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§81. ASSOCTATIVE ALGEBRAS

1l: DEFINITION An associative algebra over C is a finite dimensional

vector space A over C equipped with a bilinear map

WA x A >A, x,9) »ux,y) = xy

such that xy)z = x(yz).

2: DEFINITION An associative algebra A is said to be unital if there
exists an element e € A with the property that xe = ex = x for all x € A.

[Note: Such an e is called an identity element and is denoted by 1 A‘]

{w

: N.B. Identity elements are unicue.

4: EXAMPLE Let V be a finite dimensional vector space over C -- then
Hom (V) (the set of all C~linear maps of V) is a unital associative algebra over

C (mltiplication being composition of linear transformations and identity element
jdv) -
Iet A be an associative algebra over C.

5: DEFINITION A representation of A is a pair (p,V), where V is a finite

dimensional vector space over ( and p:A > Hom(V) is a morphism of associative
algebras.
[Note: If A is unital, then it will be assumed that p(lA) = idv, thus is a

morphism of unital associative algebras.]

6: DEFINITION let (p,V) be a representation of A —— then a linear subspace

U c V is said to be p-invariant if Vv X € A, p(X)U < U.



7: N.B. A p-invariant subspace U c V gives rise to two representations

of A, viz. by restricting to U and passing to the quotient V/U.

8: DEFINITION A representation (p,V) of A is irreducible if Vv = {0}

and if the only p-invariant subspaces are {0} and V.

9: NOTATION Given a representation (p,V) of A, put

Ker(p) = {x € A:p(x) = 0}.

Iz

N.B. Ker(p) is a two-sided ideal in A.

=
=

DEFINITION A representation (p,V) of A is faithful if Ker(p) = {0}.

|

12: DEFINITION Iet (p,V), (0,W) be representations of A -—- then an inter-

twining operator is a C-linear map T:V - W such that Tp(x) = o(x)T for all x € A.

13: NOTATION I A(p,c) is the set of intertwining operators between (p,V)

and (o,W).

14: EXAMPIE Iet (p,V) be a representation of A and suppose that U < V is

a p-invariant subspace -- then the inclusion map U - V is an intertwining operator,

as is the quotient map V - V/U.

15: DEFINITION Representations (p,V) and (o,W) of A are equivalent if

there exists an invertible operator in I A(p,c) , in which case we write

(p,V) = (OIW) (or p = 0).

)

16: NOTATION A is the set of equivalence classes of irreducible rep—

resentations of A.



17: EXAMPLE Take A = Hom(V), where V is a finite dimensional complex
vector space —- then up to equivalence, the only irreducible representation of

Hom(V) is the representation p given by

o(T)v = Tv (T € Hom(V)) .



§2. REPRESENTATION THEORY
Iet A be a unital associative algebra over C.

1l: THEOREM Let (p,V), (o,W) be irreducible representations of A -- then

1if (p, V) = (o,W)
dim IA(D,O) =
0 if (p,V) # (o, W).

I

N

THEOREM Iet (p,V) be an irreducible representation of A -- then p(A)

Hom (V) .

3: DEFINITION A representation (p,V) of A is completely reducible if for

every p-invariant subspace Vl c V there exists a p-invariant subspace V2 c V such

thatV=Vl®V2.

: LEMMA Suppose that (p,V) is a representation of A -- then (p,V) is

completely reducible iff there is a decomposition

Vzvla."QVS,

where each Vi is p-invariant and irreducible.

: LEMMA Suppose that (p,V) is a representation of A — then (p,V) is

completely reducible iff there is a decomposition

V=U, + --- + U,

1 t

where each Uj is p-invariant and irreducible.

6: DEFINITION Let V be a finite dimensional vector space over C. Given



a subset $ of Hom(V), put
Com($) = {T € Hom(V) :Ts = sT v 8 € $§},

the commutant of $%.

7: N.B. Com($) is a unital associative algebra over C.

8: THEOREM Suppose that V is a finite dimensional vector space over C and

let V c Hom(V) be an associative algebra over C with identity idv. Assume: V is

campletely reducible per the canonical action of  —— then

Com(Com(V)) = V.
[Note: A priori,

V < Com(Com(V)).]

9: NOTATION Let (p,V) be a completely reducible representation of A.

Given § € A, put

V(S = z U,
Ucv:[U] = §

the subspaces U being p-invariant and irreducible, [U] standing for the equivalence

class in A determined by U.

10: THEOREM let (p,V) be a campletely reducible representation of A and
let

V=1V

l@.-o evs

be a decamposition, where each \A is p-invariant and irreducible -- then v § € A,

Vs T ®rvi1=s Vi



thus

V=86 .
SEA
[Note: An empty sum is taken to be zero.]

VS'

11: DEFINITION The decomposition

V=28 V6

s€A
is the primary decomposition of V and Vs is the §-isotypic subspace of V.

12: DEFINITION The cardinality mv(é) of
{i:[v.] = ¢}

is the multiplicity of § in V.

13: NOTATION Given § € A, let U(S) be an element in the class §.

14: IEMMA

.

mv(d) = dim IA(U((S) V) = dim IA(V,U(G)).



§3. CHARACTERS
Let A be a unital associative algebra over C.

1: DEFINITION ILet (p,V) be a representation of A —— then its character
is the linear functional
:A->C
XD
given by the prescription

xp(X) = tr(p(x)) (x € A).

2: LEMMA
Xp(lA) = dim V.
3: LEMMA V X,y € A,
X (Ky) = X, (yx) -
4: DEFINITION Iet (p,V) be a representation of A —— then a composition

series for p is a sequence of p-invariant subspaces

{0} =V, cV, € eve ¢V =V

0 1 s
such that
ot =v. /v, G =1,...,9

is irreducible.
5: LEMMA Composition series exist.

6: DEFINITION The semisimplification of (p,V) is the direct sum




s
VSS = -? (Vi/vi_l)
i=1
equipped with the canonical operations.
7: DEFINITION The irreducible quotients V./V. ; are the composition

factors of (p,V).

Iet po ss be the representation of A per Vs S and let s be the representation

of A per V./V._,.

X = L X, = X,
Psg 4=1 P; P

9: LEMMA Suppose that (ol,Ul) ;) eeey (Gr,Ur) are irreducible representations

of A. Assume: (Ok,Uk) is not equivalent to (OZ’UI,) (k = £) —— then the set

IX. reeerx. }
Ol 0r

is linearly independent.

10: SCHOLIUM The composition factors in a composition series for p are

unique up to isomorphism and order of appearance and (pss’vss) is uniquely

determined by X, up to isomorphism.




§4, SIMPLE AND SEMISIMPLE ALGEBRAS
Iet A be a unital associative algebra over C,

1l: DEFINITION A is simple if the only two-sided ideals in A are {0}

and A.

: LEMMA If V is a finite dimensional vector space over C, then Hom(V)

is simple.

: THEOREM If A is simple, then there is a finite dimensional vector space

V over C such that A = Hom(V).

4: DEFINITION A is semisimple if it is a finite direct sum of simple

algebras.

Accordingly, if A is semisimple, then there is a finite set L, finite dimen-

sional complex vector spaces V)\ (A € L), and an isomorphism

0:A > ® Hom(VA).
AEL

Denote by E)\ the element

O@---G)idv ®---®0
A

and define a representation (pk’vk) by the prescription

py(¥) = $(E, (x € A).

5: LEMMA The (p}\,v are irreducible.

)




6: THEOREM Every irreducible representation of A is equivalent to some

(o)\,Vx) .

7: N.B. Therefore

A<— L,

so the term "\-isotypic subspace" makes sense.

Put

Then e, is a central idempotent and

I e =1,.
rew A
8: THEOREM Suppose that A is semisimple and let (p,V) be a representation

of A —- then its A-isotypic subspace is p(e}\)V and

v= & p(e)\)v
AEL

is the primary decomposition of V.

9: LEMMA ILet A be a unital associative algebra over C and let (p,V) be

a completely reducible representation of A —— then p(A) is semisimple.

10: THEOREM Let A be a unital associative algebra over C —- then the
following conditions are equivalent:
1. The left regular representation (L,A) of A is completely reducible
Lx)y = xy).
2. Every representation of A is completely reducible.

3. A is a semisimple algebra.



[1 => 3:L(A) is semisimple (cf. #9). On the other hand, A = L(A), L being
faithful.

3=>2

(3

Quote #3 and §2, #4.

2 =>1: Obvious.]

11: THEOREM Every representation of a semisimple algebra is uniquely

determined by its character up to isomorphism.



§1. GROUP ALGEBRAS

1l: NOTATION If X is a finite set, then |X| is the cardinality of X and

C(X) is the vector space of complex valued functions on X.

2: N.B. The functions {6X:X € X}, where

1 x=y)
Gx(y) =

0 x=zv),

constitute a basis for C(X). Therefore

dim C(X) = |X]|

and every £ € C(X) admits a decomposition

f= =z f(x)éx.
xXeX

In particular: If ]X is the function on X which is = 1, then

let G be a finite group.

DEFINITION Given f,g € C(G), their convolution f % g is the element

of C(G) defined by the rule

F+q) ) = 3 £lxy gy
yeG

= I £Ygy ).
VEG



[Note: VvV x,v € G,

4: LEMMA C(G) is an associative algebra over C.

5: N.B. If e is the identity in G, then Ge is the identity in C(G),

which is therefore unital.

6: LEMMA The center of C(G) consists of those f such that

£(x) = flyxy ) (x,y € G).
[Note: 1In other words, the center of C(G) consists of those f that are

constant on conjugacy classes, the so-called class functions.]

E.g.: VY x € G, the function

r ¢

-1
YeEG  yxYy

is a class function.

[Given z in G,

(% § y%6_ = T &
1 -1
YeG  yxy 2 yeG yxy z

= 3 & 1
veG zyx(zy) "z

=38
yeG  zyxy

=6 *(Z ¢ _J).]
Z yec yxy t




7: DEFINITION A representation of G is a pair (w,V), where V is a finite

dimensional vector space over C and m:G -+ GL(V) is a morphism of groups.

8: SCHOLIWM Let V be a finite dimensional vector space over C.
® Every representation m:G » GL(V) extends to a representation p of C(G)
on V, viz.

o(f) = ¥ fxX1TX).
xXeG

® Every representation p:C(G) - Hom(V) restricts to a representation 7 of
Gon V, viz.
m(x) = p(ch) .
[Note: If w is given, it is customary to denote its extension "p" by 7 as

well.]

: LEMMA Iet W c V be a linear subspace — then W is invariant under G

iff W is invariant under C(G).

10: IEMMA An operator T € Hom(V) commutes with the action of G iff it

commutes with the action of C(G).
11: THEOREM C(G) is semisimple.
PROOF Let (p,V) be a representation of C(G) and suppose that Vl cVisa

p-invariant subspace. Fix a linear complement U per ViV =V, ® U. Let P:V > vy

be the corresponding projection and put

1 -1
Q= TGT xéc; T(x)Pr(x) .



Then Q is a projection with range Vi- In addition, v y € G,

T(y)Q = "If?lT 5 wlyx)Pr(x)
xeG

= —1%{ T ’IT(X)P”R’(Y_:LX) -1

XEG
1 -1
= L m(x)Pr(x) “w(y)
TGT XEG
=Qon(y).
Consequently, Vv v € V,
m(y) (idV - Qv = 7(y) (v - Qv)

m(y)v - w(y)Qv

TY)V - OT(Y)V

i

(idv - Q) (y)v,
thus the range V2 of ldv - Q is a p-invariant complement per Vl. It therefore

follows that every representation of C(G) is completely reducible, hence C(G) is

semisimple (cf. I, §4, #10).

12: DEFINITION

e The left translation representation L of G on C(G) is the prescription

LE) = £(xLy) (= L)E = §_ % £).

X

1l

e The right translation representation of G on C(G) is the prescription

R)E(y) = £(yx) (= RX)If=£f 3§ ).

13: N.B. Since C(G) is semisimple, both L and R are completely reducible.




14: REMARK There is also a representation

L,R of G x G on C(G), namely

(m R0x %)) () = £ k) -

And it too is completely reducible (C(G x G) 1is semisimple).

15: DEFINITION let (Trl,vl) R (1T2 'VZ) be representations of G —— then an

intertwining operator is a (-linear map T:Vl - V2 such that T’rrl (x) = U (x)T for

all x € G.

16: NOTATION T ('rrl,ﬂ ) is the set of intertwining operators between

(’Hl,Vl) and (Trz,VZ).

17: N.B. On the basis of the definitions,

I (Wlpﬂz) C(G) (pl'p2) .

=
(0]

LEMMA Iet (’ﬂ'l,Vl) , (wz,vz) be irreducible representations of G and

let T € IG(’ITl,sz) — then either T is zero or it is an isomorphism.

19: LEMMA Suppose that (w,V) is an irreducible representation of G and

suppose that T € IG('rr,ﬂ) -— then T is a scalar multiple of idv.

20: DEFINITION Representations ('rrl, l) and (TTZ,V ) of G are equivalent

if there exists an invertible operator in IG(Trl,'n in which case we write

2)!

('Hl, l) P~ (?rz,v ) (or 1Tl = '1T2).

2l: NOTATION G is the set of equivalence classes of irreducible repre-

sentations of G.



[Note: By convention, the zero representation of G on V = {0} is not to

be viewed as irreducible.]

22: N.B. There is a one—-to-one correspondence
PN
In the sequel, II stands for an element of G with representation space V(II)

of dimension dT' Without loss of generality, it can be assumed moreover that II is
L

unitary with respect to a G-invariant inner product < , >_ on V().
L

II

[Recall the argument. Start with an inner product < , > on V(II) and put

1
<Ver2>H = TGT )X <H(x)vl,H(x)v2>.]

XeG
APPENDIX

Let (Trl,Vl) ’ (1T2,V2) be unitary representations of G. Suppose that there

exists an invertible
T € IG(’lTl,‘ITZ) .

Then there exists a unitary

U € IG('lTl,’lTZ) .

[Let T = U|T| be the polar decomposition of T —- then V x € G,

|T|1Tl(x) = m (x) |T].

Therefore
1

Um (x)U” T]T]"lnl(x) |T|T_l

Il

Tn) (x) L= Ty (%) .]



§2. CONTRAGREDIENTS AND TENSOR PRODUCTS

1: NOTATION Given a finite dimensional vector space V over C, let V*

be its dual and denote by

V¥ xV +C

(v*,v) » <v*,v> (= v¥(V))

the evaluation pairing.

Iet G be a finite group.

2: DEFINITION Suppose that m:G - GL(V) is a representation -- then its

contragredient is the representation m*:G - GL (V*) defined by requiring that v x € G,

THK)VE = v* o T(XT) (V¢ € V¥),

thus Vv €V,

-1
<T*(R)vE,v> = <v¥, (X T)v>.

3: N.B. The identification (V*)* ~ V leads to an equivalence (m*)* = 7.
4: LEMMA (m,V) is irreducible iff (w*,V*) is irreducible.
5: CONVENTION Given (II,V(II)) in G, take
-1, 7
V(I*) = v *, T*(x) =I(x ) .
6: NOTATION Given finite dimensional vector spaces V,,V, over C, let

1'°2

Vl e V2 be their tensor product.




let G be a finite group.

7: DEFINITION Suppose that ’lTl:G > GL(Vl) , T

2:G > GL(V2) are representations --

then their tensor product is the representation m 2 ’IT2:G > GL(Vl 2] V2) defined
by requiring that vV x € G,

(1Tl (5] 1T2) (x) (vl 5] v2) = 'ITl(X)Vl ] T (x)v2.

let (nl,Vl) ’ (1T2,V2) be representations of G —— then the prescription

My GAT = my ()T x71) (Te Hom (V,,V,,))

defines a representation T 5 of G on Hom (Vl,V2) .
7

8: RAPPEL There is a canonical isomorphism

G):V2 R V{ = Hom(Vl,Vz) .

[Send v, 2] vi to the linear transformation

%) o *
T(vz,vl) vy > vy (Vl)VZ']

Consider

* *
m, (x)v2 2] ﬂl(x)vl € V2 (%] Vi.

Then the corresponding element of Hom (Vl,Vz) is the assignment

vy > (’ITI (x)vi) (Vl)1T2 (x)v2

v (my (x‘l)vl) m, (x)V,

= 1y (%) (v} (m; (.x_l)vl) )V,




= 1, GIT(v, v (v,

. % .
9: LEMMA ™ (5] m} 1is equivalent to 111,2.

[The isomorphism © intertwines T, 8 WI and T 53V X € G,

O e (’]T2(X) %] NI(X)) = ’IT1’2(X) ° 0.]

ILet Gl’G2 be finite groups.

10: DEFINITION Suppose that Trl:Gl - GL(Vl) ’ 1T2:G - GL(V2) are repre-

sentations -- then their outer tensor product is the representation 7

l@nzz

Gl X G2 - GL (Vl R V2) defined by requiring that V %) € Gl’ v X, € Gz,

(TTl 2 TT2) (Xl’XZ) = (xl) f T (x2) .
11: WN.B. If Gl = G2 = G, then the restriction of the outer tensor product
m 8 m, to the diagonal subgroup

{(x,x):x € G}

of G x G is the tensor product R T,.

™8T

12: REMARK Take Gl =G, =G and define a representation m 5 of G x G

1,
on Hom(Vl,Vz) via the prescription

™ L EWT = T, (x)Tﬁl(y—l) (T € Hom(V},V,)).

x i .
Then T, & ¥ 1s equivalent to Ty e




13: LEMMA If ™ and ™, are irreducible, then m, & 7, is irreducible.

1 2

[To begin with,

C(Gl X G2) = C(Gl) ® C(G2)

Hom(Vl 3] V2) ~ Hom(Vl) 7] Hom(V2) .

Now make the passage

170
Ty 7 Py

Then

p, (C(G))) = Hom(V))
(cf. I, 82, #2).]
p,(C(G,)) = Hom(V,)

Conversely:

14: THEOREM Every irreducible representation of G, x G, is equivalent

1 2

to an outer tensor product m; & T,.

15: SCHOLIUM



§3. FOURTER TRANSFORMS

Iet G be a finite group.

1: DEFINITION Given f € C(G), its Fourier transform f is that element of

® Hom(V(I))

whose II-component is
£(M = I f£XREEX) (= I(£)).
XEG

BE.g.: V X € G,

SX(H) = T(x).

2: LEMMA V fl,f2 e C(G),

£, x £, (M = £ ME,M).

1

3: EXAMPIE V X € G,

/k () = T(x) £ ()

Lx)f () = Gx

/\(H) =45\—1 (M = £MIE™D).
_ X

R(x)f

4: THEORFM The Fourier transform

A:C(G) >~ @& Hom(V(M))
TIEG

is an algebra isomorphism.




5: APPLICATION

[In fact,

dim C(G) = |G| and dim Hom(V) = dé.]

As it stands, C(G) is a unital associative algebra over C. But more is true:

C(G) is a *-algebra, i.e., admits a conjugate linear antiautomorphism f - f*

given by f*(x) = f(x ) (x € G).

Bach T € Hom(V(I)) has an adjoint T* per < , >p3V V.V, € v(n),

I 2

= %
<V Vo> = <V T

Therefore

® Hom(V(ID))
TG

admits a conjugate linear antiautomorphism by using the arrow T -+ T* on each

summand.

6: N.B. It can and will be assumed that

V(1)

V(IT*)
(cf. §2, #5),

b

i

IT* (%)

hence in terms of adjoints

TE)* = Tx) L = 1x71) = m*x.



ILEMMA The Fourier transform

~
e

A:C(G) » & Hom(V(I))
TEG

preserves the *-operations: vV £ € C(G),
£ = (D).
INVERSION FORMULA Given f € C(G), V x € G,

£(x) = TtliT D d, e HEm).

~

TieG
In particular:
_ 1 2
f(e) —T—G—]- Z d].[tr(f(H)).
~
JHS ¢

: PARSEVAL IDENTITY Given fl,f2 € C(Q),

r £ l)=

(x)f-(x
xXeG 2

l ~ ~
1 ToT ZA d]'I tr(fl(I[) f2(]'[)).
I

€G

PROCF Put f = fl * f2 —- then

-1
f(e) = 2 £ XE,(x 7).
XeEG 1 2

On the other hand,

1 2 e
5T zA dp tr(£; (M£, (M)

G
IeG

_ 1
G



= (fl * f2) (e) = f(e).

10: COMPLETENESS PRINCIPIE If f € C(G) and if :E(]'{) = 0 for all T, then



§84. CLASS FUNCTIONS
Let G be a finite group.

1: DEFINITION Let (m,V) be a representation of G — then its character

is the function

XTT:G -~ C

given by the prescription

xﬂ(X) = tr(m(x)) (x € G).

2: N.B. It is clear that characters are class functions and that equiv-

alent representations have equal characters.

: LEMMA V x € G,

xﬂ(x—‘ ) = X, X
4 NB.
Xoe = Xop
5: LEMMA Let
M G > GL(Vl)
Ty:G > GL(V2)

be representations of G -- then the character of

(1Tl ® Tor Vi ® V2)

1s X'lTlX 1T2 .



[For the record, the character of
(1Tl 2 Tor Vl @ V2)
is Xﬁl + X“z’ implying thereby that a nonnegative integral linear combination of

characters is again a character.]

6: EXAMPIE T is equivalent to T, ] ni (cf. 82, #9), hence

1,2

X =X x = X Xexe = Xoo X o
Trl,z m 5] T ™, 'ITI Ty 'nl

7: DEFINITION The character of an irreducible representation is called an

irreducible character.

[Note: The zero function (i.e., the additive identity of C(G)) is a character

but it is not an irreducible character (cf. §1, #21).]

.B. The irreducible characters are thus the xH(H € G).

©
Z

9: FIRST ORTHOGONALITY RELATION ILet Hi'nj € G —— then

2 xg (X x 1) = 540

where for short

Le

Xi=xl'{.’ Xj=X]-r .
i J

10: NOTATION Given x € G, write C(x) for its conjugacy class and GX for

its centralizer.

~11: RAPPEL The number of conjugates of x in G is [G:GX] , i.e.,

ICx) | = [G:G.].



[Note: The class equation for G is the relation

G| =2 [G:G_ ],
6l =2 e,

one x. having been closen from each conjugacy class.

12: SECOND ORTHOGONALITY RELATION Let X1 1%, € G — then

G | if x =x; =x,
% XH(xl)XH(X;l) =
IeG 0 if C(x) = Clx,).
[Note:
__lel ___le
%! = T =TT -

13: NOTATION Given f,g € C(G), mut

1 —
<f,g>., = T I fx)gx),
G G XEG

the canonical inner product on C(G).

14: EXAPLE V I,T, € G,

l:ile= H2

<XH1’XH2>G =

OlleIHZ.

15: SCHOLIUM The irreducible characters form an orthonormal set, thus

are linearly independent (cf. I, §3, #9).



Recall now that the Fourier transform
A:C(G) - @& Hom(V(ID)
TeG
is an algebra isomorphism. Since the center of each Hom (V([)) consists of scalar
multiples of the identity operator, it follows that an £ € C(G) is a class function

iff v T € G,

EM =G iy G € 0.

16: INVERSION FORMULA Given a class function £ € C(G), V x € G,

fx) = I <f,§E>G XH(X).
TeG

PROOF

f (x)

I

1 -1y 2
T ZA dH tr(li(x 7)£())
TEG

—]%;—T ZA dHCHXII(X—l)

NeG

=1 VIS
- T@I‘ Z,\ dHCHXH(X) .
TeG

Fix I, € G — then

. _1 S—
<f’XH0>G =167 . dHCH<XH’XH0>G
NeG

-1 -
= TeT . HGnr%nXn,’e

NeG

(.‘.H .

070

&7 9



17: N.B. VX € G,

fx)=fx) = = ’X]"GX(5

A

TeG

= X <le]‘r> (j
HEG

ZA <f’XH>G Xg (x).
TeG

The preceding discussion makes it clear that a class function f is a character

iff <f,l’[>G is a nomnegative integer for all Il € é

18: NOTATION CON(G) is the set of conjugacy classes of G.

19: SCHOLIUM The dimension of the space of class functions is equal to

lcoN(G) | or still, is equal to |G|.

20: NOTATION Given C € CON(G), let Xo be the characteristic function of C:
lifxecC
xc(x) =
0 if x Z C.
21: ILEMMA
Xc = r S
yec ¥

22: N.B. The Xc (C € CON(B)) are a basis for the class functions on G

(as are the X (Ted).



23: LEMMA Let CieCore-n be the elements of CON(G) —-— then there are

———

nonnegative integers m, 3,k such that
14

[4
X, =Im, . .
CJ._XCj X l,j,k>((:l(
[Note: Fixing an X € Ck’ qualitatively m; 5,k is the number of ordered
rJr

pairs (x,y) with x € Ci' y € C:.l and xy = X while quantitatively

Cil les] : Xy (%) X 685) X %)

M9,k TG 3 -1

"

NeG

4: NOTATION Given I € G, put

e = /\_l(EH) (B, € Hom(V(D)  (cf. T, §4)).

Il
25: LFEMMA
d
I 1
e, = X ( )6, ..
n- TG YEGXHY y
[Note: In brief,
e = dH ]
n = IGT Xm*
26: LEMMA
eH 1fI[=T{l=II2
°n, * °n, "
3 0 if Hl z HZ.
7: LEMMA
Ge = ZA eH'



§5. DECOMPOSITION THEORY
Iet G be a finite group.

1l: CONSTRUCTION Suppose that G operates on a finite set S, hence for each

X € G there is given a bijection s +» x.s of S satisfying the identities

e-s = 8, X-(y.-s) = (xy)-s.
Iet V = {f:S + C} and define a representation 7:G + GL (V) by
TGE(s) = £ Tes).
Then

X %) = [{s € S:x-s = s}|.

2: EXAMPLE Take S = G and write x.y = xy -—— then the role of V is played

by C(G) and the role of 7 is played by L (the left translation representation of

G (cf. §1, #12)), hence
X, ®) = |{y € Gxy = v},

which is |G| if x = e and is 0 otherwise.

3: EXAMPLIE Take S = G but replace G by G x G, the action being (xl,xz) v o=

X YRy == then the associated representation is

L,R (cf. 81, #14) and

-1
XﬂL R(Xl'XZ) = |{y € Gix yx, = v}
r

-1
[y € G:x; = yx,7 "}

G, |
1

if xq and X, are conjugate and is 0 otherwise.



4: DEFINITION Iet (m,V) be a representation of G — then by complete

reducibility, there is a direct sum decomposition

™= @& m(ImI,
NeG

the nonnegative integer m(Il,m) being the multiplicity of II in m.

5: LEMA VI € G,

m(T,m) = <XH'XTT>G°

N.B.

dim IG(H,TT) = m(T,m) .

~

B

REMARK The operator

I

is the projection onto the II-isotypic subspace of V.

8: THEOREM Each Tl € G is contained in L with multiplicity d-

PROOF In fact,

m(Ml,L) = XnrX’e

_ 1
T TOT g Y™
_ 1

Xg (e) = dH'



9: N.B. It is a corollary that

G| = = d; (cf. 83, #5).
NeG

10: LEMMA Iet (TTl,Vl), (TI'2,V2) be representations of G. Assume:

X"z -— then (1Tl,Vl) ~ (Tr2,V2).

PROOF vV Tl € G,

<XH'an>G = <XH’Xﬂ2>G

or still, Y T € G,

m(If,m) = m(T,m,) ,

from which the assertion.

11: IRREDUCIBILITY CRITERION A representation m:G -+ GL(V) is irreducible

iff <X'IT'X'IT>G = 1.

PROOF The necessity is implied by the first orthogonality relations and the

sufficiency follows upon noting that

2
<XTF'XTF>G = ZA m(I,m) ",
NeG

Iet Gl’ G2 be finite groups and let

II :Gl + GL (Vl)

1

T{2:G2 -+ GL (V2)



be irreducible representations of Gl’ G2 -- then the character XL & T of
l o L

2

(I, @ I, V; & V,)
is the function

(x]_,xz) > XHl(Xl)XH2 (x2) (xl € Gy, X, € G2).

2: IEMMA II

12: 121

2 is irreducible (cf. §2, #13).

PROOF It is a question of applying the irreducibility criterion. Thus

RSH X, @ G x G

g n )

1 2 1

1

T Xr (X)) %X (R5) X (%)X
Gle2 (xl,xz) EGlXG2 IIl 1 H2 2 Hl 1 H2

(Xz)

1

1 — —-—
B L Xp X)Xr (X)) - I Xp )Xy (%)
Gy | X, €6, L R T A (Y X,€G, 727, 2

<XH1'XH2>G © Xq 'XH2>G

1 2 2

= 1.

O

13: REMARK The cardinality of G; X G,y is |OON(G; x G,) | (cf. 84, #19).

But

looN(G; x G,) | = |CON(G;) l|c0N(c;2),|
and the preceding considerations produce
lCON(Gl) | |CON(G2) |

pairwise distinct irreducible characters of Gy * G, Therefore every irreducible



representation of Gl x G2 is equivalent to an outer tensor product I, 8 II,, where

1 2

Hl € Gl' H2 € G2 (cf. 82, #14).



§6. INTEGRABILITY

DEFINITION An algebraic integer is a complex number A which is a

root of a polynomial of the form

n n-1
X +an_lx +...+a0,

whereaiEZ (0 £ 1 < n-1).

[Note: Equivalently, an algebraic integer is a complex number A which is a

zero of
det (A - XI)

for some square matrix A with entries in Z.]

2: N.B. The rational algebraic integers are precisely the elements of Z.

3: IEMMA If y,v are algebraic integers, then p + v and pv are also algebraic
integers.

Therefore the set of algebraic integers is a subring of (.

4: EXAMPLE Roots of unity are algebraic integers.

Iet G be a finite group.
5: LEMMA Iet (7,V) be a representation of G, Xy its character -- then
vxXxegG, Xor (x) is an algebraic integer.

[This is because X (x) is a finite sum of roots of unity.]

The center of C(G) (i.e., the class function) is a unital commutative

associative algebra over C, thus its irreducible representations are just



homomorphisms into C and are indexed by the I € é, say Wy with
1
) =6
2

(e

(,Unl

L.*

I 1

H l'

[Note: The e (T e é) are a basis for the class functions on G.]

THEOREM V C € CON(G), Wy (C) is an algebraic integer.

PROOF In the notation of §4, #23,
=2z m. .
c;Xes Ty MG
hence

W (X~ s (X~ )
e, anj

w ( )
I Xcchj

= i mi,j,k“’n(xck)

I m 4o, = 8. 0w (X~ ))wg (XA )
X i,j,k ijXCi HXCk

= 0.

But this means that Wy (XC ) is an eigenvalue of the matrix Ai whose (j,k)th entry
i

is m. . or still, is a zero of
i,j,k !

det (Ai - X,

thus is an algebraic integer.

: ILEMMA V C € CON(G),



_cy
wn(xc) = —IJI-J- XH(X) (x €C).
PROOF Owing to 84, #25,
d
— Qi 1
°n = Tor I, W oy

IG! _ =]
¥oX)e, = x,(x) T x,(y )&
I I IH i VEG i y

=>

el g - 1
z XH(X)eH Z/\ XH(X) b} XH(Y )6

R - y
MeG - TG M

-1
= 2 (I Xp&xgly )6
~ L L Y
Y6 neg

= I |c|§ (cf. 84, #12)
yec  * Y

=16 | T ¢
yec ¥

G, [xo  (cf. 84, #21).

Now fix I, € G — then

- 1 |G|
= 5

i

TEG
_ |G 1
= T%;%- ZA _;'XH(X)NHO(eH)
nec
X (%)
I
- el 0 = el X (%) .
!le dH d'l'[ I[0

0



Consequently, v C € CON(G),

JaC]:L @ €0

is an algebraic integer.

8: THEOREM V I € G,

Lles
™
PROOF In view of §4, #9,
_ -1
6l = 2 GG

Given C € CON(G), fix an x. € C —— then

C
-1
G| = = 1C 1 () Xor (X27)
CECON (G) reTTe
=>
16l o 5 (-ldgll' XH(XC))XH(X(_Zl)’

H CECON (G) It

In other words, the dIr divide |G

: THEOREM If A is an abelian normal subgroup of G, then the dﬂ divide

[G:A].

10: APPLICATION Iet Z(G) be the center of G —- then the d]1 divide
- i

[G:Z2(G)].



§7. INDUCED CLASS FUNCTIONS
Let G be a finite group, T < G a subgroup.

1l: NOTATION CL(G) is the subspace of C(G) comprised of the class

functions and CL(TI) is the subspace of C(I) comprised of the class functions.

2: NOTATION Extend a function ¢ € C(T) to a function ¢ € C(G) by writing

d(x) ifxeT
o(x) =

0 ifx ¢ I.

3: NOTATION Given a class function ¢ € CL(I), put
G, g6 =7 2 Sy
yeG
1 -1
= z .
TIT o o lyxy ™)
YeG,yxy €T
4: LEMVA

the induced class function.

5: N.B. Therefore

in, GiCL(D) > CL(@G).

[Note:

Ip . =clp, gl el ip oo +0)) = dp | by + 10, o)



but in general,

in, glo16y) # Gp, g99) Gp, gby) -]

The arrow of restriction C(G) - C(I) leads to a map

To , iCL(G) > CL(D).

6: FROBENIUS RECIPROCITY Let ¢ € CL(T), ¥ € CL(G) — then

<iF N G¢,1p>G = <q>,rG N I,1p>I,.

PROOF

= z L oMUy
T6T yee TTT yér

1
ToT yog *fa > 1V

<biTg 5 97

7: APPLICATION If ¢ is a character of T', then iI‘ N Gcb is a character of G.

[If x is a character of G, then s 4 X is a character of T', hence



OrTg X7
is a nonnegative integer for all I € G or still,

Ir L & Xpig

is a nonnegative integer for all Il € G which impl ies that il“ N Gcb is a character

of G (cf. 84, #17 ff.).

8: ILEMMA Let ¢ € CL(I), ¥ € CL(G) —- then

irogllEg o W) = vl 9.
PROOF From the definitions,

i, gl 4 (0O &

o
! f

1 1,9, -1
=T—er+w(yxy )olyxy ™)
yEGG A

—

1 -1.° -1
o Yl(yxy Dolyxy ™)
T e

1 © -1
= L Y(x)o(yxy )
lrlyEG
1 © -1
= P (x) L d(yxy ™)
T eq
=V (i, ) ®).

9: APPLICATION The image of i

I._)G:Lsanldeal in CL(G).

Write




10: LEMMA For any ¢ € CL(D),

n

(%+G@@)=£;$&?mﬁ.
PROOF In fact,
, 1 o -1
(i, o0) () = I Gy )
I+ G T yeq
1 ° -1
= 7
TT"T oy "xv)

There are then two possibilities.
-1 -1
& ¥ IX XX Y €T

. .-1
=> X X% Z7T

= 6" (oY) = 0= Gl )

° y—lx];lxxk YET

_ -1
—>xkxxk€I‘

= ¢ () = 00, )

= 00 mg) = 60w -

Therefore the sum -l%l- L disappears, leaving
YET

P S he)
X, XX .
P



[Note: If instead,

then for any ¢ € CL(I),
n , -1
(i ) (%) = T ¢ %) .1
I“—)G(j> k‘__lq)xk

11: EXAMPIE Let S be a transitive G-set, 7 the associated representation

(cf. §5, #l). Fix a point s € S and let Gs be its stabilizer — then

Xor - lGS > G 1Gs'

where 1GS € CL(GS) is = 1.

[Take S = {1,...,n} and s = 1. Write

withxk-l=k——then

ro1g (. %, )

(i l.)x =
GS+G Gs k=1 s

-1
k,xk XXy S GS

-1

k,(xkxxk) -1=1

r
k,(xxk) . l=xk- 1



=,Z 1
k,x - k=k

|[{k € S:x « k = k}|

X, (®)  (cf. §5, #1).]

[Note: Here is a "for instance". Take S = G/T and write

n
G/T= || xT.
k=1 x
Then G/T is a transitive G-set and
G _ -1
%, T = xIx .
In particular: Take X, = 1 to get

1

XrT1lr-g T,

thus at a given x € G, (i 11,) (x) is the number of left cosets of T in G fixed

' ~G
by x.]

12: IEMMA Suppose that T, < T', <« G. Let ¢l € CL(Fl) —— then

1 2

i (i ) =1 b, -
1"2—>G 1"1—>1"21 I’1+Gl

PROOF Both sides of the putative equality are class functions, thus it suffices

to show that
<i (i $q1) i X>A = <1 bq r Xr>
1"2—>G I‘l—>1"21 TG I‘l—>Gl G
for all T € G. But the IHS equals

<i ¢, T X>
1"1’->1"21 G—>1"2]'[1"2



<Gy ry > 1y g, rzxn)>rl

]

<¢l, resG N r}_XH>F]_

. ¢ X
<1F1+Gl' TG’

which is the RHS.
13: NOTATION Given x € G, put
™ = XI'X_l = {xyx‘l:y € T}.

The range of

in G:CL(I‘) + CL(G)

T
is contained in the subspace SI‘ of CL(G) consisting of those class functions

f € CL(G) that vanish on

G- u T~

xeG

in o, QLD = S

PROOF Assume not, thus

i, GCL(I‘) 2 SI“
Then there exists a nonzero .f € SI‘ which is orthogonal to all functions in
ip , LMy ¢ € CL(n),

Ap L, g =0
or still, v ¢ € CL(T),

<PiTs 1,f>1, = 0.



Now take ¢ = r

G_)I,ftoget

<Ia o, I‘f’ LN I‘f>I' = 0,

hence LN 1,f = 0, i.e., f vanisheson I'. But f € CL(G), so V x € G, f vanishes

on I**. Since f € Sl“’ it then follows that f vanishes on G: f = 0, contradicting

the supposition that £ is nonzero.

15: APPLICATION The image of i

¢ 5 isan ideal in CL(G) (cf. #9).
Iet ¢ € CL(I). Given x € G, define ¢* € () by

¢ (y) = ¢(x-lyx) (y = X”YX_l,Y e

= ¢ (x_lxyx_lx)
= ¢ (y).
16: LEMVA
& € CL(TY).
PROCF Let
_ -1 _ -1
y]_ = Xy lx 14 Y2 = XY 2X .
Then
X -1
¢ (y1¥,¥77)

. =1 ~1

= ¢ &t (xle—l) (xyzx_l) (xylx_l)—IX)

= ox T (xle—l) (XYZX—l) (XYElx_l)X)




= ¢ (YleY]__l)

_ X

17: IEMMA V x € Gand V ¢ € CL(D),

i 0% = ip, ob-

™ >G

PROOF Write

Then (cf. #10)

X &’)x ( (xxkx_l

> G =1

) Ly Gaex )

=

=

VN

S
il

n o

-1 -1 -1
N N R e
1 K 6

n 4 _ _ _ _
I ¢x l(xxklx lyxxkx l)x)
k=1

Do 11
I ¢(x VXX, )
= F k

(ip b &)

= (i, & (CE. #4).



§8. MACKEY THEORY
Let G be a finite group, let [1¢T5, <G be subgroups, and let

G= UTI,sT
sESl 2

be a double coset decomposition of G. Given s € S, put

s—l n I‘l).

Iy (s) r§ NI, (=sr

2

=
|

U tT, (s}

1 teT(s) 2-

be a left coset decomposition of Fl -- then

3

0

3
Il

(v tT,(s))sT
ter(s) 2 2

U tT,(s)sT
ter(s) 2 2

= U tT,(s) (sT s'l)s

tET(s) 2 2

U t(sT s—l) s

ter(s) 2

= U tsT
teT (s)

is a partition of I‘lsl"z.
PROOF Suppose that

t s, N tysT, z f (tl:tt

15T 2



0]
tis = t,sy, (y2 € I‘2) .
Then
_ -1 __ . -1 s
tl = tzsyzs => t2 tl € I‘2.
Meanwhile
.1
tl’t2 € I'l => t2 tl € I'l.
Therefore
-1 ] _
t2 tl € I'2 n I'l = Fz(s)
=t = t,.
Iet R(s) = {ts:t € T(s)} = T(s)s and let
R= U R(s).
SES
2: LEMMA R is a set of left coset representatives of 1“2 in G.
PROOF Iet x € G — then
X € TysT, (3 s€s)
=> X = tsY, (3 t € T(s))
=> X = rv, (r € R(s), r = ts).
Therefore

G= U r1“2.
reR



Suppose now that

1
X € er nr Pz.
Then
X =ry, = r'yé (r € R(s), r' € R(s"))
X = tsy, (t € T(s))
=>
X = t's'yé (t' € T(s")).
te€eT(s) ==t € Fl

But =x€e€ I.sI, NTI,s'T, =>g5=g'

172 17 "2

t' € T(s') = t' € Pl

=> tsy2 = t'SYé

1

— - 41 | VR | e

= t=t'=>r=r".

Given ¢ € CL(F2) , put

¢ =1 ¢°.
> PZ(S)

Here, by definition (cf. §7, #16), ¢° € CL(I‘;), where

-1
SY,S T, Y, € F2).

0°(¥) = 9(vy)) (v




3: THEOREM Under the above assumptions,

r (1 o = r i d..
G~ Fl F2 > G SES Fz(s) > Fl s
PROOF Since
G= || T,
rer
vVxEGQG,

(G , M = 3 or )  (cE. §7, #10),
2 rer

LDV Yl € Fl,

(L G 00y
G Fl F2 G 1

z $(r~ler)

reR
-1
=1 ¢(r Tyqr)
-1
reR,r erEF2
-1
= z -1 ¢(r "1
s€S,reR(s) ,r erEFz
= 3 11 ¢(s"lt'lylts)
SES,teT(s) ,s ~ t YltsEI‘2
_ s, -1

SES,tE€T(s) ,t YltEI‘2

: -1
s€S teT(s)



(1 ¢.) (vq) (cE. 8§87, #10).
s€s 1“2(s) - I‘l s 'l

4: LEMMA Let ¢ € CL(T), ¢ € CL(T,) —— then

Y, 1 $>s
Fl->G 1“2->G

=Z<r1..

L, - rz(s)¢'¢s>r2(s)'

PROCF Taking into account §7, #6,

<i Y, i o>
r,~¢ Iy >G"G

= <Y,r (i P)>
G ~»> I‘l 1“2 >~ G I‘l

= <Y, Sés in(S) N T1¢S>Fl

) sés et F (s) » Fl¢s>1“l

= L e - rleVr

= Sés<q> ,rl,l N F (s)w>I‘ (s)
) sés <rlﬂl > 1ﬂz(s)lp'q);l"z(S) .

5: NOTATION Given a subgroup I' < G, let lI‘ stand for the function I' ~ C
which is = 1, that is, the character of the trivial one-dimensional representation

of T.




6: E)(AB’IPIETa](eTl=T2=F——t11en

ArLs &t irselre

= |\G/T|.

Therefore i, | .1, is not irreducible if |T\G/T| > 1 (cf. §5, #11).

[Note: i is a character of G (cf. §7, #7).]

T - GlF



§9. INDUCED REPRESENTATIONS
let G be a finite group, T < G a subgroup.

1l: CONSTRUCTION Let (6,E) be a unitary representation of T and denote
by E?, 5 the space of all E-valued functions f on G such that f(xy) = 6 (y-l) f (%)
14

(x € G, Y € I) — then the prescription
(a (@) (1) = £6y)

defines a representation Ind% 6 of G on E% 5 the representation of G induced by 6.
, adeed

14

2: N.B. The inner product

1
<f,g>e = TeT DX <f(X),9(X)>E

xeG
equips E(I;, 6 with the structure of a Hilbert space and Ind? 5 is a unitary rep-
14 14
resentation.

: EXAMPIE Take T = {e} and take 6 to be the trivial representation of

G

l“onE=C——thenET'e

= C(G) and
G
Indr’e =1L,

the left translation representation of G (cf. 8§81, #12).

4: EXAMPIE Take I' = G and let (m,V) be a unitary representation of G.

Define a linear bijection



by sending £ to f(e) — then v x € G,

T(Indg,TT (x)f) = (Indg’ﬂ(x) £) (e)
= fixte) = £(x ) = flex ]y

= m(x)f(e) = n(x) (Tf).
Therefore

TOIndG =7 o T.
G, T

14

I.e.:

G
T € IG(IndG,Tr,'IT)

is an invertible intertwining operator, thus Indg T is equivalent to .
14

[Note: T is unitary. In fact,

_ 1
<f,g>1T = _IE]- EZG <f (%) ,9(x) >V

_ 1
= 'IE_.‘—" xé(; <f (ex) ,g(ex) >V

- T%;T x <rx D), T Dgle)>,

1
r <f(e),g(e)>
_IET xXEG v

<f(e) ,g(e) >

<T(£) ,T(g) >-]

'5: LEMMA The dimension of E(;f 5 equals
[4

G .
Hdlm E.



PROOF Write
n
G = _U_ xkF,
k=1

where n = A}% , and define a bijection

by the stipulation that

Af = (f(xl)r-'-lf(xn))l

from which the assertion.

For any character x of G and for any conjugacy class C € CON(G), write x(C)
for the common value of x(x) (x € C) (and analogously if G is replaced by I).

Fixing C, the intersection C N T is a union of elements of CON(T), say

cCnrlr=ucC,.
Eﬂ

[Note: If Cn T =g, then the sum that follows is empty and its value is 0.]

6: THEOREM Set 7 = Ind>  — then
r

Cy |
. IGI IC,
PROOF If Xe is the characteristic function of C (cf. §4, #20), then Xo =

% SY (cf. 84, #21). Denoting by p the canonical extension of 7 to C(G), it thus
yeC

follows that

X (©) = 767 EX (0 (X)) -



Fix an orthonormal basis ¢l,... ,q)m in E and in EG let

r,e’

(ﬁi‘()l/2 e(y"l)¢j x=7v €T

fj (x) =

0 g0nn.

® The fj(l < J < m) are an orthonormal set inE? g°

® The p(xk)f:.I (1 <k <n, 1 <j <m are an orthonormal basis for EG

Proceeding

n m

I I <pXa)e(x)E.,p(x )E.>
k=1 j=1 X! Py j k'73° 86

1l

£r (p (%))

n m -1
I I <px el )elx )E.,£.>
el 1 k PPt yrt570

n m
z L <p(x.)f.,f.>
kel ge1 € 3730

m
n
J=1

<p (XC) fj ’fj>6

m
G:I'l Z < £.,£.>
(G115 <o) E505%

()

m
H L <p(xa)fL, >,
r 3=1 Xc 3’736

<p(XC)fj’fj>0 =< yéc p(ay)fj’fj>e

r,e-



= ¥ <p(S)f.,f.
yec P8 E5rE5>g
= ¥ <p(8.)f.,£.> .
pecnr o] )J I
Therefore
m
£ (p () =% DI <8 )E £,
j=1 yecnr ¥ 1
G m
=+ﬂl DL L <pMEE.
j=1 £ vec, 3
But V v, € T,
1 -1
< £f.,£f.> = v <f. .
P (vy) 5570 _K;Tyel" J(YO \(),fj(\()>E
_ 1 G -1 -1
= Tg] yér T <00 TYglé5.0(y N ds>g
_ 1 G -1 -1
= 5 48 0y )b = <Oy bs s s>
Gl \er IT 0°"3""3E 073"y E"
Therefore
tr (p(xo)
G m
= L T <8(Y)o.,0.>
_le -
[—YECZ j=1 .
= C; LT tr(8(y))




=+%LZ Z  Xg(v
4 yGCE

_ |G
= H 12{ |C£]Xe (Cp) -

I.e.:

c
_lol , 1%
X ©) = Hr'f;_ e Xe ) -

[Note: If 6 is the trivial representation of ' on E = C, then Xg= lF (the

function = 1) and matters reduce to
Xqr (c) = % J%lfi .]

{e}:

7: N.B. Take C

.G _ 6] s
dim Er,e = HdlmE (cf. #5).

IEMMA Set w = IndG —— then for any class function £ € CL(G),

2= T,
<X1r’f>G = <Xe’f !T>I,.
PROOF

1 -
<y ,f> .= z (%) £ (x)
Xp't7G IG %€ Xn

1
= z Cly. (C)E(CY
T6T cecan (@) 1€t



=1 3 |c1+9-]lzJ}C£[LX )@Y
16T cecon (@) Ilp lcl 7872

1 N
= ) Z ¢, xs (C)ETC)
TT cecone) £ 278 2

1 -
= bX i) Ixs (€ E(C,)
] CKECON(T') L0 t

_ 1 T
= 17T yér XgMEM) = <xe.fiI‘>P.

[Note: One cannot simply quote §7, #6... .]

9: APPLICATION Take f = X (T € G) and suppose that 6 is irreducible —

then the multiplicity of I in IndC; 5 equals the multiplicity of 6 in the restriction
14

of T to I' (cf. §5, #5).

10: THEOREM Set 7 = Indcr;e —— then
f
. X =X.
ll“—»Ge v

PROOF The function
ir, oXe

is a class function on G, as is Xor? thus it suffices to show that v II € é,
“Ira XerXr’e T XprXple
“Ir > KorXra

1 , —
T TeT L Y Xe) X)X (%)



[] _l_____
= L I Xayxy xg(x)
[GT TTT yeg yeg " © f

L I Y (%) ('-l )
‘I—”T—[‘ Xg \X)IXp\Y XY
G r xcG yveG 6 I

_ 1 1 ° —
T TGT T s yeg @ ™

1
Z Xn (V) X (V)
T ver 0 i

= <xe,XH|I'>F = Xy X7g (cf. #8).

11: N.B. It is this result that provides the link with the machinery

developed in §7 and §8.

Suppose that I'; < T

1 5 © G are subgroups. Let (61,El) be a unitary representation

of Fl —— then one can form Ind? 5° On the other hand, one can first form 62 =
ll
1ﬂ2 G
IndF 6 and then form Indr o.°
1’"1 272

[Apply §7, #12:



[Note: Characters determine representations up to equivalence (cf. §5, #10).]

13: LEMMA If (el,El), (62,E2) are unitary representations of T, then

G

G G
Ind ~ Ind ® IndI, 5

r,6, ® 6, T/, 16,

cannot be irreducible unless 6 itself is

14: N.B. Consequently, ]'_nd(; 6

irreducible (cf. §10, #3).

Let Gy,G, be finite groups, let I;] €Gyy Ty € G, be subgroups.

Put

X G I'=T, x T,.

2! 1 2

X, s a character of T;

X is a character of 1“2,

then ¥, x, is a character of T and

i XX, = (1 X7) (1 X5) -
T ~ G172 I > GML T, > G2



§10. IRREDUCIBILITY OF Ind? 5
r

Let G be a finite group.

l: DEFINITION Let (my ,Vl) ' (112,V2) be unitary representations of G —
then T and ™, are disjoint if they have no common nonzero unitarily equivalent

subrepresentations.

2: LEMMA m and T, are disjoint iff X and X, are orthogonal:
1 2

<X'ﬂ'l' X'IT2>G = 0.

3: THEOREM Let T be a subgroup of G, (6,E) an irreducible unitary rep-

resentation of T —— then Ind? 5 is irreducible iff for every x € G-I, the unitary

representations

Y > 00, ¥ > 0 )
of the subgroup

P =0T (K =xx )
are disjoint.

PROOF Set 1 = Ind? 5 " then on general grounds, 7 is irreducible iff
14

KprXpZg = 1 (cf. 85, #11).
I.e.: Iff

<dp L oXgr i, gXgPg =1 (cf. §9, #10)
or still, iff

Xgr¥g » Tl » Xg?>p =1 (cf. §7, #6)



or still, iff

Xgr T 4

T - r (o) g1

= 3 <X ,i (X) >, =1 (Cf. §8 #3).
ses 8'"TI'(s) » T*A’'s"T !

Here S = I'\G/T and it can be assumed that one element of the sum is s = e in

which case (Xe)s = Xgr I'(s) =T, hence

<X1T'X'IT>G
= XgrXgop t sér\c/r Korir(s) » 1Xe) &1
SZT
= <X6'X6 r + SéF\G/F I' > I'(S)Xe’(xe) >I"(S) (cf. §7’ #0)
sgT
=1+ I <r Xnr (Xa) > (cf. §5, #11).
SET\G/T T'>T(s)"0 8's I'(s)

s¢ZT
Each term

) >

I, ris)Xer Xeds”r(s)

is nonnegative and per I'(s),

LN I'(s) Xg 18 the character of y > 6(y)

(Xg)g is the character of y e(s-le) .

If now T = Ind? 6 is irreducible, then <X'IT'X'IT>G =1, thus Vs € T\G/T (s¢T1),

r

F N T(S)Xe and (Xe)



are orthogonal. Since S can be chosen so that it contains any given element of

G - T, the disjointness claim is manifest. Conversely, the orthogonality of
1 5 r(s)Xe 39 Kglg

V s € I\G/T (s & T) forces K XpZa = 1.



§11. BURNSIDE RINGS
Let G be a finite group.

DEFINITION Iet yy,...,x, be the characters of the irreducible unitary

[3
.

representations of G —— then the character ring X(G) is the free abelian group on

generators Xpree=rXe under pointwise addition and multiplication with unit lG

(cf. 88, #5).

[Note: Recall that

t = |G| = |ooN(G) | = dim CL(G).]

2: N.B. The pointwise sum or product of two characters is a character and

the canonical arrow

X(G) @Z C » CcL(G)

is an isomorphism.

3: DEFINITION An element of X(G) is called a virtmal character.

4: LEMMA A class function f € CL(G) is a virtual character iff <f’XP>G € Z
L

for all T € G.

5: REMARK The values of a virtual character are algebraic integers

(cf. 86, #5), hence X(G) is a proper subring of CL(G).
[Note: On the other hand, a class function whose values are algebraic integers

need not be a virtual character.]

6: NOTATION Let H be a collection of subgroups of G with the property that

HeHs&H cH=>H €H,



in which case H is termed a hereditary class.

Given H, let X(G;H) be the additive subgroup of X(G) spanned by the

iH+GlH (He H.

7: LEMMA X(G;H) is a subring of X(G).

PROOF Iet Hl'HZ € H — then the claim is that

(iHl -> GlHl) (iHZ -> Gl‘Hz) € fl.

X = (. -> )
Hl GlHl
and write

x (1 )
lH2 N G]Hz
= i (s 4 & X ) (cf. §7, #8)
lH2 +G' VG > H, lnz

- iHZ > cllrg o HZX”°

Then, thanks to §8, #3, there are subgroups Kl""’Kr of H, such that

2

r
r x= I i .
G- HXT 0 K, > Hlefz

Therefore

iH2 -6 g 5 1 )X)

r
= i (% i )
Hy > Gyl ]Kz "’Hlez



r
= 3 i (i )
2=1 :LH2 +> G :LKK -> H2lK£

r
= 3 i (cf. §7, #12)
=1 Ko G]K/a

€ X(G;H).

: DEFINITION X(G;H) is the Burnside ring of G associated with the

hereditary class H.

[Note: It is not a priori evident that lG € X(G;H).]

9: CRITERION Let R be a ring of Z-valued functions on a finite set X
under pointwise operations. Suppose that for each x € X and each prime p there
exists £ € R such that f(xX) Z Omodp——thenlxe R.

[Attach to each x € X the ideal
IX = {fx):f € R} < Z.

Then, in view of the assumption, IX = 7/ so there exists fX € R such that fx(x) =1,

hence

T a-£)=o.
xeX

Now expand the product to get 1 as a sum of elements of R.]
Iet G be a finite group.

10: DEFINITION lLet p be a prime —- then G is a p~group if every element
X € G has order a power of p.

[Note: Every p-group is nilpotent.]



11: IEMMA G is a p-group iff |G| is a power of p.

2: DEFINITION Let p be a prime -- then a subgroup P of G is a Sylow

p-subgroup of G if it is a maximal p-subgroup of G.

13: THEOREM

® Sylow p-subgroups exist.

e All Sylow p-subgroups are conjugate.

e Every p-subgroup is contained in a Sylow p-subgroup.
14: N.B. The number of Sylow p-subgroups of G is a divisor of |G|.

15: DEFINITION Given a prime p, a finite group H is p-elementary if it is

the direct product of a cyclic group C of order prime to p and a p~group P.

[Note: Accordingly, C and P are normal subgroups, C N P = {e}, and H = CP.]

16: LEMMA Subgroups of p-elementary groups are again p-elementary, hence

the p-elementary subgroups of G constitute a hereditary class E D Q).

17: DEFINITION A finite group H is elementary if it is p-elementary for

some prime p.

18: NOTATION Put
E(G) = U E_(G).
p p
19: N.B. Since E(G) is a hereditary class, one can form its Burnside ring

X(G;E(@G)).



20: DEFINITION Given a prime p, a group H is p-semielementary if it is

the semidirect product of a cyclic subgroup C of order prime to p and a p-group P.

[Note: Accordingly, C is a normal subgroup, C N P = {e}, and H = CP.]

21: LEMMA Subgroups of p-semielementary groups are again p-semielementary,
semi
hence the p-elementary subgroups of G constitute a hereditary class SEp Q).
A

22: DEFINITION A finite group H is semielementary if it is p-semielementary

for some prime p.

23: NOTATION Put

SE(G) = U SE_(G).
P
p
24: N.B. Since SE(G) is a hereditary class, one can form its Burnside

ring X(G; SE(G)).

25: LEMMA

lG € X(G;SE(G)),

i.e., there exist integers aH(H € SE(G)) such that
l = Z (- ) .
G hesp(q HE B G
PROOF It suffices to show that the ring X(G;SE(G)) satisfies the assumptions
of #9: For every x € G and for every prime p, there exists a group Hx p = H € SE(G)

4

such that

(i , gl ® % 0 mod p.

a
This said, factor the order of x as p'n (p / n) and let C = <x* > (hence |C| = n,



hence is prime to p). Let N be the normalizer of C in G, let P be a Sylow
p-subgroup of N containing x, and let H, o = H=CP - then H is p-semielementary
and the claim is that

(i 5 gl ®) # 0 mod p.

By definition,

. 1 -1

(i; , oLy ) = z - (yxy 7).

H>GH myeG,;myle{]H
But

yxy-lEH=>ycy'ch

-1
=>yCy " =C=>y €N.
Therefore
(i , o4y ®) = (g | iy &)

the term on the right being the number of left cosets of H in N fixed by x (cf. §7,
#11). Since C is a normal subgroup of N and since C < H, it follows that C must
fix the left cosets of H in N. Thus the x-orbits have cardinality dividing p°,
thus each nontrivial x-orbit has cardinality divisible by p. On the other hand,
the number of left cosets of H in N is prime to p (H contains a Sylow p-subgroup
of N). Combining these facts then leads to the conclusion that the number of left

cosets of H in N fixed by x is prime to p, i.e.,

(i gl @) # mod p.

26: DEFINITION A monomial character of a finite group is a character of

degree 1.



27: DEFINITION A finite group H is said to be an M-group if each irre-

ducible character of H is induced by a monomial character of a subgroup of H.

28: THEOREM Suppose that H is a finite group which is a semidirect
product of an abelian normal subgroup and a nilpotent group (in particular, a

p-group) -- then H is an M-group.

29: APPLICATION p-elementary groups and p-semielementary groups are

M—-groups.



1.

§12. BRAUER THEORY

Iet G be a finite group.

1l: CHARACTERIZATION OF CHARACTERS A class function f € CL(G) is a

virtual character (i.e., belongs to X(G)) iff for every H € E(G),

r +HfEX(H).

G

2: INDUCTION PRINCIPLE A class function f € CL(G) is a virtual character

(i.e., belongs to X(G)) iff there exist elementary subgroups Hi’ monomial characters

)‘i of H;, and integers a; (1 < i <n) such that
n
f= ¥ a,(d Al).
i=1 1J"Hi+G1

These are the main results. Turning to their proofs, let R be the ring with

unit lG whose elements are the class functions £ on G such that

rG+Hf € X(H)

for all H € E(G) and let L be the subgroup of X(G) spanned over Z by characters

of the form lH N G>" where A is a monomial character of some H € E(G).

3: LEMMA Statements 1 and 2 are equivalent to L = R.

[Note: Obviously,
L <« X(G) < R.]

: IFMMA | is an ideal in R.

PROCF Iet A € L, say

A=2a;0y )



and let y € R — then

il

pA Zaxb(JH

->GJ_

ajliy , olltg 5 g WA))  (cF. §7, #8).
1 1 1

Since

o Hitp € X(Hi) '

there exist integers bij such that
G+Hw—§bljglj
£.. running through the irreducible characters of Hy, hence

ij

A = iZj alblj (lH > G 13)

But elementary groups are M—groups (cf. 8§11, #29), so Eij is induced by a monomial
character of some subgroup of H,. Taking into account that E(G) is a hereditary

class, apply §7, #12 to conclude that YA € L. Therefore L is an ideal in R.

[Note: Operations in R are pointwise and, of course, R is commutative. ]

Matters thus reduce to showing that lG € L. To this end, suppose that it

were possible to write

1.=7% ¢ (i X ),

G x k JHk -+ G*k
where C € Z and Xk is a character of some proper subgroup Hy of G. Inductively,
it can be assumed that #2 holds for Hk’ hence that X can be written as a 7-linear

combination of induced monomial characters from elements of E(H ) But then lG €L,

as desired.



[Note: Nothing need be done if G is elementary to begin with (it being

automatic that lG € 1).]

5: LEMMA If G is not elementary, then ILG can be written as a Z-linear

combination of induced characters from proper subgroups of G.

Case 1: G is not semielementary, thus G ¢ SE(G) and the H € SE(G) are proper

subgroups. The contention then follows from §11, #25.

Case 2: G is semielementary: G € SE(G), say G = CP for some prime p. Let

N be the normalizer of P in G, hence N = (C N N) x P is p-elementary and it can be

assumed that N # G (otherwise G is elementary and there is nothing to prove). Write

i =al,.+ ¥ a.X.,
1N~>G1N 0G i>p 11

where the x; = lG are irreducible characters and the a; are positive integers.

6: N.B.

ag = <iy , glyrlc’c

= <1N'rG R N1G>N (cf. §7, #6)

il

Lyelyen = 1-
7: N.B. Xi(e) > 1 for all i > 0.
[Suppose that Xi(e) =1 (3 1). Write

res, , n%i T clN + X

for same character y orthogonal to 1N —— then




c= <lN,resG > NN

= <iy G]'N’Xi>G (cf. §7, #6)

It
¥]

[
]

xi(e) =a; + x(e)

=>a; =1=>res,  x; = L.
Recall now that the kernel Ki of X4 is the proper normal subgroup of G consisting
of those x € G such that Xi(x) = Xi (e) or still, consisting of those x € G such
that Xi(x) =1, thus N ¢ Ki (since res, | Xi = lN) . But this is impossible: P
is a Sylow p-subgroup of K;, s0 G =K; (cf. infra).
[Note: Iet x € G — then both P and xPx © are Sylow p-subgroups of K, hence
JoPx KL = P

for some k € Ki which implies that kx € N ¢ Ki’ thereby forcing x € Ki’ so G = Ki.]

Return to the formula

Noaw=let B 3iX;-
i>0

Since Xi(e) > 1 for all i > 0, the X; are not monomial. On the other hand, G =

CP is semielementary, thus is an M—-group, thus each X3 is induced by a monomial

character Ay of some proper subgroup Hi of G. Therefore
= inoelw ™2 230, GAi)r
i>0 i

which completes the proof of #5.




§13. GROUPS OF LIE TYPE

Iet k be a finite field.

1l: DEFINITION A k-group is a linear algebraic group defined over k.

[Note: A k-subgroup of a k—group is a subgroup which is a k-group.]

2: NOTATION Given k—groups A, B, C,..., denote their group of k-rational

points g__\(k), g(k), g(k)..., by A, B, C,.v.
Let G be a connected reductive k—group.

3: DEFINITION G is said to be a group of Lie type.

4: N.B. G is, of course, finite and it is possible to compute |G|

explicitly.

5: DEFINITION A maximal closed connected solvable subgroup of G is called

a Borel subgroup.
[Note: The conditions "closed" and "connected" can be omitted from the

definition.]

6: LEMMA

® Any two Borel subgroups of G are conjugate.
e Every element of G belongs to same Borel subgroup of G.
® Every closed subgroup of G containing a Borel subgroup is equal to

its own normalizer and is connected.

® Any two closed subgroups of G containing the same Borel subgroup and

conjugate in G are equal.



7: N.B. Since k is finite, G is quasi-split, hence contains a Borel

subgroup defined over k.

[Note: Any two such are G-conjugate.]

Let B be a Borel k-subgroup of G, let T cB be a maximal torus of G defined
over k, and put

N =N.(D).

|

N is a k-subgroup of G.

9: NOTATION Set

W = V/I.
10: IEFEMMA
W =~ N/T.
[Note:
BNN=T=>BNN=T.]

11: LEMMA W is a finite Coxeter group.

[Note: Spelled out, W admits a finite system of generators Wyrees Wy

(Wi #z 1 and W, # wj for i 2 j) subject to the relations

m. .
w: =1, (Wle) D=1 ({1=7),
where mij is the order of Wiwj (i = 3).]
12: BRUHAT LEMMA
G= || BwB.



13: DEFINITION A closed subgroup P of G is parabolic if it contains a

Borel subgroup of G.

14: LEMMA Iet P., P

Bi1r By be parabolic k-subgroups of G -- then P, =P

iff p, = P.,.
15: NOTATION Given a parabolic k-subgroup of G, denote its unipotent

radical by U.

[Note: Recall that P is the normalizer of I=J.]

17: DEFINITION Let P be a parabolic k-subgroup of G —— then a closed

connected reductive k-subgroup L of P is a Levi subgroup of P if P is the semidirect

product LU (hence P = LU).

18: LEMMA Levi subgroups of P exist and any two such are conjugate by a

unique element of U.
19: N.B. L is a group of Lie type.

20: ' LEMMA Let P., P, be parabolic k-subgroups of G —— then the following

conditions are equivalent.

] PlﬂUzc:U]_,PzﬂUlcU2

ol;andg

1 5 have a common ILevi subgroup.

21: APPLICATION



[For under these circumstances, El and 22 have a common Ievi subgroup L, thus

SO one can quote #14.]

22: DEFINITION Let ];l, B, be parabolic k-subgroups of G —— then P

22z lancfig2

are said to be associate if there exists an x € G such that __121 and xgzx 1 have a

common Levi subgroup.

23: N.B. The relation determined by "to be associate" is an equivalence

relstion on the set of parabolic k-subgroups of G.

24: LEMMA If Py, P, are not associate, then V x € G, By, xgzx'l are not

associate.
[If there exists x € G such that P, and xgzx—l are associate, then there exists

y € G such that P; and yxgzx_ly—l have a common Levi subgroup, thus P; and B, are

associate, contradiction.]

25: LEMMA Let P

17 22 be parabolic k-subgroups of G. Assume: gl and P

are associate —— then [P;| = [P, ].
[There is no loss of generality in supposing that By and B, have a common

Levi subgroup L, thereby reducing matters to the claim that |U;| = |U,|.]

26: DESCE'.NTFixaparabolick—albgroupgcgandlet__I_.cgbeaIevisub—

group —- then there is a 1-to-1 correspondence between the set of parabolic k-sub-

groups of G contained in P and the set of parabolic k-subgroups of L.



® Given a parabolic k-subgroup P' ¢ P, write P' = L'U' and put *P

P' N L ~—- then *P is a parabolic k-subgroup of L with unipotent radical *y =
1;__]' n ;..

® Given a parabolic k-subgroup *P of L, write *p = *;.*g and put y = *L,
U' = *UU -- then P' = L'U' is a parabolic k-subgroup of G such that P' < P.

The bijection in question is the assignment P' - *P.

27: N.B. P' and P'' are conjugate by an element of G iff P' N L and

P'' N L are conjugate by an element of L.

APPENDIX

IFMMA Suppose that B, = £'1[=]l and B, = QZUZ are associate -- then L

U la.nd

L, are conjugate by an element of G.

L
[Choose x € G such that P; and xgzx_l have a common ILevi subgroup L. Choose
uy € Ul:
w L = L
Choose xuzx- € xsz— :
mzx_l;_xu; x_l = x_gzx_l
Then
w D = I
=>
L= xuzlézuzx_l







§14. HARISH-CHANDRA THEORY
Let k be a finite field, G a connected reductive k-group.

DEFINITION Let P be a parabolic k-subgroup of G -— then P is termed

a cuspidal subgroup of G.

2: NOTATION Given a cuspidal subgroup P = LU of G and an £ € C(G), let

fP(x) = 3 f(xu) (x € G).
ucv
[Note: If P = G, then
fG(x) = f(x) x € G).]

3: DEFINITION ILet f € C(G) — then f is said to be a cusp form if fP =90

for all P = G.

4: NOTATION Write °C(G) for the set of cusp forms and put

’CL(G) = CL(G) n °C(G).
5: LEMMA °C(G) is a linear subspace of C(G).

: LEMMA °C(G) is stable under left translations, hence is a left ideal

7: REMARK If G is a torus, then °c@) = c(a).

8: NOTATION Given f € C(G), write fP ~ 0 if

z fP(x(i)W) =0
2L

for all ¢ € °C(L) and all x € G.




[Note: Bear in mind that L is a group of Lie type (cf. §13, #19).]

9: N.B. Matters are independent of the choice of L in P.

10: LANGLANDS PRINCIPLE If fP ~ 0 for all cuspidal subgroups P of G

(including P = G), then £ = 0.

PROOF Proceed by induction on the semisimple k-rank s of G, the case s = 0
being trivial (because then G is anisotropic, there is only one P, viz. P = G,
and L = G, °C(L) = C(G)...). So assume that s is positive and let P = LU be for
the moment a proper cuspidal subgroup, thus U =z {e} and the semisimple k-rank of
L is strictly smaller than that of G. Using now §13, #26, let *P = *L*U be a
cuspidal subgroup of L —- then P' = L'U' = *IU' is a cuspidal subgroup of G con-

tained in P. Freeze x € G and put g(£) = £ (x£) (£ € L):

L g(@*u)

¢4
Tp ) *ue*U

z fP (xxl*u)
*ue*y

-z Z £ (xl*uu)
*ue*yU uel

i

r  f(xfu')
u'ey’

= fP' (x£) .
But by assumption,

I £, GEOTD = 0
*pErT,




for all ¢ € °C(*L) or still,

T
*Pe*L

9p L*TTD) = 0

for all ¢ € °C(*L). The induction hypothesis then implies that g = 0, hence
fpx) =gle) = 0.
Therefore f is a cusp form (x € G being arbitrary), i.e., £ € °C(G). Finally,

£, ~ 0= I £GFE =0
veG

for all ¢ € °C(G) and all x € G. Take x = e to conclude that

T £(Y)ely) =0
veG

for all ¢ € °C(G) and then take ¢ = £ to conclude that

<f,f>G =0=f =0.

11: NOTATION Given a cuspidal subgroup P = LU of G, let C(G;P) be the

subspace of C(G) consisting of those f such that

(i) f(xu) =fxX) X € G, u €V

and
(ii) £ » f(xL) € °C(L) x € G, L €L).
[Note: C(G;P) is stable under left translations, hence is a left ideal in
c(G).]
12: EXAMPLE
C(G;G) = °c(@).
13: SUBLEMMA Fix P —— then v £ € C(G;P) and V g € C(G) ,




<£,95>g = [U|<f,g>P.
PROCF

-1 —
<f,gP>G—-|—TG xéG £(x)gp (®)

= I f(x) ¥ g(xu)
TGTXEG ueu

'I—G—" uéU L f(x)g(xu)
1

z L f(xu)g(xu)
-laruEU XeG

l —_—
= 1 I £5®
wev 167 yeq

r <f,g>. = |U|<f,g>..
ey e 727G

14: RAPPEL Let H be a finite dimensional complex Hilbert space — then

a subset M c H is total if My, =#, this being the case iff Mt = {0}.

[Note: Subspaces of H are necessarily closed... .]
Put
M= U C(G;P).
P

15: ILEMMA C(G) is spanned by the £ € M,

PROOF It suffices to show that if for some g € C(G), we have

<;f,g>G =0



for all £ € C(G;P) and for all cuspidal P, then g = 0. And to this end, it need

only be established that gp ~ 0 for all cuspidal P (cf. #10). So fix x € G and
let ¢ € °%C(L). Define £ € C(G) as follows:

f(y) =0 if y¢Z xP

f(xfu) =¢L) (L €L, uel).

Then £ € C(G;P), so

p=

IS

1
= r I
B2 L Fpe0Fm
= I g =0T .
eeL,

Therefore 9p ~ 0.



16: CONVENTION Cuspidal subgroups Pl,P2 are said to be associate if this

is the case of gl,gz.

17: LEMMA If P]_,P2 are associate, then

C(G;p,) = C(G;Pz) .

1)

18: IEMMA If Pl,P

are not associate, then C(G;P C(G;Pz) are orthogonal.

2 l)l

Let Pl’ ces ’Pr be a set of representatives for the association classes of
cuspidal subgroups of G.

19: THEOREM There is an orthogonal decomposition

r
C@) = ® C(GP,).
i=1

20: N.B. #17, #18 can be established without the use of representation

theory but its introduction leads to another approach.

21: UE:MMALetHea——thenxnisacuspformiffch3pidalP¢G,

G _
m(H,IndU,e) =0,

where 8 is the trivial representation of Uon E = C. I.e.: Iff

iy - ¢vte T Yo - v vy

Il

= <l m(8,1|U)

e > XU

= 0.



22: LEMMA Let II € G — then is a cusp form iff V cuspidal P = G,
i

L Ti(u) = 0.
uey

23: N.B. Let

V(H)U ={vev(d: £ O)v = 0}.
ucu

Then X is a cusp form iff V cuspidal P = G,

V() = V(H)U.

24: DEFINITION Let T € G — then T is said to be in the discrete series

if its character Xg is a cusp form.
L

25: NOTATION °G is the subset of G consisting of those II in the discrete
series.
Given P = LU and 0 € °L, one can lift © to P and form Indg' 0 with character
14

iy, oXg (Cf. 59, #10).

~ ~
26: THEOREM Let II € G - °G —- then there exists a proper cuspidal P = LU
and a O € 9%, such that [ occurs as a subrepresentation of Ind.g ot
’

— G
KX 20 (m=1Indy ) (cf. 85, #5).

PROOF Proceed by induction on the semisimple k-rank s of G, there being nothing
to prove if s = 0, so assume that s > 0 — then there exists a proper cuspidal

P = LU such that V(i) = V(H)U. Claim: V(H)U is P-invariant: V 1’0 €L,V ug € U,



Yyvev(: £ NOv=0,
ueU

I TILu,)v
uey 0"0

r Nl.u.)v
ucU 00

1l

-1
Y N2 ul )us)v
weu 00 0’0

-1
H(KO)( X H(KO u,KO))H(uO)V
ueu

]

e (z n@)hiuyv
0 i 0

ne,) z ntau,)v
0 ucy 0

MLy I T@v
uel

= (£, 0 = 0.

Consequently, P operates on the quotient V(I)/V (H)U. Moreover, its re-

striction to U is trivial: VvV u

0 €Us vvevi,

L T(u) (I (uo)v—v)
ueyu

il

X H(uuo)v— r (v
uey uey

T NIwv -  Iv
ucyu uey

Il




]'{(uo)v = v mod V(H)U.

On the other hand, while its restriction to L need not be irreducible, there is
in any event an L~invariant subspace V of V(II) containing V(H)U such that the

quotient representation 0 of L on

V(I V) VAV

= V() /V

is irreducible. Pass now to Indg o and note that Il occurs as a subrepresentation
[ 4

of mdg o (see below). Accordingly, if © € °L, then we are done. 1If, however,

0 ¢ °f., then, thanks to the induction hypothesis, there exists a proper cuspidal

subgroup *P = *L*U of L and a discrete series representation *0 of *L such that

L

0 occurs as a subrepresentation of Ind*P *Q* Form P' = L'U' = *L*UU, view *0 as
r

a representation of P' trivial on U' = *UU, and utilize the induction in stages

rule (cf. 89, #12)

G G
Indpy xg » Indp, Indy, 4o
I

to conclude that [, which occurs as a subrepresentation of Indg' o’ must actually
H4

occur as a subrepresentation of Indg' v kgt
14

GCIndL

_ G
*p,xg o 1L < Indp g

G
< l-ndP,Inc:lL )

*P,*0

[Note: To confirm that

: G
I, Indg o) = 0,




10.

define an intertwining operator

T:V(II) - Eg’@

by assigning to each v € V the function

fv:G - V() /V

given by the prescription

£, (x) = T v + V.1

This result reduces the problem of describing the elements of G into two parts.

® Isolate the discrete series (Deligne-Lusztig theory).

e Explicate the decamposition of I_ndg' 0 and determine its irreducibility
4
(Howlett~Lehrer theorv).
We shall pass in silence on the first of these points (for a recent survey,

consult arXiv:1404.0861) and settle for a summary on the second (cf. §15).

27: LEMMA The canonical representation of G on C(G;P) is equivalent to

G
§ Indy, o

where 0 runs through the elements of °L.

28: NOTATION Given a parabolic k-subgroup P of G, let °C(P) be the
subspace of C(P) consisting of those f which are invariant to the right under U

and have the property that the function on P/U thereby defined belongs to °C(P/U).

29: IEMMA Let P

=l'-£—2 be parabolic k-subgroups of G and let

0 0
fl € C(Pl), f2 € C(PZ)'




11.

Then

<r f., £> =0
Pl > Pl n P2 1 P2 > P2 n Pl 2 Pl n P2

unless B and B, have a common Levi subgroup L.

PROOF Ignoring constant factors (signified by =), we have

<r f., ¢ £ >
Pl > Pl n P2 1 P2 > P2 N Pl 2 Pl n P2

=7 f.(x)f, (%)
Pl n P2 1 2

=y £, (x)F, X
P, N P,/U; N U, 172

1

f2 (x)

=2
n P2/Pl n U2 Pl n U2/Ul n U2

p fl (xu).

1
Iet Tl'l:Pl > Pl/Ul = Ll be the canonical projection —- then *P = ™ (Pl N Pz) is
a cuspidal subgroup of L, with unipotent radical *U = Pi N U2/Ul N U,. Given
X eP

ne writex=£lul (KlEL , ulEUl), thus

1 27
fl(xu) = fl (ﬂlulu)
= f. (L;u uu-l)
11171
IS o)
X £, ()
Pl n UZ/Ul n U2 1

= Z*U fl (Klu) =0

unless *U = {e}, i.e., unless




12.

Pl N U2 = Ul ] U2 c Ul.
Switching roles leads to
PzﬂUl=UzﬂUlcU2.

Therefore the relevant integrals vanish unless 51 and 1;2 have a common Levi
subgroup (cf. §13, #20).]

30: APPLICATION Assume: ];l and 22 are not associate —- then

£
2 7Py NPy

= 0.

<r.
P 2

1> F

f., r >
lﬂle P 2Pl|"!P

31: THEOREM Let P, = LlUl’ P, = LU, be cuspidal subgroups of G. Suppose

. . 0’\ 0/\
that gl and 52 are not associate then v Ol € Ll, Y @2 € L2,

G G
iif =Insd.EJ and =IndP
1 179 2 279

are disjoint:

<i Xq ¢ 1 X, >. =0 (cf. §10, #2).
lPl > GXey 1P2 » c%e,’c
PROOF In the notation of §8, #4,

<i X , 1 Xn 2
1Pl + X0, lpz » 6%0,76

= Y <r XA r (X ) >
seg  F1 7 Py(s)70;" 70, s P,y (s)
= 5 «<r Yo, T (X, ) 5>
= ’ ’
s€s Pl -> P2(s) @l s 0 P2(s)

P2 - P2(s) 2




13.

where

- _ -1
P2(s) = P2 n Pl (= sts n Pl).

But P, and B, are mot associate, hence P; and sgzs“l are not associate (cf. §13,

#24). Therefore each of the terms in the sim I must vanish (cf. #30).
sES

32: NOTATION Given a parabolic k-subgroup P of G and a Levi subgroup
< P, mat

e

E_l_]g = Ng L) /L.

33: N.B. If L' is arother Levi subgroup of B, then there is a unique

u € U such that L' = uI;u_l, hence there is a canonical isomorphism

gé > W

Set
WL = Vgé(k) (= NG @) /L) .

Then each w € W, can be represented by an element n, € NG(Q .

34: ILEMMA The arrow
WL -+ P\G/P
given by
w™> Pn P
W

is injective.

35: LEMMA W, operates on °’c(p).




14.

36: REDUCTION PRINCIPLE Let 13—1'22 be parabolic k-subgroups of G and let

0 0
f € CL(P;), £, € CL(P,) .

Assume: B—l and B, have a common Levi subgroup L —— then

<3131 » ghy 'p, > v ge

= I <r. f., r (w-£,)>_.
WEWL Pl->Ll P2->L 2L

PROOF In the notation of §8, #4,

<1Pl s> gfir B 5 gfe

2
= ¥ <r £, (£,) >

ses Pl - P2(s) 1 2's Pz(s)
= I <rp Lp (gfir T g (£,) S>P (s)’

ses 1 2 P, > P,(s) 2

where
P.(s) =P> NP, (=sP.s ™ nP.)
2 ) 1Y c2 1’

The only nonzero terms in the sum are those for which By and s]izs_l have a common

Levi subgroup L' (cf. #31). Choose u; € U; such that ul;.'uil = L. Next

L' c sgzs"l = s's « B,-

21 = s_]"{_.__'s, thus

Choose u2 € U2 such that uzgu




15.

-1 -1 -1 -1
— 1] —_—
= ulg ul = ulsuzgu2 s ul

e

u;su, € N.(L).
On the other hard,
U, su, € Pl\G/Pz'
Therefore the double cosets Pl\G/P2 that intervene are those containing an element

of N, (L), =

<lPl —->»Gfl' lP - Gf2>G

2
= 3 <r £f., r w - £)> .
P, > P, W)l " w 2°7P, (w)
WEWL 1 2 P2 —»Pz(w) 2
. _ -1 -1 . . -1 .
Noting that L = wlw = < wgzw is a Levi subgroup of wgzw , write
P (W) =P NP, =P, N whw -
TpW =y M =R W
=L @Awlw?®) - (U, NI) - (U Nwiw D)
2 1 1 2
with uniqueness of expression —- then
-1
anUzw = {e}, UlﬂL={e}
and
<r £, r w- £.)>
Pl —>P2(w) 1 P¥+P2(W) 2 P2(W)

__1 T
= Pz(w) xzu fl(xu) (w f2) xu),

14




1e.

where the sam runs over all x € L ard all u € Ul N wUzw-l. Since fl and w - £

are invariant to the right under U n wUzw-l, the above expression equals

-1
Pl e

) W B ®)
P, (W) | x

lu; N wu

B lu; N wUzw‘ll

[P, 60 |

(w- £,)>_.

<r. , T
P, >L1" "P, > L 2'°L
And
-1
|u; N wow ™|

|P2 (w) |

|z

lu; n wU2w'll- L
= =1
-1 ®
L]+ Jup n wU,w ]

7: SUBLEMMA Iet H be a Hilbert space and let x,y € H. Assume:

<X, X> = <X,y> = <y,y>.
Then x = vy.

PROOF In fact,

X -=-y,X-=-Yy> <X,x> + <y,y> - X,y> - <y,x>

<X,y> + <x,y> <X,y> - <xX,y>

<X, ¥Y> - <X,V> = <X,y> - <X,y> = 0.

i

APPLICATION If

W
e 0}
..

>t T T, > 1t

2



17.

then

J"Pl > Gfl - j'P2 > Gf2'

[Tt follows from #36 that
<lPl - Gfl’ lPl > Gfl>G
- <lPl > Gl le > Gf2>G
=<l g2 b, > cf2G-!

39: NOTATION Given a cuspidal subgroup P = LU of G and a 0 € °L, let

WL(G)) = {w € Woiw e Xy = Xe}.

40: THEOREM
<dp L gXer I, gXo%e = L@ [

[In #36, take P =P ard mote that

B, =E

2
Ip 4 pXer Tp - 1.0 T Xg)>p

equals 1 if w - Xo= Xo ard equals 0 if w - xezxe.]

Let P be the set of parabolic k-subgroups of G. Decompose P into association

classes: P = _u C. Given C, take a P € C and denote by a(C) the subset of 6;

ocompr ised of tlose ] which occur as a subrepresentation of

Ind]?,O

~
for some 0 € L.



18.

41: LEMMA 8(C) is independent of the choice of P € C.
PROOF The theory does mot change if P is replaced by xl;x—l (x € G), = if

l;l, __P__2 are associate, then there is no loss of generality in assuming that By and

LcP
1 N
P, have a comon Levi subgroup L, thus . Given 0 € °L, lift
B _ Lep,
0 to Py, call it @l
B 0 to P2, call it @2.
Then
- . . G
lPl N GXOl is the character of Ind.Pl’ Ol
. . G
b, 5 gXg. 18 the character of IndP 0.°
_ 2 2 2’72
But
or Xg. = X
Pl > L @l C]
r Xq ~ X
_ P, > L 62 0
=>
' X, = 1 X (cf. #38).
p, »cfo, T e, > GMo,
Therefore
G G
I ~ I .
Mpp 0 ¥ %0,
~42: LEMMA If C, = C,, then

1 27

G(Cl) N G(Cz) =g (cf. #30).




19.

Accordingly:

43: THEOREM There is a disjoint decomposition

G=]| 6.
c

44: NOTATION Given P € P, let [B] be the association class to which P

belongs.

45: EXAMPIE Take P = G —- then the elements of G([G]) comprise the discrete

series for G, i.e., G(IG]) = °G.

46: EXAMPIE Take P = B —— then the elements of G([B]) comprise the prin-

cipal series for G.

47: REMARK W, operates on 1, hence °L breaks up into W -orbits. Let

0,,0, € 07, — then there are two possibilities.

e If 61,92 are on the same WL—orbit, then

G G
I“dp,el ~ Indp,e2'

e If O

l,@ are not on the same W_-orbit, then

2 L

G

Ind; o

G
and Irx
1 dp'@z

are disjoint.




§15. HOWLETT-LEHRER THEORY

In view of 8§14, #40,
<G, GXor Ip s g’ = ML |-
and on general grounds (cf. 55, #11), Inds o is irreducible iff
14

p 5 X > Xo%e T 1t

1: DEFINITION © is unramified if [W. (0)| = 1.

THEOREM Indg 0 is irreducible iff 0 is unramified.
r

To discuss the decomposabil ity of Ind.g o’ mote that Il € G occurs as a sub-
7

representation of IndG
P,@

iff
X b s Xo’e * O

one-to-one N
ILEMMA There isa A correspondence between the II € G such that

X > gXoe * O

and the irreducible representations p of

G G
IG(IndP,G’ IndP,G) .

and if T <—> p, then
Xp (1) = <Xpr 1p , X7
the positive integer on the right being the multiplicity

m(H,Indg G))

oinnIndg@.
I




4: THEOREM The samnisimple algebra

G G
Tg(Indp o Indp o)
is isomorphic to the samisimple algebra

c(WL(e)).

The irreducible components of Indg o are therefore parameterized by the
’

elaments of i ©: If we WL (©) and if M) € 8 is the irreducible component of

Indg o correspording to w, then
’

X’ P~ Xo'e = Xy 1),

the dimension of the representation space of w.




§16. MODULE LANGUAGE

Let G be a finite group, I ¢ G a subgroup. View C(G) as a left C(G)-module

ard as a right C(TI)-module.

l: CONSTRUCTION Let 6:T - GL(E) be a representation of T -- then the
tensor product

c(G) QC(I')E

is a left C(G)-module or, equivalently, a representation, the representation IndG

,e

of G induced by 6.

2: N.B. The left action is given by

(XéG £(x)3,) (<Sy R X)

= z 8. . fX (X € E)
XEG Xy

and from the definitions, v v € T,

6X6Y®X=(SXQG(Y)X (X € E).

LEMMA Write

lw

n
G = X, T
PR

Then as a vector space

[Note: The summand




~E(, 8 X <——> X)
%k

is the transform of cSe 8 E = E under the action of ﬁx :
k

6X (GeQX) = Gx ! X.]
k k

The following result justifies the notation and the terminology.

é

4: THEOREM Set

4: r,e then

in, oXg =X, (cE. 99, $10).

PROCF let Xl,...,Xd be a basis for E and define eij (v) by

B(VMX; =2 6. .
(X, ?Lelj Mx;

Equip C(G) @C(I')E with the basis {6Xl R Xl,...,le R Xd' ze ) Xl,...,dx
eeesS. X ,...,8. RX.}
X 1 X d
andwritexxk=xzy -- then
m(X) (GX & X.) = 6xx ! X
k k 9
= Gx R X
KY J
= 6x S ® X
2 J

§. 8 0(Y)X.
Xp 3

S R 0..(Y)X.
x, ;1 i

@ Xd,



]

r0:.(y)s, & X.
i1 X, i

= Z ei. (XI_ xxk) cSX =] Xi'
i £

Def ine 8 on G by 8(Y) = [eij(y)] (y e I) and s(x) = 0d ifxgTrT (Odthe zZero

d-by—-d matrix), thus the block matrix representing m(x) is

o ] o ] ° -1
e(xl xxl) e(xl xxz) e e e e e . e(xl xxn)
o _l o _l o _l
) (x2 xxl) e(x2 xx2) e e e e e s e(x2 xxn)
o _] °o 1 e -1
0 (xn xxl) S (xn xx2) ...... G(Xn XXn)
Taking the trace
Xﬂ(X) = tr(m(x))
n o _3
= X tr(0 (xk xxk))

k=1

Lo b )

oy (8 R By

= (ip | gXg) ®)

finishes the proof.

5: NOTATION MOD(T) is the category of left C(T)-modules and MOD(G) is

the category of left C(G)-modules.




[Note: All data is over C and finite dimensional.]

Im
..

N.B. Morphisns are intertwining operators.

7: SCHOLIUM The assigrment

(8,E) » IndC®
,0

defines a functor

MOD(I) - MOD (G).

8: NOTATION Given a representation (w,V) of G, denote its restriction

G
to T by ResI,',,T

9: SCHOLIUM The assignment

G
(m,V) - ResI‘,'rr

def ines a functor

MOD(G) - MOD(T).

Here now are the fundamental formalities.

G G
IG(IndI-'el ('IT,V)) ~ I].—‘( (eIE)I Resl-v,e)'

11: SLOGAN The restriction functor is a right adjoint for the induction

functor.

G

; G
I (), Ind} ) = TpRes] , (6,E)).



13: SLOGAN The restriction functor is a left adjoint for the induction

functor.
Moving on:

4: DEFINITION Let 6:T -+ GL(E) be a representation of T —- then

Inv (E) = {XeEB(NWX=XV yeT}

is the set of I~invariants per E.

15: DEFINITION Let 6:T - GL(E) be a representation of T — then

COInVT (E) = E/II,E

is the set of coinvariants per E.

[Note: Ipc< C(I) is the augmentation ideal, thus IIE stands for the set of

all finite sums i e(\(i)Xi (cSYi € IT' X, € E).]

Specialize and assume that G is a group of Lie type (cf. §13, #3).

16: NOTATION Given a cuspidal subgroup P = LU of G,
InfL’P:MOD(L) -+ MOD(P)

is the inflation functor.

[In other words, given a representation (6,E) of L, InfL Pe is the 1lift of
r

6 to P, i.e., E viewed as a left C(P)-module with trivial U-action.]

17: DEFINITION The composite

G

IndP,_ ° InfL,P



defines a functor

Rf o:MOD(L) > MOD(G)

termed Harish-Chandra induction.

8: THEOREM If P are cuspidal subgroups of G, then the

= 1

functors

= LUy, P, = LU,

G
-

1

are naturally isomorphic.

[Note: Accordingly, the left C(G)-module isomorphism class of R(I;, P(6,E)
14

depends only on 6 (it being independent of the particular cuspidal subgroup P = LU).]

19: I1EMMA

G
IR 5(8,B), (T,V))

Q

G
Ip(Inf; 50/ Resy )

)).

4

G
IL( ©,R), Ian(ResP,1T

[Note: For any left C(P)-module M, the set Ian (M) is camonically a left

C (L) -module.]

20: SLOGAN The composite of restriction followed by the taking of invar-

iants is a right adjoint for Harish-Chandra induction.



I (V) By 5(0,E)

2

I,(Resy . Infy ,(8))

Q

]'_L(OoInVU (Resg',ﬂ) , (6,E)).

[Note: For any left C(P)-module M, the set OoIan (M) is canonically a left

C (L) -module. ]

22: SLOGAN The composite of restriction followed by the taking of coin-

variants is a left adjoint for Harish-Chandra induction.

23: SUBLEMMA For any left C(P)-module M,

Ian M) = CbInVU ™).

24: SCHOLIUM The left and right adjoint of Harish-Chandra induction are

naturally isomorphic.

25: DEFINITION Harish-Chandra restriction ”‘RLG P is the left and right
- ’

adjoint of Harish-Chandra induction.

26: LEMMA

*Rﬁ,p((“"’” = eV,

where

_ 1
eU——rU.—ruZ TT(u).

€u




27: THEOREM If Pl = LUl, P2 = LU2 are cuspidal subgroups of G, then the

functors

Ry

are naturally isomorphic.

[Note: Accordingly, the left C(L)-mpdule class of *RLG P('IT,V) depends only
14

on m (it being independent of the particular cuspidal parabolic subgroup P = LU).]

APPENDIX
Let P = LU be a cuspidal aubgroup of G.

DEFINITION Given ¢ € CL(L), define $ € C(P) by the rule

o (eu) = ¢ (L).

LEMMA ¢ is a class function, i.e.,

€ CLP).

PROOF The claim is that V p € P, V plEP,
~ -1 ~
¢ (PP ) = ¢ (R
Wite p = Lu, P = I,lul -- then
Fopp ™) = Flueuu e
= 3 eatyu £ e

= Flaeu ™) w = e




= $(zuzlz'1/aulz’lv)

-1

= Fuug ) vy = bl € v

= Fewe™ @™ ue v

= Eﬁ(ulz‘lvzvlv) v, = (tl/a'l)‘lu (zlz'l) € v

= ¢ ee ™)

=6y =3¢(p).

Thus there is an arrow
CL(L) > CL(P) - CL(G),
namely
A P
On the other hand, there is an arrow
CL(G) » CL(L),
namely
RGN P S T
[Note: v £ €L, VKlGL,

Doyt = 1 yee e e
ueu ucu

L e ue)
SIS

= Iz yp®yu).l]
uel 1




10.

IEMMA Iet ¢ € CL(L), ¥ € CL(G) —- then

Ap L ghrlg = <birg L plpy

PROCK

= - §
Ter X T I d(x)V(y “xY)
G vEG P XEG

1 1 ~ —1
= z z o(PY(ypy )

CT e TP1 pEP

1 1 ~ -1
= ) X £ L

T mﬂ,u ¢ (Lu) Y (ytuy ™)

= TaT yéG T KZ ¢ (£) P (Lu)

u

= T T o)y (Lu)

L L 5 3




1
Ty 2 405D

IR N e

11.




§1. ORBITAL SUMS
Let G be a finite group.

1: DEFINITION Given f € C(G) and y € G, put

0, ) = & £xx D),

XeG

the orbital sum of £ at Y.

2: LEMMA The function 0(f) defined by the assignment

Y > 0(£,7)

is a class function on G, i.e., is an element of CL(G).

3: LEMMA There is an expansion

0(f,v) T tr(H*(f))xH(Y),

TeG

where

m*(f) = & £fxI*Ex).
xXEG

PROOF Since 0 (f) is a class function, V y € G,

0(f,y) = I, <0 ) rXpexp (V) (cf. II, 84, #17).

JHSE

<0(®) g = TaT LA
Y




1 —

= z L By, (x Tywx)
T6T yeq veo I

=2x oz EMTm

- G YXHY

xXeG  yeG

= IG] £ £(V)x,
6T ™ e T

i
™
Fh

=
Nt
i‘
=
2

I £(x)x,x)
XEG I

tr(*(£)).

[Note: Recall that

Xpx = X (cf. II, 84, #4).]

4: N.B. In terms of the Fourier transform,

T*(£) = £(T%) => tr(T*(£)) = tr(E(1*).]




§2. THE LOCAL TRACE FORMULA

Iet G be a finite group.

1l: NOTATION Derote by T, R the representation of G x G on C(G) given by
4

(my, gG X)) ) = £GTey)  (of. IT, 1, $14).

Define a linear bijection

+

T:C(G) C(G x G/G)

via the mrescription

Tf (xl'XZ) =f (x]_x2 ).

N.B. Embed G diagomally into G X G == then V x € G,

TE ( (xl,xz) (x,x))

_ _ -1 -1
=Tf (xlx,xzx) = f(xlxx 5 )
= £ (x,x,0) = TE(x,,%.)
= XlX2 = Xl,X2 -
3: NOTATION Set
_ G x G
L x g/ = ™™g, e -

where 6 is the trivial representation of Gon E = C.

4: LEMMA

Te€Is xegl,r T x g/a

PROCF V x ,xzeG, v £ € C(GQ),



(Et"rrL,R(x:L 1X,) ) (Y:L'Yz)

= (05 %)E) (7%, )

S R |

(Lg x /g & ¥ TE) (yy 1Y)
= TE( & ,%.) T (v, ¥)
Bl K R S K
B -1 -1
B -1 -1
= TE(X) Yy %57 Y))
R T, |
= £l 7y, %)) .

5: N.B. T isunitary: Vv f,g € C(G),

<Tf,'I‘g>G G- <f,g>G.
[By definition,

<'I‘f"I'(PG x G

1
S Texal (xl,xz)és « g TE G x)To (xR /%)

1 -1, T
= GGl (xl,xz)éG x g £ %90 x,7)

1 T
- 5 5
Txal % x5 £(xy%5 )9G5 x57)



1

% 5 T
[6 X G[ %86 x,£6 £xx,)9 (eyx,)

1 —
= % 5
[GxG[ %86 x,86 £x;)g )

G

T aT xig £ I&)

1 S
= -‘EI- XEG fxIgx) = <frg>G']

6: NOTATION Given an x € G, write C(x) for its conjugacy class and G,

for its centralizer (cf. II, &4, #10).

7: EXAMPLE V £ € C(G) and V Y € G,

1

O(E,y) = L, flxyx

<2 ) = IGYl xéC(y) f(x).

8: LEMMA Abbreviate X to g, g — then
’

o L,R
XL,R(XJ_'XZ) = |{x € G:ch(xlexz) z 0}
) le | & =x =x,)
) 0 (c (xl) # C(x2)) .

[Work instead with the character of LG x G/G and apply II, §7, #11.]

Given fl’f2 € C(G), define £ € C(G x G) by

£(x),%,) = £ (%) £, (%)),



and let

m. (f) = L % éG fl(x]_)f2 (X2)1T (Xl'XZ) .

Then V ¢ € C(G),

|
™

-1
be x.Bg T () E, (x50 00 Txx))

(“L,R(f) ¢) (x) = ,

*1

yeG f(x,y)¢(y) '

where

Ke(x,y) = ZéG £, (x2) £, (zy) .

Therefore L R(f) is an integral operator on C(G) (a.k.a. L2 (G)...) with kernel
14

Ke (x,¥) -
9: LEMMA The V]G] cSX (x € G) oonstitute an orthonormal basis for C(G).

10: IEMMA V f = £f.f

_ 12
tr(m, o(0) = 2 Ke(x,x).
PROOF In fact,
tr(ny, o(0) = 2o <mp (5 /IG[8,, /TGI8, >
= |G| xeGT—l'yeG (TTL rE)S) (NS, (¥)
= XéG ( T, g6 x)

x2G xleG xzeG £ ()£, (x5) 8, (x XX,)




xéG zEG l(xz)f (zy)

Kf (x,x).

Enumerate the elaments of CON(G), say
CON (G) = {C ,...,cn}.

For each i, fjaniECi 1 <ic<n).

11: IBMA VY f = £ £,

n
1
X Z —]—'-Of,-Of,..

PROCF Start with the IHS:

Ke (%,%) = xéG zéG fl (xz)f2(zx)
=xéG yEG l(Y)f (x YX)
= yéG F(Y) r
where
F(y) = xEG fl (Y)f (x YX)

Using now §4, #2 below, we have
n

1
L. F(y) = I 0F,v.).
¥eG i=1 |GYi| 1

0 (FrYi) = XéG F(Xle‘l)




_ -1 -1 -1
= a yéGfl(xw(i:»c VE,(y "xy;x 7Y)

-1
xeG l(xyx )yEG 2(y xyx y)

il

£ Gy x ) I £, 0y

Xer (xyx )YEG 2(y\ry )

12: LEMm v f = £ f,,

x,x) = I, tr(f (F))tr(f (Ti*)) .

z
xEG f ]TEG

PROOF Write

o Kebem) = B B0 £ (DE, 6 vw)

S B0 & £, (yx Y

Lo £ (90(E5,y)

= e LW LAt E g ) (of. 51, #3)

I

I (g £ 0 () e (I ()

i

I, tr(I(E))) tr (1% (£,))
TIEG

Z, tr(fl () )tr(f (I*)) .
I'EG



13: DEFINITION Given f = flf o the local trace formula is the relation

I, tr(E) (M) tr (£, (1)
TeG

n

_ 1
= i-—z-:]_ T@Y—T O(feri)O(fzr Yi) .
1

14:; EXAMPLE Suppose that fl = f2 is real valued, call it ¢ -- then

tr () = I, 00X )

H*

= g ¢ ) xp &)
= xbg &)X &)

Il
~~
©->
~~
=
p—
Nt
L]

Therefore

%, tr (6 m)tr G m)
NeG

Il

. [tr@Gm)|?
TIeG

n

1 2
z 066,y %
R cwi 6rv5

[Note: Specialize and take fl = f2 = (Se ~=— then

tr (s (M) = xg(e) =dy



and
0@6,v;) =0 (y; =€
while
-1
= X
0(6e’e) xeG cSe(xex )
- xéG Se(€) = Gl
(onsequently,
2 1 2
. dP =TG.T |G| = |G| (cf. II, 83, #5 ard II, §5, #9).]
nec
From the definitions,
() M) = e £ G &) = |Gl<fl'xn*><;
EE ) = Jo X ) = 6]y
Therefore

I, tr (£, () tr (£, @)
IleG

2
= |G| ]'{éé <fl’XH*>G<f2’XH>G

= 2 .
= |G| ]‘fé& <fl,XH>G<f2,XH*>G.

L

15: N.B. Assume in addition that fl and f2 are class functions. Write

£f,x) = I, <fq,Xy>aXy X)
1 eé 1AM G

(cE. II, 54, #17).
lex) = I. <f2’XH>GXH(X)

NeG



Then

<£ ,£.>,.= 1, <f.,x%
1'"2°G HEGlr

> <f2’XH>G

(first orthogonal ity relations)

X <fl'XP> <f2,x > .

IleG I

On the other hand,

1 B

= r I f,x®Ef,(x)
[G] i=1 XEC 1 2
1 0

n

i

n

1

% £ £

2 T—_TGY_ 1 () E50v5)
1

|G| <f §>G

n

1
% |G|£, (v3) |G|E, (y2)
i=l|GYi llJ.|l2:|.

n

1
1




10.

The irreducible representations of G x G are the outer tensor products

M, @ T, (I;,M, €C) (cf. II, §5, #13).

Moreover,
*noem, T Xm K,
Consider now the direct sum decomposition

Lo xge =9 AT Ty Ly« g/g?Th 8 T
M0, € G

Then
tr Ly « g/6(®)
=z L~m(lL, T, L Yer (M, (£ ) tr (@A (E,)).
Hl’HZEG 2! TG x G/G 1Y1 272
I.e. (cf. #4):
tr(HL'R(f))
=3 ~m(l, & II,, L Yer (I, (£, ) tr (T, (£,)).
Hl'HZEG 1 ="7"2" °G x G/G 171 272
I.e. (cf. #12):

I, tr (T(E)))tr (7% (£,))
NeG

=¥ L m(ll, & 11, Yt (1, (£,))tr (I, (£,)).
mT, € & 1 810 Ig « g/c 1% 2,

Therefore, thanks to I, §3, #9,

m(l; I, L

2" TG x G/G)



11.

must vanish unless Hl =1, H2 = Ii*, in which case the coefficient is equal to 1.

16: SCHOLIUM

I R Ii*.
L,R e



§3. THE GLOBAL PRE-TRACE FORMULA
Let G be a finite group, T < G a subgroup.

1l: NOTATION Set

L

G
c/T ~ 9p

'6’

where 0 is the trivial representation of I'on E = C.

INote: Accordingly, x, = 1, and E?,,e = CE/T).]

2: EXAMPIE In the special case when T = {e}, LG/T = L, the left trans-

lation representation of G on C(G) (cf. II, §1, #12).

3: N.B. The pair (G x G,G) figuring in §2 is an instance of the overall

setup.

Given £ € C(G), ¢ € C(G/T), we have

(L (£)9) ()

= I (W) Qg9 &)

i

= I £V x)

&

= I f&xy D)

&

-1, 1
= ¥ fxy )T—T Z ¢ (yy)
yeG T YET

1 -1
= I T L fxy )olyy)
yeG A YET



Z f(xy )¢(yy)
r flxyy )¢(y)
YGFT‘[

-1
= X T f
(-l_f o xyy 7))o (y)

= I R.(x,y)0),
veG

l —
Ko (x,y) = L fixyy 7).
f [TT ver

To summarize:

4: IEMMA VvV £ € C(G), V ¢ € C(G/T), V x EG,

Ln/ ()9 x) = T K- (x,)¢6(y),
G/T yeG £

where
1 -1
K. (x,y) = r flxyy 7).
Write
n
G= || %, T
k=1
Then for any £ € C(G),
n
I fx) = I I f(xY),
XEG k=1 veT
thus for any ¢ € C(G/T),
T ¢x) = |T| Z ¢ (%))

XEG k=1



5: RAPPEL (cf. II, §9, #2) The Hilbert space structure on C(G/T)

defined by the inner product

_ 1
Grg = g7 I ¢G0T

T n
= L oIV .
HG g oK Y R

6: NOTATION Define functions cSk € C(G/T) by the rule

(Sk(xgy) = er (1 <k, £ <n).

7: LEMMA The

_ lel1/2
const itute an orthorormal basis for C(G/T).

PROOF A given ¢ € C(G/T) admits the decomposition

n
o= I ¢(x£.)6, .
el Kk
In addition,
<A A5 = dE ?A(X)A(x)
Ak’lie szlkjf.j

_1rl lsl _
" Te H‘l

if k = £ and is 0 otherwise.

8: LEMMA V f € C(G),

tr(LG/I‘(f)) = xé(; Kf (x,x) .

is



PROOF In fact,

n

tr(LG/I‘(f)) = k.il <LG/I,(3‘3)Ak,A»k>e

n T G n
= 3 HH T (L, (£)8,) (%,) 6, (x,)
jop 6T TTT o2y Mrar ™0 Be) o By

n
= I (L,,~(6)$) (x)
g E/T R

n -1
k=1 vyeG

= 3 T I f(x.y "x,)8, (x,v)
k=1 £=1 yer ¥ L Tk7X

n n -1 -1
ILI £y X, )6,
k=1 £=1 YET

n ——
z r f (ka
k=1 vyeTl

1 -1
k)

n -1
T X f(kaXk )
k=1 veT

1l

-1
T%F | T Gg v )

™M 3

o
I-I-L

1-1
)

n
l —
m X T L f(x,nyn

k=1 nel vyel K
=T%T T X f(xyx_l)
xXeG yel




7 T%‘T I fyx D)
xeG yer

I

z Kf (x,%).
xeG

9: EXAMPLE Take ' = G -- then V f € C(G),

_ 1 1
tI(LG/G(f)) = éG-laTyéGf(xyx )

»

z T f (xyx'l)

xeG yeG

s 3

(7}

z £(y)
¥eG

=~}—g—]t r f(y)y = Z f®).
VEG XE€G

z
XE

10: EXAMPLE Fix C € CON(G) and x € C — then

IClx;, &) =1}% lIcn Tl (cE. II, §9, 46).
G/T

[Work with £ = Xor thus

tr (L. ,+(xa)) = Z (¥) x (¥)
G/ T XC yEGXC Lo/

= I ) x ()
yeC ‘e Le/r

= |clx, .
Te/r

Meanwhile

tr(L.,~(xs)) = Z K (v,¥)
G/I‘XC veG Xc



Z_[—TZ (yvy ™)
yeG r YEI'XC

= T qp o
veG yer

_le

=47+ e n T|.

On general grourds, there is a direct sum decomposition

L = & m(l,L.,J)0I.
G/T e G/T

[Note:
m(H,LG /I‘) z 0
iff the restriction of II to T contains the trivial representation 6 of Ton E = C

(cf. II, 89, #9) (but see below (cf. #14)).]

11: SCHOLIWM V £ € C(G),

5 m(,L.,)tr(E(m).

eG G/T

It

£r (I r ()

[Note: Explicated,

tr(EM) = & £6x(0) = tr(1(6).]
xXEG

12: DEFINITION Given £ € C(G), the global pre-trace formla is the relation

% m(,L. ) tr (£()
eG G/T

1 -1
= 7 K-.(x,x}) = & TT L flxyx 7).
£ XEG r

xXeG yer



.

13: APPLICATION Take T' = {e} - then

Z, m(I{,Lg/I,)tr(f (m)

TG
becomes
2, dtr (£()
IleG
while
5 _Ile I £l D)
xXEG yel
becomes
IG|£ (e).
I.e.:

£ (e) =T%3T I, dtrEm),
e

the so—called "Plancherel theorem" for G.
4: APPLICATION Fix T, € G and take f = X
0

® HzHO

= tr(x; )) = £ X, &) Xyz&)
Ty xec T 1

= 0.

® H=H0
= tr (I (X; )) = £ Xy X)Xz &)
07y xee Mo T
= |c].
Therefore
L m(I,L

)tr (1 (%, ))
1ed G/T My



reduces to

|GIm (g Lg,p) -

On the other hand,

I Re(x,x) = z Xr,(xyxl)

xeG xEG TT yer

G
H I g
yerl' 0

]Gl<lFIXH0IF>F

= |Glm(6,T,y|T).
So
|G lm (T, L, o/ = |G|m(6,1,[T)
=>
m(lg g p) = m(6,1,|T) .
[Note: As above, 6 is the trivial representation of I'on E =
15: N.B. Take T = {e} —— then
m(e,nolr) =dy
0
hence

(FO' G/T Ly

= TT 2 Xn (Y)
xEG yer F

) =dIr (cf. II,

§5, #8).

C.]



§4. THE GLOBAL TRACE FORMULA

Let G be a finite group, T < G a subgroup.

l: NOTATION For any y € T,

(9!
i

centralizer of y in G

I' = centralizer of y in T.

Given an £ € C(G), we have

tr (LG/I’ (£)) = XéG Kf (XIX) '

where

Kf@m)=T%FéTf@wﬁH (CE. 53, #8).

Enumerate the elements of CON(I), say
CoN(T) = {Cy,...,C }.

For each i, fixayieci 1 <1i<n).

2: LEMB v £ € C(@),
n

1
T K.x,x) = ¢ O(f,v.).
xeG T i=1 [Fyi[ 1

PROOF Wr ite

I = %Yi, kI‘Yi.

Then v x € G,

1 -1
K. (%x,x) = r fxyx 7)
£ ITT yer



n
= W%T IT flxx )
i=1 yECi
n
_ 1 -1 -1
- ‘Iﬂ li]_ i f(XYl,leYl kx ).
Therefore
1 2 -1 -1
r K. .(x,x) = I X T £®Y. o Y.Y: X )
xeG * TT 551 kxeq LK EK
1 2 -
= L [T ] 2 f(xy.x 7).
|FI i=1 i x€EG 1
Wr ite
G =_U_x. r .
x KYy
Then
X Kf(x,x)
XEG
n
_ 1 . -1 -1
= W i-E-l [F.Fyi] i . éI‘ f(xi'kniyini xi,k)
iy,
i
1 o -1
r:T T
n [ Yi][ Yi] o
= 7T > EGey kY i%e,)
o -1
= X X
£Ge; V5% %)

i1 k



Write
G=JZL Yi, &,
_U_ z,
i o ,mY
=>
G-_—'JZL_LL yilﬂzi'mT'Y..
m i
Then
z Kf(x,x)
xXeG
n
-1 -1
= I I I f(y. Y.2 )
i=1 £ m 11’,1,m11m1£
o -1
= I [G :T_1ZE£(y: ,¥:V: p)
= Vi Yqog o nAEELL

-1
TR EW AR EW)

o(f,y) = IGYl b f(xyx-l

XeG/G
/ Y

),

the sum on the right being taken over a set of representatives for the left cosets

of G in G.
Y




: EXAMPIE Take I' =G — then v £ € C(G),

n

1
z T——-—l-O(f )
i=1 Gy. i
i

g -1
= 7 r fxy.x ")
i=]1 {Gﬂ{i‘ XEG 1

n

1 -1
= z e, | = F(Y:Y:Ys)
=1 16y, 1 7Yy v .€G/G 11
i i Y.
1
2 -1
= Zl z £ly,v;950)
21 v.ea
i1y /GYi
n
= I f(
i=1 yec,

r fx) (cE. 83, #9).
XEG
§:_ EXAMPLE Suppose that £ € CL(G) —- then

1

1 —
I Kox,x) = ¢ TT L o flxyx )
£ xeG r

xeG YET
= 3 2L £(y)
xea 1T1 yer

% L f£(y).
YET

In the other direction,

1 1
b 0(f,v:.) = £ L flxyx )
= Ty T =1 1Ty, xeq




!
)
N~
-
3
{}
-

Therefore

1 n £(y;)

r f(y) = ¢ .
T \er i=1 ’Fyi!

6: DEFINITION Given £ € C(G), the global trace formula is the relation

L m(l,L., ) tr € (@)

e G/T

n
1
= 3 0(,y. cf. 83, #12).
o TTi;fT ( Yl) ( )
i

7: EXAMPLE (POISSON SUMMATION) Take G abelian and identify G with the

character group of G: I <—> ¥, herce

E(x) = I f&x)yx&).
XEG

Consider row the sm

z,. my,L )%(x)-
XEG G/T

LetI’L={XE§:X(y) =1v y€ T} - then

x € It = mx,Lg, p) =

(cf. 83, #14).

X # T =>mx,Lg,) =0

Therefore matters on the "spectral side" reduce to

s f0.
XEFL



And on the "geometric side",

n

1 1
T 0(f,v:) = T O0(£,y)
=1 |1"Yi i [T] veT

Therefore

Each element ¢ in the center Z(I') of I' determines a one-element conjugacy

class {t¢}.

8: DEFINITION The central contribution to the global trace formula is the

subsum
DT 0D
ez (1) z
of
o
)} 0(£,v.).
= -[—|-FY. Yl)
1
Accordingly,

1 1
z -[—ro(f,c) =TT z 0(£f,z)
ZEZ (D) I12; r ZEZ(T)



_ z z f(x;x—l)

r CEZ(T) xeG

I |6l
L€z (T)
z

1

T TIT

- {% £(z).
LEZ(T)



§1., UNITARY REPRESENTATIONS
Let G be a compact group.
1l: NOTATION dG is normalized Haar measure on G:

fG ldG(x) = 1.

e -1%© -c©)

o vier@, |l£|l, = |IE]l;-

o vEec@, |||, < [If]],

3: N.B. The corvolution operator

x:12@) x L2 + c(e)

is given by

(F %) 60 = g £6y g (0)dg(y)

=7 c f(Y)g(y_lx)dG ).

4: DEFINITION A unitary representation of G on a Hilbert space H is a

homomorphism m:G » UN(H) from G to the unitary group UN(H) of H such that Vv a € H,
the map
x > 7(X)a

of G into H is continuous.



5: DEFINITION

® The left translation representation of G on L2 (G) is the prescription
_ -1
LX) E(y) = £f(x y).
e The right translation representation of G on L2 (G) is the prescription

Rx)E(y) = £(yx).

[Note: Both L and R are unitary.]

6: N.B. There is also a unitary representation L R of G x Gon LZ(G) ,
r

namely

(my, g0 X)) () = £ 00, -

7: DEFINITION A unitary representation m of G on a Hilbert space H = {0}

is irreducible if the only closed subspaces of H which are invariant under 7 are

{0} and H.

8: THEOREM Let m be a unitary representation of G - then m is the Hilbert

space direct sum of finite dimensional irreducible unitary representations.

9: APPLICATION Every irreducible unitary representation of G is finite

dimensional.

10: NOTATION G is the set of unitary equivalence classes of irreducible

unitary representations of G.

[Note: Generically, T € G with representation space V(II) and d‘ﬂ = dim V(1)

is its dimension.]



1l: N.B. Let 7 be a unitary representation of G —— then there exist

cardinal numbers nH(H € é) such that

= éA nrH.
ne¢
12: EXAMPLE Take 7 = L —— then
L= &, dT.
nec

[Note: There is also an analog of A, III, §2, #l6.]

13: THEOREM V X € G (x =z e), 3 an irreducible unitary representation T

such that T(x) = id (Gelfand-Raikov).

14: APPLICATION

N, Ker 1T = {e}.
NeG
15: LEMMA Given Il € G, suppose that A € Hom(V(I),V(I)) has the property

that v x € G,
Al(x) = I(x)A.

Then A is a scalar multiple of the identity (Schur), call it >‘A’



§2. EXPANSION THEORY
Let G be a compact group.

1l: DEFINITION Let 7 be a finite dimensional unitary representation of G —-
then its character is the function
Xﬂ:G -+ C
given by the prescription

X&) =tr(mx) (x € aG).

2: DEFINITION The character of an irreducible unitary representation is

called an irreducible character.

- then

3: LEMMA Let Il € G and suppose that I = I,

<XH11XR2> = 0.

4: TEMMA Let Il € G — then

<XH'XH> = l'

5: DEFINITION A continuous complex valued function ¢ on G is of positive

type if for all x

prese ¥y € G and }\l,...,kn e C,

— -1
Aro(x.Tx.) = 0.
ig=1 tJ

6: N.B. The sum of two functions of positive type is of positive type and

a positive scalar multiple of a function of positive type is of positive type.



7: LEMMA If 7:G > UN(H) is a unitary representation and if a € H, then

p(x) = <m(xX)a,a> (x € G)
is of positive type.
[Note:

| [q;] {m = <a,a>.]

8: EXAMPIE V II € 8, X is of positive type.

[Fix an ortlhonormal basis Vyreee sV in V() -- then

XH(X) = <H(x)vl,vl> +oeee + <H(x)vn,vn>,

from which the assertion.]

9: NOTATION Given T € G and f € L2(G), put

() = fG f(X)H(X)dG(x).

10: IEWR v £,£, € L2 (G),

ll

H(fl * £.) = I{(fl) o TI(£

) )

NOTATION Given f € L2 (G), define £* € L2 (@) by

n:
Fr(x) = £(x 1) (= £()).
12: MR v £ € LP(Q), v v,v, € V(I),

<H(f)vl,v2> = <vl,H(f*)v >,

i.e.,

n(f)*

N(£*).



PROOF
<H(f)vl,v2>
13: THEOREM let
14: THEOREM Let
the series converging in

15: THEOREM Let

Then

I

fG f (%) <H(x)vl,v2>dG(x)

[ <vy TR v, sd L (x)

G 1’ 277G
—r

fG <v,,f(x )H(X)v2>dG(X)

fG <vl, £* (x) I (%) v2>dG (x)

<Vl,fG f*(x)H(x)vsz(x)>

= <vl,]'{(f'*)v2>.

de

f

€ 12(G) -- then

2
[£() |“d(x) = I, dtr(TET(E)*).
¢ = I. 9

e 12(G) -- then

£= 3, d (£ *x),

IeG

12(Q).

£ e spanC(Lz(G) * 12(G)) < C(@).

fle) = % d. tr(l(f)).
HEGdH



PROOF Put f = fl * f2:

fle) = Iy £, (x'l)f2 () d ()

=i £ (x 1) £, (x) gy (x)

S £, £ (x_I)dG(x)

Jo LT,

<f2,fi>

Il

L, dtr(i(f, * £))
ed T 1% %5

Z, d-tr(l(f)).
HEGdH

[Note: This is the so-called "Plancherel theorem" for G (cf. A, III, §3, #13).

16: N.B. The foregoing may fail if f is only assumed to be continuous

(e.g., take G = Sl...).

17: DEFINITION A function f € L2(G) is said to be an L? class function if

£(x) = £(yxy D)

for almost all x and all y.



18: v I € (A-}, X is an L2 class function.
I L

19: THEOREM Suppose that f € L2 (G) is an L2 class function -- then

f= Z. <€, %:>Xer
neg LK

the series converging in L2 (G), and

2 2
HENZ = =, <€ |2
TeG

20: SCHOLIUM The {XH:T[ € G} constitute an orthonormal basis for the set

of L2 class functions.

21: NOTATION Write C(G) fin(L) for the set of G-finite functions in C(G)
per L:

f e C(G)fin(L) <=> dim{L(x)f:x € G}l&in<°°’

22: NOTATION Write C(G) fj_n(R) for the set of G-finite functions in C(G)
per R:

f € C(G) fin(R) <=> dim{R(x) f:x € G}Ein<m'

24: NOTATION Write C(G) fin unambiguously for the G-finite functions per

either action.

Recalling §1, #6, m operates on C(G) .. and it turns out that
L,R fin



~ *
C(G)fin I~ ]-rgé V(I*) & V(II).
L

Here the identification sends an element

v¥ & v € V(II*) & V(II)

to
f € C(G) ..,
v Qv fin
where
-1
£ (x) =v*((x T)v).
v¥ R v

[Note:
12G) = o V(¥ & V() .]
e

25: THEOREM C(G)fin is dense in C(G).

26: THEOREM C(G) fin is dense in L2 (G).

27: DEFINITION A function f € C(G) is said to be a continuous class

function if f(x) = f(yxy ) for all x,y € G (written £ € CL(G)).

28: EXAMPLE V II € é, X is a continuous class function: Xg € CL(G) .
L

29: THEOREM The span of the X (I € é) equals the set of continuous class
1

functions in C(G)fj.n'

30: THEOREM The span of the X (T € G) is dense in the set of continuous
1

class functions.



§3. STRUCTURE THEORY

Let G be a compact group.

1: NOTATION GO c G is the connected component of the identity of G.

2: LEMMA G0 is a closed normal subgroup of G.

LEMMA The quotient G/GO is compact and totally disconnected.

|

DEFINITION A topological group possessing a neighborhood of the identity

B

which does not contain a nontrivial subgroup is said to be a group with no small

subgroups.

: RAPPEL A Lie group has no small subgroups.

: THEOREM The following conditions on a compact group G are equivalent.

e G is a Lie group.
® G has no small subgroups.

® G has a faithful finite dimensional representation.

: REMARK Every compact group is the projective limit of compact Lie groups.

Let G be a compact Lie group.

group.

8: N.B. Every finite group (discrete topology) is a compact Lie group.

o«
9: EXAMPLE The product || SU(n) is a compact group but it is not a Lie
n=1



10: EXAMPLE The p-adic integers

Z, = Lim (2/8°2)

+.
nx1

are a compact group but they are not a Lie group.

11: DEFINITION A torus is a compact Lie group which is isomorphic to

Rn/Zn = (R/Z)n for some n > 0.

[Note: The nonnegative integer n is called the rank of the torus.]

12: THEOREM Every compact abelian Lie group is isomorphic to the product

of a torus and a finite abelian group.

13: DEFINITION A compact Lie group is topologically cyclic if it contains

an element whose powers are dense.

4: LEMMA Every torus T is topologically cyclic.

[Note: There are infinitely many topologically cyclic elements in T and their

totality has full measure in any Haar measure on T.]

15: THEOREM A compact Lie group is topologically cyclic iff it is iso-

morphic to the product of a torus and a finite cyclic group.

Iet G be a compact Lie group, g its Lie algebra.

16: IEMMA GO is an open normal subgroup of G.

Therefore the compact quotient G/G0 is discrete, hence is a finite group, the

group of components of G.




17: NOTATION 2(G) is the center of G, 2Z(G)° c 2Z(G) is the connected

component of the identity element of Z(G).

18: N.B. In general, Z(G) is not connected (consider SU(3)).

19: THEOREM Assume that G is connected — then Z(G)0 is a compact abelian

Lie subgroup of G and its Lie algebra is the center of g, i.e., the ideal

{Xeg:[X,¥Y] =0V YEgqg}.

20: DEFINITION

® A Lie algebra is simple if it is noncommutative and has no proper non-
trivial ideals.

e A Lie algebra is semisimple if it is noncommutative and has no proper
rontrivial commutative ideals.

® A Lie algebra is reductive if it is the direct sum of an abelian Lie

algebra and a semisimple Lie algebra.

21: N.B. A Lie group is simple, semisimple, or reductive if this is the

case of its Lie algebra.

22: LEMMA A semisimple Lie algebra has a trivial center (it being a

commutative ideal).

23: ILEMMA A semisimple Lie algebra can be decomposed as a finite direct

sum of simple ideals.

24: DEFINITION If G and H are Lie groups and if H is a subgroup of G, then

H is a Lie subgroup of G if the arrow H - G of inclusion is continuous.




[Note: If G is a Lie group and if H is a closed subgroup of G, then H is

a Lie group.]

25: N.B. A Lie subgroup of a compact Lie group needn't be compact nor

carry the relative topology.

26: THEOREM Let G be a compact Lie group and let H be a semisimple
connected Lie subgroup of G -- then as a subset of G, H is closed, and as a Lie

subgroup of G, H carries the relative topology.

27: NOTATION
e z(g) is the center of g.

° is the ideal in g spanned by [g,g].

gSS

28: LEMMA 8. is a semisimple Lie algebra.

9: THEOREM let G be a compact Lie group -~ then

g =%(g) @8,

thus g is reductive or still, G is reductive.

30: NOTATION G is the analytic subgroup of G corresponding to Bq

31: NOTATION G* is the commutator subgroup of G, i.e., the subgroup of G

generated by the

xwx vl (x,y€aq.

[Note: G* is necessarily normal.]



32: THEOREM Assume that G is connected -- then G* is a compact connected

Lie subgroup of G with Lie algebra Oyr O G* = Gggr hence is semisimple.

33: THEOREM Assume that G is connected —- then G is the commuting product

34: THEOREM Assume that G is connected -- then

G = (2@° x 6 )/,

11

where

0
A=2(G) " n Ggg

I

is embedded in z(G)° x G, via the arrow z - zt,2).

[Note: Spelled out, there is an exact sequence

1

0 0 H
{1} » z2(G®) " n Gss —_— Z2(G) T x Gs — G > {1},

S

where
— (-1 -
1(z) = (z 7,2), p(z,x) = zx.]
35: N.B. Structurally, Z(G)0 is a torus and
Z(GSS) = Z(G) N Gss

is a finite abelian group.

36: SCHOLIUM Assume that G is comnected -~ then G is semisimple iff Z(G)
is finite.

[Note: Here is another way to put it: G is semisimple iff G = Ggg Or still,



iff G = G*. To see that connectedness is essential, consider the 8 element

quaternion group {+1, *i, *j, *k} -- then its commutator group is {#1}.]

37: EXAMPLE The center of G/Z(G) is trivial, so G/Z(G) (which is connected)

is semisimple.

There are simple ideals hi < Bgg such that

0 .
Ss i=1 1

with [hi,hj] = 0 for 1 # j and such that the span of [hi,hi] = hi.

Put H, = exp h..
i i

38: LEMMA Hi is a compact connected normal Lie subgroup of GSS and its

Lie algebra is hi (hence H, is simple).

39: LEMMA A proper compact normal Lie subgroup of Hi is necessarily dis-

crete, finite, and central.

40: IEMMA There is a decomposition

Ggg = Hy +.. H,

where Hi and Hj commute (i = j).

41: N.B. The differential of the arrow

Hlx eee X Hr —>GSS

defined by the rule

(xl,...,xr) TRy eee X



is the identity map, thus its kernel A is discrete and normal, thus finite and

central as well, so

Gss ~ (Hlx XHr)/A.

APPENDIX
Iet G be a compact connected Lie group.

DEFINITION G is tall if for each positive integer n, there are but finitely

many elements of 6 of degree n.
THEOREM G is semisimple iff G is tall.

REMARK If G is not semisimple, then G possesses infinitely many nonisomorphic

irreducible representations of degree 1.



§4. MAXIMAL TORI

let G be a compact Lie group, g its Lie algebra.

: LEMMA Every connected abelian subgroup A c G is contained in a maximal

comnected abelian subgroup T c G.

2: N.B. T is compact.

[In fact, T is connected and abelian.]

3: DEFINITION A maximal torus T ¢ G is a maximal connected abelian sub-

group of G.

[Note: T is a torus... .]

4: THEOREM Assume that G is connected and let Tl c G, T2 c G be maximal

tori -- then 3 x € G such that x‘I‘lx—l = T,.

5: THEOREM Assume that G is connected and let T c G be a maximal torus —

then

G= u xTxT.

xeG
6: APPLICATION The exponential map exp:g - G is surjective.
[Every element of G belongs to a maximal torus and the exponential map of a

torus is surjective.]

7: LEMMA Assume that G is connected and let T c G be a maximal torus ——

then the centralizer of T in G is T itself.



8: APPLICATION The center of G is contained in T, i.e., Z(G) < T.

[Note: More is true, viz.

Z(G) = n,
T
the intersection being taken over all maximal tori in G.]

9: LEMMA Assume that G is connected and let T < G be a maximal torus —-
then T is a maximal abelian subgroup.
10: REMARK A maximal abelian subgroup need not be a maximal torus.
[In SO(3), there is a maximal abelian subgroup which is isomorphic to (Z/ZZ)Z,
hence is not a maximal torus.]

1l: NOTATION Given a torus T < G, let N(T) be its normalizer in G.

12: LEMMA The quotient N(T)/T is finite iff T is a maximal torus.

Let G be a compact connected Lie group, T ¢ G a maximal torus.

13: DEFINITION The Weyl group of T in G is the quotient

W = N(T)/T.

14: N.B. Different choices of T give rise to isomorphic Weyl groups.

Fix a maximal torus T ¢ G ——- then N(T) operates on T by conjugation:

N(T) xT > T

(n,t) - nrn L.



Since T operates trivially on itself, there is an induced operation of the Weyl
group:
WxT->T.
[Note: The action of W is on the left, thus the orbit space is denoted by

W\T.]
15: ILEMMA The canonical homomorphism W -~ Aut T is injective.

16: LEMMA Two elements of T are conjugate in G iff they lie on the same

orbit under the action of W.

17: RAPPEL Let G be a compact group and let X be a Hausdorff topological

space on which G operates to the left —- then the action arrow

GxX~>X
is a closed map. Equip the orbit space G\X with the quotient topology and let
m:X + G\X be the projection. Then:
® G\X is a Hausdorff space.
e X is compact iff G\X is compact.

e T7:X > G\X 1is open, closed, and proper.

18: EXAMPLE W\T is a compact Hausdorff space.

19: NOTATION CON(G) is the set of conjugacy classes of G.

Geometrically, CON(G) is the orbit space under the action of G on itself via
inner automorphisns:

GxG->G

-1
_ xyy) »oxyx .



It carries the quotient topology per the projection G - CON(G) under which it is a

compact Hausdorff space.

20: RAPPEL A one-to-one continuous map from a compact Hausdorff space X

onto a Hausdorff space Y is a homeomorphism.

21l: THEOREM The arrow
W\T » CON(G)
which sends the W-orbit Wt of t € T to the conjugacy classof t € T in G is a
(well defined) homeomorphism.
[The map is injective (cf. #16), continuous (see below), and surjective
(cf. #5), so #20 is applicable.]

[Note: To check the continuity of the arrow

W\T » CON(G),
bear in mind that W\T has the quotient topology, thus it suffices to check the
continuity of the composition
T > W\T > CON(G) .
But this map is just the restriction to T of the arrow

G > CON(G).]

22: NOTATION
e Given f e C(T) and w e W, w - £ is the function in C(T) defined by the
rule

w- ) =£fm n) (w=nT).
® Given £f € C(G) and x € G, X - £ is the function in C(G) defined by the
rule

x - £)(y) = £(x Tyx).



23: N.B. These rules define operations
W x C(T) » C(T)
G x C(G) » C(Q)
with associated invariants
~cw =cm”
(e =c@C.
[Note: CL(G) is the subspace of C(G) comprised of the continuous class

functions (cf. §2, #27) or still, the space C(CON(G)).]

4: ILEMMA The arrow

£ T

of restriction defines an isomorphism

cL@ + cm™.



§5. REGULARITY

Let G be a connected Lie group with Lie algebra g. Consider the polynomial
o i
det((t +1) —AARX)) = & Di(x)t (x € G),

i=0

where t is an indeterminate and n = dim G. The D, are real analytic functions
on G and D, = 1. Let £ be the smllest positive integer such that Dp # 0 —— then

£ is called the rank of G and an element X € G is said to be singular or regular

according to whether Dﬂ (x) = 0 or not.

1: NOTATION G°9 is the set of reqular elements in G.

2: IEMA G99 is an open, dense subset of G while its complement, the

set of singular elements, is a set of Haar measure zero (right or left).

3: N.B. G is imer automorphisn invariant and stable under multi-

plication by elements from the center of G.
From this point forward, assume that G is a compact connected Lie group.

4: LFMMA The set of singular elements in G is a finite union of subman-

ifolds of G, each of dimension < dim G - 3.

[Note: Therefore G is path connected.]

5: RAPPEL The fundamental group of a connected Lie group is abelian.

Fix a maximal torus T.



6: LEMMA The quotient G/T is simply connected.

7: LEMMA The induced map m (T) ~ m (G) is surjective.

PROOF Consider the exact sequence

M (T) > m (G) » my (G/T)
érising from the fibration T » G » G/T.

8: THEOREM my (G) is a finitely generated abelian group.

[Note: If G is semisimple, then ™ (G) is finite, thus its universal covering

group é is compact. ]

9: LEMMA An elament x € G is regular iff x lies in a unique maximal torus.

Put
™9 = 7 n g9,

10: THEOREM

G =y xT%L

XEG

1l: THEOREM The map

u:G/T x T°9 » g9

that sends

(XT,t) to xtx T

is a surjective, |W|-to-one local diffecmorphism.

[To verify the " |W|-to-one" claim, observe first that Vw € W (w = nT),



K (}m—lT,ntn— )

i
5
:
2

I

I
2
A
a

hence

lK‘l (xtx-l)[ > |W

In the opposite direction, suppose that

xtxL = ysy_l (t,s € T-9),

Then there is a w € W such that

S=ntn ¥ (w=nT) (cf. 54, #16)
from which

xtx L = yntn_ly_l,
o) x’lyn € G_, the centralizer of t in G. But

tE'I‘reg:>Gg=T

which implies that conjugation by x—lyn preserves T (Gg being the identity

component of Gt) , i.e.,

(x (x—lyn) n_lT , ntn_l)

(YT,s)

(xn 'n—lT, ntn'l)

1

= (xn'n T, n(n—ly_lx)t(x-lyn) n'-l)

(x(n'n'l)'l‘, (n'n-l)-lt(n'n“l))

i

€ KT xtx 1) .



0. .
[Note: Gt 1s a compact connected Lie group and T c Gg is a maximal torus.

If T » Gg, 3z € GS: 2Tz L 2 T (cf. 54, #5 (apolied to Gg)). But then

t = ztz'-l € sz-l,

contradicting the regularity of t (cf. #9).]

Let g be the Lie algebra of G, t the Lie algebra of T. Since G is compact,
there is a positive definite symmetric bilinear form on g which is invariant under
the adjoint representation:

Ad:G » Aut g.
Denote by g/t the orthogonal complement of + in g -- then g/t is stable under Ad T,

which gives rise to an induced action

AdG/T:T -+ Aut g/t.
Denoting by IG/T the identity map g/t » g/t, one may then attach to each t € T the
endomorphism
Mt -1
G/T G/T

of g/t.

12: LEMMA The determinant of

&t -1

AdG/ T G/T

is positive on the subset of T comprised of the topologically cyclic elements.

13: INTEGRATION FORMULA For any continuous function f € C(G),

Jo £,



= i Jp| det @Ay - 100 J feehage | 4.

[Note: dG (x) is normalized Haar measure on G and dT(t) is normalized Haar
measure on T.]
14: SCHOLIUM For any continuous class function £ € CL(G),

Jo T4, )

=1 e
—Wf det (A, /T ) - IG/T)f(t)dT(t)-

APPENDIX
Consider the polynomial
2 i
det(t - adX)) = I di(X)t X € g,
i=0

where t is an indeterminate and n = dim g. The di are polynomial functions on g
and dn = 1. Let £ be the smallest positive integer such that dﬂ # 0 ~- then £ is

called the rank of g and an elament X € g is said to be singular or regular according

to whether d[_(X) = 0 or rnot.

N.B. The rank of g equals the rank of G, both being equal to the dimension
of k.

NOTATION Breg is the set of regular elements in g.

LEMMA greg is an open, dense subset of g.



NOTATION & = Int g is the adjoint group of g.

[Note: Recall that the arrow

Ad:G » &

is surjective with kernel Z(G), =
G/7Z(G) = &.]

Put

79 = ¢ n greg.

THEOREM

gregz__ U x(treg).
x€6



§6. WEIGHTS AND ROOTS

Let G be a compact connected seamisimple Lie group, T ¢ G a maximal torus.
Denote their respective Lie algebras by g,t and let gc,t.c stand for their complex-
if icat ions.

Suppose that (m,V) is a representation of G —— then V can be equipped with

a G-invariant inner product, thus rendering matters unitary.

l: LEMMA dr is skew-adjoint on g (hence self-adjoint on /-1 g).

[Given X € g, apply Zx| o to

<7 (exp t)vl,  {exp tX)v2> = <Vy,V,>
to get

<dm (X)Vl,V2> + <vy ,dn (X)V2> = 0.]

2: N.B. VXEg,

mT{exp X) = edﬂ. x) .

3: LEMMA V is simultaneously diagonalizable under the action of k..

[This is because

{dr(H) :H € i'.c}
is a commuting family of normal operators.]

Consequently, there is a finite set (V) c té - {0}, the elaments of which

being the weights of VvV, such that

v=v" 8 v,
AED (V)



where
V= vevidr@v =0 ®et)
and
V' = v e viar@v = M@V} HE ).
4: LEMMA Fix a A € ®(V) —— then )|t is purely imaginary and A |[/~1 t is
parely real.

5: N.B. Givent € T, chooseHEtsuchthatt=epo—-—thalVV€V)\,

m{t)v = n({exp H)v = ed"(H)v = e}‘ (H)v.

6: RAPPEL Denote by Ix the inner automorphism y - xyxwl attached to

X € G —— then the adjoint representation of G is the homomorphisn Ad:G » Aut g

defined by the rule

Md(x) = (@L),

and the adjoint representation of g is the homomorphism ad:g + End g defined by

the rule

ad(X) = (@A) (X) .

N.B. V X,Y € 5,

l'o

adX)Yy = [X,Y].

@ TFor each x € G, extend the domain of Ad(x) from g to 8, by complex
linearity.
e TFor each X € g, extend the domain of ad(X) from g to g, by complex

linearity.



8: LEMMA (Ad,gc) is a representation of G with differential (ad,gc) .

Take now V = B let ™ = Ad, and abbreviate (gc)u to ga (o € @(gc)) -- then

gO = tc and there is a weight space decomposition
0
s,=83 © g
acd (g )

9: TERMINOLOGY The elements o € @(gc) are called the roots of the pair

o _ . _
g = {X€g X =alXHE )]

11: IEMA Vo€ o(g), ¥V A€ &v) u {0},

dm (ga)vk c v,
S
PROCF Let H € k, X €5 ,v, € -- then

dm (H)dw (Xoc)vk

@m (Xu)dTT (H) + [drH), dr (Xa)])v}\

il

@ (X )dn @) + an ([H,X,1)v,

(@m (XOL) dm (H) + a(H)dm (Xoc) )VA

(A@H) + a(H))dn (XOL) v
=>

+A
an (X )v, € VA,



[Note: Take A = 0 to see that

dﬁ(ga)vo c V>,
12: APPLICATION Vv o,B8 € ¢(g.) U {0},

1s%,551 < 8.

13: ILEMMA Let < , > be an Ad G invariant inner product on g, - then for
all a,B € 2(g.) U {0},

<ga,g6>=0ifoa+szo.

14: LEMA Y a € 9(g), dim g% = 1 and the only multiples of o in 2(g,)

15: NOTATION o:8, > 8 is the map that sends Z =X + /<L Y to Z =

X-/1Y (X,Y € ).

16: IEMMA o is an R-linear involution which preserves the bracket, i.e.,

0(121,2,]) = [02),02,] (2,2, € 5 ).

17: N.B. VaE<I>(gc),

18: RAPPEL The Killing form of 8, is the bilinear form B:gc X g, > C given

by

B(Zl,Zz) = tr(ad(Zl) ° ad(ZZ)).



19: PROPERTIES

® VXEG,VZl,Zzegc,

B(ad(x)2,, AMd(x)Z,) = B(2),2,).
‘ V Zle;ZZ E gcl

B(ad(Z)Zl,Zz) = - B(Zl’ ad(Z)Zz).

20: N.B. The mrescription
<Zl'Z2>o = - B(zl,czz)

is an Ad G invariant inner product on g.-

Every o € 9(8.) is determined by its restriction to either ¥ or V-1 &, =

a can be viewed as an element of (/=1 ©)* (purely real) or of t* (purely imaginary).

21: CONSTRUCTION B induces an isomorphism between v=1 t and (V=1 t)* as

follows: Given A € (/-1 t)*, define H, € V-1 t by the relation
AGE) =B@EH) #HE /L.

[Note: B is negative definite on k x &, hence B is a real imner product on

the real vector space V-1 t and for A hy € (/=1 t)*, one writes
B(x;,x,) =B@H, ,H, ).]
1772 AT,
22: DEFINITION The vector H, € /-1 t is called the root vector associated

with a.

3: LEMMA The roots span (/-1 t)* and the root vectors span /-1 t.

|



24: LEMYAA Let X € g°, X € g % -- then
[X,/X_] = B(X ,X_)H_.
PROCF First of all,
o 0

[5%8°1 8% =g =, (cf. #12),

thus

XX 1€t

Proceeding, V H € tc,

B([X,,X_,1,H)

- B ( [X—OL'XOL] rH)

- B(ad (X—oc) XOL,H)

B(X_,,ad(X_)H)

=B (Xal [X_arH] )

- B(X,, [£,X_])

1l

- B(X,, —a(H)X_)

o (H) B(Xoc’x—oc)

B(HH)B(X_,X_)

1

B, H)B(X X_ )

B(B(X,,X_)H /H)

[Xoc’x-a] = B(X ,X_) H .



25: NOTATION Put

h =2 o=t
a B(HOL'HOL)

Then a(h ) = 2.
o

26: N.B. V XA € (V-1 t)*,

H
)\(ha) = A (2 BE E) ))
o o

H
o

= A2 B(a,q)

A(H)
_ a
=2 B(a,0)
B(HOL'HX)

=2 B(a,o)

B (H>\ 'HOL)

=2 B(a,a)

B(A,q)

= 2 8@

and analogously, V H € /-1 &,

B (H’hoc)

Y =2 EmRy

27: NORVMALIZATION Scale the data and choose e € g7, £, € g % such that

[eOL’fOL] = hOl,’



hence
{ha,ea] = 2ea

Consequently,

spanc{h_,e_,£ } % s1(2,0),
where

Tl 0o 0 1 0 0
ha<—>h= r &, <> e= ,fm<——->f=
_ 0 -1 0 0 _ 1 0 _
28: N.B. Under this correspordence,
su(2) = spanR{/Zi‘ h,re, - £, V=1 (e, +£)}
=s,
o
where
T /T 0o
V-1 h, <—>/=1 h =
_ 0 =/1

and

0 1 O B

ea—fu<-—->e-f= ,/—T(ea+fa) <—> /=1(e + £f) =
=1 o0 _ /-1 0

29: LEMMA The analytic subgroup SOL of G with Lie algebra S, is compact
and isomorphic to SU(2) or SU(2)/22.



30: LEMMA Let (m,V) be a unitary representation of G -- then V X\ € &(V),
A(ha) e L.

21n/—_l_h___

PROOF In SU(2), e I. This said, let ¢a:SU(2) -+ G be the arrow

realizing the preceding setup and consider m ° q;a:
I = TT(¢OL(321T/I h))

2nd (/=T h)
)

(e

2m/-1 h 2n/~-1 dn(h )
o o

= 7 (e ) =e .

On the other hand, VVEV)‘,

2m/-1 dm(h )
v =e &y

2m/-1A (h )
=e %y  (cf. #5).

Therefore )\(hoc) € Z.



§7. LATTICES
Let V be a finite dimensional vector space over R.

: DEFINITION A lattice in V is an additive subgroup L < V such that

e L is closed;
® L is discrete;

e L spans V.

2: EXaMPIE " is a lattice in R™.

|w

DEFINITION A basis for a lattice L ¢ V is a set {el,...,en} cL
(n = dim V) such that
n

L = {_Z kiei:ki e 7}.
i=1

l >

IEMMA Every lattice has a basis.

5: DEFINITION If L,K are lattices in V, then L is a sublattice of K if L

is a subset of K.

6: LEMMA If L is a sublattice of K, then K/L is a finite group G. Moreover,
there is a one-to-one correspondence between the subgroups H < G and the lattices
L cMcK, viz.
n(M) =Hand M= 7 C(H),

where 7:K -+ K/L is the projection.

7: NOTATION Given a lattice L < V, let

L* = {v¥ ¢ V*:v*(x) € Z Vv x € L}.



8: IEMMA L* is a lattice in V*, the dual of L.

Iet {el,...,en} be a basis for a lattice L. ¢ V. Define {fl,...,fn} by

9: ILeMMA {f

9: Lreeer
10: APPLICATION
L**
[In fact, the condition
fj (e;)

is symmetric in f and e.]

11:

IFMMA Suppose that L is a

L* /K*

PROOF The first point is obvious.

p:L* —»é/\L by stipulating that

p(£*) (x + L)

=4

i3

fn} is a basis for L*.

Il
(o2}

i3

sublattice of K — then K* c L* and
2N
~ K/L.

As for the second, define a homomorphism

exp(2n/~1 £*(x)).

an injection L*/K* —>@, thus

Then the kernel of p is K*, so p induces
-\
|L#/k*| < [R/D] = |K/L|.
But then by duality,
IL*/K*I > |K**/L**‘| = [K/L|

Iet G be a compact connected semisimple Lie group, T < G a maximal torus.



12: CONVENTION Identify (/-1 t)** with /-1 t and let L be a lattice in

(/=1 t)* —— then its dual is the lattice L* c /-1 t specified via the prescription

{He /<1 £+:A(H) € Z ¥ ) € L}.

13: DEFINITION The root lattice is the lattice L_, in (/-1 t)* generated

rt

by the o € @(gc).

4: DEFINITION The weight lattice is the lattice L in (V-1 t)* given by

{x» e (/-1 B)*(h) €ZVac cb(gc)}.

15: I1LEMMA Lrl: is a sublattice of Lwt'

Given a character y:T - Sl, there is a commutative diagram

dx
P —— > /IR

exp exp

3
v
(%]

X

and the arrow Y - dyx implements an identification of T with the lattice

&
1l

(A € (/=T ¥)*:\|exp L(e) < 2m/~T Z}.

Here

which we shall view as an element of



by writing
A\(/~IH) =/~1Lda\xH (HEe?1.
[Note: v-1 R is the Lie algebra of Sl, the exponential map exp:v/-1 R -+ st

being the usual exponential function v-1 6 - e‘/:I % 1

l6: LEMA L isa sublattice of 4T and AT is a sublattice of I .-

17: THEOREM

e 72(G) = dT/Lrt

® Wl(G) ~ Lwt/dT'



§8. WEYL CHAMBERS AND WEYL GROUPS

Iet G be a compact connected semisimple Lie group, T < G a maximal torus,

<I>(gc) the roots of the pair (gc,tc).

l: DEFINITION A subset ¥ of @(gc) is a simple system of roots if it is

a vector space basis for (/-1 t)* and has the property that every root can be
written as a linear combination

X n.o,
acy

where the n are integers all of the same sign.

2: DEFINITION The elements in a simple system of roots are said to be

simple.

w

N.B. Simple systems exist (cf. infra).

=

CONSTRUCTION Let ¥ be a simple system of roots.

® The positive roots per ¥ is the set

¢ ={8eog):b=3 no (m, €7}
oy -

® The negative roots per ¥ is the set

¥y~ = {B € ®(g ) :8 = aé‘y no (o, €Z_ )k

Accordingly,

o(g) = ¢ || o



5: DEFINITION

® The connected components of

(VI ©)* - U ot
oce<I>(gc)

are called the Weyl chambers of (/-1 t)*.

e The connected components of

/Lt - U nt
o
ocE@(gc)

are called the Weyl chambers of /-1 t.

6: DEFINITION
@ If C c (/I t)* is a Weyl chamber, then g € (g.) is said to be
C-positive if B(C,a) > 0 and C-negative if B(C,a) < O.
@ If Cc /~I t is a Weyl chamber, then a € 2(g.) is said to be C-positive
if B(C’ha) > 0 and C-negative if B(C,ha) < 0.
7: DEFINITION

e IfC c (/-1 ¥)* is a Weyl chamber and if o is C-positive, then o is

decomposable w.r.t. C if there exist B,y € <I>(gc) such that o = B + vy (otherwise,

o is indecomposable w.r.t. C).

@ If C c /-1 t is a Weyl chamber and if o is C-positive, then o is decom-

posable w.r.t. C if there exist B,y ¢ <I>(gc) such that o = 8 + vy (otherwise, o is

indecomposable w.r.t. C).

:  NOTATION

® Given a Weyl chamber C c (/-1 t)*, let ¥(C) be the subset of <I>(gc)



comprised of those a which are C-positive and indecomposable.

® Given a Weyl chamber C c v~=1 &, let ¥(C) be the subset of <I>(gc) com-

prised of tlhose o which are C-positive and indecomposable.

9: LEMMA In either case, Y(C) is a simple system of roots.

10: NOTATION

® Given a simple system of roots ¥, let
C¥) = {x € (/-1 ©)*:B(A,a) > 0V a € ¥}.
® Given a simple system of roots ¥, let

c) ={He /~1 t:B(H,ha) >0V a€ V)
11: ILEMMA In either case, C(¥) is a Weyl chamber.

2: THEOREM

e There is a one-to-one correspondence between the simple systems of roots

and the Weyl chambers of (V-1 t)*:

Ty o> C(Y)

_c > ¥(0).

e There is a one-to-one correspondence between the simple systems of roots
and the Weyl chambers of v-1 t:

T Y > C(Y)

_C > Y¥(©).



The Weyl group W = N(T)/T operates via Ad on V=1 t and (/-1 t)*.

13: LEMMA The action of Won v-1 t and (/-1 t)* is faithful, i.e., w €W
acts trivially iff w is the identity element.
PROOF Suppose that Ad(n) (n € N) is the identity on t and consider the

commutative diagram

Ad (n)
t > &
exp [exp
T > T .
I
n
Then
exp k=T
and V X € t,

I (exp X) = n(exp xnt = exp(Ad(n)X) = exp X.

Therefore n centralizes T, hence n € T (cf. 84, #7), i.e., n represents the identity

element of W.

14: IEMMA W preserves <I>(gc) and WhOf, = hwoc (wewW.

15: NOTATION
® Given a € <I>(gc) , define
ra:(/-T B)* > (/=1 k) *
by

B()\lOC)

rOL(}\) = A -2m

o=\ - A(ha)a.



® Given o € @(gc), def ine

rh:/qt—*f—Tt

o
by

B(H,ha)
rh (H) =h -2 Wha =H -~ U.(H)ha.
a oo
[Note: Geometrically, r  is the reflection of (/-1 t)* across the hyperplane

perpendicular to o and Iy is the reflection of /-1 t across the hyperplane per-
o
pendicular to ha.]

16: NOTATION Depending on the context, W(@(gc)) is the group generated by

{ra:oc € @(gc)} or {rha:oc € o(g.) }.

=

N.B. W(@(gc)) operates on t* and ¢ (extension by complex linearity).

18: LEMMA VY o € 2(g)), 3 n € N(T) such that the action of n on (/-1 t)*

is given by r_ and the action of n on /-1 t is given by Iy -
a

19: THEOREM
e Per (V-1 b)*, W= w(e(g)).
e Per /-1 &, W= wW(e(g,)).
[Note: It follows from #18 that in either case,
W(@(gc)) c W,

so the crux is the reversal of this.]



20: LEMMA W operates simply transitively on the set of Weyl chambers

in (/-1 ¥)* or /-1 t.
[Note: In other words, there is exactly one element of the Weyl group mapping

a given Weyl chamber onto another one.]

21: N.B. It is a corollary that |W| is the cardinality of the set of

Weyl chambers.

2: EXAMPLE Given a Weyl chamber C (be it in (/-1 t)* or /-1 t), there

P

exists a unique element w € W which maps C to its negative -C, hence w?\P (C) = =v(O.

[\S)

[Note: 1In general, -e ¢ W.]

23: THEOREM Let

Cc (/I t)*or Cc /1
be a Weyl chamber —— then its closure C is a fundamental domain for the action of
W, i.e., C meets each W orbit exactly once.
Fix a Weyl chamber C < (/-1 t)* and thereby determine the simple system ¥(C),

hence cI>+.

24: NOTATION W(C) is the subgroup of W(@(gc)) generated by the

rOL(OL € ¥(Q)).

25: LEMMA

WO = W(e(g).

26: NOTATION Given w € W(d)(gc)) , let £(w) be the smallest k such that



w can be factored as a product r, ...rak, where the oy €E Y(C) (set Lw) = 0 if
1

w=e).

[Note: £(w) is referred to as the length of w.]
27: IEMMA £(w) is the number of o € <I>+ such that wo € @ .

APPLICATION If wd' = &', then w = e.

28:
29: N.B. The assignment
w > det(w) = (—l)“w) € {+ 1}

is a character of W.

30: IEMMA If X €L ,theanEW,)\—w)\ELr

£

PROOF This is obvious if w = r, for some o € ¥(C). In general, w Ty, -°f

(k = £(w)) ard one can write

A=W = (- r )+ (G () -1 5 ) e

Let QpreeerOp be an enumeration of the elements of V¥ (C).
[Note: Recall that £ is the rank of G or still, the dimension of T or still,

the dimension of v~1 t or still, the dimension of (/-1 &)*.]

31: DEFINITION The fundamental weights are the w; €L wop Per the prescription

B (wi,aj)

2B(Tj,&?.=61] (lSi,jSze).

32: LEMMA The set {wl,...,wz} is a basis for Lot



3: DEFINITION A weight A € L it

for all o € ¥Y(C).

is said to be dominant if B(\,a) = 0

34: N.B. To say that A € L is dominant amounts to saying that ) € C

(the closure of C).

35: LEMMA A weight A € L Lt is dominant iff it is a linear combination

with nonnegative integral coefficients of the W, -

36: NOTATION Put

37: N.B. Ultimately, p depends on the choice of C.
38: IEMMA V W € W,
wo=p- I O

ocE<I>+,w—loc € o
39: APPLICATION V a€ ¥Y(C),

ra(p) =p - a.

[Note: VvV a € ¥(C),
r (8" - {a}) = &' - {a}.]

é

i

P =W + o + W



PROOF Given o4 € Y(),

Now write

Then

Therefore

4]1:

B(p,ai)

T ey

B(p,oci)

= 2 ——— Q.
B(ai,ai) i

B(p,a;)
2-B—(W—l => D ELWt (SeebelOW)-

P =mnjw + cec + Ny,

B(p,0.) BQ n;w;,05)
1=23(a3)=2 Y AT
3773 373
B(w,,o.)
=Iln;2 _B(al aJ)
i 373
= ?_nléij = ni =1 = nl.

N.B. It follows that p is a dominant weight.



10.

APPENDIX

LEMMA Suppose that A € (/-1 t)* has the property that

B()\,oci)

2 ——
B(aiIOLi)

€Z (i=1,...,2).

Then)\ELwt.

PROOF It is a question of slowing that Vv o € CI>+,

- o B(},0)
Ab) =2 gy € -
> +
To this end, let @ = I njo, € ¢ and proceed by induction on |of = I n.,
i=1 i=1

the level of a. The case |a| = 1 is the hypothesis, so assume that the assertion

is true for all levels < |a

. Choose oy such that B(OL,OLi) > 0, hence

B (a,ai)

Oy

B=ra_(on) =OL_2B(OL.,OL.) i
iti

i
is positive and has level < |a|, thus

B(r, (\),B)

B(),0) _ i
25w =2 TEGH

_,B0o,p _,Bey) o B8

B(8,8) B(OLi,d,i) B(R,R)

is an integer.



§9. DESCENT
Let G be a compact connected semisimple Lie group, T c G a maximal torus,
¢(g.) the roots of the pair (g_,t)), C < (V-1 t)* a Weyl chamber, ¥( = ¥(C)) the
simple systam of roots thereby determined, and ot (¢) the positive (negative)
roots per VY.
1l: RAPPEL Given a character y:T - Sl, there is a commutative diagram

dx
_ 5 /IR

=t

exp exp

v
T — 5§t
X

and the arrow y -+ dx implements an identification of T with the lattice

dT = {} € (/T t)*:A|exp L(e) < 2m/~T Z}.

2: N.B. dT is a sublattice of L and

T (G) = Lwt/dT (cf. §7, #17).

[Note: Therefore 1, e = ar iff G is simply connected.]

3: NOTATION Each ) € dT determines a character £, € T such that

e)\ (|)

E)\(exp H) = (H € t).

4: DEFINITION A function f:t » C descends to T if it factors through the

exponential map, i.e., if f(H+ 2) =f(H) VHE tand V 2 € & such that exp 2 = e.



If f:t > C descends to T, then there is a function F:T - C such that

F(exp H) = £ (H) H € t).
5: EXAMPLE Given ) € d’f, the function H -+ e>‘ (H) descends to T (F = g)\) .

6: EXAMPLE Put
_1
P=3 L 0 (cf. §8, #36).
Then Vw €W,
wop - p €L, cdT (cf. 88, #38),

thus the function

o > o (0-) ()

descends to T (F = Ewp_p) .

~

: N.B. It is not claimed nor is it true in general that the function

H~> ep (H) descends to T.

: DEFINITION A:tx - C is the function

H> TT, (/2 /2y g ey,
acd

[Note: 0/2 need not belong to L wt']

: LEMMA

a=e” TT, @ -e™9.
acd

Therefore A descends to T iff e” descends to T.



10: IEMMA [A{z descends to T.

PROOF V H € I,

A |2 = a@E@E

= ep(H) Tl"+ (l - e“@(H))ep(H) "‘T+ (l - e-u'(H))
aed aED

= ep(H) "]_1'+ (l - e—OL(H))e_D(H) “T+ (l - e—a(H))
acd aEd
= _r[{)+ (l — e“Oﬁ(H)) (l - e—a(H))
o€
= T[‘ [I _ e"OL(H) |2’
acd
which descends to T.
11: ILEMA Y t €T,
det(AdG/T(t'l) - Iy = A 12,

PROOF The complexification of g/t is the direct sum of the ga on which t € T

acts by Sa (t) in the adjoint representation, so

-1
det(AdG /T(t ) - IG /T)

=T (g ueh -1
acd (gc)



=17 a - E_a(t))
uE@(gc)

2
7. 11 -8 )|
ace” | —a |

[Note: The nunber of roots is even.]

12: INTEGRATION FORMULA For any continuous function f € C(G),

Jo £, 0x) = TéLW fp ACE) 12 Ia f(xtx.l)dG(x)dT(t) (cf. §5, #13).

13: SCHOLIUM For any continuous class function f € CL(G),

[ £@) A, (x) =T"1WfT @) [PE@dy(e)  (of. §5, #14).

14: REMARK ILet t € T —— then t € T' <9 iff
!A(t)|2 20
or still, iff

2
1-£& (t) z 0.
AN

15: N.B. Let H € & — then

o(s.) |
;2=2l ST, sin? @@

H
Afe™)
[ ( u€®+ 2v~-1

[Note: Bear in mind that a(H) € /-1 R.]

16: NOTATION Iet

E={HEt:vac o), ol ¢ 2n/-1 Z}.



17: IEMMA F is open and dense in k. Moreover,

expE=Treg.

8: RAPPEL The inclusion T -+ G induces a bijection between the orbits
of W in T and the conjugacy classes of G (cf. §4, #16). Consequently, class

functions on G are the "same thing" as W-invariant functions on T.

19: NOTATION Given )\ € AT, define q)\:E + C by setting

wéw det (w) eW(>x+p) (H)
NG (H € 7).

94y m =

20: LEMMA Vw E W,

w(d) = (1)t y,

Recalling that det @) = (-1)¢®) (c£. s8, #29), it therefore follows that
q}\ is a W-invariant function on =.

Next, V H € &,

(w (A+p) =p) (H)
wéW det (w) e

T, @ -,
acd

4, #H) =

Since
cWAtp)=p) (H) _ wA(H) (wo—p) (H) )

the numerator of this fraction descends to T (cf. #5 and #6). The same also goes

for the denominator which is nonzero on 5. Accordingly, q)\ descends to a W-invar-

iant function on Treg' hence extends to a class function on GF<9 (cf. §5, #10),

denoted still by q)\.



§10. CHARACTER THEORY

Let G be a compact connected semisimple Lie group, T < G a maximal torus,

and maintain the assumptions/notation of §9.

THEOREM Suppose given a I € G —- then there is a )\r € dT subject to
L

)\r,+pECsuchthatvx6Greg,
L

o) =4 6.

The proof proceeds by a series of lammas.
2: NOTATION Given y € C, define AY:t + C by

AMH = T detwe Y ®
Y WeW

Rephrased, the claim becomes the assertion that

X[ (exp H)A(H) = A)‘H+p (H) (H € 5)

forsome)\redeubjectto)\r+pec.
L L

3: NOTATION dT(C) is the subset of d'/I\‘ consisting of those A such that

A+ p€cC, say dT(C) = g )

[Note: It turns out that d’f‘(C) = d’/I\‘ N C (cf. #9).]

: LEMMA There exist integers m_such that vV H € &,

(S BAE) = I mp, ).



[Note: The point of departure is the fact that XHIT decomposes as a finite

sum

I, n¢g n, €72_.).]
)\EdTAA A =0

Proceeding,

=
i

2
fG [)(H(x)l dG(x)

T%TIT IA(t)IZIXH(t)Isz(t) (cf. §9, #13).

5: N.B. The function
2
p |
O W
descends to T (kecause |A]2 descends to T (cf. §9, #10)).

Therefore
1=/ |Zm 1%a,.(6)
T Jo 12 M ol dpE)

6: LEMMA The function

A A
)\k+p Ak.+p

— -P -P
= (e A)\ p) (e "A

Kk.+p)

k+

descends to T (cf. §9, #6).

Therefore

1 —
A A d
|W| fT ¢ +p Y 10 ’I'(t)



1 -p e
=T I (@ A ) @ TRy 4 ®)

1

ST e o By aor-0 St o+t 8-

¢ gw’(>\k+p)—o A (g1 t0) -p) % ®

=1 <= witp)—p = w' (A ,+p) -0

<=> w(kk+p) =w' (}\k,+p)

<=>w=w'and k = k'
but is zero otherwise.

Therefore

1 if k = k'
_l_[fT Ao >\ A o dpl®) =
0 if k = k'.
Matters then reduce to the equation
1 =12 nl
k

However, the m € Z, hence all but one are zero. Consequently, there is a
)\Hed',I\'su.bjecttoAH+peCsuchthatVHEE,

X (€xp H) A() = ) .

>\+p

: ILEMMA The A (y € C) are linearly independent over Z.



[Given v,Y' € C,

Lif y =vy'

<A _,A_ > =
Y'Y

0if vy = v',

the inner product < , > being by definition the multiplicity of the "zero weight"

in
T%T[ T detme™][ & detw')e ™ V']
wewW w'ew
_ 1 vy WY-wiy!
= X det (ww')e .
WW,W'EW
But

wy -~ wy'=0=>vy=w"wy'

=>w=w = v ="',

so the number of solutions is ]W| if vy = y' and is zero otherwise.]

[ee}
X}

APPLICATION The linear function >‘I' + p € C is unique.
L

|

. IEVMMA Let ) € dT — then

A+ pEC <=> )\ € C.
PROOF V a; € ¥(C),

B(p,oci)

2 1 (cf. 88, #40)

B(ai,oci)

B()\.,(xi) ~



The stated equivalence then follows upon writing

B(>\+pl(xi) B(plai) B()\,Oti)
=2 + 2
B(Oti,OCi) B(O‘i’ai) B(ai'ai)
B(A,oci)
=1+ 2 -——————B( y
10: APPLICATION
KH+pEC=> XHEC.

Return now to the expression
Xi (exp H)A(H) = £ A)‘H-w (H)

valid for H € %, the objective then being to establish that it is the plus sign

which obtains.

11: IEMMA V HE t,

AE) = 3 det(w) e

wWeW
[Note: There is no vicious circle here in that the formula can be derived
by direct (albeit somewhat tedious) manipulation, the derivation being independent

of the preceding considerations (but consistent with the final outcome).]

Fraom this it follows that v H € &,

w(A
I det(w)e
wewW

rte) (H)

X (exp H) =
5 det (w)e"P )
weW



12: NOTATION Define Hp € /-1 t by the relation

p(H) = B(H,Hp) (H € /-1 1) (cf. §6, #21).

13: ILEMMA /-1 t Hp € = for small positive t.

LEMMA

=

iirg X (8xp V-1 t Hp) = dp-

[For XHIT is continuous and d, = x(e).]

15: APPLICATION

idH=limq>\

(V-1 t H).
£t40 n e

16: SUBLEMMA V w E W,

w()\n + 0) (/-1 t Hp)

_ -1
= /-1t (An+p)(w Hp)

-1
/-1 t B(Hkr_’_p,w Hp)
L

T € B0, 8 )

V-1t p(WHAH+p)

w o) (T t H"rw) .



17: 1A
Tl'+ B(Ayte,0)
limY, (/TtH) = acd X
0 T 1T, Blp,0)
aed
PROOF Write
w(xr+p) (V-1 t H))
L det(w)e ' P
weW
-1
w o) (V-1 ¢t er+p)
= I detwe t
weEW
-1
N w o) (V-1 t HKH+O)
= X det(w e
wWEW
(wp) (V-1 t H>‘]’+p)
= I det(w)e :
wEW
= A(/-1 t H, er)
I
a(v/-1 t H, +p)/2 ~a (/-1 t H, +p)/2
I I
= T[-+ (e -2 )
oed

= T, /-1 t a(d, ) + o(1)
acdt Ao
Ed
Lty T, BOgpe,a) +0(1).
oed

Analogously,

wp (V=1 t H))
T det(w)e e
wew



+
= (Tol® ITT+ B(p,0) + o(1).
agd

Taking the limit as t ¥ 0 then finishes the proof.

18: N.B. Both p and A+ o belong to C, thus v a € &7,

B(p,a) > 0 and B(J\H + p,a) > 0,

O
1imq>\ (V=I tH) > 0.
£40 T P
19: APPLICATION
d],=1iqu(/thH).
Yoo M P

I.e.: The plus sign prevails.

20: SCHOLIUM

1T, B, + p,0)
_ oce<1>+ I

1T, B(p,a)
oed

21: LEMMA The arrow from G to dT N C that sends Il to A is well-defined

(cf. #8) and injective.

PROOF Given Hl,Hz € G, suppose that }‘H = XH‘ ~— then )‘H + p = AH + p, hence
1 2 1 2
1 2
which implies that Xg. = Xp_ on Gt or still, by continuity, Xg = Xp_ onG, so

1 2 1 2



~ ~ -
22: LEMMA The arrow from G to dT N C that sends Il to )‘1" is surjective.
D L

PROOF Fix a A € dT n C — then

2 1 2 2
fo 14, &[G, ) = Tﬁﬂ'fTreglA(t)I 4, (£) |“d (k)

_ 1 =
T W[ fT A?\+p A)\+p dT(t)

1.

is an L2 class function (cf. §2, #17). Now fix a IL. € G:

Therefore 4 0

A

<qx,XH0>

= /s 4, (%) Xno [6%9) dg ()

-1 2
= TWT-ITIegIA(t)I 4 ) () dp(®)

1 2 —
S |ace) |79, ()T, (E)dg(t)
W | TreI A AHO

1 if A = A
I

0 if A = \
Ty

Y, = %, <
TeG

XXy (CE. 82, #19)

for a unique [T € G with >‘I' = A.
1



10.

23: SCHOLIUM

~

G<—>drnc

_ I <—> AH.

[Note: W operates on dT and dT N C is a fundamental domain for this action

(cf. £8, #23), hence é is parametrized by the orbits of W in d"I\‘.]

= - w?}\ (cf. 88, #22).

)‘H* B I

25: REMARK It is clear that if X

25: g = lgr then Ay = 0.

26: LEMMA In the restriction of X to T, F;)\ occurs with multiplicity 1.
I

APPENDIX

There are two directions in which the theory can be extended.
® Drop the assumption that G is semisimple and work with an arbitrary
compact conmnected Lie group.
e Drop the assumption that G is connected and work with an arbitrary
compact Lie group.
As regards the first point, no essential difficulties are encountered. As
regards the second point, however, there are definitely same subtleties (see Chapter

1 of D. Vogan's book "Unitary Representations of Reductive Lie Groups").

NOTATION Let G be a campact semisimple Lie group, T < G a maximal torus,



11.

C ¢ /-1 t a Weyl chamber and let

NG(C) = {x € G:Ad(x)C < C}.

0

- 0 _
Ng(© nG" =T, N,(OG" = G.

Therefore

G/G0 = NG (c)/T.

N.B. Each element of G is conjugate to an element of NG(C) .



§11. THE INVARTIANT INTEGRAL
Let G be a compact connected semisimple Lie group, T c G a maximal torus etc.

1: NOTATION Set

m= T, o= 1] o

aE€d a>0

ILEMMA 7 is a homogeneous polynomial of degree r( = ICI>+}) and V w € W,

IS

wr = det (w) .

3: LEMMA If p is a homogeneous polynomial such that v w € W,

wp = det (W) p,

then p can be written as 7P, where P is a homogeneous W-invariant polynomial.
4: N.B. P=0if degp<r and P = C (a constant) if deg p = r.

5: DEFINITION Given £ € C (g) and H € &, put
o) = 1) S, £AAEBALX),

the invariant integral of f at H.

6: FUNCTIONAL EQUATION V w € W (w = nT),

q)f(wH) = T (WH) fG f(Ad(x)WH)dG(x)

det (w) 7 (H) fG £ (Ad (x) Ad (n) H) dG (=)

Il

det(w)m(H) [, £(ad(m)H)d,(x)

det (w)m(H) S c f(Ad (x)H) dg (%)



= det (w) q>f(H) .
7: LEMMA

fecC (g => ¢ €C(¥).
8: LEMMA

£ e C(g) => ¢p € C(¥).
9: LEMMA

feclg = ¢ €CD).

[If D € P(g) is a polynomial differential operator, then there exist a finite

nunber of elements D]_,...,Dp € P(g) and analytic functions a ,...,ap on G such that

YV x €G@G,

p
Ad(x)D = .Z ai(x)Di.
i=1

[Note: An automorphism of g extends to an automorphism of P(g).]

10: NOTATION Set

n= 7,8 = T H.
oced>+ % a0 @

11: N.B. 9(7) (m) is a constant (explicated infra).

[The point is that 7 is a homogeneous polynomial of degree r and 3(7) is a

polynomial differential operator of degree r.]

2: RAPPEIL, For the record,

d

aHoc(f) H - dt

£+ € ) | o



In particular, if f is linear, then

oH (£) |y = £(H),

a constant.]
Put
FH) = [, £AADA, () #HE ).
Then
(3(m) o MF|, o =FH;M °m | o
= 3(m) (MF(0)
= 3(m) (M) £(0).
13: THEOREM
3(m (m) =

W] 7T B(p,a).
a>0

PROOF The sum

5 det (w) (wp)®
wen

is a homogeneous polynomial of degree k which transforms according to the deter-

minant per the action of W, hence vanishes if 0 < k < r but if k = r,

> det(w) wp)T = C(p)m
weEW

il

for some constant C(p) (cf. #4). To calculate C(p), note that pr is a homogeneous
polynomial of degree r, thus 3(7) (p)* is a constant, so
3 () (det (w) (wp) ™)

= w(3 (7 (0)F)



2(m (o) F

TT 3 (0)°

o>0

r! T B(p,0).

a>0

Therefore, on the one hand,

30 (G I detw) (p)")
T oweWw

1

7 I 3(7) (detw) o))

weW

= fl-,— [W[r! TT B(p,a)
) a>0

= IWI TT B(p,a),

a>0

while on the other

3(M (=, I detw) wp)®)
" wenw

= C(p)B(%) (m).
Consequently,

W| TT Blp,a) = C(p)d(T) (m)
a>0

7 % det(w) (wp) r
weW

W| TT B(p,a)
a>0

9 () (m)

Te



IetH= /-1t Hp (cf. §10, #13) and write 1lim in place of lim:

H->0 t4v0
_ A(H)
1=1@
et (w) e )
- weW
T /2 _~o(H)/2
a>0 )
~ det(w) eWp (H)
= 1lim weW
H-0 -H— (eoc(H)/z _e—oc(H)/z)
a>0
L det(w) eWp (H)
= 1im wWEW
H~>0 o) T (e (B0 _;)
a>0
o (H)
= 1im .__e_____
H~+0 o H) g
a>0 o (H)
Y det(w) eWp (H)
% weW
 (H)
YL det(w) eWp (H)
. WEW
= lim
H->0 ™ (H)

which upon expansion of the exponentials equals

lim (C(p) + 0 (1) = C(p)
H->0



Wl TT B(p,)
a>0

= C ) = —
! ¢ 3 (m) (m)

d(m (m) = |w| TT B(p,a).
a>0

14: APPLICATION Given f € C (g),

¢f(0;9(%))

(3(m ¢¢) (0)

(|w] TT B(p,®))£(0).

a>0



§12. PLANCHEREL

Keeping to the overall setup of §11, assume in addition that G is simply

connected, so
L, =dr (cf. 87, #17)

and e descends to T, so does A, thus

b® = £,® T A -5 (cem.
o>

1: NOTATION Put

= T = G

2: N.B. The elements of w* are the dominant weights (cf. §8, #34).

w
.

NOTATION Given A € w+, II A is the irreducible unitary representation

of G associated with A, Xp its character,
-[T B(A+QIOL)
q = a>0
A TT B(p,)

a>0

its dimension (cf. §10, #20).

4: N.B. On T-°9,

XpEBE) = T AW () (0.

It is wellknown that

c @ * 7@ =c(@,



so on the basis of §2, #15, the Plancherel theorem is in force:

fle) = %, drtr(ﬂ(f))
nec
= .4, /. f@®@y,xd,x)
e LG i G
or still,
fle) = dA fG f(x)XA(x)dG(x).

AW
Our objective now will be to give another proof of this relation which is inde-
pendent of the factorization theory for c”(G) but hinges instead on the result
formulated in §11, #13.
5: NOTATION Given f € C (G) and t € T, put
_ -1
Fo(t) = A(Y) [, flxtx )d, (x),

the invariant integral of f at t.

6: LEMMA

F. € C7(T).

g £08560 = r iy (800 12 Jg £6e DA G0 ®)
which equals
T fp T8 Jg £t a6 ap(0)
or still,

T fo TP (93, ®)



or still,

(-1)* [ AE)F = |o
—Tm—— T (t) f(t)dT(t) (r = l<I> |)-
Therefore

[ ExX) ¥, x4, (x)
New ¢ ATTG

_]_)
= T AE L dy S AR X, (B F(B)d(8) .

7: ILEMMA VYV wEW,

det(w) T[] B(Mp,0) = T B(w(At+p),a)-
a>0 a>0

Proceeding,

dy S AE) X, (BD)F(E) (t)
W] Aew A °r

dA fTWéWdet(w)gw(Mp) (t)Ff(t)dT(t)

I
Et
=
m™
=

_ ) .

- [ det(w) B(A+p,0) (£)F.(t)d._ (t)

w| TTB(0,0 e’ wew T J>To S (np) (BIFE(B)Op
o>0

CL™_ ;, z gy TT Beie) @ (£)F (£)d (t)
W TTB(0,) pew” wew T >0 S (ip) (OIFE (©)dp

-n*
= L S TT BOLR)E, (B)F(R)AL(E),
[W| TTB(p,0) A€W T o0 A Or

a>0



the X € W for which [ B(X,0) = 0 making no contribution.
o>0

8: REMARK The elements A € W such that whA z A whenw 2z e (W € W) are in

a one-to-one correspondence with the pairs (A,w) € w+ x W via the arrow (A,w) >

w(A+p) .

To isolate f(e), put ¥(X) = f(exp X) (X €g) — then £ € C(g) and V H € t,

Fo(exp H) = Alexp H) Jg £(x(exp B)X Dd(x)

I

A(exp H) fG f(exp(Ad(x)H))dG(x)

Mexp H) [ E@AGIBAL ().

9: LEMMA Let A be a linear function on b, — then there exists a unique

Ad G invariant analytic function I', on g such that v H € t,

A

rETE = 3 det (w) "M H) |

wew
10: APPLICATION Take X = p —— then there exists a unique Ad G invariant
analytic function I‘p on g such that v H € &,

r @@ = ¢ detwe®®
P wew

A(H) (cf. 810, #11).

Therefore

Mexp H) [y fAAG)H)d ()

v
= I‘p(H)Tr(H) fG f(Ad(x)H)dG(x)



Summary:

11:

Next

il

V"
T (H) I‘p (H) fG f(Ad(x)H)dG(x)

TH) o T EE @D,

) fg T, () £ (24 () ), (x)

¢y (H).

I £
p

vV HE k,

Felexp H) = ¢, (H).
I‘pf

SUBLEMMA In {H:m(H)7T= 0},

A(H)

TD(O) = lim T (H)

H=>0

'|'T (ea (H)/z _e_a(H)/2)

= lim 29
H~>0 T a@
a>0
i eOL(H)/Z _e—oc(H)/z
H->0o>0 | _ o (H)
= 1.

Felexp H) = ¢, (1)
I"pf

a(?r')Ff(exp H) = 3(m¢ y (H)
T
0



(3(MFg ° exp) (0) = (3(M¢ ) (0)
rf

= (W] TT B(p,) (T_£)(0) (cf. 511, #14).
a>0 P

(rp‘b 0) = rp(O)%w) = £(0) = £(e).

Therefore
1 . ~
fle) = lim Ff(exp H;o(m)).
lw| TT B(p,a) H> 0
a>0

12: NOTATION Given A € W, put
FeO) = fp F(D)E, (08,

the Fourier transform of Ff.

13: N.B. Assume that the Haar measure on T is normalized so that Fourier

inversion is valid (thus each X\ € (# is assigned mass 1).

Write
Lim F(exp H;3 (7))
H->0

=7 FeO) lim g, (exp H;3 (), (V)
T H~>0 T

il

[P lim a@me®a oy
T H-+0 T



(DT 1. F) TT BOL@)d, ()
T a>0 T

il

r A
(-1)" /. TT B()\,OL)Ff(A)d,\(A)
T a>0 T

-0 1. B(\,0) (f,, F. ()£, (£)d,(£))d, ()
A ;[B r Fe(0)&, (€)dy .

(D" I [, BOLA)IE, (E)F()dy(E).

AEW
Therefore
fo) = —L 5 BOLaE, (R (04
[W| T B(p,a) AeW
o>0

T, 4, [, fxyx,xd4.x),
Aew+ A G A G

the relation at issue.



§13. DETECTION

Iet G be a compact group.

1l: DEFINITION The character ring X(G) is the free abelian group generated

by the irreducible characters of G (i.e., by the (T € G)) under pointwise
i

addition and multiplication with unit lG'

2: DEFINITION An element of X(G) is called a Virtual character.

3: NOTATION CL(G) is the subspace of C(G) comprised of the continuous

class functions (cf. 82, #27).

4: IEMMA A class function f € CL(G) is a virtual character of G iff

<Exp = fg XA € 2
for all T € G.

PROOF The condition is obviously necessary. As for its sufficiency, we have

g% = =, <f'xr>|2 (cf. §2, #19),
e L

hence

<f’X1'[> =0

for all but finitely many X say Xpp, ree e Xp and then
L l.l l.n

n
£f= ¥ <£,x5 >x (ibid.).
i=1 T Ty
[Note: A priori, this is an equality in the Lz-sense, hence is valid almost

everywhere. But both sides are continuous, thus the equality is valid everywhere.]



Let G be a compact conmnected Lie group.

5: NOTATION CL7(G) is the set of C” class functions.

6: RAPPEL The characters of G belong to CcL’ ().
~7: N.B. Therefore X(G) is a subring of the ring of C” functions on G.
8: REMARK Per #4, suppose that f € CL(G) has the property that

<f’XH> €L

for all TT € G — then it follows after the fact that f € CL7(G).

Iet T c G be a maximal torus and assign to the symbol X(T) the obvious

interpretation.

9: RAPPEL The arrow

f-)»flT

of restriction defines an isomorphism

CL(@) » (M (cE. 54, #24).

10: APPLICATION Restriction to T induces an injective homomorphism
X@ > x(m".

Take a ¢ € X(T)W and let f € CL(G) be the class function that restricts to ¢.

11: ILEMMA f is a virtmal character of G, i.e., £ € X(G).

PROOF With #4 in view, write

<Eixp> = fG f(X)xH(X)dG(X)



1 2
AT Jp 1808 | ¢(tTX‘H(t‘)dT(t)

= WlVT I BE) ¢ (£) BTE) X (B (£)

1
€ TW‘- (lWlZ) = 7.

2: SCHOLIUM

X(G) = X(T)W.

13: N.B. Rephrased, a continuous class function f:G » C is a virtual

character of G iff f[T is a virtual character of T.

1l4: THEOREM Let f € CL(G) -- then f € X(G) iff its restriction to every
finite elementary subgroup of G is a virtual character.

PROOF To establish the nontrivial assertion, let H ¢ G be a finite subgroup --
then the assumption on f coupled with A, II, §12, #l1 implies that f[H € X(H).
Matters can thus be reinforced, the assumption on f becoming that its restriction
to every finite subgroup of G is a virtual character and, thanks to what has been
said above, one might just as well work with T rather than G. Choose a sequence

Hl c H2 c «++ of finite subgroups of T whose union is dense in T -- then V y € X(T),

- . 1 —_
<f, x> = Jm £x = 1lim L fM)y(h
XT 7 X (Tﬁn—rhEH (h)x(h))
n

n-> o«

lim <f’X>H .
n > o n

f|Hn € X(Hn)
=> <f'X> ez
Hn

=> <f,y>qm € L.



§14. INDUCTION
Let G be a finite group, I' ¢ G a subgroup.

1l: RAPPEL Tnere is an arrow

i

r s G:CL(I') -+ CL(G)

which sends characters of T to characters of G (cf. A, II, §9, #10), thus induces
an arrow

X(I) > X(G).

N.B. If

N
.

n
G= || x, T
k=1

and if ¢ € CL(T') is a class function, then

n 4 _
(in | g0 ) = 2 (xklxxk) (cf. A, II, §7, #10),
k=1
i.e.,
. -1
(ip G¢) (x) =2 cb(xk xxk).
Kk -1
Xy XX erT

Let G be a compact Lie group, I' < G a closed Lie subgroup.

3: NOTATION Given an x € G, write (G/T)* for the fixed point set of the

action of x on G/T.

4: LEMMA A coset yT in G/T lies in (c/T)* iff y—lxy er.



5: LEMMA If cosets yll‘, y2P lie in the same connected component of (G/I')X,

then y21“ = yyll“ for some y in the centralizer of x.

: N.B. If ¢ € CL(I') is a class function and if Yo = Y¥;Y, then

By xv,) = o0y YTy xyyv)

= o7y vy

_ -1
Let Cl""’cm be the connected camponents of (G/I‘)X, thus
< m
(G/P) = _J_l_ er
J=1
let x(Cj) be the Euler characteristic of Cj’ and fix elements

yiT € Creeery T €C .

7: NOTATION Given a class function ¢ € CL(T), put

m -1
jil x(Cj)¢(yj xyj) .

(i, g &)

é

b € CL(G),

the induced class function.

Z2

9: .B. Therefore

i G:CL(I‘) -+ CL(G) .



10: REMARK The definition of iF is independent of the choice of

-> Gd)
representatives yjI' for the components of (G/ F)x but it is not quite obvious that

i, Gq> 1s continuous.

11: RECONCILIATION Take the case when G and T < G are finite. Write

n
G= || %T.
k=1
Then, as recalled in #2,
(ip , 9 () =2 § (e a0, )
r -G 1 k 7k
k,x, xx, €T
"k Fk

which, in view of #4, is equal to

-1
z oy "xv)
yTeG/T
xyl' = yT
or still, is equal to

L L O )
yTe(G/T)

But here the Cj are points, say

¢y = {ysIT (= (/D% = {{y;Th ..o {y,

s X(Cj) =1, thus

I
™
=
g
&

-1
jil x(Cj)¢ (Yj xyj)

z dly xv)-



12: RAPPEL A compact connected Lie group of positive dimension has zero
Euler characteristic, so the connected components of a compact Lie group of positive

dimension have zero Euler characteristic.

13: EXAMPIE Take T = {e}, let ¢ = lI" and assume that dim G > 0 —— then

(G/I‘)X is empty of x # e, hence for such x,

(ip , o) ®) =0,

but if x = e, then (G/T)€ = G and
m

o @ = 2 X(C3)0 (73 ev)

m
= (I x(C;)d(e)
=1 J

= 0.

Therefore

JT"*G¢=O.

14: DEFINITION A closed subgroup H of G is generic if it is topologically
cyclic and of finite index in its normalizer.
[Note: Iet G be a compact connected Lie group, T < G a maximal torus -- then

T is generic.]

15: DEFINITION An element x € G is generic if it generates a generic
subgroup of G.
[Note: ILet G be a compact connected Lie group -- then a generic element is

necessarily regular.]



16: LEMMA The generic elements are dense in G.

17: THEOREM Suppose that x € G is generic -- then
| (G/T)F] > e
and
i 9 = % oy 1xy)
' >G °
yre(e/m)*

18: EXAMPLE Take T = {e}, letd>=lr, and assume that dim G > 0 — then
at every generic element of G,

(ip G¢) (x) =0,
hence by continuity (in conjunction with #16),

in, =0 (cf. #13).

Let G be a compact Lie group, let I'.,I', < G be closed Lie subgroups, and let

172
G = Sgs 1“]_51“2
be a double coset decamposition of G.
19: N.B.
I‘l\G/I‘2

is the orbit space per the action of Pl by left translation on G/ 1“2.

Write

F\G/F=_J_l_U'
1 2 ses S

where each U S is a connected camponent of one orbit type for the action of I‘l on



G/I‘z. Fix elements xg € G such that I‘lxsl“2 € Us and for each s let

<I>S:CL(1“2) > CL(Fl)
denote the following composite: Take a ¢ € CL(I‘2) and form q)s S ¢pol -1 (a class

X
S

function on xsl"zxsl) , then restrict ¢s to I‘2 (s)

Hi

-1 .
xsl“zxS N Tl, call it ¢s’ and

finally apply i (s) > T,° T.e.:
2 1
o _(¢) =1 0.
] 1"2(s) - 1"l ]
20: THEOREM As maps from CL(FZ) to CL(I‘l) ,
s>, Clp 5T Z X#(Us)q’s'
1 2 SES

where for each s € S,

x#(US) = x(Ug) - x(UU).

21: N.B. When G and Fl,F2 c G are finite, matters reduce to A, II, §8, #3.

Here is a sketch of the proof.

1. Fix a class function ¢ € CL(TZ) and a Y, € 1“1.

2. let fjs c G/l"2 denote the inverse image of Uy under the projection to
I‘l\G/I‘z, thus

G/T, = ]| U

sES

Y
3. Let C]_,...,Cm be the connected camponents of (G/l"z) l, thus



Yl m
J=1
4. For each pair (s,j), put

5. The arrows

Vs,j ->US N Cj —>Us

are a fibration sequence, henceby the multiplicativity of the Euler characteristic,

x(Cj) = I x(v

#
)X (U) .

6. Fix elements y_ . € I'. such that
S,J 1

Ys,jxsrz € Vs,j'

Then in particular,

Y1
Ys, %l € (G/T,)
=>
-1 -1
%s s,leYs,sz € I'2
=>
-1 -1
Ys,leYs,j € XSFZXS !
the domain of cbs.
7. Fram the definitions,
n -1
= C. . .

J=1



o #
I Tox(Vg X
ses =1 rJ

-1
s,3717s,5%s

-1
(US) ) (xS Y )

# m s, -1
I ox (U) Z x(V, 2)o (v, Y,y
ses S 3=1 0 ST SO

).

S,J

8. The isotropy subgroup of the action of I‘l on xsl“2 € G/I‘2 is

_ -1
I‘2(s) = st‘2x nr

s 1
And
Y Y
1 1
(Tl/T'z(S)) = (Pl XSF2)
il
= V. . < G/T,.
J=1 S,] 2
9. Given s € S,
m
s, -1
)X V. . . .
521 xVs, 300" v, 571 ¥s, 5)

= @ 6°) (y4) -
I'z(s) - Fl 1
10. Therefore

(re (i L o)) (rp)
G 1"1 1"2 G 1

- # . S
= sés X (US) (JTZ (S) -> qu) )(Yl)

#
= % x (U0 _(¢) (yq),
SES S8 1

the contention.



il" N G:CL(I') -+ CL(G)

sends virtual characters to virtual characters, thus induces an arrow

X(I) - X(@).
PROOF Recall first that this is true when G is finite (cf. #l1). In general,

let y € X(I') —- then to conclude that
iF > GX € X(G),

it suffices to show that its restriction to every finite subgroup H of G is a

virtual character (cf. §13, #14). So consider

Yo > gl > ¥

or still, take in the above 1“1=H, r,=T, ¢ =¥, and consider

2

ZX#

(U_)o_(x) .
SES s s

Here

o (x) =1 Xt
s -1 S
xsl’xS NH->H

1

where x_ is the restriction of ¥° to I'(s) = xSIx; N H, a finite group. But now

Xg € X(T(8)) => ip oy , X € X(@),

which finishes the proof.

23: N.B. If G is finite, then the arrow

iI’ N G:CL(I’) > CL(G)

sends characters of I' to characters of G but this need not be true if dim G > 0



10.

(cf. #13) (lT is a character of T but the induced class function

ir, 6lr

is identically zero, a virtual character, not a character).

24: REMARK let G be a campact connected semisimple Lie group, T c G a
maximal torus -- then
G<>dlnC (cf. 510, #23).
While the theory developed above gives rise to an arrow
X(T) -> X(G) ’
it does not respect the foregoing parameterization which can only be accomplished

by a more sophisticated version of the preceding process.
APPENDIX

There is a different approach to induction which is suggested by A, II, §9, #1.

So let G be a compact Lie group, ' < G a closed Lie subgroup.

CONSTRUCTION Let (6,E) be a finite dimensional unitary representation of

G

I' and denote by EI‘ 6 the space of all E-valued measurable functions f on G such
[4

that f(xy) = e(y—l)f(x) (x € G, vy €T) subject to

2
el 151124 p < =
Then the prescription
(af (@D ) = £&y)

defines a representation Ind(I;. 5 of G on Ef..; o the representation of G induced by 8.
4 sr ——



11.

N.B. The inner product

= [

<f,g> /T <f’g>dG/I‘

0

equips E(l"; 0 with the structure of a Hilbert space and IndG is a unitary rep-
14

r,o

resentation.

EXAMPLE Take 6 to be the trivial representation of ' on E = C — then

G _ .2
EI‘,@ = L (G/T).
G _ .2
[Note: When T = {e}, Ep =1L (G) and
4
G _
mdr.’e = L,

the left translation representation of G (cf. §1, #5).]



§1. ORBITAL INTEGRALS

Iet G be a compact group.

1l: DEFINITION Given £ € C(G) and vy € G, put

0(E,7) = Iy £ Ddgt),

the orbital integral of f at v.

2: LEMMA The function ((f) defined by the assignment

Yy > 0(£,y)

is a continuous class function on G, i.e., is an element of CL(G).
3: RAPPEL If f € C(G) g,/ then

<f’XH> =0

for all but finitely many I.

: ILEMMA Suppose that f Ec(G)fin —— then v v € G,

0(£,y) = I, tr(l'[*(f))xn(y) (cf. A, III, §1, #3),
TIEG
the sum on the right being finite.

PROOF Apply I, §2, #19 to get

0(f) = z, <O(f)lx > Xy 7
TieG o

where the series converges in L2 (G). But



= Jg Ug £ a0 % Mag ()

fg Ug Eeo 3 Ma, () d, ()

fg Ug EMxp & I dg (1), ()

fo Ug EMXgMdg(1)dg )

fG <f'xl'[>dG(X) = <f’XH>’

Therefore <0(f) Xy = 0 for all but finitely many 0, thus the almost everywhere

equality

0(F) = £, <0(E) xox
TG 1l

is that of two continuous functions, thus is valid everywhere. Finally, fram the

definitions,

<f,xH> = fG f (%) X (x)dG(X)

I G f (%) X (x) dG (x)

1

[ £ (I () ) dg ()

tr(*(£)) .



82. KERNELS

Iet (X,u), (¥,v) be o-finite measure spaces.

1: NOTATION Given K € L®(X x Y), define TK:L2 (¥) » 12 (X) by

(Tch) (%) fY K(x,y)¢(y)dv(y).

: THEOREM The map K - TK is a linear isometry of L2(X X Y) onto

Ly (2 (0,12 (%)) .

: NOTATION Given

K, € L2(X x Y)

1

K, € 12 (Y x z),

define their convolution
K, * K, € L2 (X x 2)
1 2
by

(K, * K)) (x,2) = fY K, &K, (y,2)dv(y).

[Note: The underlying measure-theoretic assumption is again o-finiteness

(which is needed infra for Fubini).]

4: THEOREM




5: APPLICATION Take X = Y = Z —- then

2 2
TKl:L X) - L (X)

T LX) - L2(X)

- 5
are Hilbert-Schmidt, hence
2 2
T L'(X) > L7 (X)
K1+

is trace class.

6: I.M’JATakeX=Y=ZandputK=Kl*K2——then

tr(TK) = fX K(x,x)du(x) .
PROOF
tr(Ty) = tr(T-Kl° TKZ)
= <TK2’T§1>HS
= <.K2,KI>

Ix Ix K, (Y,X)K{ (y,x)du(y)du(x)

fx fX KZ(Y’X)Kl (x,y)du(y)du(x)

fx fX Kl(x,y)Kz(y.X)du(y)du(x)

fX Kl * K2 (%x,x)du (x)



= fx K(x,x)du(x).

: REMARK It can happen that Kl = K2 a.e. (soT, = TKZ), yet
Iy Ky xx)du(x) = Jy K, (x,x)du(x).

[E.g.: Take X =Y = [0,1], K; =0, K, = x, (A the diagonal).]

8: THEOREM ILet X be a locally compact Hausdorff space, u a o-finite

Radon measure on X. Suppose that K € L2 (X x X) is separately continuous and TK

is trace class —— then the function

x »+ K(x,x)
is integrable on X and

tr(TK) = fx K(x,x)du(x).

APPENDIX

IFMMA Iet M be a campact c’ manifold, u a smooth measure on M, T:L2 ™M) >
2k 1 .. .
crM) (ko> 7 dim M) -- then T is trace class.
PROOF Iet A be a Laplacian on M and write

T = (1-n) "F@a-n*r.
Then

1-0)¥ T2 ™)) < c) < 1)
so (1-0)¥T is Hilbert-Schmidt. On the other hand, by Sobolev theory,
a-0) "2 < 5X¥M) < cm,

thus (1-A) X is also Hilbert-Schmidt.



§3. THE LOCAL TRACE FORMULA
Iet G be a compact group.

1l: NOTATION Denote by TR the representation of G x G on L2 (G) given by

4

(r, R0 %)E) () = £Gx,)  (cf. A, III, 52, #1).

2: LEMMA ﬂL,R 1s unitary.
PROOF

2
[y, g ) £

o | (1, (1 /%)) (x) IZdG(X)

= Jq If(x'l'lxxz) lsz(x)

2 2
fG If(X)I dG(X) = HfH M

Given fl,f2 € C(G), define £ € C(G X G) by
and let
TTL,R(f) = fG fG fl(xl) f2 (x2)ﬂL’R(xl,xz)dG(xl)dG(xz) .

Then v ¢ ELZ(G),

Il

(1, QU0 (%) = [ T £y 05 E, (30,) o] 300) A (¢ ) g ()

= fG Kf(x,y)¢(y)dG(y) ’



where

Ke(,y) = [ £ (x2)E, (29)d ().

Therefore . R(f) is an integral operator on L2 (G) with kernel Ke(x,y) .
r

3: CONSTRUCTION

® Given fl € C(G), put

1

Kfl(x,y) =f,xy ) (x,y €0).

Then

2 =
K] EL(G*xG) (K = Kfl)

and

(T 9 () = Jg K (=)0 (1))

-1
fG flxy N o(y) dG (¥)

Il

I EW ORI

Jo £ L)9) X))

(L(£)9) x) .

® Given f2 € C(G), put

ke (5y) = 567V Gy € Q).

Then

2 -
KZEL(GXG) (K2—Kf2)



and

(T 9 0 = S5 K (xy)$ (1 w)

= I £,V W)

fG £, (¥) ¢ (xy) dG(y)

I £, R ) ()45 ()

(R(£) ) (x) .

4: LEMWA Let f,,f, € C(G) and let £ = £ £, — then

1’72 172

PROCF

(Kl * K2) (x,y) = fG Kl(x,Z)Kz(z,y)dG(z)

= /s £ (xz 1) £ (z—ly) ds(2)
= Jg £, (x2)£,(2y)d,(2) .

Since the kernels of

2 2
TKl:L (G) - L™ (G)

2 2
TK2:L (G) ~ L7 (G)

are square integrable, it follows that these operators are Hilbert-Schmidt. But



T oT =T (cf. §2, #4).

Therefore TKl *K2 is trace class, i.e., TKf is trace class, i.e., TrL’R(f) is trace
class.
S5: LEMMA
tr(ﬂL’R(f)) = fG Kf(x,x)dG(x) (cf. 82, #6).
6: RAPPEL Let
2 2
f e spanC(L (G)*L"(G)) < C(Q).
Then
fe) = L, drtr(H(f)) (cf. I, §2, #15).
nec
We have
Re(x,y) = [ £ (@) £, (2)d,(2)
= /£ (WE, & Tuy)d, ()
G 1 2 G
= fG fl(u)fZ,x,y(u)dG(u) .
Put now
_ -1
Fx,y(v) = fG fl(u)fz'x’y(v u)dG(u).
Then

_ A -1
F y(V) = fG fl(u)lex,y(u v)dG(u)

v

= fl * fZ,X,y

(v)



14

Ke (x,y) = F. y(e)

= 1, dtr(IF, )
neG 1 X,y

v
= I d].[tr(l'[(fl % £ ))

2,x,y

\"A
= I dr@EPnE, )

\"A
= I, dtr((£)I(S, * £, * § _,))
neé I 1 X 2 Yl

v
= 1. dntr(H(fl)H(GX)H(fZ)H(éy_l))

v
= 2 A D TENTEITE)

_ -1 ¥
= z dHtr(H(Y )H(fl)n(x)n(f?_))

tr(’ITL,R(f)) = fG Kf(x,x)dG(x)

= I, dtr(Ug T6CHIENTEA,6) o T(E,)
NeG

I, dptr (g TEEDTE A ) o TE)).
[eG

7: SUBLEMMA V ¢ € C(G), the operator

fo TE LG TE g ()



intertwines T, hence is a scalar multiple of the identity (cf. I, 81, #15), call

it -
8: N.B.
_ -1
>\¢ = fG N(x) () M(x )dG(x)
=>
_ -1
}‘cbdn = tr(fG NX)I($) T(x )dG(.X))
=>
\ = tr@)
¢ d;
Therefore
£ (1, L (5))
_ -1
= L aer (g TEOT(E) 6 )dg00) @ n(t,))

= I, dphg tr(i(fy))

[ieG 1
tr(1(£;))
1
= 3, a ———— trmE))
e Il dl'[ 2

L, tr (M) tr((E,))
ned

il
™
g
~~
=
Hh
N



\
J(,f) = tr(H(fl))tr(I{(fz)).

9: SUBLEMMA V ¢ € C(G),

tr (1)) = tr(fg N, ())
= tr(fg ¢ DAL ()
= tr(fg $GINE Dd ()
= tr(fG ¢ (x) H*(X)dG(X))

= tr(li*(¢)) .

10: N.B. Consequently,

J(I,£) = tr(li(f)))tr(*(£,)).

There is another way to manipulate

/ c K¢ (x,x) dG (x)

which then leads to a second formula for

tr(ﬂL'R(f)) .
To wit:

.fG K. (x,x)dG(X)

=g Ig fl(xzx_l)fz(z)dG(z)dG(x)



or still, for any y € G,

I Tg £ o D, ty2y I 2)d 00

Now multiply through by dG (y) and integrate with respect to y:

triny, R(0) = fg trm L (£)d,()
= . L S £ (xzx D E, (yzy )AL (2)d. (x)d.(Y)
e dc ] 2 Y2y 105 2)ds )ALy
= [, (. £ (xzx D)A.(x) (/. £, (yzy D)d.(¥))d.(z)
G Gl G G 2 G G
= fG O(fl,z)O(fz,z)dG(z).

11: DEFINITION Given f = f1f2' the local trace formula is the relation

Z,. J(m,f)
TEG

L, tr(i(f)))trm*(£,))
TeG

Jg O(£1,2)0(£,,2)d4(2) .

Let G be a compact connected semisimple Lie group, T < G a maximal torus.
12: RAPPEL For any continuous function £ € C(G),
FE®)AL(K) = = L [A0) ]2 1L fxtx DA (x)dL(E)  (cf. I, §9, #12)
G G [W| T G G dT ! !

or still,

fo E0860) = rr Sy 1860 |P0(Eap (e



As above, let £ = £.f. —— then

12

Kf (x,x%) dG (x)

il

fG fG fl(xzx )fZ(Z)dG(Z)dG(X)

fo TaT Y 16@1° Jg £ vty % HE, vty hag 1 dy (e)a5 60

T /i IA(t)I c Yg fl(thY L )d x)f, (vty~ ha o ¥)dn(t)

2 1817 sy Ug £ e hag ) g, vy ha (s ()

_—E_IH

= i Jp 180 20 £ 6t hag00) Ug £, vty D) ag (o)

2
= TVlTF Jo 1860) [P0(E], 0) 0(£,, 008, (8) -



§1. TOPOLOGICAL TERMINOLOGY

1: DEFINITION A topological space X is compact if every open cover of

X has a finite subcover.

DEFINITION A topological space X is locally compact if every point

in X has a neighborhood basis consisting of campact sets.

3: LEMMA A Hausdorff space X is locally compact iff every point in X

has a campact neighborhood.

4: APPLICATION Every compact Hausdorff space is locally compact.

|U‘l

EXAMPLE R is a locally compact Hausdorff space.

6: EXAMPLE Q is a Hausdorff space but it is not locally campact (Q is

first category while a locally campact Hausdorff space is second category).

7: LEMMA An open subset of a locally compact Hausdorff space is locally

compact.

: LEMMA A closed subset of a locally campact Hausdorff space is locally

campact.

9: LEMMA In a locally compact Hausdorff space, the intersection of an

opaen set with a closed set is locally compact.

10: EXAMPLE The semiclosed, semiopen interval [0,1[ is locally compact.

[In fact,

fo,1f = 1- 1,1[ n [0,1].]



1l: DEFINITION A topological group is a Hausdorff topological space

G equipped with a group structure such that the function from G x G to G defined

by (x,y) - xy"l is continuous or still, as is equivalent:

® The function G x G -+ G that sends (x,y) to xy is continuous.

e The function G - G that sends x to x © is continuous.

If G is a topological group and if H < G is a subgroup, then the set G/H

is to be given the quotient topology.
12: LEMMA The space G/H is Hausdorff iff H is closed.

13: DEFINITION A locally campact (compact) group is a topological group

G that is both locally compact (compact) and Hausdorff.

14: IEMMA If G is a locally compact group and if H is a closed subgroup,

then G/H is a locally campact Hausdorff space.

15: LEMMA If G is a locally compact group and if H is a closed normal

subgroup, then G/H is a locally campact group.

16: LEMMA If G is a locally compact group and if H is a locally compact

subgroup, then H is closed in G.

17: LEMMA If G is a locally campact group, then a subgroup H is open iff

the quotient G/H is discrete.

18: LEMMA If G is a compact group, then a subgroup H is open iff the

quotient G/H is finite.



19: LEMMA If G is a locally compact group, then every open subgroup of

G is closed and every finite index closed subgroup of G is open.

20: DEFINITION A topological space X is totally disconnected if the

connected components of X are singletons.

2l1: EXAMPLE () is totally disconnected.

I\

: LEMMA If G is a totally disconnected locally compact group, then

{e} has a neighborhood basis consisting of open-compact subgroups.

23: LEMMA If G is a totally disconnected compact group, then {e} has

a neighborhood basis consisting of open-compact normal subgroups.

24: DEFINITION A topological space X is O-dimensional if every point of

X has a neighborhood basis consisting of open-closed sets.
25: EXAMPLIE Q is O-dimensional.

26: LEMMA A locally compact Hausdorff space is O-dimensional iff it is
totally disconnected.
[Note: In such a space, every point has a neighborhood basis consisting of

open~campact sets. ]

27: REMARK It is false that the continuous image of a 0-dimensional
locally compact Hausdorff space is again 0-dimensional.
[To see this, recall that every compact metric space is the continuous image

of the Cantor set.]



28: LEMMA If G is a locally compact O-dimensional group and if H is a

closed subgroup of G, then G/H is 0-dimensional.

29: LEMMA A O-dimensional T, space is totally disconnected.

30: REMARK There are totally disconnected metric spaces which are not

0—dimensional.



§2. INTEGRATION THEQRY
Iet X be a locally compact Hausdorff space.

1l: DEFINITION A Radon measure is a measure u defined on the Borel

o-algebra of X subject to the following conditions.
1. y is finite on campacta, i.e., for every campact set K c X, u(K) < «.

2. yu is outer regular, i.e., for every Borel set A c X,

pu(a) = inf p(U),
U=A

where U ¢ X is open.
3. 1y is inner regular, i.e., for every open set A c X,

pn(a) = sup u(K),
KcA

where K c X 1s compact.

2: RAPPEL, If X is a locally campact Hausdorff space and if X is second

countable, then for any open subset U c X, there exist compact sets Kl c Kz C oeee

o]

such that U= U K_.
n
n=1

3: APPLICATION If (X,u) is a Radon measure space and if X is second

countable, then X is og-finite.

: RIESZ REPRESENTATION THEOREM Iet X be a locally compact Hausdorff

space. Suppose that A:CC (X) -~ C is a positive linear functional -- then there

exists a unique Radon measure p on X such that v f € Co x),

Af = [y £(x)AuE) .



Iet G be a locally campact group.

5: DEFINITION A left Haar measure on G is a Radon measure Ws # 0 which

is left invariant, i.e., v x € G and Vv Borel set A < G, pG(xA) = uG(A).

[Note: Equivalently, a Radon measure u # 0 is a left Haar measure on G if

VfECC(G)andVyEG,

Jo Eyx)du®) =/, £(x)du(x).]

: THEOREM G admits a left Haar measure and if Ug » Mg are two such,
- 1 2

then 1, = cu (Fc>0).
Gy Gy

7: LEMMA Every nonempty open subset of G has positive left Haar measure.

8: LEMMA Every campact subset of G has finite left Haar measure.

9: N.B. The definition of a right Haar measure on G is analogous.

Given x € G and a Borel set A < X, let
Mg x B) = g (Ax).
Then Vs o is a left Haar measure on G:
14
uG’X(yA) = U (VAX) = u.(Ax) = uG’X(A).
The uniqueness of left Haar measure now implies that there is a unique positive

real number AG {x) such that

He,x — Mg

10: IEMMA AG:G > R:O is independent of the choice of yu.



11: LEMMA AG;G > R:O is a continuous homomorphism.

2:  DEFINITION _AG is called the modular function of G.

So,vfecc(G) and Vv € G,

fg £6 DG () = Ay) g EEan &) .

13: IEMMA Vv f € cC(G),

4 _ f (x)
fG £y, (x) = fG Z’;:';Td“G(X)'

[Note: As usual, f(x) = £(x 1).]

14: N.B. The positive linear functional that assigns to each f € Cc (G)

the common value of the two members of this equality is a right Haar integral.

15: LEMMA If ¢:G ~ G is a topological autamorphism, then there is a
unique positive real number GG(cp) such that Vv £ € Cc @),
fg £OTNALE) = 6,9 Sy A k).
[The positive linear functional
£ g £0700)dug )
is a left Haar integral.]

[Note: The arrow ¢ ~ cSG(q>) is a homomorphism: 6G(¢l¢2) = GG(Cbl) SG(¢2) .

16: EXAMPLE If V is a real finite dimensional yector space and if



T:V + V is an invertible linear transformation, then per "Lebesque measure",
Sy £@T)ax = Jaet 1| £, £Gax,
so here

5,(T) = |det T|.

17: EXAMPLE Define Iy;G + G by Iy(x) = yxy~l —— then
fEE )AL (x) = S £y Txy)du. (x)
‘e Ty G ‘G G

= _fG f(xy)duG(x)

= AG(y—l) s £(x)dp, (),
which implies that

_ _ -1
CSG(IY) =8y 7).

18: LEMMA If ¢:G » G is a topological automorphism, then v y € G,

AG(q)(y)) = AG(y).
[On the one hand,

fg £ Gy D)) A &)

It

Do) Sg £ ), ()

28507 S £

and, on the other hand,

S 006y ™)) dg )



S £@E6 ™), &)

850™) fg £Gxo () D )

85650 ) Jg £ ).
Therefore

85 (y) = A5(9(y)).]

19: IEMMA If Gl’ G2 are locally compact groups and if Hg r W are left
1 2

Haar measures per G,, G,, then y, > u
2 Gl G2

is a left Haar measure per G

lXGzand

AG y GZ(XI’XZ) = AG (Xl)AG (x2).

1 1 2
Iet G be a locally compact group, X and Y two closed subgroups of G.

20: DEFINITION The pair (X,Y) is admissible if the following conditions
are satisfied.

e The intersection X N Y is compact.

® The multiplication X x Y +~ G is an open map.

e The set of products XY exhausts G up to a set of Haar measure 0 (left

or right).

21: EXAMPIE Using the notation of #19, work with Gl X G2 and take

X = Gl X {ez}, Y = {el} X G2 — then the pair (X,Y) is admissible.

22: THEOREM Suppose that the pair (X,Y) is admissible. Fix left Haar



measures Hy, i, on X,Y¥ —- then there is a unique left Haar measure Hs on G such
that v £ € Cc (G),

Ag (y)

[ faug = Jx vy £xy) W dpy (%) Ay, (¥) -

23: N.B. Specializing the setup to that of #21 leads back to #19.

[Note that

A (e,,x,) = A, (e)A, (x,)
GlXG212 GllG22

I

A, (x,)
G22

thereby cancelling the factor in the denominator. ]

24: IEMMA If G is a locally compact group and if H ¢ G is a closed normal

subgroup, then AG|H = AH

25: APPLICATION In the setup of #22, assume in addition that Y is normal ——

then v £ € CC(G),

Jo faus = J¢ | v Ty)du, (x)du, (v) .

[Note: Given x € X, the restriction

is an automorphism of Y and

D 0) = By () by (N 8y (T )]



Let G be a locally compact group, X and Y two closed subgroups of G.

26: DEFINITION G is the topological semidirect product of X and Y if

every element z € G can be expressed in a unique manner as a product z = xy

(x € X, y € ¥Y) and if the multiplication X x Y -~ G is a homeomorphism.

27: N.B. A priori, the multiplication X x Y -+ G is a continuous bijection,
thus the condition is satisfied if the multiplication X x ¥ -+ G is an open map,
this being automatic whenever G is second countable.

[Under these circumstances, G is the union of a sequence of compact sets
(cf. #2), so the same is true of X x Y. But G is a locally compact Hausdorff
space, hence is a Baire space.]

[Note: If A is a Baire space and if {An:n € N} is a closed covering of A,

then at least one An must contain an open set.]

If G is the topological semidirect product of X and Y, then X N ¥ = {e} and

the pair (X,Y) is admissible. Therefore the theory is applicable in this situation.

28: N.B. In general, the arrow (x,y) - xy is not an isomorphism of groups
but this will be the case if every element of X commutes with every element of Y
or, equivalently, if X and Y are normal subgroups of G, i.e., if G is the topo-

logical direct product of X and Y.



§3. UNIMODULARITY

Let G be a locally compact group, Mg 2 left Haar measure on G.

1l: DEFINITION G is unimodular if AG = 1.

‘m

N.B. G is unimodular iff g is a right Haar measure on G.

3: EXAMPLE Take for G the group of all real matrices of the form

1 X
(y 2 0) = then
_ 0 y _
-3 T
AG =|Y|t
0 Y

thus G is not unimodular.

4: IEMMA G is unimodular iff v £ € CC(G),

-1 B
fG fx )duG(x) = fG f(x)duG(x) (cf. §2, #13).

5: LEMMA

® Every locally caompact abelian group is unimodular.
e Every compact group is unimodular.

® Every discrete group is unimodular.

6: LEMMA Every locally campact group that coincides with its closed

cammutator subgroup is unimodular.



7: LEMMA Every open subgroup of a unimodular locally compact group is

unimodular.

8: LEMMA Every closed normal subgroup of a unimodular locally compact
group is unimodular.
[Note: A closed subgroup of a unimodular locally compact group is not

necessarily unimodular.]

9: LEMMA Iet G be a locally compact group, Z(G) its center -- then G is

unimodular iff G/Z(G) is unimodular.

Let G be a locally compact group, H ¢ G a closed subgroup (H is then a locally

compact subgroup) (cf. §1, #8).

10: DEFINITION H is a cocompact subgroup if the quotient G/H is compact.

11: IEMMA If G admits a unimodular cocompact subgroup H < G, then G is

unimodular.



§4. INTEGRATION ON HOMOGENEQUS SPACES
ILet G be a locally compact group, H < G a closed subgroup.

1: N.B. The quotient G/H is a locally compact Hausdorff space (cf. §1,

#14).
Fix left Haar measures
g On G
LLLI on H.

2: NOTATION Given f € C_(G), define £ € C,(G/H) by the rule

£y = fy £G) A ()

sends Cc (G) onto Cc (G/H) .

4: DEFINITION A Radon measure u = 0 on the Borel o-algebra of G/H is

said to be an invariant measure if v x € G and Vv Borel set A < G/H, p(xd) = n(a).

[Note: If H = {e}, then "invariant measure" = "left Haar measure".]

5

(23

THEOREM There exists an invariant measure y, 7 On G/H iff ALH = Ay

and when this is so, e /i is unique up to a positive scalar factor.

[Note: Matters are automatic if H is compact or if both G and H are

unimodular. ]



6: N.B. If H is a normal closed subgroup of G, then AGIH = A

[For a left Haar measure on G/H is an invariant measure. ]

7: THEOREM There is a unique choice for uG/H such that v £ € Cc (G),

fg E@ALE) = Jg £ () ) Go= .

[Note: Bear in mind that Bar Wy have been fixed at the beginning.]

8: N.B. This formula is valid for all £ € Ll (G).

LEMMA Iet H

9: lCG,H

c G be closed subgroups of G with H, < H, —-

2 1 2

then G/H2 and Hz/Hl admit finite invariant measures iff G/Hl admits a finite

invariant measure.

10: APPLICATION If G/H has a finite invariant measure and if H is
unimodular, then G is unimodular.

[Iet K be the kernel of AG —— then AG]H= AH =1, thus H ¢ K and so G/K

has a finite invariant measure (as does K/H). But G/K is a locally compact group.
Therefore G/K is actually a compact group (its Haar measure being finite) and this

X

implies that AG (G) is a compact subgroup of R>0,

hence AG(G) = {1}, i.e., G is

unimodular. ]

11: N.B. Suppose that H ¢ G is a unimodular cocompact subgroup -- then

G/H admits a finite invariant measure g /11"

[In fact, G is necessarily unimodular (cf. §3, #11), fram which the existence



of g /1" But e /1 is Radon, hence finite on campacta, hence in particular,

uG/H(G/H) < o]
[Note: Take G = SL(2,R) and let
- . -
H= {X:X= e SL(2,R)}.
0 d

Then G is unimodular but H is not unimodular. Therefore G/H does not admit an

invariant measure even though H is a cocompact subgroup. ]

12: LEMMA Iet Hl c G, H2 c G be closed subgroups of G with Hl normalizing
H, and H;H, closed in G -- then the following are equivalent.

e HlHZ/Hl admits a finite invariant measure.

° H2/Hl n H2 admits a finite invariant measure.

[Note: There is a comutative diagram
112 Tz
Hz/Hl n H2 —_— H1H2/Hl,
)

where

¢ (x, (Hy N HY)) = xH,.

The vertical arrows are continuous and open. Therefore the bottom horizontal

arrow is a homeomorphism. ]

13: APPLICATION Suppose that G is the topological semidirect product



of Xand Y (cf. §2, #26) and take Y normal —— then G = XY and X N Y = {e}.

Therefore G/X has a finite invariant measure iff Y has a finite invariant measure.



§5. INTEGRATION ON LIE GROUPS

Suppose that M is an orientable n-dimensional € manifold which we take to
be second countable. Iet w be a positive n-form on M -- then the theory leads
to a positive linear functional

f - fM fo (f € C.(m)
from which a Radon measure M
Assume now that G is a Lie group with Lie algebra g. ILet LX:G -+ G be left

translation y -+ xy by x.

1: DEFINITION A differential form w on G is left invariant if v x € G,

2: NOTATION Given X € g, let X be the corresponding left invariant vector

field on G.

Iet n = dim G (= dim g) and fix a basis Xl"”'xn for g. Define 1-forms

wl,...,wn on G by the condition wl(;(j) = 6;.

: LEMMA The w" are left invariant.

Put

Then Vx € G,

L*xy = L;g(wl Avuoh wn)

L?Sc.ul Aeeoh L*wn
X X



1 n
=W O AcedA W = W,

I.e.: w is a left invariant n-form on G.
4: LEMMA w is nowhere vanishing on G.

5: LEMMA G can be oriented so as to render w positive.

[Note: The orientation of G depends on the choice of a basis for g. If

Yyreees¥, is another basis, then the resulting orientation of G does not change

iff the linear transformation Xi > Yi (1 < i <n) has positive determinant.]

6: SCHOLIUM The assignment
f->fG fw (feCc(G))

is a positive linear functional.

7: LEMMA The Radon measure A is a left Haar measure.

PROCF V X € G, LX:G + G is an orientation preserving diffeomorphism, so

v £ € CC(G),

fG fduw = fG fw = fG (f o LX)L}’;w

Il

fG (f o Lx)w = fG (£ o Lx)duw.

: REMARK Any subset S of G which is contained in an at most countable

union of smooth images of C manifolds of dimension < dim G has zero left Haar

measure.

9: THEOREM V x € G,



10: EXAMPLE Every connected nilpotent Lie group N is unimodular.
[If X € n (the Lie algebra of N), then ad(X) is nilpotent, thus tr(ad(X)) = 0
and so

det Ad(exp X) = det ead (X)

Jtr@d®) _

11: LEMMA A l1-dimensional representation of a connected semisimple Lie

group is trivial.

12: APPLICATION The restriction of AG to any semisimple analytic subgroup

of G is = 1.

13: THEOREM Suppose that G is a reductive Lie group in the Harish-Chandra

class —— then G is unimodular.

PROOF First decompose G as the product 0

G x V, where V is a central vector
group (possibly trivial) and
0G = n Ker y,
X

the y running through the set of continuous homomorphisms G - R)><0' This done,

take for a left Haar measure on G the product of the left Haar measures on 0G

and V. Since V is unimodular, it will be enough to deal with 0G (ct. §2, #19).

Fix a maximal compact subgroup K of G —— then K is a maximal compact subgroup of

0 0. _
G and G—KGSS, thusvkEK,VXeGSS,

Ay (kx) = A, (K)A, (x) =1+ 1=1.
OG 0G OG



[Note: Gy is the analytic subgroup of G corresponding to 8. (the ideal

in g spanned by [g,g]). It is closed and normal.]

Maintaining the supposition that G is a reductive Lie group in the Harish-

Chandra class, consider an Iwasawa decomposition G = KAN.

14: N.B. N is a normal subgroup of AN and AN is the topological semi-
direct product of A and N.

[Note: AN is second countable so there are no technical issues.]

15: ILEMMA

_ 1 _ 1
by = EEEME T T " Zedes &)

[Note: Here 2p is the sum of the positive roots of (g,a) counted with

multiplicities.]

Since the pair (K,AN) is admissible and since AG = 1, it follows from §2,

#22 that v £ € CC(G),

A (an)
fG fdpG = fK % AN £ (kan) A (an) dUK(k)dl—lAN(an)

AN

1

= £ (kan) 2P (109 )

K x AN duK (k) duAN(an)

fe % n % £ (kan) e2P (109 a)de(k)duA(a)duN(n) .



[Note: To be campletely precise, fix left Haar measures Hgr Har Mg OR

K, A, N — then there is a unique determination of the left Haar measure Mg on G

such that for any f € Cc(G) , the function

(k,a,n) » f(kan)

lies in
Cc(K x A X N)

and

I £y, =/ £ (kan)e?? (199 A g, (k)au_ (@)dw, (n).]

G e TR xAxN K 7t N

16: LEMVMA
AAN(an) = AA(a)AN(n) 6N(Ia_l) (cf. §2, #25)
= 6g(T ).
a
[Note: A is abelian and N is nilpotent... .]

So, v £ € CC(G)I

Fe w5 x a £ 0ma) A (K) Ay (0)dyy ()
-1
= Jx « 5 x a £kaa na)du (k)du, 0)dy, (@)

= fK x N x A f (kan) 5.N(Ia)d]_lK(k)dpA(a)duN(n) (cf. §2, #15)

= Ty o a x y £0kA0) Ay (@ ) Ay () dyy (a) dpy ()



= s £ (kan) 2P (109 2)

K x A X N duK(k)duA(a)duN(n)

= fG fduG.

[Note: As a corollary,
o x x x g E@K)du, @)duy (n)duy, (k)

- f e an, 0 dn. (myau, (a)
KxNxA g () dig in)da ta

Tk x N x A %(]ma)dl&{(k)va(n)duA(a) (cf. §3, #4)

v
= fG fdu, = fG fduG,

G being unimodular (cf. #13).]

Let M be the centralizer of a in K and put N = 6N —- then the map

(ﬁ,m,a,n) > mman

is an open bijection of N x M x A x N onto an open submanifold NMAN c G.

17: LEMMA The camplement of NMAN in G is a set of Haar measure O.

[Using the Bruhat decamposition, the said complement is seen to be a finite

union of smooth images of C” manifolds of dimension < dim G so one can quote #8.]

The pair (N, MAN) is therefore admissible, hence v f € C,(G) (cf. 52,#22),
i) o fau

_ A~ (man) -
=R x vy BOmAR) 3y i () iy (man)



I
-,

- 1 -
T x MAN f (nman) A man) duﬁ(n)duMAN(man)

Il
-,

= 2p (1 ) =
T x MAN f (man) e ©g a duﬁ(n)dul\m(man)

J§x M xAxN f(ﬁman)e2p(1og a)duﬁ(ﬁ)dUM(m)duA(a)duN(n) .

18: RAPPEL Let V be a finite dimensional real Hilbert space —-- then
the canonical Haar measure dV on V is that in which the parallelepiped determined
by an orthonormal basis has unit measure.

[Spelled out, if {Xl,. .o ,Xn} is an orthonormal basis for V and if Q is the
d
set of all points X= I c.X. (c: € R) with 0 < c. < 1. then
jmp FiH i

fQ av = 1.]

[Note: Matters are independent of the particular choice of an orthonormal
basis since the transition matrix between any two such is orthogonal, hence the

absolute value of its determinant is 1.]

9: SUBLEMMA Iet V be a finite dimensional real Hilbert space; let

Vl c Vv, V2 c V be subspaces. Suppose that T:Vl > V2 is a bijective linear trans-
formation —— then v ¢ € CC(VZ),
J

V2¢dV2= |det T| fvlcponv,

where the determinant is camputed relative to an orthonormal basis in V; and an

orthonormal basis in V2.‘



20: N.B. Symbolically,

av, = |det T| av;.

21: CONVENTION Extend the Killing form on B.g X Bgg tO a nondegenerate

ss
symmetric bilinear form B:g x g -+ R with the following properties:
® B is Ad G invariant.
e B is ¢-invariant.
® k and p are orthogonal under B.

e B is positive definite on p and negative definite on k.

22: N.B. The bilinear form

(X,Y)e = -B(X,0Y) (X,Y € g)

equips g with the structure of a real Hilbert space.

Relative to this data, any subspace 1 of g carries a canonical Haar measure

dl, an instance being the Lie algebra 1 of a closed Lie subgroup L of G.

23: EXAMPLE k and y are orthogonal and dg = dkdy.

[Note: The orthogonal projections Ek’ E a of g onto k,p are given by

_1+8
o
_1-9
E]:(— 3

respectively.]

24: CONSTRUCTION Choose an open neighborhood N0 of0 inl and an open



neighborhood Ne of e in L such that exp is an analytic diffeomorphism of NO onto

Ne' Normalize the left Haar measure W, on L in such a way that v £ € Cc(Ne) ’
Sy fdu. = [, Fdl,
Ne L NO

where

F(X) = f(exp X) det

ad (X)

1omad (%) _l 1

This fixes M. uniquely, call it dL, and its definition is independent of the choice

L
of NO.
25: N.B. If L is campact, put
vol(L) = fL dL
and tennm%—ﬁsthenonnalizedHaarmea&me of L.

Now write after Iwasawa G = KAN, thus v f € CC (G),

Ig Bug = Ty o g x £ e® 19 Vg myay @ap m).

On the right hand side, take
- 1 - -
Then these choices determine duG uniquely, denote it by the symbol dstG and refer

to it as the standard Haar measure of G.

26: LEMMA

1 .. on
- =dim N
ag=2 2 20 (199 a) gpanan.



10.

PROOF It suffices to show that

To establish this, write

the sum being orthogonal, hence

dg = dkdp

dkdadEpn

|det E|n|akdadn.

Choose an orthonormal basis Zi for n —— then

Z., E2.). = 6..
(Enl nZJ)G 613/2

which implies that /2 E Zi is an orthonormal basis for Epn, so

Y
1
V2
. - 3 dim N
|det E n| = . =2
b
1
V2
[Note:
dim N = dim G/K - rank G/K.]
Therefore

g g = e2P(log a) ( dK

st VoL@, PN



11.

1

-3 dim N
= 1 2 2p(log a)
vo]_(K) 1 K e dRAAIN
- 7 dim N
2
1 _.

- vol (K__) 2 dG.



§1. TRANSVERSALS

Iet G be a locally campact group.

: SUBLEMMA Fix x € G — then for any open neighborhood U of e there

exists an open neighborhood V of x such that V—lV c U.

2: DEFINITION A subgroup I' ¢ G is a discrete subgroup if the relative

topology on T' is the discrete topology.

3: LEMMA A subgroup I' «¢ G is discrete iff there exists an open neighbor-

hood U of e (in G) such that ' n U = {e}.

4: THEOREM Suppose that ' ¢ G is a discrete subgroup -- then T is closed

in G, hence G/T is a locally compact Hausdorff space (cf. I, §1, #14).

S>: EXAMPLE

@ Take G=R, I' = 7.
e Take G=A, T =Q.
oTakeG=I,I‘=QX.

6: LEMMA Let T be a discrete subgroup of G —— then there exists an open

neighborhood U0 of e such that UOY N U0 =g for all y z e in T.

PROOF First choose U per #3. This done, choose V per #1 (with x = €) and

putUO=V. AssumenowthatuOEonnUO, thusu0=u0Y (3 uOEUO), SO

y = ualu(') € U_O']‘U0 =vivcu

=>'Y=e.



7: SUBLEMMA Let H be a closed subgroup of G and give G/H the quotient
topology —— then the projection 7:G + G/H is an open map.
[Let U ¢ G be a nonampty open set, the claim being that w(U) < G/H is a

ronempty open set. But 7(U) is open iff 'n—l('n(U)) is open. And

TT—l(TT(U)) =UH= U Uh
heH

which is a union of open sets.]

8: THEOREM Suppose that ' < G is a discrete subgroup -- then the pro-

jection m:G » G/T is a local homecmorphisnm.

PROOF Fix x € G and choose Uy per #6 to get an open neighborhood xU, of x

with the property that vy =z e in T,
XUOY N XUO = X(UO'Y N UO) = f.

Therefore the arrow XUy > 'rr(xUO) is a continuous bijection, hence is a homeo-

morphism (cf. #7).

9: DEFINITION Let T be a discrete subgroup of G —- then a Borel subset

T c G is a transversal for G/T if the restriction of 1 to T is bijective.

10: N.B. In other words, a transversal T for G/T is a Borel subset of

G which meets each coset exactly once.

1: THEOREM Suppose that I < G is a discrete subgroup. Assume: G is

second countable —- then G/T admits a transversal €.

12: REMARK A transversal T for G/T gives rise to a unique section

T:G/T + T c G (m o Tt = id) which is Borel measurable if G is second countable.



13: N.B. Tacitly, Lie groups are assumed to be second countable (cf. I,
§5), hence o~compact (cf. I, §2, #2).
[Note: Still, in this situation it is not claimed (nor is it true in general)

that smooth sections exist.]

14: EXAMPIE Take G= R, I' = Z — then [0,1[ is a transversal for R/Z.

15: EXAMPLE Take G=A, T =Q — thenﬂlp x [0,1[ is a transversal for
p
A/Q.
16: EXAMPLE Take G = I, T = Q —— then J] z; x R}, is a transversal for
p
X
1/Q".
17: CONVENTION The Haar measure on a discrete group I' is the counting
measure:

[ E(y)dnly) = Z £(v).
r r YeT

[Note: T is unimodular (being discrete).]

18: IFMMA If T < G is a discrete subgroup and if G is second countable,

then T is at most countable.

19: IEMMA If T < G is a discrete subgroup, if G is second countable and

if ¢ is a transversal for G/T, then

G= U Ty (disjoint union),
yer

S fdp,.= = [_  fdp
¢ MM T LYoy e

T
f@: £f° o ﬂdpg.



[Note: vxeT,

£ o M x) = £ (xI)

= fF f(XY)dUF(Y)

L f(xy).]
Yer

20: RAPPEL If G is unimodular and if e is fixed, then G/T admits an

invariant measure g /T characterized by the condition that for all f € Cc @,

fg E@dug ) = Io fr(k)duG/F(sc) (k = xT)  (cf. I, 54, 47).

21: THEOREM If T < G is a discrete subgroup, if G is second countable,
if T is a transversal for G/I', if G is unimodular and if e is fixed, then
v f e Cc @),
N N e T
G/T G/T T G*
[Simply assemble the foregoing data.]
[Note: Since the fr (f € CC(G)) exhaust CC(G/P) (cf. I, 84, #3), it follows
that v ¢ € C_(6/T),
Joyr 9 p = g ¢ o TG

In particular, this holds for all ¢ if G/T is campact.]

22: DEFINITION Iet T be a discrete subgroup of G —— then a Borel subset

F ¢ G is a fundamental domain for G/T if it differs from a transversal by a set

of Haar measure 0 (left or right).



23: EXAMPIE Take G =R, I' = Z — then [0,1] is a fundamental domain

24: N.B. What was said in #21 goes through verbatim if "transversal"
is replaced by "fundamental damain".



§2. LATTICES
ILet G be a second countable locally campact group, I' ¢ G a discrete subgroup.

1l: NOTATION Given a finite subset A ¢ T, let GA denote the centralizer

of A in G.

2: N.B. GA is closed in G.

3: LEMA GAF is closed in G.

PROOF lLet X € G, and Y, € I be sequences such that X Y, converges to a limit

A

x —— then the claim is that x € GAI‘. To begin with, v y € A,

X ¥

. -1 -1
Lim (Yn %h YXnYn)

n —»> o©

. -1
lim Yn Yqe

n > o

Since T is discrete, 3 n, (v) :
n > n.(y) => L. =1
= oW =2 Y YW T Yne1YVnel

= -l
= Ynil'n € ©pc

But A is finite, thus 3 n, independent of the choice of y such that

0

n= n0 = Yn = annO (yn € GA)

ann = xnann0 = ZnYn0 (Zn € GA)



Z= X VY, XY (n > )

xyr_ll €G
0

A = X € GAI‘.

4: NOTATION Given vy € T, GY is its centralizer in G and FY (= GY nr

is its centralizer in T.

5: N.B. GY is a closed subgroup of G, as is FY (cf. §1, #4).

6: IEMMA GYF is closed in G (cf. #3 (take A = {v})).

7: SUBLEMMA If H is a closed subgroup of G, if m:G -+ G/H is the projection

and if F is a closed subset of G that is the union of cosets xH, then w(¥) is

closed in G/H.

8: APPLICATION The image of

GT = U xT

xEGY

in G/T is closed, hence is a locally compact Hausdorff space.

9: REMARK The projection m:G -~ G/T is an open map (cf. §1, #7) but, in
general, it is not a closed map.
[Take G= R, T = Z and view R/Z as [0,1[ equipped with the topology in which

an open basis consists of all sets la,b[ (0 < a < b < 1) and of all sets



[0,al U 1b,1[ (0 <ca <b < 1l) =—- then

3 9 -n
A—{"z“" "4—’ s ey n+2 7 ...}
is closed in R but
1 1 1
TT(A) ={—2-, Z, esey _21'1’ ...]’

is not closed in [0,1[.]

Considered as families of subsets of G, GYI‘/I“ and TT(Gy) are identical: The
elements of GYI‘/I‘ are the cosets xI with x € Gyl‘ and the elements of TT(GY) are

the cosets xI' with x € GY.

10: LEMMA The identity map

{xT:x € GY I} » {xI'x € GY}
is a homeomorphism.

[Note: That is to say, the two topologies are the same.]

11: N.B. One may then identify w(GY) with GYF/T which is therefore closed

in G/T (cf. #8).

12: NOTATION ILet
r:GI/T»~G/G NnT
v/ v !
be the arrow defined by

r(xl) = x(GY non.

13: N.B. r is bijective.



14: THEOREM r is a homeomorphiam.

This is not completely obvious and it will be best to break the proof into

two parts.

15: LEMMA r carries open subsets of GYI"/F onto open subsets of G\/GY nr.
PROOF An open subset of GYF/I‘ is a subset {xT:x € X}, where X c GY' such
that XT' is open in GYF viewed as a subspace of G. Since
X(G. . nT) =XTn G
( v ) !
it follows that X(GY N I') is an open subset of GY in its relative topology as

a subspace of G, thus by the very definition of the topology on G\/GY nr,

r{xr:x ¢ X} = {X(GY nT):x e X}

is an open absetofG/GYnF.

G r 1—‘.
Y /

PROOF Let {y(c;Y NT):zy €Y} (Y c GY) be an open subset of GV/GY N I' — then
Y(GY N I') is an open subset of GY' ®o
m@ N = {yT:y € Y}
is open in GYI'/I‘ (see the Appendix infra) or still,
{yr:y € Y} = r—l{y(GY nr):y ey}

is open in GYI'/I‘.

17: EXAMPIE Take G =R, I' = Z and H = v2 Z - then the argument used in




#15 is applicable if the GY there is replaced by H, thus the map

HHNT >~H+ I/T
is continuous. Nevertheless, it is not a homeomorphism.
[H N T is trivial so H/H N T is isomorphic to Z and carries the discrete

topology. Meanwhile, H+ I'= /2 Z + Z is dense in R, hence

H+ I/T=V2 171+ 1/1
is dense in R/Z = T. It is isomorphic to Z as a group but it is not discrete
since every nonempty open subset of T intersects it in an infinite set implying
thereby that none of its finite subsets are open.]
[Note: The difference here is this: GYI‘/ I' is locally compact but H + I/T

is not locally compact.]

18: DEFINITION I' is said to be a lattice if G/T admits a finite invariant

measure (cf. I, 84, #4), T being termed uniform or nommiform according to whether

G/T 1is compact or not.

19: N.B. If there is a lattice in G, then G is necessarily unimodular
(cf. I, §3, #11 and I, 54, #10).

[Note: A discrete cocompact subgroup is necessarily a uniform lattice... .]
20: EXAMPLE 7 is a uniform lattice in R.
2l: EXAMPIE SL(2,7) is a nonuniform lattice in SL(2,R).

22: THEOREM Suppose that T' < G is a uniform lattice ~—- then v y € T,

'y

G /T is compact.
/Ty 15 conpa



PROOF Gyl“/l‘ is closed in G/T, hence is compact (this being the case of

G/T). On the other hand,

is a homeomorphism (cf. #14).

[Note: Consequently, I‘Y c GY is a uniform lattice and GY is unimodular.]

23: NOTATION [T] is a set of representatives for the I'-conjugacy classes

Put

$ = G/T. x {y}
YEIT] ¥

and define y:$ -~ G by the rule
= vl
YELL,Y) = xrx T

24: N.B. FY is a discrete subgroup of G, thus FY is closed in G (cf.

§1, #4) and therefore the quotient G/ FY is a locally compact Hausdorff space from

which it follows that $ is a locally compact Hausdorff space.

25: DEFINITION Iet X and Y be locally compact Hausdorff spaces, £:X > Y
a continuous function -- then f is proper if for every compact subset K of Y, the
inverse image £FLK) isa compact subset of X.

26: THEOREM Suppose that I' <G is a uniform lattice -- then ¢ is a proper

map.



27: NOTATION Given y € T, let

[¥lg = (xyx Tix € G}.

28: APPLICATION In the uniform situation, for any compact subset K c G,

fy € [M:lylg N K = 4}

is finite.

29: LEMMA A proper map f:X - Y is closed:

S c X closed => £(8) c Y closed.

30: APPLICATION In the uniform situation, v vy € T, [y] c is closed.
[In fact,

Ylg=v( U G/vy % {ygh) .1
¢ Tygmgpm 00

31: N.B. Accordingly, [v] G is a locally compact Hausdorff space and the

canonical arrow
G/GY -> [Y]G

is a homeomorphism.
APPENDIX

Denote by ﬁ[GY the restriction of m:G » G/T to GY'

CRITERION Suppose that there exist nonempty open sets

Uc G, VcG
c o c Yr/r

such that the restriction of Tr[GY to U is an open continuous map of U onto V ——

then Tr]GY is open.



PROCF Given x € GY and an open neighborhood W of x in GY , it suffices to
show that (n'|Gy) (W) contains an open neighborhood Nx of (TT]GY) (x). So fix a
point y € U and put

U=un yx-lw,
an open neighborhood of y in U, thus the image (vrlGY) (U) is an open subset of
Gyl“/ [ or still, UT is an open subset of Gyl", hence
xy T = Gy U nwWr
is an open subset of GYI' and

X € xy—'lU n w.
Put now

Nx = {zl':z € xy_lU n wWi.
Then Nx is an open subset of GYI'/I’ contained in

("IGY) (W) = {wl':w € W}

to which (TTle) (x) belongs.

There is a commutative diagram

17|G

Y
G GI/T
Y > G, I/
-1
r
G G/G. NT
Y - > 6y/Cy
Y

and Gyf/ I' is a locally compact Hausdorff space (cf. #8), thus is a Baire space.



LEMMA Tr|GY is an open map.

PROOF The quotient G \/GY N I' is second countable, hence o-compact, hence

(o]
G/G. NT= U K
Y/ Y =1 o

where Kys Ky, ... are campact. In view of #15,
r_l:GY/G NT>GTI/T
Y Y
is continuous and one-to-one, so V n the restriction of r'-l to Kn is a homeo-

. _ -1 .
morphism of Kn onto Ln =r (Kn) :

GI/T= U L,
hf n=ln

a countable union of campacta. Being Baire, it therefore follows that 3 n € N
and a nonempty open subset V of GYF/I‘ such that V c r + (L). Put
u= (rlc) " w.
Y
Then U c GY is nonempty and open and the restriction of TTY to U is an open con-
tinuous map of U onto r(V) or still, the restriction of 1r[GY to U is an open

continuous map of U onto V.



§3. UNIFORMLY INTEGRABLE FUNCTIONS

Let G be a unimodular locally compact group and, generically, let Ul be a

compact symmetric neighborhood of the identity in G.

1l: NOTATION Given a continuous function f on G, put

£,00) = swp [f(xyz)| (v €G).
x,2z€l

2: LEMMA fll € C(G), i.e., is a continuous function on G.

3: DEFINITION A continuous function f on G is said to be uniformly

integrable if there exists a U such that f11 € L:L Q).

4: N.B. Since |f| < fll' it is clear that if f is uniformly integrable,

then f is integrable: £ ¢ Ll G).
5: NOTATION Write CUN(G) for the set of continuous functions on G that
are uniformly integrable.
6: LEMMA
CC(G) c CUN(G) c CO(G) .

[Note: As usual, Cc (G) is the set of continuous functions on G that are
compactly supported and C0 (G) is the set of continuous functions on G that vanish
at infinity.]

7: LEMMA

@ < 17(@.



[Integrable functions in C0 (G) are square integrable.

2
8: EXAMPLE Take G = R —- then f(x) = ¢ © is uniformly integrable.

9: LEMMA If f,g € C(G), then fxg € Cp(G).

[Working with a common 1ii,

(£xg),,(¥) = XS;g]l IfG £ (u)g(u_lXYZ)duG(u) ,

swp |15 feaglyziau,w |
X,2€ll

IA

sup [l £ () g (uyz) |dug(w)
x,z€ll

IN

Ig £ @, (@) dug )

= (fyxqy) (7).,

which suffices.

[Note: The convolution fxg is continuous.]
Let H < G be a closed subgroup and assume that H is unimodular and cocompact.

10: NOTATION L2 (G/H) is the Hilbert space associated with Mg 1 (the

invariant measure on G/H per I, §4, #5).

11: NOTATTION LG /H is the left translation representation of G on L2 (G/H) .

12: THEOREM Iet f € CUN(G) —— then



is an integral operator on L2 (G/H) with continuous kernel

Ke(x,y) = Sy £Ghy D () .

Since

C(G/H x G/H) < L2(G/H x G/H),

it follows that v £ € Cuy(G), Ly, (f) is Hilbert-Schmidt, hence is compact.

13: SUBLEMMA Iet U be a unitary representation of G on a Hilbert space

H with the property that v £ € C - (G), the operator
Uf) = /5 £(x)UE)dy, ()
is compact -- then U is discretely decomposable, a given irreducible unitary
representation of G occurring at most a finite number of times in the orthogonal
decomposition of U.
[Note: If G is a Lie group, then one can replace Cc (G) by C:(G) .J

14: N.B. If G is second countable, then H is separable.

15: APPLICATION Take H = L2 (G/H), U= LG Y then there exist non-

negative integers m(H,LG /H) (I € é) such that

L

o/ = &, m(I,L /H)H‘

nG G



§4. THE SELBERG TRACE FORMULA

Iet G be a second countable locally compact group, I' ¢ G a discrete sub-
group. Assume: [T is a uniform lattice —- then G/T is cocompact and G is

necessarily unimodular (cf. §2, #19).

Working with L2 (G/T), there is an orthogonal decomposition

L

/T = e m(H'LG/I’)H (cf. §3, #15),

reG

the multiplicities m(H,LG /I’) being certain nonnegative integers.

1l: RAPPEL V f € CUN(G) ’ LG/I‘(f) is an integral operator on L2 (G/T)

with continuous kernel

Ke(e,y) = I Fxyy L) (cf. §3, #12).
yer

[Note: This implies that LG /I‘(f) is Hilbert-Schmidt. ]

2: CONVENTION Fix a Haar measure U On G, take the counting measure on

T', and normalize the invariant measure g /7 on G/T by the stipulation

fo = fG/l“ Ir = fG/l“ %).

If £ =g % g* (g € Cy(G)), then £ € Cu(G) (cf. §3, #9),

is trace class and (cf. B, II, §2, #8)

tr Ly p(£)) = fop Re(oR)dug p(R) - G = xT).



3: REMARK The assumption that £ = g % g* (g € CUN(G)) is not restrictive.

For if £ = g * h* (g,h € CUN(G)), put

T(g,h) = g * h*

and using the same letter for the diagonal, note that
1
T(g,h) = Z-(T(g+h) - T(g-h)

- /I T(g-/~Ih) +/<I T(g + /-L h)).

let XG/I‘ be the characteristic function of G/T, i.e., the function = 1.
Choose o € C_(G) :o = Xg/r (. I, 54, #3), thus v x € G,

J &) = T oalxy) = 1.
yer

One can then write

£, m(l,L.,.) tr(I(f))
ee G/T

= tr (g (D)
= IG/I‘ Kf(}'(,}'()duG/I. (%)

= IE Kf(xI‘,xI‘)duG(x) (cf. §1, #21)

Jo (L alxy))R.(x[,xI)du. (x)
4 YET t G

S I a(xy)Ko(xy,xy)dy. (X)
T YET £ G

= Iy @) o mEAux)

= fG o (x)Kf (%x,x) duG (%)



-1
Joax) I flxyx T)du.(x)
G ver G

-1
T S, ox)Elxyx T)dy.(x).
ver © G

4: NOTATION For any vy € T,

GY = centralizer of vy in G
FY = centralizer of y in T.

5: RAPPEL FY is a uniform lattice in GY (cf. §2, #22).

[Note: Consequently, GY is unimodular.]

6: NOTATION For any vy € T,

I

[Y]I‘ conjugacy class of vy in T

[Y]G conjugacy class of y in G.

7: RAPPEL There are canonical bijections
/T, > Ivlp

G/GY > Ivlge

Returning to the camputation, break the sum over I' into conjugacy classes

in T, the contribution fram

- -1,
[Y]T = {§y§ ":8 € T/TY}



X i) G o) £(xsy G_lx—l) du, (x)
SeT/T,,

5 I a(xé_l)f(xdx-l)duG(x)
et/

fo (2 ™ EG Daugk).
8er/T
Y
8: CONVENTION Supplementing the agreements in #2, fix a Haar measure

By on GY' take the counting measure on I‘Y, and normalize the invariant measure
Y

uGY /Fy on G Y/FY by the stipulation

fn = i) = s z ).
GY GY/ FY I‘Y G \/FY y

Next, fix u via
G/G
/ Y

T =
G/ Y (G/G )/(GY/ )

and put

Moving on,

So(x a(xé_l))f(xyx_l)duG(x)
G S€T/T,



But
is = 1, leaving

Summary :

-1 .
tr(L.,.(f)) = X S f(xyx 7)du (x),
G/T velr] G/I‘Y G/I‘Y

the sum being taken over a set of representatives for the I'-conjugacy classes in

I' (cf. 82, #23).

9: N.B.

-1 .

-1 -1 . .
= f f f(xnyn "x T)du (n))du (x)
G/GY G Y/1"Y G Y/1“Y G/GY
-1 . .
= [ s f(xyx 7)du (n))adu (%)
G/GY GY/I‘Y GY/FY G/GY
S

-1 .
f(xyx 7) (S du )du (%)
G/GY GY/FY G Y/ 1"Y G/GY

_l -
vol (GY/I'Y) S G /GY f (xyx )cluG /GY (%).

10: DEFINITION Given f € CUN(G) * CUN(G) , the Selberg trace formula is




the relation

%, m(h,L

YEr(I(£))
TeG G/T

-1 .
= I vol(G /T.) [ f(xyx 7)du (%),
YEIT] YTy o Sy /G,

their common value being

t“r(LG/F(f))‘

1l: REMARK Suppose that G is a Lie group -- then
c:(G) * c°c°(G) = c:(G) (Dixmier-Malliavin).
Since
c°c°(G) c Cye (@

it follows that the Selberg trace formula is valid for all f € C:(G) .

Let G be a second countable locally compact group, I' ¢ G a uniform lattice.

12: LEMMA Let x:G -~ T be a unitary character -- then the multiplicity

of y in L2(G/T) is 1 if x(I) = {1} and is 0 otherwise.
Now take G abelian and identify G with the unitary character group of
G:II <—> ¥, the Fourier transform being defined by

Er(I(6) = £ = /g £EXEdu 6.

13: NOTATION Let

= {x €Gix(y) =1Vy€Tkh



14: N.B. Therefore

X € Pl => m(X'LG/F) =1

X € rto=> m(x,LG/F) = 0.

The Selberg trace formula thus simplifies:

® Matters on the "spectral side" reduce to

r f(x).
yert

® Matters on the "geometric side" reduce to

wl(G/T) Z £(y).
Yer

15: DEFINITION The relation

L E(x) =vol(G/T) I £(y)
XEFl Yer

is the Poisson summation formula (cf. A, III, §4, #7) (in that situation

vol (G/T) = J’%{Q .




§5. FUNCTIONS OF REGULAR GROWTH

Let G be a second countable locally compact group, I' ¢ G a uniform lattice.

While CUN(G) is theoretically convenient, there is a larger class of functions that

can be fed into the Selberg trace formula.

1l: DEFINITION Let ¢ € C(G) n L:L (G) be nonnegative -— then ¢ is said to be

of regular growth if there is a compact symmetric neighborhood 1l of the identity

in G and a positive constant C (depending on ¢ and 11) such that v y € G,

by) = C [y oGay)Ang ).

2: N.B. In terms of the characteristic function Xuof L,vy € G,

(Xg * O 4 = Jg ;GO y)dug ()

I

Ty 0  Ly) A (%)

Il

R L

I

fyy &G Qg )

3: EXAMPLE Take G = R and fix a real number r > 0 sach that

p 1
RY @+ [l¥|ph*

dy < =,

Given I, fix a real number N > 0 such that v X € 11,

@+ |Y|DF ew@a+ |[x+¥|D7F.



Then
1 dax
LI G x + | pF
o 1 Cdax
=@+ |]Y|p.
Therefore

o) = @+ |Jx|p~

is of regular growth

4: EXAMPLE Let G be a connected semisimple Lie group with finite center

and fix a real number r > 0 such that

2 -r
fg l——17n) @+ o)) T4,y <
Given 11, fix a real number M > 0 such that v x € 1,
% () =M |—o—|%xy)
and fix a real mumber N > 0 such that Vv x € 11,

L+ o) T <N+ olxy)) T.

Then

2 -
sy Tu 176w @ + o) Taug 0

1 2 -
vol (1) fu -——|" ) @ + o(¥)) rduG(x)

vV

l——|%(v) @ + oy)) "L

i



Therefore

) = =) @ + oy T
is of regular growth.

5: DEFINITION Let f be a continuous function on G —— then f is admissible
if there exists a function ¢ of regular growth such that v y € G,

£ | < ¢(¥) (= Clxy * 9 (V).

[Note: Admissible functions are integrable.]
6: EXAMPLE The rapidly decreasing functions on R? are admissible (cf. #3).

7: IEMMA If f € CUN(G) , then f is admissible.

PROOF V vy € G, |f(y)]| < £,(v). And
£, = sup |f(uyz) |
u,z€l

IA

sup |f(uxyz)| (x € 1)
u,z€el

_ vol(ll)
B @ = o @

1
vora ‘u @)

IA

1 ‘

A

1
= T fu Tyt dg ) -



Therefore fu is of regular growth, hence f is admissible.

8: LEMMA Suppose that |f| < |g|, where g is admissible, say |g| < ¢ —-
then £ is admissible (clear) as is f % f.
[For

|£ * £]

IA

1£] = |£]

N

lgl = g
< ¥ |g].
And ¢y * |g| is of regular growth:

Y x |g| < (Cxu*lI)) * |g]|

Clxy * W |g)).
The condition of admissible is then met by
¢ =¥ * [g].]

[Note: If f is admissible, then £, % £, is

1 .
fZEC(G)ﬂL(G)andef 1 5

1 1

admissible. Proof:

A

|fl * £, lfll * |f2]

by * |5,

A

Clxy * (4 * [£,1).]

A

9: DEFINITION A series of functions fl'f2" .. on a locally compact

Hausdorff space X is locally dominantly absolutely convergent (ldac) if for every

compact set K c X there exists a positive constant MK such that v k € K,



5.

I E (R | < M.

n

10: CRITERION Let £ € C(G) N Ll (G). Assume: The operator (f) is

Lo/t
trace class and the series

I EGyy )

Yer
is 1ldac on G x G to a separately continuous function -- then the Selberg trace

formula obtains:

-1 .
tr (L (£)) = I vol(G /T ) [ f(xyx T)du (x),
G/T verr] \/ Y G/GY G/GY

the sum on the right hand side being absolutely convergent.

[First of all,

_ -1 .
t:\-”(LG/F(f)) = fG/F Yér f (xyx )d“G/r(X) (cf. B, II, §2, #8).

Proceeding, fix a compact set K ¢ G: KI' = G (cf. #11 infra) and choose MK > 0:

-1
kL ER=> L [|E(ky )| <M.
Yer &

Here, of course, the ldac condition is per K x Knl c G X G. Given X,y € G,

3 Yx’Yy € F:xYx,yYY € K, =0

-1 -1 -1
I lfxy )= I |fxvyy,y D < M,
yeT yel Y X

from which
-1 .
M VOL(G/T) = fo ) yér £ Gevy ) ldng p ()«

Now interchange sum and integral, the ensuing formal manipulation being justified

by Fubini.]

11: SUBLEMMA There exists a compact set K < G such that KI' = G.



[Let U be an open neighborhood of e such that U is compact -- then the
collection {m(xU):x € G} is an open covering of G/T', thus there is a finite sub-
collection

™ (X1U) , T (sz) PR (xnU)

that covers G/T and one may take

xlU U x2U U eee U xnU.

K =
Indeed,
G/T = {kI:k € K},

so given x € G,

xI'=kI' @3 k) =x=%ky (3 vy) = x €KTI.]
[Note: It can be shown that K contains a transversal T which is therefore

relatively compact. ]

Suppose that f is admissible -- then V x,y € G,

£y ™D | < oy D)
-1
< Cf).l ¢ (uxyy )duG(u)-

12: LFMMA Fix X,y € G — then Vv YyrYy € r,

1

-1 -
Ixy,y © N Uxy,y = g

iff

-1

-1.-1
Yo, € X

0 Ux.

[In one direction,



2 WX T XYVohy

Tax = y,y7t.]
X Uy Yy 271

1

Since T is discrete, the compact set x T8 llix contains a finite mmber N of

elements of I'. So, for fixed x,y, not more than N of the uxyzy—l can intersect

-1
uxyly .

13: N.B. Consider the case when N = 1. Since it is always true that

ec x—lu-lux, in this situation the uxyy—l are disjoint, hence

-1
I [, ¢(uxyy T)dus ()
verl i G

< Jg 9dug < .

14: RAPPEL If p is a measure, then

n n n n
T ouX:) =u(u X)) +ulu U X.NnZX)
=1 t =1 * i=1 =1 *

i<j



n n n n

+u(U U U X NX NX)+ - +uln X).
i=1 =1 k=1 * J *x =1t
i<j<k

15: IEMMA Fix X,y € G —— then

I |fGay D] < NC Sy gdug <
YET

16: N.B. More is true: The series

L EGyy D)

YeT
is ldac on G X G to a continuous function.
[The point is that the preceding estimate is uniform in x and y if these

variables are confined to compacta KX and Ky.]
[Note: Consequently,

f admissible => L,

G/T (£f) Hilbert-Schmidt.]

17: THEOREM If f is admissible and if LG/I'(f) is trace class, then the

Selberg trace formula obtains (cf. #10).

18: N.B.
f admissible => £ * £ admissible (cf. #8).
Therefore

LG/I‘(f * £f) = LG/F(f)LG/F(f)

is trace class and the foregoing is applicable.



Specialize now to the case when G is a connected semisimple Lie group with
finite center.
19: RAPPEL Cl (G) is the Ll—Sckmartz space of G. It is closed under

convolution and contains C:;(G) as a dense subspace.

Iet £ € Cl(G) and take r > 0 per #4 - then there exists a constant C > 0

such that

E@ | <C |——Pma+oenN™ (vea.

Therefore f is admissible.

20: LEMMA LG/I‘(f) is trace class.

[Using the theory of the parametrix, write
f=gxu+fxv,

where g € Cl (G) (a certain derivative of f), uy € CE(G) , VE CZ(G) , SO

The functions

£,9,u,v

are admissible, hence the operators

are Hilbert-Schmidt.]

21: sCHOLIM V f € Cl (G), the Selberg trace formula obtains.



10.

22: N.B. The assignment
f > tr(LG/I,(f))

is continuous in the topology of Cl(G) .

[Note: Analogously, the assignment

is continuous in the topology of C:(G) , i.e., is a distribution on G.]

APPENDIX

By way of reconciliation, consider the case when G is finite and use the

notation of A, III, §3 and §4 -- then given £ € C(G), ¢ € C(G/T), we have

(LG/I‘(f) $) (x) L Re(x,9)o(y),

yeG
where in this context
1 -1
Ko(x,y) = T L f(xyy 7).
£ r yel
Here
- Wg = counting measure on G
up = counting measure on I.
Write
n
G= || xTI.
k=1 *x
Then for any £ € C(G),
Jo fug = & f(x)

xeG
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B r
- fG/I‘ £ dug/p

n
r Z f(ka),
k=1 yeT

[='e) “G/I‘ is counting measure on G/T.

Now explicate matters:

(L/p(0)9) () = I Ke(x,9)()

VEG
n

= kil ér Ke(xx Y) 0%, Y)
n

= k-il Yér Ke (%) 6 ()
n

=L IT] - Re(x,x)00x)
n

1 -1
= 1 |r| . T flxyx, )o(x,)
k=1 T ver kK

n "‘l
= I I fxyx, )ox)
k=1 yeT k 7P

which establishes that Ls /P(f) is an integral operator on C(G/T) with kernel
I £y D),
Yer

this being the "K_." of §4, #1.

il

There is more to be said. Thus given £ € C(G), we have

1 -1
tr (L {(£)) = ¢ L oflxyx ) (cE. A, ITII, §3, #8)
G/T xeG 1T1 ver
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n
1
= I 0(£,v.) (cf. A, III, §4, #2).
i:lm 'Yl ’ ’ ’ )
1

Here
[r] = {er---rYn}
while
!
O(f,Yi) = 1z f(XYiX )
XeG
=G, | = f(inx_l).
i xeG/G
Yi
Therefore
G
16 sry =4
vo =
Yi Y4 Fy.
i
= [G :T 1].
Yi Y

N.B. The Haar measures g (or e ) and Up (or Wp ) are counting measures,
Y Y

hence the invariant measure UG/I' (or uGY/F ) is counting measure, hence the
Y

invariant measure g /G per
Y

is counting measure, its total volume being

G
[G:G_] =4}—JT .
Y G,

Finally, the invariant measure Ho/T per
Y

f =/ )
G/l"Y G/GY G%FY
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is counting measure and

vol (G/I‘Y) vol (G/GY)VOl (GY/FY) ’

i.e.,

[G: I'Y] [G:GY] [GY: I‘Y] ’

I‘Y GY Y Y

G
Y| =[G :T.]
r T 1.
Y Y Y

i.e.,

Matters are thus consistent, so the bottam line is that the global trace

formula of A, ITII, §4, #6 is in this context the Selberg trace formula.



§6. DISCRETE SERIES
Iet G be a unimodular locally compact group.

1l: DEFINITION Let Il be an irreducible unitary representation of G on

a Hilbert space V(II) —— then I is square integrable if 3 v # 0 in V(II) such that

the coefficient
X > <IX)v,v>

is square integrable on G.

2: THEOREM If Il is square integrable, then for all ViV, € v(D), the

coefficient

X > <[ (X)Vl,V2>

lies in L2 (G) and there exists a unique positive real number dT’ (depending on
L
the normalization of the Haar measure on G but independent of vl,vz) such that

2 1 2 2
Io |<E@)vy vy> | dug(x) = - | 1oy [ vy 115

3: DEFINITION dI’ is called the formal dimension of I.
L

[Note: If G is compact, then every irreducible unitary representation of G
is square integrable and d]1 is the dimension of I in the usual sense provided

L

deuG=l.

4: NOTATION G 3 is the subset of G canmprised of the square integrable

representations and is called the discrete series for G.

[Note: éd may very well be empty (e.g., take G = R).]



REMARK If ?;d is not empty, then the center of G is compact (the converse

[92]

N

being false).

6:

N.B. The elements of éd are precisely those irreducible unitary

representations of G which occur as irreducible subrepresentations of the left

translation representation of G on LZ(G) .

7: NOTATION Given a T € G, let

¢ ® =<Ix-,-> (EeQ)

.7

stand for a generic coefficient.

8: THEOREM Suppose that Ii is square integrable -- then V V1Yo v Wy Wy

in v(ID),

J G o) (x) ¢w WZ(X)duG(x)

ML 1’

-1 =
= a—l' <V1,Wl><V2,W2>.

foven

9: APPLICATION

1
= e <V ,W >¢ -
c':lH 1’72 Wy Vs

[Note: If vy =V, =W T W, is a unit vector, call it v and abbreviate ¢v,v
to ¢, then

16112 = and ¢ * ¢ = - 6.]

L L



10: DEFINITION ILet II be an irreducible unitary representation of G on
a Hilbert space V(II) — then II is integrable if 3 v # 0 in V(II) such that the
coefficient

X = <[[(x)v,v>

is integrable on G.

11: N.B. The coefficient
x » <IX)v,v>
is bounded and Ll, hence is L2. Therefore

"I integrable" => "II square integrable"

but the converse is false.

12: THEOREM If II is integrable, then there exists a dense subspace V(I) "

of V() such that for all v;,v, in V()" the coefficient
x -+ <[} (x)vl,v2>
. . 1
lies in L7 (G).
[Note: If ¢v v € Ll (G), then one can take

v~ = H(C, () v.]

Take G second countable and assume that I € 8 is integrable, say (bv v € I..l (G) -
14
then v £ € C. (@),

1
‘neyv, ey €L @ (e #12).

Put v, = II(f)v, normalized by ||v

0 = 1, and let

ol

¢O = d]’{(pvo,vo‘



Il
Q,

1 * = =
It is also clear that % cpo and H(d)o)vo Vo

1l4: NOTATION If Il is an irreducible unitary representation of G and if

m is a unitary representation of G, then
IG(I[,Tr)

is the set of intertwining operators between II and .

15: LEMMA For any unitary representation m of G, Tr(q_JO) is the orthogonal

projection onto

{TVO:T € IG(H,TT) 1.

[Note: It's m($.), not Ty -- -]

o

Suppose that T' < G is a uniform lattice and take m = LG/I“'

16: APPLICATTION

LG/ r(4—>0)

is trace class and

tr(LG/I"($0)) = dim IG(HILG/I-.) = m(H'LG/I‘) .



17: THEOREM The series

I b ery )
YET

is 1ldac on G x G to a separately continuous function.

PROOF Let K ¢ G be coampact and let

n(K) = |T n K Lspt () spt (£) K|.

Then the arrow
spt (£) K » /T

is at most n(K)-to-1 and V x € K,

o logeoy M| = dp T <Gy Dvyvge]
YET yerl

d, |<H(xyy_l)vo,ﬂ(f)v>{
' yer

=4, I |<IEv, Iy vy
Yer

_ -1
= d YE:F |/g £(2)<I(2)v,xyy ")vy>dug(2) |

=d, I ]fG f(z)<V,H(z—ley—l)Vo>duG(Z) |
Yer

=d, I |fG f(z—l)<v,H(zxyy“l)v0>dpG(z)]
yer

B -1 -1
=d Yér /g £z D<I(zxyy ")vy,v>du,(z) |

HaS
jo}}

n IS If(z"l)II<H(zxvy"l>v0,v>lduG(z)



6.

=d; IS |EET | <Dy vy ldug @)

YeT
-1
<d. ||£]], = J . |<T@yy Dva,ve|du. (z)
f ver  spt (£) 1k 0 G
N .
s dH | |fl loo n (K) fG/]_-' Yér |<H(ZTYY )VO’V>[duG/T(Z)

p El ], n&) /g |<H(Zy—l)v0,v> |dug (2)
=dp ||f]], n®) Jg |<H(z)v0»',v>|duG(z)

= ay el n o, -

$ g Jg 1EW <Txy)v,v>|dug (x)dug (y)

&
o
<
=
¥

IN

ETl oy oIy < =
thereby settling the ldac condition (and then some (no restriction on "y")),

leaving the claim of separate continuity which can be left to the reader.

The operator LG/F(go) is trace class (cf. #16). So, in view of what has been

said above, the criterion of §5, #10 is applicable.

18: SCHOLIUM

— —I .

the sum on the right hand side being absolutely convergent.



19: REMARK There are circumstances in which the integral
—I -
I /G ¢ (X )duG/G (%)
Y Y
vanishes for all vy except y = e, hence then

m(H’LG/I‘) = vol (G/T) cpo (e)

vol (G/F)d].[<l'{ (e) VorVo>

vol (G/T) dH<v0 Vo>

vol (G/I‘)d.n.

Therefore m(H,LG /I') is positive, so II definitely occurs in LG Yo

[Note: To run a reality check, take G finite, T = {e} —- then wol(G/T) =

vol(G) =1 and vV T € G,

m(H'LG/I‘) = dH (cf. A, II, §5, #8 and A, III, §3, #15).]

20: N.B. The situation envisioned in #19 is realized if G is a connected

semisimple Lie group with finite center and if I' has no elements of finite order
other than the identity.

21: LEMMA If G is a Lie group and if f € COCO(G) , then the series

I o bavy )
Yer

is a C* function of X,Y-



