$$
G, \Gamma, G / \Gamma
$$

Garth Warner
Department of Mathematics
University of Washington

CONTENTS

A: FINITE GROUPS
I:
§1. ASSOCIATIVE ALGEBRAS
§2. REPRESENTATION THEORY
§3. CHARACTERS
§4. SIMPLE AND SEMISIMPLE ALGEBRAS
II:
§1. GROUP ALGEBRAS
§2. CONTRAGREDIENTS AND TENSOR PRODUCTS
§3. FOURIER TRANSFORMS
§4. CLASS FUNCTIONS
§5. DECOMPOSITION THEORY
§6. INTEGRALITY
§7. INDUCED CLASS FUNCTIONS
§8. MACKEY THEORY
§9. INDUCED REPRESENTATIONS
§10. IRREDUCIBILITY OF Ind ${ }_{\Gamma, \theta}^{G}$
§ll. BURNSIDE RINGS
§12. BRAUER THEORY
§13. GROUPS OF LIE TYPE
§14. HARISH-CHANDRA THEORY
§15. HOWLETT-LEHRER THEORY
§l6. MODULE LANGUAGE

III:

§1. ORBITAL SUMS
§2. THE LOCAL TRACE FORMULA
§3. THE GLOBAL PRE-TRACE FORMULA
§4. THE GLOBAL TRACE FORMULA

B: COMPACT GROUPS

I:

§1. UNITARY REPRESENTATIONS
§2. EXPANSION THEORY
§3. STRUCTURE THEORY
§4. MAXIMAL TORI
§5. REGULARITY
§6. WEIGHTS AND ROOTS
§7. LATTICES
§8. WEYL CHAMBERS AND WEYL GROUPS
§9. DESCENT
§10. CHARACTER THEORY
§11. THE INUARIANT INTEGRAL
§12. PLANCHEREL
§13. DETECTION
§14. INDUCTION
II:
§1. ORBITAL INTEGRALS
§2. KERNELS
§3. THE LOCAL TRACE FORMULA
C: LOCALLY COMPACT GROUPS
I:

1. TOPOLOGICAL TERMINOLOGY
2. INTEGRATION THEORY
3. UNIMODULARITY
4. INTEGRATION ON HOMOGENEOUS SPACES
5. INTEGRATION ON LIE GROUPS
II:
6. TRANSVERSALS
7. LATTICES
8. UNIFORMLY INTEGRABLE FUNCTIONS
9. THE SELBERG TRACE FORMULA
10. FUNCTIONS OF REGULAR GROWTH
11. DISCRETE SERIES

§1. ASSOCIATIVE ALGEBRAS

1: DEFINITION An associative algebra over C is a finite dimensional vector space A over C equipped with a bilinear map

$$
\mu: A \times A \rightarrow A, \quad(x, y) \rightarrow \mu(x, y) \equiv x y
$$

such that $(x y) z=x(y z)$.

2: DEFINITION An associative algebra A is said to be unital if there exists an element $e \in A$ with the property that $x e=e x=x$ for all $x \in A$.
[Note: Such an e is called an identity element and is denoted by I_{A}.]

3: N.B. Identity elements are unique.

4: EXAMPLE Let V be a finite dimensional vector space over C--. then Hom (V) (the set of all C-1inear maps of V) is a unital associative algebra over C (multiplication being composition of linear transformations and identity element id. ${ }_{\mathrm{V}}$.

Let A be an associative algebra over C .

5: DEFINITION A representation of A is a pair (ρ, V), where V is a finite dimensional vector space over C and $\rho: A \rightarrow H o m(V)$ is a morphism of associative algebras.
[Note: If A is unital, then it will be assumed that $\rho\left(I_{A}\right)=$ id V_{V}, thus is a morphism of unital associative algebras.]

6: DEFINITION Let (ρ, V) be a representation of $A-$ then a linear subspace $U \subset V$ is said to be ρ-invariant if $\forall x \in A, \rho(x) U \subset U$.

7: N.B. A ρ-invariant subspace $U \subset V$ gives rise to two representations of A, viz. by restricting to U and passing to the quotient V / U.

8: DEFINITION A representation (ρ, V) of A is irreducible if $V \neq\{0\}$ and if the only ρ-invariant subspaces are $\{0\}$ and V.

9: NOTATION Given a representation (ρ, V) of A, put

$$
\operatorname{Ker}(\rho)=\{x \in A: \rho(x)=0\}
$$

10: N.B. $\operatorname{Ker}(\rho)$ is a two-sided ideal in A.

11: DEFINITION A representation (ρ, V) of A is faithful if $\operatorname{Ker}(\rho)=\{0\}$.

12: DEFINITION Let $(\rho, V),(\sigma, W)$ be representations of A-- then an intertwining operator is a C-linear map $T: V \rightarrow W$ such that $T \rho(x)=\sigma(x) T$ for all $x \in A$.

13: NOTATION $I_{A}(\rho, \sigma)$ is the set of intertwining operators between (ρ, V) and (σ, W).

14: EXAMPLE Let (ρ, V) be a representation of A and suppose that $U \subset V$ is a ρ-invariant subspace -- then the inclusion map $U \rightarrow V$ is an intertwining operator, as is the quotient map $\mathrm{V} \rightarrow \mathrm{V} / \mathrm{U}$.

15: DEFINITION Representations (ρ, V) and (σ, W) of A are equivalent if there exists an invertible operator in $I_{A}(\rho, \sigma)$, in which case we write

$$
(\rho, V) \approx(\sigma, W) \quad(\text { or } \rho \approx \sigma)
$$

16: NOTATION \hat{A} is the set of equivalence classes of irreducible representations of A.

17: EXAMPLE Take $A=\operatorname{Hom}(V)$, where V is a finite dimensional complex vector space --- then up to equivalence, the only irreducible representation of Fiom(V) is the representation ρ given by

$$
\rho(T) v=T v(T \in \operatorname{Hom}(V)) .
$$

§2. REPRESENTATION THEORY

Let A be a unital associative algebra over C.

1: THEOREM Let $(\rho, V),(\sigma, V)$ be irreducible representations of A-- then

$$
\operatorname{dim} I_{A}(\rho, \sigma)=\left.\right|_{1} \text { if }(\rho, V) \approx(\sigma, W)
$$

2: THEOREM let (ρ, V) be an irreducible representation of A-- then $\rho(A)=$ Hom (V) .

3: DEFINITION A representation (ρ, V) of A is completely reducible if for every ρ-invariant subspace $V_{1} \subset \mathrm{~V}$ there exists a ρ-invariant subspace $\mathrm{V}_{2} \subset \mathrm{~V}$ such that $\mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2}$.

4: LEMMA Suppose that (ρ, V) is a representation of $A-$ - then (ρ, V) is completely reducible iff there is a decomposition

$$
\mathrm{V}=\mathrm{v}_{1} \oplus \cdots \oplus \mathrm{v}_{\mathrm{s}^{\prime}}
$$

where each V_{i} is ρ-invariant and irreducible.

5: LEMMA Suppose that (ρ, V) is a representation of $A-$ then (ρ, V) is completely reducible iff there is a decomposition

$$
v=U_{1}+\cdots+U_{t^{\prime}}
$$

where each U_{j} is ρ-invariant and irreducible.

6: DEFINITION Let V be a finite dimensional vector space over C. Given
a subset \mathscr{s} of $\operatorname{Hom}(\mathrm{V})$, put

$$
\operatorname{Com}(\mathscr{S})=\{T \in \operatorname{Hom}(V): T s=s T \forall s \in \mathscr{S}\}
$$

the commutant of $\$$.

7: N.B. Com(S) is a unital associative algebra over C.

8: THEOREM Suppose that V is a finite dimensional vector space over C and let $V \subset H o m(V)$ be an associative algebra over C with identity id. Assume: V is completely reducible per the canonical action of V-- then

$$
\operatorname{com}(\operatorname{com}(v))=v .
$$

[Note: A priori,

$$
V \subset \operatorname{Com}(\operatorname{Com}(V)) .]
$$

9: NOTATION Let (ρ, V) be a completely reducible representation of A. Given $\delta \in \hat{A}$, put

$$
V_{\delta}=\sum_{U \subset V:[U]=\delta^{U}}^{U_{r}}
$$

the subspaces U being ρ-invariant and irreducible, [U] standing for the equivalence class in \hat{A} determined by U.

10: THEOREM Let (ρ, V) be a completely reducible representation of A and let

$$
\mathrm{v}=\mathrm{v}_{1} \oplus \cdots \oplus \mathrm{v}_{\mathrm{S}}
$$

be a decomposition, where each V_{i} is ρ-invariant and irreducible - then $\forall \delta \in \hat{A}$,

$$
\mathrm{V}_{\delta}=\oplus_{\left[\mathrm{V}_{\mathrm{i}}\right]=\delta} \mathrm{V}_{\mathrm{i}}
$$

thus

$$
\mathrm{V}=\operatorname{Dich}_{\delta \in \hat{A}} \mathrm{~V}_{\delta}
$$

[Note: An empty sum is taken to be zero.]

11: DEFINITION The decomposition

$$
V=\oplus_{\delta \in A} V_{\delta}
$$

is the primary decomposition of V and V_{δ} is the δ-isotypic subspace of V.

12: DEFINITION The cardinality $\mathrm{m}_{\mathrm{V}}(\delta)$ of

$$
\left\{\mathrm{i}:\left[\mathrm{V}_{\mathrm{i}}\right]=\delta\right\}
$$

is the multiplicity of δ in V.
13: NOTATION Given $\delta \in \hat{A}$, let $U(\delta)$ be an element in the class δ.

14: LEMMA

$$
\mathrm{m}_{\mathrm{V}}(\delta)=\operatorname{dim} I_{A}(U(\delta), V)=\operatorname{dim} I_{A}(V, U(\delta))
$$

§3. CHARACTERS

Let A be a unital associative algebra over C.

1: DEFINITION Let (ρ, V) be a representation of A-- then its character is the linear functional

$$
X_{\rho}: A \rightarrow C
$$

given by the prescription

$$
x_{\rho}(x)=\operatorname{tr}(\rho(x)) \quad(x \in A)
$$

2: LEMMA

$$
x_{\rho}\left(1_{A}\right)=\operatorname{dim} V
$$

3: LEMMA $\forall x, y \in A$,

$$
x_{\rho}(x y)=x_{\rho}(y x)
$$

4: DEFINITION Let (ρ, V) be a representation of A-- then a composition series for ρ is a sequence of ρ-invariant subspaces

$$
\{0\}=v_{0} \subset V_{1} \subset \cdots \subset v_{s}=v
$$

such that

$$
\{0\} \neq V_{i} / v_{i-1} \quad(i=1, \ldots, s)
$$

is irreducible.

5: LEMMA Composition series exist.

6: DEFINITION The semisimplification of (ρ, V) is the direct sum

$$
V_{S S}=\stackrel{s}{\oplus} \underset{i=1}{\oplus}\left(V_{i} / V_{i-1}\right)
$$

equipped with the canonical operations.

7: DEFINITION The irreducible quotients $\mathrm{V}_{\mathrm{i}} / \mathrm{V}_{\mathrm{i}-1}$ are the composition factors of (ρ, V).

Let $\rho_{S S}$ be the representation of A per $V_{S S}$ and let ρ_{i} be the representation of A per V_{i} / V_{i-1}.

8: LEMMA

$$
x_{\rho_{s S}}=\sum_{i=1}^{s} x_{\rho_{i}}=x_{\rho}
$$

9: LEMMA Suppose that $\left(\sigma_{1}, U_{1}\right), \ldots,\left(\sigma_{r}, U_{r}\right)$ are irreducible representations of A. Assume: $\left(\sigma_{k}, U_{k}\right)$ is not equivalent to $\left(\sigma_{\ell}, U_{\ell}\right)(k \neq \ell)--$ then the set

$$
\left\{x_{\sigma_{1}}, \cdots, x_{\sigma_{r}}\right\}
$$

is linearly independent.

10: SCHOLTUM The composition factors in a composition series for ρ are unique up to isomorphism and order of appearance and ($\rho_{S S}, V_{S S}$) is uniquely determined by χ_{ρ} up to isomorphism.

Let A be a unital associative algebra over C.

1: DEFINITION A is simple if the only two-sided ideals in A are $\{0\}$ and A.

2: LEMMA If V is a finite dimensional vector space over C, then Hom(V) is simple.

3: THEOREM If A is simple, then there is a finite dimensional vector space V over C such that $A \approx \operatorname{Hom}(V)$.

4: DEFINITION A is semisimple if it is a finite direct sum of simple algebras.

Accordingly, if A is semisimple, then there is a finite set L , finite dimensional complex vector spaces $\mathrm{V}_{\lambda}(\lambda \in \mathrm{L})$, and an isomorphism

$$
\phi: A \rightarrow \underset{\lambda \in L_{1}}{\oplus} \operatorname{Hom}\left(V_{\lambda}\right) .
$$

Denote by E_{λ} the element

$$
0 \oplus \cdots \oplus \mathrm{id}_{\mathrm{v}_{\lambda}} \oplus \cdots \oplus 0
$$

and define a representation ($\rho_{\lambda}, V_{\lambda}$) by the prescription

$$
\rho_{\lambda}(x)=\phi(x) E_{\lambda} \quad(x \in A)
$$

5: LEMMA The $\left(\rho_{\lambda}, V_{\lambda}\right)$ are irreducible.

6: THEOREM Every irreducible representation of A is equivalent to some $\left(\rho_{\lambda}, V_{\lambda}\right)$.

7: N.B. Therefore

$$
\hat{A} \longrightarrow L,
$$

so the term " λ-isotypic subspace" makes sense.

Put

$$
e_{\lambda}=\phi^{-1}\left(E_{\lambda}\right)
$$

Then e_{λ} is a central idempotent and

$$
\sum_{\lambda \in \mathrm{L}} e_{\lambda}=1_{A} .
$$

8: THEOREM Suppose that A is semisimple and let (ρ, V) be a representation of A-- then its λ-isotypic subspace is $\rho\left(e_{\lambda}\right) V$ and

$$
V=\underset{\lambda \in L}{\oplus} \rho\left(e_{\lambda}\right) V
$$

is the primary decomposition of V .

9: LEMMA Let A be a unital associative algebra over C and let (ρ, V) be a completely reducible representation of A-- then $\rho(A)$ is semisimple.

10: THEOREM Let A be a unital associative algebra over C -- then the following conditions are equivalent:

1. The left regular representation (L, A) of A is completely reducible $(\mathrm{L}(\mathrm{x}) \mathrm{y}=\mathrm{xy})$.
2. Every representation of A is completely reducible.
3. A is a semisimple algebra.

3.

$[1=>3: L(A)$ is semisimple (cf. \#9). On the other hand, $A \approx L(A), L$ being faithful.

```
3 => 2: Quote \#3 and §2, \#4.
    \(2 \Rightarrow 1:\) Obvious.]
```

11: THEOREM Every representation of a semisimple algebra is uniquely determined by its character up to isomorphism.

§1. GROUP ALGEBRAS

I: NOTATION If X is a finite set, then $|\mathrm{X}|$ is the cardinality of X and $C(X)$ is the vector space of complex valued functions on X.

2: N.B. The functions $\left\{\delta_{x} ; x \in X\right\}$, where

$$
\delta_{x}(y)=\left.\right|_{1} ^{1} \begin{gathered}
(x=y) \\
0
\end{gathered}(x \neq y)
$$

constitute a basis for $\mathrm{C}(\mathrm{X})$. Therefore

$$
\operatorname{dim} C(X)=|X|
$$

and every $f \in C(X)$ admits a decomposition

$$
f=\sum_{x \in X} f(x) \delta_{x}
$$

In particular: If l_{X} is the function on X which is $\equiv l$, then

$$
I_{X}=\sum_{x \in X} \delta_{x}
$$

Let G be a finite group.

3: DEFINITION Given $f, g \in C(G)$, their convolution $f * g$ is the element of $C(G)$ defined by the rule

$$
\begin{aligned}
(f * g)(x) & =\sum_{y \in G} f\left(x y^{-1}\right) g(y) \\
& =\sum_{y \in G} f(y) g\left(y^{-1} x\right) .
\end{aligned}
$$

[Note: $\forall x, y \in G$,

$$
\left.\delta_{x} * \delta_{y}=\delta_{x y} .\right]
$$

4: LEMMA $C(G)$ is an associative algebra over C.

5: N.B. If e is the identity in G, then δ_{e} is the identity in $C(G)$, which is therefore unital.

6: LEMMA The center of $C(G)$ consists of those f such that

$$
f(x)=f\left(y x y^{-1}\right) \quad(x, y \in G)
$$

[Note: In other words, the center of $C(G)$ consists of those f that are constant on conjugacy classes, the so-called class functions.]
E.g.: $\forall x \in G$, the function

$$
\sum_{y \in G} \delta{ }_{y x y}{ }^{-1}
$$

is a class function.
[Given z in G ,

$$
\begin{aligned}
\left(\sum_{y \in G} \delta y_{y x}^{-1}\right) * \delta_{z} & =\sum_{y \in G} \delta y x y^{-1} z \\
& =\sum_{y \in G} \delta z_{z x(z y)^{-1} z} \\
& =\sum_{y \in G} \delta z_{z x y}^{-1} \\
& \left.=\delta_{z} *\left(\sum_{y \in G} \delta_{y x y^{-1}}\right) \cdot\right]
\end{aligned}
$$

7: DEFINITION A representation of G is a pair (π, V), where V is a finite dimensional vector space over C and $\pi: G \rightarrow G L(V)$ is a morphism of groups.

8: SCHOLTUM Let V be a finite dimensional vector space over C.

- Every representation $\pi: G \rightarrow G L(V)$ extends to a representation ρ of $C(G)$ on V, viz.

$$
\rho(f)=\sum_{x \in G} f(x) \pi(x) .
$$

- Every representation $\rho: C(G) \rightarrow$ Hom (V) restricts to a representation π of G on V, viz.

$$
\pi(x)=\rho\left(\delta_{x}\right)
$$

[Note: If π is given, it is customary to denote its extension " ρ " by π as well.]

9: LEMMA Let $W \subset V$ be a linear subspace -- then W is invariant under G iff W is invariant under $C(G)$.

10: LEMMA An operator $T \in H O M(V)$ commutes with the action of G iff it commutes with the action of $\mathrm{C}(\mathrm{G})$.

11: THEOREM $C(G)$ is semisimple.
PROOF Let (ρ, V) be a representation of $C(G)$ and suppose that $V_{1} \subset V$ is a ρ-invariant subspace. Fix a linear complement U per $V_{1}: V=V_{1} \oplus U$. Let $P: V \rightarrow V_{1}$ be the corresponding projection and put

$$
Q=\frac{1}{|G|} \sum_{x \in G} \pi(x) P \pi(x)^{-1}
$$

Then Q is a projection with range V_{1}. In addition, $\forall Y \in G$,

$$
\begin{aligned}
\pi(y) Q & =\frac{1}{|G|} \sum_{x \in G} \pi(y x) P \pi(x)^{-1} \\
& =\frac{1}{|G|} \sum_{x \in G} \pi(x) P \pi\left(y^{-1} x\right)^{-1} \\
& =\frac{1}{|G|} \sum_{x \in G} \pi(x) P \pi(x)^{-1} \pi(y) \\
& =Q \pi(y) .
\end{aligned}
$$

Consequently, $\forall v \in V$,

$$
\begin{aligned}
\pi(y)\left(i d_{v}-Q\right) v & =\pi(y)(v-Q v) \\
& =\pi(y) v-\pi(y) Q v \\
& =\pi(y) v-Q \pi(y) v \\
& =\left(i d_{v}-Q\right) \pi(y) v
\end{aligned}
$$

thus the range V_{2} of $i d_{V}-Q$ is a ρ-invariant complement per V_{1}. It therefore follows that every representation of $C(G)$ is completely reducible, hence $C(G)$ is semisimple (cf. I, §4, \#l0).

12: DEFINITION

- The left translation representation L of G on $C(G)$ is the prescription

$$
\left.L(x) f(y)=f\left(x^{-1} y\right) \quad \Leftrightarrow L(x) f=\delta_{x} * f\right)
$$

- The right translation representation of G on $C(G)$ is the prescription

$$
R(x) f(y)=f(y x) \quad\left(\Rightarrow R(x) f=f * \delta_{x^{-1}}\right)
$$

13: N.B. Since $C(G)$ is semisimple, both L and R are completely reducible.

14: REMARK There is also a representation $\pi_{L, R}$ of $G \times G$ on $C(G)$, namely

$$
\left(\pi_{L, R}\left(x_{1}, x_{2}\right) f\right)(x)=f\left(x_{1}^{-1} x x_{2}\right)
$$

And it too is completely reducible ($C(G \times G)$ is semisimple).

15: DEFINITION Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ be representations of $G-$ then an intertwining operator is a C-linear map $T: V_{1} \rightarrow V_{2}$ such that $T \pi_{1}(x)=\pi_{2}(x) T$ for all $x \in G$.

16: NOTATION $I_{G}\left(\pi_{1}, \pi_{2}\right)$ is the set of intertwining operators between $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$.

17: N.B. On the basis of the definitions,

$$
I_{G}\left(\pi_{1}, \pi_{2}\right)=I_{C(G)}\left(\rho_{1}, \rho_{2}\right) .
$$

18: IEMMA Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ be irreducible representations of G and let $T \in I_{G}\left(\pi_{1}, \pi_{2}\right)$ - then either T is zero or it is an isomorphism.

19: LEMMA Suppose that (π, V) is an irreducible representation of G and suppose that $T \in I_{G}(\pi, \pi)$-- then T is a scalar multiple of id V.

20: DEFINITION Representations $\left(\pi_{1}, V_{1}\right)$ and $\left(\pi_{2}, V_{2}\right)$ of G are equivalent if there exists an invertible operator in $I_{G}\left(\pi_{1}, \pi_{2}\right)$, in which case we write

$$
\left(\pi_{1}, v_{1}\right) \approx\left(\pi_{2}, V_{2}\right) \quad\left(\text { or } \pi_{1} \approx \pi_{2}\right)
$$

21: NOTATION \hat{G} is the set of equivalence classes of irreducible representations of G.
[Note: By convention, the zero representation of G on $V=\{0\}$ is not to be viewed as irreducible.]

22: N.B. There is a one-to-one correspondence

$$
\hat{\mathrm{G}} \approx \widehat{\mathrm{C}(\mathrm{G})} .
$$

In the sequel, Π stands for an element of \hat{G} with representation space $V(\Pi)$ of dimension $d_{I I}$. Without loss of generality, it can be assumed moreover that Π is unitary with respect to a G-invariant inner product $<,>_{\Pi}$ on $V(\Pi)$.
[Recall the argument. Start with an inner product <, > on $V(\Pi)$ and put

$$
\left.\left.\left\langle v_{1}, v_{2}\right\rangle_{\Pi}=\frac{1}{|G|} \sum_{x \in G}<\Pi(x) v_{1}, \Pi(x) v_{2}\right\rangle .\right]
$$

APPENDIX

Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ be unitary representations of G. Suppose that there exists an invertible

$$
T \in I_{G}\left(\pi_{1}, \pi_{2}\right)
$$

Then there exists a unitary

$$
U \in I_{G}\left(\pi_{1}, \pi_{2}\right)
$$

[Let $T=U|T|$ be the polar decomposition of T - then $\forall x \in G$,

$$
|T| \pi_{1}(x)=\pi_{1}(x)|T|
$$

Therefore

$$
\begin{aligned}
U \pi_{1}(x) U^{-1} & =T|T|^{-1} \pi_{1}(x)|T| T^{-1} \\
& \left.=T \pi_{1}(x) T^{-1}=\pi_{2}(x) \cdot\right]
\end{aligned}
$$

§2. CONTRAGREDIENTS AND TENSOR PRODUCTS

1: NOTATION Given a finite dimensional vector space V over C, let V^{*} be its dual and denote by

$$
\int_{-} \begin{aligned}
& \mathrm{V}^{*} \times \mathrm{V} \rightarrow \mathrm{C} \\
& \left(\mathrm{v}^{*}, \mathrm{v}\right) \rightarrow\left\langle\mathrm{v}^{*}, \mathrm{v}\right\rangle
\end{aligned} \quad\left(=\mathrm{v}^{*}(\mathrm{v})\right),
$$

the evaluation pairing.

Let G be a finite group.

2: DEFINITION Suppose that $\pi: G \rightarrow G L(V)$ is a representation -- then its contragredient is the representation $\pi^{*}: G \rightarrow G L\left(V^{*}\right)$ defined by requiring that $\forall x \in G$,

$$
\pi^{*}(\mathrm{x}) \mathrm{v}^{*}=\mathrm{v}^{*} \circ \pi\left(\mathrm{x}^{-1}\right) \quad\left(\mathrm{v}^{*} \in \mathrm{~V}^{*}\right)
$$

thus $\forall \mathrm{v} \in \mathrm{V}$,

$$
\left\langle\pi^{*}(\mathrm{x}) \mathrm{v}^{*}, \mathrm{v}\right\rangle=\left\langle\mathrm{v}^{*}, \pi\left(\mathrm{x}^{-1}\right) \mathrm{v}\right\rangle .
$$

3: N.B. The identification $\left(\mathrm{V}^{*}\right) * \approx \mathrm{~V}$ leads to an equivalence (π^{*})* $\approx \pi$.

4: LENMA (π, V) is irreducible iff ($\pi^{*}, \mathrm{~V}^{*}$) is irreducible.

5: CONVENTION Given $(\Pi, V(\Pi))$ in \hat{G}, take

$$
V\left(\Pi^{*}\right)=V(\Pi) *, \Pi^{*}(x)=\Pi\left(x^{-1}\right)^{\top} .
$$

6: NOTATION Given finite dimensional vector spaces $\mathrm{V}_{1}, \mathrm{~V}_{2}$ over C , let $\mathrm{V}_{1} \otimes \mathrm{~V}_{2}$ be their tensor product.

Let G be a finite group.

7: DEFINITION Suppose that $\pi_{1}: G \rightarrow G L\left(V_{1}\right), \pi_{2}: G \rightarrow G L\left(V_{2}\right)$ are representations -then their tensor product is the representation $\pi_{1} \otimes \pi_{2}: G \rightarrow G L\left(V_{1} \otimes V_{2}\right)$ defined by requiring that $\forall \mathrm{x} \in \mathrm{G}$,

$$
\left(\pi_{1} \otimes \pi_{2}\right)(x)\left(v_{1} \otimes v_{2}\right)=\pi_{1}(x) v_{1} \otimes \pi_{2}(x) v_{2}
$$

Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ be representations of $G-$ then the prescription

$$
\pi_{1,2}(x) T=\pi_{2}(x) T_{1}\left(x^{-1}\right) \quad\left(T \in \operatorname{Hom}\left(V_{1}, V_{2}\right)\right)
$$

defines a representation $\pi_{1,2}$ of G on $\operatorname{Hom}\left(V_{1}, V_{2}\right)$.

8: RAPPEL There is a canonical isomorphism

$$
\theta: \mathrm{V}_{2} \otimes \mathrm{~V}_{1}^{\star} \approx \operatorname{Hom}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right) .
$$

[Send $\mathrm{v}_{2} \otimes \mathrm{v}_{1}^{*}$ to the linear transformation

$$
\left.T\left(\mathrm{v}_{2}, \mathrm{v}_{1}^{*}\right): \mathrm{v}_{1} \rightarrow \mathrm{v}_{1}^{*}\left(\mathrm{v}_{1}\right) \mathrm{v}_{2} .\right]
$$

Consider

$$
\pi_{2}(x) v_{2} \otimes \pi_{1}^{*}(x) v_{1}^{*} \in V_{2} \otimes V_{1}^{*} .
$$

Then the corresponding element of $\operatorname{Hom}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ is the assignment

$$
\begin{aligned}
& v_{1} \rightarrow\left(\pi_{1}^{*}(x) v_{1}^{*}\right)\left(v_{1}\right) \pi_{2}(x) v_{2} \\
& \quad=v_{1}^{*}\left(\pi_{1}\left(x^{-1}\right) v_{1}\right) \pi_{2}(x) v_{2} \\
& \quad=\pi_{2}(x)\left(v_{1}^{*}\left(\pi_{1}\left(x^{-1}\right) v_{1}\right)\right) v_{2}
\end{aligned}
$$

$$
=\pi_{2}(x) T\left(v_{2}, v_{1}^{\star}\right) \pi_{1}\left(x^{-1}\right) v_{1} .
$$

9: LEMMA $\pi_{2} \pi_{1}^{\star}$ is equivalent to $\pi_{1,2}$.
[The isomorphism θ intertwines $\pi_{2} \pi_{1}^{*}$ and $\pi_{1,2}: \forall x \in G$,

$$
\left.\theta \circ\left(\pi_{2}(\mathrm{x}) \otimes \pi_{1}^{\star}(\mathrm{x})\right)=\pi_{1,2}(\mathrm{x}) \circ \theta .\right]
$$

Let G_{1}, G_{2} be finite groups.

10: DEFINITION Suppose that $\pi_{1}: G_{1} \rightarrow G L\left(V_{1}\right), \pi_{2}: G \rightarrow G L\left(V_{2}\right)$ are representations -- then their outer tensor product is the representation $\pi_{1} \otimes \pi_{2}$: $\mathrm{G}_{1} \times \mathrm{G}_{2} \rightarrow \mathrm{GL}\left(\mathrm{V}_{1} \otimes \mathrm{~V}_{2}\right)$ defined by requiring that $\forall \mathrm{x}_{1} \in \mathrm{G}_{1}, \forall \mathrm{x}_{2} \in \mathrm{G}_{2}$,

$$
\left(\pi_{1} \otimes \pi_{2}\right)\left(x_{1}, x_{2}\right)=\pi_{1}\left(x_{1}\right) \otimes \pi_{2}\left(x_{2}\right) .
$$

11: N.B. If $G_{1}=G_{2}=G$, then the restriction of the outer tensor product $\pi_{1} \otimes \pi_{2}$ to the diagonal subgroup

$$
\{(x, x): x \in G\}
$$

of $\mathrm{G} \times \mathrm{G}$ is the tensor product $\pi_{1} \otimes \pi_{2}$.

12: REMARK Take $G_{1}=G_{2}=G$ and define a representation $\pi_{1,2}$ of $G \times G$ on $\operatorname{Hom}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ via the prescription

$$
\pi_{1,2}(x, y) T=\pi_{2}(x) T \pi_{1}\left(y^{-1}\right) \quad\left(T \in \operatorname{Hom}\left(V_{1}, V_{2}\right)\right) .
$$

Then $\pi_{2} \otimes \pi_{1}^{*}$ is equivalent to $\pi_{1,2}$.

13: LEMMA If π_{1} and π_{2} are irreducible, then $\pi_{1} \underline{\otimes} \pi_{2}$ is irreducible.
[To begin with,

$$
C\left(G_{1} \times G_{2}\right) \approx C\left(G_{1}\right) \otimes C\left(G_{2}\right)
$$

and

$$
\operatorname{Hom}\left(\mathrm{V}_{1} \otimes \mathrm{~V}_{2}\right) \approx \operatorname{Hom}\left(\mathrm{V}_{1}\right) \otimes \operatorname{Hom}\left(\mathrm{V}_{2}\right) .
$$

Now make the passage

$$
\left[\begin{array}{l}
\pi_{1} \rightarrow \rho_{1} \\
\pi_{2} \rightarrow \rho_{2}
\end{array}\right.
$$

Then

$$
\left[\begin{array}{l}
\rho_{1}\left(\mathrm{C}\left(\mathrm{G}_{1}\right)\right)=\operatorname{Hom}\left(\mathrm{V}_{1}\right) \\
\rho_{2}\left(\mathrm{C}\left(\mathrm{G}_{2}\right)\right)=\operatorname{Hom}\left(\mathrm{V}_{2}\right)
\end{array} \quad\right. \text { (cf. I, §2, \#2).] }
$$

Conversely:

14: THEOREM Every irreducible representation of $G_{1} \times G_{2}$ is equivalent to an outer tensor product $\pi_{1} \underline{Q} \pi_{2}$.

15: SCHOLIUM

$$
\widehat{G_{1} \times G_{2}} \approx \hat{G}_{1} \times \hat{G}_{2} .
$$

§3. FOURIER TRANSFORMS

Let G be a finite group.

1: DEFINITION Given $f \in C(G)$, its Fourier transform \hat{f} is that element of

$$
\underset{\Pi \in \hat{G}}{\oplus} \operatorname{Hom}(V(I))
$$

whose II-component is

$$
\hat{\mathrm{f}}(\mathrm{II}) \equiv \sum_{\mathrm{x} \in \mathrm{G}} \mathrm{f}(\mathrm{x}) \mathbb{I I}(\mathrm{x})(=\Pi(\mathrm{f})) .
$$

E.g.: $\forall x \in G$,

$$
\hat{\delta}_{x}(\Pi)=\Pi(x) .
$$

2: LEMMA $\forall f_{1}, f_{2} \in C(G)$,

3: EXAMPLE $\forall x \in G$,

4: THEOREM The Fourier transform

$$
\wedge: C(G) \rightarrow \underset{\Pi \in \hat{G}}{\oplus} \operatorname{Hom}(\mathrm{~V}(\Pi))
$$

is an algebra isomorphism.

5: APPLICATION

$$
|\mathrm{G}|=\sum_{\Pi \in \hat{\mathrm{G}}} \mathrm{~d}_{\Pi}^{2} .
$$

[In fact,

$$
\left.\operatorname{dim} C(G)=|G| \text { and } \operatorname{dim} \operatorname{Hom}\left(V_{\Pi}\right)=d_{\Pi}^{2} \cdot\right]
$$

As it stands, $C(G)$ is a unital associative algebra over C. But more is true: $C(G)$ is a *-algebra, i.e., admits a conjugate linear antiautomorphism $f \rightarrow f *$ given by $f^{*}(x)=\overline{f\left(x^{-I}\right)} \quad(x \in G)$.

Each $T \in \operatorname{Hom}(\mathrm{~V}(\mathrm{I}))$ has an adjoint T^{*} per $\left\langle,_{\mathrm{H}}: \forall \mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}(\mathrm{I})\right.$,

$$
\left\langle\mathrm{Tv}_{1}, \mathrm{v}_{2}\right\rangle_{\Pi}=\left\langle\mathrm{v}_{1}, \mathrm{~T}^{*} \mathrm{v}_{2}\right\rangle_{\Pi} .
$$

Therefore

$$
\underset{\Pi \in \hat{G}}{\oplus} \operatorname{Hom}(V(\Pi))
$$

admits a conjugate linear antiautomorphism by using the arrow $T \rightarrow T^{*}$ on each summand.

6: N.B. It can and will be assumed that

$$
\left[\begin{array}{l}
V\left(\Pi^{*}\right)=V(\Pi) \\
\Pi^{*}(x)=\Pi\left(x^{-1}\right)
\end{array} \quad(c f . \S 2, \# 5)\right.
$$

hence in terms of adjoints

$$
\Pi(x) *=\Pi(x)^{-1}=\Pi\left(x^{-1}\right)=\Pi^{*}(x) .
$$

7: LEMMA The Fourier transform

$$
\wedge: C(G) \rightarrow \underset{\Pi \in \hat{G}}{\oplus} \operatorname{Hom}(V(\Pi))
$$

preserves the *-operations: $\forall f \in C(G)$,

$$
\mathrm{f}^{*}=(\hat{\mathrm{f}})^{*} .
$$

8: INVERSION FORMULA Given $f \in C(G), \forall x \in G$,

$$
f(x)=\frac{1}{|G|} \sum_{\Pi \in \hat{G}} d_{\Pi} \operatorname{tr}\left(\Pi\left(x^{-1}\right) \hat{f}(\Pi)\right) .
$$

In particular:

$$
f(e)=\frac{1}{|G|} \sum_{\Pi \in \hat{G}} d_{\Pi} \operatorname{tr}(\hat{f}(\Pi)) .
$$

9: PARSEVAL IDENTITTY Given $f_{1}, f_{2} \in C(G)$,

$$
\sum_{x \in G} f_{1}(x) f_{2}\left(x^{-1}\right)=\frac{1}{|G|} \sum_{\Pi \in G} d_{\Pi} \operatorname{tr}\left(\hat{f}_{1}(\Pi) \hat{f}_{2}(\Pi)\right)
$$

PROOF Put $f=f_{1} * f_{2}-$ then

$$
f(e)=\sum_{x \in G} f_{1}(x) f_{2}\left(x^{-1}\right)
$$

On the other hand,

$$
\begin{aligned}
& \frac{1}{|\mathrm{G}|} \sum_{\Pi \in \hat{G}} \mathrm{~d}_{\Pi} \operatorname{tr}\left(\hat{\mathrm{f}}_{1}(\Pi) \hat{\mathrm{f}}_{2}(\Pi)\right) \\
& =\frac{1}{|\mathrm{G}|} \sum_{\Pi \in \hat{G}} d_{\Pi} \operatorname{tr}\left(\mathrm{f}_{1} * \hat{f}_{2}(\Pi)\right)
\end{aligned}
$$

$$
=\left(f_{1} * f_{2}\right)(e)=f(e)
$$

10: COMPLETENESS PRINCIPIE If $f \in C(G)$ and if $\hat{f}(\Pi)=0$ for all Π, then

$$
\mathrm{f}=0
$$

§4. CLASS FUNCTIONS

Let G be a finite group.
l: DEFINITION Let (π, V) be a representation of $\mathrm{G}-$ then its character is the function

$$
X_{\pi}: G \rightarrow C
$$

given by the prescription

$$
x_{\pi}(x)=\operatorname{tr}(\pi(x)) \quad(x \in G) .
$$

2: N.B. It is clear that characters are class functions and that equivalent representations have equal characters.

3: LEMMA $\forall \mathrm{x} \in \mathrm{G}$,

$$
x_{\pi}\left(x^{-1}\right)=\overline{x_{\pi}^{(x)}}
$$

4: N.B.

$$
x_{\pi^{*}}=\overline{x_{\pi^{*}}}
$$

5: LEMMA Let

$$
\left.\right|_{-} \quad \begin{aligned}
& \pi_{1}: G \rightarrow G L\left(V_{1}\right) \\
& \pi_{2}: G \rightarrow G L\left(V_{2}\right)
\end{aligned}
$$

be representations of G-- then the character of

$$
\left(\pi_{1} \otimes \pi_{2}, V_{1} \otimes V_{2}\right)
$$

is $X_{\pi_{1}} X_{\pi_{2}}$.
[For the record, the character of

$$
\left(\pi_{1} \oplus \pi_{2}, V_{1} \oplus V_{2}\right)
$$

is $\chi_{\pi_{1}}+X_{\pi_{2}}$, implying thereby that a nonnegative integral linear combination of characters is again a character.]

6: EXAMPLE $\pi_{1,2}$ is equivalent to $\pi_{2} \otimes \pi_{1}^{*}$ (cf. $\left.\S 2, \# 9\right)$, hence

$$
x_{\pi_{1,2}}=x_{\pi_{2}} \pi_{1}^{*}=x_{\pi_{2}} x_{\pi_{1}^{\star}}=x_{\pi_{2}} \overline{\chi_{\pi_{1}}} .
$$

7: DEFINITION The character of an irreducible representation is called an irreducible character.
[Note: The zero function (i.e., the additive identity of $\mathrm{C}(\mathrm{G})$) is a character but it is not an irreducible character (cf. §l, \#2l).]

8: N.B. The irreducible characters are thus the $X_{I I}(\Pi \in \hat{G})$.

9: FIRST ORTHOGONALITY RELATION Let $\Pi_{i}, \Pi_{j} \in \hat{G}$-- then

$$
\frac{1}{|G|} \sum_{x \in G} x_{i}(x) x_{j}\left(x^{-1}\right)=\delta_{i j}
$$

where for short

$$
x_{i}=x_{I_{i}}, x_{j}=x_{I_{j}}
$$

10: NOTATION Given $x \in G$, write $C(x)$ for its conjugacy class and G for its centralizer.

11: RAPPEL The number of conjugates of x in G is [G:G $]^{1}$, i.e.,

$$
|C(x)|=\left[G ; G_{x}\right] .
$$

[Note: The class equation for G is the relation

$$
|G|=\sum_{i}\left[G: G_{x_{i}}\right],
$$

one x_{i} having been chosen from each conjugacy class.

12: SECOND ORTHOGONALITY RELATION Let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{G}$-- then

$$
\sum_{\Pi \in \hat{G}}^{\sum} \chi_{I I}\left(x_{1}\right) \chi_{\Pi}\left(x_{2}^{-1}\right)=\left.\right|_{-} ^{\left|G_{x}\right| \text { if } x=x_{1}=x_{2}} \begin{array}{r}
0 \text { if } C\left(x_{1}\right) \neq C\left(x_{2}\right)
\end{array}
$$

[Note:

$$
\left.\left|G_{x}\right|=\frac{|G|}{\left[G: G_{x}\right]}=\frac{|G|}{|C(x)|} \cdot\right]
$$

13: NOTATION Given $f, g \in C(G)$, put

$$
\langle f, g\rangle_{G}=\frac{1}{|G|} \sum_{x \in G} f(x) \overline{g(x)},
$$

the canonical inner product on $C(G)$.

14: EXAMPLE $\forall \Pi_{1}, \Pi_{2} \in \hat{G}$,

$$
<\chi_{\Pi_{1}}, \chi_{\Pi_{2}}>{ }_{G}=\left\{\begin{array}{r}
1 \text { if } \Pi_{1}=\Pi_{2} \\
0
\end{array}\right.
$$

15: SCHOLIUM The irreducible characters form an orthonormal set, thus are linearly independent (cf. I, §3, \#9).

Recall now that the Fourier transform

$$
\wedge: C(G) \rightarrow \underset{T \in G \in \hat{G}}{\oplus} \operatorname{Hom}(V(\mathrm{II}))
$$

is an algeora isomorphism. Since the center of each Hom (V(I)) consists of scalar multiples of the identity operator, it follows that an $f \in C(G)$ is a class function iff $\forall \Pi \in \hat{G}$,

$$
\hat{f}(\Pi)=C_{\Pi} i a_{V(\Pi)}\left(C_{\Pi} \in C\right)
$$

16: INVERSION FORMULA Given a class function $f \in C(G), \forall x \in G$,

$$
f(x)=\sum_{\Pi \in \hat{G}}\left\langle f, \overline{X_{\Pi}}\right\rangle \overline{X_{\Pi}}(\bar{x}) .
$$

PROOF

$$
\begin{aligned}
f(x) & =\frac{1}{|G|} \sum_{\Pi \in \hat{G}} d_{\Pi I} \operatorname{tr}\left(\Pi\left(x^{-1}\right) \hat{\mathrm{f}}(\Pi)\right) \\
& =\frac{1}{|G|} \sum_{\Pi \in \hat{G}} d_{\Pi} C_{\Pi} x_{\Pi}\left(x^{-1}\right) \\
& =\frac{1}{|G|} \sum_{\Pi \in \hat{G}} d_{\Pi} C_{\Pi I} \overline{x_{\Pi I}^{(x)}} .
\end{aligned}
$$

Fix $\Pi_{0} \in \hat{G}-$ then

$$
\begin{aligned}
& =\frac{1}{|G|} \sum_{\Pi \in \hat{G}} d_{\Pi} c_{\Pi 1} \overline{<\chi_{\Pi_{1}} X_{\Pi_{0}}{ }^{\prime}{ }_{G}} \\
& =\frac{1}{|G|} d_{T_{0}} C_{\Pi_{0}} .
\end{aligned}
$$

17: N.B. $\forall x \in G$,

$$
\begin{aligned}
& f(x)=\overline{\overline{f(x)}}=\overline{\sum_{\Pi \in \hat{G}}^{\langle\bar{f}}, \overline{\left.X_{\Pi}\right\rangle} \overline{X_{\Pi}(x)}} \\
& =\sum_{\Pi \in G}^{\left\langle\overline{\mathrm{f}}, \overline{X_{\Pi}>}{ }_{\mathrm{G}}\right.} \overline{\overline{X_{I I}(\mathrm{x})}} \\
& =\sum_{\text {in }}\left\langle f, X_{\Pi}\right\rangle_{G} X_{\Pi}(x) . \\
& \text { IEG }
\end{aligned}
$$

The preceding discussion makes it clear that a class function f is a character iff $\langle f, \Pi\rangle{ }_{G}$ is a nonnegative integer for all $\Pi \in \hat{G}$.

18: NOTATION CON (G) is the set of conjugacy classes of G.

19: SCHOLTUM The dimension of the space of class functions is equal to $|\operatorname{CON}(\mathrm{G})|$ or still, is equal to $|\hat{\mathrm{G}}|$.

20: NOTATION Given $\mathrm{C} \in \operatorname{CON}(\mathrm{G})$, let χ_{C} be the characteristic function of C :

$$
x_{C}(x)=\int_{-}^{1} \text { if } x \in C
$$

21: LEMMA

$$
x_{C}=\sum_{y \in C} \delta_{y}
$$

22: N.B. The $X_{C}(C \in \operatorname{CON}(G))$ are a basis for the class functions on G (as are the $X_{\Pi}(\Pi \in \hat{G})$).

23: LEMMA Let $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$ be the elements of $\operatorname{CON}(\mathrm{G})$-- then there are nonnegative integers $m_{i, j, k}$ such that

$$
X_{C_{i}} X_{C_{j}}=\sum_{k} m_{i, j, k} x_{C_{k}} .
$$

[Note: Fixing an $x_{k} \in C_{k}$, qualitatively $m_{i, j}, k$ is the number of ordered pairs (x, y) with $x \in C_{i}, y \in C_{j}$ and $x y=x_{k}$ while quantitatively

$$
\left.m_{i, j, k}=\frac{\left|c_{i}\right|\left|c_{j}\right|}{|G|} \sum_{\Pi \in \hat{G}} \frac{x_{\Pi}\left(x_{i}\right) x_{\Pi}\left(x_{j}\right) \overline{x_{\Pi}\left(x_{k}\right)}}{d_{\Pi}} \cdot\right]
$$

24: NOTATION Given $\Pi \in \hat{G}$, put

$$
\left.e_{\Pi 1}=\Lambda^{-1}\left(E_{\Pi}\right) \quad\left(E_{\Pi 1} \in \operatorname{Hom}(V(\Pi)) \quad \text { (cf. } I, \S 4\right)\right) .
$$

25: LEMMA

$$
e_{\Pi}=\frac{d_{\Pi}}{|G|} \sum_{y \in G} x_{\Pi I}\left(y^{-1}\right) \delta_{y} .
$$

[Note: In brief,

$$
\left.e_{\Pi 1}=\frac{d_{\Pi}}{|G|} x_{\Pi^{\star} \cdot}\right]
$$

26: LEMMA

$$
e_{\Pi_{1}} * e_{\Pi_{2}}=\left\{\begin{array}{l}
e_{\Pi} \text { if } \Pi=\Pi_{1}=\Pi_{2} \\
0 \quad \text { if } \Pi_{1} \neq \Pi_{2} .
\end{array}\right.
$$

27: LEMMA

$$
\delta_{e}=\sum_{\pi \in \hat{G}} e_{\Pi} .
$$

85. DECOMPOSITION THEORY

Let G be a finite group.

1: CONSTRUCTION Suppose that G operates on a finite set S, hence for each $\mathrm{x} \in \mathrm{G}$ there is given a bijection $\mathrm{s} \rightarrow \mathrm{x} \cdot \mathrm{s}$ of S satisfying the identities

$$
e \cdot s=s, x \cdot(y \cdot s)=(x y) \cdot s
$$

Let $V=\{f: S \rightarrow C\}$ and define a representation $\pi: G \rightarrow G L(V)$ by

$$
\pi(x) f(s)=f\left(x^{-1} \cdot s\right)
$$

Then

$$
X_{\pi}(x)=|\{s \in S: x \cdot s=s\}|
$$

2: EXAMPLE Take $S=G$ and write $x \cdot y=x y$-- then the role of V is played by $C(G)$ and the role of π is played by L (the left translation representation of G (cf. §1, \#l2)), hence

$$
x_{L}(x)=|\{y \in G: x y=y\}|
$$

which is $|G|$ if $x=e$ and is 0 otherwise.

3: EXAMPLE Take $S=G$ but replace G by $G \times G$, the action being $\left(x_{1}, x_{2}\right) \cdot y=$ $x_{1} y_{2}^{-1}$-- then the associated representation is $\pi_{L, R}$ (cf. $\S 1, \# 14$) and

$$
\begin{aligned}
x_{\pi_{L, R}}\left(x_{1}, x_{2}\right) & =\left|\left\{y \in G: x_{1} y x_{2}^{-1}=y\right\}\right| \\
& =\left|\left\{y \in G: x_{1}=y x_{2} y^{-1}\right\}\right| \\
& =\left|G_{x_{1}}\right|
\end{aligned}
$$

if x_{1} and x_{2} are conjugate and is 0 otherwise.

4: DEFFINITION Let (π, V) be a representation of G-- then by complete reducibility, there is a direct sum decomposition

$$
\pi=\underset{\Pi \in \hat{G}}{\oplus} \mathrm{~m}(\Pi, \pi) \Pi,
$$

the nonnegative integer $m(\Pi, \pi)$ being the multiplicity of Π in π.

5: LEMMA $\forall \Pi \in \hat{G}$,

$$
m(\Pi, \pi)=\left\langle\chi_{\Pi}, \chi_{\pi}\right\rangle_{G} .
$$

6: N.B.

$$
\operatorname{dim} I_{G}(\Pi, \pi)=m(\Pi, \pi) .
$$

7: REMARK The operator

$$
P_{\Pi I}=\frac{d_{I}}{|G|} \sum_{x \in G} \overline{x_{\Pi I}(x)} \pi(x)
$$

is the projection onto the ח-isotypic subspace of V .

8: THEOREM Each $\Pi \in \hat{G}$ is contained in L with multiplicity d_{Π}. PROOF In fact,

$$
\begin{aligned}
m(\Pi, L) & =\left\langle\chi_{\Pi}, x_{L}\right\rangle_{G} \\
& =\frac{1}{|G|} \sum_{x \in G} x_{\Pi}(x) \overline{x_{L}(x)} \\
& =\frac{1}{|G|} x_{\Pi}(e)|G| \\
& =x_{\Pi}(e)=d_{\Pi} .
\end{aligned}
$$

9: N.B. It is a corollary that

$$
\left.|G|=\sum_{\Pi \in \hat{G}} d_{\Pi}^{2} \quad \text { (cf. } 83, \# 5\right) .
$$

10: LEMMA Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ be representations of G. Assume: $x_{\pi_{1}}=$ $x_{\pi_{2}}-$ then $\left(\pi_{1}, V_{1}\right) \approx\left(\pi_{2}, V_{2}\right)$.

PROOF $\forall I \in \hat{G}$,

$$
\left\langle\chi_{\Pi 1}, x_{\pi_{1}}\right\rangle_{G}=\left\langle\chi_{\Pi 1}, x_{\pi_{2}}\right\rangle_{G}
$$

or still, $\forall \Pi \in \hat{G}$,

$$
m\left(\Pi, \pi_{1}\right)=m\left(\Pi, \pi_{2}\right),
$$

from which the assertion.

11: IRREDUCIBIIITTY CRITERION A representation $\pi: G \rightarrow G L(V)$ is irreducible iff $\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle_{G}=1$.

PROOF The necessity is implied by the first orthogonality relations and the sufficiency follows upon noting that

$$
\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle_{G}=\sum_{\Pi \in \hat{G}} m(\Pi, \pi)^{2} .
$$

Let G_{1}, G_{2} be finite groups and let

$$
\left.\right|_{-} \begin{aligned}
& \Pi_{1}: G_{1} \rightarrow G L\left(V_{1}\right) \\
& \Pi_{2}: G_{2} \rightarrow G L\left(V_{2}\right)
\end{aligned}
$$

be irreducible representations of G_{1}, G_{2}-- then the character $X_{\Pi_{1}} \otimes \Pi_{2}$ of

$$
\left(\Pi_{1} \otimes \Pi_{2}, v_{1} \otimes v_{2}\right)
$$

is the function

$$
\left(x_{1}, x_{2}\right) \rightarrow x_{I_{1}}\left(x_{1}\right) x_{I_{2}}\left(x_{2}\right) \quad\left(x_{1} \in G_{1}, x_{2} \in G_{2}\right)
$$

12: LEMMA $\Pi_{1} \otimes \Pi_{2}$ is irreducible (cf. §2, \#13).
PROOF It is a question of applying the irreducibility criterion. Thus

$$
\begin{aligned}
& <X_{\Pi_{1}} \otimes \Pi_{2}, X_{\Pi_{1}} \otimes \Pi_{2}{ }^{>}{ }_{G} \times G \\
& =\frac{1}{\left|G_{1} \times G_{2}\right|}{ }^{\sum}\left(x_{1}, x_{2}\right) \in G_{1} \times G_{2} X_{\Pi_{1}}\left(x_{1}\right) X_{I_{2}}\left(x_{2}\right) \overline{X_{\Pi_{1}}\left(x_{1}\right) X_{\Pi_{2}}\left(x_{2}\right)} \\
& =\frac{1}{\left|G_{1}\right|_{x_{1} \in G_{1}} \sum_{I_{1}}\left(x_{1}\right) \overline{X_{I_{1}}\left(x_{1}\right)} \cdot \frac{1}{\left|G_{2}\right|_{x_{2} \in G_{2}}} \sum_{X_{\Pi_{2}}}\left(x_{2}\right) \overline{X_{I_{2}}\left(x_{2}\right)}, ~} \\
& =\left\langle\chi_{\Pi_{1}}, X_{\Pi_{2}}\right\rangle_{G_{1}} \cdot\left\langle\chi_{\Pi_{2}}, X_{I_{2}}{ }^{\rangle}{ }_{G_{2}}\right. \\
& =1 \text {. }
\end{aligned}
$$

13: REMARK The cardinality of $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is $\left|\operatorname{CON}\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)\right|$ (cf. §4, \#19).
But

$$
\left|\operatorname{CoN}\left(G_{1} \times G_{2}\right)\right|=\left|\operatorname{CoN}\left(G_{1}\right)\right|\left|\operatorname{CON}\left(G_{2}\right)\right|
$$

and the preceding considerations produce

$$
\left|\operatorname{CON}\left(\mathrm{G}_{1}\right)\right|\left|\operatorname{CON}\left(\mathrm{G}_{2}\right)\right|
$$

pairwise distinct irreducible characters of $G_{1} \times G_{2}$. Therefore every irreducible
5.
representation of $G_{1} \times G_{2}$ is equivalent to an outer tensor product $\Pi_{1} \otimes \Pi_{2}$, where $\Pi_{1} \in \hat{G}_{1}, \Pi_{2} \in \hat{G}_{2}$ (cf. §2, \#14).

§6. INTEGRABILITY

1: DEFINITTION An algebraic integer is a complex number λ which is a root of a polynomial of the form

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

where $a_{i} \in Z(0 \leq i \leq n-1)$.
[Note: Equivalently, an algebraic integer is a complex number λ which is a zero of

$$
\operatorname{det}(A-X I)
$$

for some square matrix A with entries in Z.]

2: N.B. The rational algebraic integers are precisely the elements of Z.

3: LEMMA If μ, ν are algebraic integers, then $\mu+\nu$ and $\mu \nu$ are also algebraic integers.

Therefore the set of algebraic integers is a subring of C.

4: EXAMPIE Roots of unity are algebraic integers.

Let G be a finite group.

5: LEMMA Let (π, V) be a representation of G, X_{π} its character -- then $\forall x \in G, X_{\pi}(x)$ is an algebraic integer.
[This is because $\chi_{\pi}(x)$ is a finite sum of roots of unity.]

The center of $C(G)$ (i.e., the class function) is a unital commutative associative algebra over C, thus its irreducible representations are just
homomorphisms into C and are indexed by the $\Pi \in \hat{G}$, say ω_{I} with

$$
\omega_{\Pi_{1}}\left(e_{\Pi_{2}}\right)=\delta_{\Pi_{1}}, \Pi_{2} \cdot
$$

[Note: The $e_{\Pi}(\Pi \in \hat{G})$ are a basis for the class functions on G.]

6: THEOREM $\forall C \in \operatorname{CON}(G), \omega_{\Pi}(C)$ is an algebraic integer.
PROOF In the notation of $84, \# 23$,

$$
X_{C_{i}} X_{C_{j}}=\sum_{k} m_{i, j, k} x^{X_{k}},
$$

hence

$$
\begin{aligned}
& \omega_{I I}\left(x_{C_{i}}\right) \omega_{I I}\left(x_{C_{j}}\right) \\
& =\omega_{\Pi}\left(X_{C_{i}} X_{C_{j}}\right) \\
& =\sum_{k} m_{i, j, k} \omega_{M}\left(X_{C_{k}}\right) \\
& \text { => } \\
& \underset{k}{\sum}\left(m_{i, j, k}-\delta_{j k} \omega_{\Pi}\left(x_{C_{i}}\right)\right) \omega_{\Pi}\left(X_{C_{k}}\right) \\
& =0 \text {. }
\end{aligned}
$$

But this means that $\omega_{\Pi}\left(X_{C_{i}}\right)$ is an eigenvalue of the matrix A_{i} whose (j, k) th entry
is $m_{i, j, k}$ or still, is a zero of

$$
\operatorname{det}\left(A_{i}-X I\right),
$$

thus is an algebraic integer.

7: LEMMA $\forall C \in \operatorname{CON}(G)$,
3.

$$
\omega_{\Pi}\left(\chi_{C}\right)=\frac{|C|}{d_{\Pi}} \chi_{\Pi}(x) \quad(x \in C)
$$

PROOF Owing to $\S 4, ~ \# 25$,

$$
e_{\Pi}=\frac{d_{\Pi}}{T G T} \sum_{y \in G} x_{\Pi}\left(y^{-1}\right) \delta_{y^{\prime}}
$$

so

$$
\begin{aligned}
& \frac{|G|}{d_{\Pi}} x_{\Pi}(x) e_{\Pi}=x_{\Pi}(x) \sum_{y \in G} x_{\Pi}\left(y^{-1}\right) \delta_{y} \\
& \text { => } \\
& \sum_{\Pi \in \hat{G}} \frac{|G|}{d_{I I}} x_{\Pi I}(x) e_{\Pi I}=\sum_{\Pi \in \hat{G}} x_{\Pi I}(x) \sum_{y \in G} x_{\Pi I}\left(y^{-1}\right) \delta_{y} \\
& =\sum_{y \in G}\left(\sum_{\Pi \in \hat{G}} X_{\Pi}(x) X_{\Pi I}\left(y^{-1}\right)\right) \delta_{y} \\
& \left.=\sum_{y \in C}\left|G_{x}\right| \delta_{y} \quad \text { (cf. } \S 4, \# 12\right) \\
& =\left|G_{x}\right| \sum_{y \in C} \delta_{y} \\
& =\left|G_{X}\right| X_{C} \quad \text { (cf. §4, \#lb). }
\end{aligned}
$$

Now fix $\Pi_{0} \in \hat{G}-$ then

$$
\begin{aligned}
& \omega_{\Pi_{0}}\left(x_{C}\right)=\omega_{\Pi_{0}}\left(\frac{1}{\left|G_{x}\right|} \sum \sum_{\Pi \in G} \frac{|G|}{d_{\Pi}} x_{\Pi}(x) e_{\Pi}\right) \\
&=\frac{|G|}{\left|G_{x}\right|} \sum_{\Pi \in \hat{G}} \frac{1}{d_{\Pi}} x_{\Pi}(x) \omega_{\Pi_{0}}\left(e_{\Pi}\right) \\
&=\frac{|G|}{|G|} \frac{x_{\Pi_{0}}}{d_{\Pi_{0}}}(x) \\
& \alpha_{\Pi_{0}}|C| \\
& x_{\Pi_{0}}(x) .
\end{aligned}
$$

4.

Consequently, $\forall C \in \operatorname{CON}(G)$,

$$
\frac{|C|}{d_{\Pi}} x_{\Pi}(x) \quad(x \in C)
$$

is an algebraic integer.

8: THEOREM $\forall \Pi \in \hat{G}$,

$$
\frac{|\mathrm{G}|}{\mathrm{d}_{\pi}} \in \mathrm{Z} .
$$

PROOF In view of $\S 4, \# 9$,

$$
|G|=\sum_{x \in G} x_{\Pi}(x) x_{\Pi}\left(x^{-1}\right)
$$

Given $C \in \operatorname{CON}(G)$, fix an $X_{C} \in C-$ then

$$
\begin{aligned}
& |G|= \\
\Rightarrow & \sum_{C \in \operatorname{CON}(G)}|\mathrm{C}| x_{\Pi}\left(x_{C}\right) x_{\Pi}\left(x_{C}^{-1}\right) \\
& \frac{|G|}{d_{\Pi}}=\sum_{C \in \operatorname{CON}(G)}\left(\frac{|C|}{d_{\Pi}} x_{\Pi}\left(x_{C}\right)\right) x_{\Pi}\left(x_{C}^{-1}\right),
\end{aligned}
$$

hence $\frac{|G|}{\mathrm{d}_{\mathrm{II}}}$ is a rational algebraic integer, hence is an integer.

In other words, the d_{Π} divide $|G|$.

9: THEOREM If A is an abelian normal subgroup of G, then the $d_{I I}$ divide [G:A].

10: APPLICATION Let $Z(G)$ be the center of G-- then the $d_{I I}$ divide [G:Z (G)].

§7. INDUCED CLASS FUNCTIONS

Let G be a finite group, $\Gamma \subset G$ a subgroup.

1: NOTATION CL(G) is the subspace of $C(G)$ comprised of the class functions and $C L(\Gamma)$ is the subspace of $C(\Gamma)$ comprised of the class functions.

2: NOTATION Extend a function $\phi \in \mathrm{C}(\Gamma)$ to a function $\phi \in \mathrm{C}(\mathrm{G})$ by writing

$$
\stackrel{\circ}{\phi}(x)=\left.\right|_{-\quad \phi(x)} \text { if } x \in \Gamma
$$

3: NOTAITON Given a class function $\phi \in C L(\Gamma)$, put

$$
\begin{aligned}
\left(i_{\Gamma \rightarrow G^{\phi}}\right)(x) & =\frac{1}{|\Gamma|} \sum_{y \in G} \stackrel{\circ}{\phi}\left(y x y^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{y \in G, y x y^{-1} \in \Gamma} \phi\left(y_{x y}^{-1}\right) .
\end{aligned}
$$

4: LEMMA

$$
\mathrm{i}_{\Gamma \rightarrow \mathrm{G}^{\phi} \in \mathrm{CL}(\mathrm{G}),}
$$

the induced class function.

5: N.B. Therefore

$$
i_{\Gamma \rightarrow G}: C L(\Gamma) \rightarrow C L(G)
$$

[Note:

$$
i_{\Gamma \rightarrow G}{ }^{c} \phi=c i_{\Gamma \rightarrow G} \phi(c \in C), i_{\Gamma \rightarrow G}\left(\phi_{1}+\phi_{2}\right)=i_{\Gamma \rightarrow G} \phi_{1}+i_{\Gamma \rightarrow G^{\prime}} \phi_{2}
$$

but in general,

$$
\left.i_{\Gamma \rightarrow G}\left(\phi_{1} \phi_{2}\right) \neq\left(i_{\Gamma \rightarrow G} \phi_{1}\right)\left(i_{\Gamma \rightarrow G} \phi_{2}\right) \cdot\right]
$$

The arrow of restriction $C(G) \rightarrow C(\Gamma)$ leads to a map

$$
r_{G} \rightarrow \Gamma^{: C L}(G) \rightarrow C L(\Gamma) .
$$

And:

6: FROBENIUS RECIPROCITY Let $\phi \in C L(\Gamma), \psi \in C L(G)$-- then

$$
\left\langle i_{\Gamma \rightarrow G^{\phi}}, \psi\right\rangle{ }_{G}=\left\langle\phi, r_{G \rightarrow \Gamma^{\psi\rangle}} \Gamma^{*}\right.
$$

PROOF

$$
\begin{aligned}
&\left\langle i_{\Gamma} \rightarrow G^{\phi}, \psi\right\rangle_{G}=\frac{1}{|G|} \sum_{x \in G}\left(i_{\Gamma} \rightarrow G^{\phi)(x)} \overline{\psi(x)}\right. \\
&=\frac{1}{|G|} \frac{1}{|\Gamma|} \sum_{x \in G} \sum_{y \in G}{\stackrel{\circ}{\phi}\left(y x y^{-1}\right) \overline{\psi(x)}} \quad=\frac{1}{|\Gamma|} \frac{1}{|G|} \sum_{y \in G}^{\sum} \sum_{x \in G} \stackrel{\circ}{\phi}(x) \overline{\psi\left(y^{-1} x y\right)} \\
&=\frac{1}{|G|} \sum_{y \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \phi(\gamma) \overline{\psi(\gamma)} \\
&=\frac{1}{|G|} \sum_{y \in G}^{\left\langle\phi, r_{G} \rightarrow \Gamma^{\psi>} \Gamma\right.} \\
&=\left\langle\phi, r_{G} \rightarrow \Gamma^{\phi>} \Gamma^{*}\right.
\end{aligned}
$$

7: APPLICATION If ϕ is a character of Γ, then $i_{\Gamma \rightarrow G} \phi$ is a character of G.
[If X is a character of G, then $r_{G \rightarrow \Gamma^{X}}$ is a character of Γ, hence

$$
\left\langle\phi, r_{G} \rightarrow \Gamma_{\Pi} X_{\Pi}\right\rangle_{\Gamma}
$$

is a nonnegative integer for all $\Pi \in \hat{G}$ or still,

$$
<\mathbf{i}_{\Gamma \rightarrow G^{\phi}} \mathrm{X}_{\Pi \mathrm{II}}{ }_{\mathrm{G}}
$$

is a nonnegative integer for all $\Pi \in \hat{G}$ which impl ies that $i_{\Gamma \rightarrow G} \phi$ is a character of G (cf. §4, \#l7 ff.).

8: LEMMA Let $\phi \in C L(\Gamma), \psi \in C L(G)$-- then

$$
\left.\mathrm{i}_{\Gamma \rightarrow \mathrm{G}}\left(\mathrm{r}_{\mathrm{G} \rightarrow \Gamma^{\psi}} \psi\right) \phi\right)=\psi\left(\mathrm{i}_{\Gamma \rightarrow \mathrm{G}^{\phi}}\right) .
$$

PROOF From the definitions,

$$
\begin{aligned}
& \mathrm{i}_{\Gamma \rightarrow G}\left(\left(\mathrm{r}_{\mathrm{G}} \rightarrow \Gamma^{\psi}\right) \phi\right)(\mathrm{x}) \\
& =\frac{1}{|\Gamma|} \sum_{y \in G} \frac{0}{r_{G} \rightarrow \Gamma^{\psi}}\left(y x y^{-1}\right) \phi\left(y x y^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{y \in G} \psi\left(y x y^{-1}\right) \phi\left(y x y^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{y \in G} \psi(x) \stackrel{\circ}{\phi}\left(y x y^{-1}\right) \\
& =\psi(x) \frac{1}{|\Gamma|} \sum_{y \in G} \stackrel{\circ}{\phi}\left(\mathrm{yxy}^{-1}\right) \\
& =\psi(x)\left(i_{\Gamma \rightarrow G}{ }^{\phi}\right)(x) .
\end{aligned}
$$

9: APPLICATION The image of $i_{\Gamma \rightarrow G}$ is an ideal in CL(G).
Write

$$
\mathrm{G}=\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \Gamma .
$$

10: LEMMA For any $\phi \in \mathrm{CL}(\Gamma)$,

$$
\left(i_{\Gamma \rightarrow G^{\prime}}\right)(x)=\sum_{k=1}^{n} \stackrel{\circ}{\phi}\left(x_{k}^{-1} x x_{k}\right)
$$

PROOF In fact,

$$
\begin{aligned}
\left(i_{\Gamma \rightarrow G^{\phi}}\right)(x) & =\frac{1}{|\Gamma|} \sum_{y \in G} \stackrel{\circ}{\phi}\left(y x y^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{y \in G} \stackrel{\circ}{\phi}\left(y^{-1} x y\right) \\
& =\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \sum_{k=1}^{n} \stackrel{\circ}{\phi}\left(\gamma^{-1} x_{k}^{-1} x x_{k} \gamma\right) .
\end{aligned}
$$

There are then two possibilities.

- $\gamma^{-1} \mathrm{x}_{\mathrm{k}}^{-1} \mathrm{xx}_{\mathrm{k}} \gamma \notin \Gamma$

$$
\Rightarrow \mathrm{x}_{\mathrm{k}}^{-1} \mathrm{xx}_{\mathrm{k}} \notin \Gamma
$$

$$
\Rightarrow \phi^{\circ}\left(\gamma^{-1} x_{k}^{-1} \mathrm{xx}_{\mathrm{k}} \gamma\right)=0=\stackrel{\circ}{\phi}\left(\mathrm{x}_{\mathrm{k}}^{-1} \mathrm{xx}_{\mathrm{k}}\right) .
$$

- $\gamma^{-1} x_{k}^{-1} x_{k} \quad \gamma \in \Gamma$

$$
\Rightarrow x_{k}^{-1} x_{k} \in \Gamma
$$

$$
\Rightarrow \phi^{0}\left(\gamma^{-1} x_{k}^{-1} x_{k} \gamma\right)=\phi\left(\gamma^{-1} x_{k}^{-1} x_{k} \gamma\right)
$$

$$
=\phi\left(\mathrm{x}_{\mathrm{k}}^{-1} \mathrm{xx}_{\mathrm{k}}\right)=\stackrel{\circ}{\phi}\left(\mathrm{x}_{\mathrm{k}}^{-1} \mathrm{xx}_{\mathrm{k}}\right) .
$$

Therefore the sum $\frac{1}{\mid \Gamma} \sum_{\gamma \in \Gamma}$ disappears, leaving

$$
\sum_{\mathrm{k}=1}^{\mathrm{n}} \stackrel{\circ}{\phi}\left(\mathrm{x}_{\mathrm{k}}^{-1} \mathrm{xx}_{\mathrm{k}}\right)
$$

[Note: If instead,

$$
G=\prod_{k=1}^{n} \Gamma x_{k^{\prime}}
$$

then for any $\phi \in C L(\Gamma)$,

$$
\left.\left(i_{\Gamma \rightarrow G} \phi\right)(x)=\sum_{k=1}^{n} \stackrel{\circ}{\phi}\left(x_{k} x x_{k}^{-1}\right) .\right]
$$

11: EXAMPLE Let S be a transitive G-set, π the associated representation (cf. $85, \# 1$). Fix a point $s \in S$ and let G_{s} be its stabilizer -- then

$$
x_{\pi}=i_{G_{s}} \rightarrow G^{l_{S^{\prime}}}
$$

where $I_{G_{S}} \in C L\left(G_{S}\right)$ is $\equiv 1$.
[Take $s=\{1, \ldots, n\}$ and $s=1$. Write

$$
G=\prod_{k=1}^{n} x_{k} G_{s}
$$

with $x_{k} \cdot l=k--$ then

$$
\begin{aligned}
& \left(i_{G_{S}} \rightarrow G l_{G}\right)(x)=\sum_{k=1}^{n} \stackrel{o}{G}_{G_{S}}\left(x_{k}^{-1} x_{k}\right) \\
& =\sum_{k, x_{k}^{-1} \mathrm{xx}_{k} \in G_{s}}^{l} \\
& =\Sigma \quad 1 \\
& \mathrm{k},\left(\mathrm{x}_{\mathrm{k}}^{-1} \mathrm{xx}_{\mathrm{k}}\right) \cdot 1=1 \\
& =\sum_{k,\left(x_{k}\right)}^{\sum} \cdot l=x_{k} \cdot l^{l}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k, x}^{\sum} \cdot k=k^{1} \\
& =|\{k \in \mathrm{~S}: \mathrm{x} \cdot \mathrm{k}=\mathrm{k}\}| \\
& \left.=x_{\pi}(\mathrm{x}) \quad(\mathrm{cf} . \S 5, \# 1) .\right]
\end{aligned}
$$

[Note: Here is a "for instance". Take $S=G / \Gamma$ and write

$$
\mathrm{G} / \Gamma=\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \Gamma .
$$

Then G / Γ is a transitive G-set and

$$
\mathrm{G}_{\mathrm{x}_{\mathrm{k}} \Gamma}=\mathrm{x}_{\mathrm{k}} \Gamma \mathrm{x}_{\mathrm{k}}^{-1}
$$

In particular: Take $\mathrm{x}_{\mathrm{k}}=1$ to get

$$
X_{\pi}=i_{\Gamma \rightarrow G}{ }^{1} \Gamma
$$

thus at a given $x \in G,\left(i_{\Gamma} \rightarrow G^{1} \Gamma\right)(x)$ is the number of left cosets of Γ in G fixed by x.$]$

12: LEMMA Suppose that $\Gamma_{1} \subset \Gamma_{2} \subset G$. Let $\phi_{1} \in C L\left(\Gamma_{1}\right)$-- then

$$
{ }^{\left.i^{\Gamma_{2}} \rightarrow G^{(i} \Gamma_{1} \rightarrow \Gamma_{2} \phi_{1}\right)=i_{\Gamma_{1}} \rightarrow G^{\phi_{1}} .}
$$

PROOF Both sides of the putative equality are class functions, thus it suffices to show that

$$
\left.\left.<i_{\Gamma_{2}} \rightarrow G{ }^{\left(i_{\Gamma_{1}}\right.} \rightarrow \Gamma_{2} \phi_{1}\right), X_{\Pi}\right\rangle_{G}=\left\langle i_{\Gamma_{1}} \rightarrow G^{\phi} 1_{1} x_{\Pi}\right\rangle_{G}
$$

for all $\pi \in \hat{G}$. But the LHS equals

$$
{ }^{<i_{\Gamma_{1}}}{ }^{\Gamma_{2}} \phi_{1}, r_{G} \rightarrow \Gamma_{2} X_{\Pi} \Gamma_{2}
$$

$$
\begin{aligned}
& =\left\langle\phi_{1}, r_{\Gamma_{2}} \rightarrow \Gamma_{1}\left(r_{G} \rightarrow \Gamma_{2} X_{\Pi}\right)\right\rangle \Gamma_{1} \\
& =\left\langle\phi_{1}, \text { res }_{G} \rightarrow \Gamma_{1} X_{\Pi}\right\rangle_{\Gamma_{1}} \\
& =\left\langle i_{\Gamma_{1}} \rightarrow{ }_{G}^{\left.\phi_{1}, x_{\Pi 1}\right\rangle_{G^{\prime}}}\right.
\end{aligned}
$$

which is the RHS.

13: NOTATION Given $x \in G$, put

$$
\Gamma^{x}=x \Gamma x^{-1}=\left\{x \gamma x^{-1}: \gamma \in \Gamma\right\}
$$

The range of

$$
i_{\Gamma \rightarrow G}: C L(\Gamma) \rightarrow C L(G)
$$

is contained in the subspace S_{Γ} of $C L(G)$ consisting of those class functions $f \in C L$ (G) that vanish on

$$
G-\underset{x \in G}{U} \Gamma^{x}
$$

14: LEMMA

$$
i_{\Gamma \rightarrow G} C L(\Gamma)=S_{\Gamma} .
$$

PROOF Assume not, thus

$$
i_{\Gamma \rightarrow G} C L(\Gamma) \neq S_{\Gamma} .
$$

Then there exists a nonzero $f \in S_{\Gamma}$ which is orthogonal to all functions in $i_{\Gamma \rightarrow G}{ }^{C L}(\Gamma): \forall \phi \in C L(\Gamma)$,

$$
\left\langle i_{\Gamma \rightarrow G^{\phi, f}}^{G}=0\right.
$$

or still, $\forall \phi \in C L(\Gamma)$,

$$
\left\langle\phi, r_{G} \rightarrow \Gamma^{f}\right\rangle_{\Gamma}=0 .
$$

Now take $\phi=r_{G} \rightarrow \Gamma^{\mathrm{f}}$ to get

$$
\left\langle r_{\left.G \rightarrow \Gamma^{f}, r_{G \rightarrow \Gamma^{f}}\right\rangle_{\Gamma}=0, ~, ~, ~}^{\text {in }}\right.
$$

hence $r_{G \rightarrow I^{f}}=0$, i.e., f vanishes on Γ. But $f \in C L(G)$, so $\forall x \in G$, f vanishes on Γ^{x}. Since $\mathrm{f} \in S_{\Gamma^{\prime}}$, it then follows that f vanishes on G : $\mathrm{f} \equiv 0$, contradicting the supposition that f is nonzero.

15: APPLICATION The image of $i_{\Gamma \rightarrow G}$ is an ideal in CL(G) (cf. \#9).

Let $\phi \in C L(\Gamma)$. Given $x \in G$, define $\phi^{x} \in C\left(\Gamma^{x}\right)$ by

$$
\begin{aligned}
\phi^{x}(y) & =\phi\left(x^{-1} y x\right) \quad\left(y=x \gamma x^{-1}, \gamma \in \Gamma\right) \\
& =\phi\left(x^{-1} x \gamma x^{-1} x\right) \\
& =\phi(\gamma) .
\end{aligned}
$$

16: LEMMA

$$
\phi^{\mathrm{x}} \in C L\left(\Gamma^{\mathrm{x}}\right) .
$$

PROOF Let

$$
y_{1}=x y_{1} x^{-1}, y_{2}=x y_{2} x^{-1}
$$

Then

$$
\begin{aligned}
& \phi^{x}\left(y_{1} y_{2} y_{1}^{-1}\right) \\
&=\phi\left(x^{-1} y_{1} y_{2} y_{1}^{-1} x\right) \\
&=\phi\left(x^{-1}\left(x \gamma_{1} x^{-1}\right)\left(x \gamma_{2} x^{-1}\right)\left(x \gamma_{1} x^{-1}\right)^{-1} x\right) \\
&=\phi\left(x^{-1}\left(x \gamma_{1} x^{-1}\right)\left(x \gamma_{2} x^{-1}\right)\left(x \gamma_{1}^{-1} x^{-1}\right) x\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\phi\left(\gamma_{1} \gamma_{2} \gamma_{1}^{-1}\right) \\
& =\phi\left(\gamma_{2}\right)=\phi^{x}\left(y_{2}\right) .
\end{aligned}
$$

17: LEMMA $\forall x \in G$ and $\forall \phi \in C L(\Gamma)$,

$$
\mathrm{i}_{\mathrm{I}^{\mathrm{X}} \rightarrow \mathrm{G}}{ }^{\mathrm{x}}=\mathrm{i}_{\Gamma \rightarrow G^{\phi}} .
$$

PROOF Write

$$
G=\prod_{k=1}^{n} x_{k} \Gamma=\prod_{k=1}^{n} x_{k} x^{-1} \Gamma^{x}
$$

Then (cf. \#10)

$$
\begin{aligned}
& \left(i_{\Gamma^{x} \rightarrow G} \phi^{x}\right)(y)=\sum_{k=1}^{n} \phi^{\circ} x^{\prime}\left(\left({x x_{k}}^{x^{-1}}\right)^{-1} y\left(x_{k} x^{-1}\right)\right) \\
& =\sum_{k=1}^{n}{ }_{\mathrm{n}}{ }^{\mathrm{x}}\left(\mathrm{xx}_{\mathrm{k}}^{-1} \mathrm{x}^{-1} \mathrm{yxx}_{\mathrm{k}} \mathrm{x}^{-1}\right) \\
& =\sum_{k=1}^{n} \stackrel{\circ}{\phi}\left(x^{-1}\left(x x_{k}^{-1} x^{-1} y x_{k} x^{-1}\right) x\right) \\
& =\sum_{k=1}^{n} \stackrel{\circ}{\phi}\left(x_{k}^{-1} x^{-1} \mathrm{yxx}_{k}\right) \\
& =\left(i_{\Gamma \rightarrow G} \phi\right)\left(x^{-1} y x\right) \\
& =\left(i_{\Gamma \rightarrow G^{\phi}}\right)(y) \quad \text { (cf. \#4). }
\end{aligned}
$$

§8. MACKEY THEORY

Let G be a finite group, let $\Gamma_{1}, \Gamma_{2} \subset G$ be subgroups, and let

$$
G=\underset{s \in S}{U} \Gamma_{1} s \Gamma_{2}
$$

be a double coset decomposition of G. Given $s \in S$, put

$$
\Gamma_{2}(s)=\Gamma_{2}^{s} \cap \Gamma_{1} \quad\left(=s \Gamma_{2} s^{-1} \cap \Gamma_{1}\right)
$$

1: LEMMA Let

$$
\Gamma_{1}=\underset{t \in T(s)}{U} t \Gamma_{2}(s)
$$

be a left coset decomposition of Γ_{1}-- then

$$
\begin{aligned}
\Gamma_{1} s \Gamma_{2} & \left.=\underset{t \in T(s)}{U} t \Gamma_{2}(s)\right) s \Gamma_{2} \\
& =\underset{t \in T(s)}{U} t \Gamma_{2}(s) s \Gamma_{2} \\
& =\underset{t \in T(s)}{U} t \Gamma_{2}(s)\left(s \Gamma_{2} s^{-1}\right) s \\
& =\underset{t \in T(s)}{u} t\left(s \Gamma_{2} s^{-1}\right) s \\
& =\underset{t \in T(s)}{u} t s \Gamma_{2}
\end{aligned}
$$

is a partition of $\Gamma_{1} s \Gamma_{2}$.
PROOF Suppose that

$$
t_{1} s \Gamma_{2} \cap t_{2} s \Gamma_{2} \neq \varnothing \quad\left(t_{1} \neq t_{2}\right),
$$

so

$$
t_{1} s=t_{2} s \gamma_{2} \quad\left(\gamma_{2} \in \Gamma_{2}\right) .
$$

Then

$$
t_{1}=t_{2} s \gamma_{2} s^{-1} \Rightarrow t_{2}^{-1} t_{1} \in \Gamma_{2}^{s}
$$

Meanwhile

$$
t_{1}, t_{2} \in \Gamma_{1} \Rightarrow t_{2}^{-1} t_{1} \in \Gamma_{1} .
$$

Therefore

$$
\begin{gathered}
t_{2}^{-1} t_{1}
\end{gathered} \in \Gamma_{2}^{s} \cap \Gamma_{1}=\Gamma_{2}(s)
$$

Let $R(s)=\{t s: t \in T(s)\} \equiv T(s) s$ and let

$$
R=\underset{s \in S}{U} R(s)
$$

2: LEMMA R is a set of left coset representatives of Γ_{2} in G.
PROOF Let $\mathrm{x} \in \mathrm{G}$-- then

$$
\begin{aligned}
x & \in \Gamma_{1} S \Gamma_{2} \quad(\exists s \in S) \\
& =>x=t s \gamma_{2} \quad(\exists t \in T(s)) \\
& \Rightarrow x=r \gamma_{2} \quad(r \in R(s), r=t s) .
\end{aligned}
$$

Therefore

$$
G=\underset{r \in R}{U} r \Gamma_{2} .
$$

Suppose now that

$$
x \in r \Gamma_{2} \cap r^{\prime} \Gamma_{2} .
$$

Then

$$
\begin{aligned}
& x=r \gamma_{2}=r^{\prime} \gamma_{2}^{\prime} \quad(r \in R(s), \\
&\left.\Rightarrow r^{\prime} \in R\left(s^{\prime}\right)\right) \\
& x=t \in r_{2} \quad(t \in T(s)) \\
& x=t^{\prime} s^{\prime} \gamma_{2}^{\prime}\left(t^{\prime} \in T\left(s^{\prime}\right)\right) .
\end{aligned}
$$

But $\left\lvert\, \begin{aligned} & t \in T(s) \Rightarrow t \in \Gamma_{1} \\ & t^{\prime} \in T\left(s^{\prime}\right) \Rightarrow t^{\prime} \in \Gamma_{1}\end{aligned} \quad \Rightarrow x \in \Gamma_{1} s \Gamma_{2} \cap \Gamma_{1} s^{\prime} \Gamma_{2} \Rightarrow s=s^{\prime}\right.$

$$
\begin{aligned}
& \Rightarrow t s \gamma_{2}=t^{\prime} s \gamma_{2}^{\prime} \\
& \Rightarrow t s=t^{\prime} s \gamma_{2}^{\prime} \gamma_{2}^{-1}=t^{\prime} s \gamma_{2}^{\prime \prime} \\
& \Rightarrow t=t^{\prime} \Rightarrow r=r^{\prime} .
\end{aligned}
$$

Given $\phi \in C L\left(\Gamma_{2}\right)$, put

$$
\phi_{s}=r \Gamma_{2}^{s} \rightarrow \Gamma_{2}(s)^{\phi^{s}}
$$

Here, by definition (cf. §7, \#16), $\phi^{\mathbf{S}} \in \operatorname{CL}\left(\Gamma_{2}^{\mathbf{S}}\right.$), where

$$
\phi^{s}(y)=\phi\left(\gamma_{2}\right) \quad\left(y=s \gamma_{2} s^{-1}, \gamma_{2} \in \Gamma_{2}\right) .
$$

3: THEOREM Under the above assumptions,

$$
r_{G} \rightarrow \Gamma_{1}\left(i_{\Gamma_{2}} \rightarrow G^{\phi}\right)=\sum_{s \in S} i_{\Gamma_{2}}(s) \rightarrow \Gamma_{1} \phi_{s} .
$$

PROOF Since

$$
G=\prod_{r \in R} r \Gamma_{2},
$$

$\forall x \in G$,

$$
\left(i_{\Gamma_{2} \rightarrow G} \phi\right)(x)=\sum_{r \in R} \stackrel{\circ}{\phi}\left(r^{-1} \mathrm{xr}\right) \quad(c f .87, \# 10),
$$

so $\forall \gamma_{1} \in \Gamma_{1}$,

$$
\begin{aligned}
& \left(r_{G} \rightarrow \Gamma_{1}\left(i_{\Gamma_{2}} \rightarrow G^{\phi)}\right)\left(\gamma_{1}\right)\right. \\
& =\sum_{r \in R} \stackrel{\circ}{\phi}\left(r^{-1} \gamma_{1} r\right) \\
& =\sum_{r \in R, r^{-1} \gamma_{\gamma_{1} r \in \Gamma_{2}}} \phi\left(r^{-1} \gamma_{1} r\right) \\
& =\sum_{s \in S, r \in R(s), r^{-1} \gamma_{1} r \in \Gamma_{2}} \phi\left(r^{-1} \gamma_{1} r\right) \\
& =\sum_{s \in S, t \in T(s), s^{-1} t^{-1} \gamma_{1} t s \in \Gamma_{2}} \phi\left(s^{-1} t^{-1} \gamma_{1} t s\right) \\
& =\sum_{s \in S, t \in T(s), t^{-1} \gamma_{1} t \in \Gamma_{2}^{s}} \phi^{s}\left(t^{-1} \gamma_{1} t\right) \\
& =\sum_{s \in S} \sum_{t \in T(s)} \phi_{S}\left(t^{-1} \gamma_{1} t\right)
\end{aligned}
$$

$$
=\sum_{s \in S}\left(i_{\Gamma_{2}}(s) \rightarrow \Gamma_{1} \phi_{s}\right)\left(\gamma_{1}\right) \quad(c f . \S 7, \# 10)
$$

4: LEMMA Let $\psi \in \operatorname{CL}\left(\Gamma_{1}\right), \phi \in C L\left(\Gamma_{2}\right)$-- then

$$
\begin{aligned}
\left\langle i_{\Gamma_{l}}\right. & \rightarrow G^{\psi r} i_{\Gamma_{2}} \rightarrow G^{\phi>} \\
& =\sum_{s \in S}\left\langle r_{\Gamma_{1}} \rightarrow \Gamma_{2}(s)^{\left.\psi, \phi_{S}\right\rangle_{2}(s)} .\right.
\end{aligned}
$$

PROOF Taking into account §7, \#6,

$$
\begin{aligned}
& <i_{\Gamma_{1}} \rightarrow G^{\psi,} i_{\Gamma_{2}} \rightarrow G^{\phi>}{ }_{G} \\
& =\left\langle\psi, r_{G} \rightarrow \Gamma_{1}\left(i_{\Gamma_{2}} \rightarrow G^{\phi)}\right\rangle_{\Gamma_{1}}\right. \\
& =\left\langle\psi, \sum_{s \in S} i_{\Gamma_{2}}(s) \rightarrow \Gamma_{1}{ }^{\phi}{ }^{\prime} \Gamma_{1}\right. \\
& =\sum_{s \in S}<\psi, i^{\Gamma_{2}}(s) \rightarrow \Gamma_{1}{ }_{s}{ }^{\prime} \Gamma_{1} \\
& =\sum_{s \in S} \overline{\left\langle i_{\Gamma_{2}}(s) \rightarrow \Gamma_{1}{ }^{\phi} s^{\prime} \psi\right\rangle} \Gamma_{l} \\
& =\overline{\sum_{s \in S} \overline{\left\langle\phi_{s^{\prime}} r \Gamma_{1} \rightarrow \Gamma_{2}(s)^{\psi\rangle} \Gamma_{2}(s)\right.}, ~} \\
& =\sum_{s \in S}\left\langle r_{\Gamma_{1}} \rightarrow \Gamma_{2}(s)^{\psi} \phi_{s}{ }^{>} \Gamma_{2}(s) .\right.
\end{aligned}
$$

5: NOTATION Given a subgroup $\Gamma \subset G$, let l_{Γ} stand for the function $\Gamma \rightarrow C$ which is $\equiv 1$, that is, the character of the trivial one-dimensional representation of Γ.

6: EXAMPLE Take $\Gamma_{1}=\Gamma_{2}=\Gamma-$ then

$$
\begin{array}{r}
{ }^{<i_{\Gamma} \rightarrow G^{l} \Gamma^{\prime}}{ }^{i_{\Gamma}} \rightarrow G^{l} \Gamma_{G} \\
=|\Gamma \backslash G / \Gamma| .
\end{array}
$$

Therefore $i_{\Gamma \rightarrow G^{1} \Gamma}$ is not irreducible if $|\Gamma \backslash G / \Gamma|>1$ (cf. §5, \#ll).
[Note: $i_{\Gamma \rightarrow G^{1} \Gamma}$ is a character of G (cf. §7, \#7).]

§9. INDUCED REPRESENTATIONS

Let G be a finite group, $\Gamma \subset G$ a subgroup.

1: CONSTRUCTION Let (θ, E) be a unitary representation of Γ and denote by $E_{\Gamma, \theta}^{G}$ the space of all E-valued functions f on G such that $f(x \gamma)=\theta\left(\gamma^{-1}\right) f(x)$ ($x \in G, \gamma \in \Gamma$) -- then the prescription

$$
\left(\operatorname{Ind}_{\Gamma, \theta}^{G}(x) f\right)(y)=f\left(x^{-1} y\right)
$$

defines a representation $\operatorname{Ind}{ }_{\mathrm{T}, \theta}^{\mathrm{G}}$ of G on $\mathrm{E}_{\mathrm{T}, \theta}^{\mathrm{G}}$, the representation of G induced by θ.

2: N.B. The inner product

$$
\langle f, g\rangle_{\theta}=\frac{1}{|G|} \sum_{x \in G}\langle f(x), g(x)\rangle_{E}
$$

equips $E_{\Gamma, \theta}^{G}$ with the structure of a Hilbert space and Ind ${ }_{\Gamma, \theta}^{G}$ is a unitary representation.

3: EXAMPLE Take $\Gamma=\{e\}$ and take θ to be the trivial representation of Γ on $E=C-$ then $E_{\Gamma, \theta}^{G}=C(G)$ and

$$
\operatorname{Ind}_{\Gamma, \theta}^{G}=L,
$$

the left translation representation of G (cf. §l, \#l2).

4: EXAMPLE Take $\Gamma=G$ and let (π, V) be a unitary representation of G. Define a linear bijection

$$
T: V_{G, \pi}^{G} \rightarrow V
$$

by sending f to $f(e)$-- then $\forall x \in G$,

$$
\begin{aligned}
T\left(\operatorname{Ind}_{G, \pi}^{G}(x) f\right)= & \left(\operatorname{Ind}_{G, \pi}^{G}(x) f\right)(e) \\
=f\left(x^{-1} e\right)= & f\left(x^{-1}\right)=f\left(e x^{-1}\right) \\
& =\pi(x) f(e)=\pi(x)(T f)
\end{aligned}
$$

Therefore

$$
T \circ \operatorname{Ind}_{G, \pi}^{G}=\pi \circ T
$$

I.e.:

$$
T \in I_{G}\left(\operatorname{Ind} d_{G, \pi}, \pi\right)
$$

is an invertible intertwining operator, thus Ind $_{G, \pi}^{G}$ is equivalent to π. [Note: T is unitary. In fact,

$$
\begin{aligned}
\langle f, g\rangle_{\pi} & =\frac{1}{|G|} \sum_{x \in G}\langle f(x), g(x)\rangle_{V} \\
& =\frac{1}{|G|} \sum_{x \in G}\langle f(e x), g(e x)\rangle_{V} \\
& =\frac{1}{|G|} \sum_{x \in G}\left\langle\pi\left(x^{-1}\right) f(e), \pi\left(x^{-1}\right) g(e)\right\rangle_{V} \\
& =\frac{1}{|G|} \sum_{x \in G}\langle f(e), g(e)\rangle_{V} \\
& =\langle f(e), g(e)\rangle_{V} \\
& \left.=\langle T(f), T(g)\rangle_{V} .\right]
\end{aligned}
$$

5: LEMMA The dimension of $\mathrm{E}_{\Gamma, \theta}^{\mathrm{G}}$ equals

PROOF Write

$$
G=\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}{ }^{\Gamma},
$$

where $n=\left|\frac{G}{\mid}\right|$, and define a bijection

$$
\Lambda: E_{\Gamma, \theta}^{G} \underset{k=1}{\oplus} E
$$

by the stipulation that

$$
\Lambda f=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right),
$$

from which the assertion.

For any character X of G and for any conjugacy class $C \in \operatorname{CON(G),~write~} \chi(C)$ for the common value of $\chi(x)(x \in C)$ (and analogously if G is replaced by T).

Fixing C, the intersection $C \cap \Gamma$ is a union of elements of $\operatorname{CON}(\Gamma)$, say

$$
C \cap \Gamma=\underset{\ell}{U} C_{\ell} .
$$

[Note: If $C \cap \Gamma=\varnothing$, then the sum that follows is empty and its value is 0.]

6: THEOREM Set $\pi=$ Ind $_{\Gamma, \theta}^{G}$-- then

$$
x_{\pi}(C)=\frac{G}{\Gamma} \sum_{\ell} \frac{\left|C_{\ell}\right|}{|C|} x_{\theta}\left(C_{\ell}\right) .
$$

PROOF If X_{C} is the characteristic function of C (cf. $\S 4, \# 20$), then $X_{C}=$ $\sum_{y \in C} \delta_{y}$ (cf. $\S 4, \# 21$). Denoting by ρ the canonical extension of π to $C(G)$, it thus follows that

$$
x_{\pi}(C)=\frac{1}{\mid C\rceil} \operatorname{tr}\left(\rho\left(x_{C}\right)\right) .
$$

Fix an orthonormal basis $\phi_{1}, \ldots, \phi_{\mathrm{m}}$ in E and in $\mathrm{E}_{\Gamma, \theta^{\prime}}^{\mathrm{G}}$ let

$$
f_{j}(x)=\left[\begin{array}{l}
\left(\left.\frac{G}{\Gamma} \right\rvert\,\right)^{1 / 2} \theta\left(\gamma^{-1}\right) \phi_{j} \quad(x=\gamma \in \Gamma) \\
0 \quad(x \notin \Gamma) .
\end{array}\right.
$$

- The $f_{j}(I \leq j \leq m)$ are an orthonormal set in $E_{\Gamma, \theta}^{G}$.
- The $\rho\left(X_{k}\right) f_{j}(l \leq k \leq n, l \leq j \leq m)$ are an orthonormal basis for $E_{\Gamma, \theta}^{G}$. Proceeding

$$
\begin{aligned}
\operatorname{tr}\left(\rho\left(x_{C}\right)\right) & =\sum_{k=1}^{n} \sum_{j=1}^{m}\left\langle\rho\left(x_{C}\right) \rho\left(x_{k}\right) f_{j}, \rho\left(x_{k}\right) f_{j}\right\rangle_{\theta} \\
& =\sum_{k=1}^{n} \sum_{j=1}^{m}\left\langle\rho\left(x_{k}^{-1}\right) \rho\left(x_{C}\right) \rho\left(x_{k}\right) f_{j}, f_{j}\right\rangle_{\theta} \\
& =\sum_{k=1}^{n} \sum_{j=1}^{m}\left\langle\rho\left(x_{C}\right) f_{j}, f_{j}\right\rangle_{\theta} \\
& \left.=n \sum_{j=1}^{m}<\rho\left(x_{C}\right) f_{j}, f_{j}\right\rangle_{\theta} \\
& =[G: \Gamma] \sum_{j=1}^{m}\left\langle\rho\left(x_{C}\right) f_{j}, f_{j}\right\rangle \theta \\
& =|G| \sum_{j=1}^{m}\left\langle\rho\left(x_{C}\right) f_{j}, f_{j}\right\rangle_{\theta} .
\end{aligned}
$$

But

$$
\left\langle\rho\left(x_{C}\right) f_{j}, f_{j}\right\rangle_{\theta}=\left\langle\sum_{y \in C} \rho\left(\delta_{y}\right) f_{j}, f_{j}\right\rangle_{\theta}
$$

$$
\begin{aligned}
& =\sum_{y \in C}\left\langle\rho\left(\delta_{y}\right) f_{j}, f_{j}\right\rangle_{\theta} \\
& =\sum_{y \in C \cap \Gamma}\left\langle\rho\left(\delta_{y}\right) f_{j}, f_{j}\right\rangle_{\theta} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \operatorname{tr}\left(\rho\left(x_{C}\right)\right)=\left|\frac{G}{\mid \Gamma}\right| \\
& \sum_{j=1}^{m} \sum_{y \in C \cap \Gamma}\left\langle\rho\left(\delta_{y}\right) f_{j}, f_{j}\right\rangle \theta \\
&=\left|\frac{G}{\Gamma}\right| \sum_{j=1}^{m} \sum_{j} \sum_{\gamma \in C_{\ell}}^{\sum}\left\langle\rho(\gamma) f_{j}, f_{j}\right\rangle_{\theta} .
\end{aligned}
$$

But $\forall \gamma_{0} \in \Gamma$,

$$
\begin{aligned}
& \left.<\rho\left(\gamma_{0}\right) f_{j}, f_{j}\right\rangle \theta=\frac{1}{|G|} \sum_{\gamma \in \Gamma}\left\langle f_{j}\left(\gamma_{0}^{-1} \gamma\right), f_{j}(\gamma)\right\rangle_{E} \\
= & \frac{1}{|G|} \sum_{\gamma \in \Gamma} \left\lvert\, \frac{G}{\Gamma \mid}\left\langle\theta\left(\gamma^{-1} \gamma_{0}\right) \phi_{j}, \theta\left(\gamma^{-1}\right) \phi_{j}\right\rangle E\right. \\
= & \frac{1}{|G|} \sum_{\gamma \in \Gamma}\left|\frac{G}{\Gamma}\right|\left\langle\theta\left(\gamma^{-1}\right) \theta\left(\gamma_{0}\right) \phi_{j}, \theta\left(\gamma^{-1}\right) \phi_{j}\right\rangle E \\
= & \frac{1}{|G|} \sum_{\gamma \in \Gamma} \frac{\mid G}{|\Gamma|}\left\langle\theta\left(\gamma_{0}\right) \phi_{j}, \phi_{j}\right\rangle E=\left\langle\theta\left(\gamma_{0}\right) \phi_{j}, \phi_{j}\right\rangle E^{\cdot}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \operatorname{tr}\left(\rho\left(x_{C}\right)\right) \\
& =\left|\frac{G}{\Gamma}\right| \sum_{j=1}^{m} \sum_{l} \sum_{\gamma \in C_{l}}<\theta(\gamma) \phi_{j}, \phi_{j}>E \\
& =\left|\frac{G}{\Gamma}\right|_{l} \sum_{\gamma \in C_{l}} \sum_{j=1}^{m}\left\langle\theta(\gamma) \phi_{j}, \phi_{j}\right\rangle E \\
& =\left|\frac{G}{\Gamma}\right|_{l}^{\sum} \sum_{\gamma \in C_{l}} \operatorname{tr}(\theta(\gamma))
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{G}{\mid \Gamma} \sum_{\ell} \sum_{\gamma \in C_{\ell}} x_{\theta}(\gamma) \\
& =\left|\frac{G}{\Gamma}\right| \sum_{\ell}\left|C_{\ell}\right| x_{\theta}\left(C_{\ell}\right) .
\end{aligned}
$$

I.e.:

$$
x_{\pi}(C)=\left\lvert\, \frac{G}{|\Gamma|} \sum_{\ell} \frac{\left.\right|^{C} \ell \mid}{|C|} x_{\theta}\left(C_{\ell}\right)\right.
$$

[Note: If θ is the trivial representation of Γ on $E=C$, then $X_{\theta}=1_{\Gamma}$ (the function $\equiv 1$) and matters reduce to

$$
\left.x_{\pi}(\mathrm{C})=\frac{\mid \mathrm{G}}{|\Gamma|} \frac{|\mathrm{C} \cap \Gamma|}{|\mathrm{C}|} \cdot\right]
$$

7: N.B. Take $C=\{e\}:$

$$
\quad x_{\pi}(e)=\frac{|G|}{\Gamma \mid} x_{\theta}(e)
$$

$$
\operatorname{dim} E_{\Gamma, \theta}^{G}=\left|\frac{G}{\Gamma}\right| \operatorname{dim} E(c f . \# 5)
$$

8: LEMMA Set $\pi=$ Ind $_{\Gamma, \theta}^{G}$-- then for any class function $f \in C L(G)$,

$$
\left\langle\chi_{\pi}, f\right\rangle_{G}=\left\langle\chi_{\theta}, f \mid \Gamma\right\rangle_{\Gamma} .
$$

PROOF

$$
\begin{aligned}
& \quad\left\langle\chi_{\pi}, f\right\rangle_{G}=\frac{1}{|G|} \sum_{x \in G} X_{\pi}(\mathrm{x}) \overline{\mathrm{f(x)}} \\
& =\frac{1}{|\mathrm{G}|} \sum_{\mathrm{C} \in \mathrm{CON}(\mathrm{G})}|\mathrm{C}| \mathrm{X}_{\pi}(\mathrm{C}) \overline{\mathrm{f}(\mathrm{C})}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{|G|} \sum_{C \in C O N(G)}|C| \frac{G}{|\Gamma|} \sum_{\ell} \frac{\left.\right|^{C} \ell \mid}{|C|} x_{\theta}\left(C_{\ell}\right) \overline{f(C)} \\
& =\frac{1}{T \Gamma \mid} \sum_{C \in C O N(G)} \sum_{\ell}\left|C_{\ell}\right| x_{\theta}\left(C_{\ell}\right) \overline{f(C)} \\
& =\frac{1}{|\Gamma|} \sum_{C_{\ell} \in C O N(\Gamma)}\left|C_{\ell}\right| x_{\theta}\left(C_{\ell}\right) \overline{f\left(C_{\ell}\right)} \\
& =\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} x_{\theta}(\gamma) \overline{f(\gamma)}=\left\langle\chi_{\theta}, f \mid \Gamma\right\rangle
\end{aligned}
$$

[Note: One cannot simply quote $\S 7, \# 6 . .$. .]

9: APPLICATION Take $f=X_{\Pi}(\Pi \in \hat{G})$ and suppose that θ is irreducible --
 of II to F (cf. §5, \#5).

10: THEOREM Set $\pi=\operatorname{Ind}_{\Gamma, \theta}^{G}$-- then

$$
i_{\Gamma \rightarrow G} X_{\theta}=X_{\pi} .
$$

PROOF The function

$$
\mathrm{i}_{\Gamma \rightarrow \mathrm{G}^{\mathrm{X}}}^{\theta}
$$

is a class function on G, as is χ_{π}, thus it suffices to show that $\forall \pi \in \hat{G}$,

$$
\left\langle i_{\Gamma \rightarrow G_{G}} X_{\theta}, X_{\Pi}\right\rangle_{G}=\left\langle\chi_{\pi^{\prime}} x_{\Pi}\right\rangle_{G} .
$$

But

$$
=\frac{1}{|G|} \sum_{x \in G}\left(i_{\Gamma \rightarrow G^{\prime}} x_{\theta}\right)(x) \overline{\left.X_{\Pi} X_{\theta} \prime X_{\Pi}\right\rangle_{G}}
$$

$$
\begin{aligned}
& =\frac{1}{|G|} \frac{1}{|\Gamma|} \sum_{x \in G} \sum_{y \in G} \stackrel{\circ}{X}_{\theta}\left(y x y^{-1}\right) \overline{X_{\Pi}(x)} \\
& =\frac{1}{|G|} \frac{1}{|\Gamma|} \sum_{x \in G} \sum_{y \in G}{\stackrel{\circ}{X_{\theta}}(x)}_{\overline{x_{\Pi I}\left(y^{-1} x y\right)}} \\
& =\frac{1}{|G|} \frac{1}{|\Gamma|} \sum_{x \in G}^{\sum} \sum_{y \in G} \stackrel{\circ}{X}_{\theta}(x) \overline{X_{I T}(x)} \\
& =\frac{1}{|\Gamma|} \sum_{x \in G} \stackrel{\circ}{X}_{\theta}(x) \overline{X_{\Pi}(x)} \\
& =\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} x_{\theta}(\gamma) \overline{x_{\Pi}(\gamma)} \\
& =\left\langle\chi_{\theta}, x_{\Pi} \mid \Gamma\right\rangle_{\Gamma}=\left\langle\chi_{\pi}, x_{\Pi}\right\rangle_{G} \quad \text { (cf. \#8). }
\end{aligned}
$$

11: N.B. It is this result that provides the link with the machinery developed in $\$ 7$ and $\$ 8$.

Suppose that $\Gamma_{1} \subset \Gamma_{2} \subset G$ are subgroups. Let $\left(\theta_{1}, E_{1}\right)$ be a unitary representation of Γ_{1}-- then one can form $\operatorname{Ind}_{\Gamma_{1}}^{G}, \theta$. on the other hand, one can first form $\theta_{2}=$ $\operatorname{Ind}_{\Gamma_{1}, \theta_{1}}^{\Gamma_{2}}$ and then form $\operatorname{Ind}{ }_{\Gamma_{2}, \theta_{2}}^{G}$.

12: INDUCTION IN STAGES

$$
\pi_{1} \equiv \operatorname{Ind}_{\Gamma_{1}, \theta_{1}}^{G} \approx \operatorname{Ind}_{\Gamma_{2}, \theta_{2}}^{G} \equiv \pi_{2}
$$

[Apply §7, \#12:

$$
\left.x_{\pi_{1}}=x_{\pi_{2}} \cdot\right]
$$

[Note: Characters determine representations up to equivalence (cf. §5, \#10).]

13: LEMMA If $\left(\theta_{1}, E_{1}\right),\left(\theta_{2}, E_{2}\right)$ are unitary representations of Γ, then

$$
\operatorname{Ind}_{\Gamma, \theta_{1}}^{G} \oplus \theta_{2} \approx \operatorname{Ind}_{\Gamma, \theta_{1}}^{G} \oplus \operatorname{Ind}_{\Gamma, \theta_{2}}^{G} .
$$

14: N.B. Consequently, Ind $_{\Gamma, \theta}^{G}$ cannot be irreducible unless θ itself is irreducible (cf. §10, \#3).

Let G_{1}, G_{2} be finite groups, let $\Gamma_{1} \subset G_{1}, \Gamma_{2} \subset G_{2}$ be subgroups.
Put

$$
G=G_{1} \times G_{2}, \quad \Gamma=\Gamma_{1} \times \Gamma_{2} .
$$

15: LEMMA If

$$
\left[\begin{array}{l}
x_{1} \text { is a character of } \Gamma_{1} \\
x_{2} \text { is a character of } \Gamma_{2}
\end{array}\right.
$$

then $X_{1} x_{2}$ is a character of Γ and

$$
i_{\Gamma \rightarrow G} X_{1} X_{2}=\left(i_{\Gamma_{1}} \rightarrow G_{1} X_{1}\right)\left(i_{\Gamma_{2}} \rightarrow G_{2} X_{2}\right) .
$$

§10. IRREOUCIBILITY OF Ind ${ }_{\Gamma, \theta}^{G}$

Let G be a finite group.

1: DEFINITION Let $\left(\pi_{1}, V_{1}\right),\left(\pi_{2}, V_{2}\right)$ be unitary representations of G-then π_{1} and π_{2} are disjoint if they have no common nonzero unitarily equivalent subrepresentations.

2: LEMMA π_{1} and π_{2} are disjoint iff $\chi_{\pi_{1}}$ and $\chi_{\pi_{2}}$ are orthogonal:

$$
\left\langle x_{\pi_{1}}, x_{\pi_{2}}\right\rangle_{G}=0 .
$$

3: THEOREM Let Γ be a subgroup of $G,(\theta, E)$ an irreducible unitary representation of Γ-- then $\operatorname{Ind}_{\Gamma, \theta}^{G}$ is irreducible iff for every $x \in G-\Gamma$, the unitary representations

$$
\gamma \rightarrow \theta(\gamma), \gamma \rightarrow \theta\left(x^{-1} \gamma x\right)
$$

of the subgroup

$$
\Gamma(x)=\Gamma^{x} \cap \Gamma \quad\left(\Gamma^{x}=x \Gamma x^{-1}\right)
$$

are disjoint.
PROOF Set $\pi=$ Ind $_{\Gamma, \theta}^{G}$-- then on general grounds, π is irreducible iff
$\left\langle\chi_{\pi}, \chi_{\pi}\right\rangle_{G}=1$ (cf. §5, \#ll).
I.e.: Iff

$$
\left\langle i_{\Gamma \rightarrow G} X_{\theta} i_{\Gamma \rightarrow G} X_{\theta}\right\rangle_{G}=1 \quad \text { (cf. §9, \#l0) }
$$

or still, iff

$$
\left\langle\chi_{\theta}, r_{G} \rightarrow \Gamma_{\Gamma}^{\left(i_{\Gamma}\right.} \mathcal{G}_{\theta} x_{\Gamma}=1 \quad\right. \text { (cf. §7, \#6) }
$$

or still, iff

$$
\begin{aligned}
& \left\langle\chi_{\theta}, \sum_{s \in S} i_{\Gamma(s)} \rightarrow \Gamma\left(\chi_{\theta}\right)_{s}\right\rangle_{\Gamma} \\
& \quad=\sum_{s \in S}\left\langle\chi_{\theta}, i_{\Gamma(s) \rightarrow \Gamma}\left(\chi_{\theta}\right)_{s}\right\rangle_{\Gamma}=1 \quad \text { (cf. §8, \#3). }
\end{aligned}
$$

Here $S=\Gamma \backslash G / \Gamma$ and it can be assumed that one element of the sum is $s=e$ in which case $\left(\chi_{\theta}\right)_{s}=\chi_{\theta}, \Gamma(s)=\Gamma$, hence

$$
\begin{aligned}
& \left\langle X_{\pi}, X_{\pi}\right\rangle_{G} \\
& =\left\langle\chi_{\theta}, x_{\theta}\right\rangle_{\Gamma}+\sum_{\substack{s \in \Gamma \backslash G / \Gamma \\
s \notin \Gamma}}\left\langle\chi_{\theta}, i_{\Gamma(s)} \rightarrow \Gamma\left(\chi_{\theta}\right)_{s}\right\rangle_{\Gamma} \\
& =\left\langle\chi_{\theta}, X_{\theta}\right\rangle_{\Gamma}+\sum_{\substack{s \in \Gamma \backslash G / \Gamma \\
s \notin \Gamma}}^{\left.\left\langle r_{\Gamma} \rightarrow \Gamma(s) X_{\theta},\left(X_{\theta}\right)_{s}\right\rangle \Gamma(s) \quad \text { (cf. 87, \#6) }\right) ~}
\end{aligned}
$$

Each term

$$
\left\langle r_{\Gamma} \rightarrow \Gamma(s) \chi_{\theta},\left(\chi_{\theta}\right)_{s}\right\rangle^{\prime} \Gamma(s)
$$

is nonnegative and per $\Gamma(\mathrm{s})$,

$$
\int_{-\quad r_{\Gamma \rightarrow \Gamma(s)} \chi_{\theta} \text { is the character of } \gamma \rightarrow \theta(\gamma)}^{\quad\left(\chi_{\theta}\right)_{s} \text { is the character of } \gamma \rightarrow \theta\left(s^{-1} \gamma s\right) .}
$$

If now $\pi=$ Ind $_{\Gamma, \theta}^{G}$ is irreducible, then $\left\langle\chi_{\pi}, X_{\pi}\right\rangle_{G}=1$, thus $\forall s \in \Gamma \backslash G / \Gamma$ ($s \notin \Gamma$),

$$
r_{\Gamma \rightarrow \Gamma(s)} x_{\theta} \text { and }\left(x_{\theta}\right)_{s}
$$

are orthogonal. Since S can be chosen so that it contains any given element of $\mathrm{G}-\mathrm{F}$, the disjointness claim is manifest. Conversely, the orthogonality of

$$
r_{\Gamma \rightarrow \Gamma(s)} \chi_{\theta} \text { and }\left(\chi_{\theta}\right)_{s}
$$

$\forall s \in \Gamma \backslash G / \Gamma(s \notin \Gamma)$ forces $\left\langle\chi_{\pi^{\prime}} \chi_{\pi}\right\rangle_{G}=1$.
§Il. BURNSIDE RINGS

Let G be a finite group.

1: DEFINITION Let x_{1}, \ldots, x_{t} be the characters of the irreducible unitary representations of G-- then the character ring $X(G)$ is the free abelian group on generators X_{l}, \ldots, χ_{t} under pointwise addition and multiplication with unit 1_{G} (cf. §8, \#5).
[Note: Recall that

$$
t=|\hat{G}|=|\operatorname{CON}(G)|=\operatorname{dim} C L(G) .]
$$

2: N.B. The pointwise sum or product of two characters is a character and the canonical arrow

$$
X(G) \otimes_{Z} C \rightarrow C L(G)
$$

is an isomorphism.

3: DEFINITION An element of $\mathrm{X}(\mathrm{G})$ is called a virtaal character.

4: LEMMA A class function $f \in C(G)$ is a virtual character iff $\left\langle f, X_{\Pi I}\right\rangle_{G} \in Z$ for all $\Pi \in \hat{G}$.

5: REMARK The values of a virtual character are algebraic integers (cf. $86, \# 5$), hence $X(G)$ is a proper subring of $C L(G)$.
[Note: On the other hand, a class function whose values are algebraic integers need not be a virtual character.]

6: NOTATION Let H be a collection of subgroups of G with the property that

$$
H \in H \& H^{\prime} \subset H \Rightarrow H^{\prime} \in H,
$$

in which case H is termed a hereditary class.

Given H, let $X(G ; H)$ be the additive subgroup of $X(G)$ spanned by the

$$
i_{H \rightarrow G_{H}^{1}} \quad(H \in H) .
$$

7: LENMA $X(G ; H)$ is a subring of $X(G)$.
PROOF Let $H_{1}, H_{2} \in H-$ then the claim is that

$$
\left(i_{\mathrm{H}_{1}} \rightarrow \mathrm{G}^{1} \mathrm{H}_{1}\right)\left(i_{\mathrm{H}_{2}} \rightarrow \mathrm{G}_{\mathrm{H}_{2}}^{1}\right) \in H
$$

Put

$$
X=\left(i_{H_{1}} \rightarrow G_{H_{1}}\right)
$$

and write

$$
\begin{aligned}
& \chi\left(i_{\mathrm{H}_{2}}\right.\left.\rightarrow \mathrm{G}_{\mathrm{H}_{2}}^{1}\right) \\
&=i_{\mathrm{H}_{2}} \rightarrow \mathrm{G} \\
&\left(\left(r_{\mathrm{G}} \rightarrow \mathrm{H}_{2} \chi\right) 1_{\mathrm{H}_{2}}\right) \quad \text { (cf. §7, \#8) } \\
&\left.=i_{\mathrm{H}_{2} \rightarrow \mathrm{G}}\left({\left(r_{G} \rightarrow \mathrm{H}_{2}\right.}^{\chi}\right)\right)
\end{aligned}
$$

Then, thanks to $\S 8, \# 3$, there are subgroups $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{r}}$ of H_{2} such that

$$
\mathrm{r}_{\mathrm{G}} \rightarrow \mathrm{H}_{2} \mathrm{X}=\sum_{\ell=1}^{\mathrm{r}} \mathrm{i}_{\mathrm{K}_{\ell}} \rightarrow \mathrm{H}_{2}{ }^{1} \mathrm{~K}_{\ell} .
$$

Therefore

$$
\begin{aligned}
i_{H_{2}} & \rightarrow G^{\left(\left(r_{G} \rightarrow H_{2}\right.\right.} \overline{\chi))} \\
& =i_{H_{2}} \rightarrow G\left(\sum_{\ell=1}^{r} i_{K_{\ell}} \rightarrow H_{2}{ }^{1} K_{\ell}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\ell=1}^{r} i_{\mathrm{H}_{2}} \rightarrow \mathrm{G}^{\left(i_{\mathrm{K}_{\ell}} \rightarrow \mathrm{H}_{2}{ }^{1} \mathrm{~K}_{\ell}\right)} \\
& =\sum_{\ell=1}^{r} i_{\mathrm{K}_{l}} \rightarrow \mathrm{G}^{1} \mathrm{~K}_{\ell} \quad \text { (cf. §7, \#l2) } \\
& \in \mathrm{X}(\mathrm{G} ; H) .
\end{aligned}
$$

8: DEFINITION $X(G ; H)$ is the Burnside ring of G associated with the hereditary class H.
[Note: It is not a priori evident that $\left.l_{G} \in X(G ; H).\right]$

9: CRITERION Let R be a ring of Z -valued functions on a finite set X under pointwise operations. Suppose that for each $x \in X$ and each prime p there exists $f \in R$ such that $f(x) \neq 0$ mod $p--$ then $l_{X} \in R$.
[Attach to each $\mathrm{x} \in \mathrm{X}$ the ideal

$$
I_{x}=\{f(x): f \in R\} \subset Z
$$

Then, in view of the assumption, $I_{x}=Z$ so there exists $f_{x} \in R$ such that $f_{x}(x)=1$, hence

$$
\prod_{x \in X}\left(1-f_{x}\right)=0
$$

Now expand the product to get 1 as a sum of elements of R.]

Let G be a finite group.

10: DEFINITION Let p be a prime -- then G is a p-group if every element $x \in G$ has order a power of p.
[Note: Every p-group is nilpotent.]

11: LEMMA G is a p-group iff $|G|$ is a power of p.

12: DEFINITION Let p be a prime - then a subgroup P of G is a Sylow p-subgroup of G if it is a maximal p-subgroup of G.

13: THEOREM

- Sylow p-subgroups exist.
- All Sylow p-subgroups are conjugate.
- Every p-subgroup is contained in a Sylow p-subgroup.

14: N.B. The number of Sylow p-subgroups of G is a divisor of $|G|$.

15: DEFINITION Given a prime p , a finite group H is p-elementary if it is the direct product of a cyclic group C of order prime to p and a p-group P.
[Note: Accordingly, C and P are normal subgroups, $C \cap P=\{e\}$, and $H=C P$.

16: LENMA Subgroups of p-elementary groups are again p-elementary, hence the p-elementary subgroups of G constitute a hereditary class $E_{p}(G)$.

17: DEFINITION A finite group H is elementary if it is p-elementary for some prime p .

18: NOTATION Put

$$
E(G)=\sum_{p}^{u} E_{p}(G) .
$$

19: N.B. Since $E(G)$ is a hereditary class, one can form its Burnside ring $X(G ; E(G))$.

20: DEFINITION Given a prime p, a group H is p-semielementary if it is the semidirect product of a cyclic subgroup C of order prime to p and a p-group P.
[Note: Accordingly, C is a normal subgroup, $C \cap P=\{e\}$, and $H=C P$.

21: LEMMA Subgroups of p-semielementary groups are again p-semielementary, semi hence the p-elementary subgroups of G constitute a hereditary class $S E_{p}(G)$.

22: DEFINITION A finite group H is semielementary if it is p-semielementary for some prime p .

23: NOTATION Put

$$
\operatorname{SE}(G)=\underset{p}{U} S E_{\mathrm{p}}(\mathrm{G}) .
$$

24: N.B. Since $S E(G)$ is a hereditary class, one can form its Burnside ring $X(G ; S E(G))$.

25: LEMMA

$$
I_{G} \in X(G ; S E(G)),
$$

i.e., there exist integers $a_{H}(H \in S E(G))$ such that

$$
l_{G}=\sum_{H \in S E(G)} a_{H}\left(i_{H} \rightarrow G_{H}^{1}\right) .
$$

PROOF It suffices to show that the ring $X(G ; S E(G))$ satisfies the assumptions of \#9: For every $x \in G$ and for every prime p, there exists a group $H_{x, p} \equiv H \in S E(G)$ such that

$$
\left(i_{H} \rightarrow G^{1}\right)(x) \not \equiv 0 \bmod p .
$$

This said, factor the order of x as $p^{a} n(p \nmid n)$ and let $c=\left\langle x^{p^{a}}\right\rangle$ (hence $|C|=n$,
hence is prime to p). Let N be the normalizer of C in G, let P be a Sylow p-subgroup of N containing x, and let $H_{x, p} \equiv H=C P$-- then H is p-semielementary and the claim is that

$$
\left(i_{H} \rightarrow G_{H}^{1}\right)(x) \neq 0 \bmod p .
$$

By definition,

$$
\left(i_{H} \rightarrow G_{H}^{1}\right)(x)=\frac{1}{|H|} \sum_{y \in G, y x y^{-1} \in H} 1_{H}\left(y x y^{-1}\right)
$$

But

$$
\begin{aligned}
y x y^{-1} \in H & \Rightarrow y C y^{-1} \subset H \\
& \Rightarrow y C y^{-1}=c \Rightarrow y \in N .
\end{aligned}
$$

Therefore

$$
\left(i_{H} \rightarrow G_{H}^{1}\right)(x)=\left(i_{H} \rightarrow N_{H}^{1}\right)(x),
$$

the term on the right being the number of left cosets of H in N fixed by x (cf. §7, \#11). Since C is a normal subgroup of N and since $C \subset H$, it follows that C must fix the left cosets of H in N. Thus the x-orbits have cardinality dividing p^{a}, thus each nontrivial x-orbit has cardinality divisible by p. On the other hand, the number of left cosets of H in N is prime to p (H contains a Sylow p-subgroup of N$)$. Combining these facts then leads to the conclusion that the number of left cosets of H in N fixed by x is prime to pr i.e.,

$$
\left(i_{H} \rightarrow G^{1}{ }_{H}\right)(x) \not \equiv \bmod p .
$$

26: DEFINITION A monomial character of a finite group is a character of degree 1.

27: DEFINITION A finite group H is said to be an M-group if each irreducible character of H is induced by a monomial character of a subgroup of H .

28: THEOREM Suppose that H is a finite group which is a semidirect product of an abelian normal subgroup and a nilpotent group (in particular, a p-group) -- then H is an M-group.

29: APPLICATION p-elementary groups and p-semielementary groups are M-groups.

§12. BRAUER THEORY

Let G be a finite group.

1: CHARACIERIZATION OF CHARACTERS A class function $f \in C L(G)$ is a

 virtual character (i.e., belongs to $X(G))$ iff for every $H \in E(G)$,$$
\mathrm{r}_{\mathrm{G}} \rightarrow \mathrm{H}^{\mathrm{f}} \in \mathrm{X}(\mathrm{H}) .
$$

2: INDUCTION PRINCIPLE A class function $f \in C L(G)$ is a virtual character (i.e., belongs to $X(G))$ iff there exist elementary subgroups H_{i}, monomial characters λ_{i} of H_{i}, and integers $a_{i}(l \leq i \leq n)$ such that

$$
f=\sum_{i=1}^{n} a_{i}\left(i_{H_{i}} \rightarrow G_{i}{ }_{i}\right)
$$

These are the main results. Turning to their proofs, let R be the ring with unit l_{G} whose elements are the class functions f on G such that

$$
\mathrm{r}_{\mathrm{G}} \rightarrow \mathrm{H}^{\mathrm{f}} \in \mathrm{X}(\mathrm{H})
$$

for all $H \in E(G)$ and let L be the subgroup of $X(G)$ spanned over Z by characters of the form $i_{H} \rightarrow G^{\lambda}$, where λ is a monomial character of some $H \in E(G)$.

3: LEMMA Statements 1 and 2 are equivalent to $L=R$.
[Note: Obviously,

$$
L \subset X(G) \subset R .]
$$

4: LEMMA L is an ideal in R.
PROOF Let $\Lambda \in L$, say

$$
\Lambda=\sum_{i} a_{i}\left(i_{H_{i}} \rightarrow G_{i} \lambda^{\prime}\right)
$$

and let $\psi \in R-$ then

$$
\begin{aligned}
& \psi \Lambda=\sum_{i} a_{i} \psi\left(i_{H_{i}} \rightarrow G\right. \\
&\left.\lambda_{i}\right) \\
&=\sum_{i} a_{i}\left(i_{H_{i}} \rightarrow G\right. \\
&\left.\left.\left(\left(r_{G} \rightarrow H_{i} \psi\right) \lambda_{i}\right)\right) \quad \text { (cf. } \S 7, \# 8\right) .
\end{aligned}
$$

Since

$$
r_{G} \rightarrow H_{i} \psi \in X\left(H_{i}\right),
$$

there exist integers $b_{i j}$ such that

$$
r_{G \rightarrow H_{i}} \psi=\sum_{j} b_{i j} \xi_{i j}
$$

$\xi_{i j}$ running through the irreducible characters of H_{i}, hence

$$
\psi \Lambda=\sum_{i, j} a_{i} b_{i j}\left(i_{H_{i}} \rightarrow G_{i j}\right)
$$

But elementary groups are M-groups (cf. §ll, \#29), so $\xi_{i j}$ is induced by a monomial character of some subgroup of H_{i}. Taking into account that $E(G)$ is a hereditary class, apply §7, \#12 to conclude that $\psi \Lambda \in L$. Therefore L is an ideal in R.
[Note: Operations in R are pointwise and, of course, R is commutative.]

Matters thus reduce to showing that $I_{G} \in L$. To this end, suppose that it were possible to write

$$
I_{G}=\sum_{k} c_{k}\left(i_{H_{k}} \rightarrow G_{G} X_{k}\right),
$$

where $c_{k} \in Z$ and X_{k} is a character of some proper subgroup H_{k} of G. Inductively, it can be assumed that \#2 holds for H_{k}, hence that χ_{k} can be written as a Z-linear combination of induced monomial characters from elements of $E\left(H_{k}\right)$. But then $I_{G} \in L$, as desined.
[Note: Nothing need be done if G is elementary to begin with (it being automatic that $I_{G} \in L$).]

5: LEMMA If G is not elementary, then l_{G} can be written as a Z-linear combination of induced characters from proper subgroups of G.

Case 1: G is not semielementary, thus $G \notin S E(G)$ and the $H \in S E(G)$ are proper subgroups. The contention then follows from §1l, \#25.

Case 2: G is semielementary: $G \in S E(G)$, say $G=C P$ for some prime p. Let N be the normalizer of P in G, hence $N=(C \cap N) \times P$ is p-elementary and it can be assumed that $N \neq G$ (otherwise G is elementary and there is nothing to prove). Write

$$
\dot{i}_{N} \rightarrow G^{1}{ }_{N}=a_{0} 1_{G}+\sum_{i>0} a_{i} X_{i},
$$

where the $X_{i} \neq 1_{G}$ are irreducible characters and the a_{i} are positive integers.

6: N.B.

$$
\begin{aligned}
a_{0} & =\left\langle i_{N} \rightarrow G^{1} N^{\prime} 1_{G}\right\rangle_{G} \\
& =\left\langle 1_{N^{\prime}}, r_{G} \rightarrow N^{1}{ }_{G}{ }^{\prime} N \quad\right. \text { (cf. §7, \#6) } \\
& =\left\langle 1_{N^{\prime}} 1_{N}\right\rangle_{N}=1 .
\end{aligned}
$$

7: N.B. $\quad X_{i}(e)>1$ for all $i>0$.
[Suppose that $X_{i}(e)=1(\exists i)$. Write

$$
\operatorname{res}_{G} \rightarrow \mathrm{~N}_{\mathrm{i}}=\mathrm{cl} \mathrm{l}_{\mathrm{N}}+\chi
$$

for some character x orthogonal to 1_{N}-- then

$$
\begin{aligned}
c & =\left\langle l_{N^{\prime}} \operatorname{res}_{G} \rightarrow N^{\prime} \chi_{i}\right\rangle_{N} \\
& =\left\langle i_{N} \rightarrow G_{N_{N}}, x_{i}\right\rangle_{G} \quad \text { (cf. §7, \#6) } \\
& =a_{i} .
\end{aligned}
$$

And

$$
\begin{aligned}
1 & =x_{i}(e)=a_{i}+x(e) \\
& \Rightarrow a_{i}=1 \Rightarrow \operatorname{res}_{G \rightarrow N^{\prime}} x_{i}=1_{N^{\prime}}
\end{aligned}
$$

Recall now that the kernel K_{i} of X_{i} is the proper normal subgroup of G consisting of those $x \in G$ such that $X_{i}(x)=X_{i}(e)$ or still, consisting of those $x \in G$ such that $\chi_{i}(x)=1$, thus $N \subset K_{i}$ (since $\operatorname{res}_{G \rightarrow N_{N}} X_{i}=1_{N}$). But this is impossible: P is a Sylow p-subgroup of K_{i}, so $G=K_{i}$ (cf. infra).
[Note: Let $x \in G-$ then both P and XPx^{-1} are Sylow p-subgroups of K_{i}, hence

$$
\mathrm{kxPx}^{-1} \mathrm{k}^{-1}=\mathrm{P}
$$

for some $k \in K_{i}$ which implies that $k x \in N \subset K_{i}$, thereby forcing $x \in K_{i}$, so $G=K_{i}$.]

Return to the formula

$$
i_{N \rightarrow G} 1_{N}=1_{G}+\sum_{i>0} a_{i} x_{i}
$$

since $X_{i}(e)>1$ for all $i>0$, the X_{i} are not monomial. On the other hand, $G=$ CP is semielementary, thus is an M-group, thus each X_{i} is induced by a monomial character λ_{i} of some proper subgroup H_{i} of G. Therefore

$$
l_{G}=i_{N} \rightarrow G l_{N}-\sum_{i>0} a_{i}\left(i_{H_{i}} \rightarrow G_{i} \lambda_{i}\right),
$$

which completes the proof of \#5.

§13. GROUPS OF LIE TYPE

Let k be a finite field.

1: DEFINITION A k-group is a linear algebraic group defined over k. [Note: A k-subgroup of a k-group is a subgroup which is a k-group.]

2: NOTATION Given k-groups $\underset{\underline{A}}{\text {, }} \underline{\underline{B}}, \underline{\underline{C}}, \ldots$, denote their group of k-rational points $\underset{=}{A}(k), \underline{\underline{B}}(k), \underline{\underline{C}}(k) \ldots$, by A, B, C, \ldots.

Let $\underline{\underline{G}}$ be a connected reductive k-group.

3: DEFINITION G is said to be a group of Lie type.

4: N.B. G is, of course, finite and it is possible to compute $|G|$ explicitly.

5: DEFINITION A maximal closed connected solvable subgroup of $\underline{\underline{G}}$ is called a Borel subgroup.
[Note: The conditions "closed" and "connected" can be omitted from the definition.]

6: LEMMA

- Any two Borel subgroups of $\underline{\underline{G}}$ are conjugate.
- Every element of $\underline{\underline{G}}$ belongs to some Borel subgroup of $\underline{\underline{G}}$.
- Every closed subgroup of $\underline{\underline{G}}$ containing a Borel subgroup is equal to its own normalizer and is connected.
- Any two closed subgroups of $\underline{\underline{G}}$ containing the same Borel subgroup and conjugate in G are equal.

7: N.B. Since k is finite, $\underline{\underline{G}}$ is quasi-split, hence contains a Borel subgroup defined over k.
[Note: Any two such are G-conjugate.]

Let $\underline{\underline{B}}$ be a Borel k-subgroup of $\underline{\underline{G}}$, let $\underline{\underline{T}} \subset \underline{\underline{B}}$ be a maximal torus of $\underline{\underline{G}}$ defined over k, and put

$$
\underline{\underline{N}}=N_{\underline{\underline{G}}}(\underline{\underline{T}})
$$

8: LEMMA N is a k-subgroup of G.

9: NOTATION Set

$$
\underline{\underline{W}}=\underline{N} / \underline{\underline{T}} .
$$

10: LEMMA

$$
\mathrm{W} \approx \mathrm{~N} / \mathrm{T} .
$$

[Note:

$$
\underline{\underline{B} \cap N} \underline{\underline{N}} \underline{\underline{T}} \Rightarrow B \cap N=T .]
$$

11: LEMMA W is a finite Coxeter group.
[Note: Spelled out, W admits a finite system of generators $\mathrm{w}_{1}, \ldots,{ }^{\mathrm{w}} \mathrm{W}_{\ell}$
$\left(w_{i} \neq 1\right.$ and $w_{i} \neq w_{j}$ for $\left.i \neq j\right)$ subject to the relations

$$
w_{i}^{2}=1,\left(w_{i} w_{j}\right)^{m_{i j}}=1 \quad(i \neq j),
$$

where $m_{i j}$ is the order of $\left.w_{i} w_{j}(i \neq j).\right]$

12: BRUHAT LEMMA

$$
\mathrm{G}=\prod_{\mathrm{W} \in \mathbb{W}} \mathrm{BwB} .
$$

13: DEFINITION A closed subgroup $\underline{\underline{P}}$ of $\underline{\underline{G}}$ is parabolic if it contains a Borel subgroup of $\underline{\underline{G}}$.

14: LFMMA Let $\underline{\underline{P}}_{1}, \underline{\underline{P}}_{2}$ be parabolic k-subgroups of $\underline{\underline{G}}$-- then $\underline{P}_{1}=\underline{\underline{P}}_{2}$ iff $P_{1}=P_{2}$.

15: NOTATION Given a parabolic k-subgroup of $\underline{\underline{G}}$, denote its unipotent radical by V .
[Note: Recall that $\underline{\underline{P}}$ is the normalizer of $\underline{\underline{U}}$.]

17: DEFTNITION Let $\underline{\underline{P}}$ be a parabolic k-subgroup of $\underline{\underline{G}}$-- then a closed connected reductive k-subgroup $\underline{\underline{L}}$ of $\underline{\underline{P}}$ is a Levi subgroup of $\underline{\underline{P}}$ if $\underline{\underline{P}}$ is the semidirect product LU (hence $P=L U$).

18: LEMMA Levi subgroups of $\underline{\underline{p}}$ exist and any two such are conjugate by a unique element of U.

19: N.B. L is a group of Lie type.

20: LEMMA Let $\underline{\underline{P}}_{1}, \underline{\underline{P}}_{2}$ be parabolic k-subgroups of $\underline{\underline{G}}$-- then the following conditions are equivalent.

- $P_{1} \cap U_{2} \subset U_{1}, P_{2} \cap U_{1} \subset U_{2}$
- \underline{P}_{1} and \underline{P}_{2} have a common Levi subgroup.

21: APPLICATION

$$
U_{1}=U_{2} \Rightarrow \underline{P}_{1}=\underline{\underline{P}}_{2}
$$

[For under these circumstances, $\underline{\underline{P}}_{1}$ and $\underline{\underline{P}}_{2}$ have a conmon Levi subgroup $\underline{\underline{L}}$, thus

$$
P_{I}=L U_{1}=L U_{2}=P_{2},
$$

so one can quote \#14.]

22: DEFINITION Let $\underline{\underline{P}}_{1}, \underline{\underline{P}}_{2}$ be parabolic k-subgroups of $\underline{\underline{G}}$-- then $\underline{\underline{P}}_{1}$ and $\underline{\underline{P}}_{2}$ are said to be associate if there exists an $x \in G$ such that ${\underset{\sim}{p}}_{1}$ and ${\underset{N}{2}}_{2} x^{-1}$ have a conmon Levi subgroup.

23: N.B. The relation determined by "to be associate" is an equivalence relstion on the set of parabolic k-subgroups of $\underline{\underline{G}}$.

24: LEMMA If $\underline{\underline{P}}_{1}, \underline{\underline{P}}_{2}$ are not associate, then $\forall x \in G, \underline{\underline{P}}_{1}, \mathrm{XP}_{2} \mathrm{x}^{-1}$ are not associate.
[If there exists $x \in G$ such that ${\underset{P}{P}}_{1}$ and ${\underset{\underline{P}}{2}}^{x^{-l}}$ are associate, then there exists $y \in G$ such that ${\underset{P}{P}}_{1}$ and $\operatorname{yxP}_{2} x^{-1} y^{-1}$ have a common Levi subgroup, thus ${\underset{P}{P}}$ and ${\underset{N}{P}}_{2}$ are associate, contradiction.]

25: LEMMA Let $\underline{\underline{P}}_{1}, \underline{\underline{P}}_{2}$ be parabolic k-subgroups of $\underline{\underline{G}}$. Assume: $\underline{\underline{P}}_{1}$ and $\underline{\underline{P}}_{2}$ are associate - then $\left|\mathrm{P}_{1}\right|=\left|\mathrm{P}_{2}\right|$.
[There is no loss of generality in supposing that $\underline{\underline{P}}_{1}$ and ${\underset{P}{P}}_{2}$ have a common Levi subgroup $\underset{\underline{L}}{ }$, thereby reducing matters to the claim that $\left.\left|U_{1}\right|=\left|U_{2}\right| \cdot\right]$
 group -- then there is a l-to-l correspondence between the set of parabolic k-subgroups of $\underline{\underline{G}}$ contained in $\underline{\underline{P}}$ and the set of parabolic k-subgroups of $\underline{\underline{L}}$.

- Given a parabolic k-subgroup $\underline{\underline{P}}^{\prime} \subset \underline{\underline{\underline{P}}}$, write $\underline{\underline{P}}^{\prime}=\underline{\underline{L}}^{\prime} \underline{\underline{U}}^{\prime}$ and put $\underline{\underline{P}}^{\underline{p}}=$ $\underline{\underline{P}}^{\prime} \cap \underline{\underline{L}}$-- then ${ }^{\text {P/ }}$ is a parabolic k-subgroup of $\underline{\underline{L}}$ with unipotent radical $* \underline{\underline{U}}=$ $\underline{\underline{U}}^{\prime} \cap$.
 $\underline{\underline{U}}^{\prime}=$ *Uِ $\underline{\underline{U}}$-- then $\underline{\underline{P}}^{\prime}=\underline{\underline{\underline{L}}} \underline{\underline{U}}^{\prime}$ is a parabolic k-subgroup of $\underline{\underline{G}}$ such that $\underline{\underline{P}}^{\prime} \subset \underline{\underline{P}}$. The bijection in question is the assignment $\underline{\underline{P}}^{\prime} \rightarrow{ }^{*} \underline{\underline{\underline{P}}}$.

27: N.B. $\underline{\underline{P}}^{\prime}$ and $\underline{\underline{P}}^{\prime \prime}$ are conjugate by an element of G iff $\underline{\underline{P}}^{\prime} \cap \mathrm{L}$ and $\underline{P}^{\prime \prime} \cap \mathrm{L}$ are conjugate by an element of L.

APPENDIX

LEMMA Suppose that $\underline{\underline{P}}_{1}=\underline{\underline{L}}_{1} \underline{\underline{U}}_{1}$ and $\underline{\underline{P}}_{2}=\underline{\underline{L}}_{2} \underline{\underline{U}}_{2}$ are associate - then $\underline{\underline{I}}_{1}$ and L_{2} are conjugate by an element of G.
[Choose $\mathrm{x} \in \mathrm{G}$ such that ${\underset{\mathrm{P}}{1}}$ and ${\underset{\underline{=}}{2}} \mathrm{x}^{-1}$ have a common Levi subgroup $\xlongequal{\mathrm{L}}$. Choose $u_{1} \in U_{1}:$

$$
u_{1} \underline{E}_{1}^{-1}=\underline{I}_{1} .
$$

Choose $\mathrm{xu}_{2} \mathrm{x}^{-1} \in \mathrm{xU}_{2} \mathrm{x}^{-1}$:

$$
\mathrm{xu}_{2} \mathrm{x}^{-1} \stackrel{I_{\mathrm{Lu}}^{2}}{-1} \mathrm{x}^{-1}=\mathrm{xI}_{2_{2}} \mathrm{x}^{-1}
$$

Then

$$
\begin{aligned}
& \mathrm{u}_{2} \mathrm{x}^{-1}{ }_{\underline{\mathrm{Lxu}}}^{2} \mathrm{u}_{2}^{-1}=\mathrm{I}_{2} \\
& \text { => } \\
& \underline{\underline{L}}=\mathrm{xu}_{2}^{-1} \underline{\underline{L}}_{2} \mathrm{u}_{2} \mathrm{x}^{-1}
\end{aligned}
$$

6.

=>

$$
\begin{aligned}
\underline{I}_{1} & =u_{1} \underline{\underline{L u}}_{1}^{-1} \\
& \left.=u_{1} x u_{2}^{-1}{ }_{=2} u_{2} x^{-1} u_{1}^{-1} \cdot\right]
\end{aligned}
$$

§14. HARISH-CHANDRA THEORY

Let k be a finite field, $\underline{\underline{G}}$ a connected reductive k -group.

1: DEFINITION Let P be a parabolic k-subgroup of $\underline{\underline{G}}$-- then P is termed a cuspidal subgroup of G.

2: NOTATION Given a cuspidal subgroup $P=L U$ of G and an $f \in C(G)$, let

$$
f_{P}(x)=\sum_{u \in U} f(x u) \quad(x \in G)
$$

[Note: If $\mathrm{P}=\mathrm{G}$, then

$$
\left.\mathrm{f}_{\mathrm{G}}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \quad(\mathrm{x} \in \mathrm{G}) .\right]
$$

3: DEFINITION Let $f \in C(G)$ - then f is said to be a cusp form if $f_{P}=0$ for all $P \neq G$.

4: NOTATION Write ${ }^{\circ} \mathrm{C}$ (G) for the set of cusp forms and put

$$
{ }^{0} \mathrm{CL}(\mathrm{G})=\mathrm{CL}(\mathrm{G}) \cap{ }^{0} \mathrm{C}(\mathrm{G}) .
$$

5: LEMMA ${ }^{\circ} \mathrm{C}(\mathrm{G})$ is a linear subspace of $\mathrm{C}(\mathrm{G})$.

6: LEMMA ${ }^{\circ} \mathrm{C}(\mathrm{G})$ is stable under left translations, hence is a left ideal in $C(G)$.

7: REMARK If $\underline{\underline{G}}$ is a torus, then ${ }^{\circ} \mathrm{C}(\mathrm{G})=\mathrm{C}(\mathrm{G})$.

8: NOTATION Given $f \in C(G)$, write $f_{p} \sim 0$ if

$$
\sum_{\ell \in L} f_{P}(x \ell) \overline{\phi(\ell)}=0
$$

for all $\phi \in{ }^{\circ} \mathrm{C}(\mathrm{L})$ and all $\mathrm{x} \in \mathrm{G}$.
[Note: Bear in mind that L is a group of Lie type (cf. §13, \#19).]

9: N.B. Matters are independent of the choice of L in P.

10: LANGLANDS PRINCIPLE If $f_{P} \sim 0$ for all cuspidal subgroups P of G (including $P=G$), then $\mathrm{f}=0$.

PROOF Proceed by induction on the semisimple $k-r a n k s$ of $\underline{\underline{G}}$, the case $s=0$ being trivial (because then $\underline{\underline{G}}$ is anisotropic, there is only one P , viz. $\mathrm{P}=\mathrm{G}$, and $\left.L=G,{ }^{0} C(L)=C(G) \ldots\right)$. So assume that s is positive and let $P=L U$ be for the moment a proper cuspidal subgroup, thus $U \neq\{e\}$ and the semisimple $k-r a n k$ of $\underline{\underline{I}}$ is strictly smaller than that of $\underline{\underline{G}}$. Using now $\S 13$, \#26, let *P $=$ *L*U be a cuspidal subgroup of L-- then $P^{\prime}=L^{\prime} U^{\prime}={ }^{\prime} L U^{\prime}$ is a cuspidal subgroup of G contained in P. Freeze $x \in G$ and put $g(\ell)=f_{p}(x \ell) \quad(\ell \in L)$:

$$
\begin{aligned}
g_{*_{P}}(\ell) & =\sum_{*_{u \in * U}} g\left(\ell^{*} u\right) \\
& =\sum_{*_{u} \in^{*} U} f_{P}\left(x \ell^{*} u\right) \\
& =\sum_{{ }_{u} \in * U U} \sum_{u \in U} f\left(x \ell \ell^{*} u u\right) \\
& =\sum_{u^{\prime} \in U^{\prime}} f\left(x \ell u^{\prime}\right) \\
& =f_{P^{\prime}}(x \ell)
\end{aligned}
$$

But by assumption,

$$
\sum_{* \ell \in L_{L}} f_{P^{\prime}}(x \ell * \ell) \overline{\phi(* \ell)}=0
$$

for all $\phi \in{ }^{\circ} \mathrm{C}(* \mathrm{~L})$ or still,

$$
\sum_{* \ell \in * L} g_{* \mathrm{P}}(\ell * \ell) \overline{\phi(* \ell)}=0
$$

for all $\phi \in{ }^{\circ} \mathrm{C}\left({ }^{\mathrm{L}}\right)$. The induction hypothesis then implies that $\mathrm{g}=0$, hence

$$
f_{p}(x)=g(e)=0
$$

Therefore f is a cusp form ($\mathrm{x} \in \mathrm{G}$ being arbitrary), i.e., $\mathrm{f} \in{ }^{\circ} \mathrm{C}(\mathrm{G})$. Finally,

$$
f_{G} \sim 0 \Rightarrow \sum_{y \in G} f(x y) \overline{\phi(y)}=0
$$

for all $\phi \in{ }^{\circ} \mathrm{C}(\mathrm{G})$ and all $\mathrm{x} \in \mathrm{G}$. Take $\mathrm{x}=\mathrm{e}$ to conclude that

$$
\sum_{y \in G} f(y) \overline{\phi(y)}=0
$$

for all $\phi \in{ }^{\circ} \mathrm{C}$ (G) and then take $\phi=\mathrm{f}$ to conclude that

$$
\langle f, f\rangle_{G}=0 \Rightarrow f=0 .
$$

11: NOTATION Given a cuspidal subgroup $P=L U$ of G, let $C(G ; P)$ be the subspace of $C(G)$ consisting of those f such that
(i) $f(x u)=f(x) \quad(x \in G, u \in U)$
and
(ii) $\ell \rightarrow f(x \ell) \in{ }^{0} C(L) \quad(x \in G, \ell \in L)$.
[Note: $C(G ; P)$ is stable under left translations, hence is a left ideal in C(G).]

12: EXAMPLE

$$
C(G ; G)={ }^{\circ} C(G) .
$$

13: SUBLEMMA Fix P-- then $\forall f \in C(G ; P)$ and $\forall g \in C(G)$,

$$
\left\langle\mathrm{f}, \mathrm{~g}_{\mathrm{P}}\right\rangle_{\mathrm{G}}=|\mathrm{U}|\langle\mathrm{f}, \mathrm{~g}\rangle_{\mathrm{P}} .
$$

PROOF

$$
\begin{aligned}
\left\langle f, g_{P}\right\rangle_{G} & =\frac{1}{|G|} \sum_{x \in G} f(x) \overline{g_{P}(x)} \\
& =\frac{1}{|G|} \sum_{x \in G} f(x) \sum_{u \in U} \overline{g(x u)} \\
& =\frac{1}{|G|} \sum_{u \in U} \sum_{x \in G} f(x) \overline{g(x u)} \\
& =\frac{1}{|G|} \sum_{u \in U} \sum_{x \in G}^{\sum} f(x u) \overline{g(x u)} \\
& =\sum_{u \in U}^{\sum} \frac{l}{|G|} \sum_{x \in G} f(x) \overline{g(x)} \\
& \left.=\sum_{u \in U}^{\langle f, g\rangle_{G}}=|U|<f, g\right\rangle_{G}
\end{aligned}
$$

14: RAPPEL Let H be a finite dimensional complex Hilbert space -- then a subset $M \subset H$ is total if $M_{\ell \text { in }}=H$, this being the case iff $M^{\perp}=\{0\}$.
[Note: Subspaces of H are necessarily closed... .]

Put

$$
M=\underset{P}{U} C(G ; P)
$$

15: LEMMA $C(G)$ is spanned by the $f \in M$. PROOF It suffices to show that if for some $g \in C(G)$, we have

$$
\langle f, g\rangle_{G}=0
$$

for all $f \in C(G ; P)$ and for all cuspidal P, then $g=0$. And to this end, it need only be established that $g_{P} \sim 0$ for all cuspidal P (cf. \#l0). So fix $x \in G$ and let $\phi \in{ }^{\circ} \mathrm{C}(\mathrm{L})$. Define $f \in \mathrm{C}(\mathrm{G})$ as follows:

$$
\left.\right|_{-} ^{f(y)=0} \begin{aligned}
& \text { if } y \notin x P \\
& f(x \ell u)=\phi(\ell) \quad(\ell \in L, u \in U) .
\end{aligned}
$$

Then $f \in C(G ; P)$, so

$$
0=\langle f, g\rangle_{G}=\frac{1}{|\mathrm{U}|}\left\langle f, g_{P}\right\rangle{ }_{G}
$$

$$
\Rightarrow
$$

Therefore $g_{P} \sim 0$.

$$
\begin{aligned}
& 0=\frac{1}{|\vec{U}|}\left\langle g_{P}, f\right\rangle_{G} \\
& =\frac{1}{|\mathrm{U}|} \sum_{\mathrm{y} \in \mathrm{G}} g_{\mathrm{P}}(\mathrm{y}) \overline{\mathrm{f}(\mathrm{y})} \\
& =\frac{1}{|\vec{U}|} \sum_{y \in x P} g_{P}(y) \overline{f(y)} \\
& =\frac{1}{|\mathrm{U}|} \sum_{\ell, \mathrm{u}}^{\sum} g_{\mathrm{P}}(\mathrm{x} \ell \mathrm{u}) \overline{\mathrm{f}(\mathrm{x} \ell \mathrm{u})} \\
& =\frac{1}{|\mathrm{U}|} \sum_{\ell, \mathrm{u}} \mathrm{~g}_{\mathrm{p}}(\mathrm{x} \ell) \overline{\phi(\ell)} \\
& =\frac{1}{|\mathrm{U}|} \sum_{\mathrm{u}} \sum_{\ell \in \mathrm{L}} \mathrm{~g}_{\mathrm{P}}(\mathrm{x} \ell) \overline{\phi(\ell)} \\
& =\sum_{\ell \in L} g_{P}(x \ell) \overline{\phi(\ell)} .
\end{aligned}
$$

16: CONVENTION Cuspidal subgroups $\mathrm{P}_{1}, \mathrm{P}_{2}$ are said to be associate if this is the case of $\underline{\underline{P}}_{1}, \mathrm{P}_{2}$.

17: LEMMA If $\mathrm{P}_{1}, \mathrm{P}_{2}$ are associate, then

$$
\mathrm{C}\left(\mathrm{G} ; \mathrm{P}_{1}\right)=\mathrm{C}\left(\mathrm{G} ; \mathrm{P}_{2}\right) .
$$

18: LEMMA If $\mathrm{P}_{1}, \mathrm{P}_{2}$ are not associate, then $\mathrm{C}\left(\mathrm{G} ; \mathrm{P}_{1}\right), \mathrm{C}\left(\mathrm{G} ; \mathrm{P}_{2}\right)$ are orthogonal.

Let P_{1}, \ldots, P_{r} be a set of representatives for the association classes of cuspidal subgroups of G.

19: THEOREM There is an orthogonal decomposition

$$
C(G)=\stackrel{r}{\oplus} \underset{i=1}{\oplus} C\left(G ; P_{i}\right) .
$$

20: N.B. \#17, \#18 can be established without the use of representation theory but its introduction leads to another approach.

21: LEMMA Let $\Pi \in \hat{G}-$ then $X_{I I}$ is a cusp form iff \forall cuspidal $P \neq G$,

$$
\mathrm{m}\left(\Pi, I n \alpha_{U, \theta}^{G}\right)=0,
$$

where θ is the trivial representation of U on $E=C$. I.e.: Iff

$$
\begin{aligned}
\left\langle x_{\Pi}, i_{U} \rightarrow G_{U}^{1}>_{G}=\left\langle r_{G}\right.\right. & \left.\rightarrow U^{X_{\Pi}}, 1_{U}\right\rangle_{U} \\
\left.=<1_{U}, r_{G} \rightarrow U^{x_{\Pi}}\right\rangle_{U} & =m(\theta, \Pi \mid U) \\
& =0 .
\end{aligned}
$$

22: LEMMA Let $\Pi \in \hat{G}-$ then X_{Π} is a cusp form iff \forall cuspidal $P \neq G$, $\sum_{\mathrm{u} \in \mathrm{U}} \Pi(\mathrm{u})=0$.

23: N.B. Let

$$
V(\Pi)_{U}=\left\{v \in V(\Pi): \sum_{u \in U} \Pi(u) v=0\right\}
$$

Then X_{Π} is a cusp form iff \forall cuspidal $P \neq G$,

$$
V(\Pi)=V(\Pi) U^{*}
$$

24: DEFINITION Let $\Pi \in \widehat{G}-$ then Π is said to be in the discrete series if its character $X_{\text {II }}$ is a cusp form.

25: NOTATION ${ }^{0} \hat{G}$ is the subset of \hat{G} consisting of those Π in the discrete series.

Given $P=L U$ and $\theta \in{ }^{0} \hat{L}$, one can lift θ to P and form $I_{n}{ }_{P, \theta}^{G}$ with character

$$
i_{P \rightarrow G} X_{\theta} \quad \text { (cf. §9, \#l0). }
$$

26: THEOREM Let $\Pi \in \hat{G}-{ }^{0} \hat{G}-$ then there exists a proper cuspidal $P=L U$ and a $\theta \in{ }^{0} \hat{\mathrm{~L}}$ such that Π occurs as a subrepresentation of $\operatorname{In}{ }_{\mathrm{P}, \theta}^{\mathrm{G}}$:

$$
\left.<\chi_{\Pi}, X_{\pi}\right\rangle_{G} \neq 0 \quad\left(\pi=\operatorname{Ind}_{P, \Theta}^{G}\right) \quad(c f . \S 5, \# 5) .
$$

PROOF Proceed by induction on the semisimple k-rank s of $\underline{\underline{G}}$, there being nothing to prove if $s=0$, so assume that $s>0$-- then there exists a proper cuspidal $P=L U$ such that $V(\Pi) \neq V(\Pi)_{U}$. Claim: $V(\Pi)_{U}$ is P-invariant: $\forall \ell_{0} \in L, \forall u_{0} \in U$,

8.

$\forall v \in V(\Pi): \sum_{u \in U} \Pi(u) v=0$, $u \in U$

$$
\begin{aligned}
& \sum_{u \in U} \Pi(u) \Pi\left(\ell_{0} u_{0}\right) v \\
&=\sum_{u \in U} \Pi\left(u \ell_{0} u_{0}\right) v \\
&=\sum_{u \in U} \pi\left(\ell_{0}\left(\ell_{0}^{-1} u \ell_{0}\right) u_{0}\right) v \\
&=\Pi\left(\ell_{0}\right)\left(\sum_{u \in U} \pi\left(\ell_{0}^{-1} u \ell_{0}\right)\right) \Pi\left(u_{0}\right) v \\
&=\Pi\left(\ell_{0}\right)\left(\sum_{u \in U} \Pi(u)\right) \Pi\left(u_{0}\right) v \\
&=\Pi\left(\ell_{0}\right) \sum_{u \in U} \Pi\left(u u_{0}\right) v \\
&=\Pi\left(\ell_{0}\right) \sum_{u \in U} \pi(u) v \\
&=\Pi\left(\ell_{0}\right) 0=0 .
\end{aligned}
$$

Consequently, P operates on the quotient $V(\Pi) / V(\Pi)_{U}$. Moreover, its restriction to U is trivial: $\forall u_{0} \in U, \forall v \in V(\Pi)$,

$$
\begin{aligned}
\sum_{u \in U} & \Pi(u)\left(\Pi\left(u_{0}\right) v-v\right) \\
& =\sum_{u \in U} \Pi\left(u_{0}\right) v-\sum_{u \in U} \Pi(u) v \\
& =\sum_{u \in U} \Pi(u) v-\sum_{u \in U} \Pi(u) v \\
& =0
\end{aligned}
$$

=>

$$
\Pi\left(u_{0}\right) v \equiv v \bmod V(\Pi)_{U}
$$

On the other hand, while its restriction to L need not be irreducible, there is in any event an L-invariant subspace V of $V(\Pi)$ containing $V(\Pi)_{U}$ such that the quotient representation θ of L on

$$
\begin{gathered}
V(\Pi) / V(\Pi)_{U} / V / V(\Pi)_{U} \\
\approx V(\Pi) / V
\end{gathered}
$$

is irreducible. Pass now to $I_{n}{ }_{P, \ominus}^{G}$ and note that $I I$ occurs as a subrepresentation of $\operatorname{Ind}_{\mathrm{P}, \theta}^{\mathrm{G}}$ (see below). Accordingly, if $\theta \in{ }^{0} \hat{\mathrm{~L}}$, then we are done. If, however, $\theta \notin{ }^{0} \hat{\mathrm{~L}}$, then, thanks to the induction hypothesis, there exists a proper cuspidal subgroup ${ }^{2} P={ }^{2} L * U$ of L and a discrete series representation ${ }^{\theta}$ of $*_{L}$ such that θ occurs as a subrepresentation of $I n d_{*_{P}, *_{\Theta}}^{L}$. Form $\mathrm{P}^{\prime}=L^{\prime} U^{\prime}={ }^{\prime} L^{*} U U$, view ${ }^{*} \theta$ as a representation of P^{\prime} trivial on $U^{\prime}=* U U$, and utilize the induction in stages rule (cf. §9, \#12)

$$
\operatorname{Ind}_{\mathrm{P},}^{\mathrm{G}, \star_{\Theta}} \approx \operatorname{Ind}{\underset{\mathrm{P}}{ }, \operatorname{Ind}}_{*_{\mathrm{P}, * \Theta}^{\mathrm{G}}}^{\mathrm{L}}
$$

to conclude that Π, which occurs as a subrepresentation of $\operatorname{Ind}{ }_{P, \theta}^{G}$, must actually occur as a subrepresentation of Ind $_{P^{\prime}, *_{\Theta}}^{G}$:

$$
\begin{aligned}
\theta \subset \operatorname{Ind}_{*_{P}, * \Theta}^{\mathrm{L}} \Rightarrow \Pi & \subset \operatorname{Ind}_{\mathrm{P}, \theta}^{\mathrm{G}} \\
& \subset \operatorname{Ind}_{\mathrm{P}, \operatorname{Ind} \alpha_{\mathrm{P}, * \Theta}^{\mathrm{L}}}^{\mathrm{L}} .
\end{aligned}
$$

[Note: To confirm that

$$
\mathrm{I}_{\mathrm{G}}\left(\Pi, \mathrm{Ind}_{\mathrm{P}, \theta}^{\mathrm{G}}\right) \neq 0
$$

define an intertwining operator

$$
\mathrm{T}: \mathrm{V}(\mathrm{I}) \rightarrow \mathrm{E}_{\mathrm{P}, \ominus}^{\mathrm{G}}
$$

by assigning to each $\mathrm{v} \in \mathrm{V}$ the function

$$
f_{v}: G \rightarrow V(\Pi) / V
$$

given by the prescription

$$
\left.f_{v}(x)=\pi\left(x^{-1}\right) v+V_{0}\right]
$$

This result reduces the problem of describing the elements of \hat{G} into two parts.

- Isolate the discrete series (Deligne-Lusztig theory).
- Explicate the decomposition of Ind $_{\mathrm{P}, \Theta}^{\mathrm{G}}$ and determine its irreducibility (Howlett-Lehrer theory) .

We shall pass in silence on the first of these points (for a recent survey, consult arXiv:1404.0861) and settle for a summary on the second (cf. §l5).

27: LEMMA The canonical representation of G on $C(G ; P)$ is equivalent to

$$
\oplus \operatorname{Ind}_{\mathrm{P}, \theta^{\prime}}^{\mathrm{G}}
$$

where θ runs through the elements of ${ }^{0} \hat{\mathrm{~L}}$.

28: NOTATION Given a parabolic k-subgroup $\underline{\underline{P}}$ of $\underline{\underline{G}}$, let ${ }^{\circ} \mathrm{C}(\mathrm{P})$ be the subspace of $C(P)$ consisting of those f which are invariant to the right under U and have the property that the function on P / U thereby defined belongs to ${ }^{\circ} \mathrm{C}(\mathrm{P} / \mathrm{U})$.

29: LEMMA Let $\underline{\underline{P}}_{1}, \underline{\underline{P}}_{2}$ be parabolic k-subgroups of $\underline{\underline{G}}$ and let

$$
\mathrm{f}_{1} \in{ }^{0} \mathrm{C}\left(\mathrm{P}_{1}\right), \mathrm{f}_{2} \in{ }^{0} \mathrm{C}\left(\mathrm{P}_{2}\right)
$$

Then

$$
\left\langle\mathrm{r}_{\mathrm{P}_{1}} \rightarrow \mathrm{P}_{1} \cap \mathrm{P}_{2} \mathrm{f}_{1}, \mathrm{r}_{\mathrm{P}_{2}} \rightarrow \mathrm{P}_{2} \cap \mathrm{P}_{1} \mathrm{f}_{2} \mathrm{P}_{1} \cap \mathrm{P}_{2}=0\right.
$$

unless \underline{P}_{1} and $\underline{\underline{P}}_{2}$ have a common Levi subgroup $\xlongequal{\text { L. }}$
PROOF Ignoring constant factors (signified by \doteq), we have

$$
\begin{aligned}
& \left\langle r_{P_{1}} \rightarrow P_{1} \cap P_{2} f_{1}, r_{P_{2}} \rightarrow P_{2} \cap P_{1} f_{2} P_{1} \cap P_{2}\right. \\
& \quad \doteq \Sigma_{P_{1}} \cap P_{2} f_{1}(x) \overline{f_{2}(x)} \\
& \quad \doteq \Sigma_{P_{1}} \cap P_{2} / U_{1} \cap U_{2} f_{1}(x) \overline{f_{2}(x)} \\
& \quad \doteq \Sigma_{P_{1}} \cap P_{2} / P_{1} \cap U_{2} \overline{f_{2}(x)} \Sigma_{P_{1}} \cap U_{2} / U_{1} \cap U_{2} f_{1}(x u)
\end{aligned}
$$

Let $\pi_{1}: \mathrm{P}_{1} \rightarrow \mathrm{P}_{1} / \mathrm{U}_{1} \approx \mathrm{~L}_{1}$ be the canonical projection -- then $* P=\pi_{1}\left(\mathrm{P}_{1} \cap \mathrm{P}_{2}\right)$ is a cuspidal subgroup of L_{1} with unipotent radical $* U=P_{I} \cap U_{2} / U_{1} \cap U_{2}$. Given $x \in P_{1} \cap P_{2}$, write $x=\ell_{1} u_{1}\left(\ell_{1} \in L_{1}, u_{1} \in U_{1}\right)$, thus

$$
\begin{aligned}
f_{1}(x u) & =f_{1}\left(\ell_{1} u_{1} u\right) \\
& =f_{1}\left(\ell_{1} u_{1} u u_{1}^{-1}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
& \Sigma_{\mathrm{P}_{1}} \cap \mathrm{U}_{2} / \mathrm{U}_{1} \cap \mathrm{U}_{2}{ }^{\mathrm{f}_{\mathrm{l}}(\mathrm{xu})} \\
& \\
& \quad \doteq \Sigma_{* U} \mathrm{f}_{1}\left(\ell_{\mathrm{l}} \mathrm{u}\right)=0
\end{aligned}
$$

unless $* \mathrm{U}=\{\mathrm{e}\}$, i.e., unless

$$
P_{1} \cap U_{2}=U_{1} \cap U_{2} \subset U_{1}
$$

Switching roles leads to

$$
P_{2} \cap U_{1}=U_{2} \cap U_{1} \subset U_{2}
$$

Therefore the relevant integrals vanish unless ${\underset{P}{P}}$ and \underline{P}_{2} have a common Levi subgroup (cf. §l3, \#20).]

30: APPLICATION Assume: $\underline{\underline{P}}_{1}$ and $\underline{\underline{P}}_{2}$ are not associate -- then

$$
{ }^{<r_{P_{1}}} \rightarrow P_{1} \cap P_{2} f_{1}, r_{P_{2}} \rightarrow P_{2} \cap P_{1} f_{2}{ }^{>} P_{1} \cap P_{2}=0
$$

31: THEOREM Let $P_{1}=L_{1} U_{1}, P_{2}=L_{2} U_{2}$ be cuspidal subgroups of G. Suppose that $\underline{\underline{P}}_{1}$ and $\underline{\underline{P}}_{2}$ are not associate -- then $\forall \theta_{1} \in{ }^{0} \hat{\mathrm{~L}}_{1}, \forall \theta_{2} \in{ }^{0} \hat{\mathrm{~L}}_{2}$,

$$
\pi_{1}=\operatorname{Ind}_{P_{1}, \theta_{1}}^{G} \text { and } \pi_{2}=\operatorname{Ind}{ }_{P_{2}}, \theta_{2}
$$

are disjoint:

$$
{\stackrel{i}{P_{1}}} \rightarrow G_{G}^{X_{\Theta_{1}}}, i_{P_{2}} \rightarrow G_{G}^{X_{\Theta_{2}}}{ }_{G}=0 \quad \text { (cf. §10, \#2). }
$$

PROOF In the notation of $88, \# 4$,

$$
\begin{aligned}
& \left\langle\dot{i}_{P_{1}} \rightarrow G^{X_{\Theta_{1}}}, \dot{i}_{P_{2}} \rightarrow G_{G} X_{\Theta_{2}}{ }^{\rangle}{ }_{G}\right. \\
& =\sum_{\mathrm{sES}}\left\langle r_{\mathrm{P}_{1}} \rightarrow \mathrm{P}_{2}(\mathrm{~s}) \mathrm{X}_{\Theta_{1}},\left(X_{\Theta_{2}}\right) \mathrm{s}^{>} \mathrm{P}_{2}(\mathrm{~s})\right. \\
& =\sum_{s \in S}\left\langle r_{P_{1}} \rightarrow P_{2}(s) X_{\Theta_{1}}, r_{P_{2}^{s}} \rightarrow P_{2}(s)\left(X_{\theta_{2}}\right)^{s{ }_{\rangle}} P_{P_{2}(s)},\right.
\end{aligned}
$$

where

$$
P_{2}(s)=P_{2}^{s} \cap P_{1}\left(=s P_{2} s^{-1} \cap P_{1}\right)
$$

But \underline{P}_{1} and \underline{P}_{2} are not associate, hence ${\underset{S}{P}}_{1}$ and $s \underline{S}_{2} S^{-1}$ are not associate (cf. §13, \#24). Therefore each of the terms in the sum Σ must vanish (cf. \#30). $s \in S$

32: NOTATION Given a parabolic k-subgroup $\underline{\underline{P}}$ of $\underline{\underline{G}}$ and a Levi subgroup $\underline{\underline{L} \subset}$ P, put

$$
\underline{\underline{W}}=N_{\underline{\underline{G}}}(\underline{\underline{L}}) / \underline{\underline{L}} .
$$

33: N.B. If ${ }_{\equiv}^{\prime \prime}$ is another Levi subgroup of $\underset{=}{P}$, then there is a unique $u \in U$ such that $\unrhd^{\prime}=u \underline{\equiv}^{-1}$, hence there is a canonical isomorphism

$$
\underline{W}_{\underline{\underline{L}}}^{\underline{\underline{W}}} \stackrel{W}{\underline{L}}^{\prime}
$$

Set

$$
W_{L}=\underline{\underline{W}}_{\underline{\underline{L}}}(\mathrm{k}) \quad\left(=\mathrm{N}_{\mathrm{G}}(\underline{\underline{L}}) / \mathrm{L}\right)
$$

Then each $w \in W_{L}$ can be represented by an element $n_{W} \in N_{G}(\underline{L})$.

34: LEMMA The arrow

$$
W_{L} \rightarrow P \backslash G / P
$$

given by

$$
\mathrm{w} \rightarrow \mathrm{Pn}_{\mathrm{w}} \mathrm{P}
$$

is injective.

35: LEMMA W_{L} operates on ${ }^{\circ} \mathrm{C}(\mathrm{P})$.

36: REDUCIION PRINCIPLE Let $\underline{\underline{P}}_{1}, \underline{\underline{P}}_{2}$ be parabolic k-subgroups of $\underline{\underline{G}}$ and let

$$
\mathrm{f}_{1} \in{ }^{0} \mathrm{CL}\left(\mathrm{P}_{1}\right), \mathrm{f}_{2} \in{ }^{0} \mathrm{CL}\left(\mathrm{P}_{2}\right)
$$

Assume: $\underline{\underline{P}}_{1}$ and $\underline{\underline{P}}_{2}$ have a common Levi subgroup $\underline{\underline{L}}$-- then

$$
\begin{gathered}
\left\langle i_{P_{1}} \rightarrow G^{f}{ }_{1}, i_{P_{2}} \rightarrow G^{f}\right\rangle_{G} \\
=\sum_{w \in W_{L}}\left\langle r_{P_{1}} \rightarrow L^{f}{ }_{1}, r_{P_{2}} \rightarrow L^{\left.\left(w \cdot f_{2}\right)\right\rangle_{L} .}\right.
\end{gathered}
$$

PROOF In the notation of 88 , \#4,

$$
\begin{gathered}
\left\langle i_{P_{1}} \rightarrow G^{f_{1}}, i_{P_{2}} \rightarrow G^{f_{2}}{ }_{G}\right. \\
=\sum_{s \in S}\left\langle r_{P_{1}} \rightarrow P_{2}(s)^{f_{1}},\left(f_{2}\right) s^{>} P_{2}(s)\right. \\
=\sum_{s \in S}\left\langle r_{P_{1}} \rightarrow P_{2}(s)^{f_{1}}, r_{P_{2}^{s}} \rightarrow P_{2}(s)\left(f_{2}\right)^{s}\right\rangle_{P_{2}(s)^{\prime}}
\end{gathered}
$$

where

$$
P_{2}(s)=P_{2}^{s} \cap P_{1}\left(=s P_{2} s^{-1} \cap P_{1}\right)
$$

The only nonzero terms in the sum are those for which ${\underset{D}{I}}$ and $s{\underset{=}{2}}^{2} s^{-1}$ have a common

$$
\underline{L}^{\prime} \subset \underline{\underline{\underline{P}}}_{2} s^{-1} \Rightarrow s^{-1} \underline{\underline{I}}^{\prime} s \subset \underline{\underline{P}}_{2}
$$

Choose $u_{2} \in U_{2}$ such that $u_{2}{ }_{\underline{L I} u_{2}^{-1}}=s^{-1}{ }_{\underline{L}}$'s, thus

$$
L_{\underline{\prime}}=\operatorname{su}_{2}{ }_{\underline{L u}}^{2}-1 s^{-1}
$$

$$
\begin{array}{cc}
\Rightarrow \\
\Rightarrow & \underline{\underline{L}=} u_{1} \underline{I}^{\prime} u_{1}^{-1}=u_{1} s u_{2} \underline{\underline{L u}}_{2}^{-1} s^{-1} u_{1}^{-1} \\
& \\
& u_{1} s u_{2} \in N_{G}(\underline{L}) .
\end{array}
$$

On the other hand,

$$
u_{1} s u_{2} \in P_{1} \backslash G / P_{2}
$$

Therefore the double cosets $\mathrm{P}_{1} \backslash \mathrm{G} / \mathrm{P}_{2}$ that intervene are those containing an element of $N_{G}(\underline{\underline{L}})$, so

$$
\begin{gathered}
\left\langle i_{P_{1}} \rightarrow G^{f} 1^{\prime},{\dot{P_{P}}}_{2} \rightarrow G^{f_{2}>}\right. \\
=\sum_{W \in W_{L}}<r_{P_{1}} \rightarrow P_{2}(w) f_{1}, r_{P_{2}}^{w} \rightarrow P_{2}(w)\left(w \cdot f_{2}\right)>_{P_{2}(w)} .
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{P}_{2}(\mathrm{w})=\mathrm{P}_{2}^{\mathrm{W}} \cap \mathrm{P}_{1}=\mathrm{P}_{1} \cap \mathrm{wP}_{2} \mathrm{w}^{-1} \\
= & \mathrm{L} \cdot\left(\mathrm{~L} \cap \mathrm{wU}_{2} \mathrm{w}^{-1}\right) \cdot\left(\mathrm{U}_{1} \cap \mathrm{~L}\right) \cdot\left(\mathrm{U}_{1} \cap \mathrm{wU}_{2} \mathrm{w}^{-1}\right)
\end{aligned}
$$

with uniqueness of expression -- then

$$
L \cap \mathrm{wU}_{2} \mathrm{w}^{-1}=\{e\}, U_{1} \cap \mathrm{~L}=\{e\}
$$

and

$$
\begin{aligned}
\left\langle r_{P_{1}}\right. & \left.\rightarrow P_{2}(w) f_{1},{ }_{P_{2}^{w}}^{w} P_{2}(w)\left(w \cdot f_{2}\right)\right\rangle_{P_{2}}(w) \\
& =\frac{1}{\mid P_{2}(w)} \sum_{x, u} f_{1}(x u) \overline{\left(w \cdot f_{2}\right)(x u)},
\end{aligned}
$$

where the sum runs over all $x \in L$ and all $u \in U_{1} \cap W_{2} W^{-1}$. Since f_{1} and $w \cdot f_{2}$ are invariant to the right under $U_{1} \cap \mathrm{wU}_{2} \mathrm{~W}^{-1}$, the above expression equals

$$
\begin{gathered}
\frac{\left|U_{1} \cap \mathrm{wU}_{2} \mathrm{w}^{-1}\right|}{\left|P_{2}(\mathrm{w})\right|} \sum_{x} f_{1}(x) \overline{\left(w \cdot f_{2}\right)(x)} \\
\left.=\frac{\left|U_{1} \cap \mathrm{wU}_{2} w^{-1}\right|}{\left|P_{2}(w)\right|}|L|\left\langle r_{P_{1}} \rightarrow L^{f_{1}}, r_{P_{2}} \rightarrow L^{(w} \cdot f_{2}\right)\right\rangle_{L} .
\end{gathered}
$$

And

$$
\begin{aligned}
& \frac{\left|\mathrm{U}_{1} \cap \mathrm{wU}_{2} \mathrm{w}^{-1}\right|}{\left|\mathrm{P}_{2}(\mathrm{w})\right|}|\mathrm{L}| \\
= & \frac{\left|\mathrm{U}_{1} \cap \mathrm{wU}_{2} \mathrm{w}^{-1}\right| \cdot|\mathrm{L}|}{|\mathrm{L}| \cdot\left|\mathrm{U}_{1} \cap \mathrm{wU}_{2} \mathrm{w}^{-1}\right|}=1 .
\end{aligned}
$$

37: SUBLEMMA Let H be a Hilbert space and let $x, y \in H$. Assume:

$$
\langle x, x\rangle=\langle x, y\rangle=\langle y, y\rangle .
$$

Then $\mathrm{x}=\mathrm{y}$.
PROOF In fact,

$$
\begin{aligned}
\langle\mathrm{x}-\mathrm{y}, \mathrm{x}-\mathrm{y}\rangle & =\langle\mathrm{x}, \mathrm{x}\rangle+\langle\mathrm{y}, \mathrm{y}\rangle-\langle\mathrm{x}, \mathrm{y}\rangle-\langle\mathrm{y}, \mathrm{x}\rangle \\
& =\langle\mathrm{x}, \mathrm{y}\rangle+\langle\mathrm{x}, \mathrm{y}\rangle-\langle\mathrm{x}, \mathrm{y}\rangle-\overline{\langle x, y\rangle} \\
& =\langle\mathrm{x}, \mathrm{y}\rangle-\overline{\langle\mathrm{x}, \mathrm{y}\rangle}=\langle\mathrm{x}, \mathrm{y}\rangle-\langle\mathrm{x}, \mathrm{y}\rangle=0 .
\end{aligned}
$$

38: APPLICATION If

$$
r_{P_{1}} \rightarrow L^{f}{ }_{1}=r_{P_{2}} \rightarrow L^{f}{ }_{2}^{\prime}
$$

then

$$
\dot{P}_{1} \rightarrow G^{f}{ }_{1}=\dot{i}_{P_{2}} \rightarrow G^{f} 2^{.}
$$

[It follows from \#36 that

$$
\begin{aligned}
& \left\langle i_{P_{1}} \rightarrow G^{f} 1^{\prime} i_{P_{1}} \rightarrow G^{f_{1}}\right\rangle_{G} \\
& =<i_{P_{1}} \rightarrow G^{f_{1}}, i_{P_{2}} \rightarrow G^{f}>_{G} \\
&
\end{aligned}
$$

39: NOTATION Given a cuspidal subgroup $P=L U$ of G and $a \in{ }^{0} \hat{L}$, let

$$
W_{L}(\theta)=\left\{w \in W_{L}: w \cdot x_{\Theta}=x_{\Theta}\right\}
$$

40: THEOREM

$$
<i_{P} \rightarrow G^{\chi_{\theta}}{ }^{i_{P} \rightarrow G^{X_{\Theta}}{ }_{G}=\left|W_{L}(\theta)\right| . ~ . ~}
$$

[In \#36, take $\underline{P}_{1}=\underline{\underline{P}}_{2}=\underline{\underline{P}}$ and note that

$$
\left.\left\langle r_{P \rightarrow L} X^{\prime} r_{P} \rightarrow L^{(w \cdot} X_{\Theta}\right)\right\rangle_{L}
$$

equals 1 if $w \cdot x_{\Theta}=x_{\theta}$ and equals 0 if $\left.w \cdot x_{\theta} \neq x_{\Theta} \cdot\right]$

Let P be the set of parabolic k-subgroups of G. Decompose P into association classes: $P=\Perp C$. Given C, take $a \underset{=}{P} \in \mathcal{C}$ and denote by $\hat{G}(C)$ the subset of \hat{G} comprised of those II which occur as a subrepresentation of

$$
\operatorname{Ind}_{\mathrm{P}, \ominus}^{\mathrm{G}}
$$

for some $\theta \in{ }^{0} \hat{\mathrm{~L}}$.

41: LEMMA $\hat{G}(C)$ is independent of the choice of $p \in C$. PROOF The theory does not change if $\underset{\underline{p}}{ }$ is replaced by $X_{\underline{P}} x^{-1}(x \in G)$, so if $\stackrel{P}{=}_{1}, \stackrel{P}{=}_{2}$ are associate, then there is no loss of generality in assuming that ${\underset{N}{1}}$ and $\underline{\underline{P}}_{2}$ have a common Levi subgroup $\underset{\underline{L}}{ }$, thus $\left.\right|_{-} ^{L \subset P_{1}} \begin{aligned} & \mathrm{L} \subset \mathrm{P}_{2}\end{aligned}$. Given $\theta \in{ }^{0} \hat{\mathrm{~L}}$, lift

$$
\left[\begin{array}{l}
\theta \text { to } P_{1}, \text { call it } \theta_{1} \\
\theta \text { to } P_{2}, \text { call it } \theta_{2}
\end{array}\right.
$$

Then

$$
\left[\begin{array}{l}
i_{P_{1}} \rightarrow G_{G} X_{\Theta_{1}} \text { is the character of } \operatorname{Ind}_{P_{1}}^{G}, \theta_{1} \\
i_{P_{2}} \rightarrow G^{X_{\Theta_{2}}} \text { is the character of } \text { Ind }_{P_{2}}^{G}, \theta_{2}
\end{array}\right.
$$

But

$$
\begin{aligned}
& \int{ }^{r_{P_{1}}} \rightarrow_{L} X_{\Theta_{1}}=X_{\Theta} \\
& \mathrm{r}_{\mathrm{P}_{2}} \rightarrow \mathrm{~L}^{\mathrm{X}_{\Theta_{2}}}=\mathrm{X}_{\Theta} \\
& \text { => } \\
& \mathrm{i}_{\mathrm{P}_{1}} \rightarrow \mathrm{G}^{X_{\Theta_{1}}}=\mathrm{i}_{\mathrm{P}_{2} \rightarrow G^{X_{\Theta_{2}}}} \quad \text { (cf. \#38). }
\end{aligned}
$$

Therefore

$$
\operatorname{Ind}_{\mathrm{P}_{1}, \Theta_{1}}^{\mathrm{G}} \approx \operatorname{Ind}_{\mathrm{P}_{2}, \Theta_{2}}^{\mathrm{G}}
$$

42: LEMMA If $C_{1} \neq \mathcal{C}_{2}$, then

$$
\hat{G}\left(C_{1}\right) \cap \hat{G}\left(C_{2}\right)=\varnothing \quad(c f . \# 30)
$$

Accordingly:

43: THEOREM There is a disjoint decomposition

$$
\hat{\mathrm{G}}=\frac{11}{\mathrm{C}} \hat{\mathrm{G}}(\mathrm{C}) .
$$

44: NOTATION Given $\underline{\underline{p}} \in P$, let $[\underline{\underline{P}}]$ be the association class to which $\underline{\underline{p}}$ belongs.

45: EXAMPLE Take $\underline{\underline{P}}=\underline{\underline{G}}$-- then the elements of $\hat{G}([G])$ comprise the discrete series for G, i.e., $\hat{G}([G])={ }^{0} \hat{G}$.

46: EXAMPLE Take $\underline{\underline{P}}=\underline{\underline{B}}-$ then the elements of $\hat{G}([B])$ comprise the principal series for G.

47: REMARK W_{L} operates on ${ }^{0} \hat{\mathrm{~L}}$, hence ${ }^{0} \hat{\mathrm{~L}}$ breaks up into W_{L}-orbits. Let $\theta_{1}, \theta_{2} \in{ }^{0} \hat{\mathrm{~L}}-$ then there are two possibilities.

- If θ_{1}, θ_{2} are on the same W_{L}-orbit, then

$$
\operatorname{Ind}{\mathrm{P}, \theta_{1}}_{\mathrm{G}}^{\mathrm{Ind}_{\mathrm{P}, \theta_{2}}^{G} .}
$$

- If θ_{1}, θ_{2} are not on the same W_{L}-orbit, then

$$
\operatorname{Ind}_{\mathrm{P}, \Theta_{1}}^{\mathrm{G}} \text { and } \operatorname{Ind}{ }_{\mathrm{P}, \theta_{2}}^{\mathrm{G}}
$$

are disjoint.

In view of $\S 14, \# 40$,

$$
<i_{P} \rightarrow G^{X_{\theta}}, i_{P} \rightarrow G^{X_{\Theta}}{ }_{G}=\left|W_{L}(\theta)\right| .
$$

And on general grounds (cf. 85, \#ll), Ind ${ }_{P, \theta}^{G}$ is irreducible iff

$$
\left.<i_{P \rightarrow G} X_{\Theta^{\prime}} i_{P \rightarrow G^{X}}\right\rangle_{G}=1
$$

1: DEFINITION θ is unramif ied if $\left|W_{L}(\theta)\right|=1$.

2: THEOREM Ind ${ }_{G, \theta}^{P}$ is irreducible iff θ is unramified.
To discuss the decomposabil ity of Ind $_{P, \theta}^{G}$, note that $\Pi \in \hat{G}$ occurs as a subrepresentation of $\mathrm{Ind}_{\mathrm{P}, \Theta}^{\mathrm{G}}$ iff

$$
\left\langle X_{\Pi 1}, \dot{i}_{P} \rightarrow G^{X_{\theta}}\right\rangle_{G} \neq 0 .
$$

one-to-one
3: LEMMA There is a \wedge correspondence between the $I f \in \hat{G}$ such that

$$
\left\langle x_{\Pi}{ }^{\prime} i_{P} \rightarrow G_{G} X_{\theta}\right\rangle_{G} \neq 0
$$

and the irreducible representations ρ of

$$
I_{G}\left(\operatorname{Ind}{ }_{P, \theta}^{G}, I n d_{P, \ominus}^{G}\right)
$$

and if $\Pi \longrightarrow \rho$, then

$$
x_{\rho}(1)=\left\langle x_{\Pi}, i_{P} \rightarrow G_{\theta^{\prime}}\right\rangle_{G^{\prime}}
$$

the positive integer on the right being the multiplicity

$$
\mathrm{m}\left(\Pi, \operatorname{Ind}_{\mathrm{P}, \Theta}^{\mathrm{G}}\right)
$$

of π in Ind $_{P, \theta^{\circ}}^{G}$.

2.

4: THEOREM The semisimple algebra

$$
I_{G}\left(\operatorname{Ind}_{P, \theta}^{G}, \quad \operatorname{Ind} d_{P, \theta}^{G}\right)
$$

is isomorphic to the semisimple algebra

$$
C\left(W_{L}(\theta)\right) .
$$

The irreducible components of $\operatorname{Ind}{ }_{P, \theta}^{G}$ are therefore parameterized by the elements of $W_{L}(\theta)$: If $\omega \in W_{L}(\theta)$ and if $\Pi(\omega) \in \hat{G}$ is the irreducible component of $\operatorname{Ind} \mathrm{P}_{\mathrm{P}, \Theta}^{\mathrm{G}}$ corresponding to ω, then

$$
\left\langle X_{I I}(\omega), i_{P} \rightarrow G^{X_{\Theta}}\right\rangle_{G}=x_{\omega}(1),
$$

the dimension of the representation space of ω.

§16. MODULE LANGUAGE

Let G be a finite group, $\Gamma \subset G$ a subgroup. View $C(G)$ as a left $C(G)$-module and as a right $C(\Gamma)$-module.

1: CONSTRUCTION Let $\theta: \Gamma \rightarrow G L(E)$ be a representation of Γ-- then the tensor product

$$
C(G) \otimes_{C(\Gamma)}^{E}
$$

is a left $C(G)$-module or, equivalently, a representation, the representation Ind ${ }^{\mathrm{T}, \theta}$ of G induced by θ.

2: N.B. The left action is given by

$$
\begin{aligned}
& \left(\sum_{x \in G} f(x) \delta_{x}\right)\left(\delta_{y} \otimes x\right) \\
& \quad=\sum_{x \in G} \delta_{x y} \otimes f(x) x \quad(x \in E)
\end{aligned}
$$

and from the definitions, $\forall \gamma \in \Gamma$,

$$
\delta_{x} \delta_{\gamma} \otimes x=\delta_{x} \otimes \theta(\gamma) x \quad(X \in E)
$$

3: LEMMA Write

$$
\mathrm{G}=\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \Gamma .
$$

Then as a vector space

$$
\operatorname{Ind}_{\Gamma, \theta}^{G}=\stackrel{n}{\oplus} \underset{\mathrm{k}=1}{\mathrm{n}}\left(\delta_{\mathrm{x}_{\mathrm{k}}} \otimes \mathrm{E}\right) .
$$

[Note: The summand

$$
\delta_{x_{k}} \otimes E=\left\{\delta_{x_{k}} \otimes X: X \in E\right\}
$$

$$
\approx E\left(\delta_{x_{k}} \otimes \mathrm{X} \longrightarrow \mathrm{X}\right)
$$

is the transform of $\delta_{e} \otimes \mathrm{E} \approx \mathrm{E}$ under the action of $\delta_{\mathrm{x}_{\mathrm{k}}}$:

$$
\left.\delta_{\mathrm{x}_{\mathrm{k}}}\left(\delta_{\mathrm{e}} \otimes \mathrm{x}\right)=\delta_{\mathrm{x}_{\mathrm{k}}} \otimes \mathrm{X} .\right]
$$

The following result justifies the notation and the terminology.

4: THEOREM Set $\pi=\operatorname{Ind}{ }_{\Gamma, \theta}^{G}-$ then

$$
\left.i_{\Gamma \rightarrow G} X_{\theta}=\chi_{\pi} \quad \text { (cf. } \S 9, \# 10\right)
$$

PROOF Let X_{1}, \ldots, X_{d} be a basis for E and define $\theta_{i j}(\gamma)$ by

$$
\theta(\gamma) x_{j}=\sum_{i} \theta_{i j}(\gamma) x_{i}
$$

Equip $C(G) \otimes_{C(\Gamma)}$ E with the basis $\left\{\delta_{x_{1}} \otimes \mathrm{X}_{1}, \ldots, \delta_{x_{1}} \otimes \mathrm{X}_{\mathrm{d}}, \delta_{\mathrm{x}_{2}} \otimes \mathrm{X}_{1}, \ldots, \delta_{\mathrm{x}_{2}} \otimes \mathrm{X}_{\mathrm{d}}\right.$,

$$
\left.\cdots, \delta_{x_{n}} \otimes x_{1}, \ldots, \delta_{x_{n}} \otimes x_{d}\right\}
$$

and write $\mathrm{xx}_{\mathrm{k}}=\mathrm{x}_{\ell} \gamma-$ then

$$
\begin{aligned}
\pi(x)\left(\delta_{x_{k}} \otimes x_{j}\right) & =\delta_{x x_{k}} \otimes x_{j} \\
& =\delta_{x_{\ell} \gamma} \otimes x_{j} \\
& =\delta_{x_{l}} \delta_{\gamma} \otimes x_{j} \\
& =\delta_{x_{l}} \otimes \theta(\gamma) x_{j} \\
& =\delta_{x_{l}} \otimes \sum \sum_{i j}(\gamma) x_{i}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i} \theta_{i j}(\gamma) \delta_{x_{l}} \otimes x_{i} \\
& =\sum_{i} \theta_{i j}\left(x_{l}^{-1} \mathrm{xx}_{k}\right) \delta_{x_{l}} \otimes x_{i} .
\end{aligned}
$$

Define $\stackrel{\circ}{\theta}$ on G by $\stackrel{\circ}{\theta}(\gamma)=\left[\theta_{i j}(\gamma)\right](\gamma \in \Gamma)$ and $\dot{\theta}(x)=0_{d}$ if $x \notin \Gamma\left(0_{d}\right.$ the zero d-by- d matrix), thus the block matrix representing $\pi(x)$ is

Taking the trace

$$
\begin{aligned}
X_{\pi}(x) & =\operatorname{tr}(\pi(x)) \\
& =\sum_{k=1}^{n} \operatorname{tr}\left(\dot{\theta}\left(x_{k}^{-1} x_{k}\right)\right) \\
& =\sum_{k=1}^{n} \dot{X}_{\theta}\left(x_{k}^{-1} x_{k}\right) \\
& =\left(i_{\Gamma} \rightarrow G_{\theta} X_{\theta}\right)(x)
\end{aligned}
$$

finishes the proof.

5: NOTAITON MOD (Γ) is the category of left $C(\Gamma)$-modules and MOD(G) is the category of left $C(G)$-modules.
[Note: All data is over C and finite dimensional.]

6: N.B. Morphisms are intertwining operators.

7: SCHOLIUM The assignment

$$
(\theta, E) \rightarrow \operatorname{Ind}_{\Gamma, \theta}^{G}
$$

defines a functor

$$
\operatorname{MOD}(\Gamma) \rightarrow \operatorname{MOD}(G) .
$$

8: NOTATION Given a representation (π, V) of G, denote its restriction to Γ by $\operatorname{Res}_{\Gamma, \pi^{\top}}^{G}$.

9: SCHOLIUM The assignment

$$
(\pi, V) \rightarrow \operatorname{Res}_{\Gamma, \pi}^{G}
$$

def ines a functor

$$
\operatorname{MOD}(\mathrm{G}) \rightarrow \operatorname{MOD}(\Gamma) .
$$

Here now are the fundamental formalities.

10: LEMMA

$$
I_{G}\left(\operatorname{Ind}_{\Gamma, \theta}{ }^{G}(\pi, V)\right) \approx I_{\Gamma}\left((\theta, E), \operatorname{Res}_{\Gamma, \theta}^{G}\right) .
$$

11: SLOGAN The restriction functor is a right adjoint for the induction functor.

12: LEMMA

$$
I_{G}\left((\pi, V), \operatorname{Ind}_{\Gamma, \theta}^{G}\right) \approx I_{\Gamma}\left(\operatorname{Res}_{\Gamma, \pi^{\prime}}^{G}(\theta, E)\right)
$$

13: SLOGAN The restriction functor is a left adjoint for the induction functor.

Moving on:

14: DEFINITION Let $\theta: \Gamma \rightarrow G L(E)$ be a representation of Γ-- then

$$
\operatorname{Inv}_{\Gamma}(E)=\{X \in E: \theta(\gamma) X=X \forall \gamma \in \Gamma\}
$$

is the set of Γ-invariants per E.

15: DEFINITION Let $\theta: \Gamma \rightarrow G L(E)$ be a representation of Γ-- then

$$
\operatorname{CoInv}_{\Gamma}(\mathrm{E})=\mathrm{E} / \mathrm{I}_{\Gamma} \mathrm{E}
$$

is the set of coinvariants per E .
[Note: $I_{\Gamma} \subset C(\Gamma)$ is the augmentation ideal, thus $I_{\Gamma} E$ stands for the set of all finite sums $\left.\sum_{i} \theta\left(\gamma_{i}\right) X_{i}\left(\delta_{\gamma_{i}} \in I_{\Gamma^{\prime}} X_{i} \in E\right).\right]$

Specialize and assume that G is a group of Lie type (cf. §13, \#3).

16: NOTATION Given a cuspidal subgroup $P=L U$ of G,

$$
\operatorname{Inf}_{L, P}: \operatorname{MOD}(L) \rightarrow \operatorname{MOD}(P)
$$

is the inflation functor.
[In other words, given a representation (θ, E) of $L, \operatorname{Inf}_{L, P} \theta$ is the lift of θ to P, i.e., E viewed as a left $C(P)$-module with trivial U-action.]

17: DEFINITION The composite

$$
\operatorname{Ind}_{P,-}^{G}{ }^{\circ} \operatorname{Inf}_{L, P}
$$

defines a functor

$$
R_{L, P}^{G}: M O D(L) \rightarrow \operatorname{MOD}(G)
$$

termed Harish-Chandra induction.

18: THEOREM If $P_{1}=\mathrm{LU}_{1}, \mathrm{P}_{2}=\mathrm{LU}_{2}$ are cuspidal subgroups of G, then the functors

$$
\int_{-}^{R_{L, \mathrm{P}_{1}}^{\mathrm{G}}} \begin{aligned}
& R_{\mathrm{L}, \mathrm{P}_{2}}^{\mathrm{G}}
\end{aligned}
$$

are naturally isomorphic.
[Note: Accordingly, the left $C(G)$-module isomorphism class of $R_{L, P}^{G}(\theta, E)$ depends only on θ (it being independent of the particular cuspidal subgroup $P=L U$).]

19: LEMMA

$$
\begin{aligned}
I_{G} & \left(R_{L, P}^{G}(\theta, E),(\pi, V)\right) \\
& \approx I_{P}\left(\operatorname{Inf}_{L, P} P^{\theta}, \operatorname{Res}_{P, \pi}^{G}\right) \\
& \approx I_{L}\left((\theta, E), \operatorname{Inv}_{U}\left(\operatorname{Res}_{P, \pi}^{G}\right)\right)
\end{aligned}
$$

[Note: For any left $C(P)$-module M, the set $\operatorname{Inv}_{U}(M)$ is canonically a left C(L)-module.]

20: SLOGAN The composite of restriction followed by the taking of invariants is a right adjoint for Harish-Chandra induction.

21: LEMMA

$$
\begin{aligned}
& I_{G}\left((\pi, V), R_{L, P}^{G}(\theta, E)\right) \\
& \quad \approx I_{P}\left(\operatorname{Res}_{P, \pi}^{G}, \operatorname{Inf}_{L, P}(\theta)\right) \\
& \quad \approx I_{L}\left(\operatorname{CoInv}_{U}\left(\operatorname{Res}_{P, \pi}^{G}\right),(\theta, E)\right) .
\end{aligned}
$$

[Note: For any left $C(P)$-module M, the set $\operatorname{CoInv}_{U}(M)$ is canonically a left C(L)-module.]

22: SLOGAN The composite of restriction followed by the taking of coinvariants is a left adjoint for Harish-Chandra induction.

23: SUBLEMMA For any left $C(P)$-module M,

$$
\operatorname{Inv}_{U}(M) \approx \operatorname{CoInv}_{U}(\mathrm{M})
$$

24: SCHOLIUM The left and right adjoint of Harish-Chandra induction are naturally isomorphic.

25: DEFINITION Harish-Chandra restriction $*_{\mathrm{R}, \mathrm{P}}^{\mathrm{G}}$ is the left and right adjoint of Harish-Chandra induction.

26: LEMMA

$$
*_{R_{L, P}}^{G}((\pi, V))=e_{U} V,
$$

where

$$
\mathrm{e}_{\mathrm{U}}=\frac{1}{|\mathrm{U}|} \underset{\mathrm{u} \in \mathrm{U}}{\sum} \pi(\mathrm{u}) .
$$

27: THEOREM If $P_{1}=L U_{1}, P_{2}=L U_{2}$ are cuspidal subgroups of G, then the functors

$$
\left.\right|_{-\quad *_{R G}, \mathrm{P}_{1}}{ }^{\mathrm{RG}_{\mathrm{L}, \mathrm{P}_{2}}}
$$

are naturally isomorphic.
[Note: Accordingly, the left $C(L)$-module class of $* R_{L, P}^{G}(\pi, V)$ depends only on π (it being independent of the particular cuspidal parabolic subgroup $P=L U$).]

APPENDIX

Let $P=L U$ be a cuspidal subgroup of G.

DEFINITION Given $\phi \in C L(L)$, def ine $\tilde{\phi} \in C(P)$ by the rule

$$
\tilde{\phi}(\ell \mathrm{u})=\phi(\ell) .
$$

LEMMA $\tilde{\phi}$ is a class function, i.e.,

$$
\tilde{\phi} \in C L(P) .
$$

PROOF The claim is that $\forall p \in P, \forall p_{1} \in P$,

$$
\tilde{\phi}\left(p p_{1} p^{-1}\right)=\tilde{\phi}\left(p_{1}\right)
$$

urite $p=\ell u, p_{1}=\ell_{1} u_{1}-$ then

$$
\begin{aligned}
\tilde{\phi}\left(\mathrm{pp}_{1} \mathrm{p}^{-1}\right) & =\tilde{\phi}\left(\ell \ell_{1} u_{1} u^{-1} \ell^{-1}\right) \\
& =\tilde{\phi}\left(\ell \mathrm{u} \ell_{1} u_{1} \ell^{-1} \ell u^{-1} \ell^{-1}\right) \\
& =\tilde{\phi}\left(\ell u \ell_{1} u_{1} \ell^{-1} v\right) \quad\left(v=\ell u^{-1} \ell^{-1} \in U\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\tilde{\phi}\left(\ell \ell_{1} \ell^{-1} \ell u_{1} \ell^{-1} v\right) \\
& =\tilde{\phi}\left(\ell \ell_{1} \ell^{-1} v_{1} v\right) \quad\left(v_{1}=\ell u_{1} \ell^{-1} \in \mathrm{U}\right) \\
& =\tilde{\phi}\left(\ell\left(\ell_{1} \ell^{-1}\right)\left(\ell_{1} \ell^{-1}\right)^{-1} u\left(\ell_{1} \ell^{-1}\right) v_{1} v\right) \\
& =\tilde{\phi}\left(l \ell_{1} \ell^{-1} v_{2} v_{1} v\right)\left(v_{2}=\left(\ell_{1} \ell^{-1}\right)^{-1} u\left(\ell_{1} \ell^{-1}\right) \in \mathrm{U}\right) \\
& =\phi\left(\ell \ell_{1} \ell^{-1}\right) \\
& =\phi\left(\ell_{1}\right)=\tilde{\phi}\left(p_{1}\right) .
\end{aligned}
$$

Thus there is an arrow

$$
\mathrm{CL}(\mathrm{~L}) \rightarrow \mathrm{CL}(\mathrm{P}) \rightarrow \mathrm{CL}(\mathrm{G}),
$$

namely

$$
\phi \rightarrow \tilde{\phi} \rightarrow i_{P} \rightarrow \widetilde{G}^{\tilde{\phi}} .
$$

On the other hand, there is an arrow

$$
\mathrm{CL}(\mathrm{G}) \rightarrow \mathrm{CL}(\mathrm{~L}),
$$

namely

$$
\psi \rightarrow \psi_{\mathrm{P}} \mid \mathrm{L} \equiv \mathrm{r}_{\mathrm{G}} \rightarrow \mathrm{~L}^{\psi_{\mathrm{P}}}
$$

[Note: $\forall \ell \in L, \forall \ell_{1} \in L$,

$$
\begin{aligned}
\sum_{u \in U} \psi\left(l l_{1} \ell^{-1} u\right) & =\sum_{u \in U}^{\sum} \psi\left(l l_{1} \ell^{-1} u l l^{-1}\right) \\
& =\sum_{u \in U} \psi\left(l_{1} \ell^{-1} u \ell\right) \\
& \left.=\sum_{u \in U} \psi\left(l_{1} u\right) .\right]
\end{aligned}
$$

LEMMA Let $\phi \in C L(L), \psi \in C L$ (G) -- then

$$
\left\langle i_{P} \rightarrow \tilde{G}^{\tilde{\phi}, \psi\rangle}{ }_{G}=\left\langle\phi, r_{G} \rightarrow L^{\psi_{P}}\right\rangle_{\mathbb{L}} .\right.
$$

PROOF

$$
\begin{aligned}
& \left\langle i_{P \rightarrow G} \tilde{\phi}^{\tilde{\phi}} \psi\right\rangle_{G}=\frac{1}{|G|} \sum_{x \in G}\left(i_{P} \rightarrow G^{\tilde{\phi}}\right)(x) \overline{\psi(x)} \\
& =\frac{1}{|G|} \sum_{x \in G} \frac{1}{|P|} \sum_{y \in G} \stackrel{\circ}{\tilde{\phi}}\left(y x y^{-1}\right) \overline{\psi(x)} \\
& =\frac{1}{|G|} \sum_{y \in G} \frac{1}{|P|} \sum_{x \in G} \stackrel{\circ}{\tilde{\phi}}\left(y x y^{-1}\right) \overline{\psi(x)} \\
& =\frac{1}{|\mathrm{G}|} \sum_{y \in G} \frac{1}{|\mathrm{P}|} \sum_{x \in G} \stackrel{\circ}{\tilde{\phi}(x)} \overline{\psi\left(y^{-1} x y\right)} \\
& =\frac{1}{|G|} \sum_{y \in G} \frac{1}{|P|} \sum_{p \in P} \tilde{\phi}(p) \overline{\psi\left(y p y^{-1}\right)} \\
& =\frac{1}{|G|} \sum_{y \in G} \frac{1}{|P|} \sum_{\ell, \mathrm{u}} \tilde{\phi}(\ell u) \overline{\psi\left(y \ell_{u y}{ }^{-1}\right)} \\
& =\frac{1}{|G|} \sum_{y \in G} \frac{1}{|P|} \sum_{\ell, u} \phi(\ell) \overline{\psi\left(y \ell u^{-1}\right)} \\
& =\frac{1}{|G|} \sum_{y \in G} \frac{1}{|P|} \sum_{\ell, u} \phi(\ell) \overline{\psi(\ell u)} \\
& =\frac{1}{|\mathrm{P}|} \sum_{\ell, \mathrm{u}}^{\Sigma} \phi(\ell) \overline{\psi(\ell \mathrm{u})} \\
& =\frac{1}{|\mathrm{~L}||\mathrm{U}|} \sum_{\ell, \mathrm{u}}^{\mathrm{L}} \phi(\ell) \overline{\psi(\ell \mathrm{u})}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{|\mathrm{~L}|} \sum_{\ell} \phi(\ell) \overline{\psi_{\mathrm{P}}(\ell)} \\
& =\left\langle\phi, \mathrm{r}_{\mathrm{G}} \rightarrow \mathrm{~L}^{\left.\psi_{\mathrm{P}}\right\rangle_{\mathrm{L}} .}\right.
\end{aligned}
$$

§1. ORBITAL SUMS

Let G be a finite group.

1: DEFINITION Given $f \in C(G)$ and $\gamma \in G$, put

$$
O(f, \gamma)=\sum_{x \in G} f\left(x \gamma x^{-1}\right)
$$

the orbital sum of f at γ.

2: LEMMA The function $O(f)$ defined by the assignment

$$
\gamma \rightarrow O(f, \gamma)
$$

is a class function on G, i.e., is an element of $C L(G)$.

3: LEMMA There is an expansion

$$
O(f, \gamma)=\sum_{\Pi \in G} \operatorname{tr}(\Pi *(f)) \chi_{\Pi}(\gamma),
$$

where

$$
\Pi^{*}(f)=\sum_{x \in G} f(x) \Pi^{*}(x) .
$$

PROOF Since O (f) is a class function, $\forall \gamma \in G$,

$$
O(f, \gamma)=\sum_{\Pi \in \hat{G}}<0(f), X_{\Pi I}>{ }_{G} X_{\Pi I}(\gamma) \quad(\mathrm{cf} . \operatorname{II}, \S 4, \# 17) .
$$

But

$$
\begin{aligned}
<0(f), x_{\Pi I}>_{G} & =\frac{1}{|G|} \sum_{\gamma \in G} 0(f, \gamma) \overline{x_{\Pi}(\gamma)} \\
& =\frac{1}{|G|} \sum_{\gamma \in G} \sum_{x \in G} f\left(x \gamma x^{-1}\right) \overline{x_{\Pi}(\gamma)} \\
& =\frac{1}{|G|} \sum_{x \in G}^{\Sigma} \sum_{\gamma \in G} f\left(x \gamma x^{-1}\right) \overline{x_{\Pi I}(\gamma)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{|G|} \sum_{x \in G} \sum_{\gamma \in G} f(\gamma) \overline{x_{I I}\left(x^{-1} \gamma x\right)} \\
& =\frac{1}{|G|} \sum_{x \in G} \sum_{\gamma \in G} f(\gamma) \overline{X_{I I}(\gamma)} \\
& =\frac{1}{|G|}|G| \sum_{\gamma \in G} f(\gamma) \overline{X_{I I}(\gamma)} \\
& =\sum_{\gamma \in G} f(\gamma) \overline{X_{I I}(\gamma)} \\
& =\sum_{x \in G} f(x) \overline{X_{I I}^{(x)}} \\
& =\operatorname{tr}\left(\Pi^{*}(f)\right) .
\end{aligned}
$$

[Note: Recall that

$$
\left.\left.X_{\Pi^{*}}=\overline{X_{\Pi}} \quad \text { (cf. } I I, \S 4, \# 4\right) .\right]
$$

4: N.B. In terms of the Fourier transform,

$$
\left.\Pi^{*}(f)=\hat{f}\left(\Pi^{*}\right) \Rightarrow \operatorname{tr}\left(\Pi^{*}(f)\right)=\operatorname{tr}\left(\hat{f}\left(\Pi^{*}\right)\right) .\right]
$$

§2. THE LOCAL TRACE FORMULA

Let G be a finite group.

1: NOTATION Denote by $\pi_{L, R}$ the representation of $G \times G$ on $C(G)$ given by $\left(\pi_{L, R}\left(x_{1}, x_{2}\right) f\right)(x)=f\left(x_{1}^{-1} X_{2}\right) \quad$ (cf. II, §l, \#l4).

Define a linear bijection

$$
T: C(G) \rightarrow C(G \times G / G)
$$

via the prescription

$$
T f\left(x_{1}, x_{2}\right)=f\left(x_{1} x_{2}^{-1}\right)
$$

2: N.B. Fmbed G diagonally into $G \times G-$ then $\forall x \in G$,

$$
\begin{aligned}
& \mathrm{Tf}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)(\mathrm{x}, \mathrm{x})\right) \\
&=\mathrm{Tf}\left(\mathrm{x}_{1} \mathrm{x}, \mathrm{x}_{2} \mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}_{1} \mathrm{xx}^{-1} \mathrm{x}_{2}^{-1}\right) \\
&=\mathrm{f}\left(\mathrm{x}_{1} \mathrm{x}_{2}^{-1}\right)=\mathrm{Tf}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) .
\end{aligned}
$$

3: NOTATION Set

$$
\mathrm{L}_{\mathrm{G}} \times \mathrm{G} / \mathrm{G}=\operatorname{Ind}_{\mathrm{G}, \theta}^{\mathrm{G} \times \mathrm{G},}
$$

where θ is the trivial representation of G on $E=C$.

4: LEMMA

$$
\left.T \in I_{G} \times{ }_{G}^{(\pi} L_{L, R^{\prime}} L_{G} \times G / G\right) .
$$

PROOF $\forall x_{1}, x_{2} \in G, \forall f \in C(G)$,

$$
\begin{aligned}
& \left(T \pi_{L, R}\left(x_{1}, x_{2}\right) f\right)\left(y_{1}, y_{2}\right) \\
& \quad=\left(\pi_{L, R}\left(x_{1}, x_{2}\right) f\right)\left(y_{1} Y_{2}^{-1}\right) \\
& \quad=f\left(x_{1}^{-1} y_{1} Y_{2}^{-1} x_{2}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\left(L_{G}\right. & \left.\times G / G\left(x_{1}, x_{2}\right) T f\right)\left(y_{1}, y_{2}\right) \\
& =T f\left(\left(x_{1}, x_{2}\right)^{-1}\left(y_{1}, y_{2}\right)\right) \\
& =T f\left(\left(x_{1}^{-1}, x_{2}^{-1}\right)\left(y_{1}, y_{2}\right)\right) \\
& =T f\left(x_{1}^{-1} y_{1}, x_{2}^{-1} y_{2}\right) \\
& =f\left(x_{1}^{-1} y_{1} y_{2}^{-1} x_{2}\right) .
\end{aligned}
$$

5: N.B. T is unitary: $\forall f, g \in C(G)$,

$$
\langle\mathrm{Tf}, \mathrm{Tg}\rangle_{\mathrm{G}} \times \mathrm{G}=\langle\mathrm{f}, \mathrm{~g}\rangle_{\mathrm{G}} .
$$

[By definition,

$$
\begin{aligned}
& <\mathrm{Tf}, \mathrm{Tg}\rangle_{\mathrm{G}} \times \mathrm{G} \\
& \left.=\frac{1}{|G \times G|}\left(x_{1}, x_{2}\right) \sum_{\in G \times G} \operatorname{Tf}\left(x_{1}, x_{2}\right) \overline{\operatorname{Tg}\left(x_{1}, x_{2}\right.}\right) \\
& =\frac{1}{|G \times G|}\left(x_{1}, x_{2}\right) \sum_{\in G} \times{ }_{G} f\left(x_{1} x_{2}^{-1}\right) \overline{g\left(x_{1} x_{2}^{-1}\right)} \\
& =\frac{1}{G \times G T} x_{1} \sum_{G} \quad \sum_{2} \in G\left(x_{1} x_{2}^{-1}\right) \overline{g\left(x_{1} x_{2}^{-1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{|G \times G|} x_{1} \sum_{G G} x_{2} \sum_{G G} f\left(x_{1} x_{2}\right) \overline{g\left(x_{1} x_{2}\right)} \\
& =\frac{1}{|G \times G|} x_{1} \sum_{E_{G}} x_{x_{2} G} f\left(x_{2}\right) \overline{g\left(x_{2}\right)} \\
& =\frac{|G|}{|G \times G|} \sum_{x \in G} f(x) \overline{g(x)} \\
& =\frac{1}{\left.|G| \sum_{E G} f(x) \overline{g(x)}=\langle f, g\rangle_{G} .\right]}
\end{aligned}
$$

6: NOTATION Given an $x \in G$, write $C(x)$ for its conjugacy class and G for its centralizer (cf. II, §4, \#l0).

7: EXAMPLE $\forall f \in C(G)$ and $\forall \gamma \in G$,

$$
O(f, \gamma)=\sum_{x \in G} f\left(x \gamma x^{-1}\right)=\left|G_{\gamma}\right| \sum_{x \in C(\gamma)} f(x) .
$$

8: LEMMA Abbreviate $\chi_{\pi_{L, R}}$ to $X_{L, R}$-- then

$$
\begin{aligned}
& x_{L, R}\left(x_{1}, x_{2}\right)=\left|\left\{x \in G: \delta_{x}\left(x_{1}^{-1} \mathrm{xx}_{2}\right) \neq 0\right\}\right| \\
& =\left.\right|_{-} ^{\left|G_{x}\right|} \begin{array}{ll}
0 & \left(x=x_{1}=x_{2}\right) \\
0 & \left(C\left(x_{1}\right) \neq C\left(x_{2}\right)\right)
\end{array}
\end{aligned}
$$

[Work instead with the character of $\mathrm{L}_{\mathrm{G}} \times \mathrm{G} / \mathrm{G}$ and apply II, §7, \#11.]

Given $f_{1}, f_{2} \in C(G)$, define $f \in C(G \times G)$ by

$$
f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)
$$

and let

$$
\pi_{L, R}(f)=x_{x_{1} \in G} \sum_{x_{2} \in G} \sum_{1} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \pi_{L, R}\left(x_{1}, x_{2}\right) .
$$

Then $\forall \phi \in \mathrm{C}(\mathrm{G})$,

$$
\begin{aligned}
\left(\pi_{L, R}(f) \phi\right)(x) & =\sum_{x_{1} \in G} x_{2} \sum_{\mathbb{E} G} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \phi\left(x_{1}^{-1} x_{2}\right) \\
& =\sum_{y \in G} K_{f}(x, y) \phi(y)
\end{aligned}
$$

where

$$
K_{f}(x, y)=\sum_{z \in G} f_{1}(x z) f_{2}(z y)
$$

Therefore $\pi_{L, R}(f)$ is an integral operator on $C(G)$ (a.k.a. $L^{2}(G) \ldots$) with kernel $K_{f}(x, y)$.

9: LEMMA The $\sqrt{\mid G T} \delta_{x}(x \in G)$ constitute an orthonormal basis for $C(G)$.

10: LEMMA $\forall f=f_{1} f_{2}$,

$$
\operatorname{tr}\left(\pi_{L, R}(f)\right)=\sum_{x \in G} K_{f}(x, x) .
$$

PROOF In fact,

$$
\begin{aligned}
& \left.\operatorname{tr}\left(\pi_{L, R}(f)\right)=\sum_{x \in G}<\pi_{L, R}(f) \sqrt{|G|} \delta_{x}, \sqrt{G \mid} \delta_{X}\right\rangle_{G} \\
& =|G| \sum_{x \in G} \frac{1}{\mid G T} \sum_{y \in G}^{\Sigma}\left(\pi_{L, R}(f) \delta_{x}\right)(y) \delta_{x}(y) \\
& =\sum_{x \in G}\left(\pi_{L, R}(f) \delta_{x}\right)(x) \\
& =\sum_{x \in G} \quad \sum_{x_{1} \in G}^{\Sigma} \quad x_{2} \sum_{G} \in f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \delta_{x}\left(x_{1}^{-1} x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x \in G} \sum_{z \in G} f_{l}(x z) f_{2}(z y) \\
& =\sum_{x \in G} K_{f}(x, x) .
\end{aligned}
$$

Enumerate the elements of CON(G), say

$$
\operatorname{CON}(G)=\left\{C_{1}, \ldots, C_{n}\right\}
$$

For each i, fix a $\gamma_{i} \in C_{i}(1 \leq i \leq n)$.

11: LEMMA $\forall f=f_{1} f_{2}$

$$
\sum_{x \in G} K_{f}(x, x)=\sum_{i=1}^{n} \frac{1}{G_{\gamma_{i}}} O\left(f_{1}, \gamma_{i}\right) O\left(f_{2}, \gamma_{i}\right) .
$$

PROOF Start with the LHS:

$$
\begin{aligned}
\sum_{x \in G} K_{f}(x, x) & =\sum_{x \in G} \sum_{z \in G} f_{1}(x z) f_{2}(z x) \\
& =\sum_{x \in G} \sum_{y \in G} f_{1}(y) f_{2}\left(x^{-1} y x\right) \\
& =\sum_{y \in G} F(y)
\end{aligned}
$$

where

$$
F(y)=\sum_{x \in G} f_{1}(y) f_{2}\left(x^{-1} y x\right)
$$

Using now $84, \# 2$ below, we have

$$
\sum_{y \in G} F(y)=\sum_{i=1}^{n} \frac{1}{G_{\gamma_{i}}} O\left(F, \gamma_{i}\right) .
$$

And

$$
O\left(F, \gamma_{i}\right)=\sum_{x \in G} F\left(x \gamma_{i} x^{-1}\right)
$$

$$
\begin{aligned}
& =\sum_{x \in G} \sum_{y \in G} f_{1}\left(x \gamma_{i} x^{-1}\right) f_{2}\left(y^{-1} x \gamma_{i} x^{-1} y\right) \\
& =\sum_{x \in G} f_{1}\left(x \gamma_{i} x^{-1}\right) \sum_{y \in G}^{\sum} f_{2}\left(y^{-1} x \gamma_{i} x^{-1} y\right) \\
& =\sum_{x \in G} f_{1}\left(x \gamma_{i} x^{-1}\right) \sum_{y \in G}^{\sum} f_{2}\left(y^{-1} \gamma_{i} y\right) \\
& =\sum_{x \in G} f_{1}\left(x \gamma_{i} x^{-1}\right) \sum_{y \in G}^{\sum} f_{2}\left(y \gamma_{i} y^{-1}\right) \\
& =O\left(f_{1}, \gamma_{i}\right) O\left(f_{2}, \gamma_{i}\right) .
\end{aligned}
$$

12: LEMMA $\forall \mathrm{f}=\mathrm{f}_{1} \mathrm{f}_{2}$,

$$
\sum_{x \in G} K_{f}(x, x)=\sum_{\Pi \in \hat{G}} \operatorname{tr}\left(\hat{f}_{1}(\Pi)\right) \operatorname{tr}\left(\hat{f}_{2}\left(\Pi^{*}\right)\right)
$$

PROOF Write

$$
\begin{aligned}
\sum_{x \in G} K_{f}(x, x) & =\sum_{x \in G} \sum_{y \in G} f_{1}(y) f_{2}\left(x^{-1} y x\right) \\
& =\sum_{y \in G} f_{1}(y) \sum_{x \in G} f_{2}\left(x y x^{-1}\right) \\
& =\sum_{y \in G} f_{1}(y) O\left(f_{2}, y\right) \\
& =\sum_{y \in G} f_{1}(y) \sum_{\Pi \in \hat{G}} \operatorname{tr}\left(\Pi{ }^{*}\left(f_{2}\right)\right) x_{\Pi}(y) \quad \text { (cf. gl, \#3) } \\
& =\sum_{\Pi \in \hat{G}}\left(\sum_{y \in G} f_{1}(y) x_{\Pi}(y)\right) \operatorname{tr}\left(\Pi *\left(f_{2}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \operatorname{tr}\left(\Pi\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi *\left(f_{2}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \operatorname{tr}\left(\hat{f}_{1}(\Pi)\right) \operatorname{tr}\left(\hat{f}_{2}\left(\Pi^{*}\right)\right) .
\end{aligned}
$$

13: DEFINITION Given $f=f_{1} f_{2}$, the local trace formula is the relation

$$
\begin{aligned}
\sum_{\Pi \in G} & \operatorname{tr} \\
& \left(\hat{f}_{1}(\Pi)\right) \operatorname{tr}\left(\hat{f}_{2}\left(\Pi^{*}\right)\right) \\
& =\sum_{i=1}^{n} \frac{1}{T G_{\gamma_{i}}} 0\left(f_{1}, \gamma_{i}\right) O\left(f_{2}, \gamma_{i}\right) .
\end{aligned}
$$

14: EXAMPLE Suppose that $f_{1}=f_{2}$ is real valued, call it ϕ-- then

$$
\begin{aligned}
\operatorname{tr}\left(\hat{\phi}\left(\Pi^{*}\right)\right) & =\sum_{x \in G} \phi(x) \chi_{\Pi^{*}}(x) \\
& =\sum_{x \in G} \phi(x) \overline{\chi_{\Pi}(x)} \\
& =\sum_{x \in G} \overline{\phi(x)} \overline{\chi_{\Pi I}^{(x)}} \\
& =\overline{\sum_{x \in G} \phi(x) \chi_{\Pi I}^{(x)}} \\
& =\overline{\operatorname{tr}(\hat{\phi}(\Pi))}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{\Pi \in G} & \operatorname{tr}(\hat{\phi}(\Pi)) \overline{\operatorname{tr}(\hat{\phi}(\Pi))} \\
& =\sum_{\Pi \in \hat{G}}|\operatorname{tr}(\hat{\phi}(\Pi))|^{2} \\
& =\sum_{i=1}^{n} \frac{1}{T G_{\gamma_{i}}} O\left(\phi, \gamma_{i}\right)^{2} .
\end{aligned}
$$

[Note: Specialize and take $f_{1}=f_{2}=\delta_{e}$ - then

$$
\operatorname{tr}\left(\hat{\delta}_{e}(\Pi)\right)=x_{\Pi}(e)=\alpha_{\Pi}
$$

and

$$
0\left(\delta_{e}, \gamma_{i}\right)=0\left(\gamma_{i} \neq e\right)
$$

while

$$
\begin{aligned}
O\left(\delta_{e}, e\right) & =\sum_{x \in G} \delta_{e}\left(x e x^{-1}\right) \\
& =\sum_{x \in G} \delta_{e}(e)=|G| .
\end{aligned}
$$

Consequently,

$$
\sum_{\Pi \in \hat{G}} d_{\Pi}^{2}=\frac{1}{|G|}|G|^{2}=|G| \quad \text { (cf. II, §3, \#5 and II, §5, \#9).] }
$$

From the definitions,

$$
\left[\begin{array}{l}
\operatorname{tr}\left(\hat{\mathrm{f}}_{1}(\Pi)\right)=\sum_{\mathrm{x} \in \mathrm{G}} \mathrm{f}_{\mathrm{I}}(\mathrm{x}) \chi_{\Pi}(\mathrm{x})=|\mathrm{G}|<\mathrm{f}_{1}, \chi_{\Pi^{*}}^{>}{ }_{\mathrm{G}} \\
\operatorname{tr}\left(\hat{\mathrm{f}}_{2}\left(\Pi^{*}\right)\right)=\sum_{\mathrm{x} \in \mathrm{G}} \mathrm{f}_{2}(\mathrm{x}) \chi_{\Pi^{*}}(\mathrm{x})=|\mathrm{G}|<\mathrm{f}_{2^{\prime}}, \chi_{\Pi^{\prime}{ }_{G}} .
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
& \sum_{\Pi \in \hat{G}} \operatorname{tr}\left(\hat{f}_{1}(\Pi)\right) \operatorname{tr}\left(\hat{f}_{2}\left(\Pi^{*}\right)\right) \\
&=|G|^{2} \sum_{\Pi \in \hat{G}}<f_{1}, X_{\Pi *}>{ }_{G}<f_{2}, x_{\Pi}>G \\
&=|G|^{2} \sum_{\Pi \in \hat{G}}<f_{1}, x_{\Pi}>{ }_{G}<f_{2}, x_{\Pi *}>{ }_{G}
\end{aligned}
$$

15: N.B. Assume in addition that f_{1} and f_{2} are class functions. Write

$$
\left[\begin{array}{l}
\mathrm{f}_{1}(\mathrm{x})=\sum_{\Pi \in \hat{G}}<\mathrm{f}_{1}, X_{\Pi}>{ }_{G} X_{\Pi}(\mathrm{x}) \\
\overline{\mathrm{f}}_{2}(\mathrm{x})=\sum_{\Pi \in \hat{G}}<\overline{\mathrm{f}}_{2}, X_{\Pi}>_{G} X_{\Pi}(\mathrm{x})
\end{array} \quad\right. \text { (cf. II, §4, \#17). }
$$

Then

$$
\begin{aligned}
\left\langle\mathrm{f}_{1}, \overline{\mathrm{f}}_{2}\right\rangle_{G}= & \sum_{\Pi \in \hat{G}}\left\langle\mathrm{f}_{1}, x_{\Pi}>{ }_{G} \overline{\left.\overline{\mathrm{f}}_{2}, x_{\Pi}\right\rangle}{ }_{G}\right. \\
& \text { (first orthogonal ity relations) } \\
= & \sum_{\Pi \in G}<f_{1}, x_{\Pi}>{ }_{G}<\mathrm{f}_{2}, x_{\Pi *}>_{G} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left\langle f_{1}, \overline{f_{2}}{ }_{G}=\frac{1}{\mid G T} \sum_{x \in G}{ }^{f_{1}}(x) \overline{\overline{f_{2}(x)}}\right. \\
& =\frac{1}{\mid G T} \sum_{i=1}^{n} \sum_{x \in C_{i}} f_{1}(x) f_{2}(x) \\
& =\frac{1}{\mid G T} \sum_{i=1}^{n}\left|C_{i}\right| f_{1}\left(\gamma_{i}\right) f_{2}\left(\gamma_{i}\right) \\
& =\sum_{i=1}^{n} \frac{\left|C_{i}\right|}{|G|} f_{1}\left(\gamma_{i}\right) f_{2}\left(\gamma_{i}\right) \\
& =\sum_{i=1}^{n} \frac{1}{T_{\gamma_{i}}} f_{1}\left(\gamma_{i}\right) f_{2}\left(\gamma_{i}\right) \\
& \text { => } \\
& |G|^{2}<f_{1}, \overline{F_{2}}{ }_{G} \\
& =\sum_{i=1}^{n} \frac{1}{\mid G_{\gamma_{i}}}|G| f_{1}\left(\gamma_{i}\right)|G| f_{2}\left(\gamma_{i}\right) \\
& =\sum_{i=1}^{n} \frac{1}{T G_{\gamma_{i}}} O\left(f_{1}, \gamma_{i}\right) O\left(f_{2}, \gamma_{i}\right) .
\end{aligned}
$$

The irreducible representations of $G \times G$ are the outer tensor products

$$
\left.\Pi_{1} \otimes \Pi_{2}\left(\Pi_{1}, \Pi_{2} \in \hat{G}\right) \quad \text { (cf. } I I, \S 5, \# 13\right) .
$$

Moreover,

$$
x_{\Pi_{1} \otimes \Pi_{2}}=x_{\Pi_{1}} x_{\Pi_{2}} \cdot
$$

Consider now the direct sum decomposition

$$
\mathrm{L}_{\mathrm{G}} \times \mathrm{G} / \mathrm{G}={ }_{\Pi_{1}, \Pi_{2} \in \hat{G}}^{\mathrm{m}\left(\Pi_{1} \underline{\otimes} \Pi_{2}, \mathrm{~L}_{\mathrm{G}} \times \mathrm{G} / \mathrm{G}\right) \Pi_{1} \underline{\otimes} \Pi_{2} .}
$$

Then

$$
\begin{aligned}
& \operatorname{tr}\left(L_{G} \times G / G\right. \\
&(f)) \\
&\left.=\sum_{\Pi_{1}, \Pi_{2} \in \hat{G}}{ }^{m\left(\Pi_{1} Q \Pi_{2}\right.}, L_{G} \times G / G\right) \operatorname{tr}\left(\Pi_{1}\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi_{2}\left(f_{2}\right)\right) .
\end{aligned}
$$

I.e. (cf. \#4):

$$
\left.\begin{array}{rl}
\operatorname{tr} & \left(\Pi_{L}, R\right.
\end{array}(f)\right) .
$$

I.e. (cf. \#12):

$$
\begin{aligned}
& \sum_{\Pi \in G} \operatorname{tr}\left(\Pi^{\left.\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi_{1} *\left(f_{2}\right)\right)}\right. \\
= & \left.\sum_{\Pi_{1}}, \Pi_{2} \in \hat{G}^{m\left(\Pi_{1} Q \Pi_{2}\right.}, L_{G} \times G / G\right) \operatorname{tr}\left(\Pi_{1}\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi_{2}\left(f_{2}\right)\right) .
\end{aligned}
$$

Therefore, thanks to I, §3, \#9,

$$
m\left(\Pi_{1} \otimes \Pi_{2}, L_{G} \times G / G\right)
$$

must vanish unless $\Pi_{1}=\Pi, \Pi_{2}=\Pi^{*}$, in which case the coefficient is equal to 1 .

16: SCHOLIUM

$$
\Pi_{L, R} \approx \underset{\Pi \in \hat{G}}{\oplus} \Pi \underline{\otimes} \Pi^{*} .
$$

§3. THE GLOBAL PRE-TRACE FORMULA

Let G be a finite group, $\Gamma \subset G$ a subgroup.

1: NOTATION Set

$$
\mathrm{L}_{\mathrm{G} / \Gamma}=\operatorname{Ind}_{\Gamma, \theta^{\prime}}^{\mathrm{G}}
$$

where θ is the trivial representation of Γ on $E=C$.
[Note: Accordingly, $X_{\theta}=1_{\Gamma}$ and $\left.\mathrm{E}_{\Gamma, \theta}^{\mathrm{G}}=\mathrm{C}(\mathrm{G} / \Gamma).\right]$

2: EXAMPLE In the special case when $\Gamma=\{e\}, L_{G / \Gamma}=\mathrm{L}$, the left translation representation of G on $C(G)(c f . ~ I I, ~ § l, ~ \# l 2) . ~$

3: N.B. The pair ($G \times G, G$) figuring in $\S 2$ is an instance of the overall setup.

Given $f \in C(G), \phi \in C(G / \Gamma)$, we have

$$
\begin{aligned}
\left(L_{G / \Gamma}\right. & (f) \phi)(x) \\
& =\sum_{y \in G} f(y)\left(L_{G / \Gamma}(y) \phi\right)(x) \\
& =\sum_{y \in G} f(y) \phi\left(y^{-1} x\right) \\
& =\sum_{y \in G} f\left(x y^{-1}\right) \phi(y) \\
& =\sum_{y \in G} f\left(x y^{-1}\right) \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma}^{\sum} \phi(y \gamma) \\
& =\sum_{y \in G} \frac{1}{\Gamma \mid} \sum_{\gamma \in \Gamma} f\left(x y^{-1}\right) \phi(y \gamma)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\gamma \in \Gamma} \frac{1}{T \Gamma} \sum_{y \in G} f\left(x y^{-1}\right) \phi(y \gamma) \\
& =\sum_{\gamma \in \Gamma} \frac{1}{T \Gamma} \sum_{y \in G} f\left(x \gamma y^{-1}\right) \phi(y) \\
& =\sum_{y \in G}\left(\frac{1}{T \Gamma} \sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right)\right) \phi(y) \\
& =\sum_{y \in G} K_{f}(x, y) \phi(y),
\end{aligned}
$$

where

$$
K_{f}(x, y)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right)
$$

To summarize:

$$
\begin{aligned}
& \text { 4: LEMMA } \forall \mathrm{f} \in \mathrm{C}(\mathrm{G}), \forall \phi \in \mathrm{C}(\mathrm{G} / \Gamma), \forall \mathrm{x} \in \mathrm{G}, \\
& \\
& \left(\mathrm{~L}_{\mathrm{G} / \Gamma}(\mathrm{f}) \phi\right)(\mathrm{x})=\sum_{\mathrm{y} \in \mathrm{G}} \mathrm{~K}_{\mathrm{f}}(\mathrm{x}, \mathrm{y}) \phi(\mathrm{y}),
\end{aligned}
$$

where

$$
K_{f}(x, y)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right)
$$

Write

$$
\mathrm{G}=\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \Gamma
$$

Then for any $f \in C(G)$,

$$
\sum_{x \in G} f(x)=\sum_{k=1}^{n} \sum_{\gamma \in \Gamma} f\left(x_{k} \gamma\right)
$$

thus for any $\phi \in \mathrm{C}(\mathrm{G} / \Gamma)$,

$$
\sum_{x \in G} \phi(x)=|\Gamma| \sum_{\mathrm{k}=1}^{\mathrm{n}} \phi\left(\mathrm{x}_{\mathrm{k}}\right) .
$$

5: RAPPEL (cf. II, §9, \#2) The Hilbert space structure on $C(G / \Gamma)$ is defined by the inner product

$$
\begin{aligned}
\langle\phi, \psi\rangle_{\theta} & =\frac{1}{|\mathrm{G}|} \sum_{\mathrm{x} \in \mathrm{G}} \phi(\mathrm{x}) \overline{\psi(\mathrm{x})} \\
& =\frac{\mid \Gamma}{|\mathrm{G}|} \sum_{\mathrm{k}=1}^{\mathrm{n}} \phi\left(\mathrm{x}_{\mathrm{k}}\right) \overline{\psi\left(\mathrm{x}_{\mathrm{k}}\right)} .
\end{aligned}
$$

6: NOTATION Define functions $\delta_{k} \in C(G / \Gamma)$ by the rule

$$
\delta_{k}\left(x_{\ell} \gamma\right)=\delta_{k \ell}(I \leq k, \ell \leq n) .
$$

7: LEMMA The

$$
\Delta_{k}=\left(\left|\frac{G}{\Gamma}\right|\right)^{1 / 2} \delta_{k}
$$

constitute an orthonormal basis for $C(G / \Gamma)$.
PROOF A given $\phi \in C(G / \Gamma)$ admits the decomposition

$$
\phi=\sum_{k=1}^{n} \phi\left(x_{k}\right) \delta_{k} .
$$

In addition,

$$
\begin{aligned}
\left\langle\Delta_{k}, \Delta_{l}\right\rangle_{\theta} & =\left|\frac{\Gamma}{G}\right| \sum_{j=1}^{n} \Delta_{k}\left(x_{j}\right) \Delta_{l}\left(x_{j}\right) \\
& =\left|\frac{\Gamma}{G}\right| \frac{|G|}{\Gamma \mid}=1
\end{aligned}
$$

if $k=l$ and is 0 otherwise.

8: LEMMA $\forall f \in C(G)$,

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\sum_{x \in G} K_{f}(x, x) .
$$

PROOF In fact,

$$
\begin{aligned}
& \operatorname{tr}\left(\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f})\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}}\left\langle\mathrm{~L}_{\mathrm{G} / \Gamma} \text { (f) } \Delta_{\mathrm{k}^{\prime}}, \Delta_{\mathrm{k}}\right\rangle \theta \\
& \left.=\sum_{k=1}^{n}\left|\frac{\Gamma}{G}\right| \frac{G}{\Gamma} \right\rvert\, \sum_{\ell=1}^{n}\left(L_{G / \Gamma}(f) \delta_{k}\right)\left(x_{\ell}\right) \delta_{k}\left(x_{\ell}\right) \\
& =\sum_{k=1}^{n}\left(L_{G / \Gamma}(f) \delta_{k}\right)\left(x_{k}\right) \\
& =\sum_{k=1}^{n} \sum_{y \in G} f\left(x_{k} y^{-1}\right) \delta_{k}(y) \\
& =\sum_{k=1}^{n} \sum_{\ell=1}^{n} \sum_{\gamma \in \Gamma} f\left(x_{k} \gamma^{-1} x_{\ell}^{-1}\right) \delta_{k}\left(x_{\ell} \gamma\right) \\
& =\sum_{k=1}^{n} \sum_{\ell=1}^{n} \sum_{\gamma \in \Gamma} f\left(x_{k} \gamma^{-1} x_{\ell}^{-1}\right) \delta_{k \ell} \\
& =\sum_{k=1}^{n} \sum_{\gamma \in \Gamma} f\left(x_{k} \gamma^{-1} x_{k}^{-1}\right) \\
& =\sum_{k=1}^{n} \sum_{\gamma \in \Gamma} f\left(x_{k} \gamma x_{k}^{-1}\right) \\
& =\frac{1}{\mid \Gamma} \sum_{k=1}^{n}|\Gamma| f\left(x_{k} \gamma x_{k}^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{k=1}^{n} \sum_{n \in \Gamma} \sum_{\gamma \in \Gamma} f\left(x_{k} n \eta^{-1} x_{k}^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{x \in G} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right) \\
& =\sum_{x \in G} K_{f}(x, x)
\end{aligned}
$$

9: EXAMPLE Take $\Gamma=G--$ then $\forall f \in C(G)$,

$$
\begin{aligned}
\operatorname{tr}\left(L_{G / G}(f)\right) & =\sum_{x \in G} \frac{1}{|G|} \sum_{y \in G} f\left(x y x^{-1}\right) \\
& =\frac{1}{|G|} \sum_{x \in G}^{\sum} \sum_{y \in G} f\left(x y x^{-1}\right) \\
& =\frac{1}{|G|} \sum_{x \in G}^{\sum} \sum_{y \in G} f(y) \\
& =\frac{\mid G}{|G|} \sum_{y \in G} f(y)=\sum_{x \in G} f(x) .
\end{aligned}
$$

10: EXAMPLE Fix $C \in \operatorname{CON}(G)$ and $x \in C$-- then

$$
\left.|C| X_{L_{G} / \Gamma}(x)=\frac{|G|}{\Gamma \mid}|C \cap \Gamma| \quad \text { (cf. II, } \S 9, \# 6\right) .
$$

[Work with $\mathrm{f}=\chi_{\mathrm{C}^{\prime}}$, thus

$$
\begin{aligned}
\operatorname{tr}\left(\mathrm{L}_{\mathrm{G} / \Gamma}\left(\mathrm{X}_{\mathrm{C}}\right)\right) & =\sum_{\mathrm{y} \in \mathrm{G}} \chi_{C}(\mathrm{y}){x_{\mathrm{L}_{\mathrm{G} / \Gamma}}(\mathrm{y})} \\
& =\sum_{\mathrm{y} \in \mathrm{C}} \chi_{\mathrm{C}}(\mathrm{y}){x_{\mathrm{L}_{\mathrm{G} / \Gamma}}(\mathrm{y})} \\
& =|\mathrm{C}| \mathrm{x}_{\mathrm{L}_{\mathrm{G} / \Gamma}}(\mathrm{x})
\end{aligned}
$$

Meanwhile

$$
\operatorname{tr}\left(L_{G / \Gamma}\left(x_{C}\right)\right)=\sum_{y \in G} K_{x_{C}}(y, y)
$$

$$
\begin{aligned}
& =\sum_{y \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} x_{C}\left(y \gamma y^{-1}\right) \\
& =\sum_{y \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} x_{C}(\gamma) \\
& =\frac{G}{\Gamma}|C \cap \Gamma| .
\end{aligned}
$$

On general grounds, there is a direct sum decomposition

$$
\mathrm{L}_{\mathrm{G} / \Gamma}=\underset{\Pi \in \hat{\mathrm{G}}}{\oplus_{\hat{G}}} \mathrm{~m}\left(\Pi, \mathrm{~L}_{\mathrm{G} / \Gamma}\right) \Pi .
$$

[Note:

$$
\mathrm{m}\left(\Pi, \mathrm{~L}_{\mathrm{G} / \Gamma}\right) \neq 0
$$

iff the restriction of Π to Γ contains the trivial representation θ of Γ on $E=C$ (cf. II, §9, \#9) (but see below (cf. \#14)).]

11: SCHOLIUM $\forall f \in C(G)$,

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\sum_{\Pi \in \hat{G}} m\left(\Pi, L_{G / \Gamma}\right) \operatorname{tr}(\hat{f}(\Pi)) .
$$

[Note: Explicated,

$$
\left.\operatorname{tr}(\hat{f}(\Pi))=\sum_{x \in G} f(x) X_{\Pi}(x)=\operatorname{tr}(\Pi(f)) .\right]
$$

12: DEFINITION Given $f \in C(G)$, the global pre-trace formula is the relation

$$
\begin{aligned}
& \sum_{H \in G} m\left(\Pi, L_{G / \Gamma}\right) \operatorname{tr}(\hat{f}(\Pi)) \\
&=\sum_{x \in G} K_{f}(x, x)=\sum_{x \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right) .
\end{aligned}
$$

$$
\text { 13: APPLICATION Take } \Gamma=\{e\}-\text { then } \begin{aligned}
& =\sum_{\Pi \in \hat{G}} m\left(\Pi, L_{G / \Gamma}\right) \operatorname{tr}(\hat{\mathrm{f}}(\Pi))
\end{aligned}
$$

becomes

$$
\sum_{\Pi \in \hat{G}} \mathrm{~d}_{\mathrm{II}} \operatorname{tr}(\hat{\mathrm{f}}(\mathrm{I}))
$$

while

$$
\sum_{x \in G} \frac{1}{\prod \prod} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right)
$$

becomes

$$
|G| f(e) .
$$

I.e.:

$$
\mathrm{f}(\mathrm{e})=\frac{1}{|\mathrm{G}|} \sum_{\Pi \in \hat{G}} \mathrm{~d}_{\mathrm{H}} \operatorname{tr}(\hat{\mathrm{f}}(\mathrm{\Pi})),
$$

the so-called "Plancherel theorem" for G.

14: APPLICATION Fix $\Pi_{0} \in \hat{G}$ and take $f=\overline{X_{\Pi_{0}}}$.

- $\quad \Pi \neq I_{0}$

$$
\begin{aligned}
\Rightarrow \operatorname{tr}\left(\Pi\left(\overline{\chi_{\Pi_{0}}}\right)\right) & =\sum_{x \in G} \overline{\left.{\overline{\Pi_{\Pi}}}^{(x}\right)} x_{\Pi \mathrm{I}}(x) \\
& =0
\end{aligned}
$$

- $\Pi=\Pi_{0}$

$$
\begin{aligned}
\Rightarrow \operatorname{tr}\left(\Pi_{0}\left(\overline{x_{\Pi_{0}}}\right)\right) & =\sum_{x \in G} \overline{x_{\Pi_{0}}^{(x)}} x_{\Pi_{0}}(x) \\
& =|G| .
\end{aligned}
$$

Therefore

$$
\sum_{\Pi \in G} m\left(\Pi, L_{G / \Gamma}\right) \operatorname{tr}\left(\Pi\left(\overline{X_{I I}}\right)\right)
$$

reduces to

$$
|\mathrm{G}| \mathrm{m}\left(\Pi_{0}, \mathrm{~L}_{\mathrm{G} / \Gamma}\right) .
$$

On the other hand,

$$
\begin{aligned}
\sum_{x \in G} K_{f}(x, x) & =\sum_{x \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \overline{x_{\Pi_{0}}\left(x \gamma x^{-1}\right)} \\
& =\sum_{x \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \overline{x_{\Pi_{0}}(\gamma)} \\
& =\left|\frac{G}{\Gamma}\right| \sum_{\gamma \in \Gamma} \overline{x_{\Pi_{0}}(\gamma)} \\
& =|G|<l_{\Gamma^{\prime}} x_{\Pi_{0}}|\Gamma\rangle \\
& =|G| m\left(\theta, \Pi_{0} \mid \Gamma\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
& \quad|\mathrm{G}| \mathrm{m}\left(\Pi_{0}, \mathrm{~L}_{\mathrm{G} / \Gamma}\right) \\
\Rightarrow \quad & =|\mathrm{G}| \mathrm{m}\left(\theta, \Pi_{0} \mid \Gamma\right) \\
\mathrm{m}\left(\Pi_{0}, \mathrm{~L}_{\mathrm{G} / \Gamma}\right) & =\mathrm{m}\left(\theta, \Pi_{0} \mid \Gamma\right) .
\end{aligned}
$$

[Note: As above, θ is the trivial representation of Γ on $E=C$.

15: N.B. Take $\Gamma=\{\mathrm{e}\}$-- then

$$
m\left(\theta, \Pi_{0} \mid \Gamma\right)=d_{I_{0}}
$$

hence

$$
\left.\mathrm{m}\left(\mathrm{I}_{0}, \mathrm{~L}_{\mathrm{G} / \Gamma}\right)=\mathrm{d}_{\mathrm{K}_{0}} \quad \text { (cf. } \mathrm{II}, \S 5, \# 8\right) .
$$

§4. THE GLOBAL TRACE FORMULA

Let G be a finite group, $\Gamma \subset G$ a subgroup.

1: NOTATION For any $\gamma \in \Gamma$,

$$
\left[\begin{array}{l}
G_{\gamma}=\text { centralizer of } \gamma \text { in } G \\
\Gamma_{\gamma}=\text { centralizer of } \gamma \text { in } \Gamma .
\end{array}\right.
$$

Given an $f \in C(G)$, we have

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\sum_{x \in G} K_{f}(x, x),
$$

where

$$
\left.K_{f}(x, x)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right) \quad \text { (cf. } \S 3, \# 8\right)
$$

Enumerate the elements of $\operatorname{CON}(\Gamma)$, say

$$
\operatorname{CON}(\Gamma)=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{n}}\right\}
$$

For each i, fix a $\gamma_{i} \in C_{i}(1 \leq i \leq n)$.

$$
\begin{aligned}
& \text { 2: LEMMA } \forall f \in C(G), \\
& \qquad \sum_{x \in G} K_{f}(x, x)=\sum_{i=1}^{n} \frac{1}{\prod_{\gamma_{i}} T} O\left(f, \gamma_{i}\right) .
\end{aligned}
$$

PROOF Write

$$
\Gamma=\frac{\prod_{k}}{} \gamma_{i, k}{ }^{\Gamma} \gamma_{i} .
$$

Then $\forall \mathrm{x} \in \mathrm{G}$,

$$
K_{f}(x, x)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right)
$$

$$
\begin{aligned}
& =\frac{1}{\Gamma} \sum_{i=1}^{n} \sum_{\gamma \in C_{i}} f\left(x \gamma x^{-1}\right) \\
& =\frac{1}{\mid \Gamma} \sum_{i=1}^{n} \sum_{k} f\left(x \gamma_{i, k} \gamma_{i} \gamma_{i, k}^{-1} x^{-1}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{x \in G} K_{f}(x, x) & =\frac{1}{|\Gamma|} \sum_{i=1}^{n} \sum_{k} \sum_{x \in G} f\left(x \gamma_{i, k} \gamma_{i} \gamma_{i, k}^{-1} x^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{i=1}^{n}\left[\Gamma: \Gamma_{\gamma_{i}}\right] \sum_{x \in G} f\left(x \gamma_{i} x^{-1}\right)
\end{aligned}
$$

Write

$$
G=\frac{\prod_{k}}{} x_{i, k} \Gamma_{\gamma_{i}}
$$

Then

$$
\begin{aligned}
& \sum_{x \in G} K_{f}(x, x) \\
& =\frac{1}{\mid \Gamma T} \sum_{i=1}^{n}\left[\Gamma: \Gamma_{\gamma_{i}}\right] \sum_{k}^{\sum} \sum_{\eta_{i} \in \Gamma_{\gamma_{i}}} f\left(x_{i, k} \eta_{i} \gamma_{i} \eta_{i}^{-1} x_{i, k}^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{i=1}^{n}\left[\Gamma: \Gamma_{\gamma_{i}}\right]\left[\Gamma_{\gamma_{i}}\right] \sum_{k} f\left(x_{i, k} \gamma_{i} x_{i, k}^{-1}\right) \\
& =\sum_{i=1}^{n} \frac{\left[\Gamma: \Gamma_{\gamma_{i}}\right]\left[\Gamma_{\gamma_{i}}\right]}{|\Gamma|} \sum_{k} f\left(x_{i, k} \gamma_{i} x_{i, k}^{-1}\right) \\
& =\sum_{i=1}^{n} \sum_{k} f\left(x_{i, k} \gamma_{i} x_{i, k}^{-1}\right) .
\end{aligned}
$$

Write

$$
\begin{array}{ll}
\Rightarrow & {\left[\begin{array}{c}
G=\frac{\|}{\ell} y_{i,} \ell^{G} \gamma_{i} \\
G_{\gamma_{i}}=\frac{\Perp}{m} \\
z_{i, m^{\prime}} \gamma_{i}
\end{array}\right.} \\
\Rightarrow & G=\frac{\|}{\ell} \frac{\|}{m} y_{i,} \ell^{z} i_{1} m^{\Gamma} \gamma_{i} .
\end{array}
$$

Then

$$
\begin{aligned}
& \sum_{x \in G} K_{f}(x, x) \\
& =\sum_{i=1}^{n} \sum_{\ell}^{\sum} \sum_{m} f_{i}\left(y_{i,} \ell_{i, m} \gamma_{i} z_{i, m}^{-1} y_{i, l}^{-1}\right) \\
& =\sum_{i=1}^{n}\left[G_{\gamma_{i}}: \Gamma_{\gamma_{i}}\right] \sum_{\ell}^{\sum f\left(y_{i}, \ell \gamma_{i} y_{i, \ell}{ }^{-1}\right)} \\
& =\sum_{i=1}^{n}\left|\frac{G_{\gamma_{i}}}{\Gamma_{\gamma_{i}}}\right|_{\ell}^{\sum f\left(y_{i}, \ell \gamma_{i} y_{i}, \ell\right)} \\
& =\sum_{i=1}^{n} \frac{1}{\Gamma^{\Gamma_{\gamma}} \mid} O\left(f, \gamma_{i}\right) .
\end{aligned}
$$

3: N.B. $\forall \gamma$,

$$
O(f, \gamma)=\left|G_{\gamma}\right| \sum_{x \in G / G_{\gamma}} f\left(x \gamma x^{-1}\right),
$$

the sum on the right being taken over a set of representatives for the left coset of G_{γ} in G.

4: EXAMPLE Take $\Gamma=G-$ then $\forall f \in C(G)$,

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{1}{\mathcal{G}_{\gamma_{i}}} O\left(f, \gamma_{i}\right) \\
& =\sum_{i=1}^{n} \frac{1}{T_{\gamma_{i}} \mid} \sum_{x \in G} f\left(x \gamma_{i} x^{-1}\right) \\
& =\sum_{i=1}^{n} \frac{l}{T G_{\gamma_{i}}}\left|G_{\gamma_{i}}\right| \sum_{y_{i} \in G / G_{\gamma_{i}}} f\left(y_{i} \gamma_{i} Y_{i}^{-1}\right) \\
& =\sum_{i=1}^{n} \sum_{y_{i} \in G / G_{\gamma_{i}}} f\left(y_{i} \gamma_{i} y_{i}^{-1}\right) \\
& =\sum_{i=1}^{n} \sum_{y \in C_{i}} f(y) \\
& =\sum_{x \in G} f(x) \quad \text { (cf. §3, \#9). }
\end{aligned}
$$

5: EXAMPLE Suppose that $f \in C L$ (G) -- then

$$
\begin{aligned}
\sum_{x \in G} K_{f}(x, x) & =\sum_{x \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right) \\
& =\sum_{x \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma}^{\Sigma} f(\gamma) \\
& =\left|\frac{G}{\Gamma}\right| \sum_{\gamma \in \Gamma} f(\gamma) .
\end{aligned}
$$

In the other direction,

$$
\sum_{i=1}^{n} \frac{1}{T_{\gamma_{i}}} O\left(f, \gamma_{i}\right)=\sum_{i=1}^{n} \frac{1}{\prod_{\gamma_{i}}} \sum_{x \in G} f\left(x \gamma_{i} x^{-1}\right)
$$

$$
=|G| \sum_{i=1}^{n} \frac{f\left(\gamma_{i}\right)}{\mid \Gamma_{\gamma_{i}}}
$$

Therefore

$$
\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f(\gamma)=\sum_{i=1}^{n} \frac{f\left(\gamma_{i}\right)}{\left|\Gamma_{\gamma_{i}}\right|}
$$

6: DEFINITION Given $f \in C(G)$, the global trace formula is the relation

$$
\begin{aligned}
& \sum_{\Pi \in \hat{G}} m\left(\Pi, L_{G / \Gamma}\right) \operatorname{tr}(\hat{f}(\Pi)) \\
&\left.=\sum_{i=1}^{n} \frac{1}{T_{\gamma_{i}} T} O\left(f, \gamma_{i}\right) \quad \text { (cf. } \S 3, \# 12\right) .
\end{aligned}
$$

7: EXANPLE (POISSON SUMMATION) Take G abel ian and identify \hat{G} with the character group of G : $I \longrightarrow X$, hence

$$
\hat{f}(\chi)=\sum_{x \in G} f(x) \chi(x)
$$

Consider now the sum

$$
\sum_{\chi \in \hat{G}} m\left(\chi, L_{G / \Gamma}\right) \hat{f}(\chi)
$$

Let $\Gamma^{\perp}=\left\{\chi \in \hat{G}: \chi(\gamma)=1 \forall \gamma \in \Gamma^{\prime}\right\}-$ then

$$
\left[\begin{array}{l}
x \in \Gamma^{\perp} \Rightarrow m\left(\chi, L_{G / \Gamma}\right)=1 \\
\quad x \notin \Gamma^{\perp} \Rightarrow m\left(\chi, L_{G / \Gamma}\right)=0
\end{array}\right.
$$

Therefore matters on the "spectral side" reduce to

$$
\sum_{\chi \in \Gamma^{\perp}} \hat{f}(\chi)
$$

And on the "geometric side",

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{T \Gamma_{\gamma_{i}} \mid} O\left(f, \gamma_{i}\right) & =\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} O(f, \gamma) \\
& =\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \sum_{x \in G} f\left(x \gamma x^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma}|G| f(\gamma) \\
& =\frac{G}{|\Gamma|} \sum_{\gamma \in \Gamma} f(\gamma) .
\end{aligned}
$$

Therefore

$$
\frac{l}{|\mathrm{G}|} \sum_{\chi \in \Gamma^{\perp}} \hat{f}(\chi)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f(\gamma) .
$$

Each element ζ in the center $Z(\Gamma)$ of Γ determines a one-element conjugacy class $\{\zeta\}$.

8: DEFINITION The central oontribution to the global trace formula is the subsum

$$
\sum_{\zeta \in Z(\Gamma)} \frac{l}{\left|\Gamma_{\zeta}\right|} O(f, \zeta)
$$

of

$$
\sum_{i=1}^{n} \frac{1}{\Gamma_{\gamma_{i}} T} O\left(f, \gamma_{i}\right) .
$$

Accordingly,

$$
\sum_{\zeta \in Z(\Gamma)} \frac{1}{\left|\Gamma_{\zeta}\right|} O(f, \zeta)=\frac{1}{|\Gamma|} \sum_{\zeta \in Z(\Gamma)} O(f, \zeta)
$$

7.

$$
\begin{aligned}
& =\frac{1}{|\Gamma|} \sum_{\zeta \in Z(\Gamma)} \sum_{x \in G} f\left(x \zeta x^{-1}\right) \\
& =\frac{1}{|\Gamma|} \sum_{\zeta \in Z(\Gamma)}|G| f(\zeta) \\
& \left.=\frac{G}{\Gamma} \right\rvert\, \sum_{\zeta \in Z(\Gamma)} f(\zeta) .
\end{aligned}
$$

§1. UNITARY REPRESENTATIONS

Let G be a compact group.

1: NOTATION d_{G} is normalized Haar measure on G :

$$
\int_{G} l d_{G}(x)=1
$$

2: IEMMA

$$
L^{1}(G)=L^{2}(G) \supset C(G)
$$

and

- $\forall f \in \mathrm{~L}^{2}(\mathrm{G}),\|f\|_{2} \geq\|f\|_{1}$.
- $\forall \mathrm{f} \in \mathrm{C}(\mathrm{G}),\|\mathrm{f}\|_{2} \leq\|f\|_{\infty}$.

3: N.B. The convolution operator

$$
*: L^{2}(G) \times L^{2}(G) \rightarrow C(G)
$$

is given by

$$
\begin{aligned}
(f * g)(x) & =\delta_{G} f\left(x y^{-1}\right) g(y) d_{G}(y) \\
& =\delta_{G} f(y) g\left(y^{-1} x\right) d_{G}(y)
\end{aligned}
$$

4: DEFINITION A unitary representation of G on a Hilbert space H is a homomorphism $\pi: G \rightarrow U N(H)$ from G to the unitary group $U N(H)$ of H such that \forall a $\in H$, the map

$$
x \rightarrow \pi(x) a
$$

of G into H is continuous.

5: DEFINITION

- The left translation representation of G on $L^{2}(G)$ is the prescription

$$
L(x) f(y)=f\left(x^{-1} y\right)
$$

- The right translation representation of G on $L^{2}(G)$ is the prescription

$$
R(x) f(y)=f(y x) .
$$

[Note: Both L and R are unitary.]

6: N.B. There is also a unitary representation $\pi_{L, R}$ of $G \times G$ on $L^{2}(G)$, namely

$$
\left(\pi_{L, R}\left(x_{1}, x_{2}\right) f\right)(x)=f\left(x_{1}^{-1} x x_{2}\right)
$$

7: DEFINITION A unitary representation π of G on a Hilbert space $H \neq\{0\}$ is irreducible if the only closed subspaces of H which are invariant under π are $\{0\}$ and H.

8: THEOREM Let π be a unitary representation of G - then π is the Hilbert space direct sum of finite dimensional irreducible unitary representations.

9: APPLICATION Every irreducible unitary representation of G is finite dimensional.

10: NOTATION \hat{G} is the set of unitary equivalence classes of irreducible unitary representations of G.
[Note: Generically, $\Pi \in \hat{G}$ with representation space $V(I I)$ and $d_{I I}=\operatorname{dim} V(I)$ is its dimension.]

11: N.B. Let π be a unitary representation of G-- then there exist cardinal numbers $n_{H}(\Pi \in \hat{G})$ such that

$$
\pi=\hat{\oplus}_{\Pi \in \hat{G}} n_{\Pi} \Pi
$$

12: EXAMPLE Take $\pi=\mathrm{L}-$ - then

$$
\mathrm{L}=\hat{\oplus}_{\Pi \in \hat{G}} \mathrm{~d}_{\Pi} \Pi .
$$

[Note: There is also an analog of A, III, §2, \#16.]

13: THEOREM $\forall x \in G(x \neq e), \exists$ an irreducible unitary representation Π I such that $\Pi(x) \neq$ id (Gelfand-Raikov).

14: APPLICATION

$$
\cap_{\Pi \in \hat{G}}^{n_{\hat{G}}} \operatorname{Ker} \Pi=\{\mathrm{e}\}
$$

15: LEMMA Given $\Pi \in \hat{G}$, suppose that $A \in \operatorname{Hom}(\mathrm{~V}(\Pi), \mathrm{V}(\Pi))$ has the property that $\forall \mathrm{x} \in \mathrm{G}$,

$$
\mathrm{A} \Pi(\mathrm{x})=\Pi(\mathrm{x}) \mathrm{A}
$$

Then A is a scalar multiple of the identity (Schur), call it λ_{A}.
§2. EXPANSION THEORY

Let G be a compact group.

1: DEFINITION Let π be a finite dimensional unitary representation of G-_ then its character is the function

$$
X_{\pi}: G \rightarrow C
$$

given by the prescription

$$
x_{\pi}(\mathrm{x})=\operatorname{tr}(\pi(\mathrm{x})) \quad(\mathrm{x} \in \mathrm{G})
$$

2: DEFINITION The character of an irreducible unitary representation is called an irreducible character.

3: LEMMA Let $\Pi_{1}, \Pi_{2} \in \hat{G}$ and suppose that $\Pi_{1} \neq \Pi_{2}-$ then

$$
\left\langle x_{I_{1}}, x_{\Pi_{2}}\right\rangle=0
$$

4: LEMMA Let Π I $\in \hat{G}$-- then

$$
\left\langle x_{\Pi}, x_{\Pi}\right\rangle=1
$$

5: DEFINITION A continuous complex valued function φ on G is of positive type if for all $x_{1}, \ldots, x_{n} \in G$ and $\lambda_{1}, \ldots, \lambda_{n} \in C$,

$$
\sum_{i, j=1}^{n} \lambda_{i} \overline{\lambda_{j}} \varphi\left(x_{i}^{-1} x_{j}\right) \geq 0 .
$$

6: N.B. The sum of two functions of positive type is of positive type and a positive scalar multiple of a function of positive type is of positive type.

7: LEMMA If $\pi: G \rightarrow U N(H)$ is a unitary representation and if a $\in H$, then

$$
\varphi(x)=\langle\pi(x) a, a\rangle \quad(x \in G)
$$

is of positive type.
[Note:

$$
\left.\|\varphi\|_{\infty}=\langle a, a\rangle .\right]
$$

8: EXAMPIE $\forall \Pi \in \hat{G}, X_{\Pi}$ is of positive type.
[Fix an orthonormal basis $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ in $\mathrm{V}(\mathrm{II})$-- then

$$
x_{\Pi}(x)=\left\langle\Pi(x) v_{1}, v_{1}\right\rangle+\cdots+\left\langle\Pi(x) v_{n}, v_{n}\right\rangle
$$

from which the assertion.]

9: NOTATION Given $\Pi \in \hat{G}$ and $f \in L^{2}(G)$, put

$$
\Pi(f)=\int_{G} f(x) \Pi(x) d_{G}(x) .
$$

10: LEMMA $\forall \mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~L}^{2}(\mathrm{G})$,

$$
\Pi\left(f_{1} * f_{2}\right)=\Pi\left(f_{1}\right) \circ \Pi\left(f_{2}\right) .
$$

11: NOTATION Given $f \in L^{2}(G)$, define $f^{*} \in L^{2}$ (G) by

$$
f *(x)=\overline{f\left(x^{-1}\right)} \quad(=\overline{\mathrm{V}}(\mathrm{x})) .
$$

12: LEMMA $\forall \mathrm{f} \in \mathrm{L}^{2}(\mathrm{G}), \forall \mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}(\mathrm{I})$,

$$
\left\langle\Pi(f) v_{1}, v_{2}\right\rangle=\left\langle v_{1}, \Pi(f *) v_{2}\right\rangle,
$$

i.e.,

$$
\Pi(f) *=\Pi\left(f^{*}\right) .
$$

PROOF

$$
\begin{aligned}
<\Pi(f) v_{1}, v_{2}> & =\int_{G} f(x)<\Pi(x) v_{1}, v_{2}>d_{G}(x) \\
& =\int_{G}<v_{1}, \overline{f(x)} \Pi\left(x^{-1}\right) v_{2}>d_{G}(x) \\
& =\int_{G}<v_{1}, \overline{f\left(x^{-1}\right)} \Pi(x) v_{2}>d_{G}(x) \\
& =\delta_{G}<v_{1}, f *(x) \Pi(x) v_{2}>d_{G}(x) \\
& =<v_{1}, \delta_{G} f *(x) \Pi(x) v_{2} d_{G}(x)> \\
& =<v_{1}, \Pi(f *) v_{2}>.
\end{aligned}
$$

13: THEOREM Let $f \in L^{2}$ (G) -- then

$$
\delta_{G}|f(x)|^{2} \mathrm{a}_{\mathrm{G}}(\mathrm{x})=\sum_{\Pi \in \hat{G}} \mathrm{~d}_{\Pi} \operatorname{tr}(\Pi(\mathrm{f}) \Pi(\mathrm{f}) *) .
$$

14: THEOREM Let $f \in L^{2}(G)$ - then

$$
\mathrm{f}=\sum_{\Pi \in \hat{G}} \mathrm{~d}_{\Pi}\left(\mathrm{f} * \mathrm{X}_{\Pi}\right),
$$

the series converging in $\mathrm{L}^{2}(\mathrm{G})$.

15: THEOREM Let

$$
f \in \operatorname{span}_{C}\left(L^{2}(G) * L^{2}(G)\right) \subset C(G)
$$

Then

$$
\mathrm{f}(\mathrm{e})=\sum_{\Pi \in \hat{G}} \mathrm{~d}_{\Pi} \operatorname{tr}(\Pi(\mathrm{f})) .
$$

PROOF Put $f=f_{1} * f_{2}:$

$$
\begin{aligned}
& f(e)=\int_{G} f_{1}\left(x^{-l}\right) f_{2}(x) d_{G}(x) \\
& =\int_{G} \overline{\overline{f_{1}\left(x^{-1}\right)}} f_{2}(x) d_{G}(x) \\
& =\delta_{G} f_{2}(x) \overline{\overline{f_{1}\left(x^{-1}\right)}} d_{G}(x) \\
& =\int_{G} f_{2}(x) \overline{f_{1}^{*}(x)} d_{G}(x) \\
& =\left\langle\mathrm{f}_{2}, \mathrm{f}_{\mathrm{I}}^{*}\right\rangle \\
& =\sum_{\Pi \in G} d_{\Pi} \operatorname{tr}\left(\Pi\left(f_{1} * f_{2}\right)\right) \\
& =\sum_{\Pi \in G} d_{\Pi} \operatorname{tr}(\Pi(f)) .
\end{aligned}
$$

[Note: This is the so-called "Plancherel theorem" for G (cf. A, III, §3, \#13).

16: N.B. The foregoing may fail if f is only assumed to be continuous (e.g., take G = $S^{l} . .$.).

17: DEFINITION A function $\mathrm{f} \in \mathrm{L}^{2}(\mathrm{G})$ is said to be an \underline{L}^{2} class function if

$$
f(x)=f\left(y x y^{-1}\right)
$$

for almost all x and all y .

18: \forall II $\in \hat{G}, X_{\text {II }}$ is an L^{2} class function.

19: THEOREM Suppose that $f \in L^{2}(G)$ is an L^{2} class function -- then

$$
\mathrm{f}=\sum_{\Pi \in G}<\mathrm{f}, X_{\Pi i}>X_{\Pi},
$$

the series converging in $\mathrm{L}^{2}(\mathrm{G})$, and

$$
\|f\|^{2}=\left.\sum_{\Pi \in G}\left|<f, x_{\Pi}\right\rangle\right|^{2} .
$$

20: SCHOLIUM The $\left\{\chi_{I I}: \Pi \in \hat{G}\right\}$ constitute an orthonormal basis for the set of L^{2} class functions.

21: NOTATION Write $C(G)_{f i n}(\mathrm{~L})$ for the set of G-finite functions in $C(G)$ per L:

$$
f \in C(G)_{f i n}(L) \Leftrightarrow \operatorname{dim}\{L(x) f: x \in G\}_{\text {in }^{<\infty}} .
$$

22: NOTATION Write $C(G)_{f \text { in }}(R)$ for the set of G-finite functions in $C(G)$ per R:

$$
f \in C(G)_{\operatorname{fin}}(R) \Leftrightarrow \operatorname{dim}\{R(x) f: x \in G\} \text { in }^{<\infty}
$$

23: LEMMA

$$
C(G)_{f \text { in }}(\mathrm{L})=C(G)_{f \text { in }}(\mathrm{R})
$$

24: NOTATION Write $C(G)_{f i n}$ unambiguously for the G-finite functions per either action.

Recalling §l, \#6, $\pi_{L, R}$ operates on $C(G)_{f i n}$ and it turns out that

$$
\mathrm{C}(\mathrm{G})_{\mathrm{fin}} \approx \underset{\Pi \in G}{\oplus} \mathrm{~V}\left(\Pi^{*}\right) \otimes \mathrm{V}(\Pi)
$$

Here the identification sends an element

$$
V^{*} \otimes V \in V\left(\Pi^{*}\right) \otimes V(\Pi)
$$

to

$$
\mathrm{f}_{\mathrm{v}^{*} \otimes \mathrm{v}} \in \mathrm{C}(\mathrm{G})_{\mathrm{fin}}{ }^{\prime}
$$

where

$$
f_{v^{*} \otimes v}(x)=v^{*}\left(\Pi\left(x^{-1}\right) v\right) .
$$

[Note:

$$
\left.\mathrm{L}^{2}(\mathrm{G}) \approx \underset{\Pi \in \hat{\mathrm{G}}}{\hat{\oplus}} \mathrm{~V}\left(\Pi^{*}\right) \otimes \mathrm{V}(\Pi) .\right]
$$

25: THEOREM $C(G)_{f i n}$ is dense in $C(G)$.

26: THEOREM $C(G)_{\text {fin }}$ is dense in $\mathrm{L}^{2}(\mathrm{G})$.

27: DEFINITION A function $f \in C(G)$ is said to be a continuous class function if $f(x)=f\left(y x y^{-1}\right)$ for all $x, y \in G$ (written $\left.f \in C L(G)\right)$.

28: EXAMPLE $\forall \Pi \in \hat{G}, X_{\Pi}$ is a continuous class function: $X_{\Pi} \in C L(G)$.
29: THEOREM The span of the $X_{\Pi}(\Pi \in \hat{G})$ equals the set of continuous class functions in $C(G)_{f i n}$.

30: THEOREM The span of the $X_{\Pi}(\Pi \in \hat{G})$ is dense in the set of continuous class functions.

§3. STRUCTURE THEORY

Let G be a compact group.

1: NOTATION $G^{0} \subset G$ is the connected component of the identity of G.

2: LEMMA G^{0} is a closed normal subgroup of G.

3: LEMMA The quotient G / G^{0} is compact and totally disconnected.

4: DEFINITION A topological group possessing a neighborhood of the identity which does not contain a nontrivial subgroup is said to be a group with no small subgroups.

5: RAPPEL A Lie group has mo small subgroups.

6: THEOREM The following conditions on a compact group G are equivalent.

- G is a Lie group.
- G has no small subgroups.
- G has a faithful finite dimensional representation.

7: REMARK Every compact group is the projective limit of compact Lie groups.

Let G be a compact Lie group.

8: N.B. Every finite group (discrete topology) is a compact Lie group.
9: EXAMPLE The product $\prod_{n=1}^{\infty} S U(n)$ is a compact group but it is not a Lie group.

10: EXAMPLE The p-adic integers

$$
Z_{p}=\lim _{\substack{\leftarrow \\ n \geq 1}}\left(z / p^{n} Z\right)
$$

are a compact group but they are not a Lie group.

11: DEFINITION A torus is a compact Lie group which is isomorphic to $R^{n} / Z^{n} \approx(R / Z)^{n}$ for some $n \geq 0$.
[Note: The nonnegative integer n is called the rank of the torus.]

12: THEOREM Every compact abelian Lie group is isomorphic to the product of a torus and a finite abelian group.

13: DEFTNITION A compact Lie group is topologically cyclic if it contains an element whose powers are dense.

14: iEMMA Every torus T is topologically cyclic.
[Note: There are infinitely many topologically cyclic elements in T and their totality has full measure in any Haar measure on T.]

15: THEOREM A compact Lie group is topologically cyclic iff it is isomorphic to the product of a torus and a finite cyclic group.

Let G be a compact Lie group, \mathfrak{g} its Lie algebra.

16: LEMMA G^{0} is an open normal subgroup of G.
Therefore the compact quotient G / G^{0} is discrete, hence is a finite group, the group of components of G.

17: NOTATION $Z(G)$ is the center of $G, Z(G){ }^{0} \subset Z(G)$ is the connected component of the identity element of $Z(G)$.

18: N.B. In general, $Z(G)$ is not connected (consider SU(3)).

19: THEOREM Assume that G is connected -- then $Z(G){ }^{0}$ is a compact abel ian Lie subgroup of G and its Lie algebra is the center of \mathfrak{g}, i.e., the ideal

$$
\{\mathrm{X} \in \mathfrak{g}:[\mathrm{X}, \mathrm{Y}]=0 \forall \mathrm{Y} \in \mathfrak{g}\}
$$

20: DEFTNITION

- A Lie algebra is simple if it is nonoormutative and has no proper nontrivial ideals.
- A Lie algebra is semisimple if it is noncommutative and has no proper nontrivial conmutative ideals.
- A Lie algebra is reductive if it is the direct sum of an abelian Lie algebra and a semisimple Lie algebra.

21: N.B. A Lie group is simple, semisimple, or reductive if this is the case of its Lie algebra.

22: LEMMA A semisimple Lie algebra has a trivial center (it being a commutative ideal).

23: LEMMA A semisimple Lie algebra can be decomposed as a finite direct sum of simple ideals.

24: DEFINITION If G and H are Lie groups and if H is a subgroup of G, then H is a Lie subgroup of G if the arrow $H \rightarrow G$ of inclusion is continuous.
[Note: If G is a Lie group and if H is a closed subgroup of G, then H is a Lie group.]

25: N.B. A Lie subgroup of a compact Lie group needn't be compact nor carry the relative topology.

26: THEOREM Let G be a compact Lie group and let H be a semisimple connected Lie subgroup of G-- then as a subset of G, H is closed, and as a Lie subgroup of G, H carries the relative topology.

27: NOTATION

- $z(\mathfrak{g})$ is the center of \mathfrak{g}.
- $\mathfrak{g}_{\mathrm{SS}}$ is the ideal in \mathfrak{g} spanned by $[\mathfrak{g}, \mathfrak{g}]$.

28: LEMMA $\mathfrak{g}_{\text {SS }}$ is a semisimple Lie algebra.

29: THEOREM Let G be a compact Lie group -- then

$$
\mathfrak{y}=\mathfrak{z}(\mathfrak{y}) \oplus \mathfrak{g}_{\mathrm{SS}^{\prime}}
$$

thus \mathfrak{g} is reductive or still, G is reductive.

30: NOTATION $G_{S S}$ is the analytic subgroup of G corresponding to $\mathfrak{g}_{\mathrm{SS}}$.

31: NOTATION G^{*} is the commutator subgroup of G , i.e., the subgroup of G generated by the

$$
x y x^{-1} y^{-1}(x, y \in G)
$$

[Note: G* is necessarily normal.]

32: THEOREM Assume that G is connected -- then G^{*} is a compact connected Lie subgroup of G with Lie algebra $\mathfrak{g}_{\mathrm{SS}^{\prime}}$, so $\mathrm{G}^{*}=\mathrm{G}_{\mathrm{SS}}$, hence is semisimple.

33: THEOREM Assume that G is connected -- then G is the conmuting product $\mathrm{Z}(\mathrm{G}){ }^{0} \mathrm{G}_{\mathrm{SS}}$.

34: THEOREM Assume that G is connected -- then

$$
\mathrm{G} \approx\left(\mathrm{Z}(\mathrm{G})^{0} \times \mathrm{G}_{\mathrm{SS}}\right) / \Delta,
$$

where

$$
\Delta \approx Z(G)^{0} \cap \mathrm{G}_{\mathrm{SS}}
$$

is embedded in $\mathrm{Z}(\mathrm{G})^{0} \times \mathrm{G}_{\mathrm{SS}}$ via the arrow $\mathrm{z} \rightarrow\left(\mathrm{z}^{-1}, \mathrm{z}\right)$.
[Note: Spelled out, there is an exact sequence

$$
\{1\} \rightarrow Z(G)^{0} \cap \mathrm{G}_{\mathrm{SS}} \xrightarrow{\mathrm{l}} \mathrm{Z}(\mathrm{G})^{0} \times \mathrm{G}_{\mathrm{SS}} \xrightarrow{\mu} \mathrm{G} \rightarrow\{I\},
$$

where

$$
\left.\mathrm{I}(\mathrm{z})=\left(\mathrm{z}^{-1}, \mathrm{z}\right), \mu(\mathrm{z}, \mathrm{x})=\mathrm{zx} .\right]
$$

35: N.B. Structurally, $Z(G){ }^{0}$ is a torus and

$$
\mathrm{Z}\left(\mathrm{G}_{\mathrm{SS}}\right)=\mathrm{Z}(\mathrm{G}) \cap \mathrm{G}_{\mathrm{ss}}
$$

is a finite abelian group.

36: SCHOLTUM Assume that G is connected -- then G is semisimple iff $Z(G)$ is finite.
[Note: Here is another way to put it: G is semisimple iff $G=G_{S S}$ or still,
iff $G=G *$. To see that connectedness is essential, consider the 8 element quaternion group $\{ \pm 1, \pm i, \pm j, \pm k\}-$ then its commutator group is $\{ \pm 1\}$.

37: EXAMPLE The center of $\mathrm{G} / \mathrm{Z}(\mathrm{G})$ is trivial, $s o \mathrm{G} / \mathrm{Z}(\mathrm{G})$ (which is connected) is semisimple.

There are simple ideals $\mathfrak{h}_{\boldsymbol{i}} \subset \mathfrak{g}_{\mathrm{SS}}$ such that

$$
\mathfrak{g}_{\mathrm{SS}}=\stackrel{r}{\oplus} \underset{i=1}{\stackrel{r}{i}} \mathrm{r}_{\mathrm{i}}
$$

with $\left[h_{i}, h_{j}\right]=0$ for $i \neq j$ and such that the span of $\left[h_{i}, h_{i}\right]=h_{i}$.
Put $H_{i}=\exp h_{i}$.

38: LEMMA H_{i} is a compact connected normal Lie subgroup of $G_{S S}$ and its Lie algebra is h_{i} (hence H_{i} is simple).

39: LEMMA A proper compact normal Lie subgroup of H_{i} is necessarily discrete, finite, and central.

40: LEMMA There is a decomposition

$$
\mathrm{G}_{\mathrm{SS}}=\mathrm{H}_{1} \ldots \mathrm{H}_{\mathrm{r}}{ }^{\prime}
$$

where H_{i} and H_{j} commute ($i \neq j$).

41: N.B. The differential of the arrow

$$
\mathrm{H}_{1} \times \cdots \times \mathrm{H}_{r} \rightarrow \mathrm{G}_{\mathrm{SS}}
$$

defined by the rule

$$
\left(x_{1}, \ldots, x_{r}\right) \rightarrow x_{1} \ldots x_{r}
$$

is the identity map, thus its kernel Δ is discrete and normal, thus finite and central as well, so

$$
\mathrm{G}_{\mathrm{sS}} \approx\left(\mathrm{H}_{1} \times \cdots \times \mathrm{H}_{r}\right) / \Delta .
$$

APPENDIX

Let G be a compact connected Lie group.

DEFINITION G is tall if for each positive integer n, there are but finitely many elements of \hat{G} of degree n.

THEOREM G is semisimple iff G is tall.

REMARK If G is not semisimple, then G possesses infinitely many nonisomorphic irreducible representations of degree 1.

Let G be a compact Lie group, \mathfrak{g} its Lie algebra.

1: LEMMA Every connected abel ian subgroup $A \subset G$ is contained in a maximal connected abelian subgroup $T \subset G$.

2: N.B. T is compact.
[In fact, $\overline{\mathrm{T}}$ is connected and abelian.]

3: DEFINITION A maximal torus $T \subset G$ is a maximal connected abelian subgroup of G.
[Note: T is a torus... .]

4: THEOREM Assume that G is connected and let $T_{1} \subset G, T_{2} \subset G$ be maximal tori -- then $\exists x \in G$ such that $\mathrm{XT}_{1} \mathrm{x}^{-1}=\mathrm{T}_{2}$.

5: THEOREM Assume that G is connected and let $T \subset G$ be a maximal torus -then

$$
G=\underset{x \in G}{U} x T x^{-1}
$$

6: APPLICATION The exponential map exp: $\mathfrak{g} \rightarrow \mathrm{G}$ is surjective.
[Every element of G belongs to a maximal torus and the exponential map of a torus is surjective.]

7: LEMMA Assume that G is connected and let $T \subset G$ be a maximal torus -then the centralizer of T in G is T itself.

8: APPLICATION The center of G is contained in T, i.e., $Z(G) \subset T$. [Note: More is true, viz.

$$
\mathrm{Z}(\mathrm{G})=\begin{gathered}
\mathrm{n}, \\
\mathrm{~T}
\end{gathered}
$$

the intersection being taken over all maximal tori in G.]

9: LEMMA Assume that G is connected and let $T \subset G$ be a maximal torus -then T is a maximal abelian subgroup.

10: REMARK A maximal abelian subgroup need not be a maximal torus.
[In $S 0$ (3), there is a maximal abelian subgroup which is isomorphic to $(Z / 2 Z)^{2}$, hence is not a maximal torus.]

11: NOTATION Given a torus $T \subset G$, let $N(T)$ be its normalizer in G.

12: LEMMA The quotient $N(T) / T$ is finite iff T is a maximal torus.

Let G be a compact connected Lie group, $T \subset G$ a maximal torus.

13: DEFINITION The Weyl group of T in G is the quotient

$$
W=N(T) / T
$$

14: N.B. Different choices of T give rise to isomorphic Weyl groups.

Fix a maximal torus $T \subset G--$ then $N(T)$ operates on T by conjugation:

$$
\left.\right|_{-\quad N(T) \times T} \rightarrow T, \begin{aligned}
(n, t) & \rightarrow n n^{-1} .
\end{aligned}
$$

Since T operates trivially on itself, there is an induced operation of the Weyl group:

$$
\mathrm{W} \times \mathrm{T} \rightarrow \mathrm{~T} .
$$

[Note: The action of W is on the left, thus the orbit space is denoted by WT.]

15: LEMMA The canonical homomorphism $\mathrm{W} \rightarrow$ Aut T is injective.

16: LEMMA Two elements of T are conjugate in G iff they lie on the same orbit under the action of W .

17: RAPPEL Let G be a compact group and let X be a Hausdorff topological space on which G operates to the left -- then the action arrow

$$
\mathrm{G} \times \mathrm{X} \rightarrow \mathrm{X}
$$

is a closed map. Equip the orbit space $G \backslash X$ with the quotient topology and let $\pi: \mathrm{X} \rightarrow \mathrm{G} \backslash \mathrm{X}$ be the projection. Then:

- $G \backslash X$ is a Hausdorff space.
- X is compact iff $G \backslash X$ is compact.
- $\pi: X \rightarrow G \backslash X$ is open, closed, and proper.

18: EXAMPLE $W \backslash T$ is a compact Hausdorff space.

19: NOTATION CON(G) is the set of conjugacy classes of G.

Geometrically, CON(G) is the orbit space under the action of G on itself via inner automorphisms:

$$
\left[\begin{array}{l}
G \times G \rightarrow G \\
(x, y) \rightarrow x y x^{-1}
\end{array}\right.
$$

It carries the quotient topology per the projection $G \rightarrow \operatorname{CON}(G)$ under which it is a compact Hausdorff space.

20: RAPPEL A one-to-one continuous map from a compact Hausdorff space X onto a Hausdorff space Y is a homeomorphism.

21: THEOREM The arrow

$$
\mathrm{W} \backslash \mathrm{~T} \rightarrow \mathrm{CON}(\mathrm{G})
$$

which sends the W-orbit wt of $t \in T$ to the conjugacy class of $t \in T$ in G is a (well defined) homeomorphism.
[The map is injective (cf. \#16), continuous (see below), and surjective (cf. \#5), so \#20 is applicable.]
[Note: To check the continuity of the arrow

$$
W \backslash T \rightarrow \operatorname{CON}(G)
$$

bear in mind that $W \backslash T$ has the quotient topology, thus it suffices to check the continuity of the composition

$$
\mathrm{T} \rightarrow \mathrm{~W} \backslash \mathrm{~T} \rightarrow \mathrm{CON}(\mathrm{G}) .
$$

But this map is just the restriction to T of the arrow

$$
\mathrm{G} \rightarrow \operatorname{CON}(\mathrm{G}) .]
$$

22: NOTATION

- Given $f \in C(T)$ and $w \in W$, w f is the function in $C(T)$ defined by the rule

$$
(w \cdot f)(t)=f\left(n^{-1} t n\right) \quad(w=n T)
$$

- Given $f \in C(G)$ and $x \in G, x \cdot f$ is the function in $C(G)$ defined by the rule

$$
(x \cdot f)(y)=f\left(x^{-1} y x\right)
$$

23: N.B. These rules define operations

$$
\left[\begin{array}{l}
\mathrm{W} \times \mathrm{C}(\mathrm{~T}) \rightarrow \mathrm{C}(\mathrm{~T}) \\
\mathrm{G} \times \mathrm{C}(\mathrm{G}) \rightarrow \mathrm{C}(\mathrm{G})
\end{array}\right.
$$

with associated invariants

$$
\left[\begin{array}{l}
C(W \backslash T)=C(T)^{W} \\
C L(G)=C(G)^{G} .
\end{array}\right.
$$

[Note: CL (G) is the subspace of C(G) comprised of the continuous class functions (cf. §2, \#27) or still, the space C(CON (G)).]

24: LETMA The arrow

$$
f \rightarrow f \mid T
$$

of restriction defines an isomorphism

$$
\mathrm{CL}(\mathrm{G}) \rightarrow \mathrm{C}(\mathrm{~T})^{\mathrm{W}} .
$$

Let G be a connected Lie group with Lie algebra \mathfrak{g}. Consider the polynomial

$$
\operatorname{det}((t+1)-A d(x))=\sum_{i=0}^{n} D_{i}(x) t^{i}(x \in G)
$$

where t is an indeterminate and $n=d i m G$. The D_{i} are real analytic functions on G and $D_{n}=1$. Let l be the smallest positive integer such that $D_{l} \neq 0$ - then ℓ is called the rank of G and an element $x \in G$ is said to be singular or regular according to whether $D_{\ell}(x)=0$ or not.

1: NOTATION $G^{\text {reg }}$ is the set of regular elements in G.

2: LEMMA $G^{r e g}$ is an open, dense subset of G while its complement, the set of singular elements, is a set of Haar measure zero (right or left).

3: N.B. $G^{r e g}$ is inner automorphism invariant and stable under multiplication by elements from the center of G.

From this point forward, assume that G is a compact connected Lie group.

4: LEMMA The set of singular elements in G is a finite union of submanifolds of G, each of dimension $\leq \operatorname{dim} G-3$.
[Note: Therefore $G^{\text {reg }}$ is path connected.]

5: RAPPEL The fundamental group of a connected Lie group is abelian.

Fix a maximal torus T.

6: LEMMA The quotient G / T is simply connected.

7: LEMMA The induced map $\pi_{1}(T) \rightarrow \pi_{1}(G)$ is surjective.
PROOF Consider the exact sequence

$$
\pi_{1}(T) \rightarrow \pi_{1}(G) \rightarrow \pi_{1}(G / T)
$$

arising from the fibration $T \rightarrow G \rightarrow G / T$.

8: THEOREM $\pi_{1}(G)$ is a finitely generated abelian group.
[Note: If G is semisimple, then $\pi_{1}(G)$ is finite, thus its universal covering group \tilde{G} is compact.]

9: LEMMA An element $x \in G$ is regular iff x lies in a unique maximal torus.

Put

$$
\mathrm{T}^{\mathrm{reg}}=\mathrm{T} \cap \mathrm{G}^{\mathrm{reg}} .
$$

10: THEOREM

$$
G^{r e g}=\underset{x \in G}{U} x^{r e g}{ }_{x}^{-1}
$$

11: THEOREM The map

$$
\mu: G / T \times T^{r e g} \rightarrow G^{\text {reg }}
$$

that sends

$$
(x T, t) \text { to } x t x^{-1}
$$

is a surjective, $|W|$-to-one local diffeomorphism.
[To verify the "|W|-tome" claim, observe first that $\forall \mathrm{w} \in \mathrm{W}(\mathrm{w}=\mathrm{nT})$,

$$
\begin{aligned}
\kappa\left(\mathrm{xn}^{-1} \mathrm{~T}, \mathrm{ntn}^{-1}\right) & =x n^{-1} \cdot n t n^{-1} \cdot n x^{-1} \\
& =x t x^{-1}=\kappa(x T, t),
\end{aligned}
$$

hence

$$
\left|K^{-1}\left(x t x^{-1}\right)\right| \geq|W| .
$$

In the opposite direction, suppose that

$$
x t x^{-1}=y s y^{-1}\left(t, s \in T^{r e g}\right)
$$

Then there is a $w \in W$ such that

$$
\mathrm{s}=\mathrm{ntn}{ }^{-1}(\mathrm{w}=\mathrm{nT}) \quad(\mathrm{cf} . \S 4, \# 16)
$$

from which

$$
x t x^{-1}=y n t n^{-1} y^{-1}
$$

so $x^{-1} y n \in G_{t}$, the centralizer of t in G. But

$$
t \in T^{r e g} \Rightarrow G_{t}^{0}=T
$$

which implies that conjugation by $x^{-1} y n$ preserves T (G_{t}^{0} being the identity component of G_{t}), i.e.,

$$
\begin{aligned}
n^{\prime} & \equiv x^{-1} y n \in N \\
\Rightarrow \quad(y T, s) & =\left(x\left(x^{-1} y n\right) n^{-1} T, n t n^{-1}\right) \\
& =\left(x n^{\prime} n^{-1} T, n t n^{-1}\right) \\
& =\left(x n^{\prime} n^{-1} T, n\left(n^{-1} y^{-1} x\right) t\left(x^{-1} y n\right) n^{-1}\right) \\
& =\left(x\left(n^{\prime} n^{-1}\right) T,\left(n^{\prime} n^{-1}\right)^{-1} t\left(n^{\prime} n^{-1}\right)\right) \\
& \left.\in \kappa^{-1}\left(x t x^{-1}\right) .\right]
\end{aligned}
$$

[Note: G_{t}^{0} is a compact connected Lie group and $T \subset G_{t}^{0}$ is a maximal torus. If $T \neq G_{t}^{0}, \exists z \in G_{t}^{0}: \quad z T z^{-1} \neq T\left(\right.$ cf. $\S 4, \# 5\left(\right.$ applied to $\left.G_{t}^{0}\right)$). But then

$$
t=\mathrm{ztz}^{-1} \in \mathrm{zTz}^{-1}
$$

contradicting the regularity of t (cf. \#9).]

Let \mathfrak{g} be the Lie algebra of G, t the Lie algebra of T. Since G is compact, there is a positive definite symmetric bilinear form on \mathfrak{g} which is invariant under the adjoint representation:

$$
\text { Ad: } G \rightarrow \text { Aut } \mathfrak{g} .
$$

Denote by $\mathfrak{g} / \mathfrak{t}$ the orthogonal complement of \mathfrak{t} in $\mathfrak{g}-$ then $\mathfrak{g} / \mathfrak{t}$ is stable under Ad T, which gives rise to an induced action

$$
\mathrm{Ad}_{\mathrm{G} / \mathrm{T}}: \mathrm{T} \rightarrow \text { Aut } \mathfrak{g} / \mathrm{t}
$$

Denoting by $I_{G / T}$ the identity map $\mathfrak{y} / t \rightarrow \mathfrak{y} / \mathfrak{t}$, one may then attach to each $t \in T$ the endomorphism

$$
A_{G / T}\left(t^{-1}\right)-I_{G / T}
$$

of $\mathfrak{g} / \mathfrak{t}$.

12: LEMMA The determinant of

$$
\mathrm{Ad}_{G / T}\left(t^{-1}\right)-I_{G / T}
$$

is positive on the subset of T comprised of the topologically cyclic elements.

13: INIEGRATION FORMULA For any continuous function $f \in C(G)$,

$$
\int_{G} f(x) d_{G}(x)
$$

$$
\left.=\frac{I}{|W|} \delta_{T}\left[\operatorname{det}\left(A d_{G / T}\left(t^{-1}\right)-I_{G / T}\right) \delta_{G} f\left(x t x^{-1}\right) d_{G}(x)\right] \right\rvert\, d_{T}(t)
$$

[Note: $d_{G}(x)$ is normalized Haar measure on G and $d_{T}(t)$ is normalized Haar measure on T.]

14: SCHOLIUM For any continuous class function $f \in C L$ (G),

$$
\begin{gathered}
\delta_{G} f(x) d_{G}(x) \\
=\frac{1}{|W|} \delta_{T} \operatorname{det}\left(A d_{G / T}\left(t^{-1}\right)-I_{G / T}\right) f(t) d_{T}(t) .
\end{gathered}
$$

APPENDIX

Consider the polynomial

$$
\operatorname{det}(t-\operatorname{ad}(X))=\sum_{i=0}^{n} d_{i}(X) t^{i} \quad(X \in \mathfrak{g})
$$

where t is an indeterminate and $n=\operatorname{dim} \mathfrak{g}$. The d_{i} are polynomial functions on \mathfrak{g} and $d_{n}=1$. Let ℓ be the smallest positive integer such that $d_{\ell} \neq 0--$ then l is called the rank of \mathfrak{g} and an element $\mathrm{X} \in \mathfrak{g}$ is said to be singular or regular according to whether $d_{\ell}(X)=0$ or not.
N.B. The rank of \mathfrak{g} equals the rank of G, both being equal to the dimension of t.

NOTATION $\mathfrak{g}^{\text {reg }}$ is the set of regular elements in \mathfrak{g}.

LEMMA $\mathfrak{g}^{\text {reg }}$ is an open, dense subset of \mathfrak{g}.

NOTATION $\mathfrak{G} \equiv$ Int \mathfrak{g} is the adjoint group of \mathfrak{g}.
[Note: Recall that the arrow

$$
\mathrm{Ad}: G \rightarrow G
$$

is surjective with kernel Z(G), so

$$
G / Z(G) \approx \mathbb{G} .]
$$

Put

$$
\mathfrak{t}^{\text {reg }}=\mathfrak{t} \cap \mathfrak{g}^{\text {reg }} .
$$

THEOREM

$$
\mathfrak{g}^{\mathrm{reg}}=\underset{x \in \mathfrak{G}}{u^{(} x\left(\mathfrak{t}^{r e g}\right)} .
$$

§6. WEIGHTS AND ROOTS

Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus. Denote their respective Lie algebras by \mathfrak{g}, t and let $\mathfrak{g}_{C}, \mathfrak{k}_{\mathrm{C}}$ stand for their complexif ications.

Suppose that (π, V) is a representation of G - then V can be equipped with a G-invariant inner product, thus rendering matters unitary.

1: LEMMA $d \pi$ is skew-adjoint on \mathfrak{g} (hence self-adjoint on $\sqrt{-1} \mathfrak{g}$).
[Given $x \in \mathfrak{g}$, apply $\left.\frac{d}{d t}\right|_{t=0}$ to

$$
\left\langle\pi(\exp t) v_{1}, \pi(\exp t X) v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle
$$

to get

$$
\left\langle d \pi(X) v_{1}, v_{2}\right\rangle+\left\langle v_{1}, d \pi(X) v_{2}\right\rangle=0.1
$$

2: N.B. $\forall x \in \mathfrak{y}$,

$$
\pi(\exp X)=e^{d \pi(X)}
$$

3: LEMMA V is simultaneously diagonalizable under the action of \dot{t}_{c}.
[This is because

$$
\left\{d \pi(H): H \in \mathfrak{t}_{C}\right\}
$$

is a commuting family of normal operators.]

Consequently, there is a finite set $\Phi(V) \subset \mathfrak{k}_{c}^{*}-\{0\}$, the elements of which being the weights of v, such that

$$
\mathrm{V}=\mathrm{v}^{0} \underset{\lambda \in \Phi(\mathrm{~V})}{\oplus} \mathrm{v}^{\lambda},
$$

where

$$
\mathrm{v}^{0}=\{\mathrm{v} \in \mathrm{~V}: \mathrm{d} \mathrm{\pi}(\mathrm{H}) \mathrm{v}=0\} \quad\left(\mathrm{H} \in \mathrm{t}_{\mathrm{C}}\right)
$$

and

$$
\mathrm{V}^{\lambda}=\{\mathrm{v} \in \mathrm{~V}: \mathrm{d} \pi(\mathrm{H}) \mathrm{v}=\lambda(\mathrm{H}) \mathrm{v}\} \quad\left(\mathrm{H} \in \mathfrak{t}_{\mathrm{C}}\right)
$$

4: LEMMA Fix a $\lambda \in \Phi(V)$-- then $\lambda \mid t$ is purely imaginary and $\lambda \mid \sqrt{-1} \mathfrak{t}$ is purely real.

5: N.B. Given $t \in T$, choose $H \in \mathfrak{t}$ such that $t=\exp H-$ then $\forall v \in v^{\lambda}$,

$$
\pi(t) v=\pi(\exp H) v=e^{d \pi(H)} v=e^{\lambda(H)} v
$$

6: RAPPEL Denote by I_{x} the inner automorphism $y \rightarrow \mathrm{xyx}^{-1}$ attached to $x \in G-$ then the adjoint representation of G is the homomorphism Ad: $G \rightarrow$ Aut \mathfrak{g} defined by the rule

$$
A d(x)=\left(d I_{x}\right) e
$$

and the adjoint representation of \mathfrak{g} is the homomorphism ad: $\mathfrak{y} \rightarrow$ End \mathfrak{y} defined by the rule

$$
a d(X)=(d A d) e^{(X)}
$$

7: N.B. $\forall X, Y \in \mathfrak{g}$,

$$
\operatorname{ad}(X) Y=[X, Y] .
$$

- For each $x \in G$, extend the doma in of $A d(x)$ from \mathfrak{g} to \mathfrak{g}_{C} by complex linearity.
- For each $X \in \mathfrak{g}$, extend the domain of $a d(X)$ from \mathfrak{g} to \mathfrak{g}_{C} by complex linearity.

8: LEMMA $\left(A d, g_{C}\right)$ is a representation of G with differential ($\mathrm{ad}, \mathfrak{g}_{\mathrm{C}}$).

Take now $V=\mathfrak{g}_{C}$, let $\pi=A d$, and abbreviate $\left(\mathfrak{g}_{C}\right)^{\alpha}$ to $\mathfrak{g}^{\alpha}\left(\alpha \in \Phi\left(\mathfrak{g}_{C}\right)\right)$-- then $\mathfrak{g}^{0}=\mathfrak{t}_{\mathbf{c}}$ and there is a weight space decomposition

$$
\mathfrak{g}_{C}=\mathfrak{g}^{0} \underset{\alpha \in \Phi\left(\mathfrak{g}_{C}\right)^{\oplus}}{\mathfrak{g}^{\alpha}}
$$

9: TERMINOLOGY The elements $\alpha \in \Phi\left(\mathfrak{g}_{C}\right)$ are called the roots of the pair $\left(\mathfrak{g}_{C}, \mathfrak{t}_{C}\right)$.

10: N.B.

$$
\mathfrak{g}^{\alpha}=\left\{\mathrm{X} \in \mathfrak{g}_{\mathrm{C}}:[\mathrm{H}, \mathrm{X}]=\alpha(\mathrm{H}) \mathrm{X}\left(\mathrm{H} \in \mathfrak{t}_{\mathrm{C}}\right)\right\}
$$

11: LEMMA $\forall \alpha \in \Phi\left(\mathfrak{g}_{\mathrm{C}}\right), \forall \lambda \in \Phi(\mathrm{V}) \cup\{0\}$,

$$
\mathrm{d} \pi\left(\mathfrak{g}^{\alpha}\right) \mathrm{v}^{\lambda} \subset \mathrm{v}^{\alpha+\lambda}
$$

PROOF Let $H \in t_{c}, X_{\alpha} \in \mathfrak{g}^{\alpha}, v_{\lambda} \in V^{\lambda}-$ then

$$
\begin{gathered}
d \pi(H) d \pi\left(X_{\alpha}\right) v_{\lambda} \\
=\left(d \pi\left(X_{\alpha}\right) d \pi(H)+\left[d \pi(H), d \pi\left(X_{\alpha}\right)\right]\right) v_{\lambda} \\
=\left(d \pi\left(X_{\alpha}\right) d \pi(H)+d \pi\left(\left[H, X_{\alpha}\right]\right) v_{\lambda}\right. \\
=\left(d \pi\left(X_{\alpha}\right) d \pi(H)+\alpha(H) d \pi\left(X_{\alpha}\right)\right) v_{\lambda} \\
=(\lambda(H)+\alpha(H)) d \pi\left(X_{\alpha}\right) v_{\lambda} \\
\Rightarrow \quad d \pi\left(X_{\alpha}\right) v_{\lambda} \in V^{\alpha+\lambda} .
\end{gathered}
$$

[Note: Take $\lambda=0$ to see that

$$
d \pi\left(\mathfrak{g}^{\alpha}\right) v^{0} \subset v^{\alpha} .
$$

12: APPLICATION $\forall \alpha, \beta \in \Phi\left(\mathfrak{g}_{\mathrm{C}}\right) \cup\{0\}$,

$$
\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}\right] \subset \mathfrak{g}^{\alpha+\beta} .
$$

13: LEMMA Let < , > be an Ad G invariant inner product on \mathfrak{g}_{C}-- then for all $\alpha, \beta \in \Phi\left(\mathfrak{g}_{C}\right) \cup\{0\}$,

$$
\left\langle\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}\right\rangle=0 \text { if } \alpha+\beta \neq 0
$$

14: LEMMA $\forall \alpha \in \Phi\left(\mathfrak{g}_{C}\right)$, $\operatorname{dim} \mathfrak{g}^{\alpha}=1$ and the only multiples of α in $\Phi\left(\mathfrak{g}_{C}\right)$ are $\pm \alpha$.

15: NOTATION $\sigma: \mathfrak{g}_{\mathrm{C}} \rightarrow \mathfrak{g}_{\mathrm{C}}$ is the map that sends $\mathrm{Z}=\mathrm{X}+\sqrt{-1} \mathrm{Y}$ to $\overline{\mathrm{z}}=$ $X-\sqrt{-1} Y(X, Y \in \mathfrak{g})$.

16: LEMMA σ is an R-linear involution which preserves the bracket, i.e.,

$$
\sigma\left(\left[\mathrm{z}_{1}, \mathrm{z}_{2}\right]\right)=\left[\sigma \mathrm{z}_{1}, \sigma \mathrm{Z}_{2}\right] \quad\left(\mathrm{Z}_{1}, \mathrm{z}_{2} \in \mathfrak{g}_{\mathrm{C}}\right)
$$

17: N.B. $\forall \alpha \in \Phi\left(\mathfrak{g}_{\mathrm{C}}\right)$,

$$
\sigma \mathfrak{g}^{\alpha}=\mathfrak{g}^{-\alpha}
$$

18: RAPPEL The Killing form of \mathfrak{g}_{C} is the bilinear form $B: \mathfrak{g}_{C} \times \mathfrak{g}_{C} \rightarrow C$ given by

$$
\mathrm{B}\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)=\operatorname{tr}\left(\mathrm{ad}\left(\mathrm{Z}_{1}\right) \circ \mathrm{ad}\left(\mathrm{z}_{2}\right)\right)
$$

19: PROPERTIES

- $\forall x \in G, \forall Z_{1}, Z_{2} \in \mathfrak{g}_{C}^{\prime}$

$$
B\left(A d(x) Z_{1}, A d(x) Z_{2}\right)=B\left(Z_{1}, Z_{2}\right) .
$$

- $\forall \mathrm{Z}, \mathrm{Z}_{1}, \mathrm{Z}_{2} \in \mathfrak{\#}_{\mathrm{C}}$,

$$
B\left(\operatorname{ad}(Z) Z_{1}, Z_{2}\right)=-B\left(Z_{1}, \operatorname{ad}(Z) Z_{2}\right) .
$$

20: N.B. The prescription

$$
\left\langle\mathrm{Z}_{1}, \mathrm{Z}_{2}\right\rangle_{\sigma}=-\mathrm{B}\left(\mathrm{Z}_{1}, \sigma \mathrm{Z}_{2}\right)
$$

is an Ad G invariant inner product on \mathfrak{g}_{C}.

Every $\alpha \in \Phi\left(g_{C}\right)$ is determined by its restriction to either \mathfrak{t} or $\sqrt{-1} \mathfrak{t}$, so α can be viewed as an element of ($\sqrt{-1} \mathfrak{t}$) * (purely real) or of \mathfrak{t} (purely imaginary).

2l: CONSTRUCIION B induces an isomorphism between $\sqrt{-1} t$ and ($\sqrt{-1} \mathfrak{t}$)* as follows: Given $\lambda \in(\sqrt{-1} \mathfrak{k}) *$, define $H_{\lambda} \in \sqrt{-1} \mathfrak{k y}$ be relation

$$
\lambda(\mathrm{H})=\mathrm{B}\left(\mathrm{H}, \mathrm{H}_{\lambda}\right) \quad(\mathrm{H} \in \sqrt{-\mathrm{I}} \mathfrak{t}) .
$$

[Note: B is negative definite on $t \times t$, hence B is a real inner product on the real vector space $\sqrt{-1} t$ and for $\lambda_{1}, \lambda_{2} \in(\sqrt{-1} \mathfrak{t}) *$, one writes

$$
\left.\mathrm{B}\left(\lambda_{1}, \lambda_{2}\right)=\mathrm{B}\left(\mathrm{H}_{\lambda_{1}}, \mathrm{H}_{\lambda_{2}}\right) \cdot\right]
$$

22: DEFINITION The vector $H_{\alpha} \in \sqrt{-1} \mathfrak{t}$ is called the root vector associated with α.

23: LEMMA The roots span $(\sqrt{-1} \mathfrak{t})$ * and the root vectors span $\sqrt{-1} \mathrm{t}$.

24: LEMMA Let $x_{\alpha} \in \mathfrak{g}^{\alpha}, x_{-\alpha} \in \mathfrak{g}^{-\alpha}$-- then

$$
\left[\mathrm{x}_{\alpha}, \mathrm{x}_{-\alpha}\right]=\mathrm{B}\left(\mathrm{X}_{\alpha}, \mathrm{x}_{-\alpha}\right) \mathrm{H}_{\alpha} .
$$

PROOF First of all,

$$
\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{-\alpha}\right] \subset \mathfrak{g}^{\alpha-\alpha}=\mathfrak{g}^{0}=\mathfrak{t}_{c} \quad \text { (cf. \#12) }
$$

thus

$$
\left[\mathrm{x}_{\alpha}, \mathrm{x}_{-\alpha}\right] \in \mathrm{t}_{\mathrm{c}} .
$$

Proceeding, $\forall \mathrm{H} \in \mathbf{t}_{\mathbf{c}}$,

$$
\begin{aligned}
& \mathrm{B}\left(\left[\mathrm{X}_{\alpha}, \mathrm{X}_{-\alpha}\right], \mathrm{H}\right) \\
&=-\mathrm{B}\left(\left[\mathrm{X}_{-\alpha}, \mathrm{X}_{\alpha}\right], \mathrm{H}\right) \\
&=-\mathrm{B}\left(\mathrm{ad}\left(\mathrm{X}_{-\alpha}\right) \mathrm{X}_{\alpha}, \mathrm{H}\right) \\
&=\mathrm{B}\left(\mathrm{X}_{-\alpha}, \mathrm{ad}\left(\mathrm{X}_{-\alpha}\right) \mathrm{H}\right) \\
&=\mathrm{B}\left(\mathrm{X}_{\alpha},\left[\mathrm{X}_{-\alpha}, \mathrm{H}\right]\right) \\
&=-\mathrm{B}\left(\mathrm{X}_{\alpha},\left[\mathrm{H}, \mathrm{X}_{-\alpha}\right]\right) \\
&=-\mathrm{B}\left(\mathrm{X}_{\alpha},-\alpha(\mathrm{H}) \mathrm{X}_{-\alpha}\right) \\
&=\alpha(\mathrm{H}) \mathrm{B}\left(\mathrm{X}_{\alpha}, \mathrm{X}_{-\alpha}\right) \\
&=\mathrm{B}\left(\mathrm{H}, \mathrm{H}_{\alpha}\right) \mathrm{B}\left(\mathrm{X}_{\alpha^{\prime}}, \mathrm{X}_{-\alpha}\right) \\
&=\mathrm{B}\left(\mathrm{H}_{\alpha}, \mathrm{H}\right) \mathrm{B}\left(\mathrm{X}_{\alpha}, \mathrm{X}_{-\alpha}\right) \\
&=\mathrm{B}\left(\mathrm{~B}\left(\mathrm{X}_{\alpha}, \mathrm{X}_{-\alpha}\right) \mathrm{H}_{\alpha}, \mathrm{H}\right)
\end{aligned}
$$

$$
\left[\mathrm{X}_{\alpha}, \mathrm{X}_{-\alpha}\right]=\mathrm{B}\left(\mathrm{X}_{\alpha}, \mathrm{X}_{-\alpha}\right) \mathrm{H}_{\alpha} .
$$

25: NOTATION Put

$$
h_{\alpha}=2 \frac{H_{\alpha}}{B\left(H_{\left.\alpha^{\prime}, H_{\alpha}\right)}\right.}
$$

Then $\alpha\left(h_{\alpha}\right)=2$.

26: N.B. $\forall \lambda \in(\sqrt{-1} t) *$,

$$
\begin{aligned}
\lambda\left(h_{\alpha}\right) & =\lambda\left(2 \frac{H_{\alpha}}{B\left(H_{\alpha}, H_{\alpha}\right)}\right) \\
& =\lambda\left(2 \frac{H_{\alpha}}{B(\alpha, \alpha)}\right. \\
& =2 \frac{\lambda\left(H_{\alpha}\right)}{B(\alpha, \alpha)} \\
& =2 \frac{B\left(H_{\alpha}, H_{\lambda}\right)}{B(\alpha, \alpha)} \\
& =2 \frac{B\left(H_{\lambda}, H_{\alpha}\right)}{B(\alpha, \alpha)} \\
& =2 \frac{B(\lambda, \alpha)}{B(\alpha, \alpha)}
\end{aligned}
$$

and analogousl $y, \forall H \in \sqrt{-1} t$,

$$
\alpha(H)=2 \frac{B\left(H, h_{\alpha}\right)}{B\left(h_{\alpha}, h_{\alpha}\right)} .
$$

27: NORMALIZATION Scale the data and choose $e_{\alpha} \in \mathfrak{g}^{\alpha}, f_{\alpha} \in \mathfrak{g}^{-\alpha}$ such that

$$
\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha},
$$

hence

$$
\left[\begin{array}{l}
{\left[h_{\alpha}, \mathrm{e}_{\alpha}\right]=2 \mathrm{e}_{\alpha}} \\
{\left[\mathrm{h}_{\alpha}, \mathrm{f}_{\alpha}\right]=-2 \mathrm{f}_{\alpha} .}
\end{array}\right.
$$

Consequently,

$$
\operatorname{span}_{C}\left\{h_{\alpha}, e_{\alpha}, f_{\alpha}\right\} \approx s I(2, C)
$$

where

$$
h_{\alpha} \longleftrightarrow h=\left|\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right|, e_{\alpha} \longleftrightarrow e=\left|\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right|, f_{\alpha} \longleftrightarrow f=\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right|
$$

28: N.B. Under this correspondence,

$$
\begin{aligned}
\mathfrak{s u}(2) & \approx \operatorname{span}_{R}\left\{\sqrt{-1} h_{\alpha^{\prime}}, e_{\alpha}-f_{\alpha^{\prime}} \sqrt{-1}\left(e_{\alpha}+f_{\alpha}\right)\right\} \\
& \equiv s_{\alpha^{\prime}}
\end{aligned}
$$

where

$$
\sqrt{-1} h_{\alpha} \leftrightarrow \sqrt{-1} h=\left|\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right|
$$

and

$$
e_{\alpha}-f_{\alpha} \longleftrightarrow e-f=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\left|, \sqrt{-1}\left(e_{\alpha}+f_{\alpha}\right) \longleftrightarrow \sqrt{-1}(e+f)=\right| \begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right]
$$

29: LEMMA The analytic subgroup S_{α} of G with Lie algebra s_{α} is compact and isomorphic to $\mathrm{SU}(2)$ or $\mathrm{SU}(2) / \mathrm{Z}_{2}$.

30: LEMMA Let (π, V) be a unitary representation of $G-$ then $\forall \lambda \in \Phi(V)$, $\lambda\left(h_{\alpha}\right) \in Z$.

PROOF In SU(2), $e^{2 \pi \sqrt{-I} h}=$ I. This said, let $\phi_{\alpha}: S U(2) \rightarrow G$ be the arrow realizing the preceding setup and consider $\pi{ }^{\circ} \phi_{\alpha}$:

$$
\begin{aligned}
I & =\pi\left(\phi_{\alpha}\left(e^{2 \pi \sqrt{-1}} h^{\prime}\right)\right. \\
& =\pi\left(e^{2 \pi d \phi_{\alpha}(\sqrt{-1} h)}\right) \\
& =\pi\left(e^{2 \pi \sqrt{-1} h_{\alpha}}\right)=e^{2 \pi \sqrt{-1} d \pi\left(h_{\alpha}\right)} .
\end{aligned}
$$

On the other hand, $\forall v \in V^{\lambda}$,

$$
\begin{aligned}
v & =e^{2 \pi \sqrt{-1} d \pi\left(h_{\alpha}\right)} v \\
& =e^{2 \pi \sqrt{-1} \lambda\left(h_{\alpha}\right)} v \quad \text { (cf. \#5). }
\end{aligned}
$$

Therefore $\lambda\left(h_{\alpha}\right) \in Z$.

§7. LATTICES

Let V be a finite dimensional vector space over R.

1: DEFINITION A lattice in V is an additive subgroup $\mathrm{L} \subset \mathrm{V}$ such that

- L is closed;
- L is discrete;
- L spans V.

2: EXAMPLE Z^{n} is a lattice in R^{n}.

3: DEFINITION A basis for a lattice $L \subset V$ is a set $\left\{e_{1}, \ldots, e_{n}\right\} \subset L$ ($\mathrm{n}=\operatorname{dim} \mathrm{V}$) such that

$$
L=\left\{\sum_{i=1}^{n} k_{i} e_{i}: k_{i} \in Z\right\}
$$

4: LEMMA Every lattice has a basis.

5: DEFINITION If L, K are lattices in V, then L is a sublattice of K if L is a subset of K .

6: LEMMA If L is a sublattice of K, then K / L is a finite group G. Moreover, there is a one-to-one correspondence between the subgroups $H \subset G$ and the lattices $L \subset M \subset K$, viz.

$$
\pi(M)=H \text { and } M=\pi^{-1}(H)
$$

where $\pi: K \rightarrow K / L$ is the projection.

7: NOTATION Given a lattice $\mathrm{L} \subset \mathrm{V}$, let

$$
\mathrm{L}^{*}=\left\{\mathrm{V}^{*} \in \mathrm{~V}^{*}: \mathrm{V}^{*}(\mathrm{x}) \in \mathrm{Z} \forall \mathrm{x} \in \mathrm{~L}\right\} .
$$

8: LEMMA L^{*} is a lattice in V^{*}, the dual of L.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for a lattice $L \subset V$. Define $\left\{f_{1}, \ldots, f_{n}\right\}$ by

$$
f_{j}\left(e_{i}\right)=\delta_{i j}
$$

9: LEMMA $\left\{f_{1}, \ldots, f_{n}\right\}$ is a basis for L^{*}.

10: APPLICATION

$$
L^{* *} \approx L .
$$

[In fact, the condition

$$
f_{j}\left(e_{i}\right)=\delta_{i j}
$$

is symmetric in f and e.]

11: LEMMA Suppose that L is a sublattice of $K-$ then $K^{*} \subset L^{*}$ and

$$
L^{*} / K^{*} \approx \widehat{K / L} .
$$

PROOF The first point is obvious. As for the second, define a homomorphism $\rho: L^{*} \rightarrow \widehat{K / L}$ by stipulating that

$$
\rho\left(\ell^{*}\right)(x+L)=\exp \left(2 \pi \sqrt{-1} \ell^{*}(x)\right) .
$$

Then the kernel of ρ is K^{*}, so ρ induces an injection $L^{*} / K^{*} \rightarrow \widehat{K / L}$, thus

$$
|L * / K *| \leq|\widehat{K / L}|=|K / L| .
$$

But then by duality,

$$
\left|L^{*} / K^{*}\right| \geq\left|K * * / L^{* *}\right|=|K / L| .
$$

Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus.

12: CONVENTION Identify ($\sqrt{-1}$ t) ** $^{\text {with }} \sqrt{-1} \mathrm{t}$ and let L be a lattice in $(\sqrt{-1} \mathfrak{t}) *$-- then its dual is the lattice $L^{*} \subset \sqrt{-1} \mathfrak{t}$ specified via the prescription

$$
\{H \in \sqrt{-1} t: \lambda(H) \in Z \forall \lambda \in L\} .
$$

13: DEFINITION The root lattice is the lattice L_{rt} in $(\sqrt{-1} \mathfrak{t})$ * generated by the $\alpha \in \Phi\left(\mathfrak{y}_{\mathrm{C}}\right)$.

14: DEFINITION The weight lattice is the lattice $L_{\text {wt }}$ in $(\sqrt{-1} \mathfrak{t})$ * given by

$$
\left\{\lambda \in(\sqrt{-1} \mathfrak{t}) *: \lambda\left(h_{\alpha}\right) \in Z \forall \alpha \in \Phi\left(\mathfrak{g}_{C}\right)\right\}
$$

15: LEMMA $L_{r t}$ is a sublattice of $L_{\text {wt }}$.

Given a character $x: T \rightarrow S^{l}$, there is a commutative diagram

and the arrow $X \rightarrow d \chi$ implements an identification of \hat{T} with the lattice

$$
d \hat{T} \equiv\left\{\lambda \in(\sqrt{-1} t) *: \lambda \mid \exp ^{-1}(e) \subset 2 \pi \sqrt{-1} Z\right\}
$$

Here

$$
d x \in \operatorname{Hom}_{R}(t, \sqrt{-1} R)
$$

which we shall view as an element of

$$
\operatorname{Hom}_{R}(\sqrt{-I} t, R)
$$

by writing

$$
\mathrm{d} \lambda(\sqrt{-1} \mathrm{H})=\sqrt{-\mathrm{I}} \mathrm{~d} \lambda(\mathrm{H}) \quad(\mathrm{H} \in \mathfrak{t}) .
$$

[Note: $\sqrt{-1} R$ is the Lie algebra of S^{1}, the exponential map exp: $\sqrt{-1} R \rightarrow S^{1}$ being the usual exponential function $\sqrt{-1} \theta \rightarrow e^{\sqrt{-1}} \theta$.]

16: LEMMA $I_{r t}$ is a sublattice of $d \hat{T}$ and $d \hat{T}$ is a sublattice of $I_{\text {wt }}$. 17: THEOREM

- $\mathrm{Z}(\mathrm{G}) \approx \mathrm{d} \hat{\mathrm{T}} / \mathrm{L}_{\mathrm{rt}}$
- $\pi_{1}(G) \approx L_{w t} / d \hat{T}$.

§8. WEYL CHAMBERS AND WEYL GROUPS

Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus, $\Phi\left(\mathfrak{g}_{\mathrm{C}}\right)$ the roots of the pair $\left(\mathfrak{g}_{\mathrm{C}}, \mathfrak{t}_{\mathrm{C}}\right)$.

1: DEFINITION A subset Ψ of $\Phi\left(\mathfrak{g}_{C}\right)$ is a simple system of roots if it is a vector space basis for $(\sqrt{-1} t)$ * and has the property that every root can be written as a linear combination

$$
\sum_{\alpha \in \Psi} n_{\alpha}{ }^{\alpha}
$$

where the n_{α} are integers all of the same sign.

2: DEFINITION The elements in a simple system of roots are said to be simple.

3: N.B. Simple systems exist (cf. infra).

4: CONSTRUCIION Let Ψ be a simple system of roots.

- The positive roots per Ψ is the set

$$
\Phi^{+}=\left\{\beta \in \Phi\left(\mathfrak{g}_{C}\right): \beta=\sum_{\alpha \in \Psi} n_{\alpha}^{\alpha} \quad\left(n_{\alpha} \in Z_{\geq 0}\right)\right\}
$$

- The negative roots per Ψ is the set

$$
\Psi^{-}=\left\{\beta \in \Phi\left(\mathfrak{g}_{C}\right): \beta=\sum_{\alpha \in \Psi} n_{\alpha}^{\alpha} \quad\left(n_{\alpha} \in Z_{\leq 0}\right)\right\}
$$

Accordingly,

$$
\Phi\left(\mathfrak{g}_{\mathrm{C}}\right)=\Phi^{+} \Perp \Phi^{-} .
$$

5: DEFINITION

- The connected components of

$$
(\sqrt{-1} \mathfrak{z}) *-\bigcup_{\alpha \in \Phi\left(\mathfrak{g}_{C}\right)} \alpha^{\perp}
$$

are called the Weyl chambers of ($\sqrt{-I} \mathfrak{t}$)*.

- The connected components of

$$
\sqrt{-1} \mathfrak{t}-\underset{\alpha \in \Phi\left(\mathfrak{g}_{\mathrm{C}}\right)}{ } \mathrm{h}_{\alpha}^{\perp}
$$

are called the Weyl chambers of $\sqrt{-1} \mathfrak{k}$.

6: DEFINITION

- If $C \subset(\sqrt{-1} \mathfrak{t})$ * is a Weyl chamber, then $\alpha \in \Phi\left(\mathfrak{g}_{C}\right)$ is said to be C-positive if $B(C, \alpha)>0$ and C-negative if $B(C, \alpha)<0$.
- If $C \subset \sqrt{-1} \notin$ is a Weyl chamber, then $\alpha \in \Phi\left(\mathfrak{g}_{C}\right)$ is said to be C-positive if $B\left(C, h_{\alpha}\right)>0$ and C-negative if $B\left(C, h_{\alpha}\right)<0$.

7: DEFINITION

- If $C \subset(\sqrt{-1} \mathfrak{t})$ * is a Weyl chamber and if α is C-positive, then α is decomposable w.r.t. C if there exist $\beta, \gamma \in \Phi\left(\mathfrak{g}_{C}\right)$ such that $\alpha=\beta+\gamma$ (otherwise, α is indecomposable w.r.t. C) .
- If $C \subset \sqrt{-I} \notin$ is a Weyl chamber and if α is C-positive, then α is decomposable w.r.t. C if there exist $\beta, \gamma \in \Phi\left(\mathfrak{g}_{C}\right)$ such that $\alpha=\beta+\gamma$ (otherwise, α is indecomposable w.r.t. C) .

8: NOTATION

- Given a Weyl chamber $C \subset(\sqrt{-1} \not t) *$, let $\Psi(C)$ be the subset of $\Phi\left(\mathfrak{g}_{C}\right)$
comprised of those α which are C-positive and indecomposable.
- Given a Weyl chamber $C \subset \sqrt{-1} \mathfrak{t}$, let $\Psi(C)$ be the subset of $\Phi\left(\mathfrak{g}_{C}\right)$ comprised of those α which are C-positive and indecomposable.

9: LEMMA In either case, $\Psi(C)$ is a simple system of roots.

10: NOTATION

- Given a simple system of roots Ψ, let

$$
C(\Psi)=\{\lambda \in(\sqrt{-1} \mathfrak{t}) *: B(\lambda, \alpha)>0 \forall \alpha \in \Psi\}
$$

- Given a simple system of roots Ψ, let

$$
C(\Psi)=\left\{H \in \sqrt{-1} \mathfrak{t}: B\left(H, h_{\alpha}\right)>0 \forall \alpha \in \Psi\right\} .
$$

11: LEMMA In either case, $C(\Psi)$ is a Weyl chamber.

12: THEOREM

- There is a one-to-one correspondence between the simple systems of roots and the Weyl chambers of $(\sqrt{-1} \mathfrak{t})$:

$$
\left.\right|_{-} ^{-} \begin{array}{r}
\Psi \rightarrow C(\Psi) \\
C \rightarrow \Psi(C)
\end{array}
$$

- There is a one-to-one correspondence between the simple systems of roots and the Weyl chambers of $\sqrt{-1} \mathrm{t}$:

$$
\left[\begin{array}{rl}
\Psi \rightarrow C(\Psi) \\
C & \rightarrow \Psi(C)
\end{array}\right.
$$

The Weyl group $W=N(T) / T$ operates via Ad on $\sqrt{-1} t$ and $(\sqrt{-1} t) *$.

13: LEMMA The action of W on $\sqrt{-1} t$ and $(\sqrt{-1} t)$ * is faithful, i.e., $w \in W$ acts trivially iff w is the identity element.

PROOF Suppose that $A d(n)(n \in N)$ is the identity on t and consider the commutative diagram

Then

$$
\exp t=T
$$

and $\forall X \in \mathfrak{F}$,

$$
I_{n}(\exp X)=n(\exp X) n^{-1}=\exp (\operatorname{Ad}(n) X)=\exp x
$$

Therefore n centralizes T , hence $\mathrm{n} \in \mathrm{T}$ (cf. §4, \#7), i.e., n represents the identity element of W .

14: LEMMA W preserves $\Phi\left(g_{C}\right)$ and $w_{\alpha}=h_{w \alpha}(w \in W)$.

15: NOTATION

- Given $\alpha \in \Phi\left(\mathfrak{g}_{C}\right)$, define

$$
r_{\alpha}:(\sqrt{-1} \mathfrak{t}) * \rightarrow(\sqrt{-1} \mathfrak{t}) *
$$

by

$$
r_{\alpha}(\lambda)=\lambda-2 \frac{B(\lambda, \alpha)}{B(\alpha, \alpha)} \alpha=\lambda-\lambda\left(h_{\alpha}\right) \alpha .
$$

- Given $\alpha \in \Phi\left(\mathfrak{g}_{C}\right)$, define

$$
r_{h_{\alpha}}: \sqrt{-1} \mathfrak{t} \rightarrow \sqrt{-1} \mathfrak{t}
$$

by

$$
r_{h_{\alpha}}(H)=h-2 \frac{B\left(H, h_{\alpha}\right)}{B\left(h_{\alpha}, h_{\alpha}\right)} h_{\alpha}=H-\alpha(H) h_{\alpha} .
$$

[Note: Geometrically, r_{α} is the reflection of ($\sqrt{-1}$ t) * across the hyperplane perpendicular to α and r_{h} is the reflection of $\sqrt{-1} t$ across the hyperplane perpendicular to h_{α}.]

16: NOTATION Depending on the context, $W\left(\Phi\left(\mathfrak{g}_{C}\right)\right)$ is the group generated by

$$
\left\{r_{\alpha}: \alpha \in \Phi\left(\mathfrak{g}_{\mathrm{C}}\right)\right\} \text { or }\left\{{r_{h_{\alpha}}}: \alpha \in \Phi\left(\mathfrak{g}_{\mathrm{C}}\right)\right\} .
$$

17: N.B. $W\left(\Phi\left(\mathfrak{g}_{C}\right)\right)$ operates on \mathfrak{t}^{*} and \mathfrak{t} (extension by complex linearity).

18: LEMMA $\forall \alpha \in \Phi\left(\mathfrak{g}_{C}\right), \exists n_{\alpha} \in N(T)$ such that the action of n_{α} on $(\sqrt{-1} \mathfrak{t})$ * is given by r_{α} and the action of n_{α} on $\sqrt{-1} \mathfrak{t}$ is given by $r_{h_{\alpha}}$.

19: THEOREM

- $\operatorname{Per}(\sqrt{-1} \mathfrak{t}) *, W \approx W\left(\Phi\left(\mathfrak{g}_{C}\right)\right)$.
- Per $\sqrt{-1} \mathfrak{t}, \mathrm{~W} \approx \mathrm{~W}\left(\Phi\left(\mathfrak{g}_{\mathrm{C}}\right)\right)$.
[Note: It follows from \#l8 that in either case,

$$
W\left(\Phi\left(\mathfrak{g}_{C}\right)\right) \subset \mathbb{W},
$$

so the crux is the reversal of this.]

20: LEMMA W operates simply transitively on the set of Weyl chambers in $(\sqrt{-1} t)$ or $\sqrt{-1} t$.
[Note: In other words, there is exactly one element of the Weyl group mapping a given Weyl chamber onto another one.]

21: N.B. It is a corollary that $|W|$ is the cardinality of the set of Weyl chambers.

22: EXAMPLE Given a Weyl chamber C (be it in ($\sqrt{-1}$ t) * or $\sqrt{-1}$ t), there exists a unique element $\mathrm{w}^{9} \in \mathrm{~W}$ which maps C to its negative -C , hence $\mathrm{w}^{\mathrm{P}} \Psi(\mathrm{C})=-\Psi(\mathrm{C})$.
[Note: In general, -e $\notin \mathrm{W}$.]

23: THEOREM Let

$$
C \subset(\sqrt{-1} t) * \text { or } C \subset \sqrt{-1} t
$$

be a Weyl chamber -- then its closure $\overline{\mathrm{C}}$ is a fundamental domain for the action of W, i.e., \bar{C} meets each W orbit exactly once.

Fix a Weyl chamber $C \subset(\sqrt{-1} t)$ * and thereby determine the simple system $\Psi(C)$, hence Φ^{+}.

24: NOTATION $W(C)$ is the subgroup of $W\left(\Phi\left(\mathfrak{g}_{C}\right)\right)$ generated by the $r_{\alpha}(\alpha \in \Psi(C))$.

25: LEMMA

$$
W(C)=W\left(\Phi\left(\mathfrak{g}_{C}\right)\right) .
$$

26: NOTATION Given $w \in W\left(\Phi\left(g_{C}\right)\right)$, let $\ell(w)$ be the smallest k such that
w can be factored as a product $r_{\alpha_{1}} \ldots r_{\alpha_{k}}$, where the $\alpha_{i} \in \Psi(C)(\operatorname{set} \ell(w)=0$ if $\mathrm{w}=\mathrm{e}$).
[Note: $\ell(w)$ is referred to as the length of w.]

27: LEEMMA $\ell(w)$ is the number of $\alpha \in \Phi^{+}$such that $w \alpha \in \Phi^{-}$.
28: APPLICATION If $\mathrm{w}^{+}=\Phi^{+}$, then $\mathrm{w}=\mathrm{e}$.

29: N.B. The assignment

$$
w \rightarrow \operatorname{det}(w)=(-1)^{\ell(w)} \in\{ \pm 1\}
$$

is a character of W.

30: LEMMA If $\lambda \in L_{\text {wt }}$, then $\forall w \in W$, $\lambda-w \lambda \in L_{\text {rt }}$.
PROOF This is obvious if $w=r_{\alpha}$ for some $\alpha \in \Psi(C)$. In general, $w=r_{\alpha_{1}} \ldots r_{\alpha_{k}}$ $(k=\ell(w))$ and one can write

$$
\lambda-w \lambda=\left(\lambda-r_{k}(\lambda)\right)+\left(r_{k}(\lambda)-r_{k-1}\left(r_{k}(\lambda)\right)+\cdots\right.
$$

Let $\alpha_{1}, \ldots, \alpha_{\ell}$ be an enumeration of the elements of $\Psi(C)$.
[Note: Recall that l is the rank of G or still, the dimension of T or still, the dimension of $\sqrt{-1} \mathfrak{k}$ or still, the dimension of $(\sqrt{-1} \mathfrak{t}) *$.]

31: DEFINITION The fundamental weights are the $\omega_{i} \in L_{\text {wt }}$ per the prescription

$$
2 \frac{B\left(\omega_{i}, \alpha_{j}\right)}{B\left(\alpha_{j}, \alpha_{j}\right)}=\delta_{i j} \quad(1 \leq i, j \leq \ell) .
$$

32: LEMMA The set $\left\{\omega_{1}, \ldots, \omega_{\ell}\right\}$ is a basis for $L_{w t}$.

33: DEFTNITION A weight $\lambda \in \mathrm{L}_{\text {wt }}$ is said to be dominant if $B(\lambda, \alpha) \geq 0$ for all $\alpha \in \Psi(C)$.

34: N.B. To say that $\lambda \in L_{\text {wt }}$ is dominant amounts to saying that $\lambda \in \overline{\mathrm{C}}$ (the closure of C).

35: LEMMA A weight $\lambda \in \mathrm{L}_{\text {wt }}$ is dominant iff it is a linear combination with nonnegative integral coefficients of the ω_{i}.

36: NOTATION Put

$$
\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha .
$$

37: N.B. Ultimately, ρ depends on the choice of C.

38: LEMMA $\forall \mathrm{W} \in \mathrm{W}$,

$$
\mathrm{w} \rho=\rho-\sum_{\alpha \in \Phi^{+}, w^{-1} \alpha \in \Phi^{-}}^{\alpha .}
$$

39: APPLTCATION $\forall \alpha \in \Psi(C)$,

$$
r_{\alpha}(\rho)=\rho-\alpha .
$$

[Note: $\forall \alpha \in \Psi(C)$,

$$
\left.r_{\alpha}\left(\Phi^{+}-\{\alpha\}\right)=\Phi^{+}-\{\alpha\} .\right]
$$

40: LEMMA

$$
\rho=\omega_{1}+\cdots+\omega_{l} .
$$

PROOF Given $\alpha_{i} \in \Psi(C)$,

$$
\begin{aligned}
\alpha_{i}= & \rho-r_{\alpha_{i}}(\rho) \\
= & \rho-\left(\rho-2 \frac{B\left(\rho, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)}\right) \\
= & 2 \frac{B\left(\rho, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} \alpha_{i} \\
\Rightarrow \quad & 2 \frac{B\left(\rho, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)}=1 \Rightarrow \rho \in L_{\text {wt }} \text { (see below). }
\end{aligned}
$$

Now write

$$
\rho=n_{1} \omega_{1}+\cdots+n_{\ell} \omega_{\ell} .
$$

Then

$$
\begin{aligned}
1=2 \frac{B\left(\rho, \alpha_{j}\right)}{B\left(\alpha_{j}, \alpha_{j}\right)} & =2 \frac{B\left(\sum_{i} n_{i} \omega_{i}, \alpha_{j}\right)}{B\left(\alpha_{j}, \alpha_{j}\right)} \\
& =\sum_{i} n_{i} 2 \frac{B\left(\omega_{i}, \alpha_{j}\right)}{B\left(\alpha_{j}, \alpha_{j}\right)} \\
& =\sum_{i} n_{i} \delta{ }_{i j}=n_{i} \Rightarrow l=n_{i} .
\end{aligned}
$$

Therefore

$$
\rho=\omega_{1}+\cdots+\omega_{l} .
$$

41: N.B. It follows that ρ is a dominant weight.

APPENDIX

LEMMA Suppose that $\lambda \in(\sqrt{-1} \mathfrak{t})$ * has the property that

$$
2 \frac{B\left(\lambda, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} \in Z \quad(i=1, \ldots, \ell) .
$$

Then $\lambda \in \mathrm{L}_{\text {wt }}$.
PROOF It is a question of showing that $\forall \alpha \in \Phi^{+}$,

$$
\lambda\left(h_{\alpha}\right)=2 \frac{B(\lambda, \alpha)}{B(\alpha, \alpha)} \in Z .
$$

To this end, let $\alpha=\sum_{i=1}^{n} n_{i} \alpha_{i} \in \Phi^{+}$and proceed by induction on $|\alpha|=\sum_{i=1}^{l} n_{i}$,
the level of α. The case $|\alpha|=1$ is the hypothesis, so assume that the assertion is true for all levels $<|\alpha|$. Choose α_{i} such that $B\left(\alpha, \alpha_{i}\right)>0$, hence

$$
\beta=r_{\alpha_{i}}(\alpha)=\alpha-2 \frac{B\left(\alpha, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} \alpha_{i}
$$

is positive and has level $<|\alpha|$, thus

$$
\begin{aligned}
& 2 \frac{B(\lambda, \alpha)}{B(\alpha, \alpha)}=2 \frac{B\left(r_{\alpha_{i}}(\lambda), \beta\right)}{B(\beta, \beta)} \\
& =2 \frac{B(\lambda, \beta)}{B(\beta, \beta)}-2 \frac{B\left(\lambda, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} \quad 2 \frac{B\left(\alpha_{i}, \beta\right)}{B(\beta, \beta)}
\end{aligned}
$$

is an integer.

§9. DESCENT

Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus, $\Phi\left(\mathfrak{g}_{C}\right)$ the roots of the pair $\left(\mathfrak{g}_{C}, \mathfrak{t}_{C}\right), C \subset(\sqrt{-1} \mathfrak{t})$ * a weyl chamber, $\Psi(=\Psi(C))$ the simple system of roots thereby determined, and $\Phi^{+}\left(\Phi^{-}\right)$the positive (negative) roots per ψ.

1: RAPPEL Given a character $\chi: T \rightarrow S^{l}$, there is a commutative diagram

and the arrow $\chi \rightarrow d \chi$ implements an identification of \hat{T} with the lattice

$$
d \hat{T} \equiv\left\{\lambda \in(\sqrt{-1} t) *: \lambda \mid \exp ^{-1}(e) \subset 2 \pi \sqrt{-1} Z\right\}
$$

2: N.B. $d \hat{T}$ is a sublattice of $L_{\text {wt }}$ and

$$
\pi_{l}(G) \approx L_{w t} / d \hat{T} \quad(c f . \S 7, \# 17)
$$

[Note: Therefore $L_{\text {wt }}=d \hat{T}$ iff G is simply connected.]

3: NOTATION Each $\lambda \in d \hat{T}$ determines a character $\xi_{\lambda} \in \hat{T}$ such that

$$
\xi_{\lambda}(\exp H)=e^{\lambda(H)} \quad(H \in \mathfrak{t}) .
$$

4: DEFINITION A function $f: t \rightarrow C$ descends to T if it factors through the exponential map, i.e., if $f(H+Z)=f(H) \forall H \in t$ and $\forall Z \in t$ such that $\exp Z=e$.

If $f: t \rightarrow C$ descends to T, then there is a function $F: T \rightarrow C$ such that

$$
F(\exp H)=f(H) \quad(H \in t) .
$$

5: EXAMPLE Given $\lambda \in d \hat{T}$, the function $H \rightarrow e^{\lambda(H)}$ descends to $T\left(F=\xi_{\lambda}\right)$.

6: EXAMPLE Put

$$
\rho=\frac{1}{2} \sum_{\alpha \in \Phi}+^{\alpha} \quad \text { (cf. §8, \#36). }
$$

Then $\forall \mathrm{w} \in \mathrm{W}$,

$$
\left.w \rho-\rho \in L_{r t} \subset d \hat{T} \quad \text { (cf. } 88, \# 38\right)
$$

thus the function

$$
H \rightarrow e^{(w \rho-\rho)(H)}
$$

descends to $T\left(F=\xi_{W \rho-\rho}\right)$.

7: N.B. It is not claimed nor is it true in general that the function $H \rightarrow e^{\rho(H)}$ descends to T.

8: DEFINITION $\Delta: t \rightarrow C$ is the function

$$
H \rightarrow \prod_{\alpha \in \Phi}+\left(e^{\alpha(H) / 2}-e^{-\alpha(H) / 2}\right) \quad(H \in \mathfrak{k}) .
$$

[Note: $\alpha / 2$ need not belong to $L_{\text {wt }} \cdot$.]

9: LEMMA

$$
\Delta=e^{\rho} \prod_{\alpha \in \Phi}+\left(1-e^{-\alpha}\right) .
$$

Therefore Δ descends to T iff e^{ρ} descends to T.

10: LEMMA $|\Delta|^{2}$ descends to T.
PROOF $\forall H \in t$,

$$
|\Delta(\mathrm{H})|^{2}=\Delta(\mathrm{H}) \overline{\Delta(\mathrm{H})}
$$

$$
\begin{aligned}
& =e^{\rho(H)} \prod_{\alpha \in \Phi}\left(1-e^{-\alpha(H)}\right) \overline{e^{\rho(H)}} \prod_{\alpha \in \Phi}\left(1-e^{-\alpha(H)}\right) \\
& =e^{\rho(H)} \prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha(H)}\right) e^{-\rho(H)} \overline{\prod_{\alpha \in \Phi}+\left(1-e^{-\alpha(H)}\right)} \\
& =\prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha(H)}\right) \overline{\left(I-e^{-\alpha(H)}\right)} \\
& =\prod_{\alpha \in \Phi^{+}}\left|I-e^{-\alpha(H)}\right|^{2},
\end{aligned}
$$

which descends to T.

11: LEMMA $\forall t \in T$,

$$
\operatorname{det}\left(A d_{G / T}\left(t^{-1}\right)-I_{G / T}\right)=|\Delta(t)|^{2}
$$

PROOF The complexification of $\mathfrak{g} / \mathfrak{t}$ is the direct sum of the \mathfrak{g}^{α} on which $t \in T$ acts by $\xi_{\alpha}(t)$ in the adjoint representation, so

$$
\begin{aligned}
& \operatorname{det}\left(A d_{G / T}\left(t^{-1}\right)-I_{G / T}\right) \\
& =\prod_{\alpha \in \Phi\left(g_{C}\right)}\left(\xi_{\alpha}\left(t^{-1}\right)-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{\alpha \in \Phi\left(\mathfrak{g}_{C}\right)}\left(1-\xi_{-\alpha}(t)\right) \\
& =\prod_{\alpha \in \Phi}+\left|1-\xi_{-\alpha}(t)\right|^{2}
\end{aligned}
$$

[Note: The number of roots is even.]

12: INIEGRATION FORMULA For any continuous function $f \in C(G)$,

$$
\left.\delta_{G} f(x) d_{G}(x)=\frac{1}{|W|} \delta_{T}|\Delta(t)|^{2} \delta_{G} f\left(x t x^{-1}\right) d_{G}(x) d_{T}(t) \quad \text { (cf. } \S 5, \# 13\right)
$$

13: SCHOLIUM For any continuous class function $f \in C L$ (G),

$$
\delta_{G} f(x) d_{G}(x)=\frac{1}{|W|} \delta_{T}|\Delta(t)|^{2} f(t) d_{T}(t) \quad(c f . \quad \S 5, \# 14) .
$$

14: REMARK Let $t \in T-$ then $t \in T^{\text {reg }}$ iff

$$
|\Delta(t)|^{2} \neq 0
$$

or still, iff

$$
\prod_{\alpha \in \Phi}+\left|1-\xi_{-\alpha}(t)\right|^{2} \neq 0 .
$$

15: N.B. Let $H \in \mathfrak{t}-$ then

$$
\left|\Delta\left(e^{H}\right)\right|^{2}=2^{\left|\Phi\left(\mathfrak{g}_{C}\right)\right|} \prod_{\alpha \in \Phi} \sin ^{2}\left(\frac{\alpha(\mathrm{H})}{2 \sqrt{-1}}\right) .
$$

[Note: Bear in mind that $\alpha(H) \in \sqrt{-1} R$.

16: NOTAITION Let

$$
\Xi=\left\{H \in \mathfrak{t}: \forall \alpha \in \Phi\left(\mathfrak{g}_{C}\right), \alpha(H) \notin 2 \pi \sqrt{-1} Z\right\}
$$

17: LEMMA Ξ is open and dense in \mathfrak{t}. Moreover,

$$
\exp \Xi=T^{r e g}
$$

18: RAPPEL The inclusion $T \rightarrow G$ induces a bijection between the orbits of W in T and the conjugacy classes of G (cf. §4, \#16). Consequently, class functions on G are the "same thing" as W-invariant functions on T.

19: NOTATION Given $\lambda \in d \hat{T}$, define $\mathrm{H}_{\lambda}: \Xi \rightarrow C$ by setting

$$
\mathrm{I}_{\lambda}(H)=\frac{\sum_{\mathrm{w} \in \mathrm{~W}} \operatorname{det}(\mathrm{w}) \mathrm{e}^{\mathrm{w}(\lambda+\rho)(H)}}{\Delta(H)}(H \in \Xi) .
$$

20: LEMMA $\forall \mathrm{w} \in \mathrm{W}$,

$$
w(\Delta)=(-1)^{\ell(w)} \Delta .
$$

Recalling that $\operatorname{det}(w)=(-1)^{\ell(w)}$ (cf. §8, \#29), it therefore follows that ${ }^{\mathrm{I}}{ }_{\lambda}$ is a W-invariant function on Ξ.

Next, $\forall H \in \Xi$,

$$
\Psi_{\lambda}(H)=\frac{\sum_{w \in W}^{\sum} \operatorname{det}(w) e^{(w(\lambda+\rho)-\rho)(H)}}{\prod_{\alpha \in \Phi^{+}}\left(I-e^{-\alpha(H)}\right)} .
$$

Since

$$
e^{(w(\lambda+\rho)-\rho)(H)}=e^{w \lambda(H)} e^{(w \rho-\rho)(H)},
$$

the numerator of this fraction descends to T (cf. \#5 and \#6). The same also goes for the denominator which is nonzero on E. Accordingly, Y_{λ} descends to a W-invariant function on $\mathrm{T}^{\mathrm{reg}}$, hence extends to a class function on $\mathrm{G}^{\mathrm{reg}}$ (cf. §5, \#10), denoted still by ${ }_{\lambda}$.
§10. CHARACTER THEORY

Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus, and maintain the assumptions/notation of $\S 9$.

1: THEOREM Suppose given a $\Pi \in \hat{G}-$ then there is a $\lambda_{\Pi} \in d \hat{T}$ subject to $\lambda_{\Pi}+\rho \in C$ such that $\forall x \in G^{r e g}$,

$$
X_{\Pi}(x)=\mathrm{Y}_{\lambda_{\Pi}}(\mathrm{x})
$$

The proof proceeds by a series of lemmas.

2: NOTATION Given $\gamma \in C$, define $A_{\gamma}: t \rightarrow C$ by

$$
A_{\gamma}(H)=\sum_{w \in W} \operatorname{det}(w) e^{w \gamma(H)}
$$

Rephrased, the claim becomes the assertion that

$$
X_{\Pi}(\exp H) \Delta(H)=A_{\lambda_{\Pi}+\rho}(H) \quad(H \in \Xi)
$$

for some $\lambda_{\Pi} \in d \hat{T}$ subject to $\lambda_{\Pi}+\rho \in C$.

3: NOTATION $\hat{d T}(C)$ is the subset of $\hat{d T}$ consisting of those λ such that $\lambda+\rho \in C$, say $d \hat{T}(C)=\left\{\lambda_{k}\right\}$.
[Note: It turns out that $\hat{d T}(C)=d \hat{T} \cap \overline{\mathrm{C}}$ (cf. \#9).]

4: LEMMA There exist integers m_{k} such that $\forall H \in \Xi$,

$$
X_{\Pi}(\exp H) \Delta(H)=\sum_{k} m_{k} \lambda_{\lambda_{k}}+\rho(H) .
$$

[Note: The point of departure is the fact that $X_{I I} \mid T$ decomposes as a finite sum

$$
\left.\sum_{\lambda \in d \hat{T}} n_{\lambda} \xi_{\lambda} \quad\left(n_{\lambda} \in Z_{\geq 0}\right) .\right]
$$

Proceeding,

$$
\begin{aligned}
l & =\delta_{G}\left|x_{I I}(x)\right|^{2} d_{G}(x) \\
& \left.=\frac{1}{|W|} \delta_{T}|\Delta(t)|^{2}\left|x_{\Pi I}(t)\right|^{2} d_{T}(t) \quad \text { (cf. } \S 9, \# 13\right)
\end{aligned}
$$

5: N.B. The function

$$
\left|\sum_{k} m_{k} A_{\lambda_{k}+\rho}\right|^{2}
$$

descends to T (because $|\Delta|^{2}$ descends to T (cf. $\S 9, \# 10$). .

Therefore

$$
1=\frac{l}{|W|} \int_{T}\left|\sum_{k} m_{k} A_{\lambda_{k}+\rho}\right|^{2} d_{T}(t)
$$

6: LEMMA The function

$$
\begin{array}{r}
{ }_{A_{\lambda_{k}}+\rho} \overline{A_{\lambda_{k},+\rho}} \\
=\left(e^{-\rho}{A_{\lambda_{k}+\rho}}\right) \overline{\left(e^{-\rho}{A_{\lambda_{k^{\prime}}+\rho}}\right)}
\end{array}
$$

descends to T (cf. §9, \#6).

Therefore

$$
\frac{1}{|W|} \delta_{T} A_{\gamma_{k}+\rho} \overline{A_{\gamma_{k^{\prime}}+\rho}} d_{T}(t)
$$

$$
\begin{gathered}
=\frac{1}{|W|} \delta_{T}\left(e^{-\rho_{A_{\lambda_{k}}}+\rho}\right)\left(e^{-\rho_{A_{\lambda_{k}}+\rho}}\right) d_{T}(t) \\
=\frac{1}{|W|} \sum_{W, W^{\prime} \in W} \operatorname{det}\left(W W^{\prime}\right) \int_{T} \xi_{W}\left(\lambda_{k}+\rho\right)-\rho
\end{gathered} \xi_{-W^{\prime}\left(\lambda_{k^{\prime}}+\rho\right)+\rho d_{T}(t) .} .
$$

And

$$
\begin{gathered}
\int_{T} \xi_{w\left(\lambda_{k}+\rho\right)-\rho} \xi_{-\left(w^{\prime}\left(\lambda_{k}+\rho\right)-\rho\right)} d_{T}(t) \\
=1 \Leftrightarrow w\left(\lambda_{k}+\rho\right)-\rho=w^{\prime}\left(\lambda_{k^{\prime}}+\rho\right)-\rho \\
\Leftrightarrow w\left(\lambda_{k}+\rho\right)=w^{\prime}\left(\lambda_{k^{\prime}}+\rho\right) \\
\Leftrightarrow w=w^{\prime} \text { and } k=k^{\prime}
\end{gathered}
$$

but is zero otherwise.
Therefore

$$
\frac{1}{|W|}{ }_{T}{ }^{A_{\lambda_{k}}+\rho} \bar{A}_{\lambda_{k^{\prime}}+\rho} \alpha_{T}(t)=\left\{\begin{array}{r}
1 \text { if } k=k^{\prime} \\
0 \text { if } k \neq k^{\prime} .
\end{array}\right.
$$

Matters then reduce to the equation

$$
I=\sum_{k} m_{k}^{2}
$$

However, the $m_{k} \in Z$, hence all but one are zero. Consequently, there is a $\lambda_{\text {II }} \in d \hat{T}$ subject to $\lambda_{\text {II }}+\rho \in \mathrm{C}$ such that $\forall \mathrm{H} \in \Xi$,

$$
x_{\Pi}(\exp H) \Delta(H)= \pm A_{\lambda_{\Pi}+\rho}(H)
$$

7: LEIMA The $A_{\gamma}(\gamma \in C)$ are linearly independent over Z.
[Given $\gamma, \gamma^{\prime} \in C$,

$$
<A_{\gamma^{\prime}}, A_{\gamma^{\prime}}>=\left\{\begin{array}{l}
1 \text { if } \gamma=\gamma^{\prime} \\
0 \text { if } \gamma \neq \gamma^{\prime},
\end{array}\right.
$$

the inner product $<,>$ being by definition the multiplicity of the "zero weight" in

$$
\begin{array}{r}
\frac{1}{|W|}\left[\sum_{w \in W} \operatorname{det}(w) e^{w \gamma}\right]\left[\sum_{w^{\prime} \in W} \operatorname{det}\left(w^{\prime}\right) e^{-w^{\prime} \gamma^{\prime}}\right] \\
\quad=\frac{1}{|W|} \sum_{w, w^{\prime} \in W} \operatorname{det}\left(w w^{\prime}\right) e^{w \gamma-w^{\prime} \gamma^{\prime}} .
\end{array}
$$

But

$$
\begin{aligned}
w \gamma-w^{\prime} \gamma^{\prime}=0 & \Rightarrow \gamma=w^{-1} w^{\prime} \gamma^{\prime} \\
& \Rightarrow w=w^{\prime} \Rightarrow \gamma=\gamma^{\prime},
\end{aligned}
$$

so the number of solutions is $|W|$ if $\gamma=\gamma^{\prime}$ and is zero otherwise.]

3: APPLICATION The linear function $\lambda_{\Pi}+\rho \in C$ is unique.

9: LEMMA Let $\lambda \in d \hat{T}$-- then

$$
\lambda+\rho \in \mathrm{C} \Leftrightarrow \lambda \in \overline{\mathrm{C}} .
$$

PROOF $\forall \alpha_{i} \in \Psi(C)$,

$$
\left.2 \frac{\mathrm{~B}\left(\rho, \alpha_{i}\right)}{\mathrm{B}\left(\alpha_{i}, \alpha_{i}\right)}=1 \quad \text { (cf. } \S 8, \# 40\right)
$$

and

$$
2 \frac{B\left(\lambda, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} \in Z \quad\left(\lambda \in d \hat{T} \subset I_{w t}\right) .
$$

The stated equivalence then follows upon writing

$$
\begin{aligned}
2 \frac{B\left(\lambda+\rho, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} & =2 \frac{B\left(\rho, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)}+2 \frac{B\left(\lambda, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)} \\
& =1+2 \frac{B\left(\lambda, \alpha_{i}\right)}{B\left(\alpha_{i}, \alpha_{i}\right)}
\end{aligned}
$$

10: APPLICATION

$$
\lambda_{\Pi}+\rho \in \mathbf{C} \Rightarrow \lambda_{\Pi} \in \overline{\mathrm{C}} .
$$

Return now to the expression

$$
\begin{equation*}
X_{\Pi}(\exp H) \Delta(H)= \pm A_{\lambda_{I I}+\rho}(H \tag{H}
\end{equation*}
$$

valid for $H \in \Xi$, the objective then being to establish that it is the plus sign which obtains.

11: LEMMA $\forall H \in \mathfrak{H}$,

$$
\Delta(H)=\sum_{W \in W} \operatorname{det}(w) e^{W \rho(H)} .
$$

[Note: There is no vicious circle here in that the formula can be derived by direct (albeit somewhat tedious) manipulation, the derivation being independent of the preceding considerations (but consistent with the final outcome).]

From this it follows that $\forall \mathrm{H} \in \Xi$,

$$
\pm X_{\Pi L}(\exp H)=\frac{\sum_{w \in W} \operatorname{det}(w) e^{w\left(\lambda_{\Pi}+\rho\right)(H)}}{\sum_{w \in W} \operatorname{det}(w) e^{w \rho(H)}}
$$

$$
=\Psi_{\lambda_{\Pi}}(H) .
$$

12: NOTATION Define $H_{\rho} \in \sqrt{-1} \mathfrak{t}$ by the relation

$$
\rho(H)=B\left(H, H_{\rho}\right)(H \in \sqrt{-1} \notin) \quad(c f . \S 6, \# 21) .
$$

13: LEMMA $\sqrt{-I} t H_{\rho} \in \Xi$ for small positive t.
14: LEMMA

$$
\lim _{t \downarrow 0} x_{\Pi}\left(\exp \sqrt{-1} t H_{\rho}\right)=\alpha_{\Pi} .
$$

[For $X_{\Pi} \mid T$ is continuous and $\left.d_{\Pi}=X_{\Pi}(e).\right]$

15: APPLICATION

$$
\pm \alpha_{\Pi}=\lim _{t \downarrow 0} \Psi_{\lambda_{\Pi}}\left(\sqrt{-1} t H_{\rho}\right)
$$

16: SUBLEMMA $\forall w \in W$,

$$
\begin{aligned}
& w\left(\lambda_{\Pi}+\rho\right)\left(\sqrt{-1} t H_{\rho}\right) \\
& =\sqrt{-I} t\left(\lambda_{\Pi}+\rho\right)\left(w^{-1} H_{\rho}\right) \\
& =\sqrt{-I} t B\left(H_{\lambda_{\Pi}+\rho}, \mathrm{w}^{-1} \mathrm{H}_{\rho}\right) \\
& =\sqrt{-1} t \mathrm{~B}\left(\mathrm{wH}_{\lambda_{\Pi}+\rho}{ }^{\prime} \mathrm{H}_{\rho}\right) \\
& =\sqrt{-I} t \rho\left(\mathrm{wH}_{\lambda_{\Pi}}+\rho\right) \\
& =\left(w^{-1} \rho\right)\left(\sqrt{-1}+H_{\lambda_{\Pi}+\rho}\right) .
\end{aligned}
$$

17: LEMMA

$$
\lim _{t \downarrow 0} \Psi_{\lambda_{\Pi}}\left(\sqrt{-1} t H_{\rho}\right)=\frac{\prod_{\alpha \in \Phi}+B\left(\lambda_{\Pi}+\rho, \alpha\right)}{\prod_{\alpha \in \Phi}+B(\rho, \alpha)}
$$

PROOF Write

$$
\begin{aligned}
& \left.\sum_{w \in W} \operatorname{det}(w) e^{w\left(\lambda_{\Pi}+\rho\right)(\sqrt{-I}} t H_{\rho}\right) \\
& \left.=\sum_{w \in W} \operatorname{det}(w) e^{\left(w^{-1} \rho\right)(\sqrt{-1}} t H_{\lambda_{\Pi}+\rho}\right) \\
& =\sum_{w \in W} \operatorname{det}\left(w^{-1}\right) e^{\left(w^{-l} \rho\right)\left(\sqrt{-1}+H_{\lambda_{\Pi}+\rho}\right)} \\
& \left.=\sum_{w \in W} \operatorname{det}(w) e^{(w \rho)(\sqrt{-1}} \mathrm{t} \mathrm{H}_{\lambda_{\Pi}+\rho}\right) \\
& =\Delta\left(\sqrt{-1} \text { t } H_{\lambda_{\Pi}+\rho}\right) \\
& =\prod_{\alpha \in \Phi}\left(\mathrm{e}^{\alpha\left(\sqrt{-1}+\mathrm{H}_{\lambda_{\Pi}+\rho}\right) / 2} \mathrm{e}^{-\alpha\left(\sqrt{-1} \mathrm{t} \mathrm{H}_{\lambda_{\Pi}+\rho}\right) / 2}\right) \\
& =\prod_{\alpha \in \Phi}+\sqrt{-1} t \alpha\left(H_{\lambda_{\Pi}+\rho}\right)+O(1) \\
& =(\sqrt{-1} t)^{\left|\Phi^{+}\right|} \prod_{\alpha \in \Phi^{+}} B\left(\lambda_{\Pi^{+\rho}}, \alpha\right)+o(1) \text {. }
\end{aligned}
$$

Analogously,

$$
\sum_{w \in W} \operatorname{det}(w) e^{w \rho\left(\sqrt{-1} t H_{\rho}\right)}
$$

8.

$$
=(\sqrt{-I} t)\left|\Phi^{+}\right| \prod_{\alpha \in \Phi}{ }^{+} B(\rho, \alpha)+o(1) .
$$

Taking the limit as $t \downarrow 0$ then finishes the proof.

18: N.B. Both ρ and $\lambda_{\Pi}{ }^{+} \rho$ belong to C, thus $\forall \alpha \in \Phi^{+}$,

$$
\mathrm{B}(\rho, \alpha)>0 \text { and } \mathrm{B}\left(\lambda_{\Pi}+\rho, \alpha\right)>0,
$$

so

$$
\lim _{t \downarrow 0} \Psi_{\lambda_{\Pi}}\left(\sqrt{-I} t H_{\rho}\right)>0
$$

19: APPLICATION

$$
d_{\Pi I}=\lim _{t \downarrow 0} \Psi_{\lambda_{\Pi}}\left(\sqrt{-I} t H_{\rho}\right)
$$

I.e.: The plus sign prevails.

20: SCHOLIUM

$$
\alpha_{\Pi}=\frac{\prod_{\alpha \in \Phi}{ }^{+} B\left(\lambda_{\Pi}+\rho, \alpha\right)}{\prod_{\alpha \in \Phi} B(\rho, \alpha)}
$$

21: LEMMA The arrow from \hat{G} to $d \hat{T} \cap \overline{\mathrm{C}}$ that sends Π to λ_{Π} is well-defined (cf. \#8) and injective.

PROOF Given $\Pi_{1}, \Pi_{2} \in \hat{G}$, suppose that $\lambda_{\Pi_{1}}=\lambda_{\Pi_{2}}-$ then $\lambda_{\Pi_{1}}+\rho=\lambda_{\Pi_{2}}+\rho$, hence

$$
{ }^{\mathrm{Y}}{\lambda_{\Pi_{1}}}={ }_{\lambda_{\Pi_{\Pi_{2}}}}
$$

which implies that $X_{\Pi_{1}}=x_{\Pi_{2}}$ on $G^{\text {reg }}$ or still, by continuity, $X_{\Pi_{1}}=x_{\Pi_{2}}$ on G, so $\Pi_{1}=\Pi_{2}$.

22: LEMMA The arrow from \hat{G} to $d \hat{T} \cap \overline{\mathrm{C}}$ that sends Π to λ_{Π} is surjective. PROOF Fix a $\lambda \in d \hat{T} \cap \overline{\mathrm{C}}-$ then

$$
\begin{aligned}
\int_{G}\left|\Psi_{\lambda}(x)\right|^{2} \mathrm{a}_{G}(x) & =\frac{1}{|W|} \int_{T^{r e g}}|\Delta(t)|^{2}\left|\mathrm{I}_{\lambda}(t)\right|^{2} \alpha_{T}(t) \\
& =\frac{1}{|W|} \delta_{T} A_{\lambda+\rho} \overline{A_{\lambda+\rho}} \alpha_{T}(t) \\
& =1 .
\end{aligned}
$$

Therefore Y_{λ} is an L^{2} class function (cf. §2, \#l7). Now fix a $\Pi_{0} \in \hat{G}$:

$$
\begin{aligned}
& <{ }_{\lambda}, X_{I_{0}}{ }_{0} \\
& =\int_{G} \Psi_{\lambda}(x) \overline{X_{I_{0}}(x)} d_{G}(x) \\
& =\frac{1}{|W|} \int_{{ }_{T} r e g}|\Delta(t)|^{2} Y_{\lambda}(t) \overline{X_{\Pi_{0}}(t)} \alpha_{T}(t) \\
& =\frac{1}{|W|} \int_{{ }_{T} r e g}|\Delta(t)|^{2}{ }_{\lambda}(t) \overline{\bar{U}_{\lambda_{\Pi_{0}}}}(t) d_{T}(t) \\
& =\left.\right|_{\quad} ^{1} \text { if } \lambda_{\Pi_{0}}=\lambda \\
& \text { => } \\
& \left.\Psi_{\lambda}=\sum_{\Pi \in \hat{G}}<\Psi_{\lambda}, X_{\Pi I}>X_{\Pi} \quad \text { (cf. } \S 2, \# 19\right) \\
& =X_{\text {II }}
\end{aligned}
$$

for a unique $\Pi \in \hat{G}$ with $\lambda_{\Pi}=\lambda$.

23: SCHOLIUM

$$
\left[\begin{array}{l}
\hat{G} \longleftrightarrow \hat{d} \cap \overline{\mathrm{C}} \\
\Pi \longleftrightarrow \lambda_{\Pi}
\end{array}\right.
$$

[Note: W operates on $\hat{d T}$ and $d \hat{T} \cap \overline{\mathrm{C}}$ is a fundamental domain for this action (cf. §8, \#23), hence \hat{G} is parametrized by the orbits of W in $d \hat{T}$.

24: N.B.

$$
\left.\lambda_{\Pi *}=-w^{\varrho} \lambda_{\Pi} \quad \text { (cf. } \S 8, \# 22\right) .
$$

25: REMARK It is clear that if $\lambda_{I I}=1_{G}$, then $\lambda_{\Pi}=0$.

26: LEMMA In the restriction of χ_{Π} to $T, \xi_{\lambda_{\Pi}}$ occurs with multiplicity 1 .

APPENDIX

There are two directions in which the theory can be extended.

- Drop the assumption that G is semisimple and work with an arbitrary compact connected Lie group.
- Drop the assumption that G is connected and work with an arbitrary compact Lie group.

As regards the first point, no essential difficulties are encountered. As regards the second point, however, there are definitely some subtleties (see Chapter I of D. Vogan's book "Unitary Representations of Reductive Lie Groups").

NOTATION Let G be a compact semisimple Lie group, $T \subset G$ a maximal torus,
$\mathrm{C} \subset \sqrt{-1} \pm$ a Weyl chamber and let

$$
N_{G}(C)=\{x \in G: A d(x) C \subset C\}
$$

LEMMA

$$
N_{G}(C) \cap G^{0}=T, \quad N_{G}(C) G^{0}=G .
$$

Therefore

$$
\mathrm{G} / \mathrm{G}^{0} \approx \mathrm{~N}_{\mathrm{G}}(\mathrm{C}) / \mathrm{T}
$$

N.B. Each element of G is conjugate to an element of $N_{G}(C)$.

§ll. THE INVARIANT INTEGRAL

Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus etc.

1: NOTATION Set

$$
\pi=\prod_{\alpha \in \Phi}+\alpha \equiv \prod_{\alpha>0} \alpha .
$$

2: LEMMA π is a homogeneous polynomial of degree $r\left(=\left|\Phi^{+}\right|\right)$and $\forall \mathrm{w} \in \mathrm{W}$,

$$
w \pi=\operatorname{det}(w) \pi
$$

3: IEMMA If p is a homogeneous polynomial such that $\forall w \in W$,

$$
\mathrm{wp}=\operatorname{det}(\mathrm{w}) \mathrm{p},
$$

then p can be written as $\pi \mathrm{P}$, where P is a homogeneous W -invariant polynomial.

4: N.B. $P=0$ if $\operatorname{deg} p<r$ and $P=C$ (a constant) if $\operatorname{deg} p=r$.
5: DEFINITION Given $f \in C^{\infty}(\mathfrak{g})$ and $H \in \mathfrak{t}$, put

$$
\phi_{f}(H)=\pi(H) \quad \delta_{G} f(\operatorname{Ad}(x) H) d_{G}(x),
$$

the invariant integral of f at H .

6: FUNCIIONAL EQUATION $\forall \mathrm{w} \in \mathrm{W}$ ($\mathrm{w}=\mathrm{nT}$),

$$
\begin{aligned}
\phi_{f}(w H) & =\pi(w H) \quad \int_{G} f(A d(x) w H) d_{G}(x) \\
& =\operatorname{det}(w) \pi(H) \quad \delta_{G} f(\operatorname{Ad}(x) A d(n) H) d_{G}(x) \\
& =\operatorname{det}(w) \pi(H) \quad \int_{G} f(\operatorname{Ad}(x n) H) d_{G}(x) \\
& =\operatorname{det}(w) \pi(H) \quad \delta_{G} f(\operatorname{Ad}(x) H) d_{G}(x)
\end{aligned}
$$

$$
=\operatorname{det}(w) \phi_{f}(H) .
$$

7: LENMA

$$
f \in C^{\infty}(\mathfrak{g}) \Rightarrow \phi_{f} \in C^{\infty}(\mathfrak{t}) .
$$

8: LEMMA

$$
\mathfrak{f} \in C_{C}^{\infty}(\mathfrak{g}) \Rightarrow \phi_{f} \in C_{C}^{\infty}(\mathfrak{t}) .
$$

9: LEMMA

$$
f \in \mathcal{C}(\mathfrak{g}) \Rightarrow \phi_{f} \in \mathcal{C}(\mathfrak{t})
$$

[If $\mathrm{D} \in \mathbb{P}(\mathfrak{g})$ is a polynomial differential operator, then there exist a finite number of elements $D_{1}, \ldots, D_{p} \in \mathscr{P}(\mathfrak{g})$ and analytic functions a_{1}, \ldots, a_{p} on G such that $\forall \mathrm{x} \in \mathrm{G}$,

$$
\operatorname{Ad}(x) D=\sum_{i=1}^{p} a_{i}(x) D_{i}
$$

[Note: An automorphism of \mathfrak{y} extends to an automorphism of $\mathfrak{p}(\mathfrak{g})$.

10: NOTATION Set

$$
\tilde{\pi}=\prod_{\alpha \in \Phi}+H_{\alpha} \equiv \prod_{\alpha>0} H_{\alpha} .
$$

11: N.B. $\partial(\tilde{\pi})(\pi)$ is a constant (explicated infra).
[The point is that π is a homogeneous polynomial of degree r and $\partial(\tilde{\pi})$ is a polynomial differential operator of degree r.]

12: RAPPEL For the record,

$$
\left.\partial H_{\alpha}(f)\right|_{H}=\left.\frac{d}{d t} f\left(H+t H_{\alpha}\right)\right|_{t=0^{\circ}}
$$

In particular, if f is linear, then

$$
\left.\partial H_{\alpha}(f)\right|_{H}=f\left(H_{\alpha}\right),
$$

a constant.]

Put

$$
F(H)=\int_{G} f(A d(x) H) d_{G}(x) \quad(H \in \mathfrak{t}) .
$$

Then

$$
\begin{aligned}
\left.(\partial(\tilde{\pi}) \circ \pi) F\right|_{H=0} & =\left.F(H ; \partial(\tilde{\pi}) \circ \pi)\right|_{H=0} \\
& =\partial(\tilde{\pi})(\pi) F(0) \\
& =\partial(\tilde{\pi})(\pi) f(0) .
\end{aligned}
$$

13: THEOREM

$$
\partial(\tilde{\pi})(\pi)=|W| \prod_{\alpha>0} B(\rho, \alpha) .
$$

PROOF The sum

$$
\sum_{w \in W} \operatorname{det}(w)(w \rho)^{k}
$$

is a homogeneous polynomial of degree k which transforms according to the determinant per the action of W, hence vanishes if $0 \leq k<r$ but if $k=r$,

$$
\frac{1}{r!} \sum_{w \in W} \operatorname{det}(w)(w \rho)^{r}=C(\rho) \pi
$$

for some constant $C(\rho)$ (cf. \#4). To calculate $C(\rho)$, note that ρ^{r} is a homogeneous polynomial of degree r, thus $\partial(\tilde{\pi})(\rho)^{r}$ is a constant, so

$$
\begin{aligned}
& \partial(\tilde{\pi})\left(\operatorname{det}(w)(w \rho)^{r}\right) \\
& \quad=w\left(\partial(\tilde{\pi})(\rho)^{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\partial(\tilde{\pi})(\rho)^{r} \\
& =\prod_{\alpha>0} \partial\left(H_{\alpha}\right)(\rho)^{r} \\
& =r!\prod_{\alpha>0} B(\rho, \alpha) .
\end{aligned}
$$

Therefore, on the one hand,

$$
\begin{aligned}
& \partial(\tilde{\pi})\left(\frac{1}{r!} \sum_{w \in W} \operatorname{det}(w)(w \rho)^{r}\right) \\
&=\frac{1}{r!} \sum_{w \in W} \partial(\tilde{\pi})\left(\operatorname{det}(w)(w \rho)^{r}\right) \\
&=\frac{1}{r!}|W| r!\prod_{\alpha>0} B(\rho, \alpha) \\
&=|W| \prod_{\alpha>0} B(\rho, \alpha),
\end{aligned}
$$

while on the other

$$
\begin{gathered}
\partial(\tilde{\pi})\left(\frac{1}{r!} \sum_{w \in W} \operatorname{det}(w)(w \rho)^{r}\right) \\
=C(\rho) \partial(\tilde{\pi})(\pi) .
\end{gathered}
$$

Consequently,

$$
\begin{gathered}
\quad|W| \prod_{\alpha>0} B(\rho, \alpha)=C(\rho) \partial(\tilde{\pi})(\pi) \\
\Rightarrow \quad \\
\frac{1}{r!} \sum_{w \in W} \operatorname{det}(w)(w \rho)^{r} \\
= \\
=\frac{|W| \prod_{\alpha>0} B(\rho, \alpha)}{\partial(\tilde{\pi})(\pi)} \pi .
\end{gathered}
$$

Let $H=\sqrt{-1} t H_{\rho}$ (cf. §l0, \#13) and write $\underset{H \rightarrow 0}{\lim }$ in place of $\underset{t \neq 0}{\text { lima: }}$

$$
\begin{aligned}
& 1=\frac{\Delta(H)}{\Delta(H)} \\
& \sum \operatorname{det}(w) e^{w \rho(H)} \\
& =\frac{w \in W}{\prod_{\alpha>0}\left(e^{\alpha(H) / 2}-e^{-\alpha(H) / 2}\right)} \\
& =\lim _{H \rightarrow 0} \frac{\sum_{w \in W} \operatorname{det}(w) e^{w \rho(H)}}{\prod_{\alpha>0}\left(e^{\alpha(H) / 2}-e^{-\alpha(H) / 2}\right)} \\
& =\lim _{H \rightarrow 0} \frac{\sum_{w \in W} \operatorname{det}(w) e^{w \rho(H)}}{e^{-\rho(H)} \prod_{\alpha>0}\left(e^{\alpha(H)}-1\right)} \\
& =\lim _{H \rightarrow 0} \int_{-}^{-} \frac{e^{\rho(H)}}{\prod_{\alpha>0} \frac{e^{\alpha(H)}-1}{\alpha(H)}} \\
& \times \frac{\sum_{w \in W} \operatorname{det}(w) e^{w \rho(H)}}{\pi(H)} \\
& \times \\
& =\lim _{H \rightarrow 0} \frac{\sum_{w \in W} \operatorname{det}(w) e^{W \rho(H)}}{\pi(H)}
\end{aligned}
$$

which upon expansion of the exponential equals

$$
\quad \lim _{H \rightarrow 0}(C(\rho)+o(1)=C(\rho)
$$

$$
\begin{array}{ll}
& 1=C(\rho)=\frac{|W| \prod_{\alpha>0} B(\rho, \alpha)}{\partial(\tilde{\pi})(\pi)} \\
\Rightarrow & \\
& \partial(\tilde{\pi})(\pi)=|W| \prod_{\alpha>0} B(\rho, \alpha) .
\end{array}
$$

14: APPLICATION Given $f \in C^{\infty}(\mathfrak{g})$,

$$
\begin{aligned}
\phi_{f}(0 ; \partial(\tilde{\pi})) & =\left(\partial(\tilde{\pi}) \phi_{f}\right)(0) \\
& =\left(|W| \prod_{\alpha>0} B(\rho, \alpha)\right) f(0) .
\end{aligned}
$$

§12. PLANCHEREL

Keeping to the overall setup of $\S 11$, assume in addition that G is simply connected, so

$$
\left.L_{\text {wt }}=d \hat{T} \quad \text { (cf. } \S 7, \# 17\right)
$$

and e^{ρ} descends to T, so does Δ, thus

$$
\Delta(t)=\xi_{\rho}(t) \prod_{\alpha>0}\left(1-\xi_{\alpha}\left(t^{-1}\right)\right) \quad(t \in T) .
$$

1: NOTATION Put

$$
w=I_{w t}, w^{+}=L_{w t} \cap \overline{\mathrm{C}} .
$$

2: N.B. The elements of ω^{+}are the dominant weights (cf. §8, \#34).

3: NOTATION Given $\Lambda \in W^{+}, \Pi_{\Lambda}$ is the irreducible unitary representation of G associated with Λ, X_{Λ} its character,

$$
d_{\Lambda}=\frac{\prod_{\alpha>0} B(\Lambda+\rho, \alpha)}{\prod_{\alpha>0} B(\rho, \alpha)}
$$

its dimension (cf. §10, \#20).

4: N.B. On Treg,

$$
X_{\Lambda}(t) \Delta(t)=\sum_{w \in W} \operatorname{det}(w) \xi_{w(\Lambda+\rho)}(t)
$$

It is wellknown that

$$
C^{\infty}(\mathrm{G}) * \mathrm{C}^{\infty}(\mathrm{G})=\mathrm{C}^{\infty}(\mathrm{G})
$$

so on the basis of $\S 2, \# 15$, the Plancherel theorem is in force:

$$
\begin{aligned}
f(e) & =\sum_{\Pi \in G} d_{\Pi} t r(\Pi(f)) \\
& =\sum_{\Pi \in G} d_{\Pi} \delta_{G} f(x) X_{\Pi}(x) d_{G}(x)
\end{aligned}
$$

or still,

$$
f(e)=\sum_{\Lambda \in W^{+}} d_{\Lambda} \delta_{G} f(x) X_{\Lambda}(x) d_{G}(x)
$$

Our objective now will be to give another proof of this relation which is independent of the factorization theory for $C^{\infty}(G)$ but hinges instead on the result formulated in §11, \#13.

$$
\begin{aligned}
& \text { 5: NOTATION Given } f \in C^{\infty}(G) \text { and } t \in T \text {, put } \\
& \qquad F_{f}(t)=\Delta(t) \delta_{G} f\left(x t x^{-1}\right) d_{G}(x),
\end{aligned}
$$

the invariant integral of f at t.

6: LEMMA

$$
F_{f} \in C^{\infty}(T)
$$

Owing to §9, \#12,

$$
\delta_{G} f(x) d_{G}(x)=\frac{1}{|W|} \int_{T}|\Delta(t)|^{2} \delta_{G} f\left(x t x^{-1}\right) d_{G}(x) d_{T}(t)
$$

which equals

$$
\frac{1}{|W|} \int_{T} \overline{\Delta(t) \Delta(t)} \int_{G} f\left(x t x^{-1}\right) d_{G}(x) d_{T}(t)
$$

or still,

$$
\frac{I}{|\bar{W}|} \int_{T} \overline{\Delta(t) F_{f}}(t) d_{T}(t)
$$

or still,

$$
\frac{(-1)^{r}}{|W|} \int_{T} \Delta(t) F_{f}(t) d_{T}(t) \quad\left(r=\left|\Phi^{+}\right|\right) .
$$

Therefore

$$
\begin{aligned}
& \sum_{\Lambda \in W^{+}} d_{\Lambda} \int_{G} f(x) X_{\Lambda}(x) d_{G}(x) \\
& =\frac{(-1)^{r}}{|W|} \sum_{\Lambda \in W^{+}} d_{\Lambda} \delta_{T} \Delta(t) X_{\Lambda}(t) F_{f}(t) d_{T}(t) .
\end{aligned}
$$

7: LEMMA $\forall \mathrm{w} \in \mathrm{W}$,

$$
\operatorname{det}(w) \prod_{\alpha>0} B(\Lambda+\rho, \alpha)=\prod_{\alpha>0} B(w(\Lambda+\rho), \alpha) .
$$

Proceeding,

$$
\begin{aligned}
& \frac{(-1)^{r}}{|W|} \sum_{\Lambda \in W^{+}} d_{\Lambda} \delta_{T} \Delta(t) X_{\Lambda}(t) F_{f}(t) d_{T}(t) \\
& =\frac{(-1)^{r}}{|W|} \sum_{\Lambda \in W^{+}} d_{\Lambda} \int_{T} \sum_{W \in W} \operatorname{det}(w) \xi_{W(\Lambda+\rho)}(t) F_{f}(t) d_{T}(t) \\
& =\frac{(-1)^{r}}{|W| \prod_{\alpha>0} B(\rho, \alpha)} \sum_{\Lambda \in W^{+}} \sum_{W \in W} \delta_{T} \operatorname{det}(w) \prod_{\alpha>0} B(\Lambda+\rho, \alpha) \xi_{W(\Lambda+\rho)}(t) F_{f}(t) d_{T}(t) \\
& =\frac{(-1)^{r}}{|W| \prod_{\alpha>0} B(\rho, \alpha)} \sum_{\Lambda \in W^{+}} \sum_{W \in W} S_{T} \prod_{\alpha>0} B(W(\Lambda+\rho), \alpha) \xi_{W(\Lambda+\rho)}(t) F_{f}(t) d_{T}(t) \\
& =\frac{(-1)^{r}}{|W| \prod_{\alpha>0} B(\rho, \alpha)} \sum_{\lambda \in W} \mathcal{S}_{T} \prod_{\alpha>0} B(\lambda, \alpha) \xi_{\lambda}(t) F_{f}(t) d_{T}(t),
\end{aligned}
$$

the $\lambda \in W$ for which $\prod_{\alpha>0} B(\lambda, \alpha)=0$ making no contribution.

8: REMARK The elements $\lambda \in W$ such that $w \lambda \neq \lambda$ when $w \neq e(w \in W$) are in a one-to-one correspondence with the pairs $(\Lambda, W) \in W^{+} \times W$ via the arrow $(\Lambda, W) \rightarrow$ $w(\Lambda+\rho)$.

$$
\begin{aligned}
F_{f}(\exp H) & =\Delta(\exp H) \quad \delta_{G} f\left(x(\exp H) x^{-1}\right) d_{G}(x) \\
& =\Delta(\exp H) \quad \delta_{G} f(\exp (\operatorname{Ad}(x) H)) d_{G}(x) \\
& =\Delta(\exp H) \quad \delta_{G} \stackrel{v}{f}(\operatorname{Ad}(x) H) d_{G}(x) .
\end{aligned}
$$

9: LEMMA Let λ be a linear function on t_{c}-- then there exists a unique Ad G invariant analytic function Γ_{λ} on \mathfrak{g} such that $\forall H \in \mathfrak{t}$,

$$
\Gamma_{\lambda}(H) \pi(H)=\sum_{w \in W} \operatorname{det}(w) e^{w \lambda(H)}
$$

10: APPLICATION Take $\lambda=\rho-$ then there exists a unique Ad G invariant analytic function Γ_{ρ} on \mathfrak{g} such that $\forall H \in \mathfrak{k}$,

$$
\begin{aligned}
\Gamma_{\rho}(H) \pi(H) & =\sum_{w \in W} \operatorname{det}(w) e^{\mathrm{W} \rho(H)} \\
& =\Delta(H) \quad \text { (cf. } \S 10, \# l l) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \Delta(\exp H) \int_{G} \stackrel{\vee}{f}(\operatorname{Ad}(x) H) d_{G}(x) \\
= & \Gamma_{\rho}(H) \pi(H) \delta_{G} \stackrel{v}{f}(\operatorname{Ad}(x) H) d_{G}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\pi(H) \Gamma_{\rho}(H) \quad \delta_{G} \stackrel{v}{f}(A d(x) H) d_{G}(x) \\
& =\pi(H) \quad \delta_{G} \Gamma_{\rho}(H) \stackrel{v}{f}(A d(x) H) d_{G}(x) \\
& =\pi(H) \delta_{G} \Gamma_{\rho}(A d(x) H) \stackrel{v}{f}(\operatorname{Ad}(x) H) d_{G}(x) \\
& =\phi_{\Gamma_{\rho}}^{\underset{f}{v}}(H) .
\end{aligned}
$$

Summary: $\forall H \in \sharp$,

$$
\mathrm{F}_{\mathrm{f}}(\exp \mathrm{H})=\phi_{\Gamma_{\rho}}^{\underset{f}{v}}(\mathrm{H}) .
$$

11: SUBLEMMA In $\{\mathrm{H}: \pi(\mathrm{H}) \pi \neq 0\}$,

$$
\begin{aligned}
& \Gamma_{\rho}(0)=\lim _{H \rightarrow 0} \frac{\Delta(H)}{\pi(H)} \\
= & \lim _{H \rightarrow 0} \frac{\prod_{\alpha>0}\left(e^{\alpha(H) / 2}-e^{-\alpha(H) / 2}\right)}{\prod_{\alpha>0} \alpha(H)} \\
= & \left.\lim _{H \rightarrow 0} \prod_{\alpha>0}\right|_{-} ^{-} \frac{e^{\alpha(H) / 2}-e^{-\alpha(H) / 2}}{\alpha(H)} \\
= & 1 .
\end{aligned}
$$

Next

$$
\begin{aligned}
& \quad \mathrm{F}_{\mathrm{f}}(\exp \mathrm{H})=\phi_{\Gamma_{\rho}}^{\underset{f}{v}} \text { (H) } \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{equation*}
\partial(\tilde{\pi}) \mathrm{F}_{\mathrm{f}}(\exp H)=\partial(\tilde{\pi}) \phi_{\Gamma_{\rho}}^{\underset{f}{v}} \tag{H}
\end{equation*}
$$

=>

$$
\begin{aligned}
& \left(\partial(\tilde{\pi}) F_{f} \circ \exp \right)(0)=\left(\partial(\tilde{\pi}) \phi_{\Gamma_{\rho}}^{\underset{f}{v}}\right)(0) \\
& \quad=\left(|W| \prod_{\alpha>0} B(\rho, \alpha)\right)\left(\Gamma_{\rho}^{\stackrel{v}{f}}\right)(0) \quad \text { (cf. §11, \#14). }
\end{aligned}
$$

And

$$
\left(\Gamma_{\rho} \underset{f}{\tilde{f}}\right)(0)=\Gamma_{\rho}(0) \stackrel{V}{f}(0)=\stackrel{V}{f}(0)=f(e)
$$

Therefore

$$
f(e)=\frac{1}{|W| \prod_{\alpha>0} B(\rho, \alpha)} \lim _{H \rightarrow 0} F_{f}(\exp H ; \partial(\tilde{\pi}))
$$

12: NOTATION Given $\lambda \in \omega$, put

$$
\hat{F}_{f}(\lambda)=\int_{T} F_{f}(t) \xi_{\lambda}(t) d_{T}(t)
$$

the Fourier transform of F_{f}.

13: N.B. Assume that the Haar measure on \hat{T} is normalized so that Fourier inversion is valid (thus each $\lambda \in W$ is assigned mass 1).

Write

$$
\begin{aligned}
& \lim _{H \rightarrow 0} F_{f}(\exp H ; \partial(\tilde{\pi})) \\
& \quad=\int_{\hat{T}} \hat{F}_{f}(\lambda) \lim _{H \rightarrow 0} \xi_{-\lambda}(\exp H ; \partial(\widetilde{\pi})) d_{\hat{T}}(\lambda) \\
& \quad=\int_{\hat{T}} \hat{F}_{f}(\lambda) \lim _{H \rightarrow 0} \partial(\tilde{\pi}) e^{-\lambda(H)} d_{\hat{T}}(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{r} \int_{\hat{T}} \hat{F}_{f}(\lambda) \prod_{\alpha>0} B(\lambda, \alpha) d_{\hat{T}}(\lambda) \\
& =(-1)^{r} \int_{\hat{T} \alpha>0} B(\lambda, \alpha) \hat{F}_{f}(\lambda) d_{\hat{T}}(\lambda) \\
& =(-1)^{r} \int_{\hat{T}} \prod_{\alpha>0} B(\lambda, \alpha)\left(\int_{T} F_{f}(t) \xi_{\lambda}(t) d_{T}(t)\right) d_{\hat{T}}(\lambda) \\
& =(-1)^{r} \sum_{\lambda \in W} \delta_{T} B(\lambda, \alpha) \xi_{\lambda}(t) F_{f}(t) d_{T}(t) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
f(e) & =\frac{(-1)^{r}}{|W| \prod_{\alpha>0} B(\rho, \alpha)} \sum_{\lambda \in W} \delta_{T} B(\lambda, \alpha) \xi_{\lambda}(t) F_{f}(t) d_{T}(t) \\
& =\sum_{\Lambda \in W}+d_{\Lambda} \int_{G} f(x) \chi_{\Lambda}(x) d_{G}(x),
\end{aligned}
$$

the relation at issue.

Let G be a compact group.

1: DEFINITION The character ring $X(G)$ is the free abelian group generated by the irreducible characters of G (i.e., by the $X_{\Pi}(\Pi \in \hat{G})$) under pointwise addition and multiplication with unit l_{G}.

2: DEFINITION An element of $\mathrm{X}(\mathrm{G})$ is called a virtual character.

3: NOTATION CL(G) is the subspace of $C(G)$ comprised of the continuous class functions (cf. §2, \#27).

4: LEMMA A class function $f \in C L(G)$ is a virtual character of G iff

$$
\left\langle f, x_{\Pi}\right\rangle=\int_{G} f(x) \overline{x_{\Pi}(x)} d_{G}(x) \in Z
$$

for all $\Pi \in \hat{G}$.
PROOF The condition is obviously necessary. As for its sufficiency, we have

$$
\left.\left.\|f\|^{2}=\sum_{\Pi \in \hat{G}}<f, x_{\Pi}\right\rangle\left.\right|^{2} \quad \text { (cf. } \S 2, \# 19\right),
$$

hence

$$
\left\langle f, x_{\Pi}\right\rangle=0
$$

for all but finitely many $X_{\Pi_{1}}$ say $X_{\Pi_{1}}, \ldots, \chi_{\Pi_{n}}$ and then

$$
f=\sum_{i=1}^{n}\left\langle f, x_{\Pi_{i}}>x_{\Pi_{i}} \quad\right. \text { (ibid.) }
$$

[Note: A priori, this is an equality in the L^{2}-sense, hence is valid almost everywhere. But both sides are continuous, thus the equality is valid everywhere.]

Let G be a compact connected Lie group.

5: NOTATION $\mathrm{CL}^{\infty}(\mathrm{G})$ is the set of C^{∞} class functions.

6: RAPPEL The characters of G belong to $C L^{\infty}(G)$.

7: N.B. Therefore $X(G)$ is a subring of the ring of C^{∞} functions on G.

8: REMARK Per \#4, suppose that $f \in C L(G)$ has the property that

$$
\left\langle f, x_{\Pi}>\in Z\right.
$$

for all $\Pi \in \hat{G}$-- then it follows after the fact that $f \in C L^{\infty}(G)$.

Let $T \subset G$ be a maximal torus and assign to the symbol $X(T)$ the obvious interpretation.

9: RAPPEL The arrow

$$
f \rightarrow f \mid T
$$

of restriction defines an isomorphism

$$
C L(G) \rightarrow C(T)^{W} \quad(C f . \S 4, \# 24)
$$

10: APPLICATION Restriction to T induces an injective homomorphism

$$
X(G) \rightarrow X(T)^{W}
$$

Take a $\phi \in \mathrm{X}(\mathrm{T})^{\mathrm{W}}$ and let $\mathrm{f} \in \mathrm{CL}(\mathrm{G})$ be the class function that restricts to ϕ.

11: LEMMA f is a virtual character of G, i.e., $f \in X(G)$.
PROOF With \#4 in view, write

$$
\left\langle f, x_{\Pi}\right\rangle=\int_{G} f(x) \overline{\chi_{\Pi}(x)} d_{G}(x)
$$

$$
\begin{aligned}
& =\frac{1}{\left\lvert\, \frac{W}{W}\right.} \delta_{T}|\Delta(t)|^{2} \phi(t){x_{I}}(t) d_{T}(t) \\
& =\frac{1}{|W|} \delta_{T} \Delta(t) \phi(t) \overline{\Delta(t) X_{I I}(t)} d_{T}(t) \\
& \in \frac{1}{|W|}(|W| Z)=Z .
\end{aligned}
$$

12: SCHOLIUM

$$
\mathrm{X}(\mathrm{G}) \approx \mathrm{X}(\mathrm{~T})^{\mathrm{W}}
$$

13: N.B. Rephrased, a continuous class function $f: G \rightarrow C$ is a virtual character of G iff $f \mid T$ is a virtual character of T.

14: THEOREM Let $f \in C L(G)$-- then $f \in X(G)$ iff its restriction to every finite elementary subgroup of G is a virtual character.

PROOF To establish the nontrivial assertion, let $H \subset G$ be a finite subgroup -then the assumption on f coupled with A, II, §l2, \#l implies that $f \mid H \in X(H)$. Matters can thus be reinforced, the assumption on f becoming that its restriction to every finite subgroup of G is a virtual character and, thanks to what has been said above, one might just as well work with T rather than G. Choose a sequence $H_{1} \subset H_{2} \subset \cdots$ of finite subgroups of T whose union is dense in $T-$ then $\forall X \in X(T)$,

$$
\begin{aligned}
\langle f, x\rangle_{T}=\delta_{T} f \bar{X} & =\lim _{n \rightarrow \infty}\left(\frac{1}{\left|H_{n}\right|} \sum_{h \in H_{n}} f(h) \overline{\chi(h)}\right) \\
& =\lim _{n \rightarrow \infty}\langle f, X\rangle_{H_{n}} .
\end{aligned}
$$

But

$$
\begin{aligned}
f \mid H_{n} & \in X\left(H_{n}\right) \\
& \Rightarrow\langle f, x\rangle_{H_{n}} \in Z \\
& \Rightarrow\langle f, x\rangle_{T} \in Z .
\end{aligned}
$$

§14. INDUCTION

Let G be a finite group, $\Gamma \subset G$ a subgroup.

1: RAPPEL Tnere is an arrow

$$
i_{\Gamma \rightarrow G}: C L(\Gamma) \rightarrow C L(G)
$$

which sends characters of Γ to characters of G (cf. A, II, §9, \#10), thus induces an arrow

$$
X(\Gamma) \rightarrow X(G) .
$$

2: N.B. If

$$
\mathrm{G}=\prod_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}} \Gamma
$$

and if $\phi \in C L(\Gamma)$ is a class function, then

$$
\left(i_{\Gamma \rightarrow G^{\phi}}\right)(x)=\sum_{k=1}^{n} \stackrel{\circ}{\phi}\left(x_{k}^{-1} \mathrm{xx}_{\mathrm{k}}\right) \quad \text { (cf. A, II, §7, \#10), }
$$

i.e.,

$$
\left(i_{\Gamma \rightarrow G^{\phi}}\right)(x)=\sum_{k, x_{k}^{-1} x_{k} \in \Gamma} \phi\left(x_{k}^{-1} \mathrm{xx}_{k}\right) .
$$

Let G be a compact Lie group, Γ с G a closed Lie subgroup.

3: NOTATION Given an $x \in G$, write $(G / \Gamma)^{x}$ for the fixed point set of the action of x on G / Γ.

4: LEMMA A coset $y \Gamma$ in G / Γ lies in $(G / \Gamma)^{x}$ iff $y^{-1} x y \in \Gamma$.

5: LEMMA If cosets $Y_{1} \Gamma, Y_{2} \Gamma$ lie in the same connected component of $(G / \Gamma)^{x}$, then $y_{2} \Gamma=Y y_{1} \Gamma$ for some y in the centralizer of x.

6: N.B. If $\phi \in C L(\Gamma)$ is a class function and if $y_{2}=y y_{1} \gamma$, then

$$
\begin{aligned}
\phi\left(y_{2}^{-1} x y_{2}\right) & =\phi\left(\gamma^{-1} y_{1}^{-1} y^{-1} x y y_{1} \gamma\right) \\
& =\phi\left(y_{1}^{-1} y^{-1} x y y_{1}\right) \\
& =\phi\left(y_{1}^{-1} x y_{1}\right) .
\end{aligned}
$$

Let C_{1}, \ldots, C_{m} be the connected components of $(G / \Gamma)^{x}$, thus

$$
(G / \Gamma)^{x}=\prod_{j=1}^{m} c_{j},
$$

let $X\left(C_{j}\right)$ be the Euler characteristic of C_{j}, and fix elements

$$
\mathrm{y}_{1} \Gamma \in \mathrm{C}_{1}, \ldots, \mathrm{y}_{\mathrm{m}} \Gamma \in \mathrm{C}_{\mathrm{m}}
$$

7: NOTATION Given a class function $\phi \in \mathrm{CL}(\Gamma)$, put

$$
\left(i_{\Gamma \rightarrow G^{\phi}}\right)(x)=\sum_{j=1}^{m} \chi\left(C_{j}\right) \phi\left(y_{j}^{-1} x y_{j}\right)
$$

8: LEMMA

$$
\mathbf{i}_{\Gamma \rightarrow \mathrm{G}^{\phi} \in \mathrm{CL}(\mathrm{G}),}
$$

the induced class function.

9: N.B. Therefore

$$
i_{\Gamma \rightarrow G}: C L(\Gamma) \rightarrow C L(G)
$$

10: REMARK The definition of $i_{\Gamma \rightarrow G}{ }^{\phi}$ is independent of the choice of representatives $y_{j} \Gamma$ for the components of $(G / \Gamma)^{x}$ but it is not quite obvious that $i_{\Gamma \rightarrow G^{\prime}}$ is continuous.

11: RECONCILIATION Take the case when G and $\Gamma \subset G$ are finite. Write

$$
G=\prod_{k=1}^{n} x_{k} \Gamma
$$

Then, as recalled in \#2,

$$
\begin{aligned}
&\left(i_{\Gamma \rightarrow G^{\phi}}^{\phi)}(x)=\right. \sum \\
& k, x_{k}^{-1} x_{k} \in \Gamma
\end{aligned} \phi\left(x_{k}^{-1} x_{k}\right)
$$

which, in view of \#4, is equal to

$$
\begin{aligned}
& \sum \\
& y \Gamma \in G / \Gamma \\
& y \Gamma=y \Gamma
\end{aligned}
$$

or still, is equal to

$$
\sum_{y \Gamma \in(G / \Gamma)^{x}} \phi\left(y^{-1} x y\right) .
$$

But here the C_{j} are points, say

$$
C_{j}=\left\{y_{j} \Gamma\right\} \Leftrightarrow(G / \Gamma)^{x}=\left\{\left\{y_{1} \Gamma\right\}, \ldots,\left\{y_{m} \Gamma\right\}\right\}
$$

so $\chi\left(C_{j}\right)=1$, thus

$$
\begin{aligned}
\sum_{j=1}^{m} x\left(C_{j}\right) \phi\left(y_{j}^{-1} x y_{j}\right) & =\sum_{j=1}^{m} \phi\left(y_{j}^{-1} x y_{j}\right) \\
& =\sum_{y \Gamma \in(G / \Gamma)^{x}}^{\sum} \phi\left(y^{-1} x y\right) .
\end{aligned}
$$

12: RAPPEL A compact connected Lie group of positive dimension has zero Euler characteristic, so the connected components of a compact Lie group of positive dimension have zero Euler characteristic.

13: EXAMPIE Take $\Gamma=\{e\}$, let $\phi=l_{\Gamma}$, and assume that $\operatorname{dim} G>0-$ then $(G / \Gamma)^{x}$ is empty of $x \neq e$, hence for such x,

$$
\left(i_{\Gamma \rightarrow G}{ }^{\phi}\right)(x)=0,
$$

but if $x=e$, then $(G / \Gamma)^{e}=G$ and

$$
\begin{aligned}
\left(i_{\Gamma \rightarrow G^{\phi}}\right)(e) & =\sum_{j=1}^{m} \chi\left(C_{j}\right) \phi\left(y_{j}^{-1} e y_{j}\right) \\
& =\left(\sum_{j=1}^{m} \chi\left(c_{j}\right)\right) \phi(e) \\
& =0 .
\end{aligned}
$$

Therefore

$$
\mathrm{i}_{\Gamma \rightarrow{ }_{\mathrm{G}}} \phi=0 .
$$

14: DEFTNITION A closed subgroup H of G is generic if it is topologically cyclic and of finite index in its normalizer.
[Note: Let G be a compact connected Lie group, $T \subset G$ a maximal torus -- then T is generic.]

15: DEFINITION An element $x \in G$ is generic if it generates a generic subgroup of G.
[Note: Let G be a compact connected Lie group -- then a generic element is necessarily regular.]

16: IEMMA The generic elements are dense in G.

17: THEOREM Suppose that $x \in G$ is generic -- then

$$
\left|(\mathrm{G} / \Gamma)^{\mathrm{x}}\right|>\infty
$$

and

$$
\left(i_{\Gamma \rightarrow G^{\phi}}\right)(x)=\sum_{y \Gamma \in(G / \Gamma)} \phi\left(y^{-1} x y\right) .
$$

18: EXAMPLE Take $\Gamma=\{e\}$, let $\phi=I_{\Gamma}$, and assume that $\operatorname{dim} G>0-$ then at every generic element of G,

$$
\left(\mathrm{i}_{\Gamma \rightarrow G^{\phi}}\right)(\mathrm{x})=0,
$$

hence by continuity (in conjunction with \#16),

$$
\mathrm{i}_{\Gamma \rightarrow \mathrm{G}^{\phi}}=0 \quad \text { (cf. \#l3). }
$$

Let G be a compact Lie group, let $\Gamma_{1}, \Gamma_{2} \subset G$ be closed Lie subgroups, and let

$$
G=\bigcup_{s \in S} \Gamma_{1} s \Gamma_{2}
$$

be a double coset decomposition of G.

19: N.B.

$$
\Gamma_{1} \backslash G / \Gamma_{2}
$$

is the orbit space per the action of Γ_{1} by left translation on G / Γ_{2}.

Write

$$
\Gamma_{1} \backslash G / \Gamma_{2}=\prod_{s \in S} U_{S}
$$

where each U_{S} is a connected component of one orbit type for the action of Γ_{l} on
$G / \Gamma_{2} . \quad$ Fix elements $x_{s} \in G$ such that $\Gamma_{1} x_{s} \Gamma_{2} \in U_{S}$ and for each s let

$$
\Phi_{s}: C L\left(\Gamma_{2}\right) \rightarrow C L\left(\Gamma_{1}\right)
$$

denote the following composite: Take a $\phi \in C L\left(\Gamma_{2}\right)$ and form $\phi^{s} \equiv \phi \circ I_{x_{S}}^{-1}$ (a class function on $x_{s} \Gamma_{2} x_{s}^{-1}$), then restrict ϕ^{s} to $\Gamma_{2}(s) \equiv x_{s} \Gamma_{2} x_{s}^{-1} \cap \Gamma_{1}$, call it $\phi_{s^{\prime}}$, and finally apply $i_{\Gamma_{2}}(s) \rightarrow \Gamma_{1}$. I.e.:

$$
\Phi_{s}(\phi)=i_{\Gamma_{2}(s)} \rightarrow \Gamma_{1} \phi_{s}
$$

20: THEOREM As maps from $C L\left(\Gamma_{2}\right)$ to $C L\left(\Gamma_{1}\right)$,

$$
r_{G \rightarrow \Gamma_{1}}{ }^{\circ} i_{\Gamma_{2}} \rightarrow G=\sum_{\mathrm{S} \in \mathrm{~S}} \chi^{\#}\left(U_{\mathrm{S}}\right) \Phi_{\mathrm{S}^{\prime}}
$$

where for each $s \in S$,

$$
x^{\#}\left(\mathrm{U}_{\mathrm{S}}\right)=x\left(\overline{\mathrm{U}}_{\mathrm{S}}\right)-x\left(\overline{\mathrm{U}}_{\mathrm{S}}-\mathrm{U}_{\mathrm{S}}\right) .
$$

21: N.B. When G and $\Gamma_{1}, \Gamma_{2} \subset G$ are finite, matters reduce to $A, I I, \S 8, \# 3$.

Here is a sketch of the proof.

1. Fix a class function $\phi \in C L\left(\Gamma_{2}\right)$ and a $\gamma_{1} \in \Gamma_{1}$.
2. Let $\tilde{U}_{S} \subset G / \Gamma_{2}$ denote the inverse image of U_{S} under the projection to $\Gamma_{1} \backslash G / \Gamma_{2}$, thus

$$
\mathrm{G} / \Gamma_{2}=\prod_{\mathrm{S} \in \mathrm{~S}} \tilde{\mathrm{U}}_{\mathrm{S}}
$$

3. Let C_{1}, \ldots, C_{m} be the connected components of $\left(G / \Gamma_{2}\right)^{\gamma_{1}}$, thus

$$
\left(G / \Gamma_{2}\right)^{\gamma_{1}}=\prod_{j=1}^{m} c_{j}
$$

4. For each pair (s, j), put

$$
v_{s, j}=\left(\Gamma_{1} \cdot x_{s} \Gamma_{2}\right) \cap C_{j} \subset \tilde{U}_{s} \cap C_{j} \subset G / \Gamma_{2}
$$

5. The arrows

$$
\mathrm{v}_{\mathrm{s}, \mathrm{j}} \rightarrow \tilde{\mathrm{U}}_{\mathrm{s}} \cap \mathrm{C}_{j} \rightarrow \mathrm{U}_{\mathrm{s}}
$$

are a fibration sequence, hence by the multiplicativity of the Euler characteristic,

$$
x\left(C_{j}\right)=\sum_{s \in S} x\left(V_{s, j}\right) x^{\#}\left(U_{s}\right)
$$

6. Fix elements $\gamma_{s, j} \in \Gamma_{1}$ such that

$$
\gamma_{s, j} x_{s} \Gamma_{2} \in v_{s, j}
$$

Then in particular,

$$
\begin{array}{ll}
& \gamma_{s, j} x_{s} \Gamma_{2} \in\left(G / \Gamma_{2}\right)^{\gamma_{1}} \\
\Rightarrow & x_{s}^{-1} \gamma_{s, j}^{-1} \gamma_{1} \gamma_{s, j} x_{s} \in \Gamma_{2} \\
\Rightarrow \quad & \\
& \gamma_{s, j}^{-1} \gamma_{1} \gamma_{s, j} \in x_{s} \Gamma_{2} x_{s}^{-1},
\end{array}
$$

the domain of ϕ^{s}.
7. From the definitions,

$$
\begin{aligned}
\left(r _ { G \rightarrow \Gamma _ { 1 } } \left(i_{\Gamma_{2}}\right.\right. & \left.\rightarrow G^{\phi)}\right)\left(\gamma_{1}\right) \\
& =\sum_{j=1}^{m} x\left(C_{j}\right) \phi\left(y_{j}^{-1} \gamma_{1} y_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{s \in S} \sum_{j=1}^{m} x\left(V_{s, j}\right) x^{\#}\left(U_{s}\right) \phi\left(x_{s}^{-1} \gamma_{S, j}^{-1} \gamma_{1} \gamma_{s, j} x_{s}\right) \\
& =\sum_{s \in S} x^{\#}\left(U_{s}\right) \sum_{j=1}^{m} x\left(V_{s, j}\right) \phi^{s}\left(\gamma_{s, j}^{-1} \gamma_{1} \gamma_{s, j}\right)
\end{aligned}
$$

8. The isotropy subgroup of the action of Γ_{1} on $x_{s} \Gamma_{2} \in G / \Gamma_{2}$ is

$$
\Gamma_{2}(s)=x_{s} \Gamma_{2} x_{s}^{-1} \cap \Gamma_{1}
$$

And

$$
\begin{aligned}
\left(\Gamma_{1} / \Gamma_{2}(s)\right)^{\gamma_{1}} & \approx\left(\Gamma_{1} \cdot x_{s} \Gamma_{2}\right)^{\gamma_{1}} \\
& =\prod_{j=1}^{m} \nabla_{s, j} \subset G / \Gamma_{2} .
\end{aligned}
$$

9. Given $s \in S$,

$$
\begin{aligned}
& \sum_{j=1}^{m} x\left(v_{s, j}\right) \phi^{s}\left(\gamma_{s, j}^{-1} \gamma_{1} \gamma_{s, j}\right) \\
& \\
& =\left(i_{\Gamma_{2}}(s) \rightarrow \Gamma_{1} \phi^{s}\right)\left(\gamma_{1}\right) .
\end{aligned}
$$

10. Therefore

$$
\begin{aligned}
&\left(r_{G \rightarrow \Gamma_{1}}\left(i_{\Gamma_{2}} \rightarrow G^{\phi}\right)\right)\left(\gamma_{1}\right) \\
&=\sum_{\mathbf{s} \in S} x^{\#}\left(U_{S}\right)\left(i_{\Gamma_{2}}(s) \rightarrow \Gamma_{1} \phi^{s}\right)\left(\gamma_{1}\right) \\
&=\sum_{s \in S} x^{\#}\left(U_{S}\right) \Phi_{s}(\phi)\left(\gamma_{1}\right),
\end{aligned}
$$

the contention.

22: THEOREM The arrow

$$
\mathrm{i}_{\Gamma \rightarrow \mathrm{G}}: \mathrm{CL}(\Gamma) \rightarrow \mathrm{CL}(\mathrm{G})
$$

sends virtual characters to virtual characters, thus induces an arrow

$$
X(\Gamma) \rightarrow X(G)
$$

PROOF Recall first that this is true when G is finite (cf. \#l). In general, let $X \in X(\Gamma)$-- then to conclude that

$$
\mathbf{i}_{\Gamma \rightarrow G^{X}} \in \mathrm{X}(\mathrm{G}),
$$

it suffices to show that its restriction to every finite subgroup H of G is a virtual character (cf. §l3, \#l4). So consider

$$
\mathrm{r}_{\mathrm{G}} \rightarrow \mathrm{H}^{\left(\mathrm{i}_{\Gamma} \rightarrow \mathrm{G}^{X}\right)}
$$

or still, take in the above $\Gamma_{1}=H, \Gamma_{2}=\Gamma, \phi=\chi$, and consider

$$
\sum_{\mathbf{s} \in \mathrm{S}} \chi^{\#}\left(U_{\mathrm{S}}\right) \Phi_{\mathbf{S}}(\chi)
$$

Here

$$
\Phi_{s}(X)=i_{x_{s} \Gamma x_{s}^{-1} \cap H \rightarrow H^{S^{\prime}}}
$$

where X_{S} is the restriction of χ^{s} to $\Gamma(s) \equiv x_{s}\left[x_{s}^{-1} \cap H\right.$, a finite group. But now

$$
X_{s} \in X(\Gamma(s)) \Rightarrow i_{\Gamma(s)} \rightarrow H^{X} \in X(H),
$$

which finishes the proof.

23: N.B. If G is finite, then the arrow

$$
i_{\Gamma \rightarrow G}: C L(\Gamma) \rightarrow C L(G)
$$

sends characters of Γ to characters of G but this need not be true if dim $G>0$
(cf. \#13) (1_{Γ} is a character of Γ but the induced class function

$$
i_{\Gamma} \rightarrow G^{1}{ }_{\Gamma}
$$

is identically zero, a virtual character, not a character).

24: REMARK Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus -- then

$$
\hat{\mathrm{G}} \longleftrightarrow \mathrm{~d} \hat{\mathrm{~T}} \cap \overline{\mathrm{C}} \quad \text { (cf. §10, \#23). }
$$

While the theory developed above gives rise to an arrow

$$
X(T) \rightarrow X(G),
$$

it does not respect the foregoing parameterization which can only be accomplished by a more sophisticated version of the preceding process.

APPENDIX

There is a different approach to induction which is suggested by A, II, §9, \#1. So let G be a compact Lie group, Γ c G a closed Lie subgroup.

CONSTRUCTION Let (θ, E) be a finite dimensional unitary representation of Γ and denote by $\mathrm{E}_{\mathrm{\Gamma}, \theta}^{\mathrm{G}}$ the space of all E -valued measurable functions f on G such that $f(x \gamma)=\theta\left(\gamma^{-1}\right) f(x)(x \in G, \gamma \in \Gamma)$ subject to

$$
\mathrm{G}^{\int} / \Gamma \mid f \|^{2} \mathrm{~d}_{\mathrm{G} / \Gamma}<\infty
$$

Then the prescription

$$
\left(\operatorname{Ind}_{\Gamma, \theta}^{G}(x) f\right)(y)=f\left(x^{-1} y\right)
$$

defines a representation $\operatorname{Ind}{ }_{\Gamma, \theta}^{G}$ of G on $E_{\Gamma, \theta}^{G}$, the representation of G induced by θ.
N.B. The inner product

$$
\langle f, g\rangle_{\theta}=\int_{\mathrm{G} / \Gamma}\left\langle\mathrm{f}, \mathrm{~g}>\mathrm{d}_{\mathrm{G} / \Gamma}\right.
$$

equips $E_{\Gamma, \theta}^{G}$ with the structure of a Hilbert space and $I_{\Gamma}{ }_{\Gamma}{ }^{G}, \theta$ is a unitary representation.

EXAMPIE Take θ to be the trivial representation of Γ on $E=C-$ then $\mathrm{E}_{\Gamma, \theta}^{\mathrm{G}}=\mathrm{L}^{2}(\mathrm{G} / \Gamma)$.
[Note: When $\Gamma=\{e\}, \mathrm{E}_{\Gamma, \theta}^{\mathrm{G}}=\mathrm{L}^{2}(\mathrm{G})$ and

$$
\operatorname{Ind}_{\Gamma, \theta}^{G}=\mathrm{L},
$$

the left translation representation of $G(c f .81, \# 5)$.
§1. ORBITAL INTEGRALS

Let G be a compact group.

1: DEFINITION Given $f \in C(G)$ and $\gamma \in G$, put

$$
O(f, \gamma)=\delta_{G} f\left(x \gamma x^{-1}\right) d_{G}(x),
$$

the orbital integral of f at γ.

2: LEMMA The function $O(f)$ defined by the assignment

$$
\gamma \rightarrow O(f, \gamma)
$$

is a continuous class function on G, i.e., is an element of $C L(G)$.

3: RAPPEL If $f \in C(G)_{\text {fin }}$ then

$$
\left\langle\mathrm{f}, \mathrm{x}_{\Pi \mathrm{II}}\right\rangle=0
$$

for all but finitely many I.

$$
\begin{aligned}
& \text { 4: LEMMA Suppose that } f \in C(G) \text { fin }- \text { then } \forall \gamma \in G \text {, } \\
& \qquad O(f, \gamma)=\sum_{\Pi \in G} \operatorname{tr}\left(\Pi^{*}(f)\right) x_{\Pi}(\gamma) \quad \text { (cf. A, III, §1, \#3), }
\end{aligned}
$$

the sum on the right being finite.
PROOF Apply I, §2, \#19 to get

$$
O(f)=\sum_{\Pi \in \hat{G}}<\mathcal{O}(f), x_{\Pi}>x_{\Pi},
$$

where the series converges in $\mathrm{L}^{2}(\mathrm{G})$. But

$$
<0(f), x_{\Pi}>=\delta_{G} O(f, \gamma) \overline{x_{\Pi}(\gamma)} d_{G}(\gamma)
$$

$$
\begin{aligned}
& =\int_{G}\left(\int_{G} f\left(x \gamma x^{-1}\right) d_{G}(x)\right) \overline{x_{\Pi}(\gamma)} d_{G}(\gamma) \\
& =\delta_{G}\left(\int_{G} f\left(x \gamma x^{-1}\right) \overline{x_{\Pi}(\gamma)} d_{G}(\gamma)\right) d_{G}(x) \\
& =\int_{G}\left(\int_{G} f(\gamma) \overline{x_{\Pi}\left(x^{-1} \gamma x\right)} d_{G}(\gamma)\right) d_{G}(x) \\
& =\delta_{G}\left(\delta_{G} f(\gamma) \overline{\left.x_{\Pi}(\gamma) d_{G}(\gamma)\right) d_{G}(x)}\right. \\
& =\delta_{G}\left\langle f, x_{\Pi}\right\rangle d_{G}(x)=\left\langle f, x_{\Pi}\right\rangle .
\end{aligned}
$$

Therefore $\left\langle 0(f), X_{\Pi l}>=0\right.$ for all but finitely many Π, thus the almost everywhere equality

$$
O(f)=\sum_{\Pi \in \hat{G}}<O(f), x_{\Pi 1}>x_{\Pi}
$$

is that of two continuous functions, thus is valid everywhere. Finally, from the definitions,

$$
\begin{aligned}
\left\langle f, X_{\Pi i}\right\rangle & =\delta_{G} f(x) \overline{X_{\Pi}(x)} d_{G}(x) \\
& =\delta_{G} f(x) \chi_{\Pi^{*}}(x) d_{G}(x) \\
& =\delta_{G} f(x) \operatorname{tr}\left(\Pi^{*}(x)\right) d_{G}(x) \\
& =\operatorname{tr}\left(\Pi^{*}(f)\right) .
\end{aligned}
$$

§2. KERNELS

Let $(X, \mu),(Y, \nu)$ be σ-finite measure spaces.

1: NOTATION Given $K \in L^{2}(X \times Y)$, define $T_{K}: L^{2}(Y) \rightarrow L^{2}(X)$ by

$$
\left(\mathrm{T}_{\mathrm{K}} \phi\right)(\mathrm{x})=\int_{\mathrm{Y}} \mathrm{~K}(\mathrm{x}, \mathrm{y}) \phi(\mathrm{y}) \mathrm{d} \nu(\mathrm{y}) .
$$

2: THEOREM The map $K \rightarrow T_{K}$ is a linear isometry of $\mathrm{L}^{2}(\mathrm{X} \times \mathrm{Y})$ onto $\mathrm{L}_{\mathrm{HS}}\left(\mathrm{L}^{2}(\mathrm{Y}), \mathrm{L}^{2}(\mathrm{X})\right)$.

3: NOTAIION Given

$$
\left[\begin{array}{l}
\mathrm{K}_{1} \in \mathrm{~L}^{2}(\mathrm{X} \times \mathrm{Y}) \\
\mathrm{K}_{2} \in \mathrm{~L}^{2}(\mathrm{Y} \times \mathrm{Z})
\end{array}\right.
$$

define their convolution

$$
K_{1} * K_{2} \in L^{2}(X \times Z)
$$

by

$$
\left(K_{1} * K_{2}\right)(x, z)=\int_{Y} K_{1}(x, y) K_{2}(y, z) d \nu(y)
$$

[Note: The underlying measure-theoretic assumption is again σ-finiteness (which is needed infra for Fubini).]

4: THEOREM

$$
\mathrm{T}_{\mathrm{K}_{1}} \circ \mathrm{~T}_{\mathrm{K}_{2}}=\mathrm{T}_{\mathrm{K}_{1} * \mathrm{~K}_{2}}
$$

5: APPLICATION Take $\mathrm{X}=\mathrm{Y}=\mathrm{Z}$-- then

$$
\left[\begin{array}{l}
\mathrm{T}_{\mathrm{K}_{1}}: \mathrm{L}^{2}(\mathrm{X}) \rightarrow \mathrm{L}^{2}(\mathrm{x}) \\
\mathrm{T}_{\mathrm{K}_{2}}: \mathrm{L}^{2}(\mathrm{x}) \rightarrow \mathrm{L}^{2}(\mathrm{x})
\end{array}\right.
$$

are Hilbert-Schmidt, hence

$$
\mathrm{T}_{\mathrm{K}_{1} * \mathrm{~K}_{2}}: \mathrm{L}^{2}(\mathrm{X}) \rightarrow \mathrm{L}^{2}(\mathrm{X})
$$

is trace class.

$$
\begin{aligned}
& \text { 6: LEMMA Take } \mathrm{X}=\mathrm{Y}=\mathrm{Z} \text { and put } \mathrm{K}=\mathrm{K}_{1} * \mathrm{~K}_{2}-\text { then } \\
& \qquad \operatorname{tr}\left(\mathrm{T}_{\mathrm{K}}\right)=\int_{\mathrm{X}} \mathrm{~K}(\mathrm{x}, \mathrm{x}) \mathrm{d} \mu(\mathrm{x}) .
\end{aligned}
$$

PROOF

$$
\begin{aligned}
& \operatorname{tr}\left(\mathrm{T}_{\mathrm{K}}\right)=\operatorname{tr}^{\left(\mathrm{T}_{\mathrm{K}_{1}}{ }^{\circ} \mathrm{T}_{\mathrm{K}_{2}}\right)} \\
&=\left\langle\mathrm{T}_{\mathrm{K}_{2}}, \mathrm{~T}_{\mathrm{K}_{1}^{*}}^{*}\right\rangle \mathrm{HS} \\
&=\left\langle\mathrm{K}_{2}, \mathrm{~K}_{1}^{*}\right\rangle \\
&=\int_{\mathrm{X}} \int_{\mathrm{X}} \mathrm{~K}_{2}(\mathrm{y}, \mathrm{x}) \overline{\mathrm{K}_{1}^{*}(\mathrm{y}, \mathrm{x})} \mathrm{d} \mu(\mathrm{y}) \mathrm{d} \mu(\mathrm{x}) \\
&=\int_{\mathrm{X}} \delta_{\mathrm{X}} \mathrm{~K}_{2}(\mathrm{y}, \mathrm{x}) \overline{\overline{\mathrm{K}_{1}(\mathrm{x}, \mathrm{y})}} \mathrm{d} \mu(\mathrm{y}) \mathrm{d} \mu(\mathrm{x}) \\
&=\int_{\mathrm{X}} \delta_{\mathrm{X}} \mathrm{~K}_{1}(\mathrm{x}, \mathrm{y}) \mathrm{K}_{2}(\mathrm{y}, \mathrm{x}) \mathrm{d} \mu(\mathrm{y}) \mathrm{d} \mu(\mathrm{x}) \\
&= \int_{\mathrm{X}} \mathrm{~K}_{1} * \mathrm{~K}_{2}(\mathrm{x}, \mathrm{x}) \mathrm{d} \mu(\mathrm{x})
\end{aligned}
$$

$$
=\int_{X} K(x, x) d \mu(x) .
$$

7: REMARK It can happen that $\mathrm{K}_{1}=\mathrm{K}_{2}$ a.e. (so $\mathrm{T}_{\mathrm{K}_{1}}=\mathrm{T}_{\mathrm{K}_{2}}$), yet

$$
\int_{X} K_{1}(x, x) d \mu(x) \neq \int_{X} K_{2}(x, x) d \mu(x) .
$$

[E.g.: Take $\mathrm{X}=\mathrm{Y}=[0,1], \mathrm{K}_{1} \equiv 0, \mathrm{~K}_{2}=\mathrm{X}_{\Delta}$ (Δ the diagonal).]

8: THEOREM Let X be a locally compact Hausdorff space, μ a σ-finite Radon measure on X. Suppose that $K \in L^{2}(X \times X)$ is separately continuous and T_{K} is trace class -- then the function

$$
x \rightarrow K(x, x)
$$

is integrable on X and

$$
\operatorname{tr}\left(\mathrm{T}_{\mathrm{K}}\right)=\int_{\mathrm{X}} \mathrm{~K}(\mathrm{x}, \mathrm{x}) \mathrm{d} \mu(\mathrm{x})
$$

APPENDIX

LEMMA Let M be a compact C^{∞} manifold, μ a smooth measure on $\mathrm{M}, \mathrm{T}: \mathrm{L}^{2}(\mathrm{M}) \rightarrow$ $C^{2 k}(M) \quad\left(k>\frac{1}{4} \operatorname{dim} M\right)-$ then T is trace class.

PROOF Let \triangle be a Laplacian on M and write

$$
T=(1-\Delta)^{-k}(1-\Delta)^{\mathrm{k}} \mathrm{~T}
$$

Then

$$
(1-\Delta)^{k} T\left(L^{2}(M)\right) \subset C(M) \subset L^{\infty}(M)
$$

so $(1-\Delta) \mathrm{k}^{\mathrm{T}}$ is Hilbert-Schmidt. On the other hand, by Sobolev theory,

$$
(1-\Delta)^{-k} L^{2}(M) \subset H^{2 k}(M) \subset C(M)
$$

thus $(1-\Delta)^{-\mathrm{k}}$ is also Hilbert-Schmidt.
§3. THE LOCAL TRACE FORMULA

Let G be a compact group.

I: NOTATION Denote by $\pi_{L, R}$ the representation of $G \times G$ on $L^{2}(G)$ given by

$$
\left.\left(\pi_{L, R}\left(x_{1}, x_{2}\right) f\right)(x)=f\left(x_{1}^{-1} \mathrm{xx}_{2}\right) \quad \text { (cf. A, III, } \S 2, \# 1\right)
$$

2: LEMMA $\pi_{L, R}$ is unitary.
PROOF

$$
\begin{aligned}
& \left\|\pi_{L, R}\left(x_{1}, x_{2}\right) f\right\|^{2} \\
& \quad=\int_{G}\left|\left(\pi_{L, R}\left(x_{1}, x_{2}\right) f\right)(x)\right|^{2} d_{G}(x) \\
& \quad=\int_{G}\left|f\left(x_{1}^{-1} x_{x_{2}}\right)\right|^{2} d_{G}(x) \\
& \quad=\int_{G}|f(x)|^{2} d_{G}(x)=\|f\|^{2} .
\end{aligned}
$$

Given $f_{1}, f_{2} \in C(G)$, define $f \in C(G \times G)$ by

$$
f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)
$$

and let

$$
\pi_{L, R}(f)=\int_{G} \int_{G} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \pi_{L, R}\left(x_{1}, x_{2}\right) d_{G}\left(x_{1}\right) d_{G}\left(x_{2}\right) .
$$

Then $\forall \phi \in \mathrm{L}^{2}$ (G),

$$
\begin{aligned}
\left(\pi_{L, R}(f) \phi\right)(x) & =\int_{G} \int_{G} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \phi\left(x_{I}^{-l} x_{2}\right) d_{G}\left(x_{1}\right) d_{G}\left(x_{2}\right) \\
& =\delta_{G} K_{f}(x, y) \phi(y) d_{G}(y),
\end{aligned}
$$

where

$$
K_{f}(x, y)=\int_{G} f_{l}(x z) f_{2}(z y) d_{G}(z)
$$

Therefore $\pi_{L, R}(f)$ is an integral operator on $L^{2}(G)$ with kernel $K_{f}(x, y)$.

3: CONSTRUCTION

- Given $f_{1} \in C(G)$, put

$$
\mathrm{K}_{\mathrm{f}_{1}}(\mathrm{x}, \mathrm{y})=\mathrm{f}_{1}\left(x y^{-1}\right) \quad(x, y \in G)
$$

Then

$$
K_{1} \in L^{2}(G \times G) \quad\left(K_{1}=K_{f_{1}}\right)
$$

and

$$
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{K}_{1}} \phi\right)(\mathrm{x})=\delta_{\mathrm{G}} \mathrm{~K}_{\mathrm{l}}(\mathrm{x}, \mathrm{y}) \phi(\mathrm{y}) \mathrm{d}_{\mathrm{G}}(\mathrm{y}) \\
& =\int_{G} f\left(x y^{-1}\right) \phi(y) d_{G}(y) \\
& =\int_{G} f(y) \phi\left(y^{-l} x\right) d_{G}(y) \\
& =\int_{G} f(y)(L(y) \phi)(x) d_{G}(y) \\
& =(\mathrm{L}(\mathrm{f}) \phi)(\mathrm{x}) .
\end{aligned}
$$

- Given $\mathrm{f}_{2} \in \mathrm{C}(\mathrm{G})$, put

$$
K_{f_{2}}(x, y)=f_{2}\left(x^{-1} y\right) \quad(x, y \in G)
$$

Then

$$
\mathrm{K}_{2} \in \mathrm{~L}^{2}(\mathrm{G} \times \mathrm{G}) \quad\left(\mathrm{K}_{2}=\mathrm{K}_{\mathrm{f}_{2}}\right)
$$

and

$$
\begin{aligned}
\left(\mathrm{T}_{\mathrm{K}_{2}} \phi\right)(\mathrm{x}) & =\int_{\mathrm{G}} \mathrm{~K}_{2}(\mathrm{x}, \mathrm{y}) \phi(\mathrm{y}) \mathrm{d}_{\mathrm{G}}(\mathrm{y}) \\
& =\int_{\mathrm{G}} f_{2}\left(\mathrm{x}^{-1} \mathrm{y}\right) \phi(\mathrm{y}) \mathrm{d}_{\mathrm{G}}(\mathrm{y}) \\
& =\int_{\mathrm{G}} f_{2}(\mathrm{y}) \phi(\mathrm{xy}) \mathrm{d}_{\mathrm{G}}(\mathrm{y}) \\
& =\int_{G} f_{2}(\mathrm{y})(\mathrm{R}(\mathrm{x}) \phi)(\mathrm{y}) \mathrm{d}_{\mathrm{G}}(\mathrm{y}) \\
& =(\mathrm{R}(\mathrm{f}) \phi)(\mathrm{x}) .
\end{aligned}
$$

4: LEMMA Let $f_{1}, f_{2} \in C(G)$ and let $f=f_{1} f_{2}$ - then

$$
\mathrm{K}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}_{1}} * \mathrm{~K}_{\mathrm{f}_{2}} .
$$

PROOF

$$
\begin{gathered}
\left(\mathrm{K}_{1} * \mathrm{~K}_{2}\right)(\mathrm{x}, \mathrm{y})=\int_{\mathrm{G}} \mathrm{~K}_{1}(\mathrm{x}, \mathrm{z}) \mathrm{K}_{2}(\mathrm{z}, \mathrm{y}) \mathrm{d}_{\mathrm{G}}(\mathrm{z}) \\
\quad=\int_{\mathrm{G}} f_{1}\left(x z^{-1}\right) f_{2}\left(z^{-1} y\right) d_{G}(z) \\
=\int_{G} f_{1}(x z) f_{2}(z y) d_{G}(z)
\end{gathered}
$$

Since the kernels of

$$
\left[\begin{array}{l}
\mathrm{T}_{\mathrm{K}_{\mathrm{L}}}: \mathrm{L}^{2}(\mathrm{G}) \rightarrow \mathrm{L}^{2}(\mathrm{G}) \\
\mathrm{T}_{\mathrm{K}_{2}}: \mathrm{L}^{2}(\mathrm{G}) \rightarrow \mathrm{L}^{2}(\mathrm{G})
\end{array}\right.
$$

are square integrable, it follows that these operators are Hilbert-Schmidt. But

$$
\mathrm{T}_{\mathrm{K}_{1}} \circ \mathrm{~T}_{\mathrm{K}_{2}}=\mathrm{T}_{\mathrm{K}_{1}} * \mathrm{~K}_{2} \quad \text { (cf. §2, \#4). }
$$

Therefore $T_{K_{1}} * K_{2}$ is trace class, i.e., $T_{K_{f}}$ is trace class, i.e., $\pi_{L, R}(f)$ is trace class.

5: LEMMA

$$
\operatorname{tr}\left(\pi_{L, R}(f)\right)=\int_{G} K_{f}(x, x) d_{G}(x) \quad(c f .82, \# 6)
$$

6: RAPPEL Let

$$
\mathrm{f} \in \operatorname{span}_{\mathrm{C}}\left(\mathrm{~L}^{2}(\mathrm{G}) * \mathrm{~L}^{2}(\mathrm{G})\right) \subset \mathrm{C}(\mathrm{G})
$$

Then

$$
f(e)=\sum_{\Pi \in G} d_{\Pi} \operatorname{tr}(\Pi(f)) \quad(c f . I, \$ 2, \# 15)
$$

We have

$$
\begin{aligned}
\mathrm{K}_{\mathrm{f}}(\mathrm{x}, \mathrm{y}) & =\int_{\mathrm{G}} \mathrm{f}_{1}(\mathrm{xz}) \mathrm{f}_{2}(\mathrm{zy}) \mathrm{d}_{\mathrm{G}}(\mathrm{z}) \\
& =\int_{\mathrm{G}} \mathrm{f}_{1}(\mathrm{u}) \mathrm{f}_{2}\left(\mathrm{x}^{-1} \mathrm{uy}\right) \mathrm{d}_{\mathrm{G}}(\mathrm{u}) \\
& =\int_{G} \mathrm{f}_{1}(\mathrm{u}) \mathrm{f}_{2, x, y}(\mathrm{u}) \mathrm{d}_{\mathrm{G}}(\mathrm{u}) .
\end{aligned}
$$

Put now

$$
F_{x, y}(v)=\int_{G} f_{1}(u) f_{2, x, y}\left(v^{-1} u\right) d_{G}(u)
$$

Then

$$
\begin{aligned}
& F_{x, y}(v)=\int_{G} f_{l}(u) \stackrel{v}{f_{2, x, y}}\left(u^{-1} v\right) d_{G}(u) \\
& =f_{1} * \stackrel{v}{f_{2, x, y}}(v)
\end{aligned}
$$

$$
\begin{aligned}
& \text { => } \\
& =\sum_{\Pi \in G} d_{\Pi} \operatorname{tr}\left(\Pi\left(F_{x, Y}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \mathrm{a}_{\mathrm{H}} \operatorname{tr}\left(\Pi\left(\mathrm{f}_{1} * \stackrel{V}{f}_{2, \mathrm{x}, \mathrm{Y}}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \mathrm{~d}_{\Pi} \operatorname{tr}\left(\Pi\left(\mathrm{f}_{\mathrm{l}}\right) \Pi\left(\stackrel{v}{f}_{2, \mathrm{x}, \mathrm{y}}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} d_{\Pi} \operatorname{tr}\left(\Pi\left(f_{1}\right) \Pi\left(\delta_{x} * \stackrel{v}{f}_{2} * \delta_{y^{-1}}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \mathrm{a}_{\Pi} \operatorname{tr}\left(\Pi\left(\mathrm{f}_{1}\right) \Pi\left(\delta_{\mathrm{x}}\right) \Pi\left(\stackrel{v}{\mathrm{f}}_{2}\right) \Pi\left(\delta_{\mathrm{y}^{-1}}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} d_{\Pi} \operatorname{tr}\left(\Pi\left(\delta_{y^{-1}}\right) \Pi\left(f_{1}\right) \Pi\left(\delta_{x}\right) \Pi\left(\tilde{f}_{2}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \mathrm{~d}_{\Pi} \operatorname{tr}\left(\Pi\left(\mathrm{y}^{-1}\right) \Pi\left(\mathrm{f}_{1}\right) \Pi(\mathrm{x}) \Pi\left(\stackrel{\mathrm{f}}{2}^{2}\right)\right) \\
& \text { => } \\
& \operatorname{tr}\left(\pi_{L, R}(f)\right)=\delta_{G} K_{f}(x, x) d_{G}(x) \\
& =\sum_{\Pi \in \hat{G}} d_{\Pi} \operatorname{tr}\left(\left(\int_{G} \Pi\left(x^{-1}\right) \Pi\left(f_{1}\right) \Pi(x) d_{G}(x)\right) \circ \Pi\left(\stackrel{v}{f_{2}}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \alpha_{\Pi} \operatorname{tr}\left(\left(\delta_{G} \Pi(x) \Pi\left(f_{1}\right) \Pi\left(x^{-l}\right) d_{G}(x)\right) \circ \Pi\left(\hat{f}_{2}\right)\right) .
\end{aligned}
$$

7: SUBLEMMA $\forall \phi \in C(G)$, the operator

$$
\int_{G} \Pi(x) \Pi(\phi) \Pi\left(x^{-1}\right) d_{G}(x)
$$

intertwines Π, hence is a scalar multiple of the identity (cf. I, §1, \#15), call it λ_{ϕ}.

8: N.B.

$$
\begin{aligned}
& \lambda_{\phi}=\delta_{G} \Pi(x) \Pi(\phi) \Pi\left(x^{-1}\right) d_{G}(x) \\
& \text { => } \\
& \lambda_{\phi} d_{\Pi}=\operatorname{tr}\left(f_{G} \Pi(x) \Pi(\phi) \Pi\left(x^{-1}\right) d_{G}(x)\right) \\
& \text { => } \\
& \lambda_{\phi}=\frac{\operatorname{tr}(\Pi(\phi))}{\mathrm{d}_{\Pi}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \operatorname{tr}\left(\pi_{L, R}(f)\right) \\
& =\sum_{\Pi \in G} d_{\Pi} \operatorname{tr}\left(\left(\int_{G} \Pi(x) \Pi\left(f_{1}\right) \Pi\left(x^{-1}\right) d_{G}(x)\right) \circ \Pi\left(\underline{f}_{2}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} d_{\Pi} \lambda_{f_{1}} \operatorname{tr}\left(\Pi\left(\underline{E}_{2}\right)\right) \\
& =\sum_{\Pi \in G} d_{\Pi} \frac{\operatorname{tr}\left(\Pi\left(f_{1}\right)\right)}{d_{\Pi}} \operatorname{tr}\left(\Pi\left({\underset{f}{f}}_{2}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} \operatorname{tr}\left(\Pi\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi\left(\underline{\mathrm{f}}_{2}\right)\right) \\
& =\sum_{\Pi \in \hat{G}} J(\Pi, f)
\end{aligned}
$$

if

$$
J(\Pi, f)=\operatorname{tr}\left(\Pi\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi\left({\underset{f}{f}}_{2}\right)\right) .
$$

9: SUBLEMMA $\forall \phi \in C(G)$,

$$
\begin{aligned}
\operatorname{tr}(\Pi(\stackrel{v}{\phi})) & =\operatorname{tr}\left(\int_{\mathrm{G}} \stackrel{\vee}{\phi}(\mathrm{x}) \Pi(\mathrm{x}) \mathrm{d}_{\mathrm{G}}(\mathrm{x})\right) \\
& =\operatorname{tr}\left(\int_{\mathrm{G}} \phi\left(\mathrm{x}^{-1}\right) \Pi(\mathrm{x}) \mathrm{d}_{\mathrm{G}}(\mathrm{x})\right) \\
& =\operatorname{tr}\left(\int_{\mathrm{G}} \phi(\mathrm{x}) \Pi\left(\mathrm{x}^{-1}\right) \mathrm{d}_{\mathrm{G}}(\mathrm{x})\right) \\
& =\operatorname{tr}\left(\int_{\mathrm{G}} \phi(\mathrm{x}) \Pi^{*}(\mathrm{x}) \mathrm{d}_{\mathrm{G}}(\mathrm{x})\right) \\
& =\operatorname{tr}\left(\Pi^{*}(\phi)\right) .
\end{aligned}
$$

10: N.B. Consequently,

$$
J(\Pi, f)=\operatorname{tr}\left(\Pi\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi^{*}\left(f_{2}\right)\right) .
$$

There is another way to manipulate

$$
\int_{G} K_{f}(x, x) d_{G}(x)
$$

which then leads to a second formula for

$$
\operatorname{tr}\left(\pi_{L, R}(f)\right) .
$$

To wit:

$$
\begin{array}{r}
\int_{G} K_{f}(x, x) d_{G}(x) \\
=\int_{G} \delta_{G} f_{1}\left(x z x^{-1}\right) f_{2}(z) d_{G}(z) d_{G}(x)
\end{array}
$$

or still, for any $y \in G$,

$$
\int_{G} \int_{G} f_{1}\left(x z x^{-1}\right) f_{2}\left(y z y^{-1}\right) d_{G}(z) d_{G}(x) .
$$

Now multiply through by $d_{G}(y)$ and integrate with respect to y :

$$
\begin{gathered}
\operatorname{tr}\left(\pi_{L, R}(f)\right)=\delta_{G} \operatorname{tr}\left(\pi_{L, R}(f)\right) d_{G}(y) \\
=\int_{G} \delta_{G} \delta_{G} f_{l}\left(x z x^{-1}\right) f_{2}\left(y z y^{-1}\right) d_{G}(z) d_{G}(x) d_{G}(y) \\
=\int_{G}\left(\int_{G} f_{1}\left(x z x^{-1}\right) d_{G}(x)\right)\left(\delta_{G} f_{2}\left(y z y^{-1}\right) d_{G}(y)\right) d_{G}(z) \\
=\int_{G} O\left(f_{1}, z\right) O\left(f_{2}, z\right) d_{G}(z) .
\end{gathered}
$$

11: DEFINITION Given $f=f_{1} f_{2}$, the local trace formula is the relation

$$
\begin{aligned}
& \sum_{\Pi \in \hat{G}} J(\Pi, f) \\
&=\sum_{\Pi \in \hat{G}} \operatorname{tr}\left(\Pi\left(f_{1}\right)\right) \operatorname{tr}\left(\Pi^{*}\left(f_{2}\right)\right) \\
&=\int_{G} O\left(f_{1}, z\right) O\left(f_{2}, z\right) d_{G}(z) .
\end{aligned}
$$

Let G be a compact connected semisimple Lie group, $T \subset G$ a maximal torus.

12: RAPPEL For any continuous function $f \in C(G)$,

$$
\delta_{G} f(x) d_{G}(x)=\frac{1}{|W|} \int_{T}|\Delta(t)|^{2} \int_{G} f\left(x t x^{-1}\right) d_{G}(x) d_{T}(t) \quad \text { (cf. I, §9, \#12) }
$$

or still,

$$
\delta_{G} f(x) d_{G}(x)=\frac{1}{|W|} \delta_{T}|\Delta(t)|^{2} O(f, t) d_{T}(t)
$$

As above, let $f=f_{1} f_{2}$-- then

$$
\begin{aligned}
& \int_{G} K_{f}(x, x) d_{G}(x) \\
& =\int_{G} \int_{G} f_{1}\left(x z x^{-1}\right) f_{2}(z) d_{G}(z) d_{G}(x) \\
& =\int_{G} \frac{1}{|W|} \delta_{T}|\Delta(t)|^{2} \delta_{G} f_{I}\left(x y t y^{-1} x^{-1}\right) f_{2}\left(y t y^{-1}\right) d_{G}(y) d_{T}(t) d_{G}(x) \\
& =\frac{1}{|W|} \delta_{T}|\Delta(t)|^{2} \delta_{G}\left(\delta_{G} f_{1}\left(x y t y^{-1} x^{-1}\right) d_{G}(x)\right) f_{2}\left(y t y^{-1}\right) d_{G}(y) d_{T}(t) \\
& =\frac{1}{|W|} \delta_{T}|\Delta(t)|^{2} \delta_{G}\left(\delta_{G} f_{I}\left(x t x^{-1}\right) d_{G}(x)\right) f_{2}\left(y t y^{-1}\right) d_{G}(y) d_{T}(t) \\
& =\frac{1}{\mid W T} \delta_{T}|\Delta(t)|^{2}\left(\delta_{G} f_{1}\left(x t x^{-1}\right) d_{G}(x)\right)\left(\delta_{G} f_{2}\left(y t y^{-1}\right) d_{G}(y)\right) d_{T}(t) \\
& =\frac{1}{|W|} \delta_{T}|\Delta(t)|^{2} O\left(f_{1}, t\right) O\left(f_{2}, t\right) d_{T}(t) .
\end{aligned}
$$

§1. TOPOLOGICAL TERMINOLOGY

1: DEFINITION A topological space X is compact if every open cover of X has a finite subcover.

2: DEFINITION A topological space X is locally compact if every point in X has a neighborhood basis consisting of compact sets.

3: LEMMA A Hausdorff space X is locally compact iff every point in X has a compact neighborhood.

4: APPLICATION Every compact Hausdorff space is locally compact.

5: EXAMPLE R is a locally compact Hausdorff space.

6: EXAMPLE Q is a Hausdorff space but it is not locally compact (Q is first category while a locally compact Hausdorff space is second category).

7: LEMMA An open subset of a locally compact Hausdorff space is locally compact.

8: LEMMA A closed subset of a locally compact Hausdorff space is locally compact.

9: LEMMA In a locally compact Hausdorff space, the intersection of an open set with a closed set is locally compact.

10: EXAMPLE The semiclosed, semiopen interval $[0,1[$ is locally compact. [In fact,

$$
[0,1[=]-1,1[\cap[0,1] .]
$$

11: DEFINITION A topological group is a Hausdorff topological space G equipped with a group structure such that the function from $G \times G$ to G defined by $(x, y) \rightarrow x y^{-1}$ is continuous or still, as is equivalent:

- The function $G \times G \rightarrow G$ that sends (x, y) to $x y$ is continuous.
- The function $G \rightarrow G$ that sends x to x^{-1} is continuous.

If G is a topological group and if $H \subset G$ is a subgroup, then the set G / H is to be given the quotient topology.

12: LEMMA The space G/H is Hausdorff iff H is closed.

13: DEFINITION A locally compact (compact) group is a topological group G that is both locally compact (compact) and Hausdorff.

14: LEMMA If G is a locally compact group and if H is a closed subgroup, then G / H is a locally compact Hausdorff space.

15: LEMMA If G is a locally compact group and if H is a closed normal subgroup, then G / H is a locally compact group.

16: LEMMA If G is a locally compact group and if H is a locally compact subgroup, then H is closed in G.

17: LEMMA If G is a locally compact group, then a subgroup H is open iff the quotient G / H is discrete.

18: LEMMA If G is a compact group, then a subgroup H is open iff the quotient G/H is finite.

19: LEMMA If G is a locally compact group, then every open subgroup of G is closed and every finite index closed subgroup of G is open.

20: DEFINITION A topological space X is totally disconnected if the connected components of X are singletons.

21: EXAMPLE Q is totally disconnected.

22: LEMMA If G is a totally disconnected locally compact group, then \{e\} has a neighborhood basis consisting of open-compact subgroups.

23: LEMMA If G is a totally disconnected compact group, then $\{\mathrm{e}\}$ has a neighborhood basis consisting of open-compact normal subgroups.

24: DEFINITION A topological space X is 0-dimensional if every point of X has a neighborhood basis consisting of open-closed sets.

25: EXAMPLE Q is 0-dimensional.

26: LEMMA A locally compact Hausdorff space is 0-dimensional iff it is totally disconnected.
[Note: In such a space, every point has a neighborhood basis consisting of open-compact sets.]

27: REMARK It is false that the continuous image of a 0-dimensional locally compact Hausdorff space is again 0-dimensional.
[To see this, recall that every compact metric space is the continuous image of the Cantor set.]

28: LEMMA If G is a locally compact 0-dimensional group and if H is a closed subgroup of G, then G / H is 0 -dimensional.

29: LEMMA A 0-dimensional T_{1} space is totally disconnected.

30: REMARK There are totally disconnected metric spaces which are not 0-dimensional.

§2. INTEGRATION THEORY

Let X be a locally compact Hausdorff space.

1: DEFINITION A Radon measure is a measure μ defined on the Borel σ-algebra of X subject to the following conditions.

1. μ is finite on compacta, i.e., for every compact set $K \subset X, \mu(K)<\infty$.
2. μ is outer regular, i.e., for every Borel set $A \subset X$,

$$
\mu(A)=\inf _{U \supset A} \mu(U),
$$

where $U \subset X$ is open.
3. μ is inner regular, i.e., for every open set $A \subset X$,

$$
\mu(A)=\sup _{K \subset A} \mu(K),
$$

where $\mathrm{K} \subset \mathrm{X}$ is compact.

2: RAPPEL If X is a locally compact Hausdorff space and if X is second countable, then for any open subset $U \subset X$, there exist compact sets $K_{1} \subset K_{2} \subset \ldots$ such that $U=\bigcup_{n=1}^{\infty} K_{n}$.

3: APPLICATION If (X, μ) is a Radon measure space and if X is second countable, then X is σ-finite.

4: RIESZ REPRESENTATION THEOREM Let X be a locally compact Hausdorff space. Suppose that $\Lambda: C_{C}(X) \rightarrow C$ is a positive linear functional -- then there exists a unique Radon measure μ on X such that $\forall f \in C_{C}(X)$,

$$
\Lambda f=\int_{X} f(x) d \mu(x)
$$

Let G be a locally compact group.

5: DEFINITION A left Haar measure on G is a Radon measure $\mu_{G} \neq 0$ which is left invariant, i.e., $\forall x \in G$ and \forall Borel set $A \subset G, \mu_{G}(x A)=\mu_{G}(A)$.
[Note: Equivalently, a Radon measure $\mu \neq 0$ is a left Haar measure on G if $\forall f \in C_{C}(G)$ and $\forall y \in G$,

$$
\left.\delta_{G} f(y x) d \mu(x)=\int_{G} f(x) d \mu(x) \cdot\right]
$$

6: THEOREM G admits a left Haar measure and if $\mu_{G_{1}}, \mu_{G_{2}}$ are two such, then $\mu_{G_{1}}=c \mu_{G_{2}}(\exists c>0)$.

7: LEMMA Every nonempty open subset of G has positive left Haar measure.

8: LEMMA Every compact subset of G has finite left Haar measure.

9: N.B. The definition of a right Haar measure on G is analogous.

Given $x \in G$ and a Borel set $A \subset X$, let

$$
\mu_{G, x}(A)=\mu_{G}(A x)
$$

Then $\mu_{G, x}$ is a left Haar measure on G :

$$
\mu_{G, x}(y A)=\mu_{G}(y A x)=\mu_{G}(A x)=\mu_{G, x}(A)
$$

The uniqueness of left Haar measure now implies that there is a unique positive real number $\Delta_{G}(x)$ such that

$$
\mu_{G, x}=\Delta_{G}(x) \mu_{G} .
$$

10: LEMMA $\Delta_{G}: G \rightarrow R_{>0}^{\times}$is independent of the choice of μ.

11: LEMMA $\Delta_{G} ; G \rightarrow R_{>0}^{\times}$is a continuous homomorphism.

12: DEFINITION Δ_{G} is called the modular function of G.

So, $\forall f \in C_{C}$ (G) and $\forall Y \in G$,

$$
\int_{G} f\left(x y^{-1}\right) d u_{G}(x)=\Delta_{G}(y) \quad \int_{G} f(x) d u_{G}(x)
$$

13: LEMMA $\forall f \in C_{C}(G)$,

$$
\delta_{G} \stackrel{v}{f}(x) d \mu_{G}(x)=\int_{G} \frac{f(x)}{\Delta_{G}(x)} d \mu_{G}(x) .
$$

[Note: As usual, $\stackrel{\vee}{f}(x)=f\left(x^{-1}\right)$.]

14: N.B. The positive linear functional that assigns to each $f \in C_{C}$ (G) the common value of the two members of this equality is a right Haar integral.

15: LEMMA If $\phi: G \rightarrow G$ is a topological automorphism, then there is a unique positive real number $\delta_{G}(\phi)$ such that $\forall f \in C_{C}(G)$,

$$
\delta_{G} f\left(\phi^{-1}(x)\right) d \mu_{G}(x)=\delta_{G}(\phi) \quad \int_{G} f(x) d \mu_{G}(x) .
$$

[The positive linear functional

$$
f \rightarrow \delta_{G} f\left(\phi^{-1}(x)\right) d \mu_{G}(x)
$$

is a left Haar integral.]
[Note: The arrow $\phi \rightarrow \delta_{G}(\phi)$ is a hamomorphism: $\left.\delta_{G}\left(\phi_{1} \phi_{2}\right)=\delta_{G}\left(\phi_{1}\right) \delta_{G}\left(\phi_{2}\right).\right]$

16: EXAMPIE If V is a real finite dimensional vector space and if
$\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is an invertible linear transformation, then per "Lebesgue measure",

$$
\int_{V} f\left(T^{-1}(x)\right) d x=|\operatorname{det} T| \int_{V} f(x) d x
$$

so here

$$
\delta_{V}(T)=|\operatorname{det} T|
$$

17: EXAMPLE Define $I_{y}: G \rightarrow G$ by $I_{y}(x)=y x y^{-1}-$ then

$$
\begin{gathered}
\int_{G} f\left(I_{Y}^{-1}(x)\right) d \mu_{G}(x)=\int_{G} f\left(y^{-1} x y\right) d \mu_{G}(x) \\
\quad=\int_{G} f(x y) d \mu_{G}(x) \\
\quad=\Delta_{G}\left(y^{-1}\right) \delta_{G} f(x) d \mu_{G}(x),
\end{gathered}
$$

which implies that

$$
\delta_{G}\left(I_{Y}\right)=\Delta_{G}\left(Y^{-1}\right) .
$$

18: LEMMA If $\phi: G \rightarrow G$ is a topological automorphism, then $\forall Y \in G$,

$$
\Delta_{G}(\phi(y))=\Delta_{G}(y) .
$$

[On the one hand,

$$
\begin{aligned}
& \delta_{G} f\left(\phi\left(x y^{-1}\right)\right) d \mu_{G}(x) \\
&=\Delta_{G}(y) \delta_{G} f(\phi(x)) d \mu_{G}(x) \\
&=\Delta_{G}(y) \delta_{G}\left(\phi^{-1}\right) \delta_{G} f(x) d \mu_{G}(x)
\end{aligned}
$$

and, on the other hand,

$$
\delta_{G} f\left(\phi\left(x y^{-1}\right)\right) d \mu_{G}(x)
$$

$$
\begin{aligned}
& =\delta_{G} f\left(\phi(x) \phi\left(y^{-1}\right)\right) d \mu_{G}(x) \\
& =\delta_{G}\left(\phi^{-1}\right) \delta_{G} f\left(x \phi(y)^{-1}\right) d \mu_{G}(x) \\
& =\delta_{G}\left(\phi^{-1}\right) \Delta_{G}(\phi(y)) \delta_{G} f(x) d \mu_{G}(x)
\end{aligned}
$$

Therefore

$$
\left.\Delta_{G}(y)=\Delta_{G}(\phi(y)) .\right]
$$

19: LEMMA If G_{1}, G_{2} are locally compact groups and if $\mu_{G_{1}}, \mu_{G_{2}}$ are left Haar measures per G_{1}, G_{2}, then $\mu_{G_{1}} \times \mu_{G_{2}}$ is a left Haar measure per $G_{1} \times G_{2}$ and

$$
\Delta_{G_{1}} \times G_{2}\left(x_{1}, x_{2}\right)=\Delta_{G_{1}}\left(x_{1}\right) \Delta_{G_{2}}\left(x_{2}\right)
$$

Let G be a locally compact group, X and Y two closed subgroups of G.

20: DEFINITION The pair (X, Y) is admissible if the following conditions are satisfied.

- The intersection $\mathrm{X} \cap \mathrm{Y}$ is compact.
- The multiplication $X \times Y \rightarrow G$ is an open map.
- The set of products XY exhausts G up to a set of Haar measure 0 (left or right).

21: EXAMPLE Using the notation of \#19, work with $G_{1} \times G_{2}$ and take $X=G_{1} \times\left\{e_{2}\right\}, Y=\left\{e_{1}\right\} \times G_{2}-$ then the pair (X, Y) is admissible.

22: THEOREM Suppose that the pair (X, Y) is admissible. Fix left Haar
measures $\mu_{X^{\prime}} \mu_{\mathrm{Y}}$ on X, Y-- then there is a unique left Haar measure μ_{G} on G such that $\forall \mathrm{f} \in \mathrm{C}_{\mathrm{C}}$ (G),

$$
\delta_{G} f d \mu_{G}=\int_{X \times Y} f(x y) \frac{\Delta_{G}(y)}{\Delta_{Y}(y)} d \mu_{X}(x) d \mu_{Y}(y) .
$$

23: N.B. Specializing the setup to that of \#21 leads back to \#19.
[Note that

$$
\begin{aligned}
\Delta_{G_{1}} \times G_{2}\left(e_{1}, x_{2}\right) & =\Delta_{G_{1}}\left(e_{1}\right) \Delta_{G_{2}}\left(x_{2}\right) \\
& =\Delta_{G_{2}}\left(x_{2}\right)
\end{aligned}
$$

thereby cancelling the factor in the denominator.]

24: LEMMA If G is a locally compact group and if $H \subset G$ is a closed normal subgroup, then $\Delta_{G} \mid H=\Delta_{H}$.

25: APPLICATION In the setup of \#22, assume in addition that Y is normal -then $\forall f \in C_{C}(G)$,

$$
\delta_{G} f d \mu_{G}=\int_{X \times Y} f(x y) d \mu_{X}(x) d \mu_{Y}(y)
$$

[Note: Given $\mathrm{x} \in \mathrm{X}$, the restriction

$$
\left[\begin{array}{l}
I_{x^{-1}}: Y \rightarrow Y \\
y \rightarrow x^{-1} y x
\end{array}\right.
$$

is an automorphism of Y and

$$
\left.\Delta_{G}(x y)=\Delta_{X}(x) \Delta_{Y}(y) \delta_{Y}\left(I_{X}-1\right) \cdot\right]
$$

Let G be a locally compact group, X and Y two closed subgroups of G.

26: DEFINITION G is the topological semidirect product of X and Y if every element $z \in G$ can be expressed in a unique manner as a product $z=x y$ $(\mathrm{x} \in \mathrm{X}, \mathrm{y} \in \mathrm{Y})$ and if the multiplication $\mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{G}$ is a homeomorphism.

27: N.B. A priori, the multiplication $X \times Y \rightarrow G$ is a continuous bijection, thus the condition is satisfied if the multiplication $X \times Y \rightarrow G$ is an open map, this being automatic whenever G is second countable.
[Under these circumstances, G is the union of a sequence of compact sets (cf. \#2), so the same is true of $\mathrm{X} \times \mathrm{Y}$. But G is a locally compact Hausdorff space, hence is a Baire space.]
[Note: If A is a Baire space and if $\left\{A_{n}: n \in N\right\}$ is a closed covering of A, then at least one A_{n} must contain an open set.]

If G is the topological semidirect product of X and Y, then $X \cap Y=\{e\}$ and the pair (X, Y) is admissible. Therefore the theory is applicable in this situation.

28: N.B. In general, the arrow $(x, y) \rightarrow x y$ is not an isomorphism of groups but this will be the case if every element of X commutes with every element of Y or, equivalently, if X and Y are normal subgroups of G, i.e., if G is the topological direct product of X and Y .

§3. UNIMODULARITY

Let G be a locally compact group, μ_{G} a left Haar measure on G.

1: DEFINITION G is unimodular if $\Delta_{G} \equiv 1$.

2: N.B. G is unimodular iff μ_{G} is a right Haar measure on G.
3: EXAMPLE Take for G the group of all real matrices of the form
$\left.\left.\right|_{-} ^{1} \begin{array}{ll}x_{-} \\ 0 & y_{-}\end{array} \right\rvert\,(y \neq 0)-$ then

$$
\Delta_{G}\left|\begin{array}{cc}
1 & x \\
0 & y
\end{array}\right|=|y|
$$

thus G is not unimodular.

4: LEMMA G is unimodular iff $\forall f \in C_{C}(G)$,

$$
\left.\int_{G} f\left(x^{-1}\right) d \mu_{G}(x)=\int_{G} f(x) d \mu_{G}(x) \quad \text { (cf. } \S 2, \# 13\right) .
$$

5: LEMMA

- Every locally compact abelian group is unimodular.
- Every compact group is unimodular.
- Every discrete group is unimodular.

6: LEMMA Every locally compact group that coincides with its closed commutator subgroup is unimodular.

7: LEMMA Every open subgroup of a unimodular locally compact group is unimodular.

8: LEMMA Every closed normal subgroup of a unimodular locally compact group is unimodular.
[Note: A closed subgroup of a unimodular locally compact group is not necessarily unimodular.]

9: LEMMA Let G be a locally compact group, $Z(G)$ its center -- then G is unimodular iff $G / Z(G)$ is unimodular.

Let G be a locally compact group, $H \subset G$ a closed subgroup (H is then a locally compact subgroup) (cf. §1, \#8).

10: DEFINITION H is a cocompact subgroup if the quotient G / H is compact.

11: LEMMA If G admits a unimodular cocompact subgroup $H \subset G$, then G is unimodular.

§4. INTEGRATION ON HOMOGENEOUS SPACES

Let G be a locally compact group, $\mathrm{H} \subset \mathrm{G}$ a closed subgroup.

1: N.B. The quotient G/H is a locally compact Hausdorff space (cf. §l, \#14).

Fix left Haar measures

$$
\left[\begin{array}{l}
\mu_{G} \text { on } G \\
\mu_{\mathrm{H}} \text { on } \mathrm{H} .
\end{array}\right.
$$

2: NOTATION Given $f \in C_{C}(G)$, define $f^{H} \in C_{C}(G / H)$ by the rule

$$
f^{H}(x H)=\int_{H} f(x y) d \mu_{H}(y)
$$

3: LEMMA The arrow

$$
\mathrm{f} \rightarrow \mathrm{f}^{\mathrm{H}}
$$

sends $C_{C}(G)$ onto $C_{C}(G / H)$.

4: DEFINITION A Radon measure $\mu \neq 0$ on the Borel σ-algebra of G / H is said to be an invariant measure if $\forall x \in G$ and \forall Borel set $A \subset G / H, \mu(x A)=\mu(A)$.
[Note: If $\mathrm{H}=\{\mathrm{e}\}$, then "invariant measure" = "left Haar measure".]

5: THEOREM There exists an invariant measure $\mu_{G / H}$ on G / H iff $\Delta_{\mathrm{G}} \mid \mathrm{H}=\Delta_{\mathrm{H}}$ and when this is so, $\mu_{G / H}$ is unique up to a positive scalar factor.
[Note: Matters are automatic if H is compact or if both G and H are unimodular.]

6: N.B. If H is a normal closed subgroup of G, then $\Delta_{G} \mid H=\Delta_{H}{ }^{\circ}$
[For a left Haar measure on G / H is an invariant measure.]

7: THEOREM There is a unique choice for $\mu_{G / H}$ such that $\forall f \in C_{C}(G)$,

$$
\int_{G} f(x) d \mu_{G}(x)=\int_{G / H} f^{H}(\dot{x}) d \mu_{G / H}(\dot{x}) \quad(\dot{x}=x H) .
$$

[Note: Bear in mind that μ_{G}, μ_{H} have been fixed at the beginning.]

8: N.B. This formula is valid for all $f \in L^{1}(G)$.

9: LEMMA Let $\mathrm{H}_{1} \subset \mathrm{G}, \mathrm{H}_{2} \subset \mathrm{G}$ be closed subgroups of G with $\mathrm{H}_{1} \subset \mathrm{H}_{2}-$ then $\mathrm{G} / \mathrm{H}_{2}$ and $\mathrm{H}_{2} / \mathrm{H}_{1}$ admit finite invariant measures iff $\mathrm{G} / \mathrm{H}_{1}$ admits a finite invariant measure.

10: APPLICATION If G / H has a finite invariant measure and if H is unimodular, then G is unimodular.
[Let K be the kernel of Δ_{G}-- then $\Delta_{G} \mid H=\Delta_{H} \equiv 1$, thus $H \subset K$ and so G / K has a finite invariant measure (as does K / H). But G / K is a locally compact group. Therefore G / K is actually a compact group (its Haar measure being finite) and this implies that $\Delta_{G}(G)$ is a compact subgroup of $R_{>0}^{\times}$, hence $\Delta_{G}(G)=\{I\}$, i.e., G is unimodular.]

11: N.B. Suppose that H $\subset G$ is a unimodular cocompact subgroup -- then G / H admits a finite invariant measure $\mu_{\mathrm{G} / \mathrm{H}^{*}}$
[In fact, G is necessarily unimodular (cf. §3, \#ll), from which the existence
of $\mu_{G / H^{*}}$. But $\mu_{G / H}$ is Radon, hence finite on compacta, hence in particular,

$$
\left.\mu_{\mathrm{G} / \mathrm{H}}(\mathrm{G} / \mathrm{H})<\infty \cdot\right]
$$

[Note: Take $\mathrm{G}=\mathrm{SL}(2, \mathrm{R})$ and let

$$
H=\left\{X: X=\left|\begin{array}{cc}
a & b \\
0 & d
\end{array}\right| \in \operatorname{SL}(2, R)\right\}
$$

Then G is unimodular but H is not unimodular. Therefore G / H does not admit an invariant measure even though H is a cocompact subgroup.]

12: LEMMA Let $H_{1} \subset G, H_{2} \subset G$ be closed subgroups of G with H_{1} normalizing H_{2} and $\mathrm{H}_{1} \mathrm{H}_{2}$ closed in $\mathrm{G}-$ - then the following are equivalent.

- $\mathrm{H}_{1} \mathrm{H}_{2} / \mathrm{H}_{1}$ admits a finite invariant measure.
- $\mathrm{H}_{2} / \mathrm{H}_{1} \cap \mathrm{H}_{2}$ admits a finite invariant measure.
[Note: There is a commutative diagram

where

$$
\phi\left(x_{2}\left(H_{1} \cap H_{2}\right)\right)=x_{2} H_{1} .
$$

The vertical arrows are continuous and open. Therefore the bottom horizontal arrow is a homeomorphism.]

13: APPLICATION Suppose that G is the topological semidirect product
of X and Y (cf. §2, \#26) and take Y normal - then $G=X Y$ and $X \cap Y=\{e\}$. Therefore G / X has a finite invariant measure iff Y has a finite invariant measure.

§5. INTEGRATION ON LIE GROUPS

Suppose that M is an orientable n-dimensional C^{∞} manifold which we take to be second countable. Let ω be a positive n-form on M-- then the theory leads to a positive linear functional

$$
f \rightarrow \delta_{M} f \omega \quad\left(f \in C_{C}(M)\right)
$$

from which a Radon measure μ_{ω}.
Assume now that G is a Lie group with Lie algebra \mathfrak{g}. Let $L_{X}: G \rightarrow G$ be left translation $\mathrm{y} \rightarrow \mathrm{xy}$ by x .

1: DEFINITION A differential form ω on G is left invariant if $\forall \mathrm{x} \in \mathrm{G}$, $\mathrm{L}_{\mathrm{X}}^{\star} \omega=\omega$.

2: NOTATION Given $x \in \mathfrak{g}$, let \tilde{x} be the corresponding left invariant vector field on G.

Let $\mathrm{n}=\operatorname{dim} \mathrm{G}(=\operatorname{dim} \mathfrak{g})$ and fix a basis $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ for \mathfrak{g}. Define 1-forms $\omega^{I}, \ldots, \omega^{n}$ on G by the condition $\omega^{i}\left(\tilde{X}_{j}\right)=\delta_{j}^{i}$.

3: IFMMA The ω^{i} are left invariant.

Put

$$
\omega=\omega^{1} \quad \wedge \ldots \wedge \omega^{n}
$$

Then $\forall \mathrm{x} \in \mathrm{G}$,

$$
\begin{aligned}
L_{\mathrm{X}}^{\star} \omega & =L_{\mathrm{X}}^{\star}\left(\omega^{1} \wedge \ldots \wedge \omega^{n}\right) \\
& =\mathrm{L}_{\mathrm{X}}^{\star} \omega^{1} \wedge \ldots \wedge{L_{X}^{\star}}^{\mathrm{N}} \omega^{\mathrm{n}}
\end{aligned}
$$

$$
=\omega^{1} \wedge \ldots \wedge \omega^{\mathrm{n}}=\omega .
$$

I.e.: ω is a left invariant n -form on G .

4: LEMMA ω is nowhere vanishing on G.

5: LEMMA G can be oriented so as to render ω positive.
[Note: The orientation of G depends on the choice of a basis for \mathfrak{g}. If Y_{1}, \ldots, Y_{n} is another basis, then the resulting orientation of G does not change iff the linear transformation $X_{i} \rightarrow Y_{i}(1 \leq i \leq n)$ has positive determinant.]

6: SCHOLIUM The assigmment

$$
\mathrm{f} \rightarrow \int_{\mathrm{G}} \mathrm{f} \omega \quad\left(\mathrm{f} \in \mathrm{C}_{\mathrm{C}}(\mathrm{G})\right)
$$

is a positive linear functional.

7: LEMMA The Radon measure μ_{ω} is a left Haar measure.
PROOF $\forall x \in G, L_{x}: G \rightarrow G$ is an orientation preserving diffeomorphism, so $\forall f \in C_{C}(G)$,

$$
\begin{aligned}
\delta_{G} f d \mu_{\omega} & =\delta_{G} f \omega=\delta_{G}\left(f \circ L_{X}\right) L_{X}^{*} \omega \\
& =\delta_{G}\left(f \circ L_{x}\right) \omega=\delta_{G}\left(f \circ L_{x}\right) d \mu_{\omega} .
\end{aligned}
$$

8: REMARK Any subset S of G which is contained in an most countable union of smooth images of C^{∞} manifolds of dimension < dim G has zero left Haar measure.

9: THEOREM $\forall \mathrm{x} \in \mathrm{G}$,

$$
\Delta_{\mathrm{G}}(\mathrm{x})=\frac{1}{|\operatorname{det} A d(\mathrm{x})|}
$$

10: EXAMPLE Every connected nilpotent Lie group N is unimodular.
[If $\mathrm{X} \in \mathrm{n}$ (the Lie algebra of N), then $\mathrm{ad}(\mathrm{X})$ is nilpotent, thus $\operatorname{tr}(\mathrm{ad}(\mathrm{X}))=0$ and so

$$
\begin{aligned}
\operatorname{det} A d(\exp X) & =\operatorname{det} e^{\operatorname{ad}(X)} \\
& \left.=e^{\operatorname{tr}(\operatorname{ad}(X))}=1 .\right]
\end{aligned}
$$

11: LEMMA A l-dimensional representation of a connected semisimple Lie group is trivial.

12: APPLICAITION The restriction of Δ_{G} to any semisimple analytic subgroup of G is $\equiv 1$.

13: THEOREM Suppose that G is a reductive Lie group in the Harish-Chandra class -- then G is unimodular.

PROOF First decompose G as the product ${ }^{0} G \times V$, where V is a central vector group (possibly trivial) and
the X running through the set of continuous homomorphisms $G \rightarrow R_{>0}^{\times}$. This done, take for a left Haar measure on G the product of the left Haar measures on ${ }^{0} G$ and V. Since V is unimodular, it will be enough to deal with ${ }^{0}$ G (cf. §2, \#19). Fix a maximal compact subgroup K of $G-$ then K is a maximal compact subgroup of ${ }^{0_{G}}$ and ${ }^{0_{G}}=K_{S S}$, thus $\forall k \in K, \forall x \in G_{S S}$,

$$
\Delta_{0_{G}}(k x)=\Delta_{0_{G}}(k) \Delta_{0_{G}}(x)=1 \cdot 1=1
$$

[Note: $G_{S S}$ is the analytic subgroup of G corresponding to $\mathfrak{g}_{S S}$ (the ideal in \mathfrak{g} spanned by [$\mathfrak{y}, \mathfrak{g}]$). It is closed and normal.]

Maintaining the supposition that G is a reductive Lie group in the HarishChandra class, consider an Iwasawa decomposition $G=$ KAN.

14: N.B. N is a normal subgroup of $\mathbb{A N}$ and $A N$ is the topological semidirect product of A and N.
[Note: $A N$ is second countable so there are no technical issues.]

15: LEMMA

$$
\Delta_{\mathrm{AN}}(\mathrm{an})=\frac{1}{\mid \operatorname{det} A d(a n) T}=\frac{1}{e^{2 \rho(\log a)}}
$$

[Note: Here 2ρ is the sum of the positive roots of ($\mathfrak{g}, \mathfrak{a}$) counted with multiplicities.]

Since the pair (K, AN) is admissible and since $\Delta_{G} \equiv 1$, it follows from $\S 2$, \#22 that $\forall f \in C_{C}(G)$,

$$
\begin{aligned}
\delta_{G} f d_{\mu_{G}} & =\int_{K \times A N} f(k a n) \frac{\Delta_{G}(a n)}{\Delta_{A N}(a n)} d \mu_{K}(k) d \mu_{A N}(a n) \\
& =\int_{K \times A N} f(\mathrm{kan}) \frac{1}{\Delta_{A N}(a n)} d \mu_{K}(k) d \mu_{A N}(a n) \\
& =\int_{K \times A N} f(\operatorname{kan}) e^{2 \rho(l o g a)} d \mu_{K}(k) d \mu_{A N}(a n) \\
& =\int_{K \times A \times N} f(\text { kan }) e^{2 \rho(l o g a)} d \mu_{K}(k) d \mu_{A}(a) d \mu_{N}(n)
\end{aligned}
$$

[Note: To be completely precise, fix left Haar measures $\mu_{K^{\prime}} \mu_{A^{\prime}} \mu_{N}$ on $K, A, N-$ then there is a unique determination of the left Haar measure μ_{G} on G such that for any $f \in C_{C}(G)$, the function

$$
(k, a, n) \rightarrow f(k a n)
$$

lies in

$$
C_{C}(K \times A \times N)
$$

and

$$
\left.\delta_{G} f d \mu_{G}=\int_{K \times A \times N} f(\operatorname{kan}) e^{2 \rho(\log a)} d \mu_{K}(k) d \mu_{A}(a) d \mu_{N}(n) .\right]
$$

16: LEMMA

$$
\begin{aligned}
\Delta_{A N}(a n) & =\Delta_{A}(a) \Delta_{N}(n) \delta_{N}\left(I_{a}-1\right) \quad(c f . \S 2, \# 25) \\
& =\delta_{N}\left(I_{a}-1\right)
\end{aligned}
$$

[Note: A is abelian and N is nilpotent... .]

$$
\begin{aligned}
& \text { So, } \forall f \in C_{C}(G) \text {, } \\
& \int_{K \times N \times A} f(k n a) d \mu_{K}(k) d \mu_{N}(n) d \mu_{A}(a) \\
& =\int_{K \times N \times A} f\left(k a a^{-1} n a\right) d \mu_{K}(k) d \mu_{N}(n) d \mu_{A}(a)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\int_{K \times N \times A} f(\operatorname{kan}) \delta_{N}\left(I_{a}\right) d \mu_{K}(k) d \mu_{A}(a) d \mu_{N}(n) \quad \text { (cf. } \S 2, \# 15\right) \\
& =\int_{K \times A \times N}{ }^{f(k a n) \Delta_{A N}}\left(a^{-l} n\right) d \mu_{K}(k) d \mu_{A}(a) d \mu_{N}(n)
\end{aligned}
$$

$$
\begin{gathered}
=\int_{K \times A \times N} f(\operatorname{kan}) e^{2 \rho(\log a)} d \mu_{K}(k) d \mu_{A}(a) d \mu_{N}(n) \\
=\int_{G} f d \mu_{G} .
\end{gathered}
$$

[Note: As a corollary,

G being unimodular (cf. \#l3).]

Let M be the centralizer of \mathfrak{a} in K and put $\bar{N}=\theta N$-- then the map

$$
(\overline{\mathrm{n}}, \mathrm{~m}, \mathrm{a}, \mathrm{n}) \rightarrow \overline{\mathrm{n}} \mathrm{man}
$$

is an open bijection of $\bar{N} \times M \times A \times N$ onto an open submanifold NMAN $\subset G$.

17: LEMMA The complement of NMAN in G is a set of Haar measure 0.
[Using the Bruhat decomposition, the said complement is seen to be a finite union of smooth images of C^{∞} manifolds of dimension < $\operatorname{dim} G$ so one can quote \#8.]

The pair ($\overline{\mathrm{N}}, \mathrm{MAN}$) is therefore admissible, hence $\forall \mathrm{f} \in \mathrm{C}_{\mathrm{C}}$ (G) (cf. $\S 2, \# 22$),

$$
\delta_{G} f d \mu_{G}
$$

$$
=\int_{\overline{\mathrm{N}}} \times \text { MAN } \quad f(\overline{\mathrm{~m} m a n}) \frac{\Delta_{\mathrm{G}}(\operatorname{man})}{\Delta_{\mathrm{MAN}}(\operatorname{man})} d \mu_{\overline{\mathrm{N}}}(\overline{\mathrm{n}}) d \mu_{\text {MAN }}(\operatorname{man})
$$

$$
\begin{aligned}
& \int_{\mathrm{A}} \times \mathrm{N} \times \mathrm{K}^{\mathrm{f}(\mathrm{ank}) \mathrm{d} \mu_{\mathrm{A}}(\mathrm{a}) \mathrm{d} \mu_{\mathrm{N}}(\mathrm{n}) \mathrm{d} \mu_{\mathrm{K}}(\mathrm{k})} \\
& =\delta_{K \times N} \times A \stackrel{V}{f}\left(k^{-1} n^{-1} a^{-l}\right) d \mu_{K}(k) d \mu_{N}(n) d \mu_{A}(a) \\
& =\int_{K \times N \times A} \stackrel{V}{f}(k n a) d \mu_{K}(k) d \mu_{N}(n) d \mu_{A}(a) \quad \text { (cf. §3, \#4) } \\
& =\delta_{G} \stackrel{v}{f} d \mu_{G}=\delta_{G} f d \mu_{G},
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\bar{N}} \times \text { MAN } \\
& f(\bar{n} \operatorname{man}) \\
& \Lambda_{\text {MAN }}^{(\operatorname{man})} \\
& d \mu_{\bar{N}}(\bar{n}) d \mu_{\text {MAN }}(\operatorname{man}) \\
& =\int_{\bar{N}} \times \text { MAN } \\
& f(\bar{n} \operatorname{man}) e^{2 \rho(\log a)} d \mu_{\bar{N}}(\bar{n}) d \mu_{M A N}(\operatorname{man}) \\
& =\int_{\bar{N}} \times M \times A \times N \\
& f(\bar{n} \operatorname{man}) e^{2 \rho(\log a)} d \mu_{\bar{N}}(\bar{n}) d \mu_{M}(m) d \mu_{A}(a) d \mu_{N}(n) .
\end{aligned}
$$

18: RAPPEL Let V be a finite dimensional real Hilbert space -- then the canonical Haar measure dV on V is that in which the parallelepiped determined by an orthonormal basis has unit measure.
[Spelled out, if $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ is an orthonormal basis for V and if Q is the set of all points $x=\sum_{i=1}^{d} c_{i} X_{i}\left(c_{i} \in R\right)$ with $0 \leq c_{i} \leq 1$. then

$$
\left.\int_{Q} d V=1 .\right]
$$

[Note: Matters are independent of the particular choice of an orthonormal basis since the transition matrix between any two such is orthogonal, hence the absolute value of its determinant is 1.]

19: SUBLEMMA Let V be a finite dimensional real Hilbert space; let $\mathrm{V}_{1} \subset \mathrm{~V}, \mathrm{~V}_{2} \subset \mathrm{~V}$ be subspaces. Suppose that $\mathrm{T}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{2}$ is a bijective linear transformation -- then $\forall \phi \in C_{C}\left(V_{2}\right)$,

$$
\delta_{V_{2}} \phi d v_{2}=|\operatorname{det} T| \delta_{V_{1}} \phi \circ T \mathrm{TV}_{1},
$$

where the determinant is computed relative to an orthonormal basis in V_{1} and an orthonormal basis in V_{2}.

20: N.B. Symbolically,

$$
\mathrm{dv}_{2}=|\operatorname{det} \mathrm{T}| \mathrm{dv} \mathrm{I}_{1}
$$

21: CONVENTION Extend the Killing form on $\mathfrak{g}_{\mathrm{SS}} \times \mathfrak{g}_{\mathrm{SS}}$ to a nondegenerate symmetric bilinear form $B: \mathfrak{g} \times \mathfrak{g} \rightarrow R$ with the following properties:

- B is Ad G invariant.
- B is θ-invariant.
- k and \mathfrak{p} are orthogonal under B.
- B is positive definite on \mathfrak{p} and negative definite on k.

22: N.B. The bilinear form

$$
(\mathrm{X}, \mathrm{Y})_{\theta}=-\mathrm{B}(\mathrm{X}, \theta \mathrm{Y}) \quad(\mathrm{X}, \mathrm{Y} \in \mathfrak{g})
$$

equips \mathfrak{g} with the structure of a real Hilbert space.

Relative to this data, any subspace I of \mathfrak{g} carries a canonical Haar measure $d I$, an instance being the Lie algebra 1 of a closed Lie subgroup L of G.

23: EXAMPLE k and \mathfrak{j} are orthogonal and $d \mathfrak{y}=$ dkdj.
[Note: The orthogonal projections $\mathrm{E}_{\mathrm{k}}, \mathrm{E}_{\mathfrak{p}}$ of \mathfrak{g} onto k, \mathfrak{p} are given by

$$
\left[\begin{array}{l}
E_{k}=\frac{1+\theta}{2} \\
E_{p}=\frac{1-\theta}{2}
\end{array}\right.
$$

respectively.]

24: CONSTRUCTION Choose an open neighborhood N_{0} of 0 in I and an open
neighborhood N_{e} of e in L such that \exp is an analytic diffeomorphism of N_{0} onto N_{e}. Normalize the left Haar measure μ_{L} on L in such a way that $\forall f \in C_{C}\left(N_{e}\right)$,

$$
\int_{N_{e}} f d \mu_{L}=\int_{N_{0}} \mathrm{FdI}
$$

where

$$
F(X)=f(\exp X)|\operatorname{det}| \frac{1-e^{-a d(x)}}{\operatorname{ad}(X)}| |
$$

This fixes μ_{L} uniquely, call it $d L$, and its definition is independent of the choice of N_{0}.

25: N.B. If L is compact, put

$$
\operatorname{vol}(L)=\int_{L} d L
$$

and term $\frac{1}{\operatorname{vol}(\mathrm{~L})}$ d the normalized Haar measure of L.

Now write after Iwasawa $G=K A N$, thus $\forall f \in C_{C}(G)$,

$$
\delta_{G} f d \mu_{G}=\delta_{K} \times A \times N{ }^{f(k a n)} e^{2 \rho(\log a)} d \mu_{K}(k) d \mu_{A}(a) d \mu_{N}(n)
$$

On the right hand side, take

$$
d \mu_{K}(k)=\frac{1}{\operatorname{vol}(K)} d K, d \mu_{A}(a)=d A, d \mu_{N}(n)=d N
$$

Then these choices determine d_{G} uniquely, denote it by the symbol $\mathrm{d}_{\mathrm{st}} \mathrm{G}$ and refer to it as the standard Haar measure of G.

26: LEMMA

$$
\mathrm{dG}=2^{-\frac{1}{2} \operatorname{dim} N} e^{2 \rho(\log a)} d K d A d N .
$$

PROOF It suffices to show that

$$
d \mathfrak{y}=2^{-\frac{1}{2} \operatorname{dim} N}{ }_{d k d a d n}
$$

To establish this, write

$$
\mathfrak{p}=\mathfrak{a}+E_{\mathfrak{p}} \mathfrak{n},
$$

the sum being orthogonal, hence

$$
\begin{aligned}
d \mathfrak{y}=d k d \mathfrak{p} & =d \mathfrak{k d a d E _ { \mathfrak { p } } \mathfrak { n }} \\
& =\left|\operatorname{det} E_{\mathfrak{p}}\right| n \mid d k d a d n .
\end{aligned}
$$

Choose an orthonormal basis z_{i} for \mathfrak{n}-- then

$$
\left(E_{\mathfrak{p}} Z_{i}, E_{p} Z_{j}\right)_{\theta}=\delta_{i j} / 2
$$

which implies that $\sqrt{2} E_{p_{1}} Z_{i}$ is an orthonormal basis for $E_{p} \mathfrak{n}^{\text {, so }}$

$$
\left|\operatorname{det} E_{\mathfrak{p}} \mathfrak{n}\right|=\left|\begin{array}{llll}
\frac{1}{\sqrt{2}} & & & \\
& \cdot & & \\
& & \cdot & \\
& & \cdot & \\
& & & \frac{1}{\sqrt{2}}
\end{array}\right|=2^{-\frac{1}{2} \operatorname{dim} N}
$$

[Note:

$$
\operatorname{dim} N=\operatorname{dim} G / K-\operatorname{rank} G / K .]
$$

Therefore

$$
d_{s t} G=e^{2 \rho(\log a)}\left(\frac{d K}{\operatorname{vol}(K)}\right) d A d N
$$

$$
\begin{aligned}
& =\frac{1}{\operatorname{vol}(K)} \frac{2^{-\frac{1}{2} \operatorname{dim} N}}{2^{-\frac{1}{2} \operatorname{dim} N}} e^{2 \rho(\log a)} d K d A d N \\
& =\frac{1}{\operatorname{vol}(K)} 2^{\frac{1}{2} \operatorname{dim} N} d G .
\end{aligned}
$$

§1. TRANSUERSALS

Let G be a locally compact group.

1: SUBLEMMA Fix $x \in G-$ then for any open neighborhood U of e there exists an open neighborhood V of x such that $V^{-1} V \subset U$.

2: DEFTNITION A subgroup $\Gamma \subset G$ is a discrete subgroup if the relative topology on Γ is the discrete topology.

3: LEMMA A subgroup $\Gamma \subset G$ is discrete iff there exists an open neighborhood U of $e(i n G)$ such that $\Gamma \cap U=\{e\}$.

4: THEOREM Suppose that $\Gamma \subset G$ is a discrete subgroup -- then Γ is closed in G, hence G / Γ is a locally compact Hausdorff space (cf. I, §l, \#l4).

5: EXAMPLE

- Take $G=R, \Gamma=Z$.
- Take $G=A, \quad \Gamma=Q$.
- Take G $=\mathrm{I}, \Gamma=\mathrm{Q}^{\times}$.

6: LEMMA Let Γ be a discrete subgroup of G-- then there exists an open neighborhood U_{0} of e such that $U_{0} \gamma \cap U_{0}=\varnothing$ for all $\gamma \neq e$ in Γ.

PROOF First choose U per \#3. This done, choose V per \#l (with $x=e$) and put $U_{0}=V$. Assume now that $u_{0}^{\prime} \in U_{0} \gamma \cap U_{0}$, thus $u_{0}^{\prime}=u_{0} \gamma\left(\exists u_{0} \in U_{0}\right)$, so

$$
\begin{aligned}
\gamma=u_{0}^{-1} u_{0}^{\prime} & \in U_{0}^{-1} U_{0}=V^{-1} V \subset U \\
& \Rightarrow \gamma=e .
\end{aligned}
$$

7: SUBLEMMA Let H be a closed subgroup of G and give G / H the quotient topology -- then the projection $\pi: G \rightarrow G / H$ is an open map.
[Let $U \subset G$ be a nonempty open set, the claim being that $\pi(U) \subset G / H$ is a nonempty open set. But $\pi(U)$ is open iff $\pi^{-1}(\pi(U))$ is open. And

$$
\pi^{-1}(\pi(\mathrm{U}))=\mathrm{UH}=\underset{\mathrm{h} \in \mathrm{H}}{\mathrm{U}} \mathrm{Uh}
$$

which is a union of open sets.]

8: THEOREM Suppose that $\Gamma \subset G$ is a discrete subgroup -- then the projection $\pi: G \rightarrow G / \Gamma$ is a local homeomorphism.

PROOF Fix $x \in G$ and choose U_{0} per $\# 6$ to get an open neighborhood xU_{0} of x with the property that $\forall \gamma \neq e$ in Γ,

$$
x U_{0} \gamma \cap x U_{0}=x\left(U_{0} \gamma \cap U_{0}\right)=\varnothing .
$$

Therefore the arrow $\mathrm{xU}_{0} \rightarrow \pi\left(\mathrm{xU}_{0}\right)$ is a continuous bijection, hence is a homeomorphism (cf. \#7).

9: DEFINITION Let Γ be a discrete subgroup of G-- then a Borel subset $\mathbb{C} \subset G$ is a transversal for G / Γ if the restriction of π to \mathbb{C} is bijective.

10: N.B. In other words, a transversal \mathbb{C} for G / Γ is a Borel subset of G which meets each coset exactly once.

11: THEOREM Suppose that $\Gamma \subset G$ is a discrete subgroup. Assume: G is second countable -- then G / Γ admits a transversal \mathbb{C}.

12: REMARK A transversal \mathbb{E} for G / Γ gives rise to a unique section $\tau: G / \Gamma \rightarrow \mathbb{C} \subset G(\pi \circ \tau=i d)$ which is Borel measurable if G is second countable.

13: N.B. Tacitly, Lie groups are assumed to be second countable (cf. I, §5), hence σ-compact (cf. I, §2, \#2).
[Note: Still, in this situation it is not claimed (nor is it true in general) that smooth sections exist.]

14: EXAMPLE Take $G=R, \Gamma=Z-$ then $[0,1[$ is a transversal for R / Z.

15: EXAMPLE Take $G=A, \Gamma=Q-$ then $\prod_{p} Z_{p} \times[0,1[$ is a transversal for A / Q.

16: EXAMPLE Take $G=I, \Gamma=Q^{\times}-$then $\prod_{p} Z_{p}^{\times} \times R_{>0}^{\times}$is a transversal for I / Q^{x}.

17: CONVENTION The Haar measure on a discrete group Γ is the counting measure:

$$
\delta_{\Gamma} f(\gamma) d_{\Gamma}(\gamma)=\sum_{\gamma \in \Gamma} f(\gamma) .
$$

[Note: Γ is unimodular (being discrete).]

18: LEMMA If $\Gamma \subset G$ is a discrete subgroup and if G is second countable, then Γ is at most countable.

19: LEMMA If $\Gamma \subset G$ is a discrete subgroup, if G is second countable and if \mathbb{C} is a transversal for G / Γ, then

$$
\begin{aligned}
G & =\underset{\gamma \in \Gamma}{u} \mathbb{C} \gamma \quad \text { (disjoint union), } \\
\int_{G} \operatorname{fd\mu }_{G} & =\sum_{\gamma \in \Gamma} \delta_{\mathbb{C} \gamma} f d \mu_{G} \\
& =\delta_{\mathbb{C}} \mathfrak{f}^{\Gamma} \circ \pi d \mu_{G} .
\end{aligned}
$$

[Note: $\forall \mathrm{x} \in \mathbb{C}$,

$$
\begin{aligned}
\left(f^{\Gamma} \circ \pi\right)(x) & =f^{\Gamma}(x \Gamma) \\
& =\delta_{\Gamma} f(x \gamma) d \mu_{\Gamma}(\gamma) \\
& \left.=\sum_{\gamma \in \Gamma} f(x \gamma) .\right]
\end{aligned}
$$

20: RAPPEL If G is unimodular and if μ_{G} is fixed, then G / Γ admits an invariant measure $\mu_{G / \Gamma}$ characterized by the condition that for all $f \in C_{C}(G)$,

$$
\delta_{G} f(x) d \mu_{G}(x)=\int_{G / \Gamma} f^{\Gamma}(\dot{x}) d \mu_{G / \Gamma}(\dot{x}) \quad(\dot{x}=x \Gamma) \quad(c f . I, \S 4, \# 7)
$$

21: THEOREM If $\Gamma \subset G$ is a discrete subgroup, if G is second countable, if \mathbb{C} is a transversal for G / Γ, if G is unimodular and if μ_{G} is fixed, then $\forall f \in C_{C}(G)$,

$$
\delta_{\mathrm{G} / \Gamma} \mathrm{f}^{\Gamma} \mathrm{d} \mu_{\mathrm{G} / \Gamma}=\delta_{\mathbb{C}} \mathrm{f}^{\Gamma} \circ \pi d \mu_{\mathrm{G}} .
$$

[Simply assemble the foregoing data.]
[Note: Since the $f^{\Gamma}\left(f \in C_{C}(G)\right)$ exhaust $C_{C}(G / \Gamma)$ (cf. I, §4, \#3), it follows that $\forall \phi \in \mathrm{C}_{\mathrm{C}}(\mathrm{G} / \Gamma)$,

$$
\delta_{\mathrm{G} / \Gamma} \phi \mathrm{d} \mu_{\mathrm{G} / \Gamma}=\int_{\mathbb{T}} \phi \circ \pi \mathrm{d} \mu_{\mathrm{G}} .
$$

In particular, this holds for all ϕ if G / Γ is compact.]

22: DEFINITION Let Γ be a discrete subgroup of $G-$ then a Borel subset $\mathcal{F} \subset G$ is a fundamental domain for G / Γ if it differs from a transversal by a set of Haar measure 0 (left or right).

23: EXAMPIE Take $G=R, \Gamma=Z$-- then $[0,1]$ is a fundamental domain for R / Z.

24: N.B. What was said in \#21 goes through verbatim if "transversal" is replaced by "fundamental domain".

1.

§2. LATTICES

Let G be a second countable locally compact group, $\Gamma \subset G$ a discrete subgroup.

1: NOTATION Given a finite subset $\Delta \subset \Gamma$, let G_{Δ} denote the centralizer of Δ in G.

2: N.B. G_{Δ} is closed in G.

3: LENMA $G_{\Delta} \Gamma$ is closed in G.
PROOF Let $x_{n} \in G_{\Delta}$ and $\gamma_{n} \in \Gamma$ be sequences such that $x_{n} \gamma_{n}$ converges to a limit x-- then the claim is that $x \in G_{\Delta} \Gamma$. To begin with, $\forall \gamma \in \Delta$,

$$
\begin{aligned}
x^{-1} \gamma x & =\lim _{n \rightarrow \infty}\left(\gamma_{n}^{-1} x_{n}^{-1} \gamma x_{n} \gamma_{n}\right) \\
& =\lim _{n \rightarrow \infty} \gamma_{n}^{-1} \gamma_{n}
\end{aligned}
$$

Since Γ is discrete, $\exists n_{0}(\gamma)$:

$$
\begin{aligned}
n \geq n_{0}(\gamma) & \Rightarrow \gamma_{n}^{-1} \gamma \gamma_{n}=\gamma_{n+1}^{-1} \gamma \gamma_{n+1} \\
& \Rightarrow \gamma_{n+1} \gamma_{n}^{-1} \in G_{\Delta}
\end{aligned}
$$

But Δ is finite, thus $\exists n_{0}$ independent of the choice of γ such that

$$
\begin{array}{ll}
& n \geq n_{0} \Rightarrow \gamma_{n}=y_{n} \gamma_{n_{0}}\left(y_{n} \in G_{\Delta}\right) \\
\Rightarrow \quad & x_{n} \gamma_{n}=x_{n} y_{n} \gamma_{n_{0}}=z_{n} \gamma_{n_{0}} \quad\left(z_{n} \in G_{\Delta}\right)
\end{array}
$$

=>

$$
z_{n}=x_{n} \gamma_{n} \gamma_{n_{0}}^{-1} \rightarrow x \gamma_{n_{0}}^{-1} \quad(n \rightarrow \infty)
$$

=>

$$
x Y_{n_{0}}^{-1} \in G_{\Delta} \Rightarrow x \in G_{\Delta} \Gamma .
$$

4: NOTATION Given $\gamma \in \Gamma, G_{\gamma}$ is its centralizer in G and $\Gamma_{\gamma}\left(=G_{\gamma} \cap \Gamma\right)$ is its centralizer in Γ.

5: N.B. G_{γ} is a closed subgroup of G, as is Γ_{γ} (cf. §l, \#4).

6: LEMMA $G_{\gamma} \Gamma$ is closed in G (cf. \#3 (take $\Delta=\{\gamma\}$)).
7: SUBLEMMA If H is a closed subgroup of G, if $\pi: G \rightarrow G / H$ is the projection and if F is a closed subset of G that is the union of cosets $x H$, then $\pi(F)$ is closed in G/H.

8: APPLICATION The image of

$$
G_{\gamma} \Gamma=\underset{x \in G_{\gamma}}{U} x \Gamma
$$

in G / Γ is closed, hence is a locally compact Hausdorff space.

9: REMARK The projection $\pi: G \rightarrow G / \Gamma$ is an open map (cf. §l, \#7) but, in general, it is not a closed map.
[Take $G=R, \Gamma=Z$ and view R / Z as $[0,1[$ equipped with the topology in which an open basis consists of all sets $] \mathrm{a}, \mathrm{b}[(0<a<b<1)$ and of all sets
[0,a[\cup]b,1[$(0<a<b<1)$-- then

$$
\mathrm{A}=\left\{\frac{3}{2}, \frac{9}{4}, \ldots, \mathrm{n}+2^{-\mathrm{n}}, \ldots\right\}
$$

is closed in R but

$$
\pi(\mathrm{A})=\left\{\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{\mathrm{n}}}, \ldots\right\}
$$

is not closed in $[0,1[]$.

Considered as famil ies of subsets of $G, G_{\gamma} \Gamma / \Gamma$ and $\pi\left(G_{\gamma}\right)$ are identical: The elements of $G_{\gamma} \Gamma / \Gamma$ are the cosets $x \Gamma$ with $x \in G_{\gamma} \Gamma$ and the elements of $\pi\left(G_{\gamma}\right)$ are the cosets $\mathrm{x} \Gamma$ with $\mathrm{x} \in \mathrm{G}_{\gamma}$.

10: LEMMA The identity map

$$
\left\{x \Gamma: x \in G_{\gamma} \Gamma\right\} \rightarrow\left\{x \Gamma: x \in G_{\gamma}\right\}
$$

is a homeomorphism.
[Note: That is to say, the two topologies are the same.]

11: N.B. One may then identify $\pi\left(G_{\gamma}\right)$ with $G_{\gamma} \Gamma / \Gamma$ which is therefore closed in G / Γ (cf. \#8).

12: NOTATION Let

$$
r: G_{\gamma} \Gamma / \Gamma \rightarrow G_{\gamma} / G_{\gamma} \cap \Gamma
$$

be the arrow defined by

$$
r(x \Gamma)=x\left(G_{\gamma} \cap \Gamma\right)
$$

13: N.B. r is bijective.

14: THEOREM r is a homeomorphism.

This is not completely obvious and it will be best to break the proof into two parts.

15: LEMMA r carries open subsets of $G_{\gamma} \Gamma / \Gamma$ onto open subsets of $G_{\gamma} / G_{\gamma} \cap \Gamma$.
PROOF An open subset of $G_{\gamma} \Gamma / \Gamma$ is a subset $\{x \Gamma: x \in X\}$, where $X \subset G_{\gamma}$, such that $X \Gamma$ is open in $G_{\gamma} \Gamma$ viewed as a subspace of G. Since

$$
x\left(G_{\gamma} \cap \Gamma\right)=x \Gamma \cap G_{\gamma^{\prime}}
$$

it follows that $X\left(G_{\gamma} \cap \Gamma\right)$ is an open subset of G_{γ} in its relative topology as a subspace of G, thus by the very definition of the topology on $G_{\gamma} / G_{\gamma} \cap \Gamma$,

$$
r\{x \Gamma: x \in X\}=\left\{x\left(G_{\gamma} \cap \Gamma\right): x \in X\right\}
$$

is an open subset of $G / G_{\gamma} \cap \Gamma$.
16: LEMMA r^{-1} carries open subsets of $G_{\gamma} / G_{\gamma} \cap \Gamma$ onto open subsets of $\mathrm{G}_{\gamma} \Gamma / \Gamma$.

PROOF Let $\left\{y\left(G_{\gamma} \cap \Gamma\right): Y \in Y\right\}\left(Y \subset G_{\gamma}\right)$ be an open subset of $G_{\gamma} / G_{\gamma} \cap \Gamma$-- then $Y\left(G_{\gamma} \cap \Gamma\right)$ is an open subset of G_{γ}, so

$$
\pi\left(Y\left(G_{\gamma} \cap \Gamma\right)\right)=\{y \Gamma: y \in Y\}
$$

is open in $G_{\gamma} \Gamma / \Gamma$ (see the Appendix infra) or still,

$$
\{y \Gamma: y \in Y\}=r^{-1}\left\{y\left(G_{\gamma} \cap \Gamma\right): y \in Y\right\}
$$

is open in $G_{\gamma} \Gamma / \Gamma$.
17: EXAMPLE Take $G=R, \Gamma=Z$ and $H=\sqrt{2} Z$-- then the argument used in
\#15 is applicable if the G_{γ} there is replaced by H, thus the map

$$
\mathrm{H} / \mathrm{H} \cap \Gamma \rightarrow \mathrm{H}+\Gamma / \Gamma
$$

is continuous. Nevertheless, it is not a homeomorphism.
[$H \cap \Gamma$ is trivial so $H / H \cap \Gamma$ is isomorphic to Z and carries the discrete topology. Meanwhile, $H+\Gamma=\sqrt{2} Z+Z$ is dense in R, hence

$$
H+\Gamma / \Gamma=\sqrt{2} Z+Z / Z
$$

is dense in $R / Z \approx T$. It is isomorphic to Z as a group but it is not discrete since every nonempty open subset of T intersects it in an infinite set implying thereby that none of its f inite subsets are open.]
[Note: The difference here is this: $G_{\gamma} \Gamma / \Gamma$ is locally compact but $H+\Gamma / \Gamma$ is not locally compact.]

18: DEFINITION Γ is said to be a lattice if G / Γ admits a finite invariant measure (cf. I, $\S 4, \# 4$), Γ being termed uniform or nonuniform according to whether G / Γ is compact or not.

19: N.B. If there is a lattice in G, then G is necessarily unimodular (cf. I, §3, \#ll and $I, ~ § 4, \# 10)$.
[Note: A discrete cocompact subgroup is necessarily a uniform lattice... .]

20: EXAMPLE Z is a uniform lattice in R.

21: EXAMPLE $S L(2, Z)$ is a nonuniform lattice in $\operatorname{SL}(2, R)$.

22: THEOREM Suppose that $\Gamma \subset G$ is a uniform lattice -- then $\forall \gamma \in \Gamma$, $\mathrm{G}_{\gamma} / \Gamma_{\gamma}$ is compact.

PROOF $G_{\gamma} \Gamma / \Gamma$ is closed in G / Γ, hence is compact (this being the case of G / Γ). On the other hand,

$$
r: G_{\gamma} \Gamma / \Gamma \rightarrow G_{\gamma} / G_{\gamma} \cap \Gamma \quad\left(=G_{\gamma} / \Gamma_{\gamma}\right)
$$

is a homeomorphism (cf. \#14).
[Note: Consequently, $\Gamma_{\gamma} \subset G_{\gamma}$ is a uniform lattice and G_{γ} is unimodular.]
23: NOTATION [Γ] is a set of representatives for the Γ-conjugacy classes in Γ.

Put

$$
\mathbb{S}=\underset{\gamma \in[I]}{\|} G / \Gamma_{\gamma} \times\{\gamma\}
$$

and define $\psi: \mathscr{s} \rightarrow G$ by the rule

$$
\psi\left(x \Gamma_{\gamma}, \gamma\right)=x \gamma x^{-1}
$$

24: N.B. Γ_{γ} is a discrete subgroup of G, thus Γ_{γ} is closed in G (cf. §1, \#4) and therefore the quotient G / Γ_{γ} is a locally compact Hausdorff space from which it follows that \mathscr{s} is a locally compact Hausdorff space.

25: DEFINITION Let X and Y be locally compact Hausdorff spaces, $f: X \rightarrow Y$ a continuous function -- then f is proper if for every compact subset K of Y , the inverse image $f^{-1}(K)$ is a compact subset of X.

26: THEOREM Suppose that $\Gamma \subset G$ is a uniform lattice -- then ψ is a proper map.

7.

27: NOTATION Given $\gamma \in \Gamma$, let

$$
[\gamma]_{G}=\left\{x \gamma x^{-1}: x \in G\right\}
$$

28: APPLICATION In the uniform situation, for any compact subset $K \subset G$,

$$
\left\{\gamma \in[\Gamma]:[\gamma]_{G} \cap K \neq \varnothing\right\}
$$

is finite.

29: LEMMA A proper map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is closed:

$$
S \subset X \text { closed } \Rightarrow f(S) \subset Y \text { closed. }
$$

30: APPLICATION In the uniform situation, $\forall \gamma \in \Gamma,[\gamma]{ }_{G}$ is closed.
[In fact,

$$
[\gamma]_{G}=\psi\left(\underset{\gamma_{0} \in[\gamma]_{G} \cap[\Gamma]}{\left.\left.G / \gamma_{0} \times\left\{\gamma_{0}\right\}\right) \cdot\right]}\right.
$$

31: N.B. Accordingly, $[\gamma]_{G}$ is a locally compact Hausdorff space and the canonical arrow

$$
\mathrm{G} / \mathrm{G}_{\gamma} \rightarrow{ }^{[\gamma]}{ }_{\mathrm{G}}
$$

is a homeomorphism.

APPENDIX

Denote by $\pi \mid G_{\gamma}$ the restriction of $\pi: G \rightarrow G / \Gamma$ to G_{γ}.

CRITERION Suppose that there exist nonempty open sets

$$
U \subset G_{\gamma}, V \subset G_{\gamma} \Gamma / \Gamma
$$

such that the restriction of $\pi \mid G_{\gamma}$ to U is an open continuous map of U onto V-then π / G_{γ} is open.

PROOF Given $x \in G_{\gamma}$ and an open neighborhood W of x in $G_{\gamma^{\prime}}$ it suffices to show that $\left(\pi \mid G_{\gamma}\right)(W)$ contains an open neighborhood N_{x} of $\left(\pi \mid G_{\gamma}\right)(x)$. So fix a point $y \in U$ and put

$$
\tilde{\mathrm{U}}=\mathrm{U} \cap \mathrm{yx}^{-1} \mathrm{~W},
$$

an open neighborhood of y in U, thus the image $\left(\pi \mid G_{\gamma}\right)$ (\widetilde{U}) is an open subset of $G_{\gamma} \Gamma / \Gamma$ or still, $\tilde{U} \Gamma$ is an open subset of $G_{\gamma} \Gamma$, hence

$$
x y^{-1} \tilde{U} \Gamma=\left(x y^{-1} U \cap W\right) \Gamma
$$

is an open subset of $G_{\gamma} \Gamma$ and

$$
x \in x y^{-1} U \cap W
$$

Put now

$$
N_{x}=\left\{z \Gamma: z \in x y^{-1} U \cap W\right\}
$$

Then N_{x} is an open subset of $G_{\gamma} \Gamma / \Gamma$ contained in

$$
\left(\pi \mid G_{\gamma}\right)(W)=\{w \Gamma: W \in W\}
$$

to which $\left(\pi \mid G_{\gamma}\right)(x)$ belongs.

There is a commutative diagram

and $G_{\gamma} \Gamma / \Gamma$ is a locally compact Hausdorff space (cf. \#8), thus is a Baire space.

LEMMA π / G_{γ} is an open map.
PROOF The quotient $G_{\gamma} / G_{\gamma} \cap \Gamma$ is second countable, hence σ-compact, hence

$$
G_{\gamma} / G_{\gamma} \cap \Gamma=\bigcup_{n=1}^{\infty} K_{n},
$$

where K_{1}, K_{2}, \ldots are compact. In view of \#15,

$$
r^{-1}: G_{\gamma} / G_{\gamma} \cap \Gamma \rightarrow G_{\gamma} \Gamma / \Gamma
$$

is continuous and one-to-one, so $\forall \mathrm{n}$ the restriction of r^{-1} to K_{n} is a homeomorphism of K_{n} onto $L_{n} \equiv r^{-1}\left(K_{n}\right)$:

$$
G_{\gamma} \Gamma / \Gamma=\underset{n=1}{U} L_{n},
$$

a countable union of compacta. Being Baire, it therefore follows that $\exists \mathrm{n} \in \mathrm{N}$ and a nonempty open subset V of $G_{\gamma} \Gamma / \Gamma$ such that $V \subset r^{-1}\left(L_{n}\right)$. Put

$$
U=\left(\pi \mid G_{\gamma}\right)^{-l}(V) .
$$

Then $U \subset G_{\gamma}$ is nonempty and open and the restriction of π_{γ} to U is an open continuous map of U onto $r(V)$ or still, the restriction of π / G_{γ} to U is an open continuous map of U onto V.

§3. UNIFORMLY INTEGRABLE FUNCTIONS

Let G be a unimodular locally compact group and, generically, let \mathfrak{l} be a compact symmetric neighborhood of the identity in G.

1: NOTATION Given a continuous function f on G, put

$$
f_{\mathfrak{l}}(y)=\sup _{x, z \in \mathfrak{l}}|f(x y z)| \quad(y \in G) .
$$

2: LEMMA $f_{\mathfrak{l}} \in C(G)$, i.e., is a continuous function on G.

3: DEFINITION A continuous function f on G is said to be uniformly integrable if there exists a \mathfrak{l} such that $f_{\mathfrak{l}} \in L^{l}(G)$.

4: N.B. Since $|f| \leq f_{\mathfrak{l}^{\prime}}$, it is clear that if f is uniformly integrable, then f is integrable: $f \in L^{1}(G)$.

5: NOTATION Write $C_{U N}(G)$ for the set of continuous functions on G that are uniformly integrable.

6: LEMMA

$$
C_{C}(G) \subset C_{U N}(G) \subset C_{0}(G) .
$$

[Note: As usual, $C_{C}(G)$ is the set of continuous functions on G that are compactly supported and $C_{0}(G)$ is the set of continuous functions on G that vanish at infinity.]

7: LEMMA

$$
C_{U N}(G) \subset L^{2}(G) .
$$

[Integrable functions in $\mathrm{C}_{0}(\mathrm{G})$ are square integrable.
8: EXAMPIE Take $G=R-$ then $f(x)=e^{-x^{2}}$ is uniformly integrable.

9: LEMMA If $f, g \in C_{U N}(G)$, then $f * g \in C_{U N}(G)$.
[Working with a common \mathfrak{n},

$$
\begin{aligned}
(f * g)_{\mathfrak{l}}(y) & =\sup _{x, z \in \mathfrak{l}}\left|\delta_{G} f(u) g\left(u^{-1} x y z\right) d \mu_{G}(u)\right| \\
& =\sup _{x, z \in \mathfrak{l}}\left|\delta_{G} f(x u) g\left(u^{-1} y z\right) d \mu_{G}(u)\right| \\
& \leq \sup _{x, z \in \mathfrak{l}} \delta_{G}\left|f(x u) g\left(u^{-l} y z\right)\right| d u_{G}(u) \\
& \leq \int_{G} f_{\mathfrak{l}}(u) g_{\mathfrak{d}}\left(u^{-1} y\right) d \mu_{G}(u) \\
& =\left(f_{\mathfrak{l}} * g_{\mathfrak{l}}\right)(y)
\end{aligned}
$$

which suffices.
[Note: The convolution $\mathrm{f} * \mathrm{~g}$ is continuous.]

Let $H \subset G$ be a closed subgroup and assume that H is unimodular and cocompact.

10: NOTATION $L^{2}(G / H)$ is the Hilbert space associated with $\mu_{G / H}$ (the invariant measure on G / H per $I, \S 4$, \#5).

11: NOTATION $\mathrm{L}_{\mathrm{G} / \mathrm{H}}$ is the left translation representation of G on $\mathrm{L}^{2}(\mathrm{G} / \mathrm{H})$.

12: THEOREM Let $f \in C_{U N}(G)$-- then

$$
L_{G / H}(f)=\int_{G} f(x) L_{G / H}(x) d \mu_{G}(x)
$$

is an integral operator on $L^{2}(G / H)$ with continuous kernel

$$
K_{f}(x, y)=\delta_{H} f\left(x h y{ }^{-1}\right) d \mu_{H}(h) .
$$

Since

$$
\mathrm{C}(\mathrm{G} / \mathrm{H} \times \mathrm{G} / \mathrm{H}) \subset \mathrm{L}^{2}(\mathrm{G} / \mathrm{H} \times \mathrm{G} / \mathrm{H}),
$$

it follows that $\forall f \in C_{U N}(G), L_{G / H}(f)$ is Hilbert-Schmidt, hence is compact.

13: SUBLEMMA Let U be a unitary representation of G on a Hilbert space H with the property that $\forall f \in C_{C}(G)$, the operator

$$
U(f)=\int_{G} f(x) U(x) d \mu_{G}(x)
$$

is compact -- then U is discretely decomposable, a given irreducible unitary representation of G occurring at most a finite number of times in the orthogonal decomposition of U.
[Note: If G is a Lie group, then one can replace $C_{C}(G)$ by $\left.C_{C}^{\infty}(G).\right]$

14: N.B. If G is second countable, then H is separable.
15: APPLICATION Take $H=L^{2}(G / H), U=L_{G / H}$-- then there exist nonnegative integers $m\left(\pi, \mathrm{~L}_{\mathrm{G} / \mathrm{H}}\right)(\mathbb{I} \in \hat{\mathrm{G}})$ such that

$$
\mathrm{L}_{\mathrm{G} / \mathrm{H}}=\hat{\Pi} \hat{\oplus}_{\hat{G}} \mathrm{~m}\left(\Pi, \mathrm{~L}_{\mathrm{G} / \mathrm{H}}\right) \Pi .
$$

§4. THE SELBERG TRACE FORMULA

Let G be a second countable locally compact group, $\Gamma \subset G$ a discrete subgroup. Assume: Γ is a uniform lattice - then G / Γ is cocompact and G is necessarily unimodular (cf. §2, \#19).

Working with $L^{2}(G / \Gamma)$, there is an orthogonal decomposition

$$
\left.\mathrm{L}_{\mathrm{G} / \Gamma}=\hat{\oplus}_{\Gamma \in \hat{G}} \mathrm{~m}\left(\Pi, \mathrm{~L}_{\mathrm{G} / \Gamma}\right) \Pi \quad \text { (cf. } \S 3, \# 15\right)
$$

the multiplicities $m\left(\Pi, L_{G / \Gamma}\right)$ being certain nonnegative integers.

1: RAPPEL $\forall f \in C_{U N}(G), L_{G / \Gamma}(f)$ is an integral operator on $L^{2}(G / \Gamma)$ with continuous kernel

$$
\left.K_{f}(x, y)=\sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right) \quad \text { (cf. } \S 3, \# 12\right)
$$

[Note: This implies that $\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f})$ is Hilbert-Schmidt.]

2: CONVENTION Fix a Haar measure μ_{G} on G, take the counting measure on Γ, and normalize the invariant measure $\mu_{G / \Gamma}$ on G / Γ by the stipulation

$$
\delta_{\mathrm{G}}=\delta_{\mathrm{G} / \Gamma} \delta_{\Gamma}\left(=\delta_{\mathrm{G} / \Gamma} \sum_{\Gamma}^{\Sigma}\right) .
$$

If $f=g * g^{*}\left(g \in C_{U N}(G)\right)$, then $f \in C_{U N}(G)(c f . \S 3, \# 9)$,

$$
\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f})=\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{g}) \mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{g}) *
$$

is trace class and (cf. B, II, §2, \#8)

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\int_{G / \Gamma} K_{f}(\dot{x}, \dot{x}) d \mu_{G / \Gamma}(\dot{x}) \quad(\dot{x}=x \Gamma) .
$$

3: REMARK The assumption that $f=g * g^{*}\left(g \in C_{U N}(G)\right)$ is not restrictive. For if $f=g * h *\left(g, h \in C_{U N}(G)\right)$, put

$$
T(g, h)=g * h^{*}
$$

and using the same letter for the diagonal, note that

$$
\begin{aligned}
T(g, h)= & \frac{1}{4}(T(g+h)-T(g-h) \\
& -\sqrt{-1} T(g-\sqrt{-1} h)+\sqrt{-1} T(g+\sqrt{-1} h))
\end{aligned}
$$

Let $X_{G / \Gamma}$ be the characteristic function of G / Γ, i.e., the function $\equiv 1$. Choose $\alpha \in C_{C}(G): \alpha^{\Gamma}=X_{G / \Gamma}(\mathrm{Cf}, \mathrm{I}, \S 4, \# 3)$, thus $\forall \mathrm{x} \in \mathrm{G}$,

$$
\alpha^{\Gamma}(x \Gamma)=\sum_{\gamma \in \Gamma} \alpha(x y)=1
$$

One can then write

$$
\begin{array}{rl}
\sum_{\Pi \in G} & m\left(\Pi, L_{G / \Gamma}\right) \operatorname{tr}(\Pi(f)) \\
& =\operatorname{tr}\left(L_{G / \Gamma}(f)\right) \\
& =\delta_{G / \Gamma} K_{f}(\dot{x}, \dot{x}) d \mu_{G / \Gamma}(\dot{x}) \\
& \left.=\int_{\mathbb{T}} K_{f}(x \Gamma, x \Gamma) d \mu_{G}(x) \quad \text { (cf. } \S 1, \# 21\right) \\
& =\delta_{\mathbb{E}}\left(\sum_{\gamma \in \Gamma} \alpha(x \gamma)\right) K_{f}(x \Gamma, x \Gamma) d \mu_{G}(x) \\
\quad=\delta_{\mathbb{C}} \sum_{\gamma \in \Gamma} \alpha(x \gamma) K_{f}(x \gamma, x \gamma) d \mu_{G}(x) \\
\quad=\delta_{\mathbb{E}}\left(\alpha K_{f}\right)^{\Gamma} \circ \pi(x) d \mu_{G}(x) \\
\quad=\delta_{G} \alpha(x) K_{f}(x, x) d \mu_{G}(x)
\end{array}
$$

$$
\begin{aligned}
& =\int_{G} \alpha(x) \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right) d \mu_{G}(x) \\
& =\sum_{\gamma \in \Gamma} \delta_{G} \alpha(x) f\left(x \gamma x^{-1}\right) d \mu_{G}(x) .
\end{aligned}
$$

4: NOTATION For any $\gamma \in \Gamma$,

$$
\left[\begin{array}{l}
G_{\gamma}=\text { centralizer of } \gamma \text { in } G \\
\Gamma_{\gamma}=\text { centralizer of } \gamma \text { in } \Gamma .
\end{array}\right.
$$

5: RAPPEL Γ_{γ} is a uniform lattice in G_{γ} (cf. §2, \#22).
[Note: Consequently, G_{γ} is unimodular.]

6: NOTATION For any $\gamma \in \Gamma$,

$$
\left[\begin{array}{l}
{[\gamma]_{\Gamma}=\text { conjugacy class of } \gamma \text { in } \Gamma} \\
\quad{ }^{[\gamma]}{ }_{G}=\text { conjugacy class of } \gamma \text { in } G .
\end{array}\right.
$$

7: RAPPEL There are canonical bijections

$$
\int_{-}^{\Gamma / \Gamma_{\gamma} \rightarrow[\gamma]_{\Gamma}} \begin{aligned}
& G / G_{\gamma} \rightarrow[\gamma]_{G} .
\end{aligned}
$$

Returning to the computation, break the sum over Γ into conjugacy classes in Γ, the contribution from

$$
[\gamma]_{\Gamma}=\left\{\delta \gamma \delta^{-1}: \delta \in \Gamma / \Gamma_{\gamma}\right\}
$$

being

$$
\begin{aligned}
& \sum_{\delta \in \Gamma / \Gamma_{\gamma}} \quad \delta_{G} \alpha(x) f\left(x \delta \gamma \delta^{-1} x^{-1}\right) d \mu_{G}(x) \\
&=\sum_{\delta \in \Gamma / \Gamma_{\gamma}} \delta_{G} \alpha\left(x \delta^{-1}\right) f\left(x \delta x^{-1}\right) d \mu_{G}(x) \\
&=\delta_{G}\left(\sum_{\delta \in \Gamma / \Gamma_{\gamma}} \alpha\left(x \delta^{-1}\right)\right) f\left(x \gamma x^{-1}\right) d \mu_{G}(x) .
\end{aligned}
$$

8: CONVENTION Supplementing the agreements in \#2, fix a Haar measure $\mu_{G^{\prime}}$ on G_{γ}, take the counting measure on Γ_{γ}, and normalize the invariant measure $\mu_{G_{\gamma} / \Gamma_{\gamma}}$ on $G_{\gamma} / \Gamma_{\gamma}$ by the stipulation

$$
\delta_{G_{\gamma}}=\delta_{G_{\gamma} / \Gamma_{\gamma}} \delta_{\Gamma_{\gamma}}\left(=\int_{G_{\gamma} / \Gamma_{\gamma}} \sum_{\Gamma_{\gamma}}\right) .
$$

Next, $\operatorname{fix} \mu_{G / G_{\gamma}}$ via

$$
\delta_{G}=\delta_{G / G_{\gamma}} \delta_{G_{\gamma}} .
$$

Finally, make the identification

$$
\left.G / \Gamma_{\gamma} \approx\left(G / G_{\gamma}\right) / G_{\gamma} / \Gamma_{\gamma}\right)
$$

and put

$$
\delta_{G / \Gamma_{\gamma}}=\delta_{G / G_{\gamma}} \delta_{G_{\gamma} / \Gamma_{\gamma}} \cdot
$$

Moving on,

$$
\int_{G}\left(\sum_{\delta \in \Gamma / \Gamma_{\gamma}} \alpha\left(x \delta^{-1}\right)\right) f\left(x \gamma x^{-1}\right) d \mu_{G}(x)
$$

$$
\begin{aligned}
& =\delta_{G / G_{\gamma}} \delta_{G_{\gamma}} \delta_{\Gamma / \Gamma_{\gamma}} \cdots \\
& =\delta_{G / G_{\gamma}} \delta_{G_{\gamma} / \Gamma_{\gamma}} \delta_{\Gamma_{\gamma}} \delta_{\Gamma / \Gamma_{\gamma}} \cdots \cdot
\end{aligned}
$$

But

$$
\delta_{\Gamma_{\gamma}} \delta_{\Gamma / \Gamma_{\gamma}} \alpha\left(x n \delta^{-1}\right)
$$

is $\equiv 1$, leaving

$$
\delta_{G / G_{\gamma}} \delta_{G_{\gamma} / \Gamma_{\gamma}} \cdots=\delta_{G / \Gamma_{\gamma}} \cdots .
$$

Summary:

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\sum_{\gamma \in[\Gamma]} \int_{G / \Gamma_{\gamma}} f\left(x \gamma x^{-1}\right) d \mu_{G / \Gamma}(\dot{x})
$$

the sum being taken over a set of representatives for the Γ-conjugacy classes in Γ (cf. §2, \#23).

9: N.B.

$$
\begin{aligned}
& \quad \int_{G / \Gamma_{\gamma}} f\left(x \gamma x^{-1}\right) d \mu_{G / \Gamma_{\gamma}}(\dot{x}) \\
& =\int_{G / G_{\gamma}}\left(\delta_{G_{\gamma} / \Gamma_{\gamma}} f\left(x \eta \gamma \eta^{-1} x^{-1}\right) d \mu_{G_{\gamma} / \Gamma_{\gamma}}(\dot{\eta})\right) d \mu_{G / G_{\gamma}}(\dot{x}) \\
& =\int_{G / G_{\gamma}}\left(\delta_{G_{\gamma} / \Gamma_{\gamma}} f\left(x \gamma x^{-1}\right) d \mu_{G_{\gamma} / \Gamma_{\gamma}}(\dot{\eta})\right) d \mu_{G / G_{\gamma}}(\dot{x}) \\
& = \\
& \delta_{G / G_{\gamma}} f\left(x \gamma x^{-1}\right)\left(\delta_{G_{\gamma} / \Gamma_{\gamma}} d \mu_{G_{\gamma} / \Gamma_{\gamma}}\right) d \mu_{G / G_{\gamma}}(\dot{x}) \\
& =\operatorname{vol}\left(G_{\gamma} / \Gamma_{\gamma}\right) \delta_{G / G_{\gamma}} f\left(x \gamma x^{-1}\right) d \mu_{G / G_{\gamma}}(\dot{x}) .
\end{aligned}
$$

10: DEFINITION Given $f \in C_{U N}(G) * C_{U N}(G)$, the Selberg trace formula is
the relation

$$
\begin{aligned}
& \sum_{\Pi \in \hat{G}} m\left(\Pi, L_{G / \Gamma}\right) \operatorname{tr}(\Pi(f)) \\
& =\sum_{\gamma \in[\Gamma]} \operatorname{vol}\left(G_{\gamma} / \Gamma_{\gamma}\right) \delta_{G / G_{\gamma}} f\left(x \gamma x^{-1}\right) d \mu_{G / G_{\gamma}}(\dot{x}),
\end{aligned}
$$

their common value being

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)
$$

11: REMARK Suppose that G is a Lie group - then

$$
C_{C}^{\infty}(G) * C_{C}^{\infty}(G)=C_{C}^{\infty}(G) \quad \text { (Dixmier-Malliavin) }
$$

Since

$$
C_{C}^{\infty}(G) \subset C_{U N}(G),
$$

it follows that the Selberg trace formula is valid for all $f \in C_{C}^{\infty}(G)$.

Let G be a second countable locally compact group, $\Gamma \subset G$ a uniform lattice.

12: LEMMA Let $\mathrm{X}: \mathrm{G} \rightarrow \mathrm{T}$ be a unitary character -- then the multiplicity of X in $L^{2}(G / \Gamma)$ is 1 if $X(\Gamma)=\{I\}$ and is 0 otherwise.

Now take G abelian and identify \hat{G} with the unitary character group of $\mathrm{G}: \Pi \longleftrightarrow X$, the Fourier transform being defined by

$$
\operatorname{tr}(\Pi(f))=\hat{f}(X)=\int_{G} f(x) X(x) d \mu_{G}(x) .
$$

13: NOTATITON Let

$$
\Gamma^{\perp}=\{\chi \in \hat{G}: \chi(\gamma)=1 \forall \gamma \in \Gamma\} .
$$

14: N.B. Therefore

$$
\left[\begin{array}{l}
x \in \Gamma^{\perp} \Rightarrow m\left(x, \mathrm{~L}_{\mathrm{G} / \Gamma}\right)=1 \\
x \in \Gamma^{\perp} \Rightarrow m\left(x, \mathrm{~L}_{\mathrm{G} / \Gamma}\right)=0
\end{array}\right.
$$

The Selberg trace formula thus simplifies:

- Matters on the "spectral side" reduce to

$$
\sum_{\gamma \in \Gamma^{\perp}} \hat{f}(X) .
$$

- Matters on the "geometric side" reduce to

$$
\operatorname{vol}(G / \Gamma) \sum_{\gamma \in \Gamma} f(\gamma) .
$$

15: DEFINITION The relation

$$
\sum_{\chi \in \Gamma^{\perp}} \hat{f}(\chi)=\operatorname{vol}(G / \Gamma) \sum_{\gamma \in \Gamma} f(\gamma)
$$

is the Poisson summation formula (cf. A, III, §4, \#7) (in that situation

$$
\left.\operatorname{vol}(G / \Gamma)=\left|\frac{G}{\Gamma}\right|\right) .
$$

§5. FUNCTIONS OF REGULAR GROWTH

Let G be a second countable locally compact group, $\Gamma \subset G$ a uniform lattice. While $\mathrm{C}_{\mathrm{UN}}(\mathrm{G})$ is theoretically convenient, there is a larger class of functions that can be fed into the Sellberg trace formula.

1: DEFINITION Let $\phi \in \mathrm{C}(\mathrm{G}) \cap \mathrm{L}^{1}(\mathrm{G})$ be nonnegative - then ϕ is said to be of regular growth if there is a compact symmetric neighborhood $\mathfrak{l l}$ of the identity in G and a positive constant C (depending on ϕ and \mathfrak{l}) such that $\forall y \in G$,

$$
\phi(y) \leq C \int_{U} \phi(x y) d \mu_{G}(x)
$$

2: N.B. In terms of the characteristic function $X_{\mathfrak{l l}}$ of $\mathfrak{M}, \forall y \in G$,

$$
\begin{aligned}
\left(x_{U} * \phi\right)(y) & =\int_{G} x_{\mathfrak{l l}}(x) \phi\left(x^{-1} y\right) d \mu_{G}(x) \\
& =\int_{\mathfrak{u}} \phi\left(x^{-1} y\right) d \mu_{G}(x) \\
& =\int_{\mathfrak{u}}{ }^{-1} \phi(x y) d \mu_{G}(x) \\
& =\int_{\mathfrak{l}} \phi(x y) d \mu_{G}(x)
\end{aligned}
$$

3: EXAMPLE Take $G=R^{n}$ and $f i x$ a real number $r>0$ such that

$$
\int_{R^{n}} \frac{I}{(I+\|Y\|)^{r}} d Y<\infty .
$$

Given \mathfrak{H}, fix a real number $N>0$ such that $\forall X \in \mathbb{1}$,

$$
(1+\|Y\|)^{-r} \leq N(1+\|X+Y\|)^{-r} .
$$

Then

$$
\begin{aligned}
& \frac{1}{\operatorname{vol}(\mathfrak{1 l})} \delta_{\mathfrak{u}} \frac{d x}{(1+\| x+Y| |)^{r}} \\
& \quad \geq \frac{1}{\operatorname{vol}(\mathfrak{i l})} \delta_{\mathfrak{1}} \frac{d x}{(1+||Y||)^{r}} \\
& \quad=(1+||Y||)^{-r} .
\end{aligned}
$$

Therefore

$$
\phi(Y)=(1+\|Y\|)^{-r}
$$

is of regular growth

4: EXAMPLE Let G be a connected semisimple Lie group with finite center and fix a real number $r>0$ such that

$$
\delta_{G} \mid — 1^{2}(y) \quad(1+\sigma(y))^{-r_{d_{G}}}(y)<\infty .
$$

Given \mathbb{M}, fix a real number $M>0$ such that $\forall x \in \mathbb{M}$,
and fix a real number $N>0$ such that $\forall x \in M$,

$$
(1+\sigma(y))^{-r} \leq N(1+\sigma(x y))^{-r} .
$$

Then

$$
\begin{aligned}
\frac{\mathbb{M N}}{\operatorname{vol}(\mathfrak{d})} & \int_{\mathfrak{a}}|\ldots|^{2}(x y)(1+\sigma(x y))^{-r} d \mu_{G}(x) \\
& \geq \frac{1}{\operatorname{vol}(\mathfrak{d i})} \delta_{\mathfrak{a}}|-\ldots|^{2}(y)(1+\sigma(y))^{-r} d \mu_{G}(x) \\
& =\left.1 \ldots\right|^{2}(y)(1+\sigma(y))^{-r} .
\end{aligned}
$$

Therefore

$$
\phi(y)=|-\infty|^{2}(y)(1+\sigma(y))^{-r}
$$

is of regular growth.

5: DEFINITION Let f be a continuous function on G-- then f is admissible if there exists a function ϕ of regular growth such that $\forall y \in G$,

$$
|f(y)| \leq \phi(y)\left(\leq C\left(X_{\mathfrak{d}} * \phi\right)(y)\right) .
$$

[Note: Admissible functions are integrable.]

6: EXAMPLE The rapidly decreasing functions on R^{n} are admissible (cf. \#3).

7: LEMMA If $f \in C_{U N}(G)$, then f is admissible.
PROOF $\forall y \in G,|f(y)| \leq f_{\mathfrak{j}}(y)$. And

$$
\begin{aligned}
f_{\mathfrak{u}}(y) & =\sup _{u, z \in \mathfrak{l}}|f(u y z)| \\
& \leq \sup _{u, z \in \mathfrak{l}}|f(u x y z)| \quad(x \in \mathfrak{u})
\end{aligned}
$$

=>

$$
\begin{aligned}
f_{\mathfrak{u}}(y) & =\frac{\operatorname{vol}(\mathfrak{l})}{\operatorname{vol}(\mathfrak{l j})} f_{\mathfrak{u}}(y) \\
& \leq \frac{1}{\operatorname{vol}(\mathfrak{l u})} \int_{\mathfrak{u}} f_{\mathfrak{u}}(y) d \mu_{G}(x) \\
& \leq \frac{1}{\operatorname{vol}(\mathfrak{l d})} \int_{\mathfrak{d}} \sup _{x, z \in \mathfrak{l}}|f(u x y z)| d_{\mu_{G}}(x) \\
& =\frac{1}{\operatorname{vol}(\mathfrak{l d})} \int_{\mathfrak{u}} f_{\mathfrak{u}}(x y) d_{\mu_{G}}(x) .
\end{aligned}
$$

Therefore $f_{\mathfrak{l l}}$ is of regular growth, hence f is admissible.

8: LEMMA Suppose that $|f| \leq|g|$, where g is admissible, say $|g| \leq \psi-$ then f is admissible (clear) as is f * f.
[For

$$
\begin{aligned}
|f * f| & \leq|f| *|f| \\
& \leq|g| *|g| \\
& \leq \psi *|g| .
\end{aligned}
$$

And $\psi *|g|$ is of regular growth:

$$
\begin{aligned}
\psi *|g| & \leq\left(C x_{\mathfrak{l}} * \psi\right) *|g| \\
& =C\left(x_{\mathfrak{l}} *(\psi *|g|)\right) .
\end{aligned}
$$

The condition of admissible is then met by

$$
\phi=\psi *|g| .]
$$

[Note: If $f_{1}, f_{2} \in C(G) \cap L^{1}(G)$ and if f_{1} is admissible, then $f_{1} * f_{2}$ is admissible. Proof:

$$
\begin{aligned}
\left|f_{1} * f_{2}\right| & \leq\left|f_{1}\right| *\left|f_{2}\right| \\
& \leq \phi_{1} *\left|f_{2}\right| \\
& \left.\leq C\left(\chi_{\mathfrak{l l}} *\left(\phi_{1} *\left|f_{2}\right|\right)\right) .\right]
\end{aligned}
$$

9: DEFINITION A series of functions f_{1}, f_{2}, \ldots on a locally compact Hausdorff space X is locally dominantly absolutely convergent (lac) if for every compact set $K \subset X$ there exists a positive constant M_{K} such that $\forall k \in K$,

$$
\sum_{\mathrm{n}}\left|\mathrm{f}_{\mathrm{n}}(\mathrm{k})\right|<\mathrm{M}_{\mathrm{K}}
$$

10: CRITERION Let $f \in C(G) \cap L^{1}(G)$. Assume: The operator $L_{G / \Gamma}(f)$ is trace class and the series

$$
\sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right)
$$

is lac on $G \times G$ to a separately continuous function -- then the Selberg trace formula obtains:

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\sum_{\gamma \in[\Gamma]} \operatorname{vol}\left(G_{\gamma} / \Gamma_{\gamma}\right) \delta_{G / G_{\gamma}} f\left(x \gamma x^{-1}\right) d \mu_{G / G_{\gamma}}(\dot{x})
$$

the sum on the right hand side being absolutely convergent.
[First of all,

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\int_{G / \Gamma} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right) d \mu_{G / \Gamma}(\dot{x}) \quad \text { (cf. B, II, §2, \#8) }
$$

Proceeding, fix a compact set $\mathrm{K} \subset \mathrm{G}: \mathrm{K} \Gamma=\mathrm{G}$ (cf. \#ll infra) and choose $\mathrm{M}_{\mathrm{K}}>0$:

$$
k, \ell \in \mathrm{k} \Rightarrow \sum_{\gamma \in \Gamma}\left|\mathrm{f}\left(\mathrm{k} \mathrm{\gamma} \ell^{-1}\right)\right|<M_{\mathrm{K}}
$$

Here, of course, the lac condition is per $K \times K^{-1} \subset G \times G$. Given $x, y \in G$, $\exists \gamma_{x}, \gamma_{y} \in \Gamma: x \gamma_{x}, Y \gamma_{y} \in K$, so

$$
\sum_{\gamma \in \Gamma}\left|f\left(x \gamma y^{-1}\right)\right|=\sum_{\gamma \in \Gamma}\left|f\left(x \gamma_{x} \gamma \gamma_{y}^{-1} y^{-1}\right)\right|<M_{K^{\prime}}
$$

from which

$$
M_{K} \operatorname{vol}(G / \Gamma) \geq \delta_{G / \Gamma} \sum_{\gamma \in \Gamma}\left|f\left(x \gamma Y^{-1}\right)\right| d \mu_{G / \Gamma}(\dot{x})
$$

Now interchange sum and integral, the ensuing formal manipulation being justified by Fubini.]

11: SUBLEMMA There exists a compact set $K \subset G$ such that $K \Gamma=G$.
[Let U be an open neighborhood of e such that \bar{U} is compact -- then the collection $\{\pi(x U): x \in G\}$ is an open covering of G / Γ, thus there is a finite subcollection

$$
\pi\left(x_{1} \mathrm{U}\right), \pi\left(\mathrm{x}_{2} \mathrm{U}\right), \ldots, \pi\left(\mathrm{x}_{\mathrm{n}} \mathrm{U}\right)
$$

that covers G / Γ and one may take

$$
K=x_{1} \bar{U} \cup x_{2} \bar{U} \cup \cdots \cup x_{n} \bar{U} .
$$

Indeed,

$$
\mathrm{G} / \Gamma=\{\mathrm{k} \Gamma: \mathrm{k} \in \mathrm{~K}\},
$$

so given $\mathrm{x} \in \mathrm{G}$,

$$
x \Gamma=k \Gamma(\exists k) \Rightarrow x=k \gamma(\exists \gamma) \Rightarrow x \in К \Gamma .]
$$

[Note: It can be shown that K contains a transversal \mathbb{C} which is therefore relatively compact.]

Suppose that f is admissible - then $\forall x, y \in G$,

$$
\begin{aligned}
\left|f\left(x \gamma y^{-1}\right)\right| & \leq \phi\left(x \gamma y^{-1}\right) \\
& \leq C \int_{\mathfrak{l}} \phi\left(u x \gamma y^{-1}\right) d \mu_{G}(u) .
\end{aligned}
$$

12: LEMMA Fix $x, y \in G-$ then $\forall \gamma_{1}, \gamma_{2} \in \Gamma$,

$$
d x \gamma_{1} y^{-1} \cap d x \gamma_{2} y^{-1} \neq \emptyset
$$

iff

$$
\gamma_{2} \gamma_{1}^{-1} \in \mathrm{x}^{-1} \mathrm{u}^{-1} \mathrm{ux}
$$

[In one direction,

$$
\begin{aligned}
& u_{1} x \gamma_{1} Y^{-1}=u_{2} x \gamma_{2} Y^{-1} \\
& \text { => } \\
& u_{1} x \gamma_{1}=u_{2} x \gamma_{2} \\
& \text { => } \\
& u_{1} x=u_{2} x \gamma_{2} \gamma_{1}^{-1} \\
& \text { => } \\
& u_{2}^{-1} u_{1} x=x \gamma_{2} \gamma_{1}^{-1} \\
& \text { => } \\
& \left.x^{-1} u_{2}^{-1} u_{1} x=\gamma_{2} \gamma_{1}^{-1} .\right]
\end{aligned}
$$

Since Γ is discrete, the compact set $x^{-1} \mathcal{M}^{-1} \mu \mathrm{~lx}$ contains a finite number N of elements of Γ. So, for fixed x, y, not more than N of the $d x \gamma_{2} y^{-1}$ can intersect $\mu \mathrm{Xx} \gamma_{1} \mathrm{Y}^{-1}$.

13: N.B. Consider the case when $N=1$. Since it is always true that $e \in x^{-1} \mathfrak{l}^{-1} \mathfrak{l x}$, in this situation the ${ }_{d x y} y^{-1}$ are disjoint, hence

$$
\begin{gathered}
\sum_{\gamma \in \Gamma} \delta_{\mathfrak{u}} \phi\left(u x \gamma y^{-1}\right) d \mu_{G}(u) \\
\quad \leq \delta_{G} \phi d \mu_{G}<\infty .
\end{gathered}
$$

14: RAPPEL If μ is a measure, then

$$
\sum_{i=1}^{n} \mu\left(X_{i}\right)=\mu\left(\bigcup_{i=1}^{n} x_{i}\right)+\mu\left(\sum_{i=1}^{n} \bigcup_{\substack{j=1 \\ i<j}}^{n} x_{i} \cap x_{j}\right)
$$

$+\mu\left(\underset{\substack{\mathrm{i}=1 \\ \mathrm{i}<j<k}}{\substack{\mathrm{j}=1}} \mathrm{U}_{\mathrm{k}=1}^{\mathrm{U}} \mathrm{x}_{\mathrm{i}} \cap \mathrm{X}_{\mathrm{j}} \cap \mathrm{X}_{\mathrm{k}}\right)+\cdots+\mu\left(\underset{\mathrm{i}=1}{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right)$.

15: LEMMA Fix $x, y \in G-$ - then

$$
\sum_{\gamma \in \Gamma}\left|f\left(x \gamma y^{-1}\right)\right| \leq N C \delta_{G} \phi d \mu_{G}<\infty .
$$

16: N.B. More is true: The series

$$
\sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right)
$$

is ldac on $\mathrm{G} \times \mathrm{G}$ to a continuous function.
[The point is that the preceding estimate is uniform in x and y if these variables are confined to compacta K_{x} and K_{Y}.]
[Note: Consequently,

$$
\text { f admissible } \Rightarrow \mathrm{L}_{\mathrm{G} / \mathrm{\Gamma}} \text { (f) Hilbert-Schmidt.] }
$$

17: THEOREM If f is admissible and if $\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f})$ is trace class, then the Selberg trace formula obtains (cf. \#10).

18: N.B.

$$
\text { f admissible } \Rightarrow f \times f \text { admissible (cf. \#8). }
$$

Therefore

$$
\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f} * \mathrm{f})=\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f}) \mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f})
$$

is trace class and the foregoing is applicable.

Specialize now to the case when G is a connected semisimple Lie group with finite center.

19: RAPPEL $C^{l}(G)$ is the $L^{1}-$ Schwartz space of G. It is closed under convolution and contains $\mathrm{C}_{\mathrm{C}}^{\infty}(\mathrm{G})$ as a dense subspace.

Let $\mathrm{f} \in \mathrm{C}^{1}(\mathrm{G})$ and take $\mathrm{r}>0$ per \#4-- then there exists a constant $\mathrm{C}>0$ such that

$$
|f(y)| \leq c|-0-|^{2}(y)(1+\sigma(y))^{-r} \quad(y \in G) .
$$

Therefore f is admissible.

$$
\text { 20: LEMMA } \mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f}) \text { is trace class. }
$$

[Using the theory of the parametrix, write

$$
f=g * \mu+f * \nu,
$$

where $g \in C^{l}(G)$ (a certain derivative of f), $\mu \in C_{C}^{p}(G), v \in C_{C}^{\infty}(G)$, so

$$
L_{G / \Gamma}(f)=L_{G / \Gamma}(\mathrm{g}) \mathrm{L}_{\mathrm{G} / \Gamma}(\mu)+\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f}) \mathrm{L}_{\mathrm{G} / \Gamma}(\nu) .
$$

The functions

$$
f, g, \mu, \nu
$$

are admissible, hence the operators

$$
\mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{f}), \mathrm{L}_{\mathrm{G} / \Gamma}(\mathrm{g}), \mathrm{L}_{\mathrm{G} / \Gamma}(\mu), \mathrm{L}_{\mathrm{G} / \Gamma}(\nu)
$$

are Hilbert-Schmidt.]
21: SCHOLIUM $\forall f \in C^{1}(G)$, the Selberg trace formula obtains.

22: N.B. The assigment

$$
\mathrm{f} \rightarrow \operatorname{tr}\left(\mathrm{~L}_{\mathrm{G} / \Gamma}(\mathrm{f})\right)
$$

is continuous in the topology of $C^{1}(G)$.
[Note: Analogously, the assigmment

$$
\mathrm{f} \rightarrow \operatorname{tr}\left(\mathrm{~L}_{\mathrm{G} / \Gamma}(\mathrm{f})\right)
$$

is continuous in the topology of $C_{C}^{\infty}(G)$, i.e., is a distribution on G.]

APPENDIX

By way of reconciliation, consider the case when G is finite and use the notation of A, III, $\S 3$ and $\S 4$-- then given $f \in C(G), \phi \in C(G / T)$, we have

$$
\left(L_{G / \Gamma}(f) \phi\right)(x)=\sum_{y \in G} K_{f}(x, y) \phi(y)
$$

where in this context

$$
K_{f}(x, y)=\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right)
$$

Here

$$
\left[\begin{array}{l}
\mu_{G}=\text { counting measure on } G \\
\mu_{\Gamma}=\text { counting measure on } \Gamma .
\end{array}\right.
$$

Write

$$
G=\prod_{k=1}^{n} x_{k} \Gamma
$$

Then for any $f \in C(G)$,

$$
\delta_{G} f d \mu_{G}=\sum_{x \in G} f(x)
$$

$$
\begin{aligned}
& =\int_{G / \Gamma} f^{\Gamma} d \mu_{G / \Gamma} \\
& =\sum_{k=1}^{n} \sum_{\gamma \in \Gamma} f\left(x_{k} \gamma\right),
\end{aligned}
$$

so $\mu_{G / \Gamma}$ is counting measure on G / Γ.
Now explicate matters:

$$
\begin{aligned}
\left(L_{G / \Gamma}(f) \phi\right)(x) & =\sum_{y \in G} K_{f}(x, y) \phi(y) \\
& =\sum_{k=1}^{n} \sum_{\gamma \in \Gamma} K_{f}\left(x, x_{k} \gamma\right) \phi\left(x_{k} \gamma\right) \\
& =\sum_{k=1}^{n} \sum_{\gamma \in \Gamma} K_{f}\left(x, x_{k}\right) \phi\left(x_{k}\right) \\
& =\sum_{k=1}^{n}|\Gamma| \cdot K_{f}\left(x, x_{k}\right) \phi\left(x_{k}\right) \\
& =\sum_{k=1}^{n}|\Gamma| \cdot \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma x_{k}^{-1}\right) \phi\left(x_{k}\right) \\
& =\sum_{k=1}^{n} \sum_{\gamma \in \Gamma} f\left(x \gamma x_{k}^{-1}\right) \phi\left(x_{k}\right)
\end{aligned}
$$

which establishes that $I_{G / \Gamma}(f)$ is an integral operator on $C(G / \Gamma)$ with kernel

$$
\sum_{\gamma \in \Gamma} f\left(x \gamma y^{-1}\right)
$$

this being the " K_{f} " of $\S 4$, \#l.
There is more to be said. Thus given $f \in C(G)$, we have

$$
\operatorname{tr}\left(L_{G / \Gamma}(f)\right)=\sum_{x \in G} \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} f\left(x \gamma x^{-1}\right) \quad \text { (cf. A, III, §3, \#8) }
$$

$$
=\sum_{i=1}^{n} \frac{1}{\Gamma_{\gamma_{i}}} 0\left(f, \gamma_{i}\right) \quad(c f . A, \text { III, } \S 4, \# 2) .
$$

Here

$$
[\Gamma]=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}
$$

while

$$
\begin{aligned}
O\left(f, \gamma_{i}\right) & =\sum_{x \in G} f\left(x \gamma_{i} x^{-1}\right) \\
& =\left|G_{\gamma_{i}}\right| \sum_{x \in G / G_{\gamma_{i}}} f\left(x \gamma_{i} x^{-1}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\operatorname{vol}\left(G_{\gamma_{i}} / \Gamma_{\gamma_{i}}\right) & =\frac{\left|G_{\gamma_{i}}\right|}{\Gamma_{\gamma_{i}}} \\
& =\left[G_{\gamma_{i}}: \Gamma_{\gamma_{i}}\right]
\end{aligned}
$$

N.B. The Haar measures μ_{G} (or $\mu_{G^{\prime}}$) and μ_{Γ} (or $\mu_{\Gamma_{\gamma}}$) are counting measures, hence the invariant measure $\mu_{G / \Gamma}$ (or $\mu_{G_{\gamma} / \Gamma_{\gamma}}$) is counting measure, hence the invariant measure $\mu_{G / G}$ per

$$
\delta_{\mathrm{G}}=\delta_{\mathrm{G} / \mathrm{G}_{\gamma}} \delta_{\mathrm{G}_{\gamma}}
$$

is counting measure, its total volume being

$$
\left[G: G_{\gamma}\right]=\frac{|G|}{\left|G_{\gamma}\right|} .
$$

Finally, the invariant measure $\mu_{G / \Gamma_{\gamma}}$ per

$$
\delta_{G / \Gamma_{\gamma}}=\delta_{G / G_{\gamma}} \delta_{G_{\gamma} / \Gamma_{\gamma}}
$$

is counting measure and

$$
\operatorname{vol}\left(G / \Gamma_{\gamma}\right)=\operatorname{vol}\left(G / G_{\gamma}\right) \operatorname{vol}\left(G_{\gamma} / \Gamma_{\gamma}\right),
$$

i.e.,

$$
\left[G: \Gamma_{\gamma}\right]=\left[G: G_{\gamma}\right]\left[G_{\gamma}: \Gamma_{\gamma}\right],
$$

i.e.,

$$
\begin{array}{ll}
\Rightarrow \quad & \frac{|G|}{\Gamma_{\gamma} \mid}=\frac{|G|}{G_{\gamma}}\left[G_{\gamma}: \Gamma_{\gamma}\right] \\
& \left|\frac{G_{\gamma}}{\Gamma_{\gamma}}\right|=\left[G_{\gamma}: \Gamma_{\gamma}\right] .
\end{array}
$$

Matters are thus consistent, so the bottom line is that the global trace formula of A, III, $\S 4, \# 6$ is in this context the Selberg trace formula.

§6. DISCRETE SERIES

Let G be a unimodular locally compact group.

1: DEFINITION Let Π be an irreducible unitary representation of G on a Hilbert space $V(\Pi)$-- then Π is square integrable if $\exists \mathrm{v} \neq 0$ in $V(\Pi)$ such that the coefficient

$$
x \rightarrow\langle\Pi(x) v, v\rangle
$$

is square integrable on G.

2: THEOREM If Π is square integrable, then for all $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}(\Pi)$, the coefficient

$$
x \rightarrow\left\langle\Pi(x) v_{1}, v_{2}\right\rangle
$$

lies in $L^{2}(G)$ and there exists a unique positive real number d_{Π} (depending on the normalization of the Haar measure on G but independent of v_{1}, v_{2}) such that

$$
\delta_{G}\left|\left\langle\Pi(x) v_{1}, v_{2}\right\rangle\right|^{2} d \mu_{G}(x)=\frac{1}{d_{\Pi}}| | v_{1}\left\|^{2}\right\| v_{2} \|^{2} .
$$

3: DEFINITION d_{Π} is called the formal dimension of Π.
[Note: If G is compact, then every irreducible unitary representation of G is square integrable and d_{Π} is the dimension of Π in the usual sense provided $\delta_{G} d \mu_{G}=1$.

4: NOTATION \hat{G}_{d} is the subset of \hat{G} comprised of the square integrable representations and is called the discrete series for G.
[Note: $\hat{\mathrm{G}}_{\mathrm{d}}$ may very well be empty (e.g., take $\mathrm{G}=\mathrm{R}$).]

5: REMARK If \hat{G}_{d} is not empty, then the center of G is compact (the converse being false).

6: N.B. The elements of $\hat{G}_{\mathcal{Z}}$ are precisely those irreducible unitary representations of G which occur as irreducible subrepresentations of the left translation representation of G on $L^{2}(G)$.

7: NOTATION Given a $\Pi \in \hat{G}_{d}$, let

$$
\phi_{., \cdot}(x)=\langle\Pi(x) \cdot, \cdot\rangle \quad(x \in G)
$$

stand for a generic coefficient.

8: THEOREM Suppose that II is square integrable -- then $\forall \mathrm{v}_{1}, \mathrm{v}_{2}, \forall \mathrm{w}_{1}, \mathrm{w}_{2}$ in $V(I I)$,

$$
\begin{gathered}
\delta_{G} \phi_{v_{1}, v_{2}}(x) \overline{\phi_{w_{1}}, w_{2}}(x) d \mu_{G}(x) \\
\quad=\frac{1}{d_{\Pi}}<v_{1}, w_{1}>\overline{<v_{2}, w_{2}>}
\end{gathered}
$$

9: APPIITCATION

$$
\phi_{\mathrm{v}_{1}, \mathrm{v}_{2}} * \phi_{\mathrm{w}_{1}, \mathrm{w}_{2}}=\frac{1}{\mathrm{~d}_{\mathrm{I}}}<\mathrm{v}_{1}, \mathrm{w}_{2}>\phi_{\mathrm{w}_{1}}, \mathrm{v}_{2} .
$$

[Note: If $v_{1}=v_{2}=w_{1}=w_{2}$ is a unit vector, call it v and abbreviate $\phi_{v, v}$ to ϕ, then

$$
\left.\|\phi\|_{2}^{2}=\frac{1}{d_{\Pi}} \text { and } \phi * \phi=\frac{1}{d_{\Pi}} \phi .\right]
$$

10: DEFINITION Let I be an irreducible unitary representation of G on a Hilbert space $V(\Pi)$-- then Π is integrable if $\exists \mathrm{v} \neq 0$ in $V(\Pi)$ such that the coefficient

$$
\mathrm{x} \rightarrow\langle\mathrm{I}(\mathrm{x}) \mathrm{v}, \mathrm{v}\rangle
$$

is integrable on G.

11: N.B. The coefficient

$$
\mathrm{x} \rightarrow\langle\mathrm{\Pi}(\mathrm{x}) \mathrm{v}, \mathrm{v}\rangle
$$

is bounded and L^{1}, hence is L^{2}. Therefore
" Π integrable" => " $І$ square integrable"
but the converse is false.

12: THEOREM If Π is integrable, then there exists a dense subspace $V(\Pi)$ ~ of $V(\Pi)$ such that for all v_{1}, v_{2} in $V(\Pi)^{\sim}$ the coefficient

$$
x \rightarrow\left\langle\Pi(x) v_{1}, v_{2}\right\rangle
$$

lies in $L^{1}(G)$.
[Note: If $\phi_{V, V} \in L^{1}(G)$, then one can take

$$
\left.\mathrm{V}(\Pi)^{\sim}=\Pi\left(C_{C}(\mathrm{~g})\right) \mathrm{v} .\right]
$$

Take G second countable and assume that $\Pi \in \hat{G}$ is integrable, say $\phi_{V, v} \in L^{l}(G)$-then $\forall f \in C_{C}(G)$,

$$
\phi_{\Pi(f) v, \Pi(f) v} \in L^{I}(G) \quad \text { (cf. \#l2). }
$$

Put $\mathrm{v}_{0}=\Pi(f) \mathrm{v}$, normalized by $\left\|\mathrm{v}_{0}\right\|=1$, and let

$$
\phi_{0}=d_{\Pi} \phi_{\mathrm{v}_{0}}, \mathrm{v}_{0}
$$

13: N.B.

$$
\begin{aligned}
\phi_{0} * \phi_{0} & =d_{\Pi} \phi_{\mathrm{v}_{0}}, \mathrm{v}_{0} * \mathrm{~d}_{\Pi} \phi_{\mathrm{v}_{0}}, \mathrm{v}_{0} \\
& =\mathrm{d}_{\Pi}^{2} \phi_{\mathrm{v}_{0}}, \mathrm{v}_{0} * \phi_{\mathrm{v}_{0}}, \mathrm{v}_{0} \\
& =\mathrm{d}_{\Pi}^{2} \frac{1}{\mathrm{~d}_{\Pi \mathrm{I}}} \phi_{\mathrm{v}_{0}}, \mathrm{v}_{0} \quad \text { (cf.\#9) } \\
& =\mathrm{d}_{\Pi} \phi_{\mathrm{v}_{0}}, \mathrm{v}_{0}=\phi_{0} .
\end{aligned}
$$

It is also clear that $\phi_{0}^{*}=\phi_{0}$ and $\Pi\left(\phi_{0}\right) \mathrm{v}_{0}=\mathrm{v}_{0}$.

14: NOTATION If I is an irreducible unitary representation of G and if π is a unitary representation of G, then

$$
I_{G}(\Pi, \pi)
$$

is the set of intertwining operators between Π and π.

15: LEMMA For any unitary representation π of $G, \pi\left(\bar{\phi}_{0}\right)$ is the orthogonal projection onto

$$
\left\{T v_{0}: T \in I_{G}(\Pi, \pi)\right\}
$$

[Note: It's $\pi\left(\bar{\phi}_{0}\right)$, not $\pi\left(\phi_{0}\right) \ldots$.]

Suppose that $\Gamma \subset G$ is a uniform lattice and take $\pi=\mathrm{L}_{\mathrm{G} / \Gamma}$.

16: APPLICATION

$$
\mathrm{L}_{\mathrm{G} / \Gamma}\left(\bar{\phi}_{0}\right)
$$

is trace class and

$$
\operatorname{tr}\left(L_{G / \Gamma}\left(\bar{\phi}_{0}\right)\right)=\operatorname{dim} I_{G}\left(\Pi, L_{G / \Gamma}\right)=m\left(\Pi, I_{G / \Gamma}\right)
$$

17: THEOREM The series

$$
\sum_{\gamma \in \Gamma} \phi_{0}\left(x \gamma y^{-1}\right)
$$

is lac on $G \times G$ to a separately continuous function.
PROOF Let $K \subset G$ be compact and let

$$
\mathrm{n}(\mathrm{~K})=\left|\Gamma \cap \mathrm{K}^{-1} \operatorname{spt}(\mathrm{f}) \operatorname{spt}(\mathrm{f})^{-1} \mathrm{~K}\right|
$$

Then the arrow

$$
\operatorname{spt}(f)^{-1} K \rightarrow G / \Gamma
$$

is at most $n(K)-$ to- 1 and $\forall x \in K$,

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma}\left|\phi_{0}\left(x \gamma y^{-1}\right)\right|=d_{\Pi} \sum_{\gamma \in \Gamma}\left|<\Pi\left(x \gamma y^{-1}\right) v_{0}, v_{0}>\right| \\
& =d_{\Pi} \sum_{\gamma \in \Gamma}\left|\left\langle\Pi\left(x \gamma y^{-1}\right) v_{0}, \Pi(f) v\right\rangle\right| \\
& =d_{\Pi} \sum_{\gamma \in \Gamma}\left|<\Pi(f) v, \Pi\left(x \gamma Y^{-1}\right) v_{0}>\right| \\
& =d_{\Pi} \sum_{\gamma \in \Gamma}\left|\delta_{G} f(z)<\Pi(z) v, \Pi\left(x \gamma y^{-1}\right) v_{0}>d \mu_{G}(z)\right| \\
& =d_{\Pi} \sum_{\gamma \in \Gamma}\left|\delta_{G} f(z)<v, \Pi\left(z^{-1} X \gamma Y^{-1}\right) v_{0}>d \mu_{G}(z)\right| \\
& =d_{I I} \sum_{\gamma \in \Gamma}\left|\delta_{G} f\left(z^{-1}\right)<v, \Pi\left(z X Y Y^{-1}\right) v_{0}>d \mu_{G}(z)\right| \\
& =d_{\Pi I} \sum_{\gamma \in \Gamma} \mid \delta_{G} f\left(z^{-1}\right) \overline{<\Pi\left(z x y y^{-1}\right) v_{0}, v>d \mu_{G}(z) \mid} \\
& \leq d_{\Pi} \sum_{\gamma \in \Gamma} \delta_{G}\left|f\left(z^{-1}\right)\right| \overline{\left|<\Pi\left(z X Y y^{-1}\right) v_{0}, v>\right|} d \mu_{G}(z)
\end{aligned}
$$

$$
\begin{aligned}
& =d_{I I} \sum_{\gamma \in \Gamma} \delta_{G}\left|f\left(z^{-1}\right)\right|\left|<\Pi\left(z x \gamma Y^{-1}\right) v_{0}, v>\right| d \mu_{G}(z) \\
& \leq d_{\Pi}| | f \|_{\infty} \sum_{\gamma \in \Gamma} \int_{\operatorname{spt}(f)^{-1}}\left|\left\langle\Pi\left(z \gamma y^{-1}\right) v_{0}, v\right\rangle\right| d \mu_{G}(z) \\
& \leq d_{\Pi}| | f| |_{\infty} n(K) \delta_{G / \Gamma} \sum_{\gamma \in \Gamma}\left|\left\langle\Pi\left(\dot{z} \gamma y^{-1}\right) v_{0}, v\right\rangle\right| d \mu_{G / \Gamma}(\dot{z}) \\
& =d_{\Pi}| | f| |_{\infty} n(K) \delta_{G}\left|\left\langle\Pi\left(z Y^{-1}\right) v_{0}, v\right\rangle\right| d \mu_{G}(z) \\
& =d_{\Pi}| | f \|_{\infty} n(K) \delta_{G}\left|<\Pi(z) v_{0}, v\right\rangle \mid d \mu_{G}(z) \\
& =d_{I I}\|f\|_{\infty} n(K)\left\|\phi_{v_{0}, v}\right\| \|_{1} .
\end{aligned}
$$

And

$$
\begin{aligned}
\| \phi_{v_{0}}, v
\end{aligned} \|_{I} \leq \int_{G} \delta_{G}|f(y)<\pi(x y) v, v>| d u_{G}(x) d u_{G}(y),
$$

thereby settling the ldac condition (and then some (no restriction on " y ")), leaving the claim of separate continuity which can be left to the reader.

The operator $\mathrm{L}_{\mathrm{G} / \Gamma}\left(\bar{\phi}_{0}\right)$ is trace class (cf. \#l6). So, in view of what has been said above, the criterion of $\S 5, \# 10$ is applicable.

18: SCHOLIUM

$$
m\left(\Pi, L_{G / \Gamma}\right)=\sum_{\gamma \in[\Gamma]}^{\sum} \operatorname{vol}\left(G_{\gamma} / \Gamma_{\gamma}\right) \delta_{G / G_{\gamma}} \overline{\phi_{0}\left(x \gamma x^{-1}\right)} d \mu_{G / G_{\gamma}}(\dot{x})
$$

the sum on the right hand side being absolutely convergent.

19: REMARK There are circumstances in which the integral

$$
\delta_{G / G_{\gamma}} \overline{\phi_{0}\left(x \gamma x^{-I}\right)} d \mu_{G / G_{\gamma}}(\dot{x})
$$

vanishes for all γ except $\gamma=e$, hence then

$$
\begin{aligned}
\mathrm{m}\left(\Pi, \mathrm{~L}_{\mathrm{G} / \Gamma}\right) & =\operatorname{vol}(\mathrm{G} / \Gamma) \overline{\phi_{0}(\mathrm{e})} \\
& =\operatorname{vol}(\mathrm{G} / \Gamma) \mathrm{d}_{\Pi}\left\langle\Pi(\mathrm{e}) \mathrm{v}_{0}, \mathrm{v}_{0}>\right. \\
& =\operatorname{vol}(\mathrm{G} / \Gamma) \mathrm{d}_{\Pi}\left\langle\mathrm{v}_{0}, \mathrm{v}_{0}\right\rangle \\
& =\operatorname{vol}(\mathrm{G} / \Gamma) \mathrm{d}_{\Pi} .
\end{aligned}
$$

Therefore $m\left(\Pi, L_{G / \Gamma}\right)$ is positive, so Π definitely occurs in $L_{G / \Gamma}$.
[Note: To run a reality check, take G finite, $\Gamma=\{e\}$-- then $\operatorname{vol}(G / \Gamma)=$ $\operatorname{vol}(G)=1$ and $\forall \Pi \in \hat{G}$,

$$
\left.\left.\mathrm{m}\left(\Pi, \mathrm{~L}_{\mathrm{G} / \Gamma}\right)=\mathrm{d}_{\Pi} \text { (cf. } \mathrm{A}, \mathrm{II}, \S 5, \# 8 \text { and } \mathrm{A}, \mathrm{III}, \S 3, \# 15\right) .\right]
$$

20: N.B. The situation envisioned in \#19 is realized if G is a connected semisimple Lie group with finite center and if Γ has no elements of finite order other than the identity.

21: LEMMA If G is a Lie group and if $f \in C_{C}^{\infty}(G)$, then the series

$$
\sum_{\gamma \in \Gamma} \phi_{0}\left(x \gamma y^{-1}\right)
$$

is a C^{∞} function of x, y.

