C (L) -nodule. ] 

20: SI..ffiAN The oomp:>site of restriction followa:l by the taking of invar-

iants is a right adjoint for Harish-Chandra induct.ion. 
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21: LEMMA 

G 
::::: 1p (Re8p ,TI' InfL,P (8)) 

[Note: For any left C(P)-n:odule M, the set Cbinvu(M) is caronically a left 

C (L) -nodule. ] 

22: Su:x:;AN Tre comp:>site of restriction followed by the taking of coin-

variants is a left adjoint for Harish--chandra induction. 

23: SUBLEMMA For any left C (P) -:rrodule M, 

Inv U (M) ::::: Co Inv U (M) • 

24: SCHOLIUM The left and right adjoint of Harish-chandra induction are 

naturally i.Eonorphic. 

25: DEFINITION Harish-Chandra restriction *~,P is the left an:1 right 

ad jo .int of Har ish-Crandra induct .ion. 

26: LEMMA 

where 

1 
~ = lUT L: TI (u) • 

uEU 
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27: THEOREM If P
1 

= LU1 , P
2 

= w
2 

are cuspidal subgroups of G, then the 

functors 

are naturally ironorphic • 

*RGL p 
I 1 

*RG 
L,P2 

G 
[l\bte: Accordingly, the left C (L)-nodule class of *R_L,p (rr, V) depends only 

on rr (it being irrlependent of the prrticular cuspidal prrabolic subgroup P = LU) • ] 

APPENDIX 

Let P = LU be a cuspidal 9.lbgroup of G. 

DEFINITION Given ¢ E CL (L) , define (j) E C (P) by the rule 

(j) (lu) = <P (l) • 

IB\1MA (j) is a class function, i.e., 

(j) E CL (P). 

PROOF The claim is ttat V p E P, V Pi_ E P, 

~ -1 ~ 
<P (PP]_ p ) = <P (11_) • 

~rite p = lu, 11.. = t 1 u1 -- then 

~ -1 -1 -1 
= <P (tut1u1t lu l ) 

::: -1 -1 ~1 
= <P (lut1u1t v) (v =tu l E U) 
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= ¢CU1l-1) 

= <P (ll) = ¢ (P_i_) • 

Thus there is an arrow 

CL (L) -+ CL (P) -+ CL (G) , 

namely 

¢-+tj)-+L ~ 
.P -+ G • 

On the other harrl, there is an arrow 

CL (G) -+ CL (L) I 

namely 

[tbte: V l E L, V t 1 E L, 
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LEMMA Let¢ E CL(L), 1jJ E CL(G) -- then 

PROOF 

0 

1 1 ~ -1 = lG"f E lpT E ¢ (yxy )l}J (x) 
xEG 1r I yEG 

0 

- 1 1 ""' -1 -- lG"f E lPT E ¢ (yxy }l}J (x) 
yEG xEG 

- 1 1 ~ -1 - lGT E lPT E ¢ (x) 1jJ (y xy) 
yEG xEG 

- 1 1 ~ -1 - lG"f E lPT E ¢ (p) 1jJ (ypy ) 
yEG. fEP 

1 1 ""' 1 
= lG"f E lPT E cp(lu}l}J(yfuy- ) 

yEG l,u 

- 1 ~ 1 -1 - lG"f t.. lPT E ¢ (l) 1jJ (yluy ) 
yEG l,u 

1 1 = lG"f E lPT E cp(l}l}J(lu) 
yEG l,u 

1 --= TPT E ¢Cl>w<lu) 
l,u 

= ILl!ul E ¢(l)l}J(lu) 
l,u 

- 1 1 - lLf E ¢ (l) 1fiT E W (lu) 
l uEU 
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- 1 - TET ~ ct> <t> 1Pp <l> 
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§1. ORBITAL SUMS 

Let G be a finite group. 

1: DEFINITION Given f E C(G) and y E G, µit 

O(f,y) = L f (x-yx-l), 
xEG 

the orbital sum of f at y. 

2: LEMMA The furction 0 (f) def ine1 by the assignment 

y -+ 0 (f' y) 

is a class function on G, i.e., is an element of CL(G). 

where 

3: LEMMA There is an exµmsion 

O(f,y) = LA tr(II*(f))xrr<Y>, 
IIEG 1 

II*(f) = L f(x)II*(x). 
xEG 

PROOF Since 0 (f) is a class function, V y E G, 

But 

O(f,y) = LA <O(f) 'xrr>Gxrr<Y> 
IIEG 1 1 

(cf. II, §4, #17). 

- 1 L 
- lGT yEG 

- 1 L 
- lGT xEG 

-1-­
L f (xyx ) Xrr (y) 

xEG 1 

-1-­
L f (x-yx ) Xrr (y) 

yEG 1 
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- 1 L: 
~ lGf xEG 

-1 
L: f (y) Xn (x yx:) 

yEG t 

- 1 L: 
- lGf xEG 

L: f (y) Xrr (y) 
yEG l 

= z:: f Cy>xrr<Y> 
yEG i 

= E f (x)xrr{x) 
xEG 1 

= tr (II* (f) ) • 

[N::>te: Recall trat 

Xrr* = Xrr (cf. II, §4, #4) .] 

4: N.B. In terms of the Fourier transform, 

A A 

II*(f) = f(II*) => tr(II*(f)) = tr(f(II*)).] 
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§2. THE LOCAL TRACE FORMULA 

Let G be a finite group. 

1: NOTATION Demte by TIL R the representation of G x G on C(G) given by , 

(cf. II, §1, #14) • 

Define a line:rr bijoction 

T:C(G) + C(G x G/G) 

via the pres::::r iption 

2: N.B. Fmberl G diagonally into G x G -- then V x E G, 

Tf ( (x
1 

,x
2

) (x,x)) 

3 : 'NOTATION Set 

G x G 
LG x G/G = IrrlG,8 ' 

where e is the trivial representation of G on E = C. 

4: LEMMA 
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And 

5: N.B. T is unitary: v f ,g E C (G) , 

[By def in it.ion, 

<Tf ,Tg>G x G 



_ _fil__ L: -
-~ xEG f (x)g(x) 

3. 

1 \' -= lGT xEG f (x)g (x) = <f ,g>G.] 

6: NO'mTION Given an x E G, write C(x) for its conjugacy class arrl G 
x 

for its centralizer (cf. II, §4, #10) • 

7 : EXAMPLE V f E C ( G) and V y E G, 

-1 
O(f,y) = l: f(xyx ) = IG I l: f (x). xEG y xEC(y) 

8: LEMMA Abbre.riate x to x -- then 
TIL,R L,R 

IG I (x = x = x ) x 1 2 

= 

[Vbrk instead with the character of LG x G/G and apply II, .§7, #11.] 

Given fl'f
2 

E C(G), define f E C(G x G) by 
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and let 

Then V ¢ E C(G), 

where 

Therefore nL,R(f) is an inteJral operator cm C(G) (a.k.a. L2
(G) ••• ) with kernel 

9: LEMMA The v1Gl"" 8 (x E G) constitute an orthononnal basis for C (G). x 

10: LEMMA V f = f
1

f
2

, 

tr(TIL,R(f)) = xfu Kf(x,x). 

PRCX>F In fact, 
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= xfu Kf(x,x). 

Enumerate the elanents of CON(G), say 

For ooch i, f .ix a y . E C . (1 $ i $ n) • 
l l 

PROOF Start with the LHS: 

= xfu ~ fl (y) f 2 (x -lyx) 

= ~ F(y) I 

where 

- L -1 F(y) - xEG fl (y)f2(x yx). 

us.ing mw §4, #2 below, we rave 

~ F(y) 

And 

n 1 
= L IG I O(F,y~. 

i=l y i 



= 

PRCOF write 

6. 

b -1 = ~- fl(y} f (xyx } yt:G xEG 2 

= yEGE f1 (y} EA tr(IT*Cf2>>xrr<Y> 
ITEG 1 

= EA tr(IT(fl}}tr(IT*(f2}} 
ITEG 

A A 

= EA tr(f1(II}}tr(f2(II*}}. 
ITEG 

(cf. §1, #3) 
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13: DEFINITION Given f = f 1f 2 , the local trace fonnula is the relation 

A A 

LA tr(fl (IT))tr(f2(IT*)) 
ITEG 

14: EXAMPLE Supp:>se that f
1 

= f
2 

is real valuErl., call it cp -- then 

Therefore 

A 

tr(¢(IT*)) = fu cp(x)x (x) 
x IT* 

= xfu cp (x) XIT (x) 

...., -
= tr(¢ (IT)). 

A A 

LA tr ( cp (IT) ) tr ( cp (IT) ) 
ITEG 

= LA ltr<¢<rr>> 12 
ITEG 

n 1 2 
= L IG I O(cp,yi) • 

i=l y i 

[N:>te: Spocialize arrl take f 1 = f 2 = cSe ..... - then 

A 

tr(cS (IT)) = xIT(e) = aIT e i i 



8. 

ar:rl 

O ( c5 , y.) = 0 (y
1
. ~ e) 

e 1 

while 

Cbnseqiently, 

2 1 2 
L:" arr = 'GT I G I = I G I 

IIEG i 1u1 
(cf. II, §3, #5 and II, §5, #9) .] 

From the definitions, 

" tr(f1 Crr>> = l:G f1 Cx>xrr<x> = IGl<f1,x >G 
XE 1 II* :T 

Therefore 

" " 
l:" tr(f1 {II))tr{f2 (II*)) 

IIEG 

15: N.B. Assume in addit.ion that f 1 and f 2 are class funct.ions. Write 

fl (x) = l:,,_ <f1,xrr>Gxrr<x> rrffi 1 1 

(cf. II , § 4 , # 1 7) . 

"£21X> = L:,,_ <f 2' xrr>Gxrr (x) 
IIEG i i 



9. 

Then 

- -
<f1,f2>G = n~ <f1,xn>G<f2,xn>G 

(first ortrogonal ity relatmns) 

On the other hand, 

=> 

n 
1 

= L: 
IG I 

IG lf1 (y i) IG lf2 (y i) 
i=l y. 

l 

n 
1 = L: 0 (fl ,y i) 0(f2'y i) • 

i=l lG I Y· l 



10. 

The irra::lucible repr-esentations of G x G are the outer tenror products 

A 

TI1 ~ TI2 (Til'TI2 E G) (cf. II, §5, #13). 

M::>rrover, 

o:msider oow the dkect sun docamr:osit.i.on 

Then 

I.e. (cf. #4) : 

I.e. (cf. #12) : 

tr (LG x G/G (f)) 

LA tr(TI(fl))tr(TI*(f2)) 
TIEG 

Therefore, thanks to I, §3, #9, 



11. 

must vanish unless rr1 = II, rr2 = II*, in which case the coefficient is equal to 1. 

16: SCHOLIUM 

IIL R :::: E9..,, II e II* • 
' IIEG -



1. 

§3. THE GLOBAL PRE-TRACE FORMULA 

Let G be a finite group, r c G a SJbgroup. 

1 : NO'm.TION Set 

where 8 is the trivial representation of r on E = C. 

G 
[Note: Accordingly, Xe = lr arrl Er,e = C(G/r) .] 

2: EXAMPLE In the spe:::ial case when r = {e}, LG/r = L, the left trans­

lation representation of G on C(G) (cf. II, §1, #12). 

3: N.B. The p:d.r (G x G,G) figuring in §2 is an instance of the overall 

setup. 

Given f E C (G) , cp E C (G/r) , we rave 

= L: f (y) (LG/ r (y) cp) (x) 
yEG 

-1 
= L: f (y) cp (y x) 

yEG 

-1 
= L: f (xy ) cp {y) 

yEG 

1 ..... 1 
= L: TfT L: f {xy ) <P (yy) 

yEG l.l 1 yEf 



where 

'lb summarize: 

2. 

1 -1 = l: TfT l: f (xy ) <P {yy) 
yEf yEG 

1 -1 
= L: TfT L: f (xyy ) <P (y) 

yEf yEG 

1 -1 
= L <m L f cxyy » <P <Y> 

yEG yEf 

= L: Kf(x,y)<J>(y), 
yEG 

1 -1 
Kf(x,y) = TfT l: f(xyy ). 

11 I yEf 

4 : LEMMA V f E C ( G) , V <P E C (G/r) , V x E G, 

where 

1 -1 
Kf (x,y) = TfT L: f (xyy ) • 

yEf 

Write 

'Ihen for any f E C(G), 

n 
L: f(x) = L: L: f(xky), 

xEG k=l yEf 

thus for any <P E c (G/f) , 

n 
L: <J>(x) = lrl L: <J>(xk). 

xEG k=l 



3. 

5: RAPPEL (cf. II, §9, #2) The Hilbert Spice structure on C(G/r) is 

def inerl by the inner product 

6: NOTATION Define fu:rctbns <\ E C(G/f) by the rule 

7: LEMMA The 

canst it.ute an orth:>ronna.l basis for C (G/ r) .. 

PRCXJF A given cp E C(G/D admits the decomp:>sitIDn 

In addition, 

if k = 1- and. is 0 otherwise. 

8: LEMMA V f E C(G), 

n 
cp = E ¢(xk)ok. 

k=l 



PRCOF In fact, 

4. 

n 
tr (LG/r (f)) = L <LG/r (f) llk' ~> e 

k=l 

n -1 = l: z: f (xky ) ok(y) 
k=l yEG 

n n -1 -1 = l: l: l: f(xky xl )ok(xly) 
k=l l=l yEf 

1 -1 
= TfT l: l: f (xyx ) 

xEG yEr 
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1 -1 = I: l11 I: f (xyx ) 
xEG yEr 

= I: Kf(x,x). 
xEG 

9: EXAl.'1PLE Take r = G -- then V f E C (G), 

1 -1 
tr (LG/G (f)) = I: !GT I: f (xyx ) 

xEG 1u1 yEG 

- 1 r I: f (xyx-1 ) -w xEG yEG 

- l I: I: f (y) 
- lGf xEG ~G 

= I~ I I f (y) = I f (x) • 
~G xEG 

10: EXAMPLE Fix C E CON(G) and x E C -- then 

lclxL <x> = \~\ le n rl (cf. n, §9, lt6). 
G/f 

[Vibrk with f = Xe' thus 

tr (LG/ r (Xe) ) = I: Xe (y) XL (y) 
yEG G/f 

= lclxL (x). 
G/f 

Meanwhile 
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1 -1 
= E TFT E Xc(yyy ) 

yEG yEf 

1 
= ~ TFT E Xc(y) 

= I~! Jc n rl. 

On general grounds, there is a dire::t sum decomp:>sition 

[J:\bte: 

iff the restriction of IT to r contains the trivial representation e of r on E = C 

(cf. II, §9, #9) (but see below (cf. #14)) .] 

11: SCHOLIUM V f E C(G), 

A 

tr(LG/f(f)) = E"' m(IT,LG/r)tr(f (IT)). 
ITEG 

[Note: Expl icata:l, 
A 

tr(f(IT)) = E f(x>xrr<x> = tr(IT(f)) .] 
xEG L 

12: DEFINITION Given f E C(G), the global pre-trace fo:rmula is the relation 

A 

~A m(IT,LG/r)tr(f(IT)) 
IIEG 

1 -1 
= E Kf (x,x) = E TfT E f (xyx ) • 

xEG xEG Jl I yEr 



becomes 

while 

ba:::omes 

I.e.: 

7. 

13: APPLICATION Take r = {e} -- then 

I'\ 

m {TI,LG;r> tr {f {TI)) 
TIEG 

A 

L:A aTitr Cf cm> 
TIEG L 

1 -1 
L: TFT L: f Cxyx > 

xEG yEf 

IG If {e). 

1 A 

f {e) = lGT TI~ dTitr {f {TI)) , 

the s::>-callerl "Plancharel throren" for G. 

A 

14: APPLICATION Fix TIO E G arrl take f = XTIO. 

=> tr{TI{xTI )) = L: xTI Cx>xTICx) 
1
0 xEG 10 1 

= o. 

= jGJ. 

Therefore 
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raiuces to 

On the other hand, 

1 = L TFf L Xrr (y) 
xEG yEf 0 

= /~\ L Xrr (y) 
yEf 

1
0 

So 

=> 

[:tbte: As arove, 8 is the trivial representation of f on E = C.] 

hence 

15: N.B. Take f = {e} -- then 

m(e,n
0

jr) = n_ , 
-.rro 

(cf. II, § 5, #8) . 
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§4. THE GLOBAL TRACE FORMULA 

Let G be a finite group, r c G a subgroup. 

1: NOI'ATION Fbr any y E r, 

G = centraljzer of y in G 
y 

r =centralizer of y in r. 
y 

Given an f E C (G) , we have 

where 

1 -1 
Kf (x,x) = Tfi 2: f (xY.X ) 

11 I yEr 

Ern.:nnerate the elanents of CON (r), 53.Y 

For rech i, fix a y . E C. (1 s i s n) • 
1 1 

2: LEM\1A V f E C(G), 

PROOF Write 

Then V x E G, 

1 I I O(f,y.). ry. 1 
1 

1 -1 
Kf (x,x) = TFf 2: f (xyx } 

yEr 

(cf. §3, #8} • 



Therefore 

Write 

Then 

2. 

n 
1 -1 

= VT . E l: f (X'yx ) 
1=1 yEC. 

1 

n 
- 1 l: f -1 -1 - TfT" l: (xy · ky · Y · kx ) · 

I 1 I i=l k 1, 1 1, 

n 
l: Kf(x,x) = l~I l: l: l: f(xy. ky.y~lkx-1) 

xEG i=l k xEG 1, 1 1, 

G =ilx. kr . 
k 1

' y i 

l: Kf (x,x) 
xEG 

1 
n 
l: [ ] -1 -1 

= TfT" ; ·=l r: ry 1· l: l: f (x . kn . Y . n . x . k) 
1 1 1 ~ kn.Er 1, 1 1 i 1, 

1 Yi 

n 
= l: 

i=l 

[ r: r 1 [r 1 y. y. 
1 1 

Ir! 
-1 

l: f (x . ky .x. k) k 1, 1 1, 

n 
= l: l: f ( y -1 ) x. k .x. k • 

i=l k 1, 1 1, 



Write 

Then 

3. 

=> 

z. r 
1.,m y. 

l 

G = 11 Jl y. oZ • r . T m 1,-t.. l,m Yi 

L: Kf (x,x) 
xEG 

n -1 -1 = L L L f(y. 0 z. y.z. y. 0 ) 
i=l l m 1,-t.. l,m l l,m 1,-t.. 

n -1 
= L: [G :r ] L: f (y. oY·Y· o) 

i=l Yi Yi l l,-t.. 1 l,-t.. 

n Rt 1 = L: L: f (y. oY·Y~ o) 
·-1 l l,-t.. 1: l,-t.. 
l- l 

3: N.B. V y, 

O(f,y) = IG I L: f (xyx-l), 
y XEG/G 

y 

the aun on the right being taken over a set of repr-esentatives for the left oosets 

of G in G. 
y 



4. 

4: EXAMPLE Take r = G - then V f E C(G), 

n 1 
L: I G I 0 (f , y i) 

i=l y i 

n 1 -1 
= L: I G I E f (xy ix ) 

i=l y. xEG 
1 

n 1 -1 
= E lG I IG I E f (y.y .y. ) 

i=l y . y i .EGVG 1 1 1 
1 Yi y. 

1 

n 
= E E f (y) 

i=l yEC. 
1 

= E f (x) 
xEG 

(cf. §3, #9). 

5: EXAMPLE Supi;n se trat f E CL (G) -- then 

1 
E Kf (x,x) = E 

xEG xEG 

-1 L: f (xyx ) 
yEf 

1 = E TfT E f (y) 
xEG yEr 

= I~ I i: f (y) • 
-yEf 

In the other direction, 

n 1 
E Ir I o (f, Yi) 

i=l y i 

n 1 -1 
= E I r I E f (xy ix ) 

i=l y. xEG 
1 
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n f {y .) 
= IGI l: 

1 

lry.1 i=l 
]_ 

Therefore 

1 
n f {y .) 

I: f (y) l: 
]_ 

Tff yEf 
= 

Ir I 
. 

y. 
]_ 

6: DEFINITION G.:hren f E C (G), the global trace fomula is the relation 

A 

I:,,..., m(IT,LG/r)tr(f {IT)) 
ITEG 

n 1 
= z: I r I o (f , Yi> (cf. §3, #12). 

i=l y. 
]_ 

A 

7: EXAMPLE {POISSON SUMMATION) Take G abel :ian arrl iient if y G w .ith the 

ctaracter group of G: IT <-> x, herce 

Consmer row the s.:u:n 

A 

f Cx> = z: f {x)x{x). 
xEG 

Let r = {x E G:x (y) = 1 v y E r} -- then 

X E => m(x,LG/f) = 1 

Therefore matters on the "spa::::tral s.ide" ra:luce to 

(cf • § 3 , # 14 ) • 
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And on the "geometric side", 

Therefore 

n 1 1 
L I I O(f,yi) = TfT L O(f,y) 

i=l r y . I l I YE r 
1 

- 1 E 
- Tff yEf 

-1 
E f (xy.x ) 

xEG 

= I~ I ~r IG If Cy) 

= '~' l: f(y). yEf 

1 A 1 
1r;-T E f ( X) = TfT E f ( y) • 
1u1 xEf~ 11 I "y'Ef 

Each el anent r; in the center Z ( r) of r determines a one-el anent conjugacy 

class {r,;;}. 

8: DEFINITION Tre central oontr iliut:ion to tlE global trace fonrrula is the 

subs.nn 

of 

Acoordingl y, 

1 
E Tfl O(f,r,;;) 

l,;;EZ (r) 11 s I 

n 1 
L: Ir I o Cf' Yi> • 

i=l y i 

1 - 1 '\' E Tfl 0 (f ,r,;;) - 1fr /.., 
l';EZ ( r) I l s I 11 I l';EZ ( r) 

0 (f' l';) 
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-1 _ 1 E L f (x<;:x ) 
- VT <;:EZ (r) xEG 

- 1 L IGlf(<;:) - TFf t;EZ (I') 

_ jGI E f(<;:). 
- TFf <;:EZ(r) 
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§1. UNITARY REPRESENTATIONS 

Let G be a comp:lct group. 

1: NO'm.TION dG is nonraliza:l Haar measure on G: 

2: LEMMA 

and 

3: N.B. The convolution operator 

is given by 

-1 
(f * g) (x) = JG f (xy )g(y)dG(y) 

-1 =JG f(y)g(y x)dG(y). 

4: DEFINITION A unitary re:r;:resentation of G on a Hilbert srace H is a 

horronorphisn 1T:G + UN(H) from G to the unitary group UN (H) of H such that V a E H, 

the ma.p 

x + 1T (x}a 

of G into H is continuous. 



2. 

5: DEFINITION 

• The left translation representatmn of G on L 2 (G) is tre prescript.ion 

-1 L(x)f(y) = f(x y). 

• The right translation representation of G on L 2 (G) is the prescription 

R(x)f(y) = f(yx). 

[Note: Both L and R are unitary. ] 

6: N.B. There is also a unitary representat.ion nL,R of G x G on L 2 (G), 

namely 

7: DEFINITION A unitary representation n of G on a Hilbert sµ:tce H ~ { O} 

is irra::lucible if the only closa:l subsp3.ces of H 'Which are invariant urrler n are 

{O} and H. 

8: THEOREM Let n be a unitary representation of G -- then n is the Hilbert 

sp:1.ce direct sum of finite dfutens.ional irreducfule unitary representations. 

9: APPLICATION Every irra::lucilile unitary representation of G is finite 

dimensional. 

"' 10: NarATION G is the set of unitary equivalence classes of irreducilile 

unitary representations of G. 

"' 
[Note: Generically, TI E G with representation sp:1.ce V(TI) and ~ = dim V(TI) 

is its dimension. ] 
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11: N. B. Let TI be a unitary representation of G -- then there exist 

cardinal numbers nTI (TI E fo such tha.t 

A 

1T = E9 A nTITI. 
TIEG 

1 

12: EXAMPLE Take 1T = L -- then 

A 

L = EB,,., dTITI. 
TIEG 1 

[Note: There is als:> an analog of A, III, §2, #16.J 

13: THEOREM: V x E G (x ~ e} , 3 an L-rr-00.uc ilile unitary representa.tion TI 

such that TI (x} ~ id (Gelfand-Raikov) • 

14: APPLICATION' 

nA Ker TI = {e}. 
TIEG 

A 

15: LEMMA Given TI E G, supp:>se that A E Hom(V(TI} ,V(TI}) has the property 

that V x E G, 

ATI (x) = TI (x) A. 

Then A is a scalar nroltiple of the .identity (Schur) , call it A.A. 
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§2. EXPANSION THEORY 

Let G be a com:t;act group. 

1: DEFINITION Let 1T be a finite dimens.ional unitary representation of G -­

then its character is the function 

given by the prescript .ion 

X :G + C 
1T 

x (x} = tr (TI (x}) (x E G} • 
1T 

2: DEFINITION Tm character of an irre:iucilile unitary representation is 

callErl an irrooucilile craracter. 

A 

3: LEMMA Let IIl'II2 E G and. supp::>se that II1 ~ II2 -- then 

A 

4: LEMMA Let II E G -- then 

5: DEFINITION A continuous complex valued function cp on G is of p::>sitive 

type if for all xl' ••• ,xn E G and. Al' ••. , "-n E C, 

n 
L: 

i,j=l 

- -1 A.A.cp(x. x.} ~ O. 
l. J l. J 

6: N. B. The sum of t'INO functions of rx>sitive type is of p::>sitive type and 

a p::>sitive scalar multiple of a function of :p::>sitive type is of :r;ositive type. 
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7: LEMMA If TI: G + UN ( H) is a unitary representation and if a E H, then 

~(x) = <TI(x)a,a> (x E G) 

is of :i;:ositive type. 

[Note: 

11~ I loo = <a,a>.] 

/\. 

8: EXAMPLE v II E G, XII is of :i;:ositive type. 

[Fix an ortlDnonnal basis v 1 , ••• ,vn in V(II) -- then 

from which the assertion.] 

/\. 2 
9: NOI'ATIOO Given II E G and f E L (G) , put 

II(f) =JG f(x)II(x)dG(x). 

11: NOI'ATIOO Given f E L
2 

(G), define f* E L
2 

(G) by 

-1 -"-
f* (x) = f (x ) (= f (x)). 

2 
12: LEMMA v f E L (G), v vl'v

2 
E V(II), 

i.e., 

II(f)* = II(f*). 



3. 

PRO.JF 

13: THEOREM Let f E L
2

(G) -- then 

2 
JG lf(x) I dG(x) =TI~ ~tr(TI(f)TI(f)*). 

14: THEOREM I.et f E L
2

(G) -- then 

f = LA dn(f * xn>' 
TIEG 1 1 

th . . . 2( ) e ser1es convergmg m L G • 

15: THEOREM Let 

2 2 f E spanC(L (G) * L (G)) c C(G). 

Then 

f(e) = LA iLtr(TI(f)). 
TIEG lI 



f (e) 

4. 

= LA dntrCTICf1 * f 2>> 
TIEG 1 

= LA d_tr(TI(f)). 
TIEG lI 

[Note: This is the so-called "Plancherel theorem" for G (cf. A, III, §3, #13). 

16: N. B. The foregoing may fail if f is only assumed to be continuous 

1 (e.g., take G = S ••• ). 

17: DEFINITION A function f E L2 (G) is said to be an L2 class function if 

for alrrost all x and all y. 

-1 
f (x) = f (yxy ) 
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18: v IT E G, Xrr is an L
2 

class function. 

19: THEOREM SupµJse that f E L
2

(G) is an L2 class function -- then 

f = EA <f ,xrr>xrr' 
ITEG i i 

the series converging in L 2 (G) , and 

A 

20: SCHOLIUM The {xrr:IT E G} constitute an orthononnal basis for the set 

of L 
2 

class functions. 

21: NDrATION Write C(G) fin (L) for the set of G-Einite functions in C(G) 

f.er L: 

f E C(G)fin(L) <=> d.im{L(x)f:x E G}lin<00 • 

22: NarATION Write C(G)fin(R) for the set of G-finite functions in C(G) 

per R: 

f E C(G)fin(R) <=> d.im{R(x)f:x E G}lin<00 • 

23: LEMMA 

24: NarATION Write C (G) fin unambiguously for the G-finite functions per 

either action. 

Recalling §1, #6, nL,R operates on C(G)fin and it turns out that 



6. 

C(G)f. z e"' V(IT*) ® V(IT). 
m ITEG 

Here the identif ica.tion sends an element 

to 

where 

[Note: 

v* ® v E V(IT*) Q V(IT) 

f E C(G)fin' 
v* ® v 

f (x) = v*(IT(x-1)v). 
v* ® v 

L
2

(G) ~ e"' V(IT*) ® V(IT) .] 
ITEG 

25: THEOREM C(G) fill is dense in C(G). 

26: THEOREM C (G) fin is dense in L 
2 

(G). 

27: DEFINITION A function f E C(G) is said to be a oontmuous class 

function if f (x) = f(yxy-
1) for all x,y E G (written f E CL(G)). 

A 

28: EXAMPLE v IT E G, xIT is a oontmuous class function: xIT E CL(G). 

A 

29: THEOREM The Sp:in of the Xrr (IT E G) equals the set of continuous class 

functions in C (G) fin. 

30: 
A 

THEOREM The SP3Jl of the x (II E G) is dense in the set of oontinuous 
IT 

class functions. 
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§3. STRUCTURE THEORY 

Let G be a canp:tct group. 

1: NarATION Go c G is the connected. comp:ment of the identity of G. 

2: LEML-.1A GO is a closed. ronnal sibgroup of G. 

3: LEMMA The quotient G/Go is com:p:tct arrl totally dis::nnnecte:l. 

4: DEFINITION A top::>logical group p:>ssessing' a neighlx>rhc>od of the identity 

which does rot contain a rontriv:ia.l subgroup is sa.id to be a group with no sna.11 

subgroups. 

5: RAPPEL A Lie group ms ro sna.11 subgroups. 

6: THEOREM The followi.rg conditions on a comp:tct group G are equivalent. 

• G is a Lie group. 

• G has ro sna.11 subgroups. 

• G has a faithful finite dfulensiona.l representation. 

7: REMARK Every com:p:tct group is the projective l.irnit of comp:lct Lie groups. 

Let G be a comp:lct Lie group. 

group. 

8: N.B. Every finite group (disc:::rete totx>logy) is a compact Lie group. 

00 

9: EXAMPLE The product lT SU (n) is a comp:lct group but it is not a Lie 
n=l 
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10: EXAMPLE The p-ad.ic integers 

are a comp:tct group but they are not a Lie group. 

11: DEFINITION A torus is a comp:tct Lie group which is ioorrorphic to 

n n n R /Z :::: (R/Z) for oome n ~ O. 

[Note: The nonnegative integer n is called tre rank of tre torus.] 

12: THEOREM Every comp:tct abelian Lie group is irorrorphic to tre product 

of a torus and a f .inite abelian group. 

13: DEFINITION A comp:tct Lie group is to:i;:ologically cyclic if it oontains 

an elenent wrose µ:>wers are dense. 

14: Lfl.1MA Every torus T is toµ:>log.ically cyclic. 

[Note: There are infinitely many tor:clog ically cycl .ic elements in T and their 

totality has full measure in any Haar moosure on T. ] 

15: THEOREM A comp:tct Lie group is toµ:>logically cyclic iff it is is:>-

rroq:h.ic to the product of a torus and a f .inite cyclic group. 

Let G be a compact Lie group, g its Lie algebra. 

16: LEMMA GO is an open normal subgroup of G. 

Therefore the comp:tct quotient G/GO is discrete, hence is a finite group, the 

group of comp:>nents of G. 
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17: NarATION z (G) is the center of G, z (G) O c Z (G) is the connected 

comp:ment of the identity element of Z (G) . 

18: N.B. In general, Z(G) is not connected (consider SU(3)}. 

19: THEOREL'r1 Assume that G is connected -- then z (G} O is a compact abelian 

subgroup of G and its Lie algebra is the center of g, i.e., the ideal 

{X E g: [X, Y] = 0 V Y E g} • 

20: DEFINITIQ..'J 

• A Lie algebra is if it is nonoomnutative and has no :proper non------
trivial ideals. 

• A Lie algebra is semisnnple if it is nonconmutative and has no proper 

n:mtr iv ial conmutative ideals. 

• A Lie algebra is re:luctive if it is the direct sum of an abelian Lie 

algebra and a semisnnple Lie algebra. 

21: N.B. A Lie group is snnple, sanisimple, or reductive if this is the 

case of its Lie algebra. 

22: I.EMMA A semisnnple Lie algebra has a trivial center (it being a 

conmutative ideal} • 

23: LEMMA A sanisirnple Lie algebra can be decomp:>SErl as a finite direct 

sum of s:imple ideals. 

24: DEFINITIOO If G and H are Lie groups and if H is a subgroup of G, then 

H is a Lie subgroup of G if the arrCJIN H -+ G of inclusion is continuous. 
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[Note: If G is a Lie group and if H is a closed subgroup of G, then H is 

a Lie group. ] 

25: N.B. A Lie subgroup of a compact Lie group neron 't be compact nor 

carry the relative toµ:>logy. 

26: THEOREM Let G be a comp:ict Lie group and let H be a semis:imple 

connected Lie subgroup of G -- then as a Slbset of G, H is closed, and as a Lie 

subgroup of G, H carries the relative toI_Dlogy. 

27: NarATION 

• a (g) is the center of g. 

• gss is the ideal in g spanned by [g,g]. 

28: 

29: 

LEMMA n is a semis:imple Lie algebra. 
~SS 

THEOREM I.et G be a compact Lie group -- then 

g = a(g) EB gss' 

thus g is reductive or still, G is reductive. 

30: NarATION G is the analytic subgroup of G corresµ:mding to gss· 
~- SS 

31: NOI1ATION G* is the comnutator subgroup of G, i.e. , the subgroup of G 

generated by the 

-1 -1 
xyx y (x,y E G). 

[Note: G* is necessarily normal.] 
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32: THEOREM Assume that G is connecte::l -- then G* is a compact connecte::l 

Lie subgroup of G with Lie algebra gss' so G* = Gss' h:mce is sanisimple. 

where 

33: THEOREM AsSID.le that G is connected -- then G is the com:nuting product 

34: THEOREM Assume tha.t G is connected -- then 

G ~ (Z(G)O x G )/8, 
SS 

8 ~ Z(G)o n Gss 

0 ~ is anbe::lda:i in Z(G) x G via the arrow z + (z ,z). 
SS 

[:tbte: Sp:llled out, there is an exact sequence 

1 µ 
{l} + Z(G)o n G -> Z(G)o x G -> G + {l}, 

SS SS 

where 

-1 
1 ( z) = ( z , z) , µ { z , x) = zx. ] 

35: N.B. Structurally, z (G) O is a torus and 

is a finite abelian group. 

3 6: SCHOLIUM Assume that G is connected -- then G is se:nis.imple iff z ( G) 

is finite. 

[Note: Here is a.mther way to µit it: G is senis.imple iff G == G or still, 
SS 
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lif G = G*. 'Ib see that connectedness is essential, consider the 8 element 

t . {+l +. +. +k} th 't t +-. • {+l} ] qua ernmn group _ , _1, -J, _ -- en is corm:ru. al..or group is _ . 

37: EXAMPLE The center of G/Z (G) is trivial, s::> G/Z (G) (which is connected) 

is semis.:irnple. 

There are simple ideals h. c g such that 
l SS 

with [h . , h . ] = 0 for i ~ j and such that the span of [h . , h . ] = h .• 
l J l l l 

Put H . = exp h .• 
l l 

38: LEMMA H. is a canp:ict connected nonnal Lie subgroup of G and its 
l SS 

Lie algebra is h. (hence H. is simple). 
l l 

39: LEMMA A proper compact nonnal Lie sul::x.rroup of H . is necessarily dis-
1 

crete, finite, and central. 

40: LEMMA There is a decanp:>sition 

where H. and H. corm:ru.te (i ~ j). 
l J 

41: N.B. The differential of the arrow 

defined by the rule 

H1x • • • x H + G r SS 
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is the identity map, thus its kernel 6. is discrete and nonnal, thus finite and 

central as well, oo 

APPENDIX 

I.et G be a comp:ict connecterl Lie group. 

DEFINITION G is tall if for each r:ositive integer n, there are but finitely 
,..., 

many elanents of G of degree n. 

THEOREM G is senis.imple iff G is tall. 

REMARK If G is oot sanisfutple, then G p:>ssesses infinitely many nonirorroq:h.ic 

irreducible representations of degree 1. 
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§4. MAXI MAL TORI 

I.et G be a comp:i.ct Lie group, g its Lie algebra. 

1: LEMMA Every oonnecterl abel .ian subgroup A c G is conta inerl in a max .fual 

oonnecterl abel ian subgroup T c G. 

2: N.B. T is COinplCt. 

[In fact, T is connected and abel.ian.] 

3: DEFINITION A max.irnal torus T c G is a max.irnal oonnecterl abelian sub-

group of G. 

[Note: T is a torus. • . • ] 

4: THEOREM Assume that G is oonnecterl and let T
1 

c G, T
2 

c G be max.irral 

-1 
tori -- then :i x E G such trat xT1x = T2 • 

then 

5: THEOREM Assume that G is oonnected and let T c G be a maximal torus --

-1 
G = U xTx • 

XEG 

6: APPLICATION The exµ:mential map exp:g -+ G is s.rrjective. 

[Every element of G belongs to a max.irnal torus and the exµmential map of a 

torus is surjective.] 

7: LEMMA Assume that G is oonnecterl and let T c G be a maximal torus --

then the centralizer of T m G is T itself. 
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8: APPLICATION The center of G is containa:l in T, i.e., Z(G) c T. 

[Note: fibre is true, viz. 

Z(G) = n, 
T 

the intersect.ion being taken over all max:irna.l tori in G.] 

9 : LEMMA Assume tha. t G is connected and let T c G be a max .irna.l torus --

then T is a max .irna.l abel ian subgroup. 

10: REMARK A max.imal abelmn subgroup nero. mt be a max.llnal torus. 

[In SO (3), there is a max:irna.l abel.ian subgroup which is ioorrorphic to (Z/2Z) 2, 

hence is not a max .llnal torus. ] 

11: NOTATION Given a torus T c G, let N(T) be its nonna.lizer in G. 

12: LEMMA The quotient N(T)/T is finite iff T is a max.imal torus. 

Let G be a compict connected Lie group, T c G a maximal torus. 

13: DEFINITION The Weyl group of T in G is the quotient 

W = N(T)/T. 

14: N.B. Different croices of T give rise to isorrorphic Weyl groups. 

Fix a max.imal torus T c G -- then N (T) operates on T by conjugation: 

N(T) x T + T 

-1 
(n, t) -+ nTn • 
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S.ince T operates trivially on itself, there is an :induce:i operation of the Weyl 

group: 

W x T -+ T. 

[Note: The act.ion of W is on the left, thus the orbit sp:i.ce is derote:i by 

W\T.] 

15: LEMMA The canonical lononorphis:n W-+ Aut T is .injective. 

16: LEMMA TM:> elenents of T are conjugate in G iff they lie on the same 

orbit under the act mn of w. 

17: RAPPEL Let G be a comp:i.ct group and let X be a Hausiorff to:i;olog .ical 

Sf.8.Ce on which G operates to the left -- then the action arrow 

G x X -+ X 

is a closa:i map. Equip the orbit sp:i.ce G\X with the quotient toi:ology and let 

n:X -+ G\X be the project.ion. Then: 

• G\X is a Hausiorff sp:i.ce. 

• X is comp:i.ct j£f G \X is comp:i.ct. 

• n:X -+ G\X is op;:m, closa:l, and proper. 

18: EXAMPLE W\T is a oomp:i.ct Hausiorff sp:i.ce. 

19: NOTATION CON (G) is the set of conjugacy classes of G. 

GEnmetrically, CON(G) is the orbit Sf.8.ce under the action of G on itself via 

inner autonorphis:ns: 

G x G -+ G 

-1 
(x, y) -+ xyx • 
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It carries the quotient toi:ology per the projection G -+ a:>N(G) under which it is a 

comt;act Hausdorff st;ace. 

20: RAPPEL A one-to-one continuous map from a oomt;act Hausdorff space x 

onto a Haus::Jorff st;ace Y is a homeonorphisn. 

21: THEOREM The ar:row 

W\T -+ CQ\J (G) 

which sends the W-orbit wt of t E T to the conjugacy class of t E T in G is a 

(well def inoo) homoon:ori;ilisn. 

[The map is injective (cf. #16), continuous (see below), and surjective 

(cf. #5) , oo #20 is applicable.] 

[Note: 'lb check the continuity of the arrow 

W\T -+ a:>N(G), 

bear in mind that W\ T has the quotient to:p:>logy, thus it suffices to check the 

continuity of the comp::>sition 

T-+ W\T-+ (J)N(G). 

But this map is just the restriction to T of the arrow 

G-+ CON(G) .] 

22: NarATION 

• Given f E C (T) and w E W, w • f is the function in C (T) defined by the 

rule 

-1 
(w • f) (t) = f (n tn) (w = nT). 

• Given f E C(G) and x E G, x • f is the function in C(G) defina:l by the 

rule 

-1 
(x • f) (y) = f (x yx). 



5. 

23 : N. B. These rules def me operations 

with asSJc iaterl invariants 

W x C(T) + C(T) 

G x C(G) + C(G) 

C(W\T) = C(T) W 

CL(G) = C(G)G. 

[Note: CL (G) is the subsp:ice of C (G) oomprised of the continuous class 

funct.ions (cf. §2, #27) or still, the SfE.Ce C (CON (G)).] 

24: LEMMA The arrow 

£+£IT 

of restriction defines an is:morphisn 

CL(G) + C(T)W. 
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§5. REGULARITY 

Let G be a connocta:l Lie group with Lie algebra g. Consider the p::>lynomial 

n . 
1 det ((t + 1) - Ad (x)) = l: D. (x) t (x E G) , 

. 0 1 1= 

where t is an irrleterminate ar.rl n = d.im G. The Di are real ara.lytic functions 

on G and Dn = 1. Let l be the sna.llest p::>sitive int.Eqer ruch that DR.. ;t! O -- then 

l is called tm rank of G arrl. an eJ..anent x E G is said to be singular or re;rular 

accord in:] to whether D l (x) = 0 or rot. 

1: NOTATION Gra;J is the set of rEXJUlar elanents in G. 

2: LEMMA cf€9 is an open, dense subset of G while its complement, the 

set of singular elanents, is a set of Haar mearure zero (right or left). 

3: N.B. cfa'.J is irmer autonorphisn invariant and stable under multi-

plication by eJ..anents from the center of G. 

From this p::> int forward, assume trat G is a compact connocte:l Lie group. 

4: LEMMA The set of sirgular eJ..anents in G is a finite union of subrna.n-

ifolds of G, each of d.imension ~ d.im G - 3. 

[Note: Therefore efeg is I;E.th connocte:l. ] 

5: RAPPEL The fundamental group of a connecte:l Lie group is abeJ..ian. 

Fix a In3X.llral torus T. 
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6: LEMMA The quotient G/T. is s.lmpl y connected. 

7: LEMMA The irrluced. map n
1 

(T) -+ n
1 

(G) is surjective. 

PROOF Consider the exact isequence 

arisinJ from the fibrat.ion T -+ G -+ G/T. 

8: THEOREM n
1 

(G) is a finitely generated abelian group. 

[Note: If G is sanis:imple, then n
1 

(G) is f .inite, thus its universal covering 

group a is com:p3.ct.] 

9: LEMMA An elanent x E G is re;JUlar iff x lies .in a tmique max.imal torus. 

Put 

10: THEOREM 

11: THEOREM The map 

that sends 

(xT,t) to xtx-1 

is a surjective, lwl-to-one local dj£faJITOrphis:n. 

['Ib verify the "IWJ-to-one" cla.lm, observe first that v w E W (w = nT), 
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-1 = xtx = K(xT,t), 

hence 

In the opi;:osite diroction, supp:>se that 

-1 -1 ...Ie"1 xtx = ysy ( t, s E ·1· ) • 

Then there is aw E W such that 

s = ntn-l (w = nT) (cf. §4, #16) 

from which 

-1 -1 -1 xtx = yntn y , 

-1 ro x yn E Gt, the centralizer of t in G. But 

t E re"1 => GO = T 
t 

which .llnplies that conjugation by x-1yn preserves T (G~ be:ing the identity 

oornp:>nent of Gt) , i.e. , 

-1 n' :: x yn EN 

=> 

(yT,s) -1 -1 -1 
= (x(x yn)n T, ntn ) 
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[Note: G~ is a comp:ict connected Lie group arrl T c G~ is a maximal torus. 

~ 0 zTz ~ T (cf. §4, #5 (applied to Gt)). 

-1 -1 
t = ztz E zTz , 

contradicting the r0:Jlllar ity of t (cf. #9) • ] 

But then 

Let g be the Lie algebra of G, t the Lie algebra of T. Since G is comp:ict, 

there is a p:>sitive definite symnetric bilinear fonn on g which is invariant under 

the adjoint representation: 

M:G + Aut g. 

Denote by g/t the orthogonal complanent of t in g -- then g/t is stable under Ad. T, 

which gives rise to an induced action 

AdG/T:T + Aut g/t. 

Denoting by IG/T the identity map g/t + g/t, one may then attach to each t E T the 

enda:rorphisn 

-1 
AdG/T ( t ) - IG/T 

of g/t. 

12: LEMMA The detenninant of 

-1 
MG/T(t ) - IG/T 

is p:>sitive on the subset of T comprised of the top:>logically cyclic elements. 

13: INTEGRATION FORMUI.A For any continuous function f E C(G), 
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1 
1

- -1 -1 I = lWT f T _<let (AdG/T (t ) - IG/T) f G f (xtx ) dG (x) d.r (t) • 

[tbte: dG (x) is mrnalized Haar measure on G and d.r (t) is nonnalizerl Haar 

measure on T. ] 

14: SCHOLIUM For any continuous class functmn f E CL(G), 

1 -1 
= lWT f T det (AdG/T (t ) - IG/T) f (t) ~ (t) • 

APPENDIX 

Cons:ider the i;:olynomial 

n . 
det (t - ad (X)) = L: d . (X) t 1 (X E g) , 

i=O 
1 

where t is an indeterminate and n = d.im g. The di are p:>lynomial functions on g 

and dn = 1. Let l be the s:nallest i;:ositive integer such tha.t dl ~ O -- then l is 

calle:i the rank of g arrl an el.anent X E g is sa.id to be singular or regular accordlirg 

to whether d l (X) = 0 or mt. 

N. B. The rank of g equals the rank of G, ooth being equal to the dimension 

of :I;. 

NarATION greg is tte set of regular elanents in g. 

LEMMA greg is an op:m, dense subset of g. 
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NOI'ATION ~ = Int g is the adjomt group of g. 

[Note: Recall that the arrow 

.Ad:G-+ ~ 

is srrjective with kernel z (G) , ro 

Put 

THEOREM 

G/Z(G) - ~.] 

gre:J = u x(tre:J). 
xEG 
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§6. WEIGHTS ANV ROOTS 

Let G be a com:f:a.ct conne::::te:l sanisfulple Lie group, T c G a max.imal torus. 

Denote thell- respa:!tive Lie algebras by g,t and let gc,tc stand for their complex.­

if icat :ions. 

Supp:>se trat (7r, V) is a representation of G -- then V can be egµipperl with 

a G-invarla.nt inner product, tlus rendering ma.tters unitary. 

1: LEMMA dn is skew-adjoint on g {hen:::e self-adjoint on ;.:r g) • 

[Given XE g, apply :tlt=O to 

to get 

2: N.B. V X E g, 

n{exp X) = edn{X). 

3: LEMMA V is s.inultaneously dla.gonalizable under the act.ion of tc. 

[This is be::::ause 

{dn{H):H Et} 
c 

is a corrmuting family of no:r:nal opeLators.] 

Consequently, there is a finite set <P {V) c t~ - {O}, the elanents of which 

befug the weights of V, such thctt 

V =VO 01 VA, 
A.E<P {V) 
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where 

0 v = {v E V:dTI(H)v = O} (H E tc) 

and 

0 = {v E V:dTI(H)v = A(H)v} (HE tc). 

4 : LEMMA Fix a A E CI> (V) -- then A It is :r;urel y :i.n:ag .inary and A I ;.:y- t is 

p.rrel y ra:il • 

5: N.B. Given t E T, ch:ose H E t such that t = exp H -- then v v E 0' 

b th . hi -l hed to 6: RAPPEL Denote y Ix e llUler autonorp sn y + xyx atta.c 

x E G -- then the adjoint representation of G is the horron:orphisn Ad:G + Aut g 

defined. by the rule 

Ad(x) = (dI ) xe 

and the adjoint representation of g is the lnrron:orphisn ad:g + Errl g definerl by 

the rule 

7: N.B. V X,Y E g, 

ad(X)Y = [X,Y]. 

• For e:ich x E G, extend tre doma. in of Ad (x) from g to gc by complex 

1 ine:irity. 

• For e:ich X E g, extend the domain of ad (X) from g to gc by complex 

line:irity. 
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8: LEMMA (Ad,g ) is a representation of G with differential (ad,g ) • 
- c c 

Take now V = g , let 1T =Ad, and abbreviate (g )a toga (a E <P(gc)) -- then 
c c 

go = :l! and there is a we.ight sp3.Ce da::om:rnsition c 

9: TERMINOI.£.x;Y The elanents a E <P (gc) are callerl. the roots of the :p:lir 

10: N.B. 

11: LEMMA V a E <P (gc) , V A. E <I:(V) U { 0}, 

= (d1T(Xa.)d1T(H) + d1T([H,Xa.])vA. 

= (d1T (Xa.)d1T (H) + a (H)d1T (Xa.) )VA 

=> 
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[N::>te: Take A. = 0 to see that 

a 0 .. .iJ. dn (g )V c v • 

12: APPLICATION V a, S E <P (gc) U {O}, 

13: LEMMA Let < , > be an Ad G .in.variant inner product on g -- then for c 

all a,S E <I>(gc) U {O}, 

are ± a. 

14: LEMMA V a E <P (g ) , d:lln ga = 1 and the only multiples of a .in <P (g ) c c 

-15: NorATION a: g ~ g is the map that sends z = x + r-r Y to z = c c 

X - 1-1 Y (X, Y E g). 

by 

16: LEMMA a is an R-linear .involution which preserves the bracket, i.e., 

17: N.B. v a E <I>(gc)' 

a -a crg = g • 

18: RAPPEL The Killing fonn of g is the bilinear fonn B:g x g ~ C given c c c 
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19 : PROPERrIES 

20: N.B. The pre~ript.ion 

is an M G .invariant irmer product on g • c 

Every a E <I> (g ) is determ.inErl by its restr ict:ion to either t or r-I t, s::> c 

a can be viewerl as an elanent of (H t) * (p.Jrely rml) or of t* (p.J.rely :irna.ginary). 

21: CONSTRUCTION B irrluces an is::morphis:n between r-r t arrl ( r-r t) * as 

follows: Given A. E (;.:r t) *, def .ine HA E r-I t by the relat.1on 

(H E r-I t). 

[N:>te: B is negat :hre definite on t x t, hence B is a rml inner product on 

the rml vector Sp:l.Ce r-l t arrl for A.l'A.2 E (;.:r t) *, one writes 

with a. 

22: DEFINITION The vector H E r-I t is call Erl. the root vector ass::>ciaterl. a 

23: LEMMA The roots sp3Il ( r-I t) * and the root vectors sµm r-I t. 
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24: LEMMA Let X E ga, X E g -a -- then 
a -a 

PROOF First of all, 

[X ,X ] = B(X ,X )H . a -a a -a a 

a -a a-a 0 [g ,g ] c g = g = t 
c 

[X ,X ] E t . a -a c 

(cf. #12) , 

Proceerling, V H E t c, 

B ( [X ,X ] ,H) a -a 

= - B ( [X , X ] , H) 
-a a 

= - B(ad(X )X ,H) -a a 

= B(X ,ad(X )H) -a -a 

= B (X , [X , H]) a -a 

= - B (X , [H, X ]) a -a 

= - B(X , -a(H)X ) a -a 

= a(H)B(X ,X ) a -a 

= B(H,H )B(X ,X ) 
a a -a 

= B(H ,H)B(X ,X ) a a -a 

= B(B(X ,X )H ,H) 
a -a a 

[X ,X J = B(X ,X )H • 
a -a a -a a 
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25: NGrATION Put 

H 
a 

ha= 2 B(H ,H ) • 
a a 

Then a(h ) = 2. 
a 

26: N.B. V A. E (r-1 t) *, 

Ha 
= A.( 2 B(a,a) 

A.(H ) 
= 2 a 

B(a,a) 

B (H ,H,) 
= 2 a /\. 

B(a,a) 

= 2 B (A.,a) 
B (a,a) 

and ana.logou sly, V H E r-r l!, 

B (H,h ) 
a 

a(H) = 2 B(h h ) • 
a' a 

27: NORMALIZATION Scale the data and ch::x:>Se e E ga, f E g -a such tha. t 
a a 

[e ,f ] = h , a a a 
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hence 

[h ,e ] = 2e 
a a a 

[h ,f ] = -2f • 
a a a 

Consequently, 

where 

h a 

where 

1 

<-> h = 

0 

sp:tnc{h ,e ,f} ~ s1(2,C), a a a 

0 0 

' e <-> e= a 
-1 0 

28: N.B. Under this corresp:mience, 

1 

' 
0 

SU (2) ~ S:t;anR{ B hrv, e - f , ;.::r (e + f ) } ...,.. a a a a 

;.::r h <->r-1 h = a 

0 1 

- r-r 0 

0 

f <->f = 
'i!X, 

e - f <-> e - f = a a , r-l{e + f ) <-> r-l{e + f) = 
a a 

-1 0 

0 0 

1 0 

0 r-r 

r-r 0 

29: LEMMA The analytic subgroup S of G with Lie algebra s is oomp:tct a a 

and is:morphic to SU(2) or SU(2)/Z2• 
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3 0: LEMMA Let (TT, V) be a unitary representation of G -- then V A. E <i> (V) , 

A(h) E Z. 
a 

PRCX>F In SU (2) , e 2TTH h = I. This s:t.id, let ¢ : SU (2) -+ G be the arrow 
a 

rrelizing the procaJ.ing setup and consider- TT 0 ¢ : 
a 

I = TT(¢ (e2TTH h)) 
a 

2TTdcp ( H h) 
= TT (e a ) 

2TTr-l h 
a = TT (e ) 

2TTH dTT (h ) 
= e a • 

On the other- hand, V v E vA, 
2TTH d TT (h ) 

v = e av 

Therefore A (h ) E Z. 
a 

2TTHA. (h ) 
= e av (cf. #5). 
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§7. LATTICES 

Let V be a finite d.imensmnal vector sp:i.ce over R. 

1: DEFINITION A lattice in V is an additive subgroup L c V such that 

• L is closei; 

• L is di~rete; 

• L sµms v. 

2: EXAMPLE Zn is a lattice in Rn. 

3: DEFINITIQ.~ A basis for a lattice L c V is a set { ~, ..• , en} c L 

(n = d.im V) such that 

n 
L = { l: 

i=l 
k.e.:k. E Z}. 

l. l. l. 

4: LEMMA Every lattice has a basis. 

5: DEFINITION If L,K are lattices in V, then L is a sublattice of K if L 

is a subset of K. 

6: LEMMA If L is a sublattice of K, then K/L is a finite group G. i'-brrover, 

there is a one-to-one corresi;x:mdence between the subgroups H c G and the lattices 

L c M c K, viz. 

-1 
'TT (M) = H and. M = n (H) , 

where n:K + K/L is the projection. 

7: NaI'ATION Given a lattice L c V, let 

L* = {v* E V*;v*(x) E z v x EL}. 
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8: LEMMA L* is a lattice in V*, the dual of L. 

Let {e
1

, ... ,en} be a basis for a lattice L c V. Define {f1 , .•. ,fn} by 

f. (e.) = cS ••• 
J l l] 

9: LEMMA {f1 , .•. ,fn} is a basis for L*. 

10: APPLICATION 

L** ~ L. 

[In fact, the cond it:inn 

f.(e.) = o .. 
J l l] 

is synmetr ic in f and e.] 

11: LEMMA SuPfX)se tmt L is a sublattice of K -- then K* c L* and 

~ 
L*/K* ~ K/L. 

PROOF The first p:>int is obv:inus. As for the second, def.ine a harorrorphism 

p:L* -+~by stiµilat.ing trat 

p (l*) (x + L) = exp(2Til-T l* (x)) • 

Then the kernel of p is K*, oo p induces an inject:inn L*/K* -+ ~' thus 

IL*/K*I 
~ ::; I K/L I = I K/L 1. 

But then by duality, 

IL*/K* I ~ IK**/L** I = IK/L I· 

Let G be a cornp::tct connected sanis.imple Lie group, T c G a maximal torus. 
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12: CONVENTION Identify (r-f t) ** with r-f t and let L be a lattice in 

(r-f t) * -- then its dual is the lattice L* c r-f t specified via the prescription 

{HE !=I t:A(H) E Z V A E L}. 

13: DEFilJITION The root lattice is tre lattice Lrt in ( r-r t) * generated 

by the a E ~(gc). 

14: DEFilJITION The weight lattice is the lattice Lwt in ( r-I t) * given by 

{A E (r-1 i!)*:A(h) E Z Va E ~(g )}. a c 

15: LEMMA Lrt is a sublattice of Lwt. 

Given a character x:T + S1, there is a commutative diagram 

dx 
:> H R 

l exp 

:> s1 T 
x 

/\, 

and the arrON x + dx implements an identification of T with tre lattice 

/\, -1 
dT = {A E (!=l t)*:Alexp (e) c 2nr-I Z}. 

Here 

which we shall view as an element of 

HamR (r-f t,R) 
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by writing 

d:A ( H H) = H d:A (H) (H E l!) • 

[Note: ;:T R is the Lie algebra of S1 , the exp::mential map exp: H R -+ s1 

being the usual exi;onential function H 8 -+ e;=r 8.] 

A A 

16: LEMMA Lrt is a sublattice of dT and dT is a sublattice of Lwt. 

17: THEOREM 

A 

e Z(G) ~ dT/Lrt 
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§8. WEYL CHAMBERS ANV WEYL GROUPS 

Let G be a cxmpact connected sanis.imple Lie group, T c G a maxmal torus, 

<I>(g) the roots of the pair (g ,t ). c c c 

1: DEFINITION A subset \}' of <I> (g ) is a s:imple systan of roots if it is c 

a vector space basis for cr-r t) * and has the property that every root can be 

written as a linear comb.mation 

L: n a, 
aE\}' a 

where the n are integers all of the same sign. a 

2: DEFINITION" The elements in a simple systan of roots are said to be 

simple. 

3: N.B. Simple systems exist (cf. infra). 

4: CONSTRUCTION I.et \}' be a simple system of roots. 

• The µ:>sitive ·roots per \}' is the set 

+ <I> = {S E <I>(g ) :S = L: n a 
c aE\}' a 

• The negative roots per \}' is the set 

\}'- = {B E <I>(g ) :B = L n a 
c aE\}' a 

Accordingly, 

(n E z<OD. a -
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5: DEFINrrION 

• The connec:ted. components of 

(;.:T t)* - U a~ 
aE<P(gc) 

are called the Weyl chambers of (;.:T t) *. 

• The oonnected comµ:ments of 

are callErl the Weyl chambers of r-r t. 

6: DEFINITION 

• If C c (A" t) * is a Weyl chamber, then a E <P (gc) is said to be 

C-p:>sitive if B(C,a) > 0 and C-ne:Jative if B(C,a) < 0. 

• If C c A" t is a Weyl chamber, then a E <P (gc) is said to be C-p:>sitive 

if B (C,h ) > 0 an::1 C-negative if B (C,h ) < 0. 
a a 

7: DEFINITION 

• If C c ( .;.:r t) * is a Weyl chamber and if a is C-p:>sitive, then a is 

decomp:>sable w.r.t. C if there exist S,y E <P(g ) such that a= B + y (otherwise, c 

a is in:iecomtnsable w.r.t. C). 

• If C c A" t is a Weyl chamber and if a is C-µJsitive, then a is decom-

p:>sable w.r.t. C j£ there exist [3,y E <P(gc) such that a= B + y (otherwise, a is 

indecomi;:osable w.r.t. C). 

8: NaI'ATION 

e Given a Weyl chamber Cc (Ht)*, let 'l'(C) be the subset of <P(g) c 
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comprised of those a which are C-p::>sitive and indecomposable. 

• Given a Weyl chamber C c r-r l!, let '¥ (C) be the subset of <I> (gc) com­

prised of tlDse a which are C-p:>sitive and indecomr:osable. 

9: LEMIYlA In either case, '¥(C) is a s.imple systan of roots. 

10: NOI'ATION 

• Given a s:imple systan of roots '¥, let 

C('¥) = {A E (H l!)*:B(A,a) > 0 Va E '¥}. 

• Given a s:imple systan of roots '¥, let 

C('¥) = {H E l=f" l!:B(H,h ) > 0 V a E '¥}. 
a 

11: LEMMA In either case, C('¥) is a Weyl chamber. 

12: THEOREM 

• There is a one-to-one corresp:>ndence between the s.imple systans of roots 

and the Weyl chambers of ( r-r l!) * : 

'¥ -+ C('¥) 

C -+ '¥ (C). 

• There is a one-to-one corresµ:mdence between the sbnple systems of roots 

and the weyl chambers of r-r l!: 

'¥ -+ c ('¥) 

C -+ '¥ (C) • 



4. 

The Weyl group W = N (T) /T operates via .Ad on r-r t and ( ;.:r t) *. 

13: LEMMA The action of Won r-l t and (r-f t) * is faithful, i.e., w E W 

acts trivially iff w is the identity element. 

PRCX>F SupfOse that Ad.(n) (n E N) is the identity on t and consider the 

conmutative diagram 

Ad(n) 
t-----> t 

exp 1 1 exp 

T-----> T 
I 

n 

Then 

exp t = T 

and V X E t, 

-1 I (exp X) = n(exp X)n = exp(.Ad(n)X) = exp X. 
n 

Therefore n centralizes T, hence n E T (cf. §4, #7), i.e., n represents the identity 

element of w. 

by 

14: LEMMA W preserves <I>(g ) and wh = h (w E W). 
C Ct Wet 

15: NarATION 

• Given a E <I>(g ) , define c 

r (A) = A - 2 B(A,a) a= A - A(h )a. 
a B(a,a) a 
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• Given a E <I> (g ) , define c 

[Note: 

B (H,h ) 
a 

rh (H) = h - 2 B (h ,h ) ha = H - a (H) ha. 
a a a 

Geometrically, r is the reflect.um of ( r-r l!) * across the hyi;:erplane a 

perpendicular to a and rh is the reflection of r-r l! across the hyi;:erplane per­
a 

p;mdicular to h • ] 
a 

16: NDrATION Depending on the context, W(<I>(g ) ) is the group generaterl by 
c 

{ra:a E <I>(gc)} or {rh :a E <I>(gc)}. 
a 

17: N.B. W(<I>(g )) operates on l!* and l! (extension by complex linearity). c 

18: LEMMA Va E <I>(g ), 3 n E N(T) such that the action of n on (r-1 l!)* c a a 

is given by r and the action of n on r-r l! is given by rh • a a 

19: THEOREM 

• Per ( r-r l!) * , W ~ W (<I> ( g )) • c 

[Note: It follows from #18 that in either case, 

so the crux is the reversal of this.] 

a 
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20: LEMMA W operates s.llnply transitively on the set of Weyl chambers 

in er-I t) * or r-r t. 
[Note: In other words, there is exact! y one element of the Weyl group mapping 

a given Weyl chamber onto another one.] 

21: N.B. It is a corollary that IWI is the cardinality of the set of 

weyl chambers. 

22: EXAMPLE Given a Weyl chamber C (be it in ( r-T t) * or r-r t) , there 

. . 1 ? wh'ch . . h ? ( ) exists a uruque e anent w E W i maps C to its negative -C, ence w 1¥ c = -'¥ (C) • 

[Note: In general, -e ¢ W. ] 

2 3 : THEOREM: I.et 

C c (Ht)* or Cc /=I"" t 

be a Weyl chamber -- then its closure C is a fundamental danain for the action of 

W, i.e. , c meets each W orbit exactly once. 

Fix a weyl chamber Cc (/=I"" t)* and thereby detennine the simple system 'f(C), 

+ hence <P • 

24: NarATION W(C) is the subgroup of W(<P (g ) ) generated by the c -

25: LEMMA 

W(C) = W(<P(g )). 
c 

26: NarATION Given w E W ( <P (g ) ) , let l (w) be the smallest k such that c 
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w can be factorai as a product r ••• r , where the a. E '¥ (C) (set l (w) = 0 if 
a1 ~ 1 

w = e). 

[Note: l (w) is referrai to as the length of w.] 

27 : LElY1MA l (w) is the number of a E <P + such th3.t wa E <P • 

28 : APPLICA.TION If w<P + = <P +, then w = e. 

29: N.B. The assignment 

w + det(w) = (-l)l(w) E {± l} 

is a character of W. 

30: LEMMA If A. E Lwt' then V w E W, A. - wA. E Lrt• 

PROOF This is obvious if w = r for some a E '¥ (C) • 
a 

(k = l (w) ) arrl one can write 

In general, 

I.et a
1

, ... , al be an enumeration of the elements of '¥ ( C) • 

w = r ... r 
al ~ 

[Note: Recall that l is the rank of G or still, the dimension of T or still, 

the dimension of r-I t or still, the dimension of ( r-I t) *.] 

31: DEFINITION Tm fundamental weights are the wi E Lwt per the prescription 

B(w.,a.) 
2 1 J = 8 .. 

B(a. ,a.) iJ 
J J 

(1 ~ i, j ~ l) • 

32: LEMMA The set {w1 , ... ,wl} is a basis for Lwt. 
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33: DEFINITION A weight A. E Lwt is said to be daninant if B (A., a) ~ 0 

for all a E ~(C). 

34: N .B. 'lb say that A. E Lwt is daninant arrounts to saying that A. E c 

(the closure of C). 

35: LEMMA. A weight A. E Lwt is dominant iff it is a linear combination 

with nonnegative integral coefficients of the w .• 
l 

36: NarATION Put 

37: N.B. Ultimately, p depends on the cmice of c. 

38: LEMMA V w E W, 

wp = p - L: a. 
+ -1 aE<Ii ,w a E <Ii-

39: APPLICATION V aE ~(C), 

[Note: V a E ~(C), 

40: LEMMA 

r (p) = p - a. a 

r (~+ - {a}) 
a 

+ = ~ - {a}.] 

p = Wl + • • • + W,t• 



PROOF Given a. E '±'(C), 
1 

=> 

9. 

a. = p - r (p) 
1 ai 

B(p,a.) 
= p - (p - 2 1 

B (ai,ai) 

B(p,a.) 
= 2 

1 a. 
B (a. ,a.) 1 

1 1 

B(p,a.) 
2 B ( 

1 
) = 1 => p E LT.""- (see below). a. ,a. wl.. 

1 1 

Now write 

Then 

B(p,a.) 
1 = 2 J 

B(a.,a.) 
J J 

Therefore 

BO:: n.w.,a.) 
. 1 1 J 

= 2 __ 1 ___ ____,_ 

B(a.,a.) 
J J 

B(w.,a.) 
= L n. 2 1 J 

1
. 1 B(a.,a.) 

J J 

= L n . cS • • = n
1
. => 1 = n .• 

i 1 1] 1 

41: N.B. It follows tlat p is a dominant we.ight. 
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APPENDIX 

LEMMA Supp:>se that A. E ( r-r t) * has the property that 

B(A.,a.) 
2 

1 
E Z 

B(a.,a.) 
l l 

( i = 1, ... ,l) . 

Then A. E Lwt. 

PR<X>F It is a question of s:tnw.ing that v a E <I>+, 

'(h ) = 2 B(A.,a) E Z 
A a B(a,a) • 

n 
To this end., let a = l: n. a. E <I>+ and procee:l by induction on I a I 

. 1 l l 
i= 

l 
= l: n., 

i=l l 

the level of a. The case I a I = 1 is the hyp::>tl:esis, oo assume that the assertion 

is true for all levels < I a I • Ch:x>se a . such that B (a, a. ) > 0, hence 
l l 

B(a,a.) 
S = r (a) = a - 2 1 

a. 
a. B(a.,a.) i 

l l l 

is p::>sitive ana has leve1 < r a I , thus 

is an integer. 

B(r (A.) ,!3) 

2 ~~~:~~ = 2 B~~,S) 

(A. Q) B(A.,a.) = 2 B ,µ - 2 l 
B(S,S) B(a.,a.) 

l l 

B(a.,S) 
l 2 

B(S,S) 
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§9. VESCENT 

Let G be a comp:ict connecte:l sanis:imple Lie group, T c G a maximal torus, 

¢ (gc) the roots of the p:iir (gc, tc) , C c ( r-1 t) * a Weyl ch:unber, '¥ ( = '¥ (C)) the 

simple systen of roots tlereby determinErl, and ¢+ (¢-) the }_X)sitive (n91ative) 

roots per '¥. 

1: RAPPEL Given a character X: T ~ S
1

, there is a comnutative diagram 

t ----> H R 

exp 1 
yl 

T-----> S 
x 

exp 

and the arrow x ~ ax .implanents an hlentif ication of T with the lattice 

A -1 
dT ={A E (;.:r t)*:Alexp (e) c 2n;.:r Z}. 

A 

2: N.B. dT is a sublattice of Lwt and 

(cf. §7, #17). 

A 

[Note: Therefore Lwt = dT iff G is simply oonn~ted.] 

A 

3: NDrATION Fa.ch A. E dT detenn.ines a character ~A. E T such that 

~ (exp H) = eA.(H) (HE t). 
A. 

4 : DEFINITION A function f: t ~ C descends to T if it factors through the 

exp:mential map, i.e., i£ f (H + Z) = f (H) V H E t and v z E t such that exp z = e. 
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If f :t -+ C descends to T, then there is a function F:T -+ C such that 

F(exp H) = f (H) (H E t) • 

5: EXA.1\1PLE Given A E dT, the function H -+ eA (H) descends to T (F = ~A) • 

6: EXAMPLE Put 

1 
P = - l: a 2 aE<I?+ 

(cf. §8, #36). 

Then V w E W, 

"' 
wp - p E Lrt c dT (cf. §8, #38), 

thus the fun.ct.ion 

H -+ e (wp-p) (H) 

des::ends to T (F = F ) • 
~p-p 

7: N.B. It is not cla.llned nor is it true in general that the function 

H -+ ep (H) descends to T. 

8 : DEFINITION /J.: t -+ C is the function 

H -+ Tf + (ea (H) /2 -e -a (H) /2) 

aE<I? 

[Note: a/2 nea:l not belong to Lwt.] 

9: LEMMA 

Therefore /J. descends to T iff ep descends to T. 

(H E t) • 
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2 
10: LEMMA I A I descends to T. 

PRCOF V H E t, 

IA(H) 1
2 

= A(H)A(H) 

which descends to T. 

11: LEMMA V t E T, 

-1 I . 12 det (AdG/T (t ) - IG/T) = A (t) • 

PROOF The complexification of g/t is the direct sum of the ga on which t E T 

acts by l; (t) in the adjoint representation,. oo a 

(l; (t -l) - 1) 
a 
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(1 - t;; (t)) 
-a 

[l\fote: The number of roots is even.] 

12: INTEGRATION FORMUI.A For any continuous function f E C(G), 

(cf. § 5, # 13) • 

13: SCHOLIUM For any continuous class function f E CL (G) , 

(cf. §5, #14). 

14: REMARK I.et t E T -- then t E reg iff 

or still, iff 

TI+ 11 - ~- <t> 12 ;Z o. 
aE¢ a 

15: N.B. Let H E i! -- then 

H 2 l9 <gc) I TT . 2(a(H)) j L) (e ) I = 2 + Sill • 

aE<f? 2r-l 

[Note: Bear in mind that a (H) E R. ] 

16: NOTATION I.et 

{HE t:V a E ¢(gc)' a(H) ¢ 2Til=I Z}. 
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17: LEMMA ~ is open and dense m t. M:>reover, 

exp ~ = .reg. 

18: RAPPEL The .inclusion T + G mduces a bijection between the orbits 

of W in T and the conjugacy classes of G (cf. §4, #16). Consequently, class 

functions on G are the "same thing" as W-invar iant functions on T. 

A 

19: NOTATION Given :\ E dT, define lJA: ~ + C by setting 

~ det(w)ew(:\+p) (H) 

qA (H) = 6(H) (HE~). 

20: LEMMA V w E W, 

Recalling that det(w) = (-l)l(w) (cf. §8, #29), it therefore follows that 

lJA is a W-.invariant function on ~. 

Next, V H E ~' 

Since 

e(w(:\+p)-p) (H) = ew:\(H)e(wp-p) (H) 
' 

the numerator of this fraction descends to T (cf. #5 and #6) • The same alro goes 

for the denaninator which is nonzero on ~. According! y, q:\ descends to a W-invar-

iant function on reg, tence extends to a class function on cf"eg (cf. §5, #10), 

denotei still by q:\. 
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§10. CHARACTER THEORY 

I.et G be a campact connected sanis .llnple Lie group, T c G a maximal torus, 

and maintain the assumptions/notation of §9. 

A A 

1: THEOREM Supp:>se given a II E G -- then there is a "-rr E dT subject to 

"-rr + p E c such that v x E efeg, 

Xrr(x) = qA. (x). 
II 

The proof proceeds by a series of lemnas. 

2 : NOTATION Given y E C, def .ine A : l! -+ C by y 

A (H) = l: det(w)ewy(H). 
y w8iJ 

Rephrased, the cla.lln becanes the assertion that 

Xrr(exp H)6(H) =A, + (H) 
i Arr p 

(H E ~) 

A 

for some "-rr E dT subject to "-rr + p E c. 

A A 

3: NDrATION dT ( C) is the subset of dT consisting of those A. such that 

A. + p E c, say dT(C) = {A.k}. 

A A _ 

[Note: It turns out that dT(C) = dT n c (cf. #9).] 

4: LEMMA There exist integers ~ such that \/ H E ~, 

Xrr(exp H)~(H) = L m,)\... + (H). 
i k ...:-Ak p 
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[Note: The point of departure is the fact that xrrlT decanposes as a finite 

sum 

Proceeding, 

L:"nl; 
:\EdT A It 

5: N. B. The function 

2 
IE~~ +pl 
k k 

(cf. § 9 , #13) • 

descends to T (l:ecause 1~1 2 descends to T (cf. §9, #10)). 

Therefore 

6: LEMMA The function 

-p -p 
= (e A\ + ) (e A\ + ) 

k p /\k' p 

descends to T (cf. §9, #6). 

Therefore 
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- 1 -p -p - -rwr f T (e A, + ) (e A. + )~(t) 
I VY I /\k p - -Ak I p 

And 

<=> W = WI arrl. k = k I 

but is zero otherwise. 

Therefore 

1 if k = k' 

0 if k ;t k'. 

:Matters then ra:luce to the equation 

However, the ~ E Z, hence all but one are zero. Consequently, there is a 

A 

Arr E dT subject to Arr + p E c such that v H E ~' 

Xrr(exp H)~(H) =±A,+ (H). 
/\II p 

7: LEMMA The A (y E C) are linearly indeperrlent over- Z. y 
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[Given y,y' EC, 

1 if y = y' 

<A ,A ,> = y y 
Q if Y ~ YI I 

the inner product < , > being by definition the multiplicity of the "zero weight" 

.in 

1 wy w'y' 
'WT [ T.~A7 det (w) e ] [ L: det (w') e - ] 
In I wc:vv w' EW 

1 lATV w'y' = L: det(ww')e .. ,-
lWT w,w'EW 

But 

wy - w'y' -1 
= 0 => y = w w'y' 

=> W = WI => Y = YI I 

so the number of solutions is jw I if y = y' and is zero otherwise. ] 

and 

8: APPLICATION The linear function A.II + p E C is unique. 

A 

9: LEMMA Let A. E dT -- then 

PR(X)F Va. E ~(C), 
l 

A. + p EC <=> A. E C. 

B(p,a.) 
2 l = 1 

B(a.,a.) 
l l 

(cf. §8, #40) 

B(A.,ai) .,., 
2 E Z (A. E dT c L .. · ). 

B(a.,a.) """""Wt 
l l 
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The stated equivalence then follows up:m writing 

B (A.+p ,a.) 
2 l 

B (a. ,a.) 
l l 

B(p,a.) B(A.,a.) 
= 2 l + 2 l 

B(a.,a.) B(a.,a.) 
l l l l 

10: APPLICATION 

Return now to the expression 

Xrr(exp H)~(H) =±AA+ (H) 
TI P 

val.id for H E ~' the objective then being to establish that it is the plus sign 

which obtains. 

11: LEMMA V H E i!, 

~ (H) = L: det (w) ewp (H). 
WEW 

[Note: There is no vicious cll'cle here in that tre formula can be derived 

by direct (albeit somewhat tedious) manip.ilat:ion, the derivation being independent 

of the preceding considerations (but consistent with the final outoo111e) • ] 

Fran this it follows that v H E ~' 

± Xrr(ecp H) = 

w(A.rr+p) (H) 
L: det (w) e 1 

WEW 

E det (w) ewp (H) 

wav 
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= qA. (H). 
II 

12: NarATION Define H E r-T t by the relation 
p 

p (H) = B (H, H ) (H E H t) 
p 

13: LEMMA r-r t H E ~ for small rx>sitive t. 
p 

14: LEMMA 

Lim XII (exp Ht H ) = ~· 
t+O 1 p 

[Fbr XII IT is continuous and dII = XII (e) • ] 

15: APPLICATION 

± d__ = lim qA. ( H t H ) • 
-l1 t+O II p 

16: SUBLEMMA V w E W, 

w(AII + p) (r-1 t H ) 
l p 

= Ht (A. + p) (w-lH ) 
II p 

-1 
= M t B (H, + , w H ) 

/\II p p 

= Ht B(wH, + ,H ) 
/\II P p 

-1 = (w p) (Flt HA.+). 
II p 

(cf • § 6 , # 21) • 



17: LEMMA 

PRX>F Write 

Analogous! y, 

7. 

1T + B(AIT+p,a) 

lim lJA (r-1 t H ) 
t~O IT p 

aE<P . 1 

=------
TI+ B{p,a) 

aE<P 

W(AIT+p) (r-1 t H ) 
l: det(w)e 1 P 

WEW 

-1 
(w p) (r-1 t HA +p) 

= l: det{w)e IT 
wEW 

-1 ,,-
(w p) (v-1 t HA +p> 

-1 IT 
= l: det(w )e 

wEW 

(wp) ( /:T t HA +p) 

= l: det(w)e IT 
wEW 

= TT+ r-1 t a(HA +p> + o(l) 
aE<P IT 

I <P+ I 
= (/:lt) Tf+B(AII+p,a) +o(l). 

aE<P 1 

wp (r-f t H ) 
l: det(w)e P 

wEW 



8. 

Taking the limit as t + o then f inisres the proof. 

+ 18: N.B. Ebth p and A.
1
t p belong to c, thus v a E ¢ , 

B(p,a} > 0 and B(A.TI + p,a} > 0, 

Um qA. ( r-T t H } > 0. 
t+O TI P 

19: APPLICATION 

~ = lim qA. ( H t H } • 
1 t+O TI p 

I.e.: The plus sign prevails. 

20 : SCHOLIU.M 

TT+ B (A.TI + p, a} 
d = _aE_<l> _____ _ 

TI TT d- B (p ,a} 
CLEW 

A A 

21: LEMMA The arrow from G to dT n c that sends TI to A.TI is well-defined 

(cf. #8} and injective. 

which implies that Xn = Xn on cfeg or still, by continuity, Xn = Xn on G, so 
11 12 11 12 
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""' ,,..., -22: LEMMA The arrow from G to dT n C that sends IT to Arr is surjective. 

,...., -
PROOF Fix a A E dT n c -- then 

= 1. 

Therefore qA is an L2 class function (cf. §2, #17). "' Now fix a rr0 E G: 

= 

=> 

(cf. §2, #19) 

= Xn 

for a unique IT E G with Arr = A. 
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23: SCHOLIUM 

"' G<-~dTnc 

"' "' [.Note: W operates on dT and dT n C is a fundamental domain for this action 

"' "' (cf. §8, #23), hence G is parametrizecl by the orbits of W in dT.] 

24: N.B. 

(cf. §8, #22). 

25: REMARK It is clear that if Arr = lG, then Arr = o. 

26: LEMIXTA In the restriction of Xrr to T, t;A occurs with multiplicity 1. 
TI 

APPENDIX 

There are b'No directions in which the theory can be extended. 

• Drop the assmnption that G is semisimple and 1ill70rk with an arbitrary 

compact connected Lie group. 

• Drop the assumption that G is connected and work with an arbitrary 

ca:npact Lie group. 

'As regards the first point, no essential difficulties are encountered. 'As 

reg-ards the second point, havever, there are definitely sane subtleties (see Chapter 

1 of D. Vegan's lxx:>k "Unitary Representations of Reductive Lie Groups"). 

NOTATION Let G be a ca:npact se.misimple Lie group, T c G a maximal torus, 



11. 

C c ;:I t a Weyl chamber and let 

NG(C) = {x E G:Ad(x)C c C}. 

LEMMA 

Therefore 

N.B. Each element of G is conjugate to an element of NG(C). 
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§11. THE INVARIANT INTEGRAL 

let G be a com:pact connected semisirnple Lie group, T c G a maximal torus etc. 

1: NarA.TION Set 

1T = TI+ a = 1T a. 
aE<I> a>O 

2: LEMMA TI is a horrogenoous p:>l ynomial of de;rree r ( = I <I>+ I) and v w E W, 

wrr = det (w) TI. 

3: LEMMA If p is a l:nrogenrous p::>l y.romial such tha.t V w E W, 

wp = det (w) p, 

then p can be written as TIP, where P is a h::mogeneous W-invariant p::>lyranial. 

4: N.B. P = 0 if deg p < r and P = C (a constant) if de] p = r. 

• 00 

5: DEFINITION Given f E C (g) arrl H E l!, put 

the invariant integral of f at H. 

6: FWCTIONAL EQUATION V w E W (w = nT) , 

= det(W)TI(H) JG f (Ad(x)Ad(n)H)dG(x) 

= det(w)TI(H) JG f(Ad(xn)H)dG(x) 

= det(w)TI(H) JG f (Ad(x}H)dG(x) 
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7: LEMMA 

00 00 

f EC (g) => ¢f EC (t). 

8: LEMMA 

9: LEMMA 

f E C(g) => ¢f E C(t). 

[If D E p (g) is a p::>lynomial differential o:p=rator, then there exist a finite 

number of elanents D1 , ••. ,DP E 1? (g) and analytic functions a1 , ••. ,ap on G such that 

V x E G, 

p 
Ad (x) D = L: a. (x) D .• 

. 1 l l i= 

[Note: An autonorphism of g extends to an autai:orphism of P (g).] 

10: NarATIOO Set 

1T=TI+H =1TH­
aE¢ a a>O a 

11: N.B. a (rr) (TI) is a constant (explicated infra). 

[The p::>int is that TI is a harrogene:ms p::>l ynomial of degree r and a (TI) is a 

p::>lyn:mial differential operator of degree r.] 

12: RAPPEL For the record, 
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In particular, if f is linear, then 

a constant. ] 

Put 

Then 

13: THEOREM 

PiroF The sum 

F(H) =JG f(Ad(x)H)dG(x) (HE t). 

= d (rr) (TI) F (0) 

= a(rr)(n)f(O). 

a (rr) (n) = lwl TI B (p ,a) • 
a>O 

k 
2: det (w) (wp) 

wEW 

is a h:m:>gmeous p:>lynomial of degree k which transfonns according to the deter-

minant per the action of W, hence vanishes if 0 :::; k < r but if k = r, 

1 r 
-, 2: det (w) (wp) = C (p) TI 
r. w8iJ 

for some constant C(p) (cf. #4). 'lb calculate C(p), note that pr is a h:m:>geneous 

ix>lynanial of degree r, thus a(rr) (p)r is a constant, so 

a(rr) (det(w) (wp)r) 

~ r = w(a (n) (p) ) 
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= a(rr)(p)r 

= Tr a (H ) ( p) r 
a>O a 

= r ! Tr B ( p, a) • 
a>O 

Therefore, on the one hand, 

~ 1 r a (TI) (-1 l: det (w) (wp) ) 
r. w8IV 

=--;- l: a(n) (det(w) (wp)r) 
r. wEW 

1 
= r! IWlr! Tr B{p,a) 

a>O 

= IWI Tr B{p,a), 
a>O 

while on the other 

Consequently, 

=> 

~ 1 r a (TI) (-
1 

L: det (w) {wp) ) 
r. wEW 

= C(p) a (rr) (TI). 

IWI Tr B(p,a) = C(p) a (n) (TI) 
a>O 

1 r 
r ! L: det (w) (wp) 

Wef/ 

IWI 1T B(p,a) 
a.>0 

=------TI. 
d (n) (TI) 
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Let H = ;.:r t H (cf. §10, #13) and write lim in place of lim: 
p H + 0 t~O 

1 = ~(H) 
~(H) 

L: det (w) e wp (H) 

wEW =---------
Tr (ea (H) /2 -e -a (H) /2) 

a>O 

= Inn 
L: det(w)ewp(H) 

wEW 

H + 0 TI (ea (H) /2 -e -a (H) /2) 

a>O 

= Lim 

L: det(w)ewp(H) 

wEW 

H + O e-p(H) TT (ea(H)_l) 

a>O 

= lim 
H + 0 TI 

ea(H)_l 

a>O a (H) 

L: det(w)ewp(H) 

x wEW 

TI (H) 

L: det(w)ewp(H) 
= lim wew ______ _ 

H + 0 TI (H) 

which u:i;:on expansion of the exp:>nentials equals 

=> 

l.iin (C(p) + o (1) = C(p) 
H+O 



=> 

6. 

lw I TI B(p,a) 
a.>O 

1 = C(p) = -----
a (IT) (TI) 

a(iT) (TI) = lwl TT B(p,a). 
a>O 

14: APPLICATION Given f E C
00

(g), 

= <lwl 1T B(p,a))f(O). 
a>O 
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§12. PLANCHEREL 

Keep.ing to the overall setup of §11, assume .in addition that G is sfuiply 

oonnocted, ro 
A 

Lwt = dT (cf. §7, #17) 

and ep descends to T, oo does 11, thus 

11 (t) = ~ (t) Tf (1 - ~ (t -l)) (t E T) • 
P a>O a 

1: NarATION Put 

+ -W = Lwt, W = Lwt n C. 

2: N.B. The elanents of W+ are the dominant weights (cf. §8, #34). 

3: NarATION Given A E W+, ITA is the irrErlucible unitary representation 

of G ass:>c.iatErl with A, xA its character, 

Tf B (A+p,a) 
d = _a_>O ____ _ 

A 1T B(p,a) 
a>O 

its dimensmn (cf. §10, #20) • 

4: N.B. On ef"eg, 

It is wellknown that 

XA(t)~(t) = 4 det(w)~(A+p) (t). 
w6fil 

00 00 00 

C (G) * C (G) = C (G), 
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SJ on the ta.sis of §2, #15, the Plancherel th.eoren is in force: 

f (e) = 2:"' drrtr (IT(f)) 
ITEG 1 

or still, 

OUr objective -oow will be to give another proof of this relation which is inde­

pend.ent of the factorization theory for C
00 

(G) but h.inges instead on too result 

fonnulaterl in §11, #13. 

5: NO'll\TION Given f E C
00 

(G) and t E T, p..it 

the invariant inteqral of f at t. 

6: LEMMA 

Q.v.ing to §9 t #12 I 

which equals 

or still, 
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or still, 

Therefore 

L ~ d/\. JG f(x)xA(x)dG(x) 
AEW it 

7: LEMMA V w E W, 

det(w) 1T B(/\.+p,a) = 1T B(w(/\.+p) ,a). 
a>O a>O 

Proceeding, 
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~ A. E W for which TI B(A.,a) = 0 making no contribution. 
a>O 

8: REMARK The elements A. E W such that wA. ~ A. when w ~ e (w E W) are in 

a one-to-one correstondence with the p:iirs (A, w) E w+ x W via the arrow (A, w) -+ 

w(A+p). 

'I. v 00 

'lb ioolate f(e), µit r(X) = f(exp X) (XE g) -- then f E c (g) and v HE l!, 

-1 
Ff (exp H) = 6. (exp H) JG f (x (exp H) x ) dG (x) 

= 6.(exp H) JG f(exp(Ad(x)H))dG(x) 

v = 6.(exp H) JG f(Ad(x)H)dG(x). 

9: LEMMA Let A. be a linear function on l! -- tren there exists a unique c 

Ad G invariant analytic function r A. on g such that v H E l!, 

fA.(H)n(H) = E det(w)ewA.(H). 
wEW 

10: APPLICATION Take A. = p -- then there exists a unique Ad G invariant 

analytic fun.ct.ion r on g such that v H E l!, 
p 

f (H)n(H) = E det(w)ewp(H) 
p W8ti/ 

= 6. (H) (cf. §10, #11) • 

Therefore 



= cp v (H). 
r f p 

5. 

Surrmary: V H E t, 

Ff(exp H) = cp v (H). 
r f 

p 

11 : SUBLEMMA In {H :1T (H) 1T ;t 0 } , 

Next 

=> 

f~(O) = l:im ~(H) 
'"' H + 0 1T (H) 

TT (ea(H)/2 -e-a(H)/2) 
= l:im _a>_O _______ _ 

H + 0 TT a(H) 
a>O 

= l:im TI 
a(H)/2 -a(H)/2 

e -e 

H + 0 a>O a(H) 

= 1. 

Ff (exp H) = cp v (H) 
r f 

p 

aci>Ff(exp H) = acn>cp v CH> 
r f 

p 



And 

=> 

Therefore 

6. 

ca(iT>Ff o exp> co> = {ci(rr)cp v){O) 
r f 

p 

v 
= ( 1w1 TT B{p,a)) er pf) {0) 

a>O 
{cf. §11, #14). 

v v v 
{fpf) {O) = rp{O)f{O) = f{O) = f{e). 

f{e) = 1 
lim Ff{exp H;ci{n)). 

!WI TT B{p,a) H + o 
a>O 

12: NOI'ATION Given A E W, put 

A 

Ff{A) = JT Ff{t)~A{t)~{t), 

the Fourier transform of Fr 

A 

13: N.B. Assume that the Haar measure on T is normalized so that Fourier 

inversion is valid {thus each A. E W is assigned mass 1). 

Write 

lim Ff {exp H; a (n)) 
H+O 

A 

= !,,..., Ff{A.) l:i.m ~-A. (exp H;a(TI))d,,...,(A.) 
T H+O T 



7. 

= (-l)r f A Ff(A) Tr B(A,a)dA(A) 
T a>O T 

= (-l)r f A 1T B(A,a) (J T Ff (t) ~A (t)~(t))dA (A) 
T a>O T 

Therefore 

(-l)r 
f(e) = --~-- L: JT B(A,et)~A(t)Ff(t)~(t) 

!WI lT B(p,a) AEW 
a>O 

the relation at issue. 
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§ 13. VETE CTI ON 

I.et G be a compact group. 

1: DEFINITION The character ring X(G) is the free abelian group generated 
A 

by the irreducible characters of G (i.e., by tre XII (II E G)) urrler r:ointwise 

addition and multiplication with unit lG. 

2: DEFINITION An element of X ( G) is called a virtual character. 

3: NarATIOO CL(G) is the subsp:i.ce of C(G) comprised of the continuous 

class functions (cf. §2, #27). 

4: LEMMA A class function f E CL(G) is a virtual character of G iff 

A 

for all II E G. 

PROOF The condition is obviously necessary. As for its sufficiency, we have 

2 2 11 f II = L:,,.... <f, xII> I 
IIEG 1 

(cf. §2, #19), 

hence 

for all but finitely many XII' say xII
1

, ... ,xIIn and then 

n 
f = L <f,xII.>xII. 

i=l l l 

(ibid.) • 

[Note: A priori, this is an equality in the L2-sense, hence is valid alrrost 

everywhere. But both sides are continuous, thus the equality is valid everywhere.] 
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Let G be a canpact connected Lie group. 

5: NDrATICJN CL
00

(G) is the set of C
00 

class functions. 

6: RAPPEL The characters of G belong to CL
00

(G). 

7: N .. B. Therefore X(G) is a subring of the ring of C
00 

functions on G. 

8: REMARK Per #4, suppose that f E CL ( G) has the property that 

A ' 00 for all IT E G -- then it follows after the fact that f E CL (G). 

I.et T c G be a max.ima.l torus and assign to the symbol X(T) the obvious 

interpretation. 

9: RAPPEL The arrow 

f -+ £IT 

of restriction defines an iscnorphism 

CL(G.). -+ C (T)W ( f §4 #24) c • , .. 

10: APPLICATION Restriction to T induces an injective haro:rorphism 

X(G) -+ X(T)W. 

Take a cp E X(T)W and let f E CL(G) be the class function that restricts to cp. 

11: ~ f is a virtual character of G, i.e., f E X(G). 

PROOF With #4 in view, write 
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1 
E lWf CIWI Z) = z. 

12: SCHOLIUM 

X(G) :::: X(T) w. 

13: N .B. Rephrased, a continuous class function f: G -+ C is a virtual 

character of G iff f IT is a virtual character of T. 

14: THEOREM I..et f E CL(G) -- then f E X(G) iff its restriction to every 

finite elanentary subgroup of G is a virtual character. 

PROOF 'lb establish the nontrivial assertion, let H c G be a finite subgroup --

then the assumption on f coupled with A, II, §12, #1 implies that fjH E X(H). 

Matters can thus be reinforced, the assumption on f becaning that its restriction 

to every finite subgroup of G is a virtual character and, thanks to what has been 

said above, one might just as well vx:>rk with T rather than G. Choose a sequence 

H
1 

c H
2 

c • • • of finite subgroups of T whose union is dense in T -- then v x E X(T), 

<f,x>T = 1T tx = l.im 
n -+ oo 

1 ( 11fT l: f (h) X (h)) 
1un1 hEH 

n 

= lim <f ,x>H • 
n -+ oo n 

But 

f IH E X(H ) n n 
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§14. 11·.JVUCTION 

I.et G be a finite group, f c G a subgroup. 

1: RAPPEL Tnere is an arrow 

which sends characters of r to characters of G (cf. A, II, §9, #10) , thus induces 

an arrow 

X(f) -+ X(G). 

2: N.B. If 

and if cp E CL ( f) is a class function, then 

i.e., 

n o -1 
(~-+ Gcp) (x) = E ¢(xk xxk) (cf. A, II, §7, #10), 

k=l 

Let G be a compact Lie group, r c G a closed Lie subgroup. 

3: NarATICN Given an x E G, write (G/f)x for the fixed point set of the 

action of x on G/f. 

4: 
x -1 

LEMMA A coset yr in G/r lies in (G/f) iff y xy E r. 
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5: LEMMA If cosets y
1
r, y

2
r lie in the same connected canponent of (G/f)x, 

then y2r = yy1r for sane y in the centralizer of x. 

6: N.B. If ¢ E CL(r) is a class function and if y2 = yy
1 
y, then 

x 
Let c1 , ••. ,Cm be the connected. canp:ments of (G/f) , thus 

m 
(G/f)x = J1 c., 

j=l J 

let x(C.) be the Euler characteristic of c., and fix elements 
J J 

7: NOI'ATION Given a class function <P E CL ( r) , put 

m -1 
= L: x ( c I ) <P (y I xy I ) • 

j=l J J J 

8: LEMMA 

the induced. class function. 

9 : N. B. Therefore 
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10: REMARK The definition of ir -+ Gcp is independent of the choice of 

representatives y. r for the canp:>nents of (G/r) x but it is not quite obvious that 
J 

ir -+ Gcp is continuous. 

11: RECONCILIATICN Take the case when G and r c G are finite. Write 

Then, as recalled in #2, 

which, .in view of #4, is equal to 

or still, is equal to 

2: 
yfEG/f 

xyr =yr 

-1 
¢ (y xy) 

-1 
2: ¢(y xy). 

yfE(G/r)x 

But here the c. are i;oints, say 
J 

m -1 
2: X ( C · ) ¢ (y · xy · ) 

j=l J J J 

m -1 
= L cp (y . xy . ) 

j=l J J 

-1 
= 2: ¢(y xy). 

yfE(G/r)x 
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12: RAPPEL A canpact connected Lie group of positive dimension has zero 

Euler characteristic, so the connected canp.::>nents of a canpa.ct Lie group of positive 

d:imension have zero Euler characteristic. 

13: EXAMPLE Take r = { e}, let cp = lr, and assume that dim G > O -- then 

(G/f)x is anpty of x ~ e, hence for s.ich x, 

but if x = e, then (G/f) e = G and 

Therefore 

m -1 
= l: x ( c • ) cf> (y I ey • ) 

j=l J J J 

m 
= ( l: X (C.)) cp (e) 

j=l J 

= 0. 

14: DEFINITION A closed subgroup H of G is generic if it is topologically 

cyclic and of finite .index in its nonnalizer. 

[Note: Let G be a canpact connected Lie group, T c G a maximal torus -- then 

T is generic.] 

15: DEFINITION An element x E G is generic if it generates a generic 

subgroup of G. 

[Note: Let G be a canpa.ct connected Lie group -- then a generic element is 

necessarily regular. ] 
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16: LEMMA The generic elements are dense .in G. 

17: THEOREM SUpfOse that x E G is generic -- then 

and 

-1 
Cir+ G¢) {x) = E ¢(y xy). 

yfE(G/f)x 

18: EXAMPLE Take r = {e}, let ¢ = lr, and assume that d:im G > O -- then 

at every generic element of G, 

hence by continuity (.in oonjunction with #16), 

(cf. #13). 

Let G be a canpact Lie group, let r 1 , r 2 c G be closed Lie subgroups, and let 

be a double coset decan:i;::osition of G. 

19: N.B. 

is the orbit space per the action of r1 by left translation on G/r2• 

write 

where each Us is a connected canponent of one orbit type for tm action of r1 on 
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denote the following canposite: s Take a¢ E CL(r2) and fonn ¢ _ ¢ o I _1 (a class 
x s 

I.e.: 

<I> (¢) s 

o i = L X#(U )<I> , rG -+ r r -+ G s s 
l 2 SES 

where for each s E S, 

21: N.B. When G and r1 ,r2 c Gare finite, matters reduce to A, II, §8, #3. 

Here is a sketch of the proof. 

2. let Us c G/r2 denote the inverse irrage of Us under the projection to 

G/r2 = Jl U • 
sES s 

3. 
Y1 

I.et c1 , ••• ,Cm be the connected canponents of (G/f 2) , thus 
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4. For each pair (s,j), put 

5. The arrows 

v . -+ u n c. -+ u 
S,] S ] S 

are a fibration sequence, hence by the multiplicativity of the Euler characteristic, 

6. Fix elements y . E r1 such that 
S,] 

Then in particular, 

=> 

=> 

the danain of cps. 

y .x r
2 

EV .• 
S,] S S,] 

y 
y .x r2 E (G/f

2
) l 

S,] S 

7. Fran the definitions, 

m -1 
= l: X (C ·)cf> (y · Y 1Y ·) 

j=l J J J 



And 

8. 

# m s -1 · = L x (U) L x<v .)¢ (y ·Y1Y .). 
SES s j=l S,] s,] S,] 

8. The isotropy subgroup of the action of r 1 on xsr 2 E G/r 2 is 

-1 
r 2 (s) = xsr2xs n r 1 . 

9. Given s E s, 

m 
= J1 V . c G/r2 • 

j=l S,J 

m s -1 
E x<v .)¢ <Ys,J·Y1Y ·> j=l S,J S,J 

10. Therefore 

the contention. 
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22 : THEOREM The arrow 

sends virtual characters to virtual characters, thus induces an arrow 

X(r) -+ X(G). 

PROOF Recall first that this is true "When G is finite (cf. #1) • In general, 

let x E X(r) -- then to conclude that 

it suffices to show that its restriction to every finite sul::xJroup H of G is a 

virtual character (cf. §13, #14). So consider 

or still, take in the above r 1 = H, r 2 = f, ¢ = x, and consider 

Here 

where x is the restriction of xs to r (s) = x IX-l n H, a finite group. But now s s s 

Xs E X(f(s)) => ir(s) -+ Hx E X(H)' 

"Which finishes the proof. 

23: N.B. If G is finite, then the arrow 

sends characters of r to characters of G but this need not be true if dim G > O 
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(cf. #13) (lr is a character of r but the induced class function 

is identically zero, a virtual character, not a character). 

24: REMARK Let G be a canpact connected semisimple Lie group, T c G a 

max:iroal torus -- then 

"' "' 
G <-> dT n C (cf. §10, #23) • 

While the theory developed above gives rise to an arrav 

X(T) + X(G), 

it does not respect the foregoing paraneterization which can only be accanplished 

by a more sophisticated version of the preceding process. 

APPENDIX 

'!here is a different approach to induction which is suggested by A, II, §9, #1. 

So let G be a canpact Lie group, r c G a closed Lie subgroup. 

CONSTRUCTION Let (8,E) be a finite dimensional unitary representation of 

r and denote by E~,e the space of all E-valued measurable functions f on G such 

that f (xy) = e (y-
1) f (x) (x E G, y E f) subject to 

'!hen the prescription 

G -1 
(Indr' e (x) f) (y) = f (x y) 

defines a representation Ind~,e of G on E;, 6, the representation of G induced by e. 
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N.B. The inner prcrluct 

equips E;,e with the structure of a Hilbert space and Ind;,e is a unitary rep-

resentation. 

EXAMPLE Take 8 to be the trivial representation of f on E = C -- then 

E;, e = L 
2 

( G/f) • 

[Note: When f = {e}, E~ ,e = L
2 

(G) and 

G rndr,e = L, 

the left translation representation of G (cf. §1, #5) .] 
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§1. ORBITAL INTEGRALS 

Let G be a canpact group. 

1: DEFINITION Given f E c (G) and y E G, put 

O(f ,y) 

the orbital integral of f at y. 

2: LEMMA The function 0 (f) defined by the assigrnnent 

y -+ O(f,y) 

is a continuous class function on G, i.e., is an element of CL(G). 

3: RAPPEL If f E C (G) fin, then 

for all but finitely many II. 

4: LEMMA Suppose that f E C(G) fin -- then V y E G, 

OCf,y) = LA trCrr*Cf>>xrr<Y> 
IIEG 

1 
(cf. A, III, §1, #3), 

the sum on the right being finite. 

PRCX>F Apply I, §2, #19 to get 

OCf) = LA <O(f),xrr>xrr' 
ITEG 1 1 

where the series converges in L 2 (G) • But 
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Therefore <O(f) 'xrr> = 0 for all but finitely many IT, thus the almost everywhere 

equality 

OCf) = EA <OCf) ,xrr>xrr 
ITEG 1 1 

is that of two continuous functions, thus is valid everywhere. F.inally, fran the 

def.ini tions, 

=JG f(x)tr(IT*(x))dG(x) 

= tr (II* (f)) • 
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§2. KERNELS 

I.et (X, µ), (Y, v) be a-finite measure spaces. 

(TK¢) (x) = fy K(x,y)¢(y)dv(y). 

2: THEOREM The IlBp K ~ TK is a linear isanetry of L 2 (X x Y) onto 

3: NOI'ATION Given 

K2 E L2 (Y x Z), 

define their convolution 

2 
Kl * K2 E L (X x Z) 

by 

[Note: The underlying measure-theoretic assumption is again a-finiteness 

(which is needed infra for Fubin.i) .] 

4: THEOREM 
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5: APPLICATION Take X = Y = Z -- then 

2 2 TK :L (X) ~ L (X) 
1 

T L2 (X) ~ L2 (X) IS= -,-

are Hilbert-Scl:'nnidt, hence 

2 2 
TKl *JS :L {X) ~ L (X) 

is trace class. 

6: LEMMA Take x = y = z and put K = Kl * K2 -- then 

PRCX:>F 

tr(TK) = fx K(x,x)dµ(x). 

tr(TK) = tr(T- o T ) 
Kl K2 

=Ix fx JS(y,x)Ki(y,x)dµ(y)dµ(x) 

= fx fx Ki(y,x)K1 (x,y)dµ{y)dµ(x) 
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= fx K(x,x)dµ(x). 

7: REMARK It can happen that Kl = K2 a. e. (so TKl = T~) , yet 

fx K1 (x,x)dµ(x) ~ fx ~(x,x)dµ(x). 

[E.g.: Take X = Y = [O,l], K1 ::: O, K
2 

= X1:::, (!:::. the diagonal).] 

8: THEOREM I.et X be a locally canpact Hausdorff space, µ a cr-f :inite 

Radon measure on x. 2 Supp::>se that K E L (X x X) is separately cont:inuous and TK 

is trace class -- then the function 

x -+ K(x,x) 

is :intejrable on X and 

tr(TK) = fx K(x,x)dµ(x). 

APPENDIX 

00 • 2 
LEMMA I.et M be a canpact C manifold, µ a srro::>th measure on M, T:L (M) -+ 

c2k(M) (k >~dim M) -- then Tis trace class. 

P:OOOF I.et !:::. be a I.aplacian on M and write 

-k k 
T = (1-1:::.) (1-1:::.)--ir. 

Then 

so (1-1:::.)~ is Hilbert-Schmidt. On the other hand, by Sobolev theory, 

thus (1-1:::.)-k is also Hilbert-Schmidt. 
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§3. THE LOCAL TRACE FORMULA 

Let G be a canpact group. 

1: NarATION Denote by TIL R the representation of G x G on L2 (G) given by , 

(cf. A, III, §2, #1). 

2: LEMMA TIL, R is unitary. 

PRCXJF 

Given f 1 ,f
2 

E C(G), define f E C(G x G) by 

and let 
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where 

Therefore nL,R(f) is an integral operator on L2 (G) with kernel Kf(x,y). 

3: CONSTRUCTION 

e Given fl E C (G) , put 

-1 
Kf (x,y) = fl (xy ) (x,y E G). 

1 

Then 

2 Kl E L (G x G) 

and 

= JG f(y) (L(y)¢) (x)dG(y) 

= (L(f) ¢) (x) • 

• Given f 2 E c (G) ' put 

-1 
Kf (x,y) = f 2 (x y) (x,y E G). 

2 

Then 



and 

PROOF 

Since the kernels of 

3. 

= (R(f)cp) (x). 

TK :L2 (G) ~ L2 (G) 
1 

TK :L2 (G) ~ L2 (G) 
2 

are square integrable, it follows that these operators are Hilbert-Schmidt. But 
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(cf. §2, #4). 

Therefore TK *K is trace class, i.e., TKf is trace class, i.e., nL,R(f) is trace 
1 2 

class. 

5: LEMMA 

(cf. §2, #6). 

6: RAPPEL Let 

Then 

We have 

Put now 

Then 

2 2 
f E sp:mC(L (G)*L (G)) c C(G). 

f(e) = EA dTitr(TI(f)) 
TIEG 1 

F (v) x,y 

F (v) x,y 

v 
= f 1 * f 2 (v) ,x,y 

(cf. I , § 2 , # 15) • 



=> 

=> 

5. 

Kf (x,y) = F (e) x,y 

v 
= z:,... arrtr crr C£1 * £2 )) IIEG i ,x,y 

v 
= l:,... dIItr(II(f1)II(f2 )) 

IIEG i ,x,y 

v 
= z:,... arrtr<rrC£1 >rrCo * £2 * o _1>> 

IIEG i x y 

7 : SUBLEMMA V ¢ E C ( G) , the oi;:erator 

-1 
JG II(x)II(¢)II(x )dG(x) 



6. 

intertwines II, hence is a scalar multiple of the identity (cf. I, §1, #15), call 

8: N.B. 

Therefore 

=> 

' = tr(II(<f>)) 
l\<t> d • 

II 

tr (TIL,R (f)) 

= E~ dIIAf tr(II(f2)) 
IIEG 1 1 

tr (II (fl)) 
= E d tr(II(f

2
)) 

IIEG II dII 

= E J(II,f) 
IIEG 
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if 

9: SUBLEMMA \/ cf> E C (G) , 

v v 
tr(TI(cf>)) = tr(JG cf>(x)TI(x)dG(x)) 

-1 = tr (f G cf> (x ) TI (x) dG (x) ) 

-1 = tr (f G cf> (x) TI (x ) dG (x) ) 

= tr (TI* (cf>)) • 

10: N. B. Consequent! y, 

There is another way to manipulate 

which then leads to a second f onnula for 

tr (TIL,R (f)) • 

To wit: 
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or still, for any y E G, 

1:bv nrultiply through by dG(y) and integrate with respect to y: 

11: DEFINITION Given f = f 1f 2 , the local trace fonnula is the relation 

l:,._ J(IT,f) 
ITEG 

= l:,._ tr(IT(f1))tr(IT*(f2)) 
ITEG 

Let G be a canpact connected semisimple Lie group, T c G a maximal torus. 

12: RAPPEL For any oontinuous function f E C(G), 

(cf. I , § 9 , # 12) 

or still, 



9. 
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§1. TOPOLOGICAL TERMINOLOGY 

1: DEFlliITION A toi::ological space X is ·compact if every open cover of 

X has a finite subcover. 

2 : DEFINITION A toi::ological space X is locally canpa.ct if every :point 

in X has a neighborhood basis consisting of canpact sets. 

3: LEMMA A Hausdorff space X is locally compact iff every i::oint in X 

has a canpact neighborhood. 

4: APPLICATION Every compact Hausdorff space is locally compact. 

5: EXAMPLE R is a local! y canpact Hausdorff space. 

6: EXAMPLE Q is a Hausdorff space but it is not locally canpact (Q is 

first category while a locally canpact Hausdorff space is second category). 

7: LEMMA An open subset of a locally canpact Hausdorff space is locally 

canpact. 

8: LEMr.'-'.lA A closed subset of a locally canpact Hausdorff space is locally 

canpact. 

9: LEMMA In a locally canpact Hausdorff space, the intersection of an 

open set with a closed set is locally ccrnpact. 

10: EXAMPLE The se:niclosed, se:niopen· interval [0,1[ is locally canpact. 

[In fact, 

ro,1r = J~ l,lI n ro,11.J 
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11: DEFINir.r'ION A to:p::>logical group is a Hausdorff to:p::>logical space 

G equipped. with a group structure such that the function fran G x G to G defined 

by (x,y) + x.:y-l is continuous or still, as is equivalent: 

• The function G x G + G that sends (x,y) to x.:y is continuous. 

• The function G + G that sends x to x-l is continuous. 

If G is a to:p::>logical group and if H c G is a subgroup, then the set G/H 

is to be given the quotient to:p::>logy. 

12: LEMMA The space G/H is Hausdorff H is closed. 

13: DEFINITION A ·1ocally can.pact (canpact) group is a topological group 

G that is both locally canpact (canpact) and Hausdorff .. 

14: LEMMA If G is a locally canpact group and if H is a closed subgroup, 

then G/H is a locally canpact.Hausdorff space. 

15: LEMMA If G is a locally can.pact group and if H is a closed nor:mal 

subgroup, then G/H is a locally canpact group. 

16: LEMMA If G is a locally canpact group and if H is a locally canpact 

sub;Jroup, then H is closed in G. 

17: LEMMA If G is a locally canpa.ct group, then a subgroup H is open if f 

the quotient G/H is discrete. 

18: LEMMA If G is a canpa.ct group, then a subgroup H is open iff the 

quotient G/H is finite. 
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19: LEMMA If G is a locally canpact group, then every open subgroup of 

G is closed and every finite index closed subgroup of G is open. 

20: DEFilHTION A topolOCJical space X is totally· disconnected if the 

connected canponents of X are singletons. 

21: EXAMPLE Q is totally disconnected. 

22: LEMMA If G is a totally disconnected locally canpact group, then 

{ e} has a neighborhood basis consisting of open-canpact subgroups. 

23: LEMMA If G is a totally disconnected ca:npact group, then {e} has 

a neighborhcx:x:l basis consisting of open-ccmpact nonnal subgroups. 

24: DEFINITION A topolOCJical space X is 0-dirnensional if every point of 

X has a neighborhcx:x:l basis consisting of open-closed sets. 

25: EXAMPLE Q is 0-d.imensional. 

26: LEMMA A locally canpact Hausdorff space is 0-dimensional iff it is 

totally disconnected. 

[Note: In such a space, every point has a neighborhocx:l basis consisting of 

open-canpact sets.] 

27: REMARK It is false that the continuous ima.ge of a 0-diroensional 

locally canpact Hausdorff space is again 0-dimensional. 

['Ib see this, recall that every· canpact metric space is the continuous .llnage 

of the Cantor set. ] 
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28: LEMMA If G is a locally canpact 0-dimensional group and if H is a 

closed subgroup of G, then G/H is 0--dimensional. 

29: LEMMA A 0--dimensional T 1 space is totally disconnected. 

30: REMARK There are totally disconnected metric spaces which are not 

0--dimensional. 
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§2. INTEGRATION THEORY 

Let X be a locally canpact Hausdorff space. 

1: DEFINITION A ·Radon measure is a measure µ def inerl on the Borel 

a-algebra of x subject to the following conditions. 

1. µ is finite on canpacta, i.e., for every compact set K c X, µ(I<) < oo. 

2. µis outer regular, i.e., for ever:y Borel set Ac X, 

where U c X is open. 

µ (A) = inf µ {U) , 
U::A. 

3. µ is inner regular, i.e. , for ever:y open set A c X, 

where K c X is can.pact. 

µ{A)= sup µ(I<), 
Kc.A 

2: RAPPEL If X is a locally canpact Hausdorff spa.ce and if X is second 

countable, then for any open subset U c X, there exist canpact sets Kl c IS c ••• 

00 

such that U = u K • 
n n=l 

3: APPLICATION If (X,µ) is a Radon measure s:pa.ce and if X is second 

countable, then X is a-finite. 

space. 

4: RIESZ REPRESENTATION 'lliEOREM Let X be a locally ca:npact Hausdorff 

Suppose that A:C (X) + C is a positive linear functional -- then there 
c 

exists a unique Radon measureµ on X such that v f EC {X), c 

Af =Ix f{x)dµ(x). 
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I.et G be a locally canpact group. 

5: DEFlliITION A left Haar measure on G is a Radon measure µG ~ O which 

is left invariant, i.e. , v x E G and v Borel set A c G, µG (xA) = µG (A) • 

[Note: Equivalently, a Radon measure µ ~ 0 is a left Haar measure on G if 

V f E Cc(G) and Vy E G, 

!G f(yx)dµ(x) = !G f(x)dµ(x).] 

6: THEDREM G admits a left Haar measure and if µG , µG are two such, 
1 2 

then µG = cµG ( 3 c > O) • 
1 2 

7: LEMMA Every nonempty o:pen subset of G has positive left Haar measure. 

8: LEMMA Every can.pact subset of G has finite left Haar measure. 

9: N.B. The definition of a right Haar measure on G is analogous. 

Given x E G and a Borel set A c X, let 

µG,x(A) = µG(Ax). 

Then µG is a left Haar measure on G: ,x 

The uniqueness of left Haar measure now implies that there is a unique positive 

real nmnber ~G(x) such that 

10: 
x 

LEMMA ~G:G + R>O is independent of the choice of µ. 
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11: 
x 

LEMMA i6.G:G -+ R>O is a continuous harnarorphism. 

12: DEFrnITION i6.G is called the modular·function of G. 

So, V f E C (G) and V y E G, 
c 

13: LEMMA V f E Cc (G), 

! f ( ) d ( ) = ! f (x) d ( ) G x µG x G 4G (x) l-h x • 

[Note: As usual, f(x) = f(x-1).] 

14: N.B. The fOSitive linear functional that assigns to each f E C (G) 
--- c 

the camon value of the two menbers of this equality is a right Haar integral. 

15: LEMMA If cf>:G-+ G is a tofQlogical autarorphism, then there is a 

unique p:>sitive real number oG(cf>) such that v f E Cc(G), 

[The p:>sitive linear functional 

is a left Haar integral.] 

16; EXAMPLE. I~ V is· a real finite dimensional vector space and if 
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T:V-+ Vis an invertible linear transformation, then per "Iebesgue measure", 

-1 
fv f (T (x))dx ;::; ldet Tl Iv f (x)dx,, 

so here 

ov(T) = ldet Tl. 

-1 17: EXAMPLE Define Iy:G-+ G by Iy(x) = yxy -- then 

= JG f(xy)dµG(x) 

which implies that 

18: LEMMA If cp:G -+ G is a topological autanorphism, then v y E G, 

[On the one hand, 

and, on the other hand, 
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Therefore 

19: LEMMA If G1 , G2 are locally ccmpact groups and if µG , µG are left 
1 2 

Haar measures per G1 , G2 , then µG x µG is a left Haar measure per G1 x G2 and 
1 2 

I.et G be a locally canpact group, X and Y two closed subgroups of G. 

20: DEFINITION' The pair (X, Y} is admissible if the follrnving conditions 

are satisfied. 

• The intersection x n Y is canpact. 

• The llUlltiplication X x Y -+ G is an open rna.p. 

• The set of products XY exhausts G up to a set of Haar measure O (left 

or right}. 

21: EXAMPLE Using the notation of #19, VJOrk with G1 x G2 and take 

X = G1 x {e2}, Y = {e1 } x G2 -- then the pair (X,Y} is admissible. 

22: THEOREM Supp:>se tbat the pair (X, Y} is admissilile. Fix left Haar 
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measures µX, iy on X,Y -- then there is a unique left Haar measure µG on G such 

that V f EC (G), c 

23: N.B. Specializing the setup to that of #21 leads back to #19. 

[Note that 

thereby cancelling the factor in the denominator.] 

24: LEMMA If G is a locally canpact group and if H c G is a closed nonnal 

subgroup, then L\; I H = i\r· 

25: APPLICATION In the setup of #22, assume in addition that Y is nonnal --

then V f EC (G), c 

[Note: Given x E X, the restriction 

is an autanorphism of Y and 

I _
1

:Y-+ Y 
x 

-1 
y -+ x yx 
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Let G be a locally compact group, X and Y two closed. subgroups of G. 

26: DEFINITION G is the toJ;X>logical semi.direct product of x and y if 

every elanent z E G can be expresserl in a unique manner as a product z = xy 

(x E X, y E Y) and j£ the multiplication X x Y -+ G is a haneanprphism. 

27: N.B. A priori, the multiplication X x Y -+ G is a cont:inuous bijection, 

thus the condition is satisfied. if the multiplicat.ion X x Y -+ G is an open map, 

this being automatic whenever G is second conntable. 

[Under these circumstances, G is the union of a sequence of canpact sets 

(cf. #2), oo the same is true of X x Y. But G is a locally compact Hausdorff 

space, han.ce is a Ba. ire space. ] 

[Note: If A is a Ba.ire space and if {A :n E N} is a closed covering of A, 
n 

then at least one A must contain an open set. ] 
n 

If G is the toi;ological sernidirect product of X and Y, then X n Y = {e} and 

the pair (X,Y) is admissible. Therefore the theory is applicable in this situation. 

28: N.B. In general, the arrow (x,y) -+ xy is not an is:::m.orphism of groups 

but this will be the case j£ every element of X carmutes with every element of Y 

or, equivalently, if X and Y are nonnal subgroups of G, i.e. , G is the toi;o-

logical direct product of X and Y. 
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§3. UNIMOVULARITY 

let G be a locally canpact group, µG a left Haar measure on G. 

1: DEFINITION G is unim:>dular if fc ::: 1. 

2: N.B. G is unim:>dular iff µG is a right Haar measure on G. 

3: EXAMPLE Take for G the group of all real matrices of the fonn 

1 x 

(y ~ 0) -- then 

0 y 

1 x 

!J.G = IYI I 

0 y 

thus G is not un.irrodular. 

4: LEMMA G is uninodular iff v f E cc (G) , 

(cf. §2, #13). 

5: LEMMA 

• Every locally canpact abelian group is uninodular. 

• Every canpact group is unim:rl.ular. 

• Every discrete group is unim:Xlular. 

6: LEMMA Every locally canpact group that coincides with its close::l 

carmutator su.b:Jroup is unim:rl.ular. 
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7: LEMMA Every o:pen subgroup of a unimodular local! y compact group is 

unirrodular. 

8: LEMMA Every closed normal subgroup of a unim:rlular local! y compact 

group is unim:x:1ular. 

[Note: A closed subgroup of a uni.nodular local! y compact group is not 

necessarily uni.nodular.] 

9: LEMMA I.et G be a locally canpa.ct group, Z (G) its center -- then G is 

un.im:xlular iff G/Z(G) is unimodular. 

I.et G be a locally compact group, H c G a closed subgroup (H is then a locally 

compact subg'roup) (cf. §1, #8). 

10: DEFINITION H is a cocompact subgroup if the quotient G/H is compact. 

11: LEMMA If G admits a un.lltodular cocompact subgroup H c G, then G is 

un.imodular. 
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§4. INTEGRATION ON HOMOGENEOUS SPACES 

Let G be a locally compact group, H c G a closed subgroup. 

1: N.B. The quotient G/H is a locally canpact Hausdorff space (cf. §1, 

#14). 

Fix left Haar measures 

~on H. 

2: NarATION Given f E cc (G) , define fH E cc (G/H) by the rule 

H 
f (xH) = f H f (xy) d11f (y) • 

3: LEMMA The arrow 

sends C (G) onto C (G/H). c c 

4: DEFINITION A Radon measure µ ~ 0 on the Borel a-algebra of G/H is 

said to be an invariant measure \/ x E G and\/ Borel set Ac G/H, µ(xA) =µ(A). 

[Note: If H = {e}, then "invariant measure" = "left Haar measure".] 

5: THEOREM There exists an invariant measure µG/H on G/H iff liGIH = ~ 

and when this is eo, µG/H is unique up to a J:X>Sitive scalar factor. 

[Note: :M:a.tters are autanatic if H is canpact or if both G and H are 

un.im::xiular. ] 
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6: N.B. If H is a nonnal closed subgroup of G, then liG IH = tn· 
[For a left Haar measure on G/H is an invariant measure.] 

7: THEOREM There is a unique choice for µG/H such that v f E Cc ( G) , 

ex = xH). 

[Note: Bear in mind that µG' % have been fixed at the beginning.] 

8: N.B. This fonnula is valid for all f E L1 (G). 

9: LEMMA Let H1 c G, H2 c G be closed sUbg"roups of G with H1 c H2 --

then G/H2 and H2/H1 admit finite invariant measures iff G/H1 admits a finite 

invariant measure. 

10: APPLICATION If G/H has a finite invariant measure and if H is 

un.imodular, then G is un:imodular. 

[Let K be the kernel of liG -- then liG I H = ~ = 1, thus H c K and so G/K 

has a finite invariant measure (as does K/H) . But G/K is a locally canpact group .. 

'Iherefore G/K is actually a canpact group (its Haar measure being finite) and this 

x 
implies that liG(G) is a canpact subgroup of R>O' hence liG(G) = {l}, i.e., G is 

unim::x::lular. ] 

11: N. B. Suppose that H c G is a un:imodular cocornpact subgroup -- then 

G/H admits a finite invariant measure µG/H. 

[In fact, G is necessarily unin:odular (cf. §3, #11), fran which the existence 
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of µG/H. But µG/H is Radon, hence finite on canpacta, hence in particular, 

[Note: Take G = SL(2, R) and let 

a b 

H = {X:X = E SL(2,R)}. 

0 d 

Then G is unirnodular but H is not unirnodular. Therefore G/H does not admit an 

invariant measure even though H is a cocompact subgroup.] 

12 : LEMMA Let H1 c G, H2 c G be closed subgroups of G with H1 nonnalizing 

H2 and H1Hi closed in G -- then the following are equivalent. 

• Hi/H1 n H2 admits a finite invariant measure. 

[Note: There is a ccmnutative diagram 

where 

The vertical arrows are continuous and open. Therefore the bottom horizontal 

arrow is a haneanorphism.] 

13: APPLICATION Suppose that G is the topological semidirect product 
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of X and Y (cf. §2, #26) and take Y nonnal -.,..., then G = 2rf and x n Y = {e}. 

Therefore G/X has a finite invariant measure iff Y has a finite invariant measure. 
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§5. INTEGRATION ON LIE GROUPS 

Suppose that M is an orientable n-dimensional C
00 

manifold which we take to 

be second countable. 12t w be a positive n-fonn on M -- then the theory leads 

to a :p::>sitive linear functional 

from which a Radon measure µ • 
w 

Assume now that G is a Lie group with Lie algebra g. 

translation y + xy by x. 

12t L : G + G be left x 

1: DEFINITION A differential fonn w on G is · 1eft invariant if v x E G, 

L*w = w. x 

"' 
2: NarATION Given X E g, let X be the corresponding left invariant vector 

field on G. 

12t n = dim G (= dim g) and fix a basis x1 , ••• ,xn for g. Define 1-fonns 

1 n b th cond' . ic"' ) w , .•• ,w on G ¥ e 1t1on w x. 
J 

i = cS •• 
J 

3: 
i 

LEMMA The w are left invariant. 

Put 

T.hen V x E G, 

1 n 
W = W A ••• A W • 

1 
= L~w x A ••• A 
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1 n 
= W A ••• A W = W. 

I.e.: w is a left invariant n-fonn on G. 

4: LEMMA w is nowhere vanishlng on G. 

5: LEMYlA G can be oriented so as to render w positive. 

[Note: The orientation of G depends on the choice of a basis for g. If 

Y1 , ••• ,Yn is another basis, then the resulting orientation of G does not change 

iff the linear transfonnation x. + Y. (1 $ i $ n) has positive detenninant.] 
1 1 

6: SCHOLIUM The assigmnent 

f +JG fw (f E C (G)) 
c 

is a positive linear functional. 

7: LEMMA The Radon measure µ is a left Haar measure. 
w 

PRCX>F v x E G, L :G + G is an orientation preserving diffeanorphism, so 
x 

V f E Cc(G), 

= JG (f o L )w = JG (f o L )dµ • 
x x w 

8: REMARK Any subset S of G 'Which is contained in an at most countable 

()() 

union of smooth .inages of C manifolds of dimension < dim G has zero left Haar 

measure. 

9: THEOREM V x E G, 

LlG (x) 
1 

= ..,..I d-=-e_t_M-.,,,......Cx ...... >-1 • 
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10: EXAMPLE Every connected nilp::>tent Lie group N is uni.modular. 

[If XE n (the Lie algebra of N), then ad(X) is nil:i;x>tent, thus tr(ad(X)) = O 

and so 

det Ad(exp X) = det ead(X) 

= etr(ad(X)) = l.] 

ll: LEMMA A 1-d.imensional representation of a connected semisimple Lie 

group is trivial. 

12: APPLICATION '!he restriction of 6G to any semisimple analytic subgroup 

of G is := 1. 

13: THEOREM Sup:i;x>se that G is a reductive Lie group in the Harish-chandra 

class -- then G is unimodular. 

PRCX)F First decanpose G as the product OG x V, where V is a central vector 

group (p::>ssibly trivial) and 

0 
G = n Ker x' 

x 
x 

the x running through the set of continuous hararorphisms G -+ R>o· '!his done, 

take for a left Haar measure on G the product of the left Haar measures on OG 

and v. Since V is unimodular, it will be enough to deal with OG (cf. §2, #19). 

Fix a maximal canpact subgroup K of G -- then K is a maximal canpact subgroup of 

0 0 
G and G = KGss' thus V k E K, V x E Gss' 

60 (kx) = 60 (k)60 (x) = 1 • 1 = 1. 
G G G 
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[Note: G is the analytic subgroup of G corresponding to g (the ideal SS SS 

in g spanned by [g,g]). It is closed and no:r:mal.] 

Maintaining the supposition that G is a reductive Lie group in the Harish-

Chandra class, consider an Iwasawa decrntp:)sition G = KAN. 

14: N.B. N is a nonna.l subgroup of AN and AN is the topological sani­

direct product of A and N. 

[Note: AN is second countable so there are no technical issues.] 

15: LEMMA 

1 
/J.AN(an) = jdet Ad(an) I = 

1 
2p{log a)· 

e 

[Note: Here 2p is the sun of the fX)Sitive roots of (g,a) counted with 

n:ru.ltiplicities.] 

Since the p:tir (K,AN) is admissible and since /J.G .:: 1, it follows from §2, 

#22 that V f E Cc(G), 

/J.G (an) 
JG fdµG = JK x AN f (kan) ~(an) d~(k)dµAN(an) 

1 
= J K x AN f (kan) /J.AN (an) d~ (k) dµAN (an) 
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[Note: 'lb be canpletely precise, fix left Haar measures l1:K, µA' ~ on 

K, A, N -- then there is a unique detennination of the left Haar measure µG on G 

such that for any f E C (G) , the function c 

lies in 

and 

16: LEMMA 

(k,a,n) -+ f (kan) 

C (K x A x N) 
c 

[Note: A is abelian and N is nilpotent. . . . ] 

(cf. §2, #25) 

(cf. §2, #15) 
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2p (log a) 
= JK x Ax N f(kan)e dl.X(k)dµA(a)d%(n) 

[Note: As a corollary, 

v -1 -1 -1 
= f K x N x A f (k n a ) d~ (k) dl-N (n) dµA (a) 

(cf. §3, #4) 

G being un.im:xiular (cf. #13).] 

Let M be the centralizer of a in K and put :N = 8N -- then the map 

(n,m,a,n) -+ iiman 

is an open bijection of :N x M x A x N onto an open sul:manifold :&MAN c G. 

17: LEMMA The canplement of :&MAN in G is a set of Haar measure O. 

[Using the Bruhat deccmposition, the said canplement is seen to be a finite 

union of s:nooth images of dX> manifolds of dimension < dim G so one can quote #8. ] 

The pair (N, MAN) is therefore admissible, hence v f EC (G) (cf. §2,#22), c 

6G(man) _ 
= f N x MAN f (iiman) ~(man) dµN (n) dl-1vIAN (man) 
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- 1 -
= f N x MAN f (nrnan) ~(man) dlJ:N (n) d~ (man) 

18: RAPPEL I.et V be a finite dimensional real Hilbert space -- then 

the canonical Haar measure dV on V is that in which the parallelepiped detennined 

by an orthononnal basis has unit :n:easure. 

[Spelle:l out, if {x1 , ••• ,Xn} is an orthononnal basis for V and if Q is the 

d 
set of all I::X>ints X = E c .x. (c. E R) with 0 s c. :c:;; 1. then 

·1 l.l. l. l. l.= 

fQdV=l.] 

[Note: Matters are independent of the particular choice of an orthononnal 

basis since the transition matrix between any two such is orthogonal, hence the 

absolute value of its detennin.ant is l.] 

19: SUBLEMMA I.et V be a finite dimensional real Hilbert space; let 

v1 c V, v2 c V be subspaces. Supp:>se that T:V1 -+ v2 is a bijective linear trans-

where the determinant is canpute:l relative to an orthononnal basis in v1 and an 

orthononnal basis in v2• 
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20: N.B. Symbolically, 

21: CONVENTION Extend the Killing fonn on g x g to a nondegenerate 
SS SS 

synmetric bilinear fonn B:g x g + R with the follCMing properties: 

• B is Ad G invariant. 

e B is 8-invariant. 

• k and p are orthogonal under B. 

• B is positive definite on p and ne:Jative definite on k. 

22: N .B. The bilinear fonn 

(X,Y) 8 = -B(X,8Y) (X,Y E g) 

equips g with the structure of a real Hilbert space. 

Relative to this data, any subsµ3.ce 1 of g carries a canonical Haar measure 

dl, an instance being the Lie algebra 1 of a closed Lie subgroup L of G. 

23: EXAMPLE k and p are orthogonal and dg = dkdp. 

[Note: The orthog-onal projections ~, Ep of g onto k,p are given by 

E = _l_-_8 
p 2 

respectively. ] 

24: CCNSTRUCTION Choose an open neighborhood N0 o£0 in 1 and an open 
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neighborhood Ne of e in L such that exp is an analytic diffeanorphism of Na onto 

Nonnalize the left Haar measure µL on L in such a way that v f E C (N ) , c e 

where 

F(X) = f (ex:p X) I det/ 
l-e-ad(x) 

ad(X) 11 · 

This fixes µL uniquely, call it dL, and its definition is irrlependent of tre ch:>ice 

of Na· 

25: N.B. If L is o::mpa.ct, put 

vol(L) = f L dL 

1 
and term vol (L) dL tre nonnalizerl. Haar measure of L. 

Now write after Iwasawa G = KAN, thus V f E Cc (G) , 

On the right hand side, take 

1 
dµK(k) = vol(K) dK, dµA(a) = dA, d~(n) = dN. 

Then these choices determine dµG uniquely, denote it by the symbol dstG and refer 

to it as the standard Haar measure of G. 

26: LEMMA 

1 d' -- lillN 
dG = 2 2 e2p Clog a) dKd.MN. 

----------------- ------
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PROOF It suffices to show that 

1 d' -- llilN 
dg = 2 2 dkdadn. 

'lb establish this, write 

the sum being orthCXJonal, hence 

dg = dkdµ = dkdadEµn 

= ldet Eµlnldkdadn. 

Choose an orthononnal basis z. for n -- then 
1 

(E Z . , E Z . ) S = o . . /2 µ 1 µ J 1] 

which implies that /2 E Z. is an orthononnal basis for E n, so µ 1 µ 

[Note: 

Therefore 

1 

12 

1 

12 

1 d' - - l.IIl N 
= 2 2 

dim N = dim G/K - rank G/K. ] 
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1 d' N 
- 2 1Ill 2p(log a)dKdl\dN 2 e 
_ .!. dim N 

2 2 

1 d' N - llil 
-..,__-.--- 22 dG. 
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§1. TRANSVERSALS 

Let G be a locally compact group. 

1: SUBLEMMA Fix x E G -- then for any open neighborh:x>d U of e there 

exists an open neighOOrhx>d V of x wch that v-1v c u. 

2: DEFINITION A rubgroup r c G is a di~rete subgroup if the relative 

toµ:>logy on r is the discrete top:>logy. 

3: LEMMA A rubgroup r c G is discrete iff there exists an oi;:en neighb::>r-

hood u of e (in G) such that r n u = {e}. 

4: 'IHEOREM Supp:>se that f c G is a discrete subgroup -- then f is closed 

in G, hence G/f is a locally comp:i.ct Hausdorff space (cf. I, §1, #14). 

5: EXAMPIE 

e Take G = R, f = Z. 

• Take G = A, r = Q. 

x 
e Take G = I , f = Q • 

6: LEMMA Let r be a discrete subgroup of G -- then there exists an open 

neighOOrhood u
0 

of e such that u
0
y n u

0 
= ~ for all y ~ e in r. 

PROOF First chcXJse U per #3. This done, choose V per #1 (with x = e) and 

-1 -1 -L. 
Y = u0 u0 E u0-u0 = V -V c U 

=> Y = e. 
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7: SUBLEMMA I.et H be a closed subgroup of G and give G/H the quotient 

top:>logy -- then the projection TI: G + G/H is an op:m map. 

[let U c G be a nonempty op:m set, the clann being that n (U) c G/H is a 

mnempty op:m set. But n(U) is op:m iff n-1 (n(U)) is open. And 

-1 
TI (TI (U)) = UH = U Uh 

hEH 

which is a union of open sets.] 

8 : THEOREM Supr:ose that r c G is a discrete subgroup -- then too pro­

jection n:G + G/r is a local hamearorphisn. 

PROOF Fix x E G and clnose u0 per #6 to get an open neighborhood xu
0 

of x 

with the property that \/ y ~ e in r, 

Therefore the arrow xu0 + TI (xu
0

) is a continuous bijection, hence is a homeo­

rrorphisn (cf. #7). 

9: DEFINITION let r be a discrete subgroup of G - then a Borel subset 

t c G is a transversal for G/I' if the restriction of TI to t is bijective. 

10: N.B. In other ~rds, a transversal t for G/r is a Borel subset of 

G which meets each co set exact! y once. 

11: THEOREM. Suppose that I' c G is a discrete subgroup. Assume: G is 

second countable -- then G/I' admits a transversal t. 

12: REMARK A transversal t for G/f gives rise to a unique section 

T:G/r + t c G (n o T = id) which is Borel measurable if G is second countable. 
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13: N.B. Tacitly, Lie groups are assum.eCl to be second countable (cf. I, 

§5), hence a-compa.ct (cf. I, §2, #2). 

[Note: Still, in this situation it is not cla.imed (nor is it true in general) 

that st00th sections exist.] 

A/Q. 

rare.sure: 

14: EXAMPLE Take G = R, r = Z -- then [ 0, 1 [ is a transversal for R/Z. 

15: EXAMPLE Take G = A, r = Q -- then TIZ x [O,l [ is a transversal for 
p p 

16: EXAMPLE Take G = I , r = Qx -- then 1T Zx x Rx is a transversal for 
p p >O 

17: CONVENTION The Haar measure on a discrete group r is the counting 

fr f(y)dr<Y> = E f(y). 
yEf 

[Note: r is unmroular (bemg discrete).] 

18: LEMMA If r c G is a discrete subgroup and if G is 99COnd countable, 

then r is at rrost countable. 

19: LEMMA If r c G is a discrete sub::jroup, if G is sax>nd countable and 

if t is a transversal for G/r, then 

G = U ty 
yEf 

(disjoint union) , 

JG fdµG = L It fdµG 
yEf y 



[Note: v x E t, 

4. 

r r (f o n) (x) = f (xr) 

= Jr f(xy)d11r<Y> 

= L: f (xy) • ] 
yEr 

20: RAPPEL If G is un.im:xlular and if µG is fixed, then G/r admits an 

invariant measure µG/r characterized by the condition that for all f E cc(G), 

(cf. I, §4, #7). 

21: THEOREM If r c G is a discrete subgroup, if G is second countable, 

if t is a transversal for G/r, if G is unimodular and if µG is fixed, then 

V f E Cc(G), 

[Simply assemble the foregoing data.] 

[Note: Since the fr (f E Cc (G)) exhaust cc (G/r) (cf. I, §4, #3), it follows 

that V ¢ E Cc ( G/r) , 

In particular, this holds for all ¢ if G/r is canpact.] 

22: DEFINITION Let r be a discrete subgroup of G -- then a Borel subset 

F c G is a fundamental domain for G/r if it differs frcm a transversal by a set 

of Haar measure 0 (left or right) • 
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23: EXAMPLE Take G = R, f = Z -- then [0,1] is a fundamental dona.in 

for R/Z. 

24: N.B. What was said in #21 goes through verbatim if "transversal" 

is replace:l by "fundamental danain". 
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§2. LAITICES 

I.et G be a second C'Ountable locally canpa.ct group, r c G a discrete subgroup. 

1: NorATION Given a finite subset t:,. c f, let Gt:,. denote the centralizer 

of t:,. in G. 

2: N.B. Gt:,. is close:l in G. 

3 : LEMMA Gt:,. r is closed. m G. 

PRCOF Let x E G" and y E r be sequences such that x y C'Onverges to a l.llnit n u n nn 

x -- then the claim is that x E Gt:,. f. 'lb begin with, V y E t:,., 

Since r is discrete, 3 n
0

(y): 

But t:,. is finite, thus 3 n 0 indefelldent of the choice of y s.ich that 

=> 



=> 

=> 

2. 

-1 -1 z -xyy +xy 
n n n no no 

(n -+ oo) 

4: NorATION Given y E r, GY is its centralizer in G and r (= G n r) y y 

is its centralizer in r. 

5: N.B. GY is a closed subgroup of G, as is r Y (cf. §1, #4). 

6: 

7: 

LEMMA G r is closed in G (cf. #3 (take /5. = { y})) • y 

SUBLEMMA If H is a clos:rl. subgroup of G, if n:G-+ G/H is the projection 

and if F is a closerl subset of G that is the union of co sets xH, then TI (F) is 

closed in G/H. 

8: APPLICATION The :image of 

G r = u xr 
y xEG 

y 

in G/f is closerl, hence is a locally compact Haus:lorff Sp:lce. 

9: REMARK The pmject.ion n:G -+ G/f is an op:m. map (cf. §1, #7) but, in 

general, it is not a closerl rna.p. 

[Take G = R, r = Z and view- R/Z as [ 0, 1 [ equipped with the to:p::>logy in which 

an op:m. basis consists of all sets ]a,b[ (0 < a < b < 1) and of all sets 
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[O,a[ U ]b,l[ (0 <a < b < 1) -- then 

is closed in R but 

is not clos::rl. in [0,1[.] 

{ 3 9 -n 
A= 2' 4' ... , n+2 , ..• } 

1 1 
1T (A) = { 2' 4' 

1 
•••I Ill 

2 
... } 

Considered as families of rubsets of G, Gyr/r and 1T(GY) are identical: The 

elements of G r/r are the oosets xr with x E G rand the elements of 1T(G ) are y y y 

the oosets xr with x E GY. 

10: LEMMA The identity map 

is a l"nnoorrorphisn. 

[Nbte: That is to 53.y, the tVJO toi;ologies are tl'E s:une.] 

11: N.B. One rna.y then identify 1T (G ) with G r/r which is therefore close:l 
~- y y 

:in G/r (cf. #8). 

12: NOTATION Let 

be the arrow definoo by 

r:G r/r -+ G/G n r y y 

r (x f) = x ( G n f) • 
y 

13: N.B. r is bijective. 
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14: THEOREM: r is a lnmeonorphisn. 

This is not completely obvious and it will be best to break the proof into 

b'°IO i::arts. 

15: LEMMA r carries open subsets of G r/r onto open Slbsets of G/G n r. y y 

PROOF An op:m subset of G r/r is a subset {xr:x E X}, where x c G , such y y 

that xr is open in G r viewed as a subsp3.ce of G. Since y 

X(G n r> = xr n G , y y 

it follows that X(G n r) is an open subset of G in its relative to:i;x:>logy as y y 

a subsp:ice of G, thus by the very def.inition of the tor:ology on G/Gy n r, 

r{xr:x E X} = {x(G n r) :x E X} y 

is an op:m subset of G/Gy n r. 

16: 
-1 

LEMMA r carries open subsets of GY/GY n r onto open subsets of 

Gyr;r. 

PROOF Let {y(Gy n r) :y E Y} (Y c Gy) be an open subset of G/Gy n r -- then 

Y(GY n r) is an open subset of GY, SJ 

n(Y(Gy n f)) = {yf:y E Y} 

is op::m in G r /f (see the Append.ix infra) or still, y 

-1 {yf :y E Y} = r {y(Gy n r) :y E Y} 

17 : EXAMPLE Take G = R, r = Z and H = /2 Z -- then the argrnnent u ~ .in 
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#15 is applicable if the G there is replaca::l by H, thus the map 
y 

H/H n r + H + r/r 

jg continuous. Nevertheless, it is not a homoorrorphisn. 

[H n r is trivial ro H/H n r is iS)J]Drphic to Z and carries the discrete 

top::>logy. Meanwhile, H + r = /2 Z + Z is dense in R, hence 

H + r/r = /2 z + Z/Z 

is dense in R/Z ~ T. It is is::m.:>rphic to Z as a group but it is not discrete 

since every nonanpty open subset of T :intersocts it in an infinite set implying 

thereby that none of its finite subsets are open.] 

[1\bte: The di£ference here is this: Gyf/f is locally compact but H + f/f 

is oot locally cornpict.] 

18: DEFINITION r is sa.id. to be a lattice if G/r admits a finite .invariant 

me.a.sure (cf. I, §4, #4), r being te.rmed uniform or nonuni£orm according to wrether 

G/r is comp:t.ct or not. 

19: N.B. If thece is a lattice in G, then G is necessarily unim::xlular 

(cf. I, §3, #11 and I, §4, #10). 

[Note: A discrete cocompact subgroup is necessarily a uniform lattice .••• ] 

20: EXAMPLE z is a uniform lattice .in R. 

21: EXAMl?IE SL(2,Z) is a oonuniform lattice in SL(2,R). 

22: THEOREM Supp:>se that r c G is a uniform lattice -- then V y E r, 

G/fy is COffipiCt. 
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PIOJF G r /r is close:l :in G/r, hence is compact (this being the case of y 

G/r) • On the other hand, 

r:G r/r + G/G n r y y 

is a lnma::nrorphisn (cf. #14). 

[Note: Conseq:uentl y, ry c G is a unifonn lattice and G is unim:>dular.] y y 

23: NarATION [r] is a set of representatives for the r-conjugacy classes 

:in r. 

Put 

s - I I G/r x { y} 
yErt'J y 

and def :ine iµ: S + G by the rule 

24: N.B. f y is a discrete subgroup of G, thus ry is closed. :in G (cf. 

§1, #4) and therefore the quotient G/f Y is a locally compact Hausdorff Sfa.Ce fran 

which it follows that S is a locally canpact Ha.us:l.orff space. 

25: DEFINITION Let X and Y be locally compact Hausdorff sp:tces, f :X + Y 

a cont:inuous function -- then f is proper if for every canpact subset K of Y, the 

. . f-l ( ) . sub t f mverse JJ.na.ge K is a comp:tct se o x. 

26: THEOREM Supp:>se that f c G is a unifonn lattice -- then 1JJ is a proper 

map. 
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27: NOTATICN Given y E f, let 

-1 
[y]G = {xyx :x E G}. 

28: APPLICATION In the unifo:rm. situation, for any compact subset K c G, 

{y E [f] :[y]G n K ~ ~} 

is finite. 

29: I.EMMA A pro~ ma.p f :X -r Y is closed: 

S c X closed=> f (S) c Y closerl.. 

30: APPLICATION In the unifo:rm. situation, V y E f, [ y] G is closed. 

[In fact, 

31: N .B. Accordingly, [ y] G is a locally compact Hausdorff spa.ce and the 

canonical arrow 

is a ha:neon:orphisn. 

APPENDIX 

Denote by nlG the restriction of n:G -r G/r to G • y y 

CRITERION Sup:i;x:>se that there exist nonempty open sets 

u c G , v c G r/r y y 

such that the restriction of rrlG to U is an open continuous map of U onto v -­
y 

then rr I G is open. 
y 
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PRCXJF Given x E G and an oi;ai neighborhood W of x in G , it suffices to y y 

show that (1TIG) (W) contains an oi;ai neighborhcxJd N of (1TIG) (x). SO fix a 
y x y 

tnint y E U and put 

u = u n yx-1w, 

an oi;ai neighborhood of y in U, tms the .image ( 1T I G ) (U) is an oi;ai subset of 
y 

G r /r or still, UT is an open subset of G r, hence y y 

is an open subset of G r and 
y 

Put nCM 

xy-1ur = (xy-1u n w>r 

x E xy-1u n W. 

-1 
N = {zr :z E xy u n w}. x 

Then N is an open subset of G r/r contamed. in x y 

(1TjG ) (W) = {wr:w E W} 
y 

to which (1TIG ) (x) belongs. 
y 

There is a carmutative diagram 

GY!r/r 

-1 r 

and G r;r is a locally com:pact Hausdorff space (cf. #8), thus is a Baire s:pace. y 



LEMMA nlG is an open ma.p. y 

9. 

PRO:>F The quotient G/Gy n r is second countable, hence a-compact, hence 
00 

G/Gy n r = u Kn, 
n=l 

where K1 , K2 , • • • are canpact. In view of #15, 

-1 
r :G/Gy n r -+ Gyr/r 

is continuous and one-to-one, so v n the restriction of r-l to K is a homeo­
n 

-1 rrorphisn of K onto L = r (K ) : n n n 
00 

G r;r = u L , 
Y n=l n 

a oountable union of canpacta. Being Ba.ire, it therefore follows that 3 n E N 

-1 and a nonempty open subset v of Gyr/r such that v c r (Ln). Put 

Then U c G is nonempty and open and the restriction of TI to u is an open con-y y 

tinuous map of U onto r(V) or still, the restriction of n!G to u is an o~ y 

continuous map of u onto V. 
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§3. UNIFORMLY INTEGRABLE FUNCTIONS 

let G be a unirrodular locally campact group and, generically, let Ube a 

compact synmetric neighborh::x:rl of the identity in G. 

1: NOI'ATION Given a continuous function f on G, put 

fu<Y> = sup If <xyz> I 
x,zEU 

(y E G). 

2: LEMMA fll E C(G), i.e., is a continuous function on G. 

3: DEFINITION A contmuous function f on G is said to be unifonnly 

integrable if there exists a U such that fll E L 1 ( G) • 

4: N.B. Since If I ~ fll, it is clear that if f is unifonnly :integrable, 

then f is integrable: f E L 1 (G) • 

5: NorATION Write '1JN(G) for the set of continuous functions on G that 

are unifonnly integrable. 

6: LEMMA 

Cc(G) c '1JN(G) c Co(G). 

[Note: As usual, C (G) is the set of continuous functions on G that are 
c 

cnmpactly supp::>rted and c0 (G) is the set of continuous functions on G that vanish 

at infinity.] 

7: LEMMA 

'1JN{G) c L
2 {G). 
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[Integrable functions in c
0

(G) are square integrable. 

2 
8: EXAMPLE Take G = R -- then f (x) = e -x is unifonnl y integrable. 

9: LEMMA If f,g E SJNCG), then f*g E SJNCG}. 

[Working with a ccmron U, 

which suffices. 

(f*g)ll(y) = sup l1G f(u)g(u-
1
xyz)dµG(u) / 

x,zEU 

= sup /!G f(xu)g(u-
1

yz)dµG(u) I 
x,zEll 

$ sup !Gjf(xu)g(u-1yz) jdµG(u} 
x,zEll 

[Note: The convolution f*g is continuous.] 

I.et H c G be a closed subgroup and assume that H is unirrodular and cocanpact. 

10: NOTATION L
2 

(G/H) is the Hilbert s:pa.ce associated with µG/H (the 

invariant measure on G/H :per I, §4, #5). 

11: NOI'ATION LG/H is the left translation representation of G on L2 (G/H) • 

12 : THEOREM Let f E SJN (G} -- then 



3. 

is an inte]ral operator on L2 (G/H) with continuous kernel 

Since 

C(G/H x G/H) c L2 (G/H x G/H), 

it follows that v f E CUNCG), LG/H(f) is Hilbert-Schmidt, hence is canpact. 

13: SUBLEMMA Let Ube a unitary representation of G on a Hilbert space 

H with the property that v f E Cc(G), the operator 

U(f) = JG f(x)U(x)dµG{x) 

is canpact -- then U is discretely decomposable, a given irreducible unitary 

representation of G occurring at most a finite number of t.imes in the orthogonal 

decanp:>sition of U. 

00 

[Note: If G is a Lie group, then one can replace Cc (G) by Cc (G) • ] 

14: N .B. If G is second countable, then H is separable. 

15: APPLICATION Take H = L 
2 

(G/H) , U = LG/H -- then there exist non-

A 

ne:Jative integers m(TI,LG/H) (TI E G) such that 
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§4. THE SELBERG TRACE FORMULA 

I.et G be a second countable locally canpact group, r c G a discrete sub-

group. Assume: r is a uniform lattice -- then G/f is cocanpa.ct and G is 

necessarily un.inndular (cf. §2, #19). 

W:>rking with L 2 
( G/f) , there is an orthoc;ronal decomposition 

LG/r = eA m(IT,LG;r>rr (cf. §3, #15), 
fEG 

the multiplicities m(IT,LG;r> being certain nonnegative integers. 

1: RAPPEL v f E SNCG), LG/r (f) is an integral operator on L
2 

(G/r) 

with continuous kernel 

-1 Kf (x,y) = ~ f (x-yy ) 
yEf 

(cf. § 3 , # 12) • 

[Note: This implies that LG/r (f) is Hilbert-Schmidt.] 

2: COOVENTION Fix a Haar measure µG on G, take the counting measure on 

r, and nonnalize the invariant measure µG/f on G/f by the stipulation 

If f = g * g* (g E SNCG)), then f E SNCG) (cf. §3, #9), 

LG/f (f) = LG/f (g)LG/f (g)* 

is trace class and (cf. B, II, §2, #8) 
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i.:_ REMARK The assumption that f = g * g* (g E ~(G)) is not restrictive. 

For if f = g * h* (g,h E ~(G)), put 

T(g,h) = g * h* 

and using the same letter for the diagonal, note that 

T(g,h) = !(T(g+h) - T(g-h) 

- H T(g - r-T h) + H T(g + r-T h)). 

Let Xc;;r be the characteristic function of G/r, i.e. , the function = 1. 

r 
Choose a E Cc(G):a = Xc;;r (cf, I, §4, #3), thus v x E G, 

ar(xr) = ~ a(xy) = 1. 
yEf 

One can then write 

(cf. §1, #21) 

= f~ ( ~ a(xy))Kf(xr,xr)dµG(x) 
1r.- YEf 

= ft ~ a(xy)Kf(xy,xy)dµG(x) 
yEf 

= fl (a.Kf)r o n(x)dµG(x) 
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-1 
= f G a (x) l: f (xyx )dµG (x) 

yEf 

-1 
= l: JG a(x)f(xyx )dµG(x). 

yEf 

4: NarATION For any y E r, 

5: 

[Note: 

G = centralizer of y in G y 

r =centralizer of y in r. y 

RAPPEL r is a unifonn lattice in G (cf. §2, #22). y y 

Consequently, Gy is un.imodular.] 

6: NarATION For any y E r, 

[y]r =conjugacy class of yin r 

[ y] G = conjugacy class of y in G. 

7: RAPPEL There are canonical bijections 

Returning to the canputation, break the sun over r into conjugacy classes 

in r, the contriliution fran 
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being 
-1 -1 

L JG a (x) f (xcSycS x ) dµG (x) 
cSEr/r y 

-1 -1 = L JG a(xcS )f(xcSx )dµG(x) 
cSEr/rY 

-1 -1 
=JG ( L a(xcS ))f(xyx )dµG(x). 

cSEr/rY 

8: CONVENTION Supplanentimg the agreanents in #2, fix a Haar measure 

µG on G , take the counting measure on r , and nonnalize the invariant measure 
y y y 

µG /r on G /r by the stipulation 
y y y y 

Next, fix µG/G via 
y 

JG = JG /r Jr (= J G/r L ) • 
Y Y Y Y Y ry 

Finally, make the identification 

and put 

.r.t:>\Ting on I 

-1 -1 
JG ( L a (xcS )) f (xyx )dµG (x) 

cSEr/rY 



But 
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-1 
Ir lr;r a(xno ) 

y y 

is = 1, leaving 

Surma:cy: 

-1 
tr(LG/r(f)) = l: JG/I' f(xyx )dµG/r (x), 

yE [r] y y 

the sum be.ing taken over a set of representatives for the r-conjugacy classes in 

r (cf • § 2 , # 2 3) • 

9: N.B. 

-1 . 
J G/r f (xyx > dµG/r (x) 

y y 

-1 -1 . 
= J G/G (J G/f f (xnyn x ) dµG/f (n) ) dµG/G (x) 

y y y y 

-1 . . 
= J G/G (! G/f f (xyx ) dµG /r ( n) ) dµG/G (x) 

y y y y y 

-1 . 
= J G/G f (xyx ) (f G ;r dµG/f ) dµG/G (x) 

y y y y y 

-1 . 
= vol CG/f y> J G/G f (xyx ) dµG/G (x) • 

y y 

10: DEFINITION' Given f E ~(G) * ~(G), the Selberg trace fonnula is 
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the relation 

their corrm:m value being 

tr(LG/f(f)). 

11: REMARK Supi:ose that G is a Lie group -- then 

00 00 00 c (G) * c (G) = c (G) (Dixmier-:Malliavin} . c c c 

Since 

00 

Cc(G} c SJNCG}, 

it follows that the Sel.berg trace fonnula is valid for all f E C
00

(G}. 
c 

Let G be a second countable locally canpa.ct group, r c G a uniform lattice. 

12: LEMMA Let x:G + T be a unitary character -- then the multiplicity 

of x in L2 (G/r) is 1 if x (r) = {l} and is 0 otherwise. 

A 

Now take G abelian and identify G with tm unitary character group of 

G:IT <-> x, the Fourier transform being defined by 

A 

tr(IT(f)) = f(x} =JG f(x}x(x}dµG(x}. 

13: NOr.ATION Let 

ri = {x E G:xCY> = 1 v y E r}. 



7. 

14: N.B. Therefore 

X E r1- => m (X,LG/f) = 1 

The Selberg trace fonnula thus simplifies: 

• Matters on the "s:pectral side" reduce to 

• .Matters on the "geometric side" reduce to 

vol(G/f) E f(y). 
yEf 

15: DEFmITICN The relation 

A 

E f (x) = vol(G/f) E f {y) 
xErL yEf 

is the Poisson sun:mation fonnula (cf. A, III, §4, #7) (in that situation 

vol ( G/r) = I~ I ) . 
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§5. FUNCTIONS OF REGULAR GROWTH 

I.et G be a second countable locally compact group, r c G a unifo:rm lattice. 

VVhile CUN(G) is theoretically convenient, there is a larger class of functions that 

can be fed into the Selberg trace fonnula. 

1: DEFINITIQ.\J I.et <P E c (G) n L 
1 

(G) be nonnegative -- then <P is said to be 

of regular growth if there is a comp:ict syrrmetr ic neighOOrhx>d ll of the identity 

in G and a p:>sitive constant C (de:pending on cp and ll) such that v y E G, 

2: N.B. In terms of the characteristic function Xu of U, Vy E G, 

= f -l cp(xy)dµG(x) 
ll 

3: EXAMPLE Take G = Rn and fix a real number r > 0 ruch that 

f 
1 

----- dY < 00 • 

Rn (I + I IY 11) 

Given U, fix a real number N > 0 such that V X E ll, 

(1 + I IY 11) -r $ N (1 + I Ix + Y 11> -r · 



2. 

Then 

1 
/ 

ax 
vol (U) ll (1 + I IX + YI pr 

1 dX 

<: vol (11) ! 11 (1 + I IY 11) r 

Therefore 

cl>(Y) = (1 + I IYI l>-r 
is of re:JU].ar growth 

4: EXAMPLE Let G be a a::mnecte:i sanisimple Lie group with finite center 

and fix a real number r > 0 such that 

2 -r JG 1---o~I (y) (1 + a(y)) dG(y) < oo. 

Given 11, fix a real number M > 0 such that v x E U, 

and fix a real number N > 0 such that V x E 11, 

-r -r 
(1 + a (y) ) ::;; N (1 + a {xy) ) • 

Then 

MN 2 -r 
vol{ll) ! 11 !--0~! (xy) (1 + a(xy)) dµG(x) 

1 2 -r 
~ vol(ll) ! 11 l--o--1 (y) (1 + a(y)) dµG{x) 

I 1
2 -r = -o- (y) (1 + a (y) ) • 
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Therefore 

¢ (y) = l--o-12 (y) (1 + a (y)) -r 

is of regular growth. 

5: DEFINITION Let f be a continuous function on G -- then f is admissible 

if there exists a function ¢ of re:JUlar growth s.ich that v y E G, 

lf(y) I $ ¢(y) ($ c(xu * <P> (y)). 

[Nbte: Admissilile functions are int8::]rable.] 

6: EXAMPLE The rapidly docreasmg functions on Rn are admissilile (cf. #3) • 

7: LEMMA If f E Sm(G), then f is admissible. 

PROOF v y E G, If (y) I $ fu (y) . And 

fll(y) = sup !f (uyz) I 
u,zEU 

=> 

$ sup If (uxyz) I (x E ll) 
u,zEU 

1 
$ vol(U) fu s~p If Cuxyz) ldµG(x) 

x,zEU 
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Therefore fll is of regular growth, hence f is admissible. 

8: LEMMA SupfOse that If I :5 jg I, where g is admissible, say lg I s l/J --

then f is admissible (clear) as is f * f. 

[For 

If* f I s If I * lfl 

$ lgl * lgl 

s l/J * lg I· 
And l/J * lg I is of regular growth: 

l/J * lgl $ <cxu * l/J) * lgl 

= c<xu * (l/J * jg!)>. 

The cond.ition of admissible is then met by 

¢ = l/J * jg I· J 

[Note: If fl, f 
2 

E C (G) n L l (G) and if fl is admiss:ible, then fl * f
2 

is 

admiss:ible. Proof: 

lf1 * f 2 1 s lf1 1 * lf2 l 

s ¢1 * lf2I 

$ c<xu * <¢1 * lf2I>> .] 

9: DEFINITION A series of functions f 1 , f 2 ,. • • on a locally comr:a.ct 

Hausdorff space X is locally dominantly abs::>lutely convergent (ldac) if for every 

compact set K c X there ex:ists a :r:ositive constant!'\ such that v k E K, 
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10: CRITERION Let f E c (G) n L 
1 

(G) • Assume: The operator LG/r (f) is 

trace class and the series 

-1 
L: f (xyy ) 

"(Ef 

is ldac on G x G to a seµrrately cont.inuous function -- then the Sel.berg trace 

formula obtains: 

tr (LG/f (f)) 
-1 . 

= L: vol ( G/f ) f GVG f (xyx ) dµGVG (x) , 
~rn Y Y Y 

the sum on the right rand side being abrolutely convergent. 

[First of all, 

-1 . 
tr(LG/r(f)) =JG/I' L: f(xyx )dµG/f(x) (cf. B, II, §2, #8). 

yEf 

Proceerl.ing, fix a comp:ict set K c G: Kr = G (cf. #11 infra) and ch:x:)se ~ > 0: 

I 
-1 

k,l E K => L: f (kyl ) I < ~-
YEf 

Here, of oourse, the ldac oorrlition is per K x K-l c G x G. Given x, y E G, 

:3 y , y E f : xy , yy E K, SJ x y x y 

from which 

Now .interchange sum and integral, the ensuing fonna.l maniptlation being just if ierl 

by Fubini.] 

11: SUBLEMMA There exists a comp:i.ct f:et K c G such that Kf = G. 
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-
[Let Ube an opm neiglrorlnod of e such that U is comI,Ect -- then the 

collection { n (xU) :x E G} is an open covering of G/r, thus there is a finite sub-

collection 

that covers G/r and one may take 

u x u. 
n 

IndeErl, 

G/f = {kf:k E K}, 

so given x E G, 

xf = kf (3 k) => x = ky (3 y) => x E Kf.] 

[Note: It can be shown that K contains a transversal t which is therefore 

relatively compact.] 

Supp:>se that f is admissible -- then V x,y E G, 

12: LEMMA Fix x,y E G -- then v yl' Y2 E r I 

if f 

[In one direction, 
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=> 

=> 

=> 

=> 

-1 -1 . Since r is discrete, the oompact set x U Ux contains a finite number N of 

elements of r. -1 
So, for fixed x, y, not :rrore than N of the Uxy 

2
y can intersect 

13: N. B. Consider the case when N = 1. Since it is always true that 

-1 -1 . . -1 e E x U Ux, m this situat.ion the Uxyy are disjoint, hence 

-1 
L: f ll cp (uxyy ) dµG (u) 

YEf 

14: RAPPEL If µ is a measure, then 

n n n n 
L: µ (X

1
. ) = µ ( U X . ) + µ ( U U X . n X . ) 

i=l i=l l i=l j=l l J 
i<j 
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n n n n 
+ µ( u u u x. n x. n ~> + ··· + µ( n x.). 

i=l j=l k=l l J i=l l 

i<j<k 

15: LEMMA Fix x,y E G -- then 

16: N. B. .M:>re is true: The Eer ies 

-1 
l: f (xyy ) 

yEI' 

is ldac on G x G to a continuous function. 

[The p:>mt is that the precedmg estmate is unifo:rm in x and y if trese 

variables are confined to compacta K and K .] x y 

[Note: Consequently, 

f admissible => LG/r (f) Hilbert-Schmidt.] 

17: THEOREM If f is admissilile and if LG/r(f} is trace class, then the 

Selberg trace fo:rmula obtams (cf. #10). 

18: N.B. 

f admissible => f * f admissible (cf. #8). 

Therefore 

is trace class and the foregoing is applicable. 
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S:pecialize now to the case when G is a connected semisimple Lie group with 

finite center. 

19: RAPPEL c1 CG) is the L1
-Schwartz Splce of G. It is closed under 

convolution and contains C~(G) as a dense subspace. 

Let f E c1
(G) and taker > 0 per #4 -- then there exists a constant C > O 

such that 

2 -r If (y) I !S. c 1-o·-I (y) (1 + cr (y)) (y E G). 

Therefore f is admissible. 

20: LEMMA LG/r(f) is trace class. 

[Using the theory of the parametrix, -write 

f = g * µ + f * v, 

where g E c1 (G) (a certain derivative off),µ E C~(G), v E C~(G), s:> 

The functions 

f,g,µ,v 

are admissilile, hence the operators 

are Hilbert-Schmidt.] 

21: SO:IOLIUM \:/ f E C1 (G), the Selberg trace fonnula obtains. 
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22: N .B. The assignment 

f -+ tr (LG/f (f)) 

is continuous in the toµ:>logy of Cl (G) . 

[Note: Analogously, the assignment 

is continuous in the toµ:>logy of C~ (G) , i.e. , is a distribution on G.] 

APPENDIX 

By way of reconciliation, consider the case when G is finite and use the 

notation of A, III, §3 and §4 -- then given f E C(G), cp E C(G/r), we have 

where in this context 

1 -1 
Kf (x,y) = TfT E f (xyY ) • 

11 I yEr 

Here 

µG = counting measure on G 

µr = counting mea.sure on r. 

wcite 

Then for any f E C(G), 
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so µG/r is count:ing measure on G/r. 

Now explicate matters: 

n 
= L: L: Kf{x,xky) cJ>{~y) 

k=l yEf 

n 
= L: L: Kf {x,xk) cp (~) 

yEf 

n 
= L: Ir I . Kf {x,~) cp {xk) 

k=l 

n -1 
= l: L: f {xyxk ) cp (~) 

k=l 

which establishes that LG/r {f) is an integral operator on c {G/r) with kernel 

l: f {xyy-1)' 
YEf 

this being the "Kf" of §4, #1. 

There is n:ore to be sa:i.d. Thus given f E C{G), we have 

tr {LG/r {f) ) 
1 -1 

l: Tff L: f {xyx ) 
xEG YEf 

{cf. A, III, §3, #8) 
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n 1 
= l: Ir I O(f,yi) (cf. A, III, §4, #2). 

i=l y i 

Here 

while 

-1 O(f,y.) = l: f (xy.x ) 
l xEG l 

-1 = !G I l: f(xy.x ). 
Yi xEG/G 1 

Therefore 

= [Gy : r ]. 
i y i 

Yi 

N.B. The Haar measures µG (or µG ) and µr (or µr ) are counting measures, 
y y 

hence the invariant meas..rre µG/r (or µG/r/ is counting measure, hence tre 

invariant meas.rre µG/G per 
y 

is counting measure, its total volume being 

Finally, the invariant mea s.rre µG/ r :r;:er 
y 



is counting measure arrl 

i.e.' 

i.e.' 

=> 

13. 

vol(G/r) = vol(G/G )volCG/r ), y . y y 

1<\1 = [G :r ]. T? y y 

Matters are thus consistent, oo the bottom line is that the global trace 

fo:rmula of A, III, §4, #6 is in this context the Selberg trace fonnula. 
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§6. VTSCRETE SERIES 

Let G be a unimodular locally compact group. 

1: DEFINITION Let II be an irrerlucible unitary representation of G on 

a Hilbert space V(II) -- then II is square integrable i£ 3 v # 0 in V(II) such that 

the coefficient 

x + <II(x)v,v> 

is square integrable on G. 

2: 'IHEOREM If II is square integrable, then for all vl'v
2 

E V(II), the 

coefficient 

x + <II(x)v1 ,v2> 

lies in L
2 (G) and there exists a unique positive real number~ (depending on 

the normalization of the Haar measure on G but independent of vl'v
2

) such that 

3: DEFINITION dII is called the fonnal dimension of II. 

[Note: If G is canpact, then every irreducible unitary representation of G 

is square integrable and dII is the d.imension of II m the usual sense provided 

JG dµG = 1. 

4: NarATION Gd is the subset of G comprised of the square integrable 

representations and is called the discrete series for G. 
,,.... 

[Note: Gd may very well be anpty (e.g. , take G = R) • ] 
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A 

5: REMARK If Gd is not empty, then the center of G is compact (the converse 

being false). 

A 

6: N.B. The elements of Gd are precisely tl:Dse irreducible unitary 

representations of G which occur as irreducible subrepresentations of the left 

translation representation of G on L
2

(G). 

A 

7: NarATION Given a II E Gd, let 

(x) = <II (x) • , • > (x E G) . , . 
stand for a generic coefficient. 

in vcm, 

= 

9: APPLICATION 

[Note: If v1 = v 2 = w1 = w2 is a unit vector, call it v and abbreviate <Pv,v 

to cp, thm 
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10: DEFINITION I.et TI be an irreduc ilile unitary representation of G on 

a Hilbert space V(TI} -- then TI is integrable if 3 v -:f 0 in V(TI} s.ich that the 

coefficient 

x + <TI (x}v ,v> 

is :integrable on G. 

11: N.B. The coefficient 

x + <TI(x}v,v> 

is oounderl and L 
1 

I hence is L 
2

• Therefore 

"TI :integrable" => "TI square integrable" 

but the converse is false. 

12: THEOREM If TI is inte;:rrable, then there exists a dense subspa.ce V(TI} ..... 

of V(TI} s.ich that for all vl'v
2 

in V(TI} ..... the coefficient 

lies in L
1 

(G}. 

[:Note: If cp E L1 (G}, then one can take v,v 

Take G second countable and assume that II E G is integrable, say cp E L 1 (G) v,v 

1 
cpTI(f}v,TI(f}v E L (G} 

Put v 0 = TI(f}v, nonnalizerl by I lv0 11 = 1, and let 

(cf. #12}. 
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13: N.B. 

(cf. #9) 

14: NO'ffi.TION If IT is an irrerluc.ible unitary representation of G and if 

1T is a rmitary representation of G, then 

is the set of intertwin .ing operators between IT and 1T. 

-
15: LEMMA For any unitary representation 1T of G, 1T(¢0) is the ortlx>gonal 

projection onto 

[Note: It's 1T (¢
0
), not TI (¢

0
)... • ] 

Supp:>se that r c G is a unifonn lattice and take 1T = LG/r· 

16: APPLICATION 

is trace class and 
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17: THEOm-1: The series 

is ldac on G x G to a separately continuous function. 

PROJF Let K c G be canpact and let 

n{K) = Ir n K-1spt(f)spt{f)-~I-

Then the arrow 

is at rrost n(K)-to-1 and V x E K, 

I -1 I = d r <TI(xyy )v0 ,TI(f)v> 
II yEf 

-1 = d r l<II(f)v,TI(xyy )v
0

>1 
II yEf 

= d r IJG f (z)<TI(z)v,TI(xyy-1)v0>dµG(z) I 
TI yEf 

I -1 -1 I = dII r JG f(z)<v,TI(z xyy )v0>dµG(z) 
1 yEf 

-1 -1 = d r IJG f(z )<v,II(zxyy )v0>dµG(z) I 
II YEf 

I -1 -1 I = dII r JG f(z )<II(zxyy )v0,v>dµG(z) 
1 yEf 
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= '1rr I I f I I 00 n <K> I I <P I 11 · vo,v 

And 

thereby settling: the ldac condition (and then oome (no restriction on "y")), 

leaving the claim of separate continuity which can be left to the reader. 

-
The operator LG/r(¢0) is trace class (cf. #16). So, in view of what has been 

said above, the criterion of §5, #10 is applicable. 

18: SCHOLIUM 

the sum on the right hand side being absolutely convergent. 



7. 

19: REMARK There are circumstances in which tre integral 

vanishes for all y eKcept y = e, hence then 

m(IT,LG;r> = vol(G/f)¢0 (e) 

= vol (G/f) '11· 

Therefore m(IT,LG/r> is i;ositive, so IT definitely occurs in LG;r· 

[Note: 'lb run a reality check, take G finite, r = { e} -- then vol ( G/f) = 

"' vol(G) = 1 and V IT E G, 

m(IT,LG;r> = dIT (cf. A, II, §5, #8 and A, III, §3, #15).] 

20: N.B. The situation envisionai in #19 is realized if G is a connectai 

semisimple Lie group with finite center and if r has no elements of finite order 

other than the identity. 

21: LEMMA If G is a Lie group and if f E C
00 

(G), then tre series c 

• 00 • 

is a C function of x,y. 

- - ----- ----------------------------


