LAGRANGIAN MECHANICS

Garth Warner
Department of Mathematics
University of Washington

§1. FLOWS
§2. TENSOR ANALYSIS
§3. LIE DERIVATIVES
§4. TANGENT BUNDLES
§5. THE VERTICAL MORPHISM
§6. VERTICAL DIFFERENTIATION
§7. THE FIBER DERIVATIVE
§8. LAGRANGIANS
§9. SYMMETRIES
§10. MECHANICAL SYSTEMS
§ll. FIBERED MANIFOLDS
§12. AFFINE BUNDLES
§13. STRUCTURAL FORMALITIES
§14. THE EVOLUTION OPERATOR
§15. DISTRIBUTIONS - CODISTRIBUTIONS
§16. LAGRANGE MULTIPLIERS
§17. LIE ALGEBROIDS
§18. LAGRANGIAN FORMALISM
§19. CONSTRAINT THEORY
§20. CHAPLYGIN SYSTEMS
§21. DEPENDENCE ON TIME
§22. DEGENERATE LAGRANGIANS
§23. PASSAGE TO THE COTANGENT BUNDLE
§24. THE CONSTRAINT ALGORITHM
§25. FIRST CLASS SYSTEMS

APPENDIX: KINEMATICS OF THE FREE RIGID BODY

My original set of lectures on Mechanics was divided into three parts: Lagrangian Mechanics

Hamiltonian Mechanics
Equivariant Mechanics .
The present text is an order of magnitude expansion of the first part and is differential geometric in character, the arena being the tangent bundle rather than the cotangent bundle. I have covered what I think are the basics. Points of detail are not swept under the rug but I have made an effort not to get bogged down in minutiae. Numerous examples have also been included.

[^0]Let M be a connected C^{∞} manifold of dimension n. Fix a vector field X on on M -- then the image of a maximal integral curve of X is called a trajectory of X . The trajectories of X are connected, immersed submanifolds of M. They form a partition of M and their dimension is either 0 or l (the trajectories of dimension 0 are the points of M where the vector field X vanishes).

A first integral for X is an $f \in C^{\infty}(M): X f=0$.
[Note: The set of first integrals for X is a subring $C_{X}^{\infty}(M)$ of $\left.C^{\infty}(M).\right]$
1.1 IERMMA In order that f be a first integral for X it is necessary and sufficient that f be constant on the trajectories of X .

Recall now that there exists an open subset $D(X) \subset \underline{R} \times M$ and a differentiable function $\phi_{X}: D(X) \rightarrow M$ such that for each $x \in M$, the map $t \rightarrow \phi_{X}(t, x)$ is the trajectory of X with $\phi_{\mathrm{X}}(0, \mathrm{x})=\mathrm{x}$.

1. $\forall x \in M$,

$$
I_{x}(X)=\{t \in R:(t, x) \in D(X)\}
$$

is an open interval containing the origin and is the domain of the trajectory which passes through x .
2. $\forall t \in \underline{R}$,

$$
D_{t}(X)=\{x \in M:(t, x) \in D(x)\}
$$

is open in M and the map

$$
\phi_{t^{\prime}} x \rightarrow \phi_{X}(t, x)
$$

is a diffeomorphism $D_{t}(X) \rightarrow D_{-t}(X)$ with inverse ϕ_{-t}.
N.B. If (t, x) and $\left(s, \phi_{X}(t, x)\right)$ are elements of $D(X)$, then ($\left.s+t, x\right)$ is an element of $D(X)$ and

$$
\phi_{X}\left(s, \phi_{X}(t, x)\right)=\phi_{X}(s+t, x),
$$

i.e.,

$$
\phi_{S} \circ \phi_{t}(x)=\phi_{S}+t^{(x)}
$$

One calls ϕ_{X} the flow of X and X its infinitesimal generator.
[Note: X is said to be complete if $D(X)=\underline{R} \times M$. When this is the case, each $\phi_{t}: M \rightarrow M$ is a diffeomorphism and the assignment

$$
\int_{-(t, x)}^{\underline{R} \times M} \quad \rightarrow t \cdot x=\phi_{t}(x)
$$

is an action of \underline{R} on M. Therefore $\left.\phi_{0}=i d_{M^{\prime}} \phi_{-t}=\phi_{t}^{-1} \cdot\right]$
1.2 EXAMPLE Take $M=\underline{R}, X=x^{2} \frac{\partial}{\partial x}-$ then $D(X)=\{(t, x) \in \underline{R} \times \underline{R}: 1-t x>0\}$ and $\phi_{X}(t, x)=\frac{x}{1-t x}$, thus X is not complete.
1.3 REMARK Every compactly supported vector field on M is complete.
1.4 LEMMA Suppose that X is a vector field on M - then \exists a strictly positive C^{∞} function f on M such that $f X$ is complete.

A one parameter local group of diffeomorphisms of M is a pair (U, ϕ) subject to the following assumptions:

1. U is an open subset of $\underline{R} \times M$ containing $\{0\} \times M$ such that $\forall x \in M$, $(\underline{R} \times\{x\}) \cap U$ is connected.
2. $\phi: U \rightarrow M$ is a C^{∞} map such that $\phi(0, x)=x$ and

$$
\phi(s, \phi(t, x))=\phi(s+t, x) .
$$

E.g.: The pair $\left(D(X), \phi_{X}\right)$ determined by a vector field X is a one parameter local group of diffeomorphisms of M.

In practice, reference to U is ordinarily omitted and the one parameter local group of diffeomorphisms of M is denoted by $\left\{\phi_{t}\right\}$.
[Note: One also drops the appelation "local" if $\mathrm{U}=\underline{R} \times \mathrm{M}$.]
1.5 LEMMA Suppose that $\left\{\phi_{t}\right\}$ is a local one parameter group of diffeomorphisms of M -- then there exists a unique vector field X on M such that

$$
\left(D(X), \phi_{X}\right) \supset(U, \phi) .
$$

[Note: Per $\left\{\phi_{t}\right\}, X$ is its infinitesimal generator and $\forall f \in C^{\infty}(M)$,

$$
\left.(x f)(x)=\lim _{t \rightarrow 0} \frac{f\left(\phi_{t}(x)\right)-f(x)}{t} \cdot\right]
$$

§2. TENSOR ANALYSIS

Let M be a connected C^{∞} manifold of dimension n,

$$
D(M)=\stackrel{\infty}{p, q=0} D_{q}^{p}(M)
$$

its tensor algebra.
[Note: Here, $D_{0}^{0}(M)=C^{\infty}(M), D_{0}^{1}(M)=D^{1}(M)$, the derivations of $C^{\infty}(M)$ (a.k.a. the vector fields on M), and $D_{1}^{0}(M)=D_{1}(M)$, the linear forms on $D^{1}(M)$ (viewed as a module over $\left.C^{\infty}(M)\right)$.
2.1 REMARK By definition, $D_{q}^{p}(M)$ is the $C^{\infty}(M)$-module of all $C^{\infty}(M)$-multilinear maps

$$
\frac{p}{D_{1}(M) \times \cdots \times D_{1}(M)} \times \frac{q}{D^{1}(M) \times \cdots \times D^{1}(M)} \rightarrow C^{\infty}(M)
$$

Its elements are the tensors of type (p, q).

In what follows, all operations will be defined globally. However, for computational purposes, it is important to have at hand their local expression as well, meaning the form they take on a connected open set $U \subset M$ equipped with coordinates $\mathrm{x}^{1}, \ldots, \mathrm{x}^{\mathrm{n}}$, or still, on a chart.

Let $T \in D_{q}^{p}(M)$ - then locally

$$
T=T^{i_{1} \cdots i_{p}}{ }_{j_{l}} \cdots j_{q}\left(\frac{\partial}{\partial x^{i}} \otimes \cdots \otimes \frac{\partial}{\partial x_{p}}\right) \otimes\left(d x^{j_{1}} \otimes \cdots \otimes d x^{j^{\prime}}\right)
$$

2.

where

$$
\begin{gathered}
{ }_{T}^{i_{1} \cdots i_{p}}{ }_{j_{1}} \cdots j_{q} \\
=T\left(d x^{i_{1}}, \ldots, d x^{i_{p}}, \frac{\partial}{\partial j_{1}}, \ldots, \frac{\partial}{\partial x_{q}}\right) \in C^{\infty}(\mathrm{U})
\end{gathered}
$$

are the components of T .
Under a change of coordinates, the components of T satisfy the tensor transformation rule:

$$
\begin{aligned}
& { }_{T}{ }^{i}{ }^{\prime} \cdots i_{p}^{\prime} \\
& j_{1}^{\prime} \cdots j_{q}^{\prime}
\end{aligned}
$$

2.2 EXAMPLE The Kronecker tensor is the tensor K of type $(1,1)$ defined by $K(\Lambda, X)=\Lambda(X)$, hence

$$
K_{j}^{i}=K\left(d x^{i}, \frac{\partial}{\partial x^{j}}\right)=\delta_{j}^{i} .
$$

Given $f \in C^{\infty}(U)$, write

$$
\frac{\partial f}{\partial x^{i}}=f, i
$$

2.3 EXAMPIE Let $X, Y \in D^{1}(M)$ - then locally

$$
\begin{aligned}
& \left.\right|^{-} x=x^{i} \frac{\partial}{\partial x^{i}} \quad\left(x^{i}=\left\langle x, d x^{i}\right\rangle\right) \\
& \int_{-} Y=Y^{j} \frac{\partial}{\partial X^{j}} \quad\left(Y^{j}=\left\langle Y, d x^{j}\right\rangle\right) \\
& \text { => } \\
& {[X, Y]=\left(X^{i} Y_{, i}^{j}-Y^{i} X_{, i}^{j}\right) \frac{\partial}{\partial X^{j}} .}
\end{aligned}
$$

[Note: The bracket

$$
[,]: D^{1}(\mathrm{M}) \times D^{1}(\mathrm{M}) \rightarrow D^{1}(\mathrm{M})
$$

is R-bilinear but not $C^{\infty}(M)$-bilinear. In fact,

$$
[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X .]
$$

A type preserving $\underset{-}{\text { R-linear map }}$

$$
\mathrm{D}: D(\mathrm{M}) \rightarrow \mathcal{D}(\mathrm{M})
$$

which commutes with contractions is said to be a derivation if $\forall T_{1}, T_{2} \in \mathcal{D}(M)$,

$$
\mathrm{D}\left(\mathrm{~T}_{1} \otimes \mathrm{~T}_{2}\right)=\mathrm{DT}_{1} \otimes \mathrm{~T}_{2}+\mathrm{T}_{1} \otimes \mathrm{DT}_{2}
$$

The set of all derivations of $\mathcal{D}(M)$ forms a Lie algebra over \underline{R}, the bracket operation being defined by

$$
\left[D_{1}, D_{2}\right]=D_{1} \circ D_{2}-D_{2} \circ D_{1} .
$$

2.4 REMARK For any $f \in C^{\infty}(M)$ and any $T \in \mathcal{D}(M)$, $f T=f \otimes T$, so $D(f T)=$ $f(D T)+(D f) T$. In particular: D is a derivation of $C^{\infty}(M)$, hence is represented on $C^{\infty}(M)$ by a vector field.
2.5 LEMMA Let $D: \mathcal{D}(M) \rightarrow \mathcal{D}(M)$ be a derivation -- then $\forall T \in D_{q}^{p}(M)$,

$$
\begin{aligned}
&\left.D T\left(\Lambda^{1}, \ldots, \Lambda^{p}, x_{1}, \ldots, x_{q}\right)\right] \\
&=(D T)\left(\Lambda^{1}, \ldots, \Lambda^{p}, x_{1}, \ldots, x_{q}\right) \\
&+\sum_{i=1}^{p} T\left(\Lambda^{1}, \ldots, D \Lambda^{i}, \ldots, \Lambda^{p}, x_{1}, \ldots, x_{q}\right) \\
&+ \sum_{j=1}^{q} T\left(\Lambda^{1}, \ldots, \Lambda^{p}, x_{1}, \ldots, D X_{j}, \ldots, x_{q}\right) .
\end{aligned}
$$

[Note: This shows that D is known as soon as it is known on $C^{\infty}(M), D^{1}(M)$, and $D_{1}(\mathrm{M})$. But for $\omega \in D_{1}(\mathrm{M})$,

$$
(D \omega)(X)=D[\omega(X)]-\omega(D X),
$$

so functions and vector fields suffice.]
2.6 EXAMPLE There is a canonical identification

$$
D_{1}^{1}(\mathrm{M}) \approx \operatorname{Hom}_{\mathrm{C}^{\infty}(\mathrm{M})}\left(D^{l}(\mathrm{M}), D^{l}(\mathrm{M})\right),
$$

namely $\mathrm{T} \rightarrow \hat{\mathrm{T}}$, where

$$
\hat{T X}(\Lambda)=T(\Lambda, X) .
$$

This said, let $D: D(M) \rightarrow D(M)$ be a derivation - then

$$
T \in D_{1}^{1}(\mathrm{M}) \Rightarrow \mathrm{DT} \in D_{1}^{1}(\mathrm{M})
$$

thus it makes sense to form $\hat{\mathrm{DI}}$ and we claim that

$$
(\hat{D T})(X)=\hat{D T X}-\hat{T}(D X) .
$$

In fact,

$$
\begin{aligned}
& (\hat{D T})(X)(\Lambda)=(D T)(\Lambda, X) \\
& =D[T(\Lambda, X)]-T(D \Lambda, X)-T(\Lambda, D X)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& (\hat{D T X})(\Lambda)-\hat{T}(D X)(\Lambda) \\
& =D[\hat{T X}(\Lambda)]-\hat{T X}(D \Lambda)-\hat{T}(D X)(\Lambda) \\
& =D[T(\Lambda, X)]-T(D \Lambda, X)-T(\Lambda, D X)
\end{aligned}
$$

2.7 THEOREM Suppose given a vector field X and an R-linear map $\delta: D^{1}(\mathrm{M}) \rightarrow D^{1}(\mathrm{M})$ such that

$$
\delta(f \mathrm{Y})=(\mathrm{Xf}) \mathrm{Y}+\mathrm{f} \delta(\mathrm{Y})
$$

for all $f \in C^{\infty}(M), Y \in D^{1}(M)$ - then there exists a unique derivation

$$
D: D(M) \rightarrow D(M)
$$

such that

$$
\mathrm{D} \mid \mathrm{C}^{\infty}(\mathrm{M})=\mathrm{X} \text { and } \mathrm{D} \mid D^{l}(\mathrm{M})=\delta .
$$

PROOF Define D on $D_{1}(M)$ by

$$
(\mathrm{D} \omega)(\mathrm{Y})=\mathrm{X}[\omega(\mathrm{Y})]-\omega(\delta \mathrm{Y})
$$

and extend to all of $D(M)$ via 2.5.

§3. LIE DERIVATIVES

Let M be a connected C^{∞} manifold of dimension n .
3.1 LEMMA One may attach to each $\mathrm{X} \in \mathcal{D}^{1}(\mathrm{M})$ a derivation

$$
L_{X}: D(M) \rightarrow \mathcal{D}(\mathrm{M})
$$

called the Lie derivative w.r.t. X. It is characterized by the properties

$$
L_{X} f=X f, L_{X} Y=[X, Y]
$$

PROOF In the notation of 2.7 , define $\delta: D^{1}(M) \rightarrow D^{1}(M)$ by

$$
\delta(\mathrm{Y})=[\mathrm{X}, \mathrm{Y}] .
$$

Then

$$
\begin{aligned}
\delta(\mathrm{fY}) & =[\mathrm{X}, \mathrm{fY}] \\
& =\mathrm{f}[\mathrm{X}, \mathrm{Y}]+(\mathrm{Xf}) \mathrm{Y} \quad \text { (cf. 2.3) } \\
& =(\mathrm{Xf}) \mathrm{Y}+\mathrm{f}[\mathrm{X}, \mathrm{Y}] \\
& =(\mathrm{Xf}) \mathrm{Y}+\mathrm{f} \delta(\mathrm{Y}) .
\end{aligned}
$$

3.2 EXAMPLE Let $T \in D_{1}^{1}(M)$ - then in the notation of 2.6 ,

$$
\left(L_{X} \hat{T}\right)(Y)=[X, \hat{T Y}]-\hat{T}[X, Y]
$$

where

$$
\hat{L_{X}} \hat{T} \equiv \hat{L_{X}}
$$

Owing to 2.5, $\forall T \in D_{q}^{p}(M)$,

$$
\begin{aligned}
& X {\left[T\left(\Lambda^{1}, \ldots, \Lambda^{p}, x_{1}, \ldots, x_{q}\right)\right] } \\
&=\left(L_{X} T\right)\left(\Lambda^{I}, \ldots, \Lambda^{p}, X_{1}, \ldots, X_{q}\right) \\
&+\sum_{i=1}^{p} T\left(\Lambda^{I}, \ldots, L_{X} \Lambda^{i}, \ldots, \Lambda^{p}, x_{1}, \ldots, X_{q}\right) \\
&+\sum_{j=1}^{q} T\left(\Lambda^{I}, \ldots, \Lambda^{p}, x_{1}, \ldots, L_{X} X_{j}, \ldots, X_{q}\right)
\end{aligned}
$$

[Note: If $\omega \in D_{1}(M)$, then

$$
\left.\left(L_{X} \omega\right)(Y)=X \omega(Y)-\omega([X, Y]) .\right]
$$

Locally,

$$
\begin{aligned}
& \left(L_{X}\right)^{i_{1} \cdots i_{p}}{ }_{j_{1} \cdots j_{q}} \\
& =x^{a_{T}}{ }^{{ }^{i}{ }^{\cdots}{ }^{\cdots} \underline{p}_{j_{1} \cdots j_{q^{\prime}}}{ }^{a},} \\
& -X_{, a}^{i_{1}}{ }_{T}^{a i_{2} \cdots i_{p}}{ }_{j_{1} \cdots j_{q}}-\cdots \\
& +x_{, j_{1}}{ }^{T_{1} l^{\cdots i_{p}}}{ }_{a j_{2} \cdots j_{q}}+\cdots \cdot
\end{aligned}
$$

[Note: From the definitions,

$$
3 .
$$

$$
\left[\begin{array}{l}
L_{X} \frac{\partial}{\partial x^{i}}=-x_{, i}^{a} \frac{\partial}{\partial x^{a}} \\
\left.L_{x} d x^{i}=x_{, a}^{i} d x^{a} .\right]
\end{array}\right.
$$

3.3 REMARK The symbol

$$
\left(L_{X}{ }^{T}\right)^{i_{1} \cdots i_{p}}{ }_{j_{1}} \cdots j_{q}
$$

is usually abbreviated to

$$
L_{X^{T}}^{i_{1} \cdots i_{p}}{ }_{j_{1} \cdots j_{q}}
$$

3.4 EXAMPLE Let K be the Kronecker tensor (Cf. 2.2) - then

$$
L_{X} K=0
$$

Indeed,

$$
\begin{aligned}
L_{x} K_{j}^{i} & =x^{a} \delta_{j, a}^{i}-x_{, a}^{i} \delta_{j}^{a}+x_{, j}^{a} \delta_{a}^{i} \\
& =0-x_{, j}^{i}+x_{, j}^{i} \\
& =0
\end{aligned}
$$

3.5 THEOREM Fix an $X \in D^{\mathcal{I}}(M)$ - then $\forall T \in D_{q}^{\mathrm{p}}(M)$,

$$
\left.\frac{d}{d t} \phi_{t}^{*} T\right|_{t=t_{0}}=\phi_{t_{0}}^{*} L_{X}^{T}
$$

[Note: The tacit assumption is that $D_{t_{0}}(X)$ is nonempty, the relation being valid in $D_{t_{0}}(X)$. Accordingly, if X is complete,

$$
\left.\frac{d}{d t} \phi_{t}^{*} T=\phi_{t}^{*} L_{X}{ }^{T} \cdot\right]
$$

3.6 EXAMPIE Take X complete -- then

$$
\phi_{t}^{*} X=x \forall t
$$

[In fact,

$$
\begin{aligned}
\frac{d}{d t} \phi_{t}^{*} \mathrm{X} & =\phi_{t}^{*} L_{X} \mathrm{X} \\
& =\phi_{t}^{*}[\mathrm{X}, \mathrm{X}]=0 .
\end{aligned}
$$

But $\left.\phi_{0}^{*} \mathrm{X}=i d_{\mathrm{M}}^{*} \mathrm{X}=\mathrm{X}.\right]$

Consider now the exterior algebra $\Lambda * M-$ then L_{X} induces a derivation of $\Lambda * M$:

$$
L_{X}(\alpha \wedge \beta)=L_{X} \alpha \wedge \beta+\alpha \wedge L_{X} \beta .
$$

3.7 RAPPEI ${ }^{\imath} \mathrm{X}$ is the interior product w.r.t. X , so

$$
{ }^{2} \mathrm{X}: \Lambda^{\star} \mathrm{M} \rightarrow \Lambda^{*} \mathrm{M}
$$

is an antiderivation of degree -1. Explicitly, $\forall \alpha \in \Lambda^{\mathrm{P}} \mathrm{M}_{\text {, }}$

$$
{ }^{\imath_{X}}{ }^{\alpha}\left(x_{1}, \ldots, x_{p-1}\right)=\alpha\left(x_{1}, x_{1}, \ldots, x_{p-1}\right) .
$$

5.

And one has

$$
\left.{ }^{\imath} x^{\left(\alpha_{1}\right.} \wedge \alpha_{2}\right)={ }^{\imath} x^{\alpha}{ }_{1} \wedge \alpha_{2}+(-1)^{p} \alpha_{1} \wedge{ }^{2} x^{\alpha_{2}}
$$

Properties: (1) $\mathrm{l}_{\mathrm{X}}{ }^{\circ} \mathrm{l}_{\mathrm{X}}=0$; (2) $\mathrm{l}_{\mathrm{X}}{ }^{\circ} \mathrm{l}_{\mathrm{Y}}+\mathrm{l}_{\mathrm{Y}}{ }^{\circ} \mathrm{l}_{\mathrm{X}}=0$; (3) $\mathrm{l}_{\mathrm{X}+\mathrm{Y}}={ }^{\mathrm{l}_{\mathrm{X}}}+{ }^{\mathrm{q}} \mathrm{v}_{\mathrm{Y}}$;

We have

$$
\begin{aligned}
& \bullet L_{X}=l_{X} \circ d+d \circ{ }^{l_{X}} \\
& \bullet L_{[X, Y]}=L_{X} \circ{l_{Y}}^{-1} \underline{Y}_{Y} \circ L_{X}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& L_{X} \circ d=d \circ L_{X} \\
& L_{X} \circ v_{X}=v_{X} \circ L_{X}
\end{aligned}
$$

3.8 EXAMPLE $\forall f \in C^{\infty}(M)$,

$$
L_{f X^{\alpha}}=f L_{X}{ }^{\alpha}+d f \wedge{ }^{2} X^{\alpha}
$$

[For

$$
\begin{aligned}
& L_{f X}{ }^{\alpha}={ }^{{ }^{\prime}}{ }_{f X} d \alpha+{ }^{d}{ }_{f X}{ }^{\alpha} \\
& =\mathrm{f}_{\mathrm{l}_{\mathrm{X}}} \mathrm{~d} \alpha+\mathrm{d}\left(\mathrm{f}_{\mathrm{l}_{\mathrm{X}}}{ }^{\alpha}\right) \\
& =f^{\imath} X^{d \alpha}+d f \wedge{ }^{\imath} X^{\alpha+f d l^{\alpha}}{ }^{\alpha}
\end{aligned}
$$

6.

$$
\begin{aligned}
& =f\left(\imath_{X} d+d \imath_{X}\right) \alpha+d f \wedge \imath_{X^{\alpha}}^{\alpha} \\
& \left.=f L_{X^{\alpha}}+d f \wedge \imath_{X^{\alpha .}}\right]
\end{aligned}
$$

If $\phi: N \rightarrow M$ is a diffeomorphism, then

$$
\left[\begin{array}{l}
\phi^{*} L_{X} \alpha=L_{\phi}^{*} X^{\phi}{ }^{*} \alpha \\
\phi^{*} \imath_{X}^{\alpha}=1_{\phi}^{*}{ }_{X} \phi^{*} \alpha .
\end{array}\right.
$$

If $\Phi: N \rightarrow M$ is a C^{∞} map and if X is Φ-related to Y, then
[Note: Recall that

$$
\mathrm{X} \in \mathcal{D}^{1}(\mathrm{M}) \& \mathrm{Y} \in \mathcal{D}^{1}(\mathrm{~N})
$$

are said to be Φ-related if

$$
\mathrm{d} \Phi\left(Y_{Y}\right)=X_{\Phi(Y)} \quad \forall Y \in Y
$$

or, equivalently, if

$$
Y(f \circ \Phi)=X f \circ \Phi
$$

for all $\left.f \in C^{\infty}(M).\right]$

§4. TANGENT BUNDLES

Let M be a connected C^{∞} manifold of dimension n,

$$
\pi_{M}: T M \rightarrow M
$$

its tangent bundle -- then the sections $D^{1}(M)$ of $T M$ are the vector fields on M.
N.B. Suppose that ($U,\left\{x^{1}, \ldots, x^{n^{n}}\right\}$) is a chart on M-- then

$$
\left(\left(\pi_{M}\right)^{-1} U,\left\{q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right\}\right)
$$

is a chart on TM.
[Note: Here

$$
\left[\begin{array}{ll}
q^{i}=x^{i} \circ \pi_{M} \\
v^{i} & =d x^{i}
\end{array} \quad(i=1, \ldots, n)\right.
$$

And, under a compatible change of coordinates,

$$
\left[\begin{array}{l}
\frac{\partial}{\partial \tilde{q}^{i}}=\frac{\partial q^{j}}{\partial \tilde{q}^{i}} \frac{\partial}{\partial q^{j}}+\frac{\partial v^{j}}{\partial \tilde{q}^{i}} \frac{\partial}{\partial v^{j}} \\
\frac{\partial}{\partial \tilde{v}^{i}}=\frac{\partial v^{j}}{\partial \tilde{v}^{i}} \frac{\partial}{\partial v^{j}}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \tilde{v}^{i}=\frac{\partial \tilde{q}^{i}}{\partial q^{j}} v^{j} \\
& \text { => } \\
& \left.\frac{\partial \tilde{v}^{i}}{\partial v^{j}}=\frac{\partial \tilde{q}^{i}}{\partial q^{j}} .\right]
\end{aligned}
$$

2.

If $f: M \rightarrow N$ is a C^{∞} map, then there is a commatative diagram

4.1 EXAMPLE We have

[Note: Local coordinates on the open subset $\pi_{T M}^{-1}\left(\left(\pi_{M}\right)^{-1} U\right)$ of TTM are as follows: $\left.q^{i} \equiv q^{i} \circ \pi_{T M^{\prime}} v^{i} \equiv v^{i} \circ \pi_{T M^{\prime}} d q^{i}, d v^{i}.\right]$

Let $X \in \mathcal{D}^{1}$ (TM) -- then

$$
\mathrm{X}: \mathrm{TM} \rightarrow \text { TTM }
$$

and $\pi_{T M} \circ \mathrm{X}=\mathrm{id}_{\mathrm{TM}}$. Locally,

$$
x=A^{i} \frac{\partial}{\partial q^{i}}+B^{i} \frac{\partial}{\partial v^{i}}
$$

4.2 EXAMPLE Consider the one parameter group of diffeomorphisms $\phi_{t}: T M \rightarrow T M$ defined by $\phi_{t}\left(x, x_{x}\right)=\left(x, e^{t_{X}}\right) \quad\left(X_{x} \in T_{x} M\right)-$ then its infinitesimal generator $\Delta \in D^{l}$ (TM) is called the dilation vector field on TM. Locally, ϕ_{t} sends $\left(q^{l}, \ldots, q^{n}, v^{l}, \ldots, v^{n}\right)$ to $\left(q^{l}, \ldots, q^{n}, e^{t} v^{l}, \ldots, e^{t} v^{n}\right)$, so locally,

$$
\Delta=v^{i} \frac{\partial}{\partial v^{i}}
$$

Denote by $T^{2} M$ the submanifold of TTM consisting of those points whose images under $\pi_{T M}$ and $T \pi_{M}$ are one and the same -- then $\Gamma \in D^{l}$ (TM) is said to be second order provided $\Gamma T M \subset T^{2} M$ or still, if $T \pi_{M} \circ \Gamma=i d_{T M}$ Locally, therefore, a second order Γ has the form

$$
v^{i} \frac{\partial}{\partial q^{i}}+c^{i} \frac{\partial}{\partial v^{i}}
$$

[Note: To ascertain the transformation rule for the C^{i}, write

$$
\begin{gathered}
\tilde{v}^{i} \frac{\partial}{\partial \tilde{q}^{i}}+\tilde{C}^{i} \frac{\partial}{\partial \tilde{v}^{i}} \\
=\tilde{v}^{i}\left(\frac{\partial q^{j}}{\partial \tilde{q}^{i}} \frac{\partial}{\partial q^{j}}+\frac{\partial v^{j}}{\partial \tilde{q}^{i}} \frac{\partial}{\partial v^{j}}\right)+\tilde{c}^{i} \frac{\partial v^{j}}{\partial \tilde{v}^{i}} \frac{\partial}{\partial v^{j}} \\
=v^{j} \frac{\partial}{\partial q^{j}}+\left(\frac{\partial v^{j}}{\partial \tilde{q}^{i}} \tilde{v}^{i}+\frac{\partial v^{j}}{\partial \tilde{v}^{i}} \tilde{c}^{i}\right) \frac{\partial}{\partial v^{j}} \\
=v^{i} \frac{\partial}{\partial q^{i}}+\left(\frac{\partial v^{i}}{\partial \tilde{q}^{j}} \tilde{v}^{j}+\frac{\partial v^{i}}{\partial \tilde{v}^{j}} \tilde{c}^{j}\right) \frac{\partial}{\partial v^{i}}
\end{gathered}
$$

$$
\Rightarrow
$$

$$
c^{i}=\frac{\partial v^{i}}{\partial \tilde{q}^{j}} \tilde{v}^{j}+\frac{\partial v^{i}}{\partial \tilde{v}^{j}} \tilde{c}^{j}
$$

or still,

$$
\left.c^{i}=\frac{\partial v^{i}}{\partial \tilde{q}^{j}} \tilde{v}^{j}+\frac{\partial q^{i}}{\partial \tilde{q}^{j}} \tilde{c}^{j} .\right]
$$

4.3 REMARK Suppose that $\Gamma \in D^{l}$ (TM) is second order - then an integral curve γ of Γ is a solution to

$$
\frac{d q^{i}}{d t}=v^{i}, \frac{d v^{i}}{d t}=c^{i}
$$

or still, is a solution to

$$
\frac{d^{2} q^{i}}{d t^{2}}=c^{i}
$$

from which the term "second order".

Given an $X \in D^{l}(M)$, let $\left\{\phi_{t}\right\}$ be the one parameter local group of diffeomorphisms of M associated with $X-$ then $\left\{T \phi_{t}\right\}$ is a one parameter local group of diffeomorphisms of TM. Denote its infinitesimal generator by X^{\top} (cf. 1.5) -- then X^{\top} is called the lift of X to TM. Locally, if

$$
x=x^{i} \frac{\partial}{\partial x^{i}}
$$

then

$$
x^{\top}=\left(x^{i} \circ \pi_{M}\right) \frac{\partial}{\partial q^{i}}+v^{j}\left(x_{, j}^{i} \circ \pi_{M}\right) \frac{\partial}{\partial v^{i}}
$$

Example:

$$
\left(\frac{\partial}{\partial x^{i}}\right)^{T}=\frac{\partial}{\partial q^{i}}
$$

[Note: Let $\mathrm{S}_{\text {TM }}:$ TTM \rightarrow TIM be the canonical involution - - then

$$
\pi_{T M} \circ s_{T M}=T \pi_{M}
$$

So, $\forall \mathrm{X} \in \mathcal{D}^{I}(\mathrm{M})$,

$$
\begin{aligned}
& \pi_{T M} \circ S_{T M} \circ T X=T \pi_{M} \circ T X \\
&=T\left(\pi_{M} \circ X\right) \\
&=T\left(i d_{M}\right) \\
&=i d_{T M} \\
& \Rightarrow \\
& S_{T M} \circ T X \in D^{I}(T M)
\end{aligned}
$$

And, in fact,

$$
\left.\mathbf{s}_{T M} \circ T X=X^{T} \cdot\right]
$$

4.4 LEMMA $\forall X \in D^{1}(M)$,

$$
\left[\Delta, x^{T}\right]=0
$$

4.5 LEMMA Let $X, Y \in D^{I}(M)$ - then

$$
\left[X^{\top}, Y^{\top}\right]=[X, Y]^{\top} .
$$

Given an $X \in D^{l}(M)$, define a one parameter group of diffeomorphisms $\phi_{t}: T M \rightarrow T M$ by

$$
\phi_{t}\left(x, V_{x}\right)=\left(x, V_{x}+t X_{x}\right) \quad\left(V_{x} \in T_{x} M\right)
$$

and let X^{V} be its infinitesimal generator (cf. 1.5) - then X^{V} is called the vertical lift of X to TM. Locally, if

$$
x=x^{i} \frac{\partial}{\partial x^{i}}
$$

then

$$
x^{v}=\left(X^{i} \circ \pi_{M}\right) \frac{\partial}{\partial v^{i}}
$$

Example:

$$
\left(\frac{\partial}{\partial x^{i}}\right)^{v}=\frac{\partial}{\partial v^{i}} .
$$

4.6 LEMMA $\forall X \in D^{1}(M)$,

$$
\left[\Delta, x^{V}\right]=-x^{V}
$$

4.7 LFMMA Let $X, Y \in D^{1}(M)$ - then

$$
\left[\mathrm{X}^{\mathrm{V}}, \mathrm{Y}^{\mathrm{V}}\right]=0
$$

4.8 LEMMA Let $X, Y \in D^{1}(M)$-- then

$$
\left[\mathrm{X}^{\mathrm{V}}, \mathrm{Y}^{\top}\right]=[\mathrm{X}, \mathrm{Y}]^{\mathrm{V}}
$$

Let $\phi: M \rightarrow M$ be a diffeomorphism -- then $T \phi: T M \rightarrow T M$ is a diffeomorphism and there is a commutative diagram

[Note: Classically, $T \phi$ is called a point transformation.]
4.9 LEMMA Let $\phi: M \rightarrow M$ be a diffeomorphism - then for any second order $\Gamma \in \mathcal{D}^{1}(\mathrm{TM}),(\mathrm{T} \phi)_{\star} \Gamma$ is second order. PROOF In fact,

$$
\begin{aligned}
& T \pi_{M} \circ(T \phi)_{*} \Gamma \\
& =T \pi_{M} \circ T T \phi \circ \Gamma \circ(T \phi)^{-1} \\
& =T\left(\pi_{M} \circ T \phi\right) \circ \Gamma \circ(T \phi)^{-1} \\
& =T\left(\phi \circ \pi_{M}\right) \circ \Gamma \circ(T \phi)^{-1} \\
& =T \phi \circ T \pi_{M} \circ \Gamma \circ(T \phi)^{-1} \\
& =T \phi \circ i d_{T M} \circ(T \phi)^{-1} \\
& =T \phi \circ(T \phi)^{-1} \\
& =i d_{T M}
\end{aligned}
$$

§5. THE VERTICAL MORPHISM

Let M be a connected C^{∞} manifold of dimension n,

$$
\pi: E \rightarrow M
$$

a vector bundle -- then π is a surjective submersion and the kernel of

$$
\mathrm{T} \pi: \mathrm{TE} \rightarrow \mathrm{TM}
$$

is called the vertical tangent bundle of E , denoted VE.
5.1 REMARK Take a point $p \in E$ and put $x=\pi(p)$ - then the fiber $E_{X}=\pi^{-1}(x)$ is a submanifold of E containing p, hence $T_{p} E_{x} \subset T_{p} E$ and, in fact, $T_{p} E x$ is precisely the kernel of $T_{p}: T_{p} E \rightarrow T_{x} M$. Let us also note that $T E_{x}$ can be identified with $E_{X} \times E_{x}$, so $V E$ can be identified with $E{ }_{M} E$, the latter being defined by the pullback square

There is a commatative diagram

and a pullback square

thus there is an arrow

$$
T E \rightarrow E \times_{M} T M
$$

5.2 IEMMA The sequence

$$
0 \rightarrow \mathrm{VE} \rightarrow \mathrm{TE} \rightarrow \mathrm{E} \times_{\mathrm{M}} \mathrm{TM} \rightarrow 0
$$

is exact.

Now take $E=T M-$ then a vertical vector field is a section of VIM.
Accordingly, to say that $\mathrm{x} \in \mathcal{D}^{1}(\mathrm{TM})$ is vertical amounts to saying that

$$
T \pi_{M} \circ X=0
$$

or still,

$$
X\left(f \circ \pi_{M}\right)=0 \forall f \in C^{\infty}(M)
$$

Therefore the bracket of two vertical vector fields is again vertical. Locally, the vertical vector fields on TM have the form

$$
B^{i} \frac{\partial}{\partial v^{i}}
$$

N.B. $\forall x \in D^{l}(M), X^{V}$ is vertical but not every vertical vector field is a vertical lift (e.g., Δ).
5.3 LEMMA If $\Gamma \in D^{l}(T M)$ is second order, then for every $X \in D^{1}(M)$, the bracket $\left[\Gamma, X^{\top}\right]$ is a vertical vector field.

PROOF It need only be shown that $\forall f \in C^{\infty}(M)$,

$$
L_{\left[\Gamma, X^{\top}\right]}\left(f \circ \pi_{M}\right)=0
$$

But

$$
\begin{aligned}
& L_{\left[T, X^{\top}\right]}\left(f \circ \pi_{M}\right) \\
& \quad=L_{\Gamma}\left(L_{X^{\top}}\left(f \circ \pi_{M}\right)\right)-L_{X^{\top}}\left(L_{\Gamma}\left(f \circ \pi_{M}\right)\right) \\
& \quad=L_{\Gamma}\left((X f) \circ \pi_{M}\right)-L_{X^{\top}}\left(L_{\Gamma}\left(f \circ \pi_{M}\right)\right),
\end{aligned}
$$

which reduces matters to the equality

$$
L_{X^{\top}}\left(L_{\Gamma}\left(f \circ \pi_{M}\right)\right)=L_{\Gamma}\left((X f) \circ \pi_{M}\right) .
$$

Working locally, write

$$
x=x^{i} \frac{\partial}{\partial x^{i}}
$$

Then

$$
\text { (Xf) } \circ \pi_{M}=\left(X^{i} \circ \pi_{M}\right) \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{i}}
$$

=>

$$
\begin{aligned}
& L_{\Gamma}\left((X f) \circ \pi_{M}\right) \\
= & v^{j} \frac{\partial}{\partial q^{j}}\left(\left(X^{i} \circ \pi_{M}\right) \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{i}}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& X^{\top}=\left(X^{i} \circ \pi_{M}\right) \frac{\partial}{\partial q^{i}}+v^{k}\left(X_{k}^{i} \circ \pi_{M}\right) \frac{\partial}{\partial v^{i}} \\
& \text { => } \\
& L_{X^{\top}}\left(L_{\Gamma}\left(f \circ \pi_{M}\right)\right) \\
& =L_{X^{\top}}\left(v^{j} \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{j}}\right) \\
& =v^{j}\left(X^{i} \circ \pi_{M}\right) \frac{\partial}{\partial q^{j}} \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{i}} \\
& +v^{k}\left(X_{, k}^{i} \circ \pi_{M}\right) \frac{\partial}{\partial v^{i}}\left(v^{j} \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{j}}\right) \\
& =v^{j}\left(X^{i} \circ \pi_{M}\right) \frac{\partial}{\partial q^{j}} \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{i}} \\
& +v^{j}\left(X_{r j}^{i} \circ \pi_{M}\right) \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{i}} \\
& =v^{j} \frac{\partial}{\partial q^{j}}\left(\left(x^{i} \circ \pi_{M}\right) \frac{\partial\left(f \circ \pi_{M}\right)}{\partial q^{i}}\right) .
\end{aligned}
$$

[Note: For a completely different proof, see 5.19.]

Bearing in mind that

$$
\text { VIM } \approx T M \times_{M} T M
$$

consider the exact sequence

$$
0 \rightarrow T M \times \times_{M} \xrightarrow{T M} \xrightarrow{\mu} T M \xrightarrow{\nu} T M \times{ }_{M} T M \rightarrow 0
$$

provided by 5.2 - then

$$
\begin{aligned}
& \pi_{\mathrm{TM}} \circ \mu=\mathrm{pr} \mathrm{I}_{1} \\
& \mathrm{pr}_{I} \circ \nu=\pi_{\mathrm{TM}} .
\end{aligned}
$$

5.4 LEMMA $\forall \mathrm{X} \in D^{1}(\mathrm{TM}), \mu \circ \nu \circ \mathrm{X} \in D^{1}$ (TM) .

PROOF In fact,

$$
\begin{aligned}
\pi_{T M} & \circ \mu \circ \nu \circ \mathrm{X} \\
& =\mathrm{pr}_{1} \circ \nu \circ \mathrm{X} \\
& =\pi_{\mathrm{TM}} \circ \mathrm{X} \\
& =\mathrm{id} \mathrm{TM}^{\circ}
\end{aligned}
$$

Put

$$
S X=\mu \circ \nu \circ X \quad\left(X \in D^{I}(T M)\right)
$$

Then

$$
\mathrm{S}: D^{1}(\mathrm{TM}) \rightarrow D^{1}(\mathrm{TM})
$$

is called the vertical morphism.
N.B. It is clear that

$$
\mathrm{S} \in \operatorname{Hom}_{\mathrm{C}^{\infty}(\mathrm{TM})}\left(D^{1}(\mathrm{TM}), D^{1}(\mathrm{TM})\right)
$$

Therefore S can also be regarded as an element of D_{1}^{1} (TM).

$$
5.5 \text { LEMMA } S^{2}=0 \text { and }
$$

$$
\text { Ker } S=\operatorname{Im} S
$$

the vertical vector fields on TM.
5.6 LEMMA Locally,

$$
S\left(A^{i} \frac{\partial}{\partial q^{i}}+B^{i} \frac{\partial}{\partial v^{i}}\right)=A^{i} \frac{\partial}{\partial v^{i}}
$$

[Note: If S is thought of as lying in $D_{1}^{1}(\mathrm{TM})$, then its local expression is

$$
\left.\frac{\partial}{\partial v^{i}} \otimes d q^{i} \cdot\right]
$$

5.7 LEMMA $\forall X \in \mathcal{D}^{1}(M)$,

$$
S X^{\top}=X^{V}
$$

5.8 REMARK Let $\Gamma \in \mathcal{D}^{1}(\mathrm{TM})$-- then Γ is second order iff $\mathrm{S} \Gamma=\Delta$.
[Note: The set SO(TM) of second order vector fields on $T M$ is an affine space whose translation group is the set of vertical vector fields in D^{l} (TM).]

The vertical morphism does not respect the structure of $D^{1}(T M)$ as a Lie algebra. Instead:
5.9 LEMMA $\forall X, Y \in D^{1}$ (TMM),

$$
[S X, S Y]=S[S X, Y]+S[X, S Y] .
$$

PROOF It will be enough to consider the following possibilities.

- Both X \& Y are vertical lifts.
- Both $X \& Y$ are lifts.
- X is a vertical lift and Y is a lift.

Since S annihilates vertical vector fields,

$$
\left\{\begin{aligned}
S X^{V} & =0 \\
S Y^{V} & =0
\end{aligned}\right.
$$

which settles the first possibility. Turning to the second,

$$
\begin{aligned}
{\left[S X^{\top}, S Y^{\top}\right] } & \left.=\left[X^{V}, Y^{V}\right] \quad \text { (cf. } 5.7\right) \\
& =0 \quad \text { (cf. } 4.7)
\end{aligned}
$$

And (cf. 4.8)

$$
\left\lvert\, \begin{aligned}
& S\left[S X^{\top}, Y^{\top}\right]=S\left[X^{V}, Y^{\top}\right]=S[X, Y]^{V}=0 \\
& S\left[X^{\top}, S Y^{\top}\right]=S\left[X^{\top}, Y^{V}\right]=S[Y, X]^{V}=0
\end{aligned}\right.
$$

Finally,

$$
\mathrm{S}\left[\mathrm{X}^{\mathrm{V}}, \mathrm{Y}^{\top}\right]=\mathrm{S}[\mathrm{X}, \mathrm{Y}]^{\mathrm{V}}=0
$$

while

$$
\begin{aligned}
& S\left[S X^{V}, Y^{\top}\right]=S\left[0, Y^{\top}\right]=0 \\
& S\left[X^{V}, S Y^{\top}\right]=S\left[X^{V}, Y^{V}\right]=0 .
\end{aligned}
$$

5.10 REMARK Aanalogously, $\forall x \in D^{1}(T M)$,

$$
S X=S[\Delta, X]+[S X, \Delta]
$$

By definition,

$$
\left(L_{X} S\right)(Y)=[X, S Y]-S[X, Y] \quad \text { (cf. 3.2) }
$$

Therefore

$$
S \circ L_{X} S+L_{X} S \circ S=0
$$

Proof:

$$
\begin{aligned}
& \quad S\left(\left(L_{X} S\right)(Y)\right)+\left(L_{X} S\right)(S Y) \\
& =S([X, S Y]-S[X, Y])+\left[X, S^{2} Y\right]-S[X, S Y] \\
& = \\
& =S[X, S Y]-S[X, S Y] \\
& =0
\end{aligned}
$$

[Note: Recall that $S^{2}=0$ (cf. 5.5).]
9.

Consequently,

$$
\begin{aligned}
\left(L_{S X} S\right)(Y) & =[S X, S Y]-S[S X, Y] \\
& =S[X, S Y] \quad \text { (cf. 5.9) } \\
& =S\left(\left(L_{X} S\right)(Y)\right) \\
& =-\left(L_{X} S\right)(S Y),
\end{aligned}
$$

i.e.,

$$
L_{S X} S=\left.\right|_{-} ^{S \circ L_{X} S} \begin{aligned}
& -L_{X} S \circ S .
\end{aligned}
$$

5.11 LEMMA We have

$$
L_{\Delta} S=-S .
$$

5.12 EXAMPLE For any $\Gamma \in D^{1}$ (TM) of second order,

$$
\begin{aligned}
S & =-L_{\Delta} S \\
& =-L_{S \Gamma} S \quad(c f .5 .8) \\
& =-S \circ L_{\Gamma} S=L_{\Gamma} S \circ S .
\end{aligned}
$$

5.13 LEMMA $\forall X \in D^{1}(M)$,

$$
L_{X} v^{S}=0 .
$$

5.14 EXAMPLE If $X \in D^{1}(M)$ and $\Gamma \in D^{1}(T M)$ is second order, then

$$
\mathrm{S}\left[\mathrm{X}^{\mathrm{V}}, \Gamma\right]=\mathrm{X}^{\mathrm{V}}
$$

Indeed,

$$
\begin{aligned}
L_{X} V^{S} & =0 \quad \text { (cf. 5.13) } \\
\Rightarrow \quad S\left[X^{V}, \Gamma\right] & =\left[X^{v}, S \Gamma\right] \\
& \left.=\left[X^{V}, \Delta\right] \quad \text { (cf. } 5.8\right) \\
& \left.=X^{V} \quad \text { (cf. } 4.6\right) .
\end{aligned}
$$

5.15 LEMMA Fix $\Gamma \in D^{1}$ (TM) of second order and suppose that $x \in D^{1}$ (TM) is vertical - then

$$
\left(L_{\Gamma} S\right)(X)=x
$$

PROOF There is no loss of generality in working with a vertical lift:

$$
\begin{aligned}
\left(L_{\Gamma} S\right)\left(x^{\mathrm{V}}\right) & =\left[\Gamma, s x^{V}\right]-S\left[\Gamma, x^{V}\right] \\
& \left.=[\Gamma, 0]+S\left[x^{v}, \Gamma\right] \quad \text { (cf. } 5.5\right) \\
& \left.=x^{\mathrm{V}} \quad \text { (cf. } 5.14\right)
\end{aligned}
$$

5.16 LEMMA Fix $\Gamma \in D^{1}$ (TMA) of second order and suppose that

$$
\left(L_{\Gamma} S\right)(X)=x
$$

Then X is vertical.
PROOF In fact,

$$
\begin{aligned}
& S X=S\left(\left(L_{\Gamma} S\right)(X)\right) \\
&=-\left(L_{\Gamma} S\right)(S X) \\
&=-S X \quad \text { (cf. } 5.5 \text { and } 5.15) \\
& \Rightarrow
\end{aligned}
$$

$$
\mathrm{Sx}=0
$$

Therefore $X \in$ Ker S, hence X is vertical (cf. 5.5).

Write V (TM) for the vertical subspace of D^{1} (TM) . Combining 5.15 and 5.16 then leads to the following important conclusion.
5.17 SCHOLTUM If $\Gamma \in D^{1}$ (TM) is second order, then the operator

$$
L_{\Gamma} \mathrm{S}: D^{\mathrm{l}}(\mathrm{TM}) \rightarrow D^{1}(\mathrm{TM})
$$

has eigenvalue +1 with $V(T M)$ as eigenspace.
5.18 LEMMA $\forall X \in D^{1}(M)$,

$$
L_{X^{\top}} S=0 .
$$

5.19 EXAMPLE If $X \in D^{1}(M)$ and $\Gamma \in D^{1}$ (TM) is second order, then

$$
\mathrm{S}\left[\mathrm{X}^{\top}, \Gamma\right]=0 \quad \text { (cf. } 5.3 \text {) }
$$

Indeed,

$$
\begin{aligned}
& L_{X^{\top}} S=0 \quad \text { (cf. 5.18) } \\
& \Rightarrow \\
& S\left[X^{\top}, \Gamma\right]=\left[X^{\top}, S \Gamma\right] \\
&\left.=\left[X^{\top}, \Delta\right] \quad \text { (cf. } 5.8\right) \\
&=0 \quad \text { (cf. } 4.4) .
\end{aligned}
$$

5.20 LEMMA For any second order $\Gamma \in \mathcal{D}^{l}$ (TM),

$$
\left(L_{\Gamma} S\right)^{2}
$$

is the identity operator.
PROOF In view of $5.17,\left(L_{\Gamma} S\right)^{2}$ is the identity on vertical vector fields, thus it suffices to show that

$$
\left(L_{\Gamma} S\right)^{2}\left(X^{T}\right)=X^{T} \quad\left(X \in D^{1}(M)\right)
$$

To begin with,

$$
\begin{aligned}
\left(L_{\Gamma} S\right)\left(X^{\top}\right) & =\left[\Gamma, S X^{\top}\right]-S\left[\Gamma, X^{\top}\right] \\
& \left.=\left[\Gamma, x^{V}\right]+S\left[X^{\top}, \Gamma\right] \quad \text { (cf. } 5.7\right) \\
& \left.=\left[\Gamma, X^{V}\right] \quad \text { (cf. } 5.19\right)
\end{aligned}
$$

13.

But

$$
\begin{aligned}
& S\left(X^{\top}+\left[\Gamma, X^{V}\right]\right) \\
& =S X^{\top}+S\left[\Gamma, X^{V}\right] \\
& =\mathrm{X}^{V}-\mathrm{S}\left[\mathrm{X}^{\mathrm{V}}, \mathrm{\Gamma}\right] \quad \text { (cf. 5.7) } \\
& =\mathrm{X}^{\mathrm{V}}-\mathrm{X}^{\mathrm{V}} \text { (cf. 5.14) } \\
& =0 \\
& \text { => } \\
& \mathrm{X}^{\top}+\left[\Gamma, \mathrm{X}^{\mathrm{V}}\right] \in V(\mathrm{TM}) \quad \text { (cf. 5.5) } \\
& \text { => } \\
& X^{\top}+\left(L_{\Gamma} S\right)\left(X^{\top}\right) \in V(T M) \\
& \text { => } \\
& \left(L_{\Gamma} S\right)\left(X^{\top}+\left(L_{\Gamma} S\right)\left(X^{\top}\right)\right) \\
& =X^{\top}+\left(L_{\Gamma} S\right)\left(X^{\top}\right) \quad \text { (cf. 5.15) } \\
& \text { => } \\
& \left(L_{\Gamma} S\right)^{2}\left(X^{T}\right)=X^{T} .
\end{aligned}
$$

Maintaining the assumption that $\Gamma \in \mathcal{D}^{1}$ (TM) is second order, put

$$
V_{\Gamma}=\frac{1}{2}\left(I+L_{\Gamma} S\right), H_{\Gamma}=\frac{1}{2}\left(I-L_{\Gamma} S\right)
$$

Then

And, as has been seen above,

$$
V_{\Gamma} D^{l}(T M)=V(T M)
$$

On the other hand, we call $\mathrm{H}_{\Gamma} D^{1}$ (TM) the horizontal subspace of D^{1} (TM) determined by Γ and denote it by $H_{\Gamma}(T M)$. Therefore

$$
D^{1}(\mathbb{T M})=V(\mathbb{T M}) \oplus H_{\Gamma}(\mathbb{T M}) .
$$

5.21 REMARK Since

$$
\begin{aligned}
\left(L_{\Gamma} S\right)(\Gamma) & =[\Gamma, S \Gamma]-S[\Gamma, \Gamma] \\
& =[\Gamma, \Delta] \quad \text { (cf. } 5.8)
\end{aligned}
$$

it follows that Γ is horizontal iff $[\Delta, \Gamma]=\Gamma$.
[Note: The difference

$$
[\Delta, \Gamma]-\Gamma
$$

is called the deviation. It is necessarily vertical:

$$
\begin{gathered}
S([\Delta, \Gamma]-\Gamma)=S[\Delta, \Gamma]-S \Gamma \\
=\Delta-\Delta=0
\end{gathered}
$$

15.

Here

$$
\begin{aligned}
S[\Delta, \Gamma] & =-S\left(\left(L_{\Gamma} S\right)(\Gamma)\right) \\
& =S \Gamma \quad \text { (cf. } 5.12) \\
& =\Delta \quad \text { (cf. } 5.8)
\end{aligned}
$$

Locally,

$$
\begin{aligned}
& \int^{-} \Delta=v^{i} \frac{\partial}{\partial v^{i}} \\
& \Gamma=v^{i} \frac{\partial}{\partial q^{i}}+C^{i} \frac{\partial}{\partial v^{i}} \\
& \text { => } \\
& {\left[\Delta, \Gamma^{\prime}\right]=v^{i} \frac{\partial}{\partial v^{i}}+\left(v^{i} \frac{\partial C^{j}}{\partial v^{i}}-C^{j}\right) \frac{\partial}{\partial v^{i}} .}
\end{aligned}
$$

So

$$
\begin{aligned}
& {\left[\Delta, r^{\prime}\right]=\Gamma } \\
\Leftrightarrow & \\
& \left.v^{i} \frac{\partial C^{j}}{\partial v^{i}}=2 C^{j} \quad(j=1, \ldots, n) .\right]
\end{aligned}
$$

Given $\mathrm{X} \in \mathcal{D}^{1}(\mathrm{M})$, put

$$
x^{h}=H_{T} x^{\top},
$$

thus

$$
x^{h}=\frac{1}{2}\left(x^{\top}-\left(L_{\Gamma} S\right)\left(X^{\top}\right)\right)
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(X^{\top}-\left[\Gamma, X^{V}\right]\right) \\
& =\frac{1}{2}\left(X^{\top}+\left[X^{V}, \Gamma\right]\right),
\end{aligned}
$$

and, by definition, X^{h} is the horizontal lift of x to $T M$. Locally, if

$$
x=x^{i} \frac{\partial}{\partial x^{i}}
$$

and

$$
\Gamma=v^{i} \frac{\partial}{\partial q^{i}}+c^{i} \frac{\partial}{\partial v^{i}}
$$

then

$$
x^{h}=\left(x^{i} \circ \pi_{M}\right)\left(\frac{\partial}{\partial x^{i}}\right)^{h},
$$

where

$$
\left(\frac{\partial}{\partial x^{i}}\right)^{h}=\frac{\partial}{\partial q^{i}}+\frac{1}{2} \frac{\partial C^{j}}{\partial v^{i}} \frac{\partial}{\partial v^{j}} .
$$

5.22 REMARK In general,

$$
x^{\top} \neq x^{v}+x^{h}
$$

To see this, observe that $\forall f \in C^{\infty}(M)$,
but, generically,

$$
(f X)^{\top} \neq\left(f \circ \pi_{M}\right) X^{\top} .
$$

[Note: Locally, matters are manifest.]
5.23 LEMMA $\forall \mathrm{X} \in D^{\mathrm{l}}(\mathrm{M})$,

$$
s x^{h}=x^{v}
$$

PROOF We have

$$
\begin{aligned}
S X^{h} & =\frac{1}{2}\left(S X^{\top}+S\left[X^{V}, \Gamma\right]\right) \\
& \left.=\frac{1}{2}\left(X^{V}+S\left[X^{V}, \Gamma\right]\right) \quad \text { (cf. } 5.7\right) \\
& \left.=\frac{1}{2}\left(X^{V}+X^{V}\right) \quad \text { (cf. } 5.14\right) \\
& =X^{V}
\end{aligned}
$$

5.24 REMARK Let

$$
J_{\Gamma}=S+\frac{1}{2}\left(L_{\Gamma}\left(L_{\Gamma} S\right)\right) \circ V_{\Gamma^{-}}
$$

Then $\forall \mathrm{X} \in \mathcal{D}^{\mathcal{1}}(\mathrm{M})$,

$$
\left.\right|_{-} ^{J_{\Gamma} x^{h}=x^{v}} \begin{aligned}
& J_{\Gamma} x^{v}=-x^{h}
\end{aligned}
$$

5.25 LEMMA Let $X, Y \in D^{1}(M)$ - then

$$
S\left[X^{h}, Y^{h}\right]=[X, Y]^{v}
$$

[Note: In general, $[\mathrm{X}, \mathrm{Y}]^{\mathrm{h}} \neq\left[\mathrm{X}^{\mathrm{h}}, \mathrm{Y}^{\mathrm{h}}\right]$ but

$$
\begin{aligned}
& S\left([X, Y]^{h}-\left[X^{h}, Y^{h}\right]\right) \\
& \quad=S[X, Y]^{h}-S\left[X^{h}, Y^{h}\right] \\
& \quad=[X, Y]^{V}-S\left[X^{h}, Y^{h}\right] \quad \text { (cf. 5.23) } \\
& \quad=[X, Y]^{V}-[X, Y]^{V} \\
& \quad=0,
\end{aligned}
$$

so

$$
\left.[X, Y]^{h}-\left[X^{h}, Y^{h}\right] \in V(T M) .\right]
$$

There is one final point, namely for any diffeomorphism $\phi: M \rightarrow M$,

$$
(T \phi)_{*} \circ S=S \circ(T \phi)_{*}
$$

Take now a $\Gamma \in S O(T M)$-- then $(T \phi)_{*} \Gamma \in S O(T M)$ (cf. 4.9), so (cf. 5.8)

$$
\begin{aligned}
\Delta=S \Gamma & =S(T \phi)_{*} \Gamma \\
& =(T \phi)_{*} \mathrm{~S} \Gamma=(T \phi)_{*} \Delta .
\end{aligned}
$$

56. VERTICAL DIFFERENTIATION

Let M be a connected C^{∞} manifold of dimension n,

$$
\mathrm{S}: D^{1}(\mathrm{TM}) \rightarrow D^{1}(\mathrm{TM})
$$

the vertical morphism -- then S operates by duality on $\Lambda^{*} T M$, call it S^{*}, thus

$$
S^{*} f=f \quad\left(f \in C^{\infty}(T M)\right)
$$

and

$$
S^{*} \alpha\left(X_{1}, \ldots, X_{p}\right)=\alpha\left(S X_{1}, \ldots, S X_{p}\right) \quad\left(\alpha \in \Lambda^{P_{T M}}\right)
$$

[Note: Locally,

$$
\left.S^{*}\left(d q^{i}\right)=0, S^{*}\left(d v^{i}\right)=d q^{i} \cdot\right]
$$

N.B. $\forall \pm \in C^{\infty}(T M)$,

$$
d f=\frac{\partial f}{\partial q^{i}} d q^{i}+\frac{\partial f}{\partial v^{i}} d v^{i}
$$

=>

$$
S^{*}(d f)=\frac{\partial f}{\partial v^{i}} d q^{i}
$$

Given $\mathrm{X} \in \mathrm{D}^{1}(\mathrm{TM})$, define ${ }^{1} \mathrm{X}^{\mathrm{S}}{ }^{*}$ by

$$
\left(\imath_{X} S^{*}\right)(\alpha)=l_{X}\left(S^{*} \alpha\right)
$$

6.1 LEMMA We have

$$
{ }^{1} X^{S^{*}}=S^{*} \circ{ }^{1}{ }_{S X}
$$

PROOF On elements of $C^{\infty}(T M)$, this is obvious, so let $\alpha \in \Lambda^{P_{T M}}(p>0)-$ then

$$
\begin{aligned}
& \left(\imath_{X} S^{*}\right)(\alpha)\left(X_{1}, \ldots, X_{p-1}\right) \\
& ={ }^{2} X^{\left(S_{\alpha} \alpha\right)}\left(\mathrm{X}_{1}, \ldots, X_{p-1}\right) \\
& =s^{*} \alpha\left(x_{1} x_{1}, \ldots, x_{p-1}\right) \\
& =\alpha\left(S X, S X_{1}, \ldots, X_{p-1}\right) \\
& =\left({ }^{1}{ }_{S x}{ }^{\alpha}\right)\left(S X_{1}, \ldots, S X_{p-1}\right) \\
& =S^{*}\left(\imath_{S x}{ }^{\alpha}\right)\left(X_{1}, \ldots, X_{p-1}\right) .
\end{aligned}
$$

[Note: Therefore

$$
X \in \operatorname{Ker} S(=U(T M)) \Rightarrow{ }^{\imath} X^{S^{*}}=0
$$

In particular:

$$
\left.{ }^{2} \Delta^{S^{*}}=0 .\right]
$$

Let

$$
\delta_{S} f=0 \quad\left(f \in C^{\infty}(T M)\right)
$$

and for $p>0$, put

$$
\left(\delta_{S} \alpha\right)\left(x_{1}, \ldots, x_{p}\right)=\sum_{i=1}^{p} \alpha\left(x_{1}, \ldots, S x_{i}, \ldots, x_{p}\right)
$$

[Note: Locally,

$$
\left.\delta_{S}\left(d q^{i}\right)=0, \quad \delta_{S}\left(d v^{i}\right)=d q^{i} \cdot\right]
$$

N.B. $\forall f \in C^{\infty}(T M)$,

$$
\begin{array}{cc}
d f=\frac{\partial f}{\partial q^{i}} d q^{i}+\frac{\partial f}{\partial v^{i}} d v^{i} \\
\Rightarrow \quad & \delta_{S}(d f)=\frac{\partial f}{\partial v^{i}} d q^{i} .
\end{array}
$$

[Note: Globally,

$$
\left.\delta_{S}(d f)=S^{*}(d f) .\right]
$$

6.2 LEMMA We have

$$
\left[\begin{array}{l}
\delta_{S} \circ S^{*}=0 \\
S^{*} \circ \delta_{S}=0
\end{array}\right.
$$

6.3 LEMMA $\forall X \in D^{1}$ (TM),

$$
{ }^{\imath} X{ }^{\circ} \delta_{S}-\delta_{S}{ }^{\circ}{ }^{\imath} X={ }^{1} S X
$$

PROOF On elements of $C^{\infty}(T M)$, this is obvious, so let $\alpha \in \Lambda^{\mathrm{P}^{T M}}(p>0)-$ then

$$
\left(\imath_{\mathrm{x}}\left(\delta_{\mathrm{S}} \alpha\right)\right)\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}-1}\right)
$$

4.

$$
\begin{aligned}
& -\left(\delta_{S}\left(\imath_{x^{\alpha}}\right)\right)\left(x_{1}, \ldots, x_{p-1}\right) \\
= & \left(\delta_{S} \alpha\right)\left(x_{, x_{1}}, \ldots, x_{p-1}\right) \\
& \quad \sum_{i=1}^{p-1}\left(\imath_{x^{\alpha}}\right)\left(x_{1}, \ldots, S x_{i}, \ldots, x_{p-1}\right) \\
= & \alpha\left(S x_{1} x_{1}, \ldots, x_{p-1}\right)+\sum_{i=1}^{p-1} \alpha\left(x_{1}, x_{1}, \ldots, S x_{i}, \ldots, x_{p-1}\right) \\
& \quad-\sum_{i=1}^{p-1} \alpha\left(x_{1}, x_{1}, \ldots, S x_{i}, \ldots, x_{p-1}\right) \\
= & \alpha\left(S X, x_{1}, \ldots, x_{p-1}\right) \\
= & \left(l_{S x} \alpha\right)\left(x_{1}, \ldots, x_{p-1}\right) .
\end{aligned}
$$

6.4 LEMMA We have

$$
\delta_{S} \circ L_{\Delta}-L_{\Delta} \circ \delta_{S}=\delta_{S} .
$$

Define now

$$
d_{S}: \Lambda^{*} T M \rightarrow \Lambda^{*} T M
$$

by

$$
d_{S}=\delta_{S} \circ d-d \circ \delta_{S} .
$$

[Note: Locally,

$$
\left.d_{S}\left(d q^{i}\right)=0, d_{S}\left(d v^{i}\right)=0 .\right]
$$

N.B. $\forall f \in C^{\infty}(T M)$,

$$
\begin{aligned}
& d f=\frac{\partial f}{\partial q^{i}} d q^{i}+\frac{\partial f}{\partial v^{i}} d v^{i} \\
& \Rightarrow \\
& d_{S}^{f}=\left(\delta_{S} \circ d-d \circ \delta_{S}\right) f \\
&=\delta_{S}(d f) \\
&=\frac{\partial f}{\partial v^{i}} d q^{i} .
\end{aligned}
$$

[Note: Globally,

$$
\left.d_{S} f=S^{*}(d f), d_{S}(d f)=-d\left(S^{*}(d f)\right) .\right]
$$

6.5 LEMMA d_{S} is an antiderivation of Λ^{*} TM of degree 1.

PROOF Write

$$
d_{S}=\left[\delta_{S}, d\right]
$$

and observe that δ_{S} is a derivation of Λ^{*} TM of degree 0 while d is an antiderivation of Λ^{*} TM of degree 1.

6.6 LEMMA We have

$$
d \circ d_{S}+d_{S} \circ d=0
$$

PROOF In fact,

$$
\begin{aligned}
d & \circ d_{S}+d_{S} \circ d \\
& =d \circ\left(\delta_{S} \circ d-d \circ \delta_{S}\right)+\left(\delta_{S} \circ d-d \circ \delta_{S}\right) \circ d \\
& =d \circ \delta_{S} \circ d-d \circ \delta_{S} \circ d \\
& =0
\end{aligned}
$$

6.7 LEMMA $\forall £ \in C^{\infty}(T M)$,

$$
\delta_{S} d S * d f=0
$$

PROOF Bearing in mind that the LHS is a 2 -form, let $X, Y \in D^{1}$ (TM) - then

$$
\begin{aligned}
& \left(\delta_{S} d S^{*} d f\right)(X, Y) \\
& =\left(d S^{*} d f\right)(S X, Y)+\left(d S^{*} d f\right)(X, S Y) \\
& = \\
& \quad L_{S X}\left(\left(S^{*} d f\right)(Y)\right) \\
& \quad-L_{Y}\left(\left(S^{*} d f\right)(S X)\right)-\left(S^{\star} d f\right)([S X, Y]) \\
& + \\
& L_{X}\left(\left(S^{*} d f\right)(S Y)\right) \\
& \\
& \quad-L_{S Y}\left(\left(S^{*} d f\right)(X)\right)-\left(S^{*} d f\right)([X, S Y])
\end{aligned}
$$

$$
=L_{S X}(d f(S Y))
$$

$$
-L_{Y}\left(d f\left(S^{2} X\right)\right)-d f(S[S X, Y])
$$

$$
+L_{X}\left(d f\left(S^{2} Y\right)\right)
$$

$$
-L_{S Y}(d f(S X))-d f(S[X, S Y])
$$

$$
=L_{S X}\left(L_{S Y} f\right)-L_{S[S X, Y]} f
$$

$$
\left.-L_{S Y}\left(L_{S X}{ }^{f}\right)-L_{S[X, S Y}\right]^{f}
$$

$$
=((S X)(S Y)-S[S X, Y]
$$

$$
-(S Y)(S X)-S[X, S Y]) f
$$

$$
=([S X, S Y]-S[S X, Y]-S[X, S Y]) f
$$

$$
=0 \text { (cf. 5.9). }
$$

[Note: Recall that $s^{2}=0$ (cf. 5.5).]
6.8 LEMMA We have

$$
d_{S}^{2}=0
$$

PROOF It suffices to show that $\forall f \in C^{\infty}$ (TM),

$$
\int_{-}^{-} \begin{aligned}
& d_{S}^{2} f=0 \\
& d_{S}^{2}(d f)=0
\end{aligned}
$$

But

$$
\begin{aligned}
d_{S}^{2} f & =d_{S} d_{S} f \\
& =d_{S} S^{\star d f} \\
& =\left(\delta_{S} \circ d-d \circ \delta_{S}\right) S^{\star d f} \\
& \left.=\delta_{S} d S * d f \quad \text { (cf. } 6.2\right) \\
& =0 \quad \text { (cf. } 6.7)
\end{aligned}
$$

And then (cf. 6.6)

$$
\begin{aligned}
d_{S}^{2}(d f) & =d_{S}\left(d_{S} d f\right) \\
& =-d_{S}\left(d d_{S} f\right) \\
& =d\left(d_{S}^{2} f\right) \\
& =0
\end{aligned}
$$

6.9 LEMMA We have

$$
S^{*} \circ d_{S}=0 \text { and } d_{S} \circ S^{*}=S^{*} \circ d
$$

Morecever,

$$
\delta_{S} \circ d_{S}=d_{S} \circ \delta_{S}
$$

9.

6.10 LEMMA We have

$$
\left[\begin{array}{l}
d_{\Delta} \circ d_{S}+d_{S} \circ{ }^{2} \Delta=\delta_{S} \\
d_{S} \circ L_{\Delta}-L_{\Delta} \circ d_{S}=d_{S}
\end{array}\right.
$$

PROOF To discuss the first relation, let $f \in C^{\infty}$ (TM) -- then

$$
\begin{aligned}
{ }^{\left(l_{\Delta}\right.} \circ d_{S} & \left.+d_{S} \circ{ }_{l_{\Delta}}\right) f \\
& ={ }^{\imath} d_{S} d_{S} f \\
& ={ }^{1} \Delta_{S} *_{f} \\
& =0 \quad \text { (cf. 6.1). }
\end{aligned}
$$

And

$$
\begin{aligned}
\left(i_{\Delta} \circ d_{S}\right. & \left.+d_{S} \circ i_{\Delta}\right) d f \\
& ={ }^{\imath} \Delta_{S}(d f)+d_{S}(\Delta f) \\
& ={ }^{q_{\Delta}}\left(-d\left(S^{*}(d f)\right)\right)+S^{*}\left(d\left(L_{\Delta} f\right)\right) \\
& =\left(-L_{\Delta}+d l_{\Delta}\right)\left(S^{*}(d f)\right)+\delta_{S} d\left(L_{\Delta} f\right) \\
& =-L_{\Delta} \delta_{S}(d f)+\delta_{S} L_{\Delta}(d f) \\
& =\left(\delta_{S} \circ L_{\Delta}-L_{\Delta} \circ \delta_{S}\right)(d f) \\
& \left.=\delta_{S}(d f) \quad \text { (cf. } 6.4\right) .
\end{aligned}
$$

6.11 REMARK The analog of the identity

$$
L_{X}={ }^{l_{X}} \circ d+d \circ{ }^{l_{X}}
$$

per d_{S} is the relation

$$
L_{S X}+\left[\delta_{S^{\prime}} L_{X}\right]={ }^{2} X \circ d_{S}+d_{S} \circ i^{2} .
$$

6.12 REMARK Let

$$
T \in \operatorname{Hom}_{C^{\infty}(T M)}\left(D^{l}(T M), D^{1}(T M)\right) .
$$

Defining δ_{T} in the obvious way, put

$$
d_{T}=\delta_{T} \circ d-d \circ \delta_{T} .
$$

Then

$$
d \circ d_{T}+d_{T} \circ d=0
$$

but, in general, $d_{T}^{2} \neq 0$. On the other hand, $\forall \mathrm{X} \in \mathcal{D}^{1}$ (TM)

$$
L_{X} \circ d_{T}-d_{T} \circ L_{X}=d_{L_{X}}
$$

E.g.: Take $T=S, X=\triangle$ - then

$$
\begin{aligned}
L_{\Delta} \circ d_{S}-d_{S} \circ L_{\Delta} & =d_{L_{\Delta} S} \\
& \left.=d_{-S} \quad \text { (cf. } 5.11\right) \\
\Rightarrow \quad d_{S} \circ L_{\Delta}-L_{\Delta} \circ d_{S} & =d_{S} \quad(\text { cf. } 6.10)
\end{aligned}
$$

[Note: If T is the identity map, then

$$
\delta_{T^{\alpha}}=\mathrm{p} \alpha \quad\left(\alpha \in \Lambda^{\mathrm{P}_{\mathrm{TM}}}\right) .
$$

Therefore

$$
\begin{aligned}
d_{T} \alpha & =\delta_{T} d \alpha-d \delta_{T} \alpha \\
& =(p+1) d \alpha-p d \alpha \\
& =d \alpha,
\end{aligned}
$$

so $\left.d_{T}=d.\right]$

The image $S^{*}\left(\Lambda^{*} T M\right)$ is called the vector space of horizontal differential forms on TM. It is d_{S}-stable (cf. 6.9).
N.B. $\forall f \in C^{\infty}(T M), d_{S} f$ is horizontal. In fact, $d_{S} f=S^{*}(d f)$.
6.13 LEMMA Suppose that α is horizontal -- then

$$
\left[\begin{array}{rl}
{ }^{1} \Delta^{\alpha} & =0 \\
\delta_{S} & =0
\end{array}\right.
$$

PROOF Write $\alpha=S * \beta$ - then

$$
\begin{aligned}
& { }^{2} \Delta^{\alpha}={ }^{2} \Delta^{S *}=0 \beta=0 \quad \text { (cf. 6.1) } \\
& \delta_{S} \alpha=\delta_{S} S^{* \beta}=0 \beta=0 \quad \text { (cf. 6.2) }
\end{aligned}
$$

Let $\alpha \in \Lambda^{1}$ TM -- then α is horizontal iff locally,

$$
\alpha=a_{i}\left(q^{1}, \ldots, q^{n}, v^{l}, \ldots, v^{n}\right) d q^{i}
$$

So, $\forall \omega \in \Lambda^{1} \mathrm{M},\left(\pi_{M}\right) * \omega$ is horizontal and

$$
d_{S}\left(\left(\pi_{M}\right) * \omega\right)=0
$$

6.14 LEMMA Let $\alpha \in \Lambda^{1}$ TM -- then α is horizontal iff $\alpha(X)=0$ for all vertical vector fields X on TM.
§7. THE FIBER DERIVATIVE

Let M be a connected C^{∞} manifold of dimension n,

$$
\pi_{M}^{*}: T^{*} M \rightarrow M
$$

its cotangent bundle - then the sections $D_{1}(M)$ of $T^{*} M$ are the 1 -forms on M, i.e., $\Lambda^{l} \mathrm{M}$.
N.B. Suppose that ($U,\left\{x^{l}, \ldots, x^{n}\right\}$) is a chart on M-- then

$$
\left(\left(\pi_{M}^{*}\right)^{-1} U,\left\{q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right\}\right)
$$

is a chart on T^{*} M.
[Note: Here

$$
\left[\begin{array}{l}
q^{i}=x^{i} \circ \pi_{M}^{*} \\
p_{i}=\frac{\partial}{\partial x^{i}}
\end{array}\right.
$$

Denote by $h \Lambda^{1} T M$ the vector space of horizontal 1-forms on IM and consider the pullback square

$$
\begin{array}{cc}
\mathrm{TM} \times_{\mathrm{M}} \mathrm{~T}^{* \mathrm{M}} \xrightarrow{\mathrm{pr}_{2}} \mathrm{~T}^{\star \mathrm{M}} \\
\mathrm{pr}_{1} \downarrow \\
& \downarrow_{\mathrm{M}} \xrightarrow[\pi_{M}^{*}]{ } \\
& \mathrm{M}
\end{array} .
$$

Then one can identify $\mathrm{h} \Lambda{ }^{1}$ IM with the sections of pr_{1}, thus there is an isomorphism $\alpha \rightarrow \mathrm{F}_{\alpha}=\mathrm{pr}_{2} \circ \alpha$ from $h \Lambda^{\text {I } T M}$ to the vector space of fiber preserving C^{∞} functions $T M \rightarrow T * M:$

[Note: For more details and a generalization, cf. 13.4.]
Locally, if

$$
\alpha=a_{i} d q^{i}
$$

then

$$
q^{i} \circ F_{\alpha}=q^{i}, p_{i} \circ F_{\alpha}=a_{i}
$$

Let θ be the fundamental l-form on $T * M$.
7.1 IEMMA $\forall \alpha \in \mathrm{h} \Lambda^{1}{ }^{\text {TIM }}$,

$$
\mathrm{F}_{\alpha}^{*} \Theta=\alpha
$$

[Locally,

$$
\theta=p_{i} d q^{i}
$$

so

$$
F_{\alpha}^{*}\left(p_{i} d q^{i}\right)=\left(p_{i} \circ F_{\alpha}\right) d\left(q^{i} \circ F_{\alpha}\right)
$$

$$
\begin{aligned}
& =a_{i} d q^{i} \\
& \left.=\alpha_{\cdot}\right]
\end{aligned}
$$

Given an $f \in C^{\infty}(T M)$, the 1 -form $d_{S} f$ is horizontal: $d_{S} f \in h \Lambda^{I} T M$. Put $F f=F_{d_{S} f}-$ then $\mathrm{Ff}: T M \rightarrow T^{*} M$ is the fiber derivative of f. The correspondence $f \rightarrow F f$ is linear and $F f=F g$ iff $\exists h \in C^{\infty}(M): f-g=h \circ \pi_{M}$.

Locally,

$$
d_{S} f=\frac{\partial f}{\partial v^{i}} d q^{i}
$$

thus locally,

$$
q^{i} \circ F f=q^{i}, p_{i} \circ F f=\frac{\partial f}{\partial v^{i}}
$$

[Note: Invariantly, Ff sends $T_{X} M$ to $T_{X}^{*} M$ via the prescription

$$
\left.F f\left(x, X_{x}\right)\left(Y_{x}\right)=\left.\frac{d}{d t} f\left(x, X_{x}+t Y_{x}\right)\right|_{t=0} \quad\left(X_{x}, Y_{x} \in T_{x} M\right) .\right]
$$

7.2 REMARK Ff is fiber preserving but Ff need not be linear on fibers.
[Note: Ff is a diffeomorphism iff Ff is bijective on fibers.]

Each $X \in D^{1}\left(T^{*} M\right)$, i.e., each section $X: T * M \rightarrow T T^{*} M$, induces a fiber preserving C^{∞} function $F_{X}: T^{\star} M \rightarrow T M$, viz. $F_{X}=T \pi_{M}^{*} \circ X$. To a given $H \in C^{\infty}\left(T^{*} M\right)$, there corresponds a vector field X_{H} on $T^{*} M$ characterized by the condition ${ }^{2} X_{H} \Omega=-d H$.

4.

Put $F H=F_{X_{H}}-$ then $F H: T * M \rightarrow T M$ is the fiber derivative of H.
[Note: Locally,

$$
X_{H}=\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}}-\frac{\partial H}{\partial q^{i}} \frac{\partial}{\partial p_{i}}
$$

Therefore, along an integral curve of X_{H}, we have

$$
\begin{aligned}
& \frac{d q^{i}}{d t}=\frac{\partial H}{\partial p_{i}} \\
& \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q^{i}}
\end{aligned}
$$

the equations of Hamilton.]

§8. LAGRANGIANS

Let M be a connected C^{∞} manifold of dimension n - then a lagrangian is simply any element $L \in C^{\infty}$ (TM) . This said, put

$$
\left[\begin{array}{rl}
\theta_{L} & =d_{S} L \\
\omega_{L} & =d \theta_{L}
\end{array}\right.
$$

N.B. From the definitions,

$$
\begin{aligned}
(\mathrm{FL}) * \theta & =\left(\mathrm{F}_{\mathrm{d}_{\mathrm{S}} \mathrm{~L}}\right) * \theta \\
& =\mathrm{d}_{\mathrm{S}} \mathrm{~L} \quad \text { (cf. 7.1). }
\end{aligned}
$$

Accordingly, if $\Omega=\mathrm{d} \theta$, then

$$
(\mathrm{FL}) * \Omega=\omega_{\mathrm{L}} .
$$

[Note: Recall that the pair ($\mathrm{T}^{*} \mathrm{M}, \Omega$) is a symplectic manifold.]
8.1 LEEMMA We have

$$
\delta_{S} \omega_{L}=0 .
$$

PROOF In fact,

$$
\begin{aligned}
-\delta_{S} \omega_{L} & =-\delta_{S} d d_{S} L \\
& =\delta_{S} d_{S} d L \quad \text { (cf. 6.6) }
\end{aligned}
$$

2.

$$
\begin{aligned}
& =d_{S} \delta_{S} d L \quad \text { (cf. 6.9) } \\
& =d_{S}\left(\delta_{S} \circ d-d \circ \delta_{S}\right) L \\
& =d_{S}^{2} \\
& =0 \quad \text { (cf. 6.8). }
\end{aligned}
$$

Let

$$
\text { Ker } \omega_{L}=\left\{X \in \mathcal{D}^{1}(T M): r_{X} w_{L}=0\right\}
$$

Then ω_{L} is symplectic iff Ker $\omega_{L}=0$.
8.2 LEMMA ω_{L} is symplectic iff FL is a local diffeomorphism.

PROOF If ω_{L} is symplectic, then

$$
\text { FL: }\left(T M, \omega_{L}\right) \rightarrow(T * M, \Omega)
$$

is a canonical transformation, hence is a local diffeomorphism. And conversely... .
L is said to be nondegenerate if ω_{L} is symplectic; otherwise, L is said to be degenerate.
8.3 EXAMPLE Take $M=\underline{R}$ - then

$$
\left.\right|_{-L(q, v)=q} ^{L(q, v)=v}
$$

are both degenerate. For

$$
\theta_{L}=\frac{\partial L}{\partial v} d q
$$

so in either case, $\omega_{L}=0$.
8.4 EXAMPLE Let g be a semiriemannian structure on M and take for L the function

$$
\left(x, x_{x}\right) \rightarrow \frac{1}{2} g_{x}\left(X_{x}, X_{x}\right) \quad\left(x_{x} \in T_{x} M\right)
$$

Then

$$
F L\left(x, X_{x}\right)\left(x, Y_{x}\right)=g_{x}\left(X_{x}, Y_{x}\right) \quad\left(Y_{x} \in T_{x} M\right)
$$

I.e.:

$$
\mathrm{FL}=\mathrm{g}
$$

thus FL: TM $\rightarrow T^{*} M$ is a diffeomorphism, so L is nondegenerate (cf. 8.2).
[Note: Suppose that $\mathrm{X} \in \mathcal{D}^{1}(M)$ is an infinitesimal isometry of g, i.e., $L_{X} g=0$. Working locally, write

$$
L\left(q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right)=\frac{1}{2}\left(g_{i j} \circ \pi_{M}\right) v^{i} v^{j} .
$$

Then

$$
\begin{aligned}
& 2 X^{\top} L=\left(x^{a} g_{i j, a} \circ \pi_{M}\right) v^{i} v^{j} \\
& +\left(g_{i j} \circ \pi_{M}\right)\left(x^{\top} v^{i}\right) v^{j}+\left(g_{i j} \circ \pi_{M}\right) v^{i}\left(x^{\top} v^{j}\right) \\
& \quad=\left(x^{a} g_{i j, a} \circ \pi_{M}\right) v^{i} v^{j} \\
& +\left(g_{i j} \circ \pi_{M}\right)\left(v^{k} X_{, k}^{i} \circ \pi_{M}\right) v^{j}+\left(g_{i j} \circ \pi_{M}\right) v^{i}\left(v^{\ell} X_{, \ell}^{j} \circ \pi_{M}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\left(x^{a} g_{i j, a} \circ \pi_{M}\right) v^{i} v^{j} \\
&+\left(g_{k j} \circ \pi_{M}\right)\left(x_{, i}^{k} \circ \pi_{M}\right) v^{i} v^{j}+\left(g_{i \ell} \circ \pi_{M}\right)\left(X_{, j}^{\ell} \circ \pi_{M}\right) v^{i} v^{j} \\
&=\left(L_{X} g_{i j} \circ \pi_{M}\right) v^{i} v{ }^{j} \\
&=0
\end{aligned}
$$

Therefore

$$
\left.X^{\top} L=0 .\right]
$$

There is a local criterion for nondegeneracy which is useful in practice.
8.5 LEMMA L is nondegenerate iff for all coordinate systems $\left\{q^{1}, \ldots, q^{n}\right.$, $\left.\mathrm{v}^{1}, \ldots, \mathrm{v}^{\mathrm{n}}\right\}$,

$$
\operatorname{det}\left|\left.\right|_{-} ^{-} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right]_{-}^{-} \neq 0
$$

everywhere.
PROOF On general grounds, ω_{L} is symplectic iff ω_{L}^{n} is a volume form. Locally,

$$
\theta_{L}=\frac{\partial L}{\partial v^{i}} d q^{i}
$$

hence locally,

$$
\omega_{L}=\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} d q^{i} \wedge d q^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j}
$$

But this implies that

$$
\omega_{L}^{n}= \pm n!\operatorname{det}\left[\left.\right|_{-} ^{-} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right] d v^{1} \wedge \cdots \wedge d^{n} \wedge d q^{1} \wedge \cdots \wedge d q^{n},
$$

thus ω_{L}^{n} is a volume form iff

$$
\left.\operatorname{det} \left\lvert\,-\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right.\right] \neq 0
$$

everywhere.
8.6 EXAMPLE Take $M=\underline{R}^{n}$ and define $L: \underline{R}^{2 n} \rightarrow \underline{R}$ by

$$
L\left(q^{1}, \ldots, q^{n}, v^{l}, \ldots, v^{n}\right)=\sum_{i=1}^{n} m_{i} \frac{\left(v^{i}\right)^{2}}{2}-v\left(q^{l}, \ldots, q^{n}\right),
$$

where the $m_{i} \in \underline{R}$ are constants and $V \in C^{\infty}\left(\underline{R}^{n}\right)$ - then

$$
\left.\operatorname{det}\left|\left.\right|_{-} ^{-} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right]_{-} \right\rvert\,=m_{1} \cdots m_{n^{\prime}}
$$

so L is nondegenerate iff $m_{1} \neq 0, \ldots, m_{n} \neq 0$.

Given L, put

$$
E_{L}=\Delta L-L
$$

Then E_{L} is the energy function attached to L.
8.7 LEMMA We have

$$
{ }^{2} \Delta_{L}=d_{S} F_{L} .
$$

PROOF Since θ_{L} is horizontal,

$$
{ }^{2} \Delta_{L} \theta_{L}=0 \quad \text { (cf. 6.13) }
$$

Therefore

$$
\begin{aligned}
{ }^{1} \omega_{L} \omega_{L} & ={ }^{2} \Delta^{d \theta} \\
& =\left(L_{\Delta}-d \circ{ }_{\Delta}{ }_{\Delta}\right) \theta_{L} \\
& =L_{\Delta} \theta_{L} \\
& =L_{\Delta} d_{S} L \\
& =\left(d_{S} \circ L_{\Delta}-d_{S}\right) L \quad \text { (cf. 6.10) } \\
& =d_{S}(\Delta-1) L \\
& =d_{S} E_{L} .
\end{aligned}
$$

Let

$$
D_{L}=\left\{X \in D^{l}(T M): l^{1}{ }^{\omega}{ }_{L}=-d E_{L}\right\}
$$

Then L is said to admit global dynamics if D_{L} is nonempty.
8.8 EXAMPLE Take $M=\underline{R}$ (cf. 8.3).

- If $L(q, v)=q$, then $\omega_{L}=0, E_{L}=-L\left(\Delta L=v \frac{\partial q}{\partial v}=0\right)$, thus D_{L} is empty.
- If $L(q, v)=v$, then $\omega_{L}=0, E_{L}=0\left(\Delta L=v \frac{\partial v}{\partial v}=v\right)$, thus $D_{L}=D^{1}\left(\underline{R}^{2}\right)$.
8.9 LEMMA Let $X \in D_{L}-$ then $L_{X} \omega_{L}=0$.

PROOF One has only to write

$$
\begin{aligned}
L_{X} \omega_{L} & =\left(l_{X} \circ d+d \circ l_{X}\right) \omega_{L} \\
& =0+d\left(-d E_{L}\right) \\
& =0 .
\end{aligned}
$$

8.10 REMARK E_{L} is a first integral for any $X \in D_{L}$. Proof: ${X F_{L}}=\left\langle X, \mathrm{dE}_{\mathrm{L}}\right\rangle=$ $-\left\langle X, l_{X} \omega_{L}\right\rangle=-\omega_{L}(X, X)=0$.
8.11 LEMMA If L admits global dynamics, then

$$
\left\langle\operatorname{Ker} \omega_{L^{\prime}}-d E_{L}\right\rangle=0 .
$$

8.12 IEMMA If L is nondegenerate, then L admits global dynamics: \exists a (unique) $\Gamma_{L} \in D^{1}$ (IM) such that

$$
{ }^{v_{\Gamma}} \omega_{L}=-d E_{L} .
$$

And Γ_{L} is second order.
PROOF The existence (and uniqueness) of Γ_{L} is implied by the assumption that
ω_{L} is symplectic. As for the claim that Γ_{L} is second order, to begin with

$$
{ }^{l_{\Gamma_{L}}} \circ \delta_{S}-\delta_{S} \circ{ }^{l_{\Gamma_{L}}}={ }^{l_{S}} \Gamma_{L} \quad \text { (cf. 6.3). }
$$

Therefore

$$
\begin{aligned}
\delta_{S}{ }^{2} \Gamma_{L}{ }^{\omega_{L}} & =\left({ }^{1} \Gamma_{L} \circ \delta_{S}-{ }^{l}{ }_{S} \Gamma_{L}\right) \omega_{L} \\
& =-{ }^{1}{ }_{S \Gamma_{L}} \omega_{L} \quad \text { (cf. 8.1). }
\end{aligned}
$$

But

$$
\begin{aligned}
{ }^{2} \Delta_{L} \omega_{L} & =d_{S} E_{L} \quad \text { (cf. 8.7) } \\
& =\left(d_{S}+d \circ \delta_{S}\right) E_{L} \\
& =\delta_{S} d E_{L} \\
& =-\delta_{S} \Gamma_{L} \omega_{L} \\
& ={ }^{1} S_{S} \omega_{L} \omega_{L}
\end{aligned}
$$

Since ω_{L} is symplectic, it follows that

$$
\mathrm{S} \Gamma_{\mathrm{L}}=\Delta_{\mathbf{I}}
$$

thus Γ_{L} is second order (cf. 5.8).
[Note: Working locally, write

$$
\Gamma_{L}=v^{i} \frac{\partial}{\partial q^{i}}+C^{i} \frac{\partial}{\partial v^{i}}
$$

Put

$$
W(L)=\left[W_{i j}(L)\right],
$$

where

$$
W_{i j}(L)=\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} .
$$

Then $W(L)$ is invertible (cf. 8.5) and

$$
\left.C^{i}=\left(W(L)^{-1}\right)^{i j}\left(\frac{\partial L}{\partial q^{j}}-\frac{\partial^{2} L}{\partial v^{j} \partial q^{k}} v^{k}\right) \cdot\right]
$$

E.g.: In the setting of 8.6 , suppose that $m_{1}=1, \ldots, m_{n}=1-$ then L is nondegenerate and

$$
\Gamma_{L}=v^{i} \frac{\partial}{\partial q^{i}}-\frac{\partial V}{\partial q^{i}} \frac{\partial}{\partial v^{i}} .
$$

Here is another illustration. Take $M=\underline{R}$, fix nonzero constants m, g, ℓ and put

$$
L(q, v)=\frac{m}{2} \ell^{2} v^{2}+m g \ell \cos q .
$$

Then

$$
\begin{aligned}
\frac{\partial^{2} L}{\partial v \partial v} & =m \ell^{2}, \frac{\partial L}{\partial q}=-m g \ell \sin q \\
& \Rightarrow \\
& C=\left(m \ell^{2}\right)^{-1}(-m g \ell \sin q) \\
& =-\frac{g}{\ell} \sin q .
\end{aligned}
$$

8.13 LEMMA If Γ is second order, then for any L,

$$
\Delta L={ }^{l}{ }_{\Gamma} \theta_{L} .
$$

PROOF We have

$$
\begin{aligned}
{ }^{2} \Gamma_{L} \theta_{L} & =\theta_{L}(\Gamma) \\
& =d_{S} L(\Gamma) \\
& =S^{*}(d L)(\Gamma) \\
& =d L(S \Gamma) \\
& =d L(\Delta) \quad \text { (cf. } 5.3) \\
& =\Delta L .
\end{aligned}
$$

8.14 LEMMA If Γ is second order, then

$$
{ }^{2}{ }_{\Gamma} \omega_{L}=-d E_{L} \Leftrightarrow L_{\Gamma} \theta_{L}=d L
$$

PROOF Assume first that $L_{\Gamma} \theta_{L}=d L$ - then

$$
\begin{aligned}
{ }^{{ }^{1} \Gamma}{ }_{L} l_{L} & ={ }_{\Gamma}{ }_{\Gamma} d \theta_{L} \\
& =\left(L_{\Gamma}-d \circ{ }_{\Gamma}{ }_{\Gamma}\right) \theta_{L} \\
& =L_{\Gamma} \theta_{L}-d v_{\Gamma} \theta_{L} \\
& =d L-d \Delta L \quad \text { (cf. 8.13) }
\end{aligned}
$$

$$
\begin{aligned}
& =d(1-\Delta) L \\
& =-d E_{L} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& { }^{l}{ }_{\Gamma} \omega_{L}=-d E_{L} \\
\Rightarrow & \left(L_{\Gamma}-d \circ{ }_{\Gamma}\right) \theta_{L}=d(L-\Delta L) \\
\Rightarrow & \\
& L_{\Gamma} \theta_{L}-d \Delta L=d L-d \Delta L \quad \text { (cf. 8.13) } \\
\Rightarrow & \\
& L_{\Gamma} \theta_{L}=d L .
\end{aligned}
$$

Suppose that $\Gamma \in D^{1}(T M)$ is second order -- then Γ is said to admit a lagrangian L if

$$
L_{\Gamma} \theta_{L}=d L
$$

or still,

$$
{ }^{1} \Gamma_{L}^{\omega_{L}}=-d E_{L} .
$$

[Note: The set of L for which $L_{\Gamma} \theta_{L}=d L$ is a vector space over R.]
N.B. Locally,

$$
\theta_{L}=\frac{\partial L}{\partial v^{i}} d q^{i}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \qquad \begin{aligned}
L_{\Gamma}{ }^{\theta} L & =L_{\Gamma}\left(\frac{\partial L}{\partial v^{i}}\right) d q^{i}+\frac{\partial L}{\partial v^{i}} L_{\Gamma}\left(d q^{i}\right) \\
& =L_{\Gamma}\left(\frac{\partial L}{\partial v^{i}}\right) d q^{i}+\frac{\partial L}{\partial v^{i}} d\left(q^{i}(\Gamma)\right) \\
& =L_{\Gamma}\left(\frac{\partial L}{\partial v^{i}}\right) d q^{i}+\frac{\partial L}{\partial v^{i}} d v^{i} \\
\Rightarrow \quad 0 & =L_{\Gamma} L_{L}-d L=\left(L_{\Gamma}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}\right) d q^{i} \\
\Rightarrow \quad & L_{\Gamma}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0 \quad(i=1, \ldots, n) .
\end{aligned} . \quad l
\end{aligned}
$$

Write

$$
\Gamma=v^{j} \frac{\partial}{\partial q^{j}}+c^{j} \frac{\partial}{\partial v^{j}}
$$

and let γ be an integral curve of Γ so that

$$
\left[\begin{array}{l}
\frac{d\left(q^{j}(\gamma(t))\right)}{d t}=v^{j}(\gamma(t)) \\
\frac{d\left(v^{j}(\gamma(t))\right)}{d t}=c^{j}(\gamma(t)) .
\end{array}\right.
$$

Then

$$
\left.\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)\right|_{\gamma(t)}
$$

$$
\begin{aligned}
& =\left.\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}\right|_{\gamma(t)} \frac{d}{d t}\left(q^{j}(\gamma(t))\right) \\
& \quad+\left.\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right|_{\gamma(t)} \frac{d}{d t} v^{j}(\gamma(t)) \\
& =\left.\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}\right|_{\gamma(t)} v^{j}(\gamma(t)) \\
& \quad+\left.\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right|_{\gamma(t)} C^{j}(\gamma(t)) \\
& =\left.L_{\Gamma}\left(\frac{\partial L}{\partial v^{i}}\right)\right|_{\gamma(t)} .
\end{aligned}
$$

I.e.: Along γ, the equations of Lagrange

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0 \quad(i=1, \ldots, n)
$$

are satisfied.
8.15 LEMMA A second order Γ always admits a lagrangian.

PROOF Let $\omega \in \Lambda^{1} M$ and put

$$
L={ }^{l} \Gamma\left(\pi_{M}\right) * \omega .
$$

Then

$$
\begin{aligned}
\theta_{L} & =d_{S} L \\
& =d_{S \Gamma}{ }^{2}\left(\pi_{M}\right) * \omega
\end{aligned}
$$

Locally,

$$
\begin{aligned}
& \omega=a_{i} d x^{i} \\
& \text { => } \\
& \left(\pi_{M}\right) * \omega=\left(a_{i} \circ \pi_{M}\right) d q^{i} \\
& \text { => } \\
& { }^{1} \Gamma\left(\pi_{M}\right) *_{\omega}=\left(a_{i} \circ \pi_{M}\right) v^{i} \\
& \text { => } \\
& d_{S} i_{\Gamma}\left(\pi_{M}\right) *_{\omega}=\frac{\partial\left(\imath_{\Gamma}\left(\pi_{M}\right) * \omega\right)}{\partial v^{i}} d q^{i} \\
& =\left(a_{i} \circ \pi_{M}\right) d q^{i} \\
& \text { => } \\
& \theta_{L}=\left(\pi_{M}\right) * \omega .
\end{aligned}
$$

But

$$
\begin{aligned}
d L & =d l_{\Gamma}\left(\pi_{M}\right) * \omega \\
& =\left(L_{\Gamma}-\imath_{\Gamma} \circ d\right)\left(\pi_{M}\right) * \omega \\
& =L_{\Gamma}\left(\pi_{M}\right) * \omega-\imath_{\Gamma} d\left(\pi_{M}\right) * \omega \\
& =L_{\Gamma} \theta_{L}-{ }_{\Gamma}\left(\pi_{M}\right) * d \omega
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \quad L_{\Gamma} \theta_{L}-d L={ }^{l_{\Gamma}}\left(\pi_{M}\right) * d \omega .
\end{aligned}
$$

So, if ω is closed, then L is a lagrangian for Γ.
8.16 REMARK Fix a second order Γ-- then the proof shows that each closed l-form on M gives rise to a lagrangian for Γ. Lagrangians of this type are termed trivial and there may be no others. For instance, take $M=\underline{R}^{2}$ and consider

$$
\Gamma=v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+\left(q^{1}+q^{2}\right) \frac{\partial}{\partial v^{1}}+\left(q^{1} q^{2}\right) \frac{\partial}{\partial v^{2}} .
$$

Then it can be shown that Γ does not admit a nontrivial lagrangian.
8.17 EXAMPLE Take $M=\underline{R}^{2}$ and let

$$
\Gamma=v^{1} \frac{\partial}{\partial q^{I}}+v^{2} \frac{\partial}{\partial q^{2}}
$$

Then

$$
L=\frac{1}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right)
$$

is a lagrangian for Γ, necessarily nondegenerate (cf. 8.5). Now fix real numbers a, b, c and let

$$
L=\frac{1}{2}\left(a\left(v^{1}\right)^{2}+2 c\left(v^{1} v^{2}\right)+b\left(v^{2}\right)^{2}\right) .
$$

We have

$$
\theta_{L}=\frac{\partial L}{\partial v^{1}} d q^{1}+\frac{\partial L}{\partial v^{2}} d q^{2}
$$

$$
\begin{aligned}
& =\left(a v^{1}+c v^{2}\right) d q^{1}+\left(b v^{2}+c v^{1}\right) d q^{2} \\
& => \\
& \omega_{L}=\left(a d v^{1}+c d v^{2}\right) \wedge d q^{1}+\left(b d v^{2}+c d v^{1}\right) \wedge d q^{2} \\
& \Rightarrow \\
& \\
& { }^{1} \Gamma^{\omega_{L}}=-\left(a d v^{1}+a d v^{2}\right) d q^{1}(\Gamma)-\left(b d v^{2}+c d v^{1}\right) d q^{2}(\Gamma) \\
& =-\left(a v^{1}+c v^{2}\right) d v^{1}-\left(b v^{2}+c v^{1}\right) d v^{2} \\
& =-d E_{L} .
\end{aligned}
$$

Accordingly, L is a lagrangian for Γ which, in view of 8.5 , is nondegenerate iff $a b-c^{2} \neq 0$.
8.18 EXAMPIE Take $M=\underline{R}^{2}$ and let

$$
\Gamma=v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}-q^{1} \frac{\partial}{\partial v^{1}}-q^{2} \frac{\partial}{\partial v^{2}}
$$

Then

$$
\left[\begin{array}{l}
L_{+}=\frac{1}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right)-\frac{1}{2}\left(\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}\right) \\
L_{-}=\frac{1}{2}\left(\left(v^{1}\right)^{2}-\left(v^{2}\right)^{2}\right)-\frac{1}{2}\left(\left(q^{1}\right)^{2}-\left(q^{2}\right)^{2}\right)
\end{array}\right.
$$

are both nondegenerate lagrangians for Γ.
[Note: Another possibility is

$$
\left.L=v^{1} v^{2}-q^{1} q^{2} \cdot\right]
$$

8.19 RAPPEL A l-form $\omega \in \Lambda^{1} M$ determines a C^{∞} function $\hat{\omega}: T M \rightarrow \underline{R}$, viz.

$$
\hat{\omega}\left(x, x_{x}\right)=\omega_{x}\left(X_{x}\right) \quad\left(X_{x} \in T_{x}{ }^{M}\right)
$$

[Note: For use below, observe that $\Delta \hat{\omega}=\hat{\omega}$ and $\left.F \hat{\omega}=\omega \circ \pi_{M}\left(T M \xrightarrow{\pi_{M}} \xrightarrow{\omega} \rightarrow T^{*} M\right).\right]$
8.20 LEMMA Suppose given nondegenerate lagrangians L, L'. Determine $\Gamma_{L^{\prime}} \Gamma_{L^{\prime}} \in D^{1}($ TM $)$ per 8.12 -- then $\omega_{L}=\omega_{L^{\prime}}$ and $\Gamma_{L}=\Gamma_{L^{\prime}}$ iff $L^{\prime}=L+\hat{\omega}+C$, where $\omega \in \Lambda^{1} M$ is closed and C is a constant.

PROOF Assuming that $\mathrm{L}^{\prime}=\mathrm{L}+\hat{\omega}+\mathrm{C}$, we have

$$
\begin{aligned}
E_{L^{\prime}} & =\Delta L^{\prime}-L^{\prime} \\
& =\Delta(L+\hat{\omega}+C)-(L+\hat{\omega}+C) \\
& =\Delta L-L+(\Delta \hat{\omega}-\hat{\omega})-C \\
& =\Delta L-L+(\hat{\omega}-\hat{\omega})-C \\
& =E_{L}-C .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\omega_{L^{\prime}} & =\left(F L^{\prime}\right) * \Omega \\
& =(F L+F \hat{\omega}) * \Omega \\
& =\left(F L+\omega \circ \pi_{M}\right) * \Omega \\
& =\omega_{L}+\pi_{M}^{*}\left(\omega^{*} \Omega\right) .
\end{aligned}
$$

18.

And

$$
\begin{aligned}
\omega^{\star} \Omega & =\omega^{*} \mathrm{~d} \Theta \\
& =\mathrm{d} \omega^{\star} \Theta \\
& =\mathrm{d} \omega \quad \text { (cf. infra) } \\
& =0 .
\end{aligned}
$$

Consequently, $\omega_{L^{\prime}}=\omega_{L^{\prime}}$. But

$$
\left\lvert\, \begin{aligned}
& { }^{1} \Gamma_{L}{ }^{\omega_{L}}=-d F_{L} \\
& { }^{1} \Gamma_{L^{\prime}} \omega_{L^{\prime}}=-d F_{L^{\prime}},
\end{aligned}\right.
$$

Since $E_{L^{\prime}}=E_{L}-C$, it follows that

$$
{ }^{1} \Gamma_{L}{ }^{\omega}{ }^{2}={ }^{1} \Gamma_{L},{ }^{\omega}{ }^{\prime}{ }^{\prime}
$$

or still,

$$
{ }^{1} \Gamma_{L}{ }^{\omega_{L}}={ }^{l} \Gamma_{L},{ }_{L}
$$

Therefore $\Gamma_{L}=\Gamma_{L}$. The argument in the other direction is similar.
N.B. To check that $\omega^{*} \Theta=\theta$, it suffices to work locally:

$$
\begin{aligned}
\omega & =\left\langle\frac{\partial}{\partial x^{i}}, \omega>d x^{i}\right. \\
& =\left(p_{i} \circ \omega\right) d x^{i}
\end{aligned}
$$

19.

$$
\begin{aligned}
& \Rightarrow \\
& \begin{aligned}
\omega^{*} \Theta & =\omega^{*}\left(p_{i} d q^{i}\right) \\
& =\left(p_{i} \circ \omega\right) d\left(q^{i} \circ \omega\right) \\
& =\left(p_{i} \circ \omega\right) d\left(x^{i} \circ \pi_{M}^{*} \circ \omega\right) \\
& =\left(p_{i} \circ \omega\right) d x^{i} \\
& =\omega .
\end{aligned}
\end{aligned}
$$

Given $\alpha \in \Lambda^{2} \mathrm{TM}^{2}$, define S$\rfloor \alpha \in 0_{2}^{0}$ (TM) by

$$
(\mathrm{S} \perp \alpha)(\mathrm{X}, \mathrm{Y})=\alpha(\mathrm{SX}, \mathrm{Y}) .
$$

8.21 LEMMA $\forall X \in D^{1}$ (TM),

$$
L_{X}(S \mid \alpha)=\left(L_{X} S\right) \downharpoonleft \alpha+S \downharpoonleft\left(L_{X} \alpha\right) .
$$

Assuming now that L is a nondegenerate lagrangian, we have

$$
\begin{aligned}
{ }^{L} \Gamma_{L}\left(S \downharpoonleft \omega_{L}\right) & \left.=\left(L_{\Gamma_{L}} S\right) \downharpoonleft \omega_{L}+S\right\lrcorner\left(L_{\Gamma_{L}} \omega_{L}\right) \\
& \left.=\left(L_{\Gamma_{L}} S\right) \downharpoonleft \omega_{L} \quad \text { (cf. } 8.9\right) .
\end{aligned}
$$

On the other hand, according to 8.1,

$$
\delta_{S} \omega_{\mathrm{L}}=0 .
$$

Therefore $S \downarrow \omega_{L}$ is symmetric, hence the same is true of $\left.L_{\Gamma_{L}}(S\rfloor \omega_{L}\right)$ or still, of $\left(L_{\Gamma_{L}} S\right) \downharpoonleft \omega_{L}$. So, $\forall X, Y \in D^{1}(T M)$,

$$
\omega_{L}\left(\left(L_{\Gamma_{L}} S\right)(X), Y\right)+\omega_{L}\left(X,\left(L_{\Gamma_{L}} S\right)(Y)\right)=0 .
$$

And this leads to the following conclusion.

$$
\begin{aligned}
& 8.22 \text { LEMMA } \forall X, Y \in D^{1} \text { (TM), } \\
& {\left[\begin{array}{l}
\omega_{L}\left(V_{\Gamma_{L}} \mathrm{X}, \mathrm{Y}\right)+\omega_{L}\left(\mathrm{X}, \mathrm{~V}_{\Gamma_{L}} \mathrm{Y}\right)=\omega_{\mathrm{L}}(\mathrm{X}, \mathrm{Y}) \\
\omega_{\mathrm{L}}\left(\mathrm{H}_{\Gamma_{L}} \mathrm{X}, \mathrm{Y}\right)+\omega_{\mathrm{L}}\left(\mathrm{X}, \mathrm{H}_{\Gamma_{L}} \mathrm{Y}\right)=\omega_{\mathrm{L}}(\mathrm{X}, \mathrm{Y})
\end{array}\right.}
\end{aligned}
$$

and

$$
\omega_{L}\left(V_{\Gamma_{L}} X, Y\right)=\omega_{L}\left(X, H_{\Gamma_{L}} Y\right)
$$

Consequently,

$$
\left[\begin{array}{l}
\omega_{L}\left(V_{\Gamma_{L}} X, V_{\Gamma_{L}} Y\right)=\omega_{L}\left(X, H_{\Gamma_{L}} \circ \quad V_{\Gamma_{L}} Y\right)=0 \\
\omega_{L}\left(H_{\Gamma_{L}} X, H_{\Gamma_{L}} Y\right)=\omega_{L}\left(V_{\Gamma_{L}} \circ \quad H_{\Gamma_{L}} X, Y\right)=0 .
\end{array}\right.
$$

N.B. X and Y are vertical iff

$$
\left.\right|_{-} \mathrm{X}=\mathrm{V}_{\Gamma_{\mathrm{L}}} \mathrm{X}
$$

So, $\forall X, Y \in V(T M)$,

$$
{ }^{l} X_{L}{ }_{L}(Y)=0
$$

which implies that ${ }^{2} X_{L}{ }_{L}$ is horizontal (cf. 6.14).
8.23 LEMMA Given a horizontal l-form α, define $X_{\alpha} \in D^{l}$ (TM) by ${ }^{l} X_{\alpha} \omega_{L}=\alpha-$ then X_{α} is vertical.

PROOF $\forall Y \in D^{I}(T M)$,

$$
\omega_{L}\left(\mathrm{~V}_{\Gamma_{L}} X_{\alpha}, Y\right)+\omega_{L}\left(X_{\alpha}, V_{\Gamma_{L}} Y\right)=\omega_{L}\left(X_{\alpha}, Y\right)
$$

or still,

$$
\omega_{L}\left(V_{\Gamma_{L}} X_{\alpha}, Y\right)+\alpha\left(V_{\Gamma_{L}} Y\right)=\omega_{L}\left(X_{\alpha}, Y\right)
$$

or still,

$$
\begin{aligned}
& \omega_{L}\left(V_{\Gamma_{L}} X_{\alpha}, Y\right)=\omega_{L}\left(X_{\alpha}, Y\right) \quad \text { (cf. 6.14) } \\
& \Rightarrow \quad \\
& V_{\Gamma_{L}} X_{\alpha}=X_{\alpha} .
\end{aligned}
$$

I.e.: X_{α} is vertical.

Therefore the map

$$
x \rightarrow{ }^{\imath} X^{\omega_{L}}
$$

from vertical vector fields on TM to horizontal l-forms on TM is a linear isomorphism.

A lagrangian L is nondegenerate provided FL is a local diffeomorphism (cf. 8.2) but there are important circumstances when FL is actually a diffeomorphism (cf. 8.4).
[Note: Take $M=\underline{R}$ and let $L(q, v)=e^{v}$-- then L is nondegenerate but FL: $\underline{R}^{2} \rightarrow \underline{R}^{2}$ is not surjective, hence is not a diffeomorphism.]
8.24 LEMMA Suppose that $F L$ is a diffeomorphism. Put $H=E_{L} \circ(F L)^{-1}$-- then

$$
\mathrm{FH}: T * M \rightarrow T M
$$

is a diffeomorphism and $\mathrm{FH}=(\mathrm{FL})^{-1}$. One has

$$
\left.\right|^{-} \quad(\mathrm{FL}) * \Gamma_{\mathrm{L}}=X_{H}, ~(\mathrm{FH}) * X_{H}=\Gamma_{\mathrm{L}} .
$$

Furthermore, the trajectories of Γ_{L} are in a one-to-one correspondence with the trajectories of X_{H} and they coincide when projected to M.
[Note: Explicated,

$$
\begin{aligned}
& \left.\quad\right|_{-(\mathrm{FL}) * \Gamma_{\mathrm{L}}=\mathrm{TFL} \circ \Gamma_{\mathrm{L}} \circ(\mathrm{FL})^{-1}} \begin{array}{l}
(\mathrm{FH}) \mathrm{X}_{\mathrm{H}}=\mathrm{TFH} \circ \mathrm{X}_{\mathrm{H}} \circ(\mathrm{FH})^{-1} \\
\Rightarrow \mathrm{TFL} \circ \Gamma_{\mathrm{L}}=\mathrm{X}_{\mathrm{H}} \circ \mathrm{FL} \\
\left.\quad \mathrm{TFH} \circ \mathrm{X}_{\mathrm{H}}=\Gamma_{\mathrm{L}} \circ \mathrm{FH} .\right]
\end{array}
\end{aligned}
$$

Locally, $F L\left(q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right)$ is given by

$$
q^{i} \circ F L=q^{i}, p_{i} \circ F L=\frac{\partial L}{\partial v^{i}}
$$

To calculate H in local coordinates, write

$$
\begin{aligned}
H & =E_{L} \circ(F L)^{-1} \\
& =\Delta L \circ(F L)^{-1}-L \circ(F L)^{-1} \\
& =\left(v^{i} \frac{\partial L}{\partial v^{i}}\right) \circ(F L)^{-1}-L \circ(F L)^{-1} \\
& =\left(v^{i} \circ(F L)^{-1}\right)\left(\frac{\partial L}{\partial v^{i}} \circ(F L)^{-1}\right)-L \circ(F L)^{-1} \\
& =p_{i}\left(v^{i} \circ(F L)^{-1}\right)-L \circ(F L)^{-1} .
\end{aligned}
$$

Abuse the notation and let $\mathrm{v}^{i} \equiv \mathrm{v}^{i} \circ(\mathrm{FL})^{-1}$ - then, since $\mathrm{q}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}} \circ(\mathrm{FL})^{-1}$, we have

$$
\begin{aligned}
& H\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right) \\
& \quad=p_{i} v^{i}-L\left(q^{1}, \ldots, q^{n}, v^{I}, \ldots, v^{n}\right),
\end{aligned}
$$

the traditional expression.

APPENDIX

The equations of Lagrange

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0 \quad(i=1, \ldots, n)
$$

are tied to the q^{i} and the v^{i} but there are situations where a change of variable is advantageous.

If ($U,\left\{x^{1}, \ldots, x^{n}\right\}$) is a chart on M, then

$$
\left(\left(\pi_{M}\right)^{-1} U,\left\{q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right\}\right)
$$

is a chart on TM. In §4, we took v^{i} to be $d x^{i}$ viewed as a function on the fibers, i.e., $v^{i}=\hat{d x}^{i}$ (cf. 8.19). However, instead of using the $d x^{i}$, we could just as well work with any other set $\left\{\alpha^{1}, \ldots, \alpha^{n^{n}}\right\}$ of 1 -forms on U, say

$$
\alpha^{i}=f_{j}^{i} d x^{j} \quad\left(f_{j}^{i} \in C^{\infty}(U)\right),
$$

subject to the requirement that

$$
\alpha^{l} \wedge \ldots \wedge \alpha^{n} \neq 0
$$

which forces functional independence of the $\hat{\alpha}^{i}\left(\equiv\left(f_{j}^{i} \circ \pi_{M}\right) v^{j}\right)$.
N.B. Put

$$
\overline{\mathrm{v}}^{\mathrm{i}}=\hat{\alpha}^{\mathrm{i}}
$$

Then in classical terminology, the v^{i} are velocities and the $\overline{\mathrm{v}}^{\mathrm{i}}$ are quasivelocities. Define functions $\overline{\mathrm{f}}^{\mathrm{i}}{ }_{j} \in C^{\infty}(\mathrm{U})$ by

$$
d x^{i}=\bar{f}_{j}{ }^{\alpha}{ }^{j}
$$

Then the matrices $\left[\bar{f}_{j}^{j}\right]$ and $\left[f_{j}^{i}\right]$ are inverses of one another.
A. 1 LEMMA We have

$$
\left[\begin{array}{l}
\frac{\partial}{\partial v^{i}}=\left(f_{i}^{j} \circ \pi_{M}\right) \frac{\partial}{\partial \bar{v}^{j}} \\
\frac{\partial}{\partial \bar{v}^{i}}=\left(\bar{f}_{i}^{j} \circ \pi_{M}\right) \frac{\partial}{\partial v^{j}} .
\end{array}\right.
$$

A. 2 EXAMPLE LOcally,

$$
\begin{aligned}
\Delta & =v^{i} \frac{\partial}{\partial v^{i}} \\
& =\left(\bar{f}_{j}^{i} \circ \pi_{M}\right) \bar{v}^{j}\left(f_{i}^{k} \circ \pi_{M}\right) \frac{\partial}{\partial \bar{v}^{-k}} \\
& =\bar{v}^{j} \frac{\partial}{\partial \bar{v}^{j}}
\end{aligned}
$$

To minimize confusion, let

$$
\bar{q}^{i}=q^{i}
$$

Then

$$
\left(\left(\pi_{M}\right)^{-1},\left\{\bar{q}^{1}, \ldots, \bar{q}^{-n}, \bar{v}^{1}, \ldots, \bar{v}^{n}\right\}\right)
$$

is a chart on TM.
A. 3 LEMMA We have

$$
\frac{\partial}{\partial \bar{q}^{i}}=\frac{\partial}{\partial q^{i}}+\left(\frac{\partial}{\partial q^{i}}\left(\bar{f}_{k}^{j} \circ \pi_{M}\right)\right)\left(f_{\ell}^{k} \circ \pi_{M}\right) v^{\ell} \frac{\partial}{\partial v^{j}}
$$

A. 4 EXAMPLE Take $M=\underline{R}$ and suppose that $\alpha=\phi d x(\phi>0)$. Let $F \in C^{\infty}\left(\underline{R}^{2}\right)-$ then

$$
F(\bar{q}, \bar{v})=F(q, \phi(q) v)
$$

so

$$
\begin{aligned}
\frac{\partial F}{\partial \bar{q}} & =\frac{\partial F}{\partial q}+\frac{\partial}{\partial q}\left(\frac{1}{\phi}\right) \phi\left(v \frac{\partial F}{\partial v}\right) \\
& =\frac{\partial F}{\partial q}-\frac{\phi^{\prime}}{\phi}\left(v \frac{\partial F}{\partial v}\right)
\end{aligned}
$$

E.g., consider

$$
F(q, v)=\frac{1}{2} v^{2}
$$

Then

$$
\begin{aligned}
F(\overline{\mathrm{q}}, \overline{\mathrm{v}})=\frac{1}{2}\left(\frac{\overline{\mathrm{v}}}{\phi(\overline{\mathrm{q}})}\right)^{2} \\
\Rightarrow \quad \begin{aligned}
\frac{\partial \mathrm{F}}{\partial \overline{\mathrm{q}}} & =\frac{1}{2}(\overline{\mathrm{v}})^{2} \frac{\mathrm{~d}}{\mathrm{~d} \mathrm{\bar{q}}} \phi(\overline{\mathrm{q}})^{-2} \\
& =\frac{1}{2}\left(\phi(\mathrm{q}) \mathrm{v}^{2}\left(-2 \phi(\mathrm{q})^{-3} \phi^{\prime}(\mathrm{q})\right)\right. \\
& =-\frac{\phi^{\prime}}{\phi} \mathrm{v}^{2} \\
& =-\frac{\phi^{\prime}}{\phi}\left(\mathrm{v} \frac{\partial \mathrm{~F}}{\partial \mathrm{v}}\right) .
\end{aligned}
\end{aligned}
$$

A. 5 LEMMA We have

$$
\left[\frac{\partial}{\partial \bar{v}^{i}}, \frac{\partial}{\partial \vec{v}^{\dot{v}}}\right]=0
$$

Now put

$$
\overline{\mathrm{X}}_{\mathrm{i}}=\left(\overline{\mathrm{f}}_{i}^{\mathrm{k}} \circ \pi_{\mathrm{M}}\right) \frac{\partial}{\partial \bar{q}^{\mathrm{k}}}
$$

A. 6 LEMMA We have

$$
\left[\overline{\mathrm{x}}_{i}, \frac{\partial}{\partial \overline{\mathrm{v}}^{j}}\right]=0
$$

Define functions

$$
\gamma_{i j}^{k} \in C^{\infty}\left(\left(\pi_{M}\right)^{-1}\right)
$$

by

$$
\gamma_{i j}^{k}=\left(\overline{\mathrm{f}}_{i}^{\ell} \circ \pi_{M}\right)\left(\overline{\mathrm{f}}_{j}^{\mathrm{m}} \circ \pi_{M}\right)\left(\frac{\partial}{\partial \bar{q}^{-m}}\left(\mathrm{f}_{\ell}^{\mathrm{k}} \circ \pi_{M}\right)-\frac{\partial}{\partial \bar{q}^{l}}\left(\mathrm{f}_{m}^{k} \circ \pi_{M}\right)\right)
$$

A. 7 LEMMA We have

$$
\left[\bar{x}_{i}, \bar{x}_{j}\right]=\gamma_{i j}^{k} \bar{x}_{k}
$$

N.B. The set

$$
\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}, \frac{\partial}{\partial \bar{v}^{1}}, \ldots, \frac{\partial}{\partial \bar{v}^{-}}\right\}
$$

is a basis for

$$
D^{1}\left(\left(\pi_{M}\right)^{-1} U\right)
$$

A. 8 EXAMPLE Take $M=\underline{R}^{3}$ and use spherical coordinates:
28.

$$
\left[\begin{array}{l}
q^{1}=r(r>0) \\
q^{2}=\theta(0<\theta<\pi) \\
q^{3}=\phi(0<\phi<2 \pi)
\end{array}\right.
$$

Let

$$
\left[\begin{array}{l}
\bar{v}^{1}=v^{1} \\
\bar{v}^{2}=r v^{2} \\
\bar{v}^{3}=r \sin \theta v^{3}
\end{array}\right.
$$

Then

$$
\left[f_{j}^{i}\right]=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & r & 0 \\
0 & 0 & r \sin \theta
\end{array}\right|
$$

and

$$
\left[\overline{\mathrm{f}}_{\mathrm{j}}^{\mathrm{i}}\right]=\left|\begin{array}{ccl}
1 & 0 & 0 \\
0 & 1 / r & 0 \\
0 & 0 & 1 / r \sin \theta
\end{array}\right|
$$

Therefore

$$
\left[\begin{array}{rl}
\bar{x}_{1} & =\frac{\partial}{\partial \bar{q}^{-1}} \\
\overline{\mathrm{x}}_{2} & =\frac{1}{r} \frac{\partial}{\partial \bar{q}^{2}} \\
\overline{\mathrm{x}}_{3} & =\frac{1}{\mathrm{r} \sin \theta} \frac{\partial}{\partial \bar{q}^{3}}
\end{array}\right.
$$

29.

And

$$
\left[\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2}\right]=-\frac{1}{\mathrm{r}} \overline{\mathrm{x}}_{2}, \quad\left[\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{3}\right]=-\frac{1}{\mathrm{r}} \overline{\mathrm{x}}_{3},\left[\overline{\mathrm{x}}_{2}, \overline{\mathrm{x}}_{3}\right]=-\frac{\cot \theta}{r} \overline{\mathrm{x}}_{3} .
$$

Consequently, the nonzero $\gamma_{i j}^{k}$ are

$$
\left[\begin{array}{l}
\gamma_{12}^{2}=-\gamma_{21}^{2}=-\frac{1}{r} \\
\gamma_{13}^{3}=-\gamma_{31}^{3}=-\frac{1}{r} \\
\gamma_{23}^{3}=-\gamma_{32}^{3}=-\frac{\cot \theta}{r}
\end{array}\right.
$$

A. 9 EXAMPLE Take $M=\underline{S O}(3)$ and let

$$
\left.\right|_{q^{1}}=\phi=\begin{aligned}
& q^{2}=\theta \\
& q^{3}=\psi
\end{aligned}
$$

be the local chart corresponding to the $3-1-3$ rotation sequence (see the Appendix). Put

$$
\left[\begin{array}{l}
\bar{v}^{1}=\mathrm{v}_{\phi} \sin \theta \sin \psi+\mathrm{v}_{\theta} \cos \psi \\
\overline{\mathrm{v}}^{2}=\mathrm{v}_{\phi} \sin \theta \cos \psi-\mathrm{v}_{\theta} \sin \psi \\
\overline{\mathrm{v}}^{3}=\mathrm{v}_{\phi} \cos \theta+\mathrm{v}_{\psi^{\cdot}}
\end{array}\right.
$$

Then

$$
\left[f^{i}{ }_{j}\right]=\left[\begin{array}{ccc}
\sin \theta \sin \psi & \cos \psi & 0 \\
\sin \theta \cos \psi & -\sin \psi & 0 \\
\cos \theta & 0 & 1
\end{array}\right]
$$

and

$$
\left.\left[\overline{\mathbf{f}}_{j}^{i}\right]=\left\lvert\, \begin{array}{ccc}
\sin \psi / \sin \theta & \cos \psi / \sin \theta & 0 \\
\cos \psi & -\sin \psi & 0 \\
-\cos \theta \sin \psi / \sin \theta & -\cos \theta \cos \psi / \sin \theta & 1
\end{array}\right.\right]
$$

Therefore

$$
\left[\begin{array}{l}
\bar{x}_{1}=(\sin \psi / \sin \theta) \frac{\partial}{\partial \bar{q}^{1}}+\cos \psi \frac{\partial}{\partial \bar{q}^{2}}-(\cos \theta \sin \psi / \sin \theta) \frac{\partial}{\partial \bar{q}^{-3}} \\
\bar{x}_{2}=(\cos \psi / \sin \theta) \frac{\partial}{\partial \bar{q}^{1}}-\sin \psi \frac{\partial}{\partial \bar{q}^{-2}}-(\cos \theta \cos \psi / \sin \theta) \frac{\partial}{\partial \bar{q}^{3}} \\
\bar{x}_{3}=\frac{\partial}{\partial \bar{q}^{3}} \cdot
\end{array}\right.
$$

Here

$$
\left[\bar{x}_{i}, \bar{x}_{j}\right]=\varepsilon_{i j k} \bar{x}_{k^{\prime}}
$$

thus

$$
\gamma_{i j}^{k}=\varepsilon_{i j k}
$$

Suppose that $L \in C^{\infty}(T M)$ is a lagrangian.
A. 10 LEMMA Locally,

$$
\theta_{L}=\frac{\partial L}{\partial \bar{v}^{i}}\left(f_{j}^{i} \circ \pi_{M}\right) d \bar{q}^{\dot{j}} .
$$

PROOF In fact,

$$
\begin{aligned}
& \theta_{L}=d_{S}{ }^{L} \\
& =S^{*}(\mathrm{dL}) \\
& =S^{*}\left(\frac{\partial L}{\partial \bar{q}^{i}} d \bar{q}^{i}+\frac{\partial L}{\partial \bar{v}^{i}} d \bar{v}^{-i}\right) \\
& =\frac{\partial L}{\partial \bar{q}^{i}} S^{*}\left(d \bar{q}^{i}\right)+\frac{\partial L}{\partial \bar{v}^{i}} S^{*}\left(d \bar{v}^{-i}\right) \\
& =\frac{\partial L}{\partial \bar{q}^{i}} S^{*}\left(d q^{i}\right)+\frac{\partial L}{\partial \bar{v}^{i}} S^{*}\left(d \hat{\alpha}^{\dot{i}}\right) \\
& =\frac{\partial L}{\partial \bar{v}^{i}} S^{*}\left(d\left(\left(f_{j}^{i} \text { o } \pi_{M}\right) v^{j}\right)\right) \\
& =\frac{\partial L}{\partial \bar{v}^{i}} S^{*}\left(d\left(f_{j}^{i}{ }_{j} \circ \pi_{M}\right) v^{j}+\left(f_{j}^{i} \circ \pi_{M}\right) d v^{j}\right) \\
& =\frac{\partial L}{\partial \bar{v}^{i}} S^{*}\left(\frac{\partial\left(f^{i}{ }_{j}{ }^{\circ} \pi_{M}\right)}{\partial q^{k}} v^{j} d q^{k}+\frac{\partial\left(f^{i}{ }_{j} \circ \pi_{M}\right)}{\partial v^{k}} v^{j} d v^{k}\right) \\
& +\frac{\partial L}{\partial \bar{v}^{\mathbf{i}}} S^{*}\left(\left(f_{j}^{\mathbf{i}} \quad \circ \pi_{M}\right) d v^{\dot{j}}\right) \\
& =\frac{\partial L}{\partial \bar{v}^{i}}\left(f_{j}^{i}{ }_{j} \pi_{M}\right) S^{*}\left(d v^{j}\right) \\
& =\frac{\partial L}{\partial \bar{v}^{i}}\left(f^{i}{ }_{j} \circ \pi_{M}\right) d q^{j}
\end{aligned}
$$

32.

$$
=\frac{\partial L}{\partial \bar{v}^{i}}\left(f_{j}^{i} \circ \pi_{M}\right) d \bar{q}^{j} .
$$

[Note: Obviously,

$$
\left.\left(f_{j}^{i} \circ \pi_{M}\right) d q^{j}=\pi_{M}^{\star}\left(\alpha^{i}\right) \cdot\right]
$$

A. 11 LEMMA Locally,

$$
\begin{aligned}
& \omega_{L}=\left(f_{j}^{k} \circ \pi_{M}\right) \frac{\partial^{2} L}{\partial \bar{q}^{i} \partial \bar{v}^{-k}} d \bar{q}^{i} \wedge d \bar{q}^{j} \\
& + \\
& \frac{1}{2}\left(\frac{\partial}{\partial \bar{q}^{i}}\left(f_{j}^{k} \circ \pi_{M}\right)-\frac{\partial}{\partial \bar{q}^{j}}\left(f^{k}{ }_{i} \circ \pi_{M}\right)\right) \frac{\partial L}{\partial \bar{v}^{-k}} d \bar{q}^{i} \wedge d \bar{q}^{j} \\
& \quad+\left(f_{i}^{k} \circ \pi_{M}\right) \frac{\partial^{2} L}{\partial \bar{v}^{-j} \partial \bar{v}^{-k}} d \bar{v}^{j} \wedge d \bar{q}^{i} .
\end{aligned}
$$

[Note: Write

$$
\left[\begin{array}{rl}
d \bar{q}^{i} & =\left(\bar{f}_{\ell}^{i} \circ \pi_{M}\right) \pi_{M}^{*}\left(\alpha^{\ell}\right) \\
d \bar{q}^{j} & =\left(\bar{f}_{m}^{j} \circ \pi_{M}\right) \pi_{M}^{*}\left(\alpha^{m}\right)
\end{array}\right.
$$

Then

$$
\begin{gathered}
\frac{1}{2}\left(\frac{\partial}{\partial \bar{q}^{i}}\left(f_{j}^{k} \circ \pi_{M}\right)-\frac{\partial}{\partial \vec{q}^{j}}\left(f_{i}^{k} \circ \pi_{M}\right)\right) \frac{\partial L}{\partial \bar{v}^{-k}} d \bar{q}^{i} \wedge d \bar{q}^{j} \\
=\frac{1}{2}\left(\left(\bar{f}_{m}^{j} \circ \pi_{M}\right)\left(\bar{f}_{\ell}^{\dot{j}} \circ \pi_{M}\right)\left(\frac{\partial}{\partial \bar{q}^{i}}\left(f_{j}^{k} \circ \pi_{M}\right)-\frac{\partial}{\partial \bar{q}^{j}}\left(f_{i}^{k} \circ \pi_{M}\right)\right) \frac{\partial L}{\partial \bar{v}^{k}} \pi_{M}^{*}\left(\alpha^{\ell}\right) \wedge \pi_{M}^{*}\left(\alpha^{m}\right)\right. \\
\left.=\frac{1}{2} \gamma_{m \ell}^{k} \frac{\partial L}{\partial \bar{v}^{-k}} \pi_{M}^{*}\left(\alpha^{\ell}\right) \wedge \pi_{M}^{*}\left(\alpha^{m}\right) \cdot\right]
\end{gathered}
$$

If $\Gamma \in S O$ (TM) is second order, then

$$
\Gamma=\left(\overline{\mathbf{f}}_{j}^{\dot{i}} \circ \pi_{M}\right) \overline{\mathrm{v}}^{\mathrm{j}} \frac{\partial}{\partial \overline{\mathrm{q}}^{i}}+\overline{\mathrm{C}}^{\mathbf{i}} \frac{\partial}{\partial \overline{\mathrm{v}}^{i}}
$$

i.e.,

$$
\Gamma=\bar{v}^{i} \bar{x}_{i}+\bar{c}^{i} \frac{\partial}{\partial \bar{v}^{i}}
$$

Indeed,

$$
\begin{aligned}
S \Gamma & =\left(f_{i}^{k} \circ \pi_{M}\right)\left(\bar{f}_{j}^{i} \circ \pi_{M}\right) \bar{v}^{j} \frac{\partial}{\partial \bar{v}^{k}} \\
& =\bar{v}^{j} \frac{\partial}{\partial \bar{v}^{j}} \\
& =\Delta \text { (cf. A.2). }
\end{aligned}
$$

Assume henceforth that L is nondegenerate. Determine Γ_{L} per 8.12 -- then Γ_{L} is second order and along an integral curve γ of Γ_{L}, the equations of Lagrange

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0 \quad(i=1, \ldots, n)
$$

are satisfied or still, passing from velocities to quasivelocities,

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \bar{v}^{j}}\right)-\bar{v}^{i} \gamma_{i j}^{k} \frac{\partial L}{\partial \bar{v}^{k}}=\bar{X}_{j} L \quad(j=1, \ldots, n) .
$$

A. 12 EXAMPLE Take $M=\underline{R}^{2}$ and use polar coordinates:

Put

$$
\left\lvert\, \begin{aligned}
& \bar{v}^{1}=v^{1} \\
& \bar{v}^{2}=r^{2} v^{2}
\end{aligned}\right.
$$

Then

$$
\left[f_{j}^{i}\right]=\left|\begin{array}{cc}
1 & 0 \\
0 & r^{2}
\end{array}\right|
$$

and

$$
\left.\left[\overline{\mathrm{f}}_{\mathrm{j}}^{\mathrm{i}}\right]=\left\lvert\, \begin{array}{cc}
1 & 0 \\
0 & 1 / \mathrm{r}^{2}
\end{array}\right.\right] .
$$

In cartesian coordinates, let L be

$$
\frac{1}{2}\left((\dot{x})^{2}+(\dot{y})^{2}\right)-v\left({\sqrt{x^{2}+y^{2}}}^{2}\right)
$$

which in polar coordinates is

$$
\frac{1}{2}\left((\dot{r})^{2}+r^{2}(\dot{\theta})^{2}\right)-V(r)
$$

or, in terms of $\bar{q}^{1}, \bar{q}^{2}, \bar{v}^{1}, \bar{v}^{2}$:

$$
\frac{1}{2}\left(\overline{\mathrm{v}}^{1}\right)^{2}+\frac{1}{2} \frac{\left(\overline{\mathrm{v}}^{2}\right)^{2}}{\left(\overline{\mathrm{q}}^{1}\right)^{2}}-\mathrm{v}\left(\overline{\mathrm{q}}^{1}\right)
$$

Write

$$
\left[\begin{array}{l}
T=\frac{1}{2}\left(\bar{v}^{1}\right)^{2}+\frac{1}{2} \frac{\left(\bar{v}^{2}\right)^{2}}{\left(\bar{q}^{1}\right)^{2}} \\
\quad F=-V^{\prime} \quad(=-d v / \partial r)
\end{array}\right.
$$

Then the equations of motion are

$$
\left[\begin{array}{l}
\frac{d}{d t}\left(\frac{\partial T}{\partial \bar{v}^{1}}\right)-\bar{v}^{i} \gamma_{i 1}^{k} \frac{\partial T}{\partial \bar{v}^{k}}=\bar{x}_{1} T+F \\
\frac{d}{d t}\left(\frac{\partial T}{\partial \bar{v}^{2}}\right)-\bar{v}^{i} \gamma_{i 2}^{k} \frac{\partial T}{\partial \bar{v}^{-k}}=\bar{x}_{2}^{T}+0
\end{array}\right.
$$

that, when explicated, reduce to

$$
\left[\begin{array}{l}
\quad \dot{\bar{v}}^{1}=\frac{\left(\overline{\mathrm{v}}^{2}\right)^{2}}{\left(\overline{\mathrm{q}}^{1}\right)^{3}}+F\left(\bar{q}^{-1}\right) \\
\dot{\overline{\mathrm{v}}}^{2}=0 .
\end{array}\right.
$$

Therefore

$$
\Gamma_{L}=\bar{v}^{i} \bar{x}_{i}+\left(\frac{\left(\bar{v}^{2}\right)^{2}}{\left(\bar{q}^{1}\right)^{3}}+F\left(\bar{q}^{1}\right)\right) \frac{\partial}{\partial \bar{v}^{1}}
$$

To return to $q^{1}=r, q^{2}=\theta, v^{1}=\dot{r}, v^{2}=\dot{\theta}$, note that

$$
\left[\begin{array}{l}
\bar{x}_{1}=\frac{\partial}{\partial r}-2 \frac{\dot{\theta}}{r} \frac{\partial}{\partial \dot{\theta}} \\
\bar{x}_{2}=\frac{1}{r^{2}} \frac{\partial}{\partial \theta}
\end{array} \quad\right. \text { (cf.A.3) }
$$

Accordingly,

$$
\begin{aligned}
\Gamma_{L}= & \dot{r}\left(\frac{\partial}{\partial r}-2 \frac{\dot{\theta}}{r} \frac{\partial}{\partial \dot{\theta}}\right)+r^{2} \dot{\theta}\left(\frac{1}{r^{2}} \frac{\partial}{\partial \theta}\right) \\
& +\left(r \dot{\theta}^{2}+F(r)\right) \frac{\partial}{\partial \dot{r}} \\
= & \dot{r} \frac{\partial}{\partial r}+\dot{\theta} \frac{\partial}{\partial \theta}+\left(r \dot{\theta}^{2}+F(r)\right) \frac{\partial}{\partial \dot{r}}-2 \frac{\dot{r} \dot{\theta}}{r} \frac{\partial}{\partial \dot{\theta}}
\end{aligned}
$$

A. 13 EXAMPLE Take $M=\underline{S O}(3)$ (cf. A.9). Suppose that locally,

$$
L=\frac{I}{2}\left(I_{1}\left(\bar{v}^{-1}\right)^{2}+I_{2}\left(\bar{v}^{2}\right)^{2}+I_{3}\left(\bar{v}^{3}\right)^{2}\right)
$$

where the I_{i} are positive constants - then here

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \bar{v}^{j}}\right)-\bar{v}^{-i} \gamma_{i j}^{k} \frac{\partial L}{\partial \bar{v}^{-k}}=0 \quad(j=1,2,3)
$$

or, equivalently,

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \bar{v}^{i}}\right)-\bar{v}^{j} \gamma_{j i}^{k} \frac{\partial L}{\partial \bar{v}^{k}}=0 \quad(i=1,2,3) .
$$

But

$$
\gamma_{j i}^{k}=\varepsilon_{j i k}=-\varepsilon_{i j k}
$$

Therefore

$$
\left[\begin{array}{l}
\dot{\bar{v}}^{1}=\frac{\left(I_{2}-I_{3}\right)}{I_{1}} \bar{v}^{2}-3 \\
\dot{\bar{v}}^{2}=\frac{\left(I_{3}-I_{1}\right)}{I_{2}} \bar{v}^{3}-1 \\
\dot{\bar{v}}^{3}=\frac{\left(I_{1}-I_{2}\right)}{I_{3}} \bar{v}_{1} \bar{v}_{2}
\end{array}\right.
$$

[Note: These relations are instances of Euler's equations (see the Appendix).]

§9. SYMMETRIES

Let M be a connected C^{∞} manifold of dimension n. Given a second order $\Gamma \in \mathcal{D}^{1}(T M)$, put

$$
D_{\Gamma}^{1}(\mathrm{TM})=\left\{\mathrm{X} \in D^{1}(\mathrm{TM}): S[\mathrm{X}, \Gamma]=0\right\}
$$

[Note: Locally, the elements of D_{Γ}^{1} (TM) have the form

$$
\left.x=A^{i} \frac{\partial}{\partial q^{i}}+\left(\Gamma A^{i}\right) \frac{\partial}{\partial v^{i}} \cdot\right]
$$

9.1 LEMMA Define

$$
\pi_{\Gamma}: D^{1}(T M) \rightarrow D_{\Gamma}^{1}(T M)
$$

by

$$
\pi_{\Gamma}(X)=X+S[\Gamma, X]
$$

Then π_{Γ} is a projection of $D^{l}(T M)$ onto $D_{\Gamma}^{l}(T M)$ with kernel $V(T M)$.
[To check that $\pi_{\Gamma}(X)$ really is in $D_{\Gamma}^{1}(T M)$, write

$$
\begin{aligned}
& S\left[\pi_{\Gamma}(X), \Gamma\right] \\
& \quad=S[X+S[\Gamma, X], \Gamma] \\
& \quad=S[X, \Gamma]+S[S[\Gamma, X], \Gamma] \\
& \quad=S[X, \Gamma]+[S[\Gamma, X], S \Gamma]
\end{aligned}
$$

$$
-S[[\Gamma, X], S \Gamma] \quad \text { (cf. 5.9) }
$$

$$
=S[X, \Gamma]+[S[\Gamma, X], \Delta]
$$

$$
-S[[\Gamma, X], \Delta] \quad \text { (cf. 5.8) }
$$

$$
=S[\mathrm{X}, \Gamma]+[\mathrm{S}[\Gamma, \mathrm{X}], \Delta]
$$

$$
+S[\Delta,[\Gamma, x]]
$$

$$
=s[X, \Gamma]+s[\Gamma, X] \quad \text { (cf. } 5.10)
$$

$$
=0 .]
$$

9.2 LEMMA Define a multiplication

$$
C^{\infty}(\mathrm{TM}) \times D_{\Gamma}^{1}(\mathrm{TM}) \rightarrow D_{\Gamma}^{1}(\mathrm{TM})
$$

by

$$
f * X=f X+(\Gamma f) S X \quad\left(=\pi_{\Gamma}(f X)\right)
$$

Then $D_{\Gamma}^{1}(T M)$ is a module over $C^{\infty}(T M)$.
[Note: So, while D_{Γ}^{1} (TM) is not stable under the usual multiplication by elements of C^{∞} (TM), it is stable under the usual multiplication by elements of C_{Γ}^{∞} (TM) (the subring of $C^{\infty}(T M)$ consisting of the first integrals for Γ) (cf. §I).]

The elements of $D_{\Gamma}^{1}(T M)$ are called the pseudosymmetries of Γ, a symmetry of Γ being an $X \in D^{\perp}(T M)$ such that $[X, \Gamma]=0$.
[Note: Trivially, a symmetry of Γ is a pseudosymmetry of Γ.
9.3 EXAMPIE Let $\mathrm{X} \in \mathcal{D}^{\mathcal{L}}(\mathrm{M})$ - then

$$
\mathrm{S}\left[\mathrm{X}^{\top}, \Gamma\right]=0 \quad \text { (cf. 5.19) }
$$

Therefore $X^{\top} \in D_{\Gamma}^{1}(T M)$, hence X^{\top} is a pseudosymmetry of Γ.

A point symmetry of Γ is an $X \in D^{l}$ (M) such that

$$
\left[X^{\top}, \Gamma\right]=0 .
$$

So, strictly speaking, a point symmetry is not a symmetry... .
9.4 REMARK Agreeing to call a vector field on TM projectable if it is π_{M}-related to a vector field on M, the definitions then imply that the projectable symmetries of Γ are precisely the lifts of the point symmetries of Γ.
9.5 LEMMA If X is a symmetry of Γ and if $f \in C_{\Gamma}^{\infty}(\mathbb{T M})$, then $X f \in C_{\Gamma}^{\infty}$ (TM). PROOF FOX

$$
\begin{aligned}
0=[\Gamma, \mathrm{X}] f & =\Gamma(\mathrm{Xf})-\mathrm{X}(\Gamma f) \\
& =\Gamma(\mathrm{Xf})
\end{aligned}
$$

Suppose now that L is a nondegenerate lagrangian -- then ω_{L} is symplectic
so for any $f \in C^{\infty}(T M), \exists$ a unique vector field $X_{f} \in \mathcal{D}^{1}(T M)$ such that

$$
{ }^{2} x_{f} \omega_{L}=d f
$$

9.6 LEMMA If f is a first integral for $\Gamma_{L^{\prime}}$ then X_{f} is a symmetry of Γ_{L}. PROOF Write

$$
\begin{aligned}
& { }^{2}\left[X_{f}, \Gamma_{L}\right]{ }^{\omega}{ }_{L}=-{ }^{l}\left[\Gamma_{L}, X_{f}\right]{ }^{\omega}{ }_{L} \\
& =-\left(L_{\Gamma_{L}} \circ{ }^{v_{x_{f}}}-{ }^{v_{X}}{ }_{f} \circ L_{\Gamma_{L}}\right) \omega_{L} \\
& =-L_{\Gamma_{L}}{ }^{{ }^{\prime}} X_{f}{ }^{\omega}{ }_{L} \quad \text { (cf. 8.9) } \\
& =-L_{\Gamma_{L}} d f \\
& =-\mathrm{d} L_{\Gamma_{\mathrm{L}}} \mathrm{f} \\
& =-d \Gamma_{L} f \\
& =0 \text {. }
\end{aligned}
$$

Therefore

$$
\left[\mathrm{X}_{\mathrm{f}}, \mathrm{~T}_{\mathrm{L}}\right]=0
$$

9.7 REMARK If $x \in D^{1}$ (TM) is a symmetry of Γ_{L}, then

$$
{ }^{2} \mathrm{X}^{2} \Gamma_{L}{ }_{L} \in C_{\Gamma_{L}}^{\infty}(\mathrm{TM})
$$

5.

Proof:

$$
\begin{aligned}
L_{\Gamma_{L}} & \left(l_{X} \Gamma_{\Gamma_{L}}{ }^{\left.\omega_{L}\right)}\right. \\
& =-L_{\Gamma_{L}}\left(l_{X} d F_{L}\right) \\
& =-L_{\Gamma_{L}}\left(L_{X} E_{L}\right) \\
& =\left(L_{\left[X, \Gamma_{L}\right]}-L_{X} L_{\Gamma_{L}}\right) E_{L} \\
& =-L_{X} L_{\Gamma_{L}} E_{L} \\
& =0 \quad \text { (cf. 8.10). }
\end{aligned}
$$

[Note: It may very well happen that

$$
{ }^{2} x^{2} \Gamma_{L}{ }_{L}{ }_{L}
$$

vanishes identically.]

An infinitesimal symmetry of L is a vector field $X \in \mathcal{D}^{l}(M)$ such that

$$
\mathrm{X}^{\top} \mathrm{L}=0 .
$$

I.e.:

$$
L \in C_{X^{\top}}^{\infty}(T M)
$$

[Note: It will be shown below that

$$
\left[X^{\top}, \Gamma_{L}\right]=0 \quad \text { (cf. 9.14) }
$$

Accordingly, an infinitesimal symmetry of L is a point symmetry of $\Gamma_{L}{ }^{\text {. }}$]
9.8 THEOREM (Noether) If X is an infinitesimal symmetry of L, then X_{L} is a first integral for Γ_{L}.

PROOF In fact,

$$
\begin{aligned}
& L_{\Gamma_{L}}\left(\imath^{\prime} X^{\top}{ }^{\theta}\right)=\imath_{\left[\Gamma_{L^{\prime}} X^{T}\right]} \theta_{L}+\imath_{X^{\top}}\left(L_{\Gamma_{L}} \theta_{L}\right) \\
& ={ }^{1} 0^{\theta} L+{ }_{X^{\top}}{ }^{\partial L} \quad \text { (cf. 8.14) } \\
& =X^{\top}{ }^{\top} \\
& =0 \text {. }
\end{aligned}
$$

Therefore ${ }^{l} X^{\top}{ }^{\theta}$ L is a first integral for Γ_{L}. But

$$
\begin{aligned}
& { }^{2} X^{\top}{ }^{\theta} L^{\prime}={ }^{\imath} X^{\top} S^{\alpha}{ }^{L} \\
& ={ }_{X^{\top}} S^{*}(\mathrm{dL}) \\
& =S^{*} \circ_{S X^{\top}}(\mathrm{dL}) \quad \text { (cf. 6.1) } \\
& =\mathrm{S}^{*} \circ \mathrm{l}_{\mathrm{X}} \mathrm{~V}^{\text {(dL) }} \text { (cf. 5.7) } \\
& =S^{*}\left(d L\left(X^{V}\right)\right) \\
& =\mathrm{dL}\left(\mathrm{X}^{\mathrm{V}}\right)
\end{aligned}
$$

$$
=X^{V} \mathrm{~L}
$$

9.9 EXAMPLE Take $M=\underline{R}^{3}$ and let

$$
L\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right)=\frac{1}{2} \sum_{i=1}^{3}\left(v^{i}\right)^{2}-v\left(q^{2}, q^{3}\right)
$$

Put $X=\frac{\partial}{\partial x^{1}}-$ then $X^{\top}=\frac{\partial}{\partial q^{1}}$, so $X^{\top} L=0$. Since $X^{v}=\frac{\partial}{\partial v^{1}}$, it follows that
$\mathrm{X}_{\mathrm{L}}=\mathrm{v}^{1}$ is a first integral for Γ_{L} (conservation of linear momentum along the x^{1}-axis).
9.10 EXAMPLE Take $M=\underline{R}^{3}$ and let

$$
L\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(v^{i}\right)^{2}-\sum_{i=1}^{3}\left(q^{i}\right)^{2}\right)
$$

Put $x=x^{1} \frac{\partial}{\partial x^{2}}-x^{2} \frac{\partial}{\partial x^{1}}-$ then

$$
\begin{aligned}
& x^{\top}=q^{1} \frac{\partial}{\partial q^{2}}-q^{2} \frac{\partial}{\partial q^{1}}-v^{2} \frac{\partial}{\partial v^{1}}+v^{1} \frac{\partial}{\partial v^{2}} \\
& \Rightarrow \\
& x^{\top} L=-q^{1} q^{2}+q^{2} q^{1}-v^{2} v^{1}+v^{1} v^{2} \\
& \\
& =0
\end{aligned}
$$

But here

$$
x^{v}=q^{1} \frac{\partial}{\partial v^{2}}-q^{2} \frac{\partial}{\partial v^{1}}
$$

And this means that

$$
x^{V} L=q^{1} v^{2}-q^{2} v^{l}
$$

is a first integral for Γ_{L} (conservation of angular momentum around the x^{3}-axis).

As will become apparent, one need not work exclusively with the lifts to TM of vector fields on M.
9.11 EXAMPLE Take $M=\underline{R}^{3}$ and let

$$
L\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right)=\frac{1}{2} \sum_{i=1}^{3}\left(v^{i}\right)^{2} .
$$

Put

$$
x=f\left(v^{1}, v^{2}, v^{3}\right) \frac{\partial}{\partial q^{1}} .
$$

Obviously, $\mathrm{XL}=0$. In addition,

$$
\begin{gathered}
\Gamma_{L}=v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}} \\
\Rightarrow \quad\left[x, \Gamma_{L}\right]=0
\end{gathered}
$$

The argument employed in 9.8 then implies that ${ }^{2} X_{L} \theta_{L}$ is a first integral for Γ_{L}. But

$$
\begin{aligned}
{ }^{l} X^{\theta} \theta & ={ }^{\imath} X\left(\frac{\partial L}{\partial v^{i}} d q^{i}\right) \\
& =\frac{\partial L}{\partial v^{i}}{ }^{\imath} X^{d q^{i}}
\end{aligned}
$$

$$
=v^{1} f\left(v^{1}, v^{2}, v^{3}\right)
$$

I.e.: $v^{l} f\left(v^{l}, v^{2}, v^{3}\right)$ is a first integral for Γ_{L}. Of course, the lagrangian at hand represents the free particle, so any function of the velocity had better be a "constant of the motion".
9.12 LEMMA If X is an infinitesimal symmetry of L, then

$$
L_{X^{\top}}{ }^{\theta} L=0
$$

PROOF We have

$$
\begin{aligned}
L_{X^{\top}} \theta_{L} & =L_{X^{\top}} d_{S^{L}} \\
& =d_{S^{\prime}} L_{X^{\top}}^{L}+d_{L_{X} S^{L}} \quad \text { (cf. 6.12) } \\
& =d_{S} 0+d_{0}^{L} \quad \text { (cf. 5.18) } \\
& =0
\end{aligned}
$$

[Note: Therefore

$$
\begin{aligned}
L_{X^{\top}}^{\omega_{L}} & =L_{X^{\top}}{ }^{\alpha \theta_{L}} \\
& =d L_{X^{\top}}{ }^{\theta} L \\
& =0 .]
\end{aligned}
$$

9.13 LEMMA If X is an infinitesimal symmetry of L, then $X^{\top} E_{L}=0$.

PROOF For

$$
\begin{aligned}
&{ }^{\imath} \Gamma_{L}{ }_{L} \omega_{L}=-d E_{L} \\
& \Rightarrow \\
&{ }^{\imath} \Gamma_{L} \omega_{L}\left(X^{\top}\right)=-d E_{L}\left(X^{\top}\right) \\
&=-X^{\top} E_{L}
\end{aligned}
$$

And

$$
\begin{aligned}
& { }^{2} \Gamma_{L} \omega_{L}\left(X^{\top}\right)=\omega_{L}\left(\Gamma_{L^{\prime}} X^{\top}\right) \\
& =d \theta_{L}\left(\Gamma_{L^{\prime}} x^{\top}\right) \\
& =\left(L_{\Gamma_{L}} \theta_{L}\right)\left(X^{\top}\right)-\left(L_{X^{\top}} \theta_{L}\right)\left(\Gamma_{L}\right)+\theta_{L}\left(\left[\Gamma_{L^{\prime}} x^{\top}\right]\right) \\
& =\left(L_{\Gamma_{L}} \theta_{L}\right)\left(X^{\top}\right)+\theta_{L}\left(\left[\Gamma_{L^{\prime}}, x^{\top}\right]\right) \quad \text { (cf. 9.12) } \\
& =d L\left(X^{\top}\right)+\theta_{L}\left(\left[\Gamma_{L^{\prime}} X^{\top}\right]\right) \quad \text { (cf. 8.14) } \\
& =X^{T} L_{L}+\theta_{L}\left(\left[\Gamma_{L^{\prime}} X^{\top}\right]\right) \\
& =\theta_{L}\left(\left[\Gamma_{L^{\prime}}, X^{\top}\right]\right) .
\end{aligned}
$$

But $\left[\Gamma_{L}, x^{\top}\right]$ is vertical (cf. 5.3) and θ_{L} is horizontal, hence $\theta_{L}\left(\left[\Gamma_{L^{\prime}} X^{\top}\right]\right)=0$ (cf. 6.14).
9.14 LEMMA If X is an infinitesimal symmetry of L, then X^{\top} is a symmetry
of Γ_{L}.
PROOF Simply note that

$$
\begin{aligned}
&{ }^{1}\left[X^{\top}, \Gamma_{L}\right] \\
& \omega_{L}=\left(L_{X^{\top}} \circ{ }^{1} \Gamma_{L}-{ }^{1} \Gamma_{L} \circ L_{X^{\top}}\right) \omega_{L} \\
&=L_{X^{\top}}\left(-d E_{L}\right)-{ }^{1} \Gamma_{L}\left(L_{X^{\top}}{ }^{\omega} L^{\prime}\right) \\
&=-d L_{X^{\top} E_{L}}-{ }^{1} \Gamma_{L} 0 \quad \text { (cf. 9.12) } \\
&=-d\left(X^{\top} E_{L}\right) \\
&=0 \quad \text { (cf. 9.13). }
\end{aligned}
$$

9.15 REMARK Let $\mathrm{X} \in \mathcal{D}^{1}$ (TM). Assume:

$$
\left.\right|_{-\quad d L_{X L} \theta_{L}}=0
$$

Then

$$
\left[\mathrm{X}, \Gamma_{\mathrm{L}}\right]=0
$$

Proof:

$$
\begin{aligned}
{ }^{l}\left[X, \Gamma_{L}\right]{ }^{\omega_{L}} & =\left(L_{X} \circ{ }^{l_{\Gamma_{L}}}-{ }^{{ }^{2} \Gamma_{L}} \circ L_{X}\right) \omega_{L} \\
& =L_{X}\left(-d E_{L}\right)-{ }^{r^{1}} \Gamma_{L} L_{X} d \theta_{L}
\end{aligned}
$$

$$
\begin{aligned}
& =-d L_{X} E_{L}-{ }^{\imath} \Gamma_{L} d L_{X} \theta_{L} \\
& =0 .
\end{aligned}
$$

A Noether symmetry of Γ_{L} is a vector field $X \in D^{1}(M)$ such that $L_{X}{ }^{\top}{ }^{\theta}$ is exact (say $L_{X}{ }^{\top} \theta_{L}=d f$, where $f \in C^{\infty}(T M)$) and $X^{\top} E_{L}=0$.
[Note: A Noether symmetry X of Γ_{L} is necessarily a point symmetry of Γ_{L} :

$$
\left.\left[\mathrm{X}^{\top}, \Gamma_{\mathrm{L}}\right]=0 \quad(\mathrm{cf}, 9.15) .\right]
$$

9.16 LEMMA If X is a Noether symmetry of $\Gamma_{L^{\prime}}$ then $f-X V_{L}$ is a first integral for Γ_{L}.

PROOF To begin with,

$$
\begin{aligned}
& { }^{l} X^{\top}{ }_{L}={ }_{X}{ }^{\top}{ }^{\top} \theta_{L} \\
& =L_{X^{\top}} \theta_{L}-d_{X^{\prime}}{ }^{\theta}{ }^{L} \\
& =d f-d x^{V} L \\
& =d\left(f-X^{V}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\Gamma_{L}\left(f-X^{V} L\right) & =d\left(f-X^{V} L\right)\left(\Gamma_{L}\right) \\
& =\left(\imath_{X}{ }^{\top} \omega_{L}\right)\left(\Gamma_{L}\right)
\end{aligned}
$$

13.

$$
\begin{aligned}
& =\omega_{L}\left(X^{\top}, \Gamma_{L}\right) \\
& =-\omega_{L}\left(\Gamma_{L^{\prime}} X^{\top}\right) \\
& =-{ }^{\imath} \Gamma_{L} \omega_{L}\left(X^{\top}\right) \\
& =d E_{L}\left(X^{\top}\right) \\
& =X^{\top} E_{L} \\
& =0 .
\end{aligned}
$$

Suppose that X is an infinitesimal symmetry of L - then

$$
\left\lvert\, \begin{aligned}
& L_{X^{\top}} \theta_{L}=0 \quad \text { (cf. 9.12) } \\
& X^{\top} E_{L}=0 \quad \text { (cf. 9.13). }
\end{aligned}\right.
$$

So X is a Noether symmetry of Γ_{L} and 9.8 is a special case of 9.16 (take $f=0$).
9.17 REMARK If X is a point symmetry of Γ_{L} such that

$$
\begin{aligned}
L_{X^{\top}}\left(\imath_{\Gamma_{L}} \theta_{L}\right) & ={ }_{1}{ }_{\left[X^{\top}, \Gamma_{L}\right]}{ }^{\theta_{L}}+{ }^{1} \Gamma_{L}\left(L X^{\top} \theta_{L}\right) \\
& ={ }_{1} 0^{\theta_{L}}+{ }^{1} \Gamma_{L} 0 \\
& =0 .
\end{aligned}
$$

Next

$$
\begin{aligned}
X^{\top} E_{L}=0 & \Rightarrow X^{\top}(\Delta L-L)=0 \\
& \Rightarrow X^{\top} \Delta L=X^{\top} L .
\end{aligned}
$$

So

$$
\begin{aligned}
0 & =L_{X^{\top}}\left({ }^{2} \Gamma_{L} \theta_{L}\right) \\
& =L_{X^{\top}} \Delta L \quad \text { (cf. 8.13) } \\
& =X^{\top} \Delta L \\
& =X^{\top} L .
\end{aligned}
$$

A Cartan symmetry of Γ_{L} is a vector field $X \in D^{1}(T M)$ such that $L_{X} \theta_{L}$ is
exact (say $L_{X} \theta_{L}=d f$, where $f \in C^{\infty}(T M)$) and $X_{L}=0$.
[Note: A Cartan symmetry X of Γ_{L} is necessarily a symmetry of Γ_{L} :

$$
\left[\mathrm{X}, \Gamma_{\mathrm{L}}\right]=0 \quad \text { (cf. 9.15).] }
$$

N.B. The lift of a Noether symmetry of Γ_{L} is a Cartan symmetry of Γ_{L}. In the other direction, the projection of a projectable cartan symmetry of Γ_{L} is a Noether symmetry of Γ_{L} (cf. 9.4).
9.18 EXAMPIE Γ_{L} is a Cartan symmetry of Γ_{L} (which, in general, is not projectable). Proof:

$$
\left[\begin{array}{rl}
L_{\Gamma_{L}} \theta_{L}=d L \quad(c f .8 .14) \\
\Gamma_{L} E_{L}=0 & (c f .8 .10)
\end{array}\right.
$$

9.19 REMARK The lift of a point symmetry of Γ_{L} need not be a cartan symmetry of Γ_{L} (cf. 9.24).
9.20 LEMMA If X is a Cartan symmetry of $\Gamma_{L^{\prime}}$ then $f-(S X) L_{\text {is }}$ is a first integral for Γ_{I}.
[Argue as in 9.16, observing that

$$
\begin{aligned}
{ }^{{ }^{x} \omega_{L}} & ={ }^{l_{X}}{ }^{d \theta_{L}} \\
& =L_{X} \theta_{L}-d l_{X} \theta_{L} \\
& =d f-d l_{X} S^{*}(d L) \\
& =d f-d S^{*}(d L)(X)
\end{aligned}
$$

$$
=d(f-(S X) L) .]
$$

Then
is a first integral for ${ }^{5}$.

$$
f-(S X) L
$$

In fact,

$$
\begin{aligned}
\Gamma_{L}(f-(S X) L) & =d(f-(S X) L)\left(\Gamma_{L}\right) \\
& =\left(\imath_{X} \omega_{L}\right)\left(\Gamma_{L}\right) \\
& =X E_{L} \\
& =x(\Delta L-L) \\
& =X\left(\imath_{\Gamma_{L}} \theta_{L}-L\right) \quad \text { (cf. 8.13) } \\
& =X_{1} \Gamma_{L} \theta_{L}-\Gamma_{L} f \\
& ={ }^{\imath} \Gamma_{L} L_{X} \theta_{L}-\Gamma_{L} f \\
& ={ }^{\imath} \Gamma_{L} d f-\Gamma_{L} f
\end{aligned}
$$

17.

$$
\begin{aligned}
& =d f\left(\Gamma_{L}\right)-\Gamma_{L} f \\
& =\Gamma_{L} f-\Gamma_{L} f \\
& =0 .
\end{aligned}
$$

N.B. X is a Carton symmetry of Γ_{L}. Thus put

$$
F=f-(S X) L
$$

Then

$$
\left.\right|_{-\quad} ^{{ }^{2} \Gamma_{L} \omega_{L}=-d E_{L}} \begin{aligned}
& { }^{2}{ }_{x} \omega_{L}=d F .
\end{aligned}
$$

And

$$
\begin{aligned}
& X E_{L}={ }^{2} \mathrm{dE}_{L} \\
& =-{ }^{l} X^{\imath} \Gamma_{L}{ }^{\omega}{ }_{L} \\
& ={ }^{1} \Gamma_{L}{ }^{1}{ }^{\left(\omega^{\omega}\right.}{ }_{L} \\
& ={ }^{2} \Gamma_{\mathrm{L}} \mathrm{dF} \\
& =\Gamma_{L} F \\
& =0 \\
& \text { => } \\
& X E_{L}=0 .
\end{aligned}
$$

18.

9.21 EXAMPIE Here is a realization of the foregoing procedure. Take $M=\underline{R}^{3}-\{0\}$ and put

Let

$$
\left.\right|_{|q|=\left(\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}+\left(q^{3}\right)^{2}\right)^{1 / 2}} \begin{aligned}
& |v|=\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

$$
L=\frac{1}{2}\left(|v|^{2}\right)+\frac{K}{|q|}(K \neq 0)
$$

Then
$\theta_{L}=v^{i} d q^{i}$

$$
\omega_{L}=d v^{i} \wedge d q^{i}
$$

hence L is nondegenerate,
and

$$
E_{L}=\frac{|v|^{2}}{2}-\frac{K}{|q|}
$$

$$
\Gamma_{L}=v^{i} \frac{\partial}{\partial q^{i}}-\frac{K q^{i}}{|q|^{3}} \frac{\partial}{\partial v^{i}}
$$

Define vector fields $X_{k} \in D^{1}(T M) \quad(k=1,2,3)$ by

$$
\begin{gathered}
x_{k}=-\left(2 q^{k} v^{i}-v^{k} q^{i}-(q \cdot v) \delta^{k i}\right) \frac{\partial}{\partial q^{i}} \\
-\left(k\left(|q|^{2} \delta^{k i}-q^{k} q^{i}\right) /|q|^{3}-|v|^{2} \delta^{k i}+v^{k} v^{i}\right) \frac{\partial}{\partial v^{i}}
\end{gathered}
$$

where

$$
q \cdot v=q^{1} v^{1}+q^{2} v^{2}+q^{3} v^{3}
$$

One can check that $\left[\mathrm{X}_{\mathrm{k}}, \Gamma_{\mathrm{L}}\right]=0$, thus X_{k} is a symmetry of Γ_{L} which is not a lift of a vector field on M. Set

$$
f_{k}=(q \cdot v) v^{k}-\left(|v|^{2}+k /|q|\right) q^{k}
$$

Since

$$
\left[\begin{array}{l}
L_{X_{k}}{ } \theta_{L}=d f_{k} \\
X_{k} L=\Gamma_{L^{\prime}} f_{k^{\prime}}
\end{array}\right.
$$

the conclusion is that

$$
\begin{aligned}
f_{k} & -(S X) L \\
& =\left(|v|^{2}-K /|q|\right) q^{k}-(q \cdot v) v^{k}
\end{aligned}
$$

is a first integral for Γ_{L}.
[Note: This lagrangian is the one that figures in the Kepler problem and what is being said is that the so-called Lenz vector is conserved.]
9.22 LEMMA If f is a first integral for Γ_{L}, then X_{f} is a cartan symmetry of Γ_{L} (cf. 9.6).

PROOF We have

$$
\Rightarrow \begin{aligned}
d f={ }^{l_{x_{f}}}{ }^{\omega} L_{L} & ={ }^{l_{x_{f}}}{ }^{d \theta_{L}} \\
& =\left(L_{X_{f}}-d \circ{ }_{L_{X_{f}}}\right) \theta_{L} \\
L_{X_{f}} \theta_{L} & =d\left(f+\theta_{L}\left(X_{f}\right)\right)
\end{aligned}
$$

And

$$
\begin{aligned}
X_{f^{E}} E_{L} & =\left(l_{X_{f}} \omega_{L}\right)\left(\Gamma_{L}\right) \\
& =d f\left(\Gamma_{L}\right) \\
& =\Gamma_{L} f \\
& =0
\end{aligned}
$$

9.23 REMARK Given a Cartan symmetry X of $\Gamma_{L^{\prime}}$ put

$$
F=f-(S X) L
$$

Then F is a first integral for Γ_{L} (cf. 9.20) and

$$
{ }^{1} X^{\omega}{ }_{L}=d f \Rightarrow X=X_{F}
$$

So far we have worked with a fixed nonsingular lagrangian L. However, as has been seen in $\S 8$ (cf. 8.17 and 8.18), distinct nonsingular lagrangians L and L^{\prime} can give rise to the same dynamics in that

$$
\Gamma_{L}=\Gamma_{L^{\prime}}
$$

In turn, this leads to differing descriptions of the symmetries and first integrals.
9.24 EXAMPLE Take $M=\underline{R}^{3}$ and let

$$
\Gamma=v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}}-q^{1} \frac{\partial}{\partial v^{1}}-q^{2} \frac{\partial}{\partial v^{2}}-q^{3} \frac{\partial}{\partial v^{3}}
$$

Then

$$
L=\frac{1}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}-\left(q^{1}\right)^{2}-\left(q^{2}\right)^{2}-\left(q^{3}\right)^{2}\right)
$$

and

$$
I^{\prime}=\frac{1}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}-\left(v^{3}\right)^{2}-\left(q^{1}\right)^{2}-\left(q^{2}\right)^{2}+\left(q^{3}\right)^{2}\right)
$$

are both nondegenerate lagrangian for Γ :

Moreover,

$$
\left.\right|_{-} \Gamma_{L_{L}}=\Gamma .
$$

$$
\left\{\begin{array}{l}
x_{1}=x^{2} \frac{\partial}{\partial x^{3}}-x^{3} \frac{\partial}{\partial x^{2}} \\
x_{2}=x^{3} \frac{\partial}{\partial x^{1}}-x^{1} \frac{\partial}{\partial x^{3}} \\
x_{3}=x^{1} \frac{\partial}{\partial x^{2}}-x^{2} \frac{\partial}{\partial x^{1}}
\end{array}\right.
$$

are infinitesimal symmetries of L, thus by 9.8 lead to the first integrals

$$
\left[\begin{array}{l}
q^{2} v^{3}-q^{3} v^{2} \\
q^{3} v^{1}-q^{1} v^{3} \\
q^{1} v^{2}-q^{2} v^{1}
\end{array}\right.
$$

for Γ. On the other hand,

$$
\left[\begin{array}{l}
x_{1}^{\prime}=x^{3} \frac{\partial}{\partial x^{1}}+x^{1} \frac{\partial}{\partial x^{3}} \\
x_{2}^{1}=x^{3} \frac{\partial}{\partial x^{2}}+x^{2} \frac{\partial}{\partial x^{3}} \\
x_{3}^{\prime}=x^{1} \frac{\partial}{\partial x^{2}}-x^{2} \frac{\partial}{\partial x^{1}}
\end{array}\right.
$$

are infinitesimal symmetries of L^{\prime}, thus by 9.8 lead to the first integrals
for Γ.

$$
\left.\right|_{-} ^{q^{3} v^{1}-q^{1} v^{3}} \begin{aligned}
& q^{3} v^{2}-q^{2} v^{3} \\
& q^{1} v^{2}-q^{2} v^{1}
\end{aligned}
$$

[Note: X_{1}^{\prime} and X_{2}^{\prime} are point symmetries of $\Gamma_{L},(c f .9 .14)$ or still, are point symmetries of Γ_{L}. Therefore

$$
\left.\right|_{-} ^{\left(x_{1}^{\prime}\right)^{\top} E_{L}=2\left(q^{1} q^{3}+v^{1} v^{3}\right)} \begin{aligned}
& \left(x_{2}^{\prime}\right)^{\top} E_{L}=2\left(q^{2} q^{3}+v^{2} v^{3}\right)
\end{aligned}
$$

are first integrals for Γ_{L} (cf. 9.7) (or directly). But neither $\left(X_{1}^{\prime}\right)^{\top}$ nor $\left(X_{2}^{\prime}\right)^{\top}$ is a Carton symmetry of Γ_{L}.]

According to $6.12, \forall X \in D^{1}(M)$,

$$
L_{X^{\top}} \circ d_{S}-d_{S} \circ L_{X^{\top}}=d_{X_{X^{\top}}}
$$

But

$$
\left.L_{X^{T}} S=0 \quad \text { (cf. } 5.18\right)
$$

Therefore

Consequently,

$$
L_{X^{\top}} \circ d_{S}=d_{S} \circ L_{X^{\top}}
$$

$$
L_{X}{ }^{\top} \theta_{L}=L_{X}{ }^{\top}{ }_{S}^{L}
$$

$$
=d_{S}^{L}{ }_{X} T^{L}
$$

$$
=\theta_{X^{\top} L^{*}}
$$

And then

$$
\begin{aligned}
L_{X^{\top}} \omega_{L} & =L_{X^{\top}} d \theta_{L} \\
& =d L_{X^{\top}} \theta_{L} \\
& =d \theta X^{\top} L_{L} \\
& =\omega_{X^{\top}} .
\end{aligned}
$$

[Note: Our standing assumption is that L is nondegenerate but, in general, $X^{\top} L$ will be degenerate.]

$$
9.25 \text { IEMMA } \forall \mathrm{X} \in D^{l}(\mathrm{M}),
$$

$$
{ }_{\left[\mathrm{X}^{\top}, \Gamma_{L}\right]}{ }^{\theta_{\mathrm{L}}}=0 .
$$

PROOF Indeed

$$
\begin{aligned}
&{ }^{\tau}\left[X^{\top}, \Gamma_{L}\right] \\
&=S * d L\left(\left[X^{\top}, \Gamma_{L}\right]\right) \\
&=d L\left(S\left[X_{S}^{\top}, \Gamma_{L}\right]\right) \\
&\left.=d L\left(0 X^{\top}, \Gamma_{L}\right]\right) \\
& \text { (cf. 5.19) } \\
&=0 .
\end{aligned}
$$

[Note: This result enables one to simplify the proof of 9.8 , there being no need to appeal to 9.14 to force

$$
\left.{ }_{\left[\Gamma_{L^{\prime}}\right.} X^{T}\right]{ }^{\theta_{L}}=0
$$

since 9.25 implies that this is automatic.]
9.26 LEMMA $\forall X \in D^{1}(M)$,
25.

PROOF First

$$
\begin{aligned}
& \left.{ }_{\left[\Gamma_{L}, X^{\top}\right]}{ }^{\omega_{L}=}{ }_{\left[\Gamma_{L}\right.} X^{\top}\right]^{d \theta}{ }_{L}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=L_{\left[\Gamma_{L^{\prime}}\right.} \mathrm{X}^{T}\right]^{\theta}{ }^{\mathrm{L}} \text { (cf. 9.25) } \\
& =L_{\Gamma_{L}}{ }^{L} X^{\top}{ }^{\theta} L-L_{X}{ }^{\top} L_{\Gamma_{L}}{ }^{\theta}{ }_{L} \\
& =L_{\Gamma_{L}}{ }_{X^{\top} L}-L_{X^{\top}}{ }^{\top L L} \quad \text { (cf. 8.14). }
\end{aligned}
$$

Next, write

$$
\begin{aligned}
L_{X^{\top}} d L & =d x^{\top} L \\
& =d x^{\top} L-d \Delta X^{\top} L+d \Delta x^{\top} L \\
& =d(1-\Delta) X^{\top} L+d \Delta x^{\top} L \\
& =-d E X^{\top} L+d \Delta X^{\top} L
\end{aligned}
$$

Therefore

$$
{ }_{\left[\Gamma_{L^{\prime}} X^{\top}\right]}^{\omega_{L}=L_{\Gamma_{L}} X^{\top} L}-d \Delta X^{\top} L+d E X_{L}
$$

But

$$
\left.\left[\Delta, X^{\top}\right]=0 \quad \text { (cf. } 4.4\right),
$$

so

$$
\begin{aligned}
L_{\Gamma_{L}} \theta_{X_{L}^{\top}} & -d \Delta X^{\top} L^{\prime} \\
& =L_{\Gamma_{L}}{ }_{X^{\top} L_{L}}-d x^{\top} \Delta L \\
& =L_{\Gamma_{L}}{ }^{\theta} X_{L}{ }^{\top}-d x^{\top} \imath_{\Gamma_{L}} \theta_{L} \quad \text { (cf. 8.13). }
\end{aligned}
$$

Finally

$$
\begin{aligned}
& ={ }^{l} \Gamma_{L} L_{X}{ }^{\top}{ }^{d \theta}{ }_{L} \\
& ={ }^{1} \Gamma_{L} d X^{\top}{ }^{\theta}{ }^{\theta} \\
& =\left(L_{\Gamma_{L}}-d \circ{ }^{1} \Gamma_{L}\right) L_{X}{ }^{\top}{ }^{\theta} L
\end{aligned}
$$

$$
\begin{aligned}
& =L_{\Gamma_{L}}{ }^{\theta} X_{L}{ }^{\top}+d\left(l_{\left[X^{\top}, \Gamma_{L}\right]}-L_{X^{\top}}{ }^{\circ}{ }^{l_{\Gamma_{L}}}{ }^{\prime} \theta_{L}\right. \\
& =L_{\Gamma_{L}}{ }^{\theta} X_{L}{ }^{\prime}-d X^{\top}{ }^{\top} \Gamma_{L} \theta_{L} \quad \text { (cf. 9.25). }
\end{aligned}
$$

Now recall that, by definition, Γ_{L} admits the lagrangian $X^{\top} \mathrm{L}$ provided

$$
{ }^{\mathrm{I}} \Gamma_{L X X}{ }^{\omega}{ }^{\top}=-d E X^{\top}{ }^{\top}
$$

which, in view of 9.6 , will be the case iff

$$
\left[X^{\top}, \Gamma_{L}\right]=0 .
$$

I.e. : Iff X is a point symmetry of Γ_{I}.
§10. MECHANICAL SYSTEMS

Let M be a connected C^{∞} manifold of dimension $n-$ then an (autonomous) mechanical system M is a triple (M, T, Π), where $T \in C^{\infty}(T M)$ and Π is a horizontal l-form on TM.

One calls

$$
\begin{aligned}
& \text { M -- the configuration space } \\
& \text { TM -- the velocity phase space } \\
& n-\text { the number of degrees of freedom. }
\end{aligned}
$$

10.1 REMARK Recall that the horizontal l-forms on TM are in a one-to-one correspondence with the fiber preserving C^{∞} functions $T M \rightarrow T * M$ (cf. §7). In the context of a mechanical system, either entity is termed an (external) force field.
10.2 EXAMPLE Let L be a lagrangian. Take $\Pi=0$ - then the triple ($M, L, 0$) is a mechanical system.

A mechanical system M is said to be nondegenerate if

$$
\omega_{T}=d d_{S} T
$$

is symplectic.
Suppose that M is nondegenerate - then \exists a unique vector field $\Gamma_{M} \in D^{1}$ (TM) such that

$$
{ }^{1} \Gamma_{M} \omega_{T}=d(T-\Delta T)+\Pi\left(=-d E_{T}+\Pi\right)
$$

And, as the notation suggests, Γ_{M} is second order (cf. 8.12) (note that $\delta_{S} \Pi=0$ (cf. 6.13)).
N.B. Working locally, write $\Pi=\Pi_{i} d q^{i}$ - then along an integral curve γ of $\Gamma_{M^{\prime}}$ the equations of Lagrange

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial v^{i}}\right)-\frac{\partial T}{\partial q^{i}}=\Pi_{i} \quad(i=1, \ldots, n)
$$

with forces are satisfied.
10.3 EXAMPLE Take $M=\underline{R}^{3}$ and

$$
\left[\begin{array}{l}
T=\frac{m}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}\right) \quad(m>0) \\
\Pi=\Pi_{1} d q^{1}+\Pi_{2} d q^{2}+\Pi_{3} d q^{3} .
\end{array}\right.
$$

Then the mechanical system (M, T, Π) represents the motion of a particle of mass $m>0$ in \underline{R}^{3} under the influence of a force field Π. Here

$$
\begin{aligned}
\Gamma_{M}=v^{1} & \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}} \\
& +\frac{\Pi_{1}}{m} \frac{\partial}{\partial v^{1}}+\frac{\Pi_{2}}{m} \frac{\partial}{\partial v^{2}}+\frac{\Pi_{3}}{m} \frac{\partial}{\partial v^{3}}
\end{aligned}
$$

and the integral curves of Γ_{M} are the solutions to

$$
\frac{d^{2} q^{i}}{d t^{2}}=\frac{\Pi_{i}}{m} \quad(i=1,2,3)
$$

[Note: In the above, it is understood that q^{1}, q^{2}, q^{3} are the usual cartesian coordinates. Matters change if we use spherical coordinates: $\tilde{q}^{1}=r(r>0)$, $\tilde{\mathrm{q}}^{2}=\theta(0<\theta<\pi), \tilde{\mathrm{q}}^{3}=\phi(0<\phi<2 \pi)$, so

$$
\left\{\begin{array}{l}
q^{1}=\tilde{q}^{1} \sin \tilde{q}^{2} \cos \tilde{q}^{3} \\
q^{2}=\tilde{q}^{1} \sin \tilde{q}^{2} \sin \tilde{q}^{3} \\
q^{3}=\tilde{q}^{1} \cos \tilde{q}^{2}
\end{array}\right.
$$

Thus now

$$
T=\frac{m}{2}\left(\left(\tilde{v}^{1}\right)^{2}+\left(\tilde{q}^{1}\right)^{2}\left(\tilde{v}^{2}\right)^{2}+\left(\tilde{q}^{1}\right)^{2}\left(\tilde{v}^{3}\right)^{2}\left(\sin \tilde{q}^{2}\right)^{2}\right)
$$

and

$$
\Pi=\tilde{\Pi}_{1} d \tilde{q}^{1}+\tilde{\Pi}_{2} d \tilde{q}^{2}+\tilde{\Pi}_{3} d \tilde{q}^{3}
$$

The tensor transformation rule of $\S 2$ can then be used to compute the $\tilde{\Pi}_{i}$ in terms of Π_{i}. To illustrate,

$$
\begin{aligned}
\tilde{\Pi}_{3} & =\frac{\partial q^{1}}{\partial \tilde{q}^{3}} \Pi_{1}+\frac{\partial q^{2}}{\partial \tilde{q}^{3}} \Pi_{2}+\frac{\partial q^{3}}{\partial \tilde{q}^{3}} \Pi_{3} \\
& \left.=\left(-\tilde{q}^{1} \sin \tilde{q}^{2} \sin \tilde{q}^{3}\right) \Pi_{1}+\left(\tilde{q}^{1} \sin \tilde{q}^{2} \cos \tilde{q}^{3}\right) \Pi_{2} \cdot\right]
\end{aligned}
$$

A nondegenerate mechanical system $M=(M, T, \Pi)$ is said to be conservative if $\exists V \in C^{\infty}(M)$:

$$
\pi=-d\left(V \circ \pi_{M}\right)\left(=-\pi_{M}^{*}(d V)\right)
$$

In this situation, we have

$$
\begin{aligned}
{ }^{l} \Gamma_{M} \omega_{T} & =d(T-\Delta T)+\Pi \\
& =d(T-\Delta T)-d\left(V \circ \pi_{M}\right) \\
& =d\left(T-V \circ \pi_{M}-\Delta T\right) \\
& =d(L-\Delta L) \\
& =-d E_{L},
\end{aligned}
$$

where

$$
\mathrm{L}=\mathrm{T}-\mathrm{V} \circ \pi_{\mathrm{M}} .
$$

Thus II has disappeared and

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0 \quad(i=1, \ldots, n) .
$$

But this puts us right back into $\$ 8$ (with L nondegenerate) (evidently, $\omega_{L}=\omega_{T}$ and $\Gamma_{L}=\Gamma_{M}$.

Typically, $T=\frac{1}{2} g$, where g is a semiriemannian structure on M (cf. 8.4), hence

$$
\Delta T=2 T\left(\Rightarrow E_{T}=\Delta T-T=T\right)
$$

10.4 LEMMA Suppose that T is nondegenerate and $\Delta T=2 T-$ then

$$
L_{\Delta} \omega_{T}=\omega_{T}
$$

PROOF In fact,

$$
\begin{aligned}
L_{\Delta} \omega_{T} & =L_{\Delta}{d d_{S} T} \\
& =d\left(L_{\Delta} d_{S} T\right) \\
& =d\left(d_{S} \circ L_{\Delta}-d_{S}\right) T \quad(\text { cf. 6.10) } \\
& =2 d d_{S} T-d d_{S} T \\
& =d d_{S} T \\
& =\omega_{T} .
\end{aligned}
$$

10.5 LEMMA Suppose that T is nondegenerate and $\Delta T=2 T-$ then

$$
\left[\Delta, \Gamma_{T}\right]=\Gamma_{T^{\prime}}
$$

thus the deviation of Γ_{T} vanishes.
PROOF For

$$
\begin{aligned}
\left.{ }^{l}\left[\Delta, \Gamma_{T}\right]\right]_{T} & =\left(L_{\Delta} \circ{ }^{l^{l} \Gamma_{T}}-{ }^{l} \Gamma_{T} \circ L_{\Delta}\right) \omega_{T} \\
& =L_{\Delta}\left(-d E_{T}\right)-{ }^{l} \Gamma_{T} \omega_{T} \quad \text { (cf. 10.4) } \\
& =-d \Delta E_{T}+d E_{T} \\
& =d\left(E_{T}-\Delta E_{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d(T-2 T) \\
& =-d E_{T} \\
& =l_{\Gamma_{T}} \omega_{T} \\
\Rightarrow \quad\left[\Delta, \Gamma_{T}\right] & =\Gamma_{T} .
\end{aligned}
$$

Take $T=\frac{1}{2} g$. Given a chart $\left(U,\left\{x^{l}, \ldots, x^{n}\right\}\right.$) on M, let $\left\{\Gamma^{i} k \ell^{i}\right\}$ be the connection coefficients per the metric connection ∇ determined by g.
10.6 LEMMA Locally,

$$
\Gamma_{T}=v^{i} \frac{\partial}{\partial q^{i}}-\left(\left(\Gamma_{k \ell}^{i} \circ \pi_{M}\right) v^{k} v^{\ell}\right) \frac{\partial}{\partial v^{i}}
$$

[Note: The projection $\pi_{M}: T M \rightarrow M$ sets up a one-to-one correspondence between the (maximal) integral curves of Γ_{T} and the (maximal) geodesics of (M, g).]
10.7 REMARK The set $S O$ (TM) of second order vector fields on TM is an affine space whose translation group is the set of vertical vector fields in D^{l} (TM) (cf. 5.8) . Choose Γ_{T} as its origin -- then Γ_{T} determines a bijection

$$
S O(T M) \rightarrow V(T M),
$$

viz.

$$
\Gamma \rightarrow \Gamma-\Gamma_{T}
$$

Now consider

$$
L=T-V \circ \pi_{M}
$$

Then

$$
\begin{aligned}
E_{L} & =\Delta L-L \\
& =\Delta\left(T-V \circ \pi_{M}\right)-\left(T-V \circ \pi_{M}\right) \\
& =T+V \circ \pi_{M}
\end{aligned}
$$

[Note: Here

$$
\begin{aligned}
F L & =F\left(T-V \circ \pi_{M}\right) \\
& =F T-F\left(V \circ \pi_{M}\right) \\
& =F T \\
& =g^{b} \quad(c f .8 .4)
\end{aligned}
$$

Therefore FL is a diffeamorphism, hence 8.24 is applicable, and

$$
\left.H=\frac{1}{2} T \circ g^{\#}+V \circ \pi_{M^{*}}^{*}\right]
$$

10.8 IEMMA We have

$$
\Gamma_{\mathrm{L}}=\Gamma_{\mathrm{T}}-(\operatorname{grad} \mathrm{V})^{\mathrm{V}}
$$

[Note: Locally,

$$
\operatorname{grad} V=\left(g^{i j} \frac{\partial V}{\partial x^{j}}\right) \frac{\partial}{\partial x^{i}}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \left.\quad(g r a d V)^{V}=\left(\left(g^{i j} \frac{\partial V}{\partial x^{j}}\right) \circ \pi_{M}\right) \frac{\partial}{\partial v^{i}} \cdot\right]
\end{aligned}
$$

10.9 REMARK Suppose that $\mathrm{X} \in \mathcal{D}^{1}(\mathrm{M})$ is an infinitesimal isometry of g such that $\mathrm{XV}=0-$ then $\mathrm{X}^{\top} \mathrm{L}=0$ (cf. 8.4), thus X is an infinitesimal symmetry of L and so $X_{L} V_{\text {is }}$ a first integral for Γ_{L} (cf. 9.8). Explicated,

$$
X^{V} L: T M \rightarrow \underline{R}
$$

is the function $g(X, \ldots)$. Locally,

$$
\begin{aligned}
X_{L} & =x^{i} \circ \pi_{M} \frac{\partial}{\partial v^{i}} \frac{1}{2}\left(\left(g_{k \ell} \circ \pi_{M}\right) v^{k} v^{\ell}\right) \\
& =x^{i} \circ \pi_{M} \frac{1}{2}\left(\left(g_{k \ell} \circ \pi_{M}\right) \frac{\partial v^{k}}{\partial v^{i}} v^{\ell}+\left(g_{k \ell} \circ \pi_{M}\right) v^{k} \frac{\partial v^{\ell}}{\partial v^{i}}\right) \\
& =x^{i} \circ \pi_{M} \frac{1}{2}\left(\left(g_{i \ell} \circ \pi_{M}\right) v^{\ell}+\left(g_{k i} \circ \pi_{M}\right) v^{k}\right) \\
& =x^{i} \circ \pi_{M} \frac{1}{2}\left(\left(g_{i j} \circ \pi_{M}\right) v^{j}+\left(g_{j i} \circ \pi_{M}\right) v^{j}\right) \\
& =x^{i} \circ \pi_{M}\left(g_{i j} \circ \pi_{M}\right) v^{j} .
\end{aligned}
$$

[Note: For a case in point, consider 9.9.]
10.10 LEMMA Suppose that $\Gamma \in D^{l}(T M)$ is second order. Define $\Pi_{\Gamma} \in \Lambda^{1}{ }^{1} T M$ by

$$
\Pi_{\Gamma}={ }^{l} \Gamma^{\omega}{ }_{T}+d T
$$

Then Π_{Γ} is horizontal.
PROOF Bearing in mind 6.14 (and the fact that θ_{T} is horizontal), take $\mathrm{x} \in \mathcal{D}^{1}(\mathrm{TM})$ vertical and write

$$
\begin{aligned}
& { }^{\imath}{ }_{\Gamma} \mu_{T}(X)={ }^{1}{ }_{\Gamma} d \theta_{T}(X) \\
& =\left(L_{\Gamma}-\mathrm{d} \circ{ }^{1} \Gamma\right) \theta_{\mathrm{T}}(\mathrm{X}) \\
& =\left(L_{\Gamma} \theta_{T}\right)(X)-d_{l_{\Gamma}} \theta_{T}(X) \\
& =\Gamma \theta_{T}(X)-\theta_{T}([\Gamma, X])-\alpha \Delta T(X) \text { (cf. 8.13) } \\
& =\Gamma 0-d_{S} T([\Gamma, X])-d \Delta T(X) \\
& =-\mathrm{dT}(\mathrm{~S}[\mathrm{r}, \mathrm{X}])-2 \mathrm{dT}(\mathrm{X}) \\
& =-\mathrm{dT}(-\mathrm{X})-2 \mathrm{dT}(\mathrm{X}) \quad \text { (cf. 5.15) } \\
& =-d T(X) \text {. }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\Pi_{\Gamma}(X) & ={ }_{\Gamma}{ }_{\Gamma} \omega_{T}(X)+d T(X) \\
& =-d T(X)+d T(X) \\
& =0 .
\end{aligned}
$$

[Note: Locally,

$$
\Gamma=v^{i} \frac{\partial}{\partial q^{i}}+c^{i} \frac{\partial}{\partial v^{i}}
$$

so locally,

$$
\left.\Pi_{\Gamma}=\left(g_{i j} \circ \pi_{M}\right)\left(C^{j}+\left(\Gamma_{k \ell}^{j} \circ \pi_{M}\right) v^{k} v^{\ell}\right) d q^{i} .\right]
$$

N.B. This result implies that one can attach to each second order Γ a nondegenerate mechanical system

$$
M_{\Gamma}=\left(M, T, \Pi_{\Gamma}\right) .
$$

And, of course,

$$
\Gamma_{M^{\prime}}=\Gamma .
$$

If Γ_{1}, Γ_{2} are second order and if $\Pi_{\Gamma_{1}}=\Pi_{\Gamma_{2}}$, then

$$
{ }^{{ }^{\imath} \Gamma_{1}} \omega_{T}={ }^{\imath} \Gamma_{2} \omega_{T}
$$

so $\Gamma_{1}=\Gamma_{2}$.
On the other hand, if $\alpha \in h \Lambda^{1}{ }^{1} M$, then \exists a unique vertical X_{α} :

$$
{ }^{1} x_{\alpha}{ }^{\omega}{ }_{T}=\alpha \quad \text { (cf. 8.23) }
$$

Since Γ_{T} is second order (cf. 8.12) and

$$
{ }^{{ }^{2} \Gamma_{T}}{ }^{\omega}{ }_{T}=-d E_{T}=-d T,
$$

it follows that

$$
\begin{aligned}
& { }^{{ }^{l} X_{\alpha}}+\Gamma_{T}{ }^{\omega} T+d T \\
& \quad={ }^{\imath} X_{\alpha} \omega_{T}+{ }^{\prime} \Gamma_{T} \omega_{T}+d T \\
& \quad=\alpha-d T+d T=\alpha .
\end{aligned}
$$

10.11 SCHOLIUM The map

$$
\Gamma \rightarrow \mathbb{I}_{\Gamma}
$$

sets up a one-to-one correspondence between the set of second order vector fields on TM and the set of horizontal l-forms on TM.

Let $\gamma: I \rightarrow$ TM be a trajectory of Γ. Fix $t_{1}<t_{2}$ in $I-$ then the work done by the force field Π_{Γ} during the time interval $\left[t_{1}, t_{2}\right]$ is

$$
\int_{t_{1}}^{t_{2}} \gamma^{*} \Pi_{\Gamma}
$$

But

$$
\begin{aligned}
& \Pi_{\Gamma}=\imath_{\Gamma} \omega_{\Gamma}+d T \\
& \Rightarrow \quad \\
& \Pi_{\Gamma}(\Gamma)=d T(\Gamma) .
\end{aligned}
$$

Therefore

$$
\int_{t_{1}}^{t_{2}} \gamma^{\star} \Pi_{\Gamma}=T \left\lvert\, \begin{aligned}
& \gamma\left(t_{2}\right) \\
& \gamma\left(t_{1}\right)
\end{aligned} .\right.
$$

10.12 REMARK If $\Pi_{\Gamma}=-d\left(V_{\Gamma} \circ \pi_{M}\right)$ for some $V_{\Gamma} \in C^{\infty}(M)$, then

$$
\int_{t_{1}}^{t_{2}} \gamma^{*} \Pi_{\Gamma}=v_{\Gamma} \circ \pi_{M} \left\lvert\, \begin{aligned}
& \gamma\left(t_{2}\right) \\
& \gamma\left(t_{1}\right)
\end{aligned}\right.
$$

implying thereby that

$$
T\left(\gamma\left(t_{1}\right)\right)+V_{\Gamma} \circ \pi_{M}\left(\gamma\left(t_{1}\right)\right)=T\left(\gamma\left(t_{2}\right)\right)+V_{\Gamma} \circ \pi_{M}\left(\gamma\left(t_{2}\right)\right)
$$

Put

$$
L_{\Gamma}=T-V_{\Gamma} \circ \pi_{M}
$$

Then

$$
\mathrm{E}_{L_{\Gamma}}=\mathrm{T}+\mathrm{V}_{\Gamma} \circ \pi_{M}
$$

and, being constant along γ, is a first integral for Γ ($c f .1 .1$), which, in the present setting, is another way of looking at $8.10\left(\Gamma_{L_{T}}=\Gamma\right)$.

§11. FIBERED MANIFOLDS

Let M be a connected C^{∞} manifold of dimension $n-$ then a fibration is a surjective submersion $\pi: E \rightarrow M$ and the triple (E, M, π) is called a fibered manifold. E.g.: Vector bundles over M are fibered manifolds.
N.B. A fibration $\pi: E \rightarrow M$ is necessarily an open map, thus is quotient (being surjective).

If

$$
\left\lvert\, \begin{aligned}
& \pi: E \rightarrow M \\
& -\quad \pi^{\prime}: E^{\prime} \rightarrow M^{\prime}
\end{aligned}\right.
$$

are fibrations, then a morphism

$$
(F, f):(E, M, \pi) \rightarrow\left(E^{\prime}, M^{\prime}, \pi^{\prime}\right)
$$

is a pair of C^{∞} functions

$$
\left[\begin{array}{l}
F: E \rightarrow E^{\prime} \\
f: M \rightarrow M^{\prime}
\end{array}\right.
$$

such that $\pi^{\prime} \circ F=f \circ \pi$.
[Note: Accordingly, $\forall x \in M$,

$$
\left.F\left(\pi^{-1}(x)\right) \subset\left(\pi^{\prime}\right)^{-1}(f(x)) .\right]
$$

A morphism

$$
(F, f):(E, M, \pi) \rightarrow\left(E^{\prime}, M^{\prime}, \pi^{\prime}\right)
$$

is an isomorphism if \exists a morphism

$$
\left(F^{\prime}, f^{\prime}\right):\left(E^{\prime}, M^{\prime}, \pi^{\prime}\right) \rightarrow(E, M, \pi)
$$

such that

$$
\left[\begin{array}{l}
F^{\prime} \circ F=i d_{E} \\
f^{\prime} \circ f=i d_{M} .
\end{array}\right.
$$

One then says that (E, M, π) and ($E^{\prime}, M^{\prime}, \pi^{\prime}$) are isomorphic.
11.1 LEMMA If $\Phi: N \rightarrow M$ is a surjective C^{∞} map of constant rank, then Φ is a submersion, hence is a fibration.

Suppose that $\pi: E \rightarrow M$ is a fibration - then the rank of π is constant, viz.

$$
\mathrm{rk} \pi=\operatorname{dim} \mathrm{M}
$$

So, $\forall x \in M$, the fiber $E_{x}=\pi^{-1}(x)$ is a closed submanifold of E with $\operatorname{dim} E_{X}=\operatorname{dim} E-\operatorname{dim} M$.
[Note: In general, E_{X} is not connected.]
11.2 EXAMPLE Take $E=\underline{R}^{2}-\{(0,0)\}, M=\underline{R}, \pi=\operatorname{pr}_{I}$ - then π is a fibration. Here, $\pi^{-1}(x) \quad(x \neq 0)$ is connected but $\pi^{-1}(0)$ is not connected.
11.3 LEMMA Suppose that $\pi: E \rightarrow M$ is a surjective C^{∞} map - then π is a fibration iff every point of E is in the image of a local section of π.
11.4 REMARK The set of sections of a fibration π may be empty. For example, consider

$$
\left(T \underline{S}^{2} \backslash\{0\}, \underline{S}^{2}, \underline{S}^{2} \mid T \underline{S}^{2} \backslash\{0\}\right)
$$

and recall that \underline{S}^{2} does not admit a never vanishing vector field.
11.5 LEMMA If (E, M, π) is a fibered manifold and if $\Phi: N \rightarrow M$ is a C^{∞} map, then there is a pullback square

and ($N{ }_{M} E, N, \mathrm{pr}_{1}$) is a fibered manifold.
PROOF It is clear that pr_{1} is surjective. To see that it is a submersion, fix $\left(y_{0}, p_{0}\right) \in N{ }_{M} E$ and choose a local section $\sigma: U \rightarrow E$ such that $p_{0} \in \sigma(U)$ (cf. 11.3) -- then $\Phi\left(y_{0}\right)=\pi\left(p_{0}\right) \in U$. Define $\tau: \Phi^{-1}(U) \rightarrow N{ }_{M} E$ by $\tau(y)=(Y, \sigma(\Phi(y)))$ to get a local section of pr_{1} passing through ($\mathrm{y}_{0}, \mathrm{p}_{0}$). Therefore pr_{1} is a fibration (cf. 11.3).

Suppose that $\pi: E \rightarrow M$ is a fibration - then the kernel of

$$
\mathrm{T} \pi: \mathrm{TE} \rightarrow \mathrm{TM}
$$

is called the vertical tangent bundle of E, denoted VE. What was said at the beginning of 85 for the special case when E was assumed to be a vector bundle is applicable in general, thus there is an exact sequence

$$
0 \rightarrow \mathrm{VE} \rightarrow \mathrm{TE} \rightarrow \mathrm{E} \times_{\mathrm{M}} \mathrm{TM} \rightarrow 0 \quad \text { (cf. 5.2) }
$$

of vector bundles over E .
11.6 EXAMPLE Consider $T^{2} M$, the submanifold of TTM consisting of those points whose images under $\pi_{T M}$ and $T \pi_{M}$ are one and the same or still, the fixed points of the canonical involution $S_{T M}: T T M \rightarrow T T M$. Note that

$$
\operatorname{dim} T^{2} M=3 n
$$

- Let

$$
\pi^{21}=\left.\pi{ }_{T M}\right|^{2} \mathrm{M}
$$

Then $\pi^{2 l}$ is a fibration, thus the triple $\left(T^{2} \mathrm{M}, \mathrm{TM}, \pi^{21}\right.$) is a fibered manifold.

- Let

$$
\pi^{1}=\pi_{M} \circ \pi^{2 I}
$$

Then π^{1} is a fibration, thus the triple $\left(T^{2} M, M, \pi^{l}\right)$ is a fibered manifold. This data then gives rise to exact sequences

$$
\left[\begin{array}{l}
0 \rightarrow \mathrm{~V}^{21} \mathrm{~T}^{2} \mathrm{M} \xrightarrow{\mu_{21}} \mathrm{TT}^{2} \mathrm{M} \xrightarrow{{ }^{\nu_{21}}} \mathrm{~T}^{2} \mathrm{M} \times \mathrm{TM} \mathrm{TTM} \rightarrow 0 \\
0 \rightarrow \mathrm{~V}^{1} \mathrm{~T}^{2} \mathrm{M} \xrightarrow{\mu_{1}} \mathrm{TT}^{2} \mathrm{M} \xrightarrow{\nu_{1}} \mathrm{~T}^{2} \mathrm{M} \times_{M} \mathrm{TM} \rightarrow 0
\end{array}\right.
$$

5.

Moreover, there are canonical isomorphisms
of vector bundles over $T^{2} \mathrm{M}$. Now put

$$
\left[\begin{array}{c}
s^{21}=\mu_{1} \circ i_{1} \circ v_{21} \\
s^{1}=\mu_{21} \circ i_{21} \circ v_{1}
\end{array}\right.
$$

Then

$$
\left[\begin{array}{l}
\text { Ker } S^{21}=V^{21} T^{2} M=\operatorname{Im} S^{1} \\
\quad \text { Ker } S^{1}=V^{1} T^{2} M=\operatorname{Im} S^{21}
\end{array}\right.
$$

and

$$
\left(S^{21}\right)^{3}=0
$$

[Note: $T^{2} M$ is the acceleration phase space. Local coordinates in $T^{2} M$ are

$$
\left.\left(q^{i}, v^{i}, a^{i}\right) \quad(i=1, \ldots, n) .\right]
$$

Let (E, M, π) be a fibered manifold -- then a trivialization of (E, M, π) is a pair (F, t), where $t: E \rightarrow M \times F$ is a diffeomorphism such that

$$
\mathrm{pr}_{1} \circ \mathrm{t}=\pi
$$

Schematically:

$$
\begin{gathered}
E \xrightarrow{t} M \times F \\
\pi \downarrow \\
M=M .
\end{gathered}
$$

[Note: The triple ($\mathrm{M} \times \mathrm{F}, \mathrm{M}, \mathrm{pr}_{1}$) is a fibered manifold and

$$
\left(\mathrm{t}, \mathrm{id} \mathrm{M}_{\mathrm{M}}\right):(\mathrm{E}, \mathrm{M}, \pi) \rightarrow\left(\mathrm{M} \times \mathrm{F}, \mathrm{M}, \mathrm{pr}_{1}\right)
$$

is an isomorphism.
N.B. A fibered manifold (E, M, π) is said to be trivial if it admits a trivialization.

Let (E, M, π) be a fibered manifold - then (E, M, π) is said to be locally trivial if $\forall x \in M, \exists$ a triple $\left(U_{x}, F_{x}, t_{X}\right)$, where U_{x} is a neighborhood of x and $t_{X}: \pi^{-1}\left(U_{x}\right) \rightarrow U_{x} \times F_{x}$ is a diffeomorphism such that

$$
\mathrm{pr}_{1} \circ t_{\mathrm{x}}=\pi \mid \pi^{-1}\left(\mathrm{U}_{\mathrm{x}}\right)
$$

E.g.: Vector bundles over M are locally trivial fibered manifolds.
11.7 IEMMA If (E, M, π) is a locally trivial fibered manifold, then $\exists \mathrm{F}$: \forall local trivialization ($\mathrm{U}_{\mathrm{x}}, \mathrm{F}_{\mathrm{x}}, \mathrm{t}_{\mathrm{x}}$) $(\mathrm{x} \in \mathrm{M}), \mathrm{F}_{\mathrm{x}}$ and F are diffeomorphic.
N.B. In general, therefore, a fibered manifold is not locally trivial (cf. ll.2).
11.8 LENMA If (E, M, π) is a fibered manifold and if π is proper, then ($\mathrm{E}, \mathrm{M}, \pi$) is locally trivial.
11.9 EXAMPLE The Hopf map $\underline{S}^{3} \rightarrow \underline{S}^{2}$ is the restriction to \underline{S}^{3} of the arrow $\underline{R}^{4} \rightarrow \underline{R}^{3}$ defined by the rule that sends $\left(x^{1}, x^{2}, x^{3}, x^{4}\right)$ to

$$
\left(\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}-\left(x^{4}\right)^{2}, 2\left(x^{1} x^{4}+x^{2} x^{3}\right), 2\left(x^{2} x^{4}-x^{1} x^{3}\right)\right)
$$

It is a proper fibration, hence is locally trivial (cf. 11.8).

§12. AFFINE BUNDLES

Let M be a connected C^{∞} manifold of dimension $n, \pi: E \rightarrow M$ a vector bundle -then an affine bundle modeled on (E, M, π) is a pair ($(A, M, \rho), r)$, where $\rho: A \rightarrow M$ is a fibration and $r: A \times_{M} E \rightarrow A$ is a morphism of fibered manifolds over $i d_{M}$ such that $\forall x \in M$,

$$
r_{x}: A_{x} \times E_{x} \rightarrow A_{x}
$$

is a free and transitive action of the additive group of E_{x} on the set A_{x} (thus A_{x} is an affine space modelled on E_{x}.
[Note: The triple ($A{ }_{M} E, A, \mathrm{pr}_{1}$) is a fibered manifold (cf. 11.3), hence so is ($A \times_{M} E, M, \rho \circ \mathrm{pr}_{1}$) and the requirement is that the diagram

$$
\begin{aligned}
& A \times_{M} \mathrm{E} \xrightarrow{r} A \\
& \mathrm{pr}_{1} \downarrow \quad \rho \\
& A \longrightarrow M \\
& \rho
\end{aligned}
$$

commute, i.e., that the diagram

commute.]
12.1 LEMMA The fibered manifold ($\mathrm{A}, \mathrm{M}, \mathrm{\rho}$) is locally trivial.

PROOF Bearing in mind that (E, M, π) is locally trivial, fix $x \in M$ and choose ($\mathrm{U}_{\mathrm{x}}, \mathrm{F}_{\mathrm{x}}, \mathrm{t}_{\mathrm{x}}$) accordingly. Without loss of generality, it can be assumed that U_{x} is the domain of a local section σ of A (cf. 11.3). Let $a \in p^{-1}\left(U_{x}\right)$-- then there exists a unique element $\phi(a) \in \pi^{-1}(\rho(a))$:

$$
a=\sigma(\rho(a))+\phi(a) .
$$

The correspondence

$$
\left.\right|_{-\quad \rho^{-1}\left(U_{x}\right)} \rightarrow \pi^{-1}\left(U_{x}\right)
$$

is a diffeomorphism which can then be postcomposed with t_{x}.
N.B. Every vector bundle (E, M, π) "is" an affine bundle ($(E, M, \pi),+$),

$$
+: E \times_{M} E \rightarrow E
$$

being addition in the fibers of π.
12.2 EXAMPLE Consider the fibered manifold ($T^{2} \mathrm{M}, \mathrm{TM}, \pi^{21}$) (CF. 11.6) -- then the fibers of π^{21} are not vector spaces but they are affine spaces. To make this precise, introduce the vector bundle

$$
\pi_{\mathrm{V}}: \mathrm{VIM} \rightarrow \mathrm{TM} \quad\left(\pi_{\mathrm{V}}=\pi_{\mathrm{TM}} \mid \mathrm{VIM}\right) .
$$

Take an $x \in T M$ and let

$$
\left[\begin{array}{l}
a \in\left(\pi^{21}\right)^{-1}(x) \\
v \in\left(\pi_{V}\right)^{-1}(x) .
\end{array}\right.
$$

Then

$$
a+v \in\left(\pi^{21}\right)^{-1}(x)
$$

and the action

$$
\left(r_{V}\right)_{x}:\left(\pi^{21}\right)^{-1}(x) \times(\pi)^{-1}(x) \rightarrow\left(\pi^{2 l}\right)^{-1}(x)
$$

is free and transitive. Since this can be globalized, it follows that

$$
\left(\left(\mathrm{T}^{2} \mathrm{M}, \mathrm{TM}, \pi^{21}\right), \mathrm{r}_{\mathrm{V}}\right)
$$

is an affine bundle modelled on

$$
\left(\mathrm{VIM}, \mathrm{TM}, \pi_{\mathrm{V}}\right)
$$

Let $\Gamma(\rho)$ stand for the set of sections of (A, M, ρ). E.g.: $\Gamma\left(\pi^{2 l}\right)=S O(T M)$ (cf. 5.8).
12.3 LEMMA Each $s \in \Gamma(\rho)$ determines an isomorphism $\phi_{S}: A \rightarrow E$ of fibered manifolds over id_{M} :

PROOF Given $a \in A_{x}$, there exists a unique $\phi_{S}(a) \in E_{x}$:

$$
a=s(x)+\phi_{s}(a) \quad(x \in M)
$$

12.4 REMARK $\Gamma(\rho)$ is not empty. This is because: (1) The fibers of ρ are contractible and (2) M is a polyhedron, hence is a CW complex.

Affine bundles are the natural setting for the study of fiber derivatives (the considerations in $\S 7$ constitute a special case).

Suppose that

$$
\left.\left.\left.\right|_{-} ^{-}\left(\left(A^{\prime}, M, \rho\right), r\right), \rho^{\prime}\right), r^{\prime}\right)
$$

are affine bundles modelled on vector bundles
respectively. Let

$$
\zeta: A \rightarrow A^{\prime}
$$

be a morphism of fibered manifolds over $i d_{M}$-- then $T \zeta$ restricts to a morphism

$$
\mathrm{V}: \mathrm{VA} \rightarrow \mathrm{VA}^{\prime}
$$

of vector bundles over M and there is a factorization

Here

$$
\mathrm{v}_{\zeta} \in \operatorname{Hom}_{\mathrm{A}}\left(\mathrm{VA}, \mathrm{~A} \times_{A}, \mathrm{VA}^{\prime}\right),
$$

thus determines an element

$$
s_{v_{\zeta}} \in \sec \operatorname{Hom}_{A}\left(V A, A X_{A}, V A^{\prime}\right)
$$

But

- $A{ }_{M} E^{\prime} \approx A \times_{A^{\prime}}\left(A^{\prime} \times_{M} E^{\prime}\right)$.

So we have a diagram

from which an arrow

$$
\mathrm{A} \times_{M} \mathrm{E} \xrightarrow{\mathrm{~d}_{\zeta}} A \times_{M} \mathrm{E}^{\prime}
$$

that, being a morphism of vector bundles over A, gives rise in turn to an element

$$
s_{d_{\zeta}} \in \sec \operatorname{Hom}_{A}\left(A \times_{M} E, A \times_{M} E^{\prime}\right) .
$$

And by construction,

$$
\operatorname{Hom}_{A}\left(V A, A \times_{A}, V A^{\prime}\right) \approx \operatorname{Hom}_{A}\left(A \times_{M} E, A \times_{M} E^{\prime}\right)
$$

Now identify

$$
\operatorname{Hom}_{A}\left(A \times{ }_{M} E, A \times{ }_{M} E^{\prime}\right)
$$

with

$$
A \times_{M} \operatorname{Hom}_{M}\left(E, E^{\prime}\right)
$$

Then the arrow

$$
\begin{aligned}
& A \xrightarrow{s_{d_{\zeta}}} \operatorname{Hom}_{A}\left(A \times_{M} E, A \times_{M} E^{\prime}\right) \\
& \approx A \times_{M} \operatorname{Hom}_{M}\left(E, E^{\prime}\right) \xrightarrow{\text { pr }} \quad \operatorname{Hom}_{M}\left(E, E^{\prime}\right)
\end{aligned}
$$

is a morphism of fibered manifolds over id $_{M^{\prime}}$ denote it by $\mathrm{F} \zeta$:

Definition: $F \zeta$ is the fiber derivative of ζ.
[Note: Canonically,

$$
\operatorname{Hom}_{M}\left(E, E^{\prime}\right) \approx E^{*} \otimes_{M} E^{\prime}
$$

or still, omitting M,

$$
\left.\operatorname{Hom}\left(E, E^{\prime}\right) \approx E^{*} \otimes E^{\prime} .\right]
$$

N.B. $\forall x \in M$,

$$
\zeta_{x}: A_{x} \rightarrow A_{x}^{\prime} .
$$

Since A_{x} and A_{x}^{\prime} are affine spaces, the derivative of ζ_{x} at a point $a_{x} \in A_{x}$ is a linear map $D \zeta_{x}\left(a_{x}\right): E_{x} \rightarrow E_{x}^{\prime}$. And, in fact,

$$
D \zeta_{x}\left(a_{x}\right)=F \zeta\left(a_{x}\right)
$$

12.5 REMARK Since

$$
F \zeta: A \rightarrow \operatorname{Hom}\left(E_{r} E^{\prime}\right)
$$

is a morphism of fibered manifolds over id $M_{M^{\prime}}$ it makes sense to iterate the procedure and form F^{k}. E.g.: Take $\mathrm{k}=2$ - then

$$
F^{2} \zeta: A \rightarrow \operatorname{Hom}\left(E, \operatorname{Hom}\left(E, E^{\prime}\right)\right)
$$

```
# Hom(E\otimesE,E')
\approx E* \otimes E* \otimes E',
```

the fiber hessian of ζ.

Let $f \in C^{\infty}(A)$-- then f can be viewed as a morphism

$$
A \rightarrow M \times \underline{R}
$$

of fibered manifolds over $i d_{M}$ and

$$
F f: A \rightarrow \operatorname{Hom}(E, M \times \underline{R})=E^{\star} .
$$

12.6 EXAMPLE Take $\mathrm{A}=\mathrm{TM}, \mathrm{E}=\mathrm{TM}$, thus $\mathrm{E}^{*}=\mathrm{T} * \mathrm{M}$ and

$$
\mathrm{Ff}: T \mathrm{M} \rightarrow \mathrm{~T}^{*} \mathrm{M}
$$

is the fiber derivative of f per $\S 7$.

In the above, let $\zeta=F f$ (and $A^{\prime}=E^{\prime}=E^{*}$) - then

$$
V A \approx A \times_{M} E \xrightarrow{d_{\mathrm{Ff}}} A \times_{M} \mathrm{E}^{*} .
$$

But

- $\left\lvert\, \begin{aligned} & -\quad(\mathrm{VA}) * \approx A \times_{M} \mathrm{E}^{*} \\ & -\quad \mathrm{VE} * \mathrm{E}^{*} \times_{\mathrm{M}} \mathrm{E}^{*}\end{aligned}\right.$
$\bullet A \times_{M} E^{*} \approx A \times{ }_{E^{*}}\left(\mathrm{E}^{*} \times_{M} \mathrm{E}^{*}\right)$.

Therefore

$$
\begin{array}{rl}
(\mathrm{VA}) * & \approx A \times_{\mathrm{M}} \mathrm{E}^{*} \\
& \approx \mathrm{~A} \times_{\mathrm{E}^{*}}\left(\mathrm{E}^{*} \times_{M} \mathrm{E}^{*}\right) \\
& \approx \mathrm{A} \times \mathrm{EE}^{*} \\
\mathrm{pr}_{2} & \mathrm{VE} .
\end{array}
$$

Call the resulting arrow

$$
(\mathrm{VA}) * \rightarrow V E^{*}
$$

$\mathrm{b}_{\mathrm{Ff}}-$ then b_{Ff} is an isomorphism on fibers (this being the case of pr_{2}). On the other hand, there is a morphism

$$
\text { WFf:VA } \rightarrow(\mathrm{VA}) *
$$

of vector bundles over A and from the definitions,

$$
\mathrm{VFf}=\mathrm{b}_{\mathrm{Ff}} \circ \mathrm{WFf}
$$

Schematically:

12.7 REMARK The fiber hessian $\mathrm{F}^{2} \mathrm{f}$ is an arrow

$$
A \rightarrow \operatorname{Hom}\left(E, E^{\star}\right) .
$$

As such, it determines an arrow

$$
A \times_{M} E \rightarrow A \times_{M} E^{*}
$$

that, in fact, is precisely d_{Ff}.
[Note: Explicated, WFf is the composition

$$
\left.\mathrm{VA} \approx A \times_{M} E \xrightarrow{\mathrm{~d}_{\mathrm{Ff}}} A \times_{M} \mathrm{E}^{*} \approx(\mathrm{VA}) * .\right]
$$

Consider now

$$
\text { TFf:TA } \rightarrow \text { TE*. }
$$

Taking into account the commutative diagram

we see that
Ker $\mathrm{TF} f \subset \operatorname{Ker} \mathrm{~T} \rho=\mathrm{VA}$.
So
Ker TFf $=$ Ker VFf
or still,
Ker TFf = Ker WFf.
12.8 LEMMA Ff is a local diffeomorphism iff WFf is an isomorphism.
12.9 EXAMPLE Let $L \in C^{\infty}$ (TM) be a lagrangian -- then

$$
\text { FL:TM } \rightarrow T * M
$$

while

$$
\mathrm{F}^{2} \mathrm{~L}: T \mathrm{M} \rightarrow \operatorname{Hom}(\mathrm{TM}, \mathrm{~T} * \mathrm{M}) .
$$

And, in view of 12.8, L is nondegenerate iff WFL is an isomorphism (cf. 8.2 and 8.5).
12.10 EXAMPLE Let $L \in C^{\infty}$ (TM) be a lagrangian. Consider its energy $\mathrm{E}_{\mathrm{L}}=$ $\Delta \mathrm{L}$ - L -- then

$$
\mathrm{FE}_{\mathrm{L}}: \mathrm{TM} \rightarrow \mathrm{~T} * \mathrm{M}
$$

and we have

$$
\mathrm{FE}_{\mathrm{L}}(\mathrm{x}, \mathrm{X})=\mathrm{F}^{2} \mathrm{~L}\left(\mathrm{x}, \mathrm{X}_{\mathrm{x}}\right)\left(\mathrm{x}, \mathrm{X}_{\mathrm{x}}\right) \quad\left(\mathrm{X}_{\mathrm{x}} \in \mathrm{~T}_{\mathrm{X}} \mathrm{M}\right) .
$$

[Note: $\mathrm{F}^{2} \mathrm{~L}$ sends

$$
T_{X} M \text { to } \operatorname{Hom}\left(T_{X} M_{X}, T_{X}^{*} M\right),
$$

so

$$
F^{2} L\left(x, X_{x}\right): T_{x}^{M} \rightarrow T_{X}^{\star} M
$$

We shall terminate this section with a definition that could have been made at the beginning. Thus let

$$
\zeta: A \rightarrow A^{\prime}
$$

be a morphism of fibered manifolds over $i d_{M}-$ then ζ is said to be an affine bundle morphism if \exists a vector bundle morphism

$$
\bar{\zeta}: E \rightarrow E^{\prime}
$$

such that $\forall x \in M \& \forall a_{x} \in A_{x^{\prime}} \forall e_{x} \in E_{x^{\prime}}$

$$
\zeta_{x}\left(r_{x}\left(a_{x}, e_{x}\right)\right)=r_{x}^{\prime}\left(\zeta_{x}\left(a_{x}\right), \bar{\zeta}_{x}\left(e_{x}\right)\right)
$$

or still,

$$
\zeta_{x}\left(a_{x}+e_{x}\right)=\zeta_{x}\left(a_{x}\right)+\bar{\zeta}_{x}\left(e_{x}\right)
$$

[Note: One calls $\bar{\zeta}$ the linear part of ζ.

§13. STRUCTURAL FORMALITIES

Let M be a connected C^{∞} manifold of dimension $n, \pi: E \rightarrow M$ fibration. Let $\Phi: N \rightarrow M$ be a C^{∞} map - then a section of E along Φ is a C^{∞} map $\sigma: N \rightarrow E$ such that $\pi \circ \sigma=\Phi$.
13.1 EXAMPLE Suppose that

$$
\left.\right|_{-} ^{-}((A, M, \rho), r),
$$

are affine bundles modelled on vector bundles

$$
\left.\right|_{-\pi} \quad \pi: E \rightarrow M
$$

respectively. Let

$$
\zeta: A \rightarrow A^{\prime}
$$

be a morphism of fibered manifolds over $i d_{M}$-- then there is a conmutative diagram

which can be read as saying that $F \zeta$ is a section of $H o m(E, E ')$ along ρ.
13.2 LEMMA The set of sections of E along Φ can be identified with the
set of sections of the fibration $N \times_{M} E \xrightarrow{\mathrm{pr}_{1}} N$ (cf. 11.5).
PROOF Given σ, define

$$
\zeta \in \sec \left(\mathrm{N}_{\mathrm{M}_{\mathrm{M}}} \mathrm{E} \xrightarrow{\mathrm{pr} l^{\prime}} \mathrm{N}\right)
$$

by

$$
\zeta(\mathrm{y})=(\mathrm{y}, \sigma(\mathrm{y}))
$$

and vice-versa.
13.3 EXAMPLE Take $E=T M, N=T M, \Phi=\pi_{M}$ and consider

Then

$$
\sec \left(\mathrm{TM} \times \mathrm{M} T \mathrm{M} \xrightarrow{\mathrm{pr}_{1}} \mathrm{TM}\right)
$$

is in a one-to-one correspondence with the set of fiber preserving C^{∞} functions $T M \rightarrow T M$. On the other hand (cf. §5), there is an exact sequence

$$
0 \rightarrow \mathrm{TM} \times_{M} \operatorname{TM} \xrightarrow{\mu} \mathrm{TTM} \stackrel{\cup}{\longrightarrow} \mathrm{TM} \times_{M} \mathrm{TM} \rightarrow 0
$$

and the identification

$$
\sec \left(\mathrm{TM} \times{ }_{M} \mathrm{TM} \xrightarrow{\mathrm{pr}}{ }_{1} \mathrm{TM}\right) \longleftrightarrow V(\mathrm{TM})
$$

is implemented by sending a section ζ to $\mu \circ \zeta$:

$$
\mathrm{TM} \stackrel{\zeta}{\rightarrow} \mathrm{TM} \times \mathrm{M} \text { TM } \xrightarrow{\mu} T \mathrm{TM} .
$$

Here

$$
\left\lvert\, \begin{aligned}
& \pi_{T M} \circ \mu \circ \zeta=\mathrm{pr}_{1} \circ \zeta=i d_{\mathrm{TM}} \\
& \mathrm{~T} \pi_{M} \circ \mu \circ \zeta=\mathrm{pr}_{2} \circ \nu \circ \mu \circ \zeta=0 .
\end{aligned}\right.
$$

In particular: If ζ corresponds to $\mathrm{id}_{\mathrm{TM}}: T M \rightarrow T M$, then

$$
\mu \circ \zeta=\Delta .
$$

[Note: The zero map TM \rightarrow TM sends $\left(x, X_{x}\right)$ to ($x, 0$). And, spelled out, $\mathrm{pr}_{2} \circ \vee \circ \mu \circ \zeta$ is the composition

$$
\left.\left(x, x_{x}\right) \xrightarrow{\zeta}\left(\left(x, x_{x}\right),\left(x, y_{x}\right)\right) \xrightarrow{\nu \circ \mu}((x, 0),(x, 0)) \xrightarrow{\mathrm{pr}_{2}}(x, 0) .\right]
$$

13.4 EXAMPLE Consider the pullback square

and the canonical injection
4.

Given

$$
\zeta \in \sec \left(E \times_{M} T^{*} M \xrightarrow{\mathrm{pr}_{1}} E\right)
$$

put

$$
\alpha_{\zeta}=i^{*} \circ \zeta
$$

Then

$$
\begin{aligned}
\pi_{E}^{\star} \circ \alpha_{\zeta} & =\pi_{E}^{\star} \circ i^{*} \circ \zeta \\
& =p r_{1} \circ \zeta \\
& =i \alpha_{E} .
\end{aligned}
$$

I.e.: $\alpha_{\zeta} \in \Lambda^{l}$ E. Moreover, α_{ζ} annihilates the sections of VE. In general, any $\alpha \in \Lambda^{l} E$ with this property is termed horizontal (cf. 6.14). The upshot, therefore, is that the horizontal l-forms on E can be identified with the sections of $E \times{ }_{M} T * M \xrightarrow{\mathrm{pr}_{1}} E$ or still, with the fiber preserving C^{∞} functions $E \rightarrow T * M$ (cf. 13.2). Specialize and take $E=T * M$-- then the horizontal l-form on $T * M$ associated with $i d_{T}{ }^{*}: T^{*} M \rightarrow T^{*} M$ is θ (the fundamental l-form on $T^{*} M$).

A vector field along Φ is a section of $T M$ along Φ, i.e., is a $C^{\infty} \operatorname{map} X: N \rightarrow T M$

5.

such that $\pi_{M} \circ X=\Phi$. Write $D^{l}(M ; N ; \Phi)$ for the set of such (thus $D^{l}(M)=$ $\left.D^{l}\left(M ; M ; i d_{M}\right)\right)-$ then $D^{l}(M ; N ; \Phi)$ is a module over $C^{\infty}(\mathbb{N})$.
13.5 LEMMA If $X: M \rightarrow$ TM is a vector field on M, then

$$
X \circ \Phi \in D^{I}(M ; N ; \Phi)
$$

PROOF In fact,

$$
\pi_{M} \circ X \circ \Phi=i d_{M} \circ \Phi=\Phi
$$

13.6 LEMMA If $Y: N \rightarrow T N$ is a vector field on N, then

$$
T \Phi \circ Y \in \mathcal{D}^{1}(M ; \mathbb{N} ; \Phi)
$$

PROOF There is a commutative diagram

so

$$
\begin{aligned}
\pi_{M} \circ T \Phi & \circ Y \\
& =\Phi \circ \pi_{N} \circ \mathrm{Y}=\Phi \circ \mathrm{id}_{\mathrm{N}}=\Phi .
\end{aligned}
$$

Each $\mathrm{X} \in \mathcal{D}^{1}(\mathrm{M} ; \mathrm{N} ; \Phi)$ determines an arrow

$$
D_{X}: C^{\infty}(M) \rightarrow C^{\infty}(N)
$$

via the prescription

$$
\left.D_{X} f\right|_{Y}=d f_{\Phi(y)}(X(y)) \quad(y \in N)
$$

with the property that

$$
D_{X}\left(f_{1} f_{2}\right)=\left(f_{1} \circ \Phi\right) D_{X} f_{2}+\left(f_{2} \circ \Phi\right) D_{X} f_{1}
$$

E.g.: Take $N=T M$ and let $\Phi=\pi_{M}$ - then

$$
D^{1}\left(M ; T M ; \pi_{M}\right)
$$

is simply the set of fiber preserving C^{∞} functions $T M \rightarrow T M$. In particular:

$$
i d_{T M} \in D^{I}\left(M ; T M ; \pi_{M}\right)
$$

And in this case the associated arrow

$$
\mathrm{D}_{\mathrm{id}}^{\mathrm{TM}}: \mathrm{C}^{\infty}(\mathrm{M}) \rightarrow \mathrm{C}^{\infty}(\mathrm{TM})
$$

sends f to $\hat{d f}$ (cf. 8.19). Agreeing to write f^{\top} in place of $\hat{d f}, \forall X \in D^{1}(M)$,

$$
X^{\top} f^{\top}=(X f)^{\top} .
$$

N.B. Put $D^{\top}=D_{i d_{T M}}$ - then locally,

$$
D^{\top} f=v^{i}\left(\frac{\partial}{\partial q^{i}}\left(f \circ \pi_{M}\right)\right) \quad\left(f \in C^{\infty}(M)\right)
$$

13.7 EXAMPLE Given a fiber preserving C^{∞} function $F: T M \rightarrow T M$, let

$$
\mathcal{D}_{\mathrm{F}}^{1}(\mathrm{TM})=\left\{\mathrm{X} \in \mathcal{D}^{1}(\mathrm{TM}): T \pi_{M} \circ \mathrm{X}=\mathrm{F}\right\} \quad \text { (cf. 13.6) }
$$

Then

$$
0_{\mathrm{id}}^{\mathrm{TM}}{ }^{1}(\mathrm{TM})=S O(\mathrm{TM})
$$

Let

$$
i_{21}: T^{2} M \rightarrow T I M
$$

be the injection -- then

$$
i_{21} \in D^{1}\left(T M ; T^{2} M ; \pi^{2 l}\right) \quad \text { (cf. 11.6) }
$$

from which an arrow

$$
\mathrm{D}_{\mathrm{i}_{21}}: \mathrm{C}^{\infty}(\mathrm{TM}) \rightarrow \mathrm{C}^{\infty}\left(\mathrm{T}^{2} \mathrm{M}\right)
$$

N.B. Put $D_{21}=D_{i_{21}}$-- then locally,

$$
D_{21} f=v^{i}\left(\frac{\partial}{\partial q^{i}} f \circ \pi^{2 l}\right)+a^{i}\left(\frac{\partial}{\partial v^{i}} f \circ \pi^{2 l}\right) \quad\left(f \in C^{\infty}(T M)\right)
$$

13.8 EXAMPLE Let $f \in C^{\infty}$ (TM) - - then there is a commutative diagram

Recalling now that

$$
\left(\left(T^{2} M, T M, \pi^{2 l}\right), r_{V}\right)
$$

8.

is an affine bundle modelled on

$$
\left(V T M, T M, \pi_{V}\right) \text { (cf. 12.2), }
$$

the definitions imply that $D_{21} f$ is an affine bundle morphism whose linear part

$$
\overline{\mathrm{D}_{21} \mathrm{~F}}: \mathrm{VIM} \rightarrow \mathrm{TM} \times \underline{R}
$$

is df|VTM.
[Note:

$$
\begin{aligned}
f \in C^{\infty}(\mathrm{TM}) & \Rightarrow d f \in \Lambda^{1} \mathrm{TM} \\
& \Rightarrow \hat{d f} \in C^{\infty}(\mathrm{TTM}) \quad \text { (cf. 8.19).] }
\end{aligned}
$$

Let $s_{T M}: T T M \rightarrow$ TTM be the canonical involution - then

$$
\pi_{T M} \circ \mathrm{~S}_{\mathrm{TM}}=\mathrm{T} \pi_{\mathrm{M}^{\prime}}
$$

thus

$$
s_{T M} \in D^{1}\left(T M ; T T M ; T_{M}\right)
$$

Local coordinates in TTM are

$$
\left(q^{i}, v^{i}, d q^{i}, d v^{i}\right)
$$

To render matters more transparent, let $\dot{q}^{i}=d q^{i}, \dot{v}^{i}=d v^{i}-$ then

$$
\left[\begin{array}{l}
\pi_{T M}\left(q^{i}, v^{i}, \dot{q}^{i}, \dot{v}^{i}\right)=\left(q^{i}, v^{i}\right) \\
T \pi_{M}\left(q^{i}, v^{i}, \dot{q}^{i}, \dot{v}^{i}\right)=\left(q^{i}, \dot{q}^{i}\right)
\end{array}\right.
$$

and
9.

$$
s_{T M}\left(q^{i}, v^{i}, \dot{q}^{i}, \dot{v}^{i}\right)=\left(q^{i}, \dot{q}^{i}, v^{i}, \dot{v}^{i}\right)
$$

E.g.: Let $f \in C^{\infty}(M)$ - then locally,

$$
\begin{aligned}
& D^{T}\left(D^{\top} f\right) \\
& =\dot{q}^{i}\left(\frac{\partial}{\partial q^{i}} f^{T} \circ \pi_{T M}\right)+\dot{v}^{i}\left(\frac{\partial}{\partial v^{i}} f^{T} \circ \pi_{T M}\right) \\
& =\dot{q}^{i} \frac{\partial}{\partial q^{i}}\left(\left(v^{j} \circ \pi_{T M}\right)\left(\frac{\partial}{\partial q^{j}}\left(f \circ \pi_{M}\right) \circ \pi_{T M}\right)\right. \\
& \quad+\dot{v}^{i} \frac{\partial}{\partial v^{i}}\left(\left(v^{j} \circ \pi_{T M}\right)\left(\frac{\partial}{\partial q^{j}}\left(f \circ \pi_{M}\right) \circ \pi_{T M}\right)\right. \\
& =\dot{q}^{i} v^{j}\left(\frac{\partial^{2}}{\partial q^{i} \partial q^{j}}\left(f \circ \pi_{M}\right) \circ \pi_{T M}\right) \\
& \quad+\dot{v}^{i}\left(\frac{\partial}{\partial q^{i}}\left(f \circ \pi_{M}\right) \circ \pi_{T M}\right) .
\end{aligned}
$$

Therefore

$$
D^{\top}\left(D^{\top} f\right) \circ \mathbf{S}_{T M}=D^{\top}\left(D^{\top} f\right) .
$$

13.9 LEMMA Locally,

$$
D_{S}: C^{\infty}(T M) \rightarrow C^{\infty}(T T M) \quad\left(s=s_{T M}\right)
$$

is given by

$$
D_{s} f=v^{i}\left(\frac{\partial}{\partial q^{i}} f \circ T_{M} M^{\prime}\right)+\dot{v}^{\dot{i}}\left(\frac{\partial}{\partial q^{i}} f \circ T \pi_{M}\right) \quad\left(f \in C^{\infty}(T M)\right) .
$$

A 1 -form along Φ is a section of $T^{*} M$ along Φ, i.e., is a C^{∞} map $\alpha: N \rightarrow T * M$ such that $\pi_{M}^{*} \circ \alpha=\Phi$. Write $D_{1}(M ; N ; \Phi)$ for the set of such (thus $D_{1}(M)=$ $D_{1}\left(M ; M ; i d_{M}\right)$-- then $D_{1}(M ; N ; \Phi)$ is a module over $C^{\infty}(N)$.
N.B. There is a canonical pairing

$$
D^{l}(M ; N ; \Phi) \times D_{1}(M ; N ; \Phi) \rightarrow C^{\infty}(N)
$$

viz.

$$
(X, \alpha) \rightarrow\langle X, \alpha\rangle(=\alpha(X)),
$$

where

$$
\left.\langle\mathrm{X}, \alpha\rangle\right|_{\mathrm{Y}}=\langle\mathrm{X}(\mathrm{y}), \alpha(\mathrm{y})\rangle
$$

13.10 EXAMPLE The elements of

$$
D_{1}\left(M ; T M ; \pi_{M}\right)
$$

are the fiber preserving C^{∞} functions $F: T M \rightarrow T * M$. They correspond one-to-one with the elements of $h \Lambda^{1}$ TM (cf. 13.4), say $\alpha \rightarrow F_{\alpha}$.
[Note: Each $\alpha \in h \Lambda^{1}$ TM gives rise to a C^{∞} function $\hat{\alpha}: T M \rightarrow$ R. Indeed, at each point $\left(x, X_{x}\right) \in T M\left(X_{x} \in T_{X} M\right), \alpha_{\left(x, X_{x}\right)}$ is the pullback under the tangent map of a unique element $\lambda_{x} \in T_{X}^{*} M$, thus the prescription is

$$
\hat{\alpha}\left(x, x_{x}\right)=\lambda_{x}\left(X_{x}\right) \quad \text { (cf. 8.19) }
$$

In terms of the pairing

$$
D^{l}\left(M ; T M ; \pi_{M}\right) \times D_{1}\left(M ; T M ; \pi_{M}\right) \rightarrow C^{\infty}(T M)
$$

we have

$$
\left\langle i d_{\mathrm{TM}^{\prime}} \mathrm{F}_{\alpha}\right\rangle=\hat{\alpha}
$$

Therefore $\hat{\alpha}=0$ iff α annihilates the elements of $S O$ (TM).]

Let $\mathrm{X} \in \mathcal{D}^{I}(\mathrm{M} ; \mathrm{N} ; \Phi)$ - then the arrow

$$
D_{X}: C^{\infty}(M) \rightarrow C^{\infty}(N)
$$

can be extended to a degree preserving map

$$
D_{X}: \Lambda * M \rightarrow \Lambda * N
$$

such that

$$
D_{X}(\alpha \wedge \beta)=D_{X} \alpha \wedge \Phi^{*} \beta+\Phi^{*} \alpha \wedge D_{X} \beta
$$

and

$$
D_{X} \circ d_{M}=d_{N} \circ D_{X}
$$

where d_{M} and d_{N} are the exterior derivative operators in M and N.
To accomplish this, we shall appeal to the following standard generality.
13.11 IEMMA Let $X \in D^{1}(M ; N ; \Phi)$ - then $\forall y_{0} \in N$, \exists neighborhoods I_{0} of 0 in \underline{R} and $V_{Y_{0}}$ in N and a C^{∞} map

$$
\mathrm{G}: \mathrm{I}_{0} \times \mathrm{V}_{\mathrm{Y}_{0}} \rightarrow \mathrm{M}
$$

such that $\forall y \in V_{y_{0}}{ }^{\prime}$

$$
\left[\begin{array}{l}
G(0, y)=\Phi(y) \\
X(y)=\left.\frac{d}{d t} G(t, y)\right|_{t=0}
\end{array}\right.
$$

Put

$$
G_{t}=G(t, \longrightarrow),
$$

thus $\forall t \in I_{0}$,

$$
G_{t}: V_{y_{0}} \rightarrow M
$$

So, given $\alpha \in \Lambda^{p} M$, $\left\{G_{t}^{*} \alpha\right\}$ is a one parameter family of elements of $\Lambda^{p} V_{y_{0}}$. Moreover,

$$
\left.\frac{d}{d t}\left(G_{t}^{\star} \alpha(y)\right)\right|_{t=0}=\lim _{t \rightarrow 0} \frac{1}{t}\left(G_{t}^{\star} \alpha(y)-\Phi^{\star} \alpha(y)\right) \quad\left(y \in V_{y_{0}}\right)
$$

exists and is independent of the choice of G. Denote it by $D_{X} \alpha(y)$-- then these local considerations can be reformulated globally and lead to

$$
\mathrm{D}_{\mathrm{X}}: \Lambda^{\star \mathrm{M}} \rightarrow \Lambda^{\star_{\mathrm{N}}}
$$

with the stated properties.
13.12 REMARK Take $N=M, \Phi=i d_{M}-$ then D_{X} is the Lie derivative

$$
L_{X}: \Lambda * M \rightarrow \Lambda * M
$$

13.13 LEMMMA Suppose that $\Phi^{\prime}: N^{\prime} \rightarrow N$ is a C^{∞} map. Let $X \in D^{1}(M ; N ; \Phi)-$ then

$$
X \circ \Phi^{\prime} \in D^{1}\left(M ; N^{\prime} ; \Phi \circ \Phi^{\prime}\right)
$$

and

$$
\mathrm{D}_{\mathrm{X}} \circ \Phi^{\prime}=\left(\Phi^{\prime}\right)^{*} \circ \mathrm{D}_{\mathrm{X}}
$$

Define

$$
{ }^{\mathrm{l}} \mathrm{X}: \Lambda^{*} \mathrm{M} \rightarrow \Lambda^{*} \mathrm{~N}
$$

by

$$
{ }^{\imath} X^{f}=0 \quad\left(f \in C^{\infty}(M)\right)
$$

and for $\alpha \in \Lambda^{P_{M}}$,

$$
\begin{aligned}
& \left.{ }^{2} X^{\alpha}\right|_{y}\left(Y_{1}, \ldots, Y_{p-1}\right) \\
= & \left.\alpha\right|_{\Phi(y)}\left(X(Y),\left.\Phi_{*}\right|_{y}\left(Y_{1}\right), \ldots,\left.\Phi_{*}\right|_{y}\left(Y_{p-1}\right)\right),
\end{aligned}
$$

where $Y_{1}, \ldots, Y_{p-1} \in T_{Y} N$.
[Note: This is the interior product in the present setting (cf. 3.7).]
13.4 LEMMA We have

$$
D_{X}={ }^{1} X \circ d_{M}+a_{N} \circ{ }^{1} \mathrm{X}
$$

Let us consider in more detail the situation when $N=T M$ and $\Phi=\pi_{M}$. Take $\mathrm{X}=\mathrm{id} \mathrm{TM}_{\mathrm{TM}}$ and write D^{\top} in place of $\mathrm{D}_{\mathrm{id}}^{\mathrm{TM}}$. Therefore

$$
D^{\top}: \Lambda * M \rightarrow \Lambda * T M
$$

14.

and, of course,

$$
D^{\top} f=f^{\top} \quad\left(f \in C^{\infty}(M)\right)
$$

Given $\alpha \in \Lambda^{1} \mathrm{M}$, put.

$$
\alpha^{\top}=D^{\top} \alpha
$$

Then $\forall X \in D^{\perp}(M)$,

$$
\left[\begin{array}{l}
\alpha^{\top}\left(X^{\top}\right)=\alpha(X)^{\top} \\
\alpha^{\top}\left(X^{V}\right)=\alpha(X) \circ \pi_{M} .
\end{array}\right.
$$

Locally,

$$
\begin{aligned}
\alpha & =a_{i} d x^{i} \\
\Rightarrow \quad & \alpha^{\top}=v^{j}\left(\frac{\partial}{\partial q^{j}}\left(a_{i} \circ \pi_{M}\right)\right) d q^{i}+\left(a_{i} \circ \pi_{M}\right) d v^{i} .
\end{aligned}
$$

And when $\alpha=d f\left(f \in C^{\infty}(M)\right)$,

$$
\left(d_{M} f\right)^{\top}=d_{T M} f^{\top}
$$

N.B. Write l_{T} in place of ${ }^{1}{ }_{i d} \mathrm{TMM}$ - then

$$
\imath_{T}^{\alpha}=\hat{\alpha} \quad \text { (cf. 8.19). }
$$

One can also apply the theory to

$$
i_{2 l} \in D^{I}\left(T M ; T^{2} M ; \pi^{2 l}\right),
$$

leading thereby to

$$
\mathrm{D}_{21}: \Lambda^{*} \mathrm{IM} \rightarrow \Lambda^{*} \mathrm{~T}^{2} \mathrm{M}
$$

Accordingly (cf. 13.14),

$$
D_{21}=l_{21} \circ d_{T M}+d_{T^{2} M} \circ{ }^{l_{21}}
$$

Here

$$
{ }^{\mathrm{l}} 21={ }^{\mathrm{l}} \mathrm{i}_{21} .
$$

The differential of Lagrange is, by definition, the map

$$
C^{\infty}(\mathbb{T M}) \rightarrow \Lambda^{I_{T}} \mathrm{~T}^{2} \mathrm{M}
$$

that sends L to $\delta \mathrm{L}$, where

$$
\delta L=D_{21} \theta_{L}-\left(\pi^{2 I}\right)^{*} d L
$$

[Note: Thanks to 8.13,

$$
\left.\delta L={ }_{2} 1^{d \theta_{L}}+\left(\pi^{21}\right)^{*} d F_{L} \cdot\right]
$$

Recall now that the triple

$$
\left(T^{2} M, M, \pi^{1}\right)
$$

is a fibered manifold (cf. 11.6). Relative to this structure, $\delta \mathrm{L}$ is horizontal, hence determines a fiber preserving C^{∞} function

$$
F_{\delta L}: T^{2} M \rightarrow T * M
$$

such that

$$
\left.\delta \mathrm{L}=\mathrm{F}_{\delta \mathrm{L}}^{\mathrm{k}} \Theta \quad \text { (cf. } 13.4\right)
$$

Agreeing to regard $F_{\delta L}$ as a section of the fibration $T^{2} M \times{ }_{M} T * M \xrightarrow{\mathrm{pr}_{1}} T^{2} M$
(cf. 13.2), write

$$
\begin{aligned}
T^{2} M & \times_{M} T^{*} M \\
& \approx T^{2} M \times_{T M}\left(T M \times_{M} T^{*} M\right) \\
& \approx T^{2} M \times_{T M}(V T M) *
\end{aligned}
$$

to get an arrow

13.15 LEMMA $\mathrm{VF}_{\delta L}$ is an affine bundle morphism whose linear part

$$
\overline{\mathrm{VF}_{\delta L}}: V \mathrm{VIM} \rightarrow(\mathrm{VIM}) *
$$

is WFL.
13.16 RAPPEL Fix $\Gamma \in S O$ (TM) -- then Γ is said to admit a lagrangian L if

$$
L_{\Gamma} \theta_{L}=d L
$$

Since $\Gamma: T M \rightarrow T^{2} M$, for a given L, it makes sense to form $\Gamma^{*} \delta L$.
13.17 IEMMA We have

$$
\Gamma^{*} \delta L=L_{\Gamma} \theta_{L}-d L
$$

PROOF Obviously,

$$
\begin{aligned}
\Gamma^{*}\left(\left(\pi^{21}\right)^{*} d L\right) & =\left(\pi^{2 l} \circ \Gamma\right)^{*} d L \\
& =d L
\end{aligned}
$$

On the other hand,

$$
\mathrm{D}_{\mathrm{i}_{21}} \circ \Gamma=\Gamma^{*} \circ \mathrm{D}_{21} \quad \text { (cf. 13.13) }
$$

But

$$
\mathbf{i}_{21} \circ \Gamma \in D^{1}\left(T M ; T M ; \pi^{2 l} \circ \Gamma\right)
$$

or still,

$$
\mathrm{i}_{21} \circ \Gamma \in D^{1}\left(\mathrm{TM}^{\prime} \mathrm{TM}_{;} \mathrm{id}_{\mathrm{TM}}\right)
$$

Therefore (cf. 13.12)

$$
\begin{aligned}
D_{i_{21}} \circ \Gamma & =L_{i_{21}} \circ \Gamma \\
& \equiv L_{\Gamma} .
\end{aligned}
$$

Consequently, Γ admits L iff

$$
\Gamma^{*} \delta L=0 .
$$

13.18 REMARK Locally,

$$
\delta L=\left(D_{21} \frac{\partial L}{\partial v^{i}}-\left(\pi^{21}\right)^{*} \frac{\partial L}{\partial q^{i}}\right) d q^{i}
$$

§14. THE EVOLUTION OPERATOR

Let M be a connected C^{∞} manifold of dimension n-- then the theory developed in 513 provides us with an arrow

$$
\mathrm{D}^{\top}: \Lambda^{\star} \mathrm{T}^{\star} \mathrm{M} \rightarrow \Lambda^{\star} \mathrm{T}^{\prime} \mathrm{T}^{*} \mathrm{M}
$$

In particular: Denoting by Θ_{M} the fundamental 1-form on $T^{*} M_{\text {, }}$,

$$
D^{\top} \theta_{M} \equiv \theta_{M}^{\top} \in \Lambda^{1} T T^{*} M^{\prime}
$$

so

$$
d \Theta_{\mathrm{M}}^{\mathrm{T}} \in \Lambda^{2} \mathrm{TT} \mathrm{~T}^{*}
$$

14.1 LEMMA The pair ($\mathrm{TT} \mathrm{T}_{\mathrm{M}}, \mathrm{d} \Theta_{\mathrm{M}}^{\top}$) is a symplectic manifold.

Various systems of local coordinates are going to figure in what follows, so it's best to draw up a list of them at the beginning.

TTM: Local coordinates are

$$
\left(q^{i}, v^{i}, \dot{q}^{i}, \dot{v}^{i}\right)
$$

TT*M: Local coordinates are

$$
\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)
$$

$\mathrm{T} * \mathrm{TM}$: Local coordinates are

$$
\left(q^{i}, v^{i}, p_{i}, u_{i}\right) .
$$

T*T*M: Local coordinates are

$$
\left(q^{i}, p_{i}, r_{i}, s^{i}\right)
$$

The transpose of the injection

$$
\text { VIM } \rightarrow \text { TTM }
$$

is the projection

$$
\mathrm{T} * \mathrm{TM} \rightarrow(\mathrm{~V} T \mathrm{M}) * .
$$

But

$$
\begin{aligned}
& V \mathrm{VIM} \approx \mathrm{TM} \times_{M} \mathrm{TM} \\
\Rightarrow & \\
& (\mathrm{VIM}) * \approx \mathrm{TM} \times_{M} T * M .
\end{aligned}
$$

This said, denote by $\mathrm{pr}_{\mathrm{T} * \mathrm{M}}$ the arrow

$$
\begin{aligned}
\mathrm{T} * \mathrm{TM} & \rightarrow(\mathrm{VIM}) * \\
& \approx \mathrm{TM} \times_{\mathrm{M}} \mathrm{~T} * \mathrm{M} \xrightarrow{\mathrm{pr}} \mathrm{~T}_{2} \mathrm{M}_{\mathrm{M}}
\end{aligned}
$$

of composition.
14.2 LEMMA There exists a unique diffeomorphism

$$
\Psi: T T * M \rightarrow T * T M
$$

such that

$$
\pi_{\mathrm{TM}}^{*} \circ \Psi=\mathrm{T} \pi_{\mathrm{M}}^{*} \text { and } \mathrm{pr} \mathrm{r}_{\mathrm{T} * \mathrm{M}} \circ \Psi=\pi_{\mathrm{T} * \mathrm{M}^{\prime}}
$$

i.e., such that

and

commute.
PROOF Locally,

$$
\left[\begin{array}{l}
T \pi_{M}^{*}\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)=\left(q^{i}, \dot{q}^{i}\right) \\
\pi_{T M}^{*}\left(q^{i}, v^{i}, p_{i}, u_{i}\right)=\left(q^{i}, v^{i}\right)
\end{array}\right.
$$

and

$$
\left[\begin{array}{l}
\pi_{T * M}\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)=\left(q^{i}, p_{i}\right) \\
\quad p_{T * M}\left(q^{i}, v^{i}, p_{i}, u_{i}\right)=\left(q^{i}, u_{i}\right)
\end{array}\right.
$$

So locally,

$$
\Psi\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)=\left(q^{i}, \dot{q}^{i}, \dot{p}_{i}, p_{i}\right) .
$$

Finish "par recollement...".
N.B. In the notation of $\S 13$, the relation

$$
\pi_{\mathrm{TM}}^{*} \circ \Psi=\mathrm{T} \pi_{\mathrm{M}}^{*}
$$

translates to

$$
\Psi \in D_{1}\left(T M ; T T^{*} M_{;} T \pi_{M}^{*}\right)
$$

14.3 LEMMA Let $\Theta_{\text {TM }}$ be the fundamental l-form on T*TM - then

$$
\psi^{*} \Theta_{\mathrm{TM}}=\Theta_{\mathrm{M}^{*}}^{\top}
$$

PROOF Locally,

$$
\theta_{M}^{\top}=\dot{p}_{i} d q^{i}+p_{i} \dot{q}^{i}
$$

while

$$
\begin{aligned}
\Psi * \Theta_{T M} & =\Psi *\left(p_{i} d q^{i}+u_{i} d v^{i}\right) \\
& =\left(p_{i} \circ \Psi\right) d\left(q^{i} \circ \Psi\right)+\left(u_{i} \circ \Psi\right) d\left(v^{i} \circ \Psi\right) \\
& =\dot{p}_{i} d q^{i}+p_{i} d \dot{q}^{i} .
\end{aligned}
$$

N.B. Therefore

$$
\Psi:\left(T T^{*} \mathrm{M}, \mathrm{~d} \Theta_{\mathrm{M}}^{\top}\right) \rightarrow\left(\mathrm{T}^{*} \mathrm{TM}, \mathrm{~d} \Theta_{\mathrm{TM}}\right)
$$

is a canonical transformation.
[Note: Let $\Omega_{M}=d \theta_{M}$ (the fundamental 2-form on $T^{*} M$) -- then

$$
\begin{aligned}
d \theta_{M}^{\top} & =d_{T T} * D^{\top} \theta_{M} \\
& =D^{\top} d_{T} * M_{M} \theta_{M} \\
& =D^{\top} d \theta_{M} \\
& =D^{\top} \Omega_{M} \\
& \equiv \Omega_{M}^{\top}
\end{aligned}
$$

So

$$
\Psi:\left(T T * M, \Omega_{M}^{T}\right) \rightarrow\left(T * T M, \Omega_{T M}\right)
$$

where, of course, $\Omega_{T M}=d \theta_{T M}$ is the fundamental 2-form on $\left.T * T M.\right]$
Write Ω^{\forall} for the diffeomorphism

$$
T T * M \rightarrow T * T * M
$$

induced by $-\Omega_{M}$, thus locally,

$$
\Omega^{b}\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)=\left(q^{i}, p_{i},-\dot{p}_{i}, \dot{q}^{i}\right) .
$$

14.4 LEMMA We have

$$
\pi_{\mathrm{T} * \mathrm{M}}^{*} \circ \Omega^{b}=\pi_{\mathrm{T} * \mathrm{M}^{\prime}}
$$

i.e., the diagram

commutes.
PROOF Locally,

$$
\left[\begin{array}{l}
\pi_{T^{*} M}\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)=\left(q^{i}, p_{i}\right) \\
\pi_{T}^{*} * M
\end{array}\left(q^{i}, p_{i}, r_{i}, s^{i}\right)=\left(q^{i}, p_{i}\right) . ~ \$\right.
$$

[Note: Therefore

$$
\Omega^{b} \in \mathcal{D}_{1}\left(T^{*} M ; T T^{*} M ; \pi_{T}{ }_{M}\right) \quad \text { (cf. §13).] }
$$

The transpose of the injection

$$
\mathrm{VI}{ }^{*} \mathrm{M} \rightarrow \mathrm{TT} \mathrm{~T}_{\mathrm{M}}
$$

is the projection

$$
T^{*} T^{*} \mathrm{M} \rightarrow\left(\mathrm{VI}^{*} \mathrm{M}^{2}\right) *
$$

But

$$
\begin{aligned}
& V T * M \approx T * M \times_{M} T * M \\
\Rightarrow & \\
& (V T * M) * \approx T * M \times_{M} T M .
\end{aligned}
$$

This said, denote by pr_{M} the arrow

$$
\begin{aligned}
\mathrm{T} * \mathrm{~T} * \mathrm{M} & \rightarrow(\mathrm{VT} * \mathrm{M}) * \\
& \approx \mathrm{~T} * \mathrm{M} \times_{\mathrm{M}} \mathrm{TM} \xrightarrow{\mathrm{pr}_{2}} \mathrm{TM}
\end{aligned}
$$

of composition.
14.5 LEMMA We have

$$
\mathrm{pr}_{\mathrm{M}} \circ \Omega^{\boldsymbol{b}}=\mathrm{T} \pi_{\mathrm{M}^{\prime}}^{\prime}
$$

i.e., the diagram

commutes.
PROOF Locally,

$$
\left[\begin{array}{l}
T \pi_{M}^{*}\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)=\left(q^{i}, \dot{q}^{i}\right) \\
p r_{M}\left(q^{i}, p_{i}, r_{i}, s^{i}\right)=\left(q^{i}, s^{i}\right)
\end{array}\right.
$$

Consider

$$
\left(\Omega^{b}\right) * \Theta_{T} *_{M}
$$

Here, $\theta_{T * M}$ is the fundamental 1-form on $T \star T^{*}$, thus locally,

$$
\Theta_{T * M}=r_{i} d q^{i}+s^{i} d p_{i^{\prime}}
$$

hence

$$
\begin{aligned}
& \left(\Omega^{b}\right) * \theta_{T * M}=\left(\Omega^{b}\right) *\left(r_{i} d q^{i}+s^{i} d p_{i}\right) \\
& =\left(r_{i} \circ \Omega^{b}\right) d\left(q^{i} \circ \Omega^{b}\right)+\left(s^{i} \circ \Omega^{b}\right) d\left(p_{i} \circ \Omega^{b}\right) \\
& \quad=-\dot{p}_{i} d q^{i}+\dot{q}^{i} d p_{i}\left(\neq \Theta_{M}^{T}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
-d & \left(-\dot{p}_{i} d q^{i}+\dot{q}^{i} d p_{i}\right) \\
& =d \dot{p}_{i} \wedge d q^{i}-d \dot{q}^{\dot{i}} \wedge d p_{i} \\
& =d \dot{p}_{i} \wedge d q^{i}+d p_{i} \wedge d \dot{q}^{i}
\end{aligned}
$$

And this implies that
8.

$$
\Omega_{M}^{\top}=-d\left(\Omega^{b}\right) * \theta_{T} * M^{*}
$$

14.6 REMARK Define

$$
\Lambda_{M}: T T * M \rightarrow \underset{-}{R}
$$

by the rule

$$
\Lambda_{M}(\mathrm{~V})=\left\langle T \pi_{M}^{*}(\mathrm{~V}), \pi_{T^{*} \mathrm{M}}(\mathrm{~V})\right\rangle \quad\left(\mathrm{V} \in \mathrm{~T} T^{*} \mathrm{M}\right)
$$

Locally,

$$
\Lambda_{M}\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right)=\dot{q}^{\dot{i}} p_{i}
$$

But then

$$
\begin{aligned}
& \theta_{\mathrm{M}}^{\top}+\left(\Omega^{b}\right) * \Theta_{\mathrm{T} * \mathrm{M}} \\
& =\dot{p}_{i} d q^{i}+p_{i} \dot{q}^{\dot{i}}-\dot{p}_{i} d q^{i}+\dot{q}^{\dot{i}} d p_{i} \\
& =p_{i} d \dot{q}^{\dot{i}}+\dot{q}^{\dot{i}} d p_{i} \\
& =\alpha\left(\dot{q}^{i} p_{i}\right) \\
& =d A_{M} \\
& \text { => } \\
& \mathrm{d}\left(\Theta_{\mathrm{M}}^{\mathrm{T}}+\left(\Omega^{b}\right) * \Theta_{\mathrm{T} * \mathrm{M}}\right)=0 \\
& \text { => } \\
& \Omega_{M}^{\top}=-\alpha\left(\Omega^{b}\right) * \theta_{T} * M .
\end{aligned}
$$

9.

Let $L \in C^{\infty}$ (TM) be a lagrangian -- then

$$
\left[\begin{array}{l}
\mathrm{dL}: T \mathrm{TM} \rightarrow \mathrm{~T}^{*} \mathrm{TM} \\
\quad \Psi^{-1}: T^{*} T M \rightarrow T T^{*} M
\end{array}\right.
$$

so it makes sense to form

$$
K_{L}=\Psi^{-1} \circ d L,
$$

which will be called the evolution operator attached to L.
14.7 LEMMA We have

$$
T \pi_{M}^{\star} \circ K_{L}=i d_{T M}
$$

PROOF For

$$
\begin{aligned}
& \pi_{T M}^{*} \circ \Psi=T \pi_{M}^{*} \quad \text { (cf. 14.2) } \\
& \Rightarrow \\
& T \pi_{M}^{*} \circ K_{L}=T \pi_{M}^{*} \circ \Psi^{-1} \circ d L \\
&=\pi_{T M}^{*} \circ d L \\
&=i d_{T M}
\end{aligned}
$$

14.8 LEMMA We have

$$
\pi_{T * M} \circ K_{L}=F L .
$$

PROOF First

$$
\left[\begin{array}{l}
F L\left(q^{i}, v^{i}\right)=\left(q^{i}, \frac{\partial L}{\partial v^{i}}\right) \\
d L\left(q^{i}, v^{i}\right)=\left(q^{i}, v^{i}, \frac{\partial L}{\partial q^{i}}, \frac{\partial L}{\partial v^{i}}\right)
\end{array}\right.
$$

Next

$$
\Psi: T T * M \rightarrow T * T M
$$

sends

$$
\left(q^{i}, p_{i}, \dot{q}^{i}, \dot{p}_{i}\right) \text { to }\left(q^{i}, \dot{q}^{i}, \dot{p}_{i}, p_{i}\right)
$$

thus

$$
\Psi^{-1}: \mathrm{T}^{\star} \mathrm{TM} \rightarrow \mathrm{TT} \mathrm{~T}^{*}
$$

sends

$$
\left(q^{i}, v^{i}, p_{i}, u_{i}\right) \text { to }\left(q^{i}, u_{i}, v^{i}, p_{i}\right)
$$

Finally

$$
\begin{aligned}
& \pi_{T} *_{M} \circ K_{L}\left(q^{i}, v^{i}\right) \\
& =\pi_{T^{*} M_{M}} \circ \Psi^{-l}\left(q^{i}, v^{i}, \frac{\partial L}{\partial q^{i}}, \frac{\partial L}{\partial v^{i}}\right) \\
& =\pi_{T * M}\left(q^{i}, \frac{\partial L}{\partial v^{i}}, v^{i}, \frac{\partial L}{\partial q^{i}}\right) \\
& \quad=\left(q^{i}, \frac{\partial L}{\partial v^{i}}\right) \\
& \quad=F L\left(q^{i}, v^{i}\right)
\end{aligned}
$$

N.B. Therefore

$$
K_{L} \in D^{1}\left(T^{\star} M ; T M ; F L\right)
$$

14.9 RAPPEL In the formalism of $\S 13$, let

$$
X \in D^{l}(M ; N ; \Phi)
$$

Then a curve $\gamma: I \rightarrow N$ is said to be an integral curve of X provided

$$
T \Phi \circ \dot{\gamma}=x \circ \gamma,
$$

i.e.,

commutes.
[Note:

$$
\left.\dot{\gamma} \in D^{l}(N ; I ; \gamma) .\right]
$$

Accordingly, in this terminology, a curve $\gamma: I \rightarrow T M$ is an integral curve of K_{L} if

$$
\text { TFL } \circ \dot{\gamma}=K_{L} \circ \gamma
$$

14.10 LEMMA A curve $\gamma: I \rightarrow T M$ is an integral curve of K_{L} iff the equations of Lagrange are satisfied along γ.

PROOF Working locally, let $\gamma=\left(q^{i}, v^{i}\right)\left(\equiv\left(q^{i}(t), v^{i}(t)\right)-\right.$ then

$$
\dot{\gamma}=\left(q^{i}, v^{i}, \dot{q}^{i}, \dot{v}^{i}\right)
$$

and

$$
\left[\begin{array}{l}
\text { TFL } \circ \dot{\gamma}=\left(q^{i}, \frac{\partial L}{\partial v^{i}}, \dot{q}^{i}, \dot{q}^{j} \frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}+\dot{v}^{j} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right) \\
K_{L} \circ \gamma=\left(q^{i}, \frac{\partial L}{\partial v^{i}}, v^{i}, \frac{\partial L}{\partial q^{i}}\right) .
\end{array}\right.
$$

Therefore

$$
\text { TFL } \circ \dot{\gamma}=K_{L} \circ \gamma
$$

iff

$$
\ddot{q}^{i}=v^{i}
$$

and

$$
\dot{q}^{j} \frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}+\dot{v}^{j} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}=\frac{\partial L}{\partial q^{i}}
$$

or, restoring t,

$$
\frac{d\left(q^{i}(\gamma(t))\right)}{d t}=v^{i}(\gamma(t))
$$

and

$$
\left.\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)\right|_{\gamma(t)}=\left.\frac{\partial L}{\partial q^{i}}\right|_{\gamma(t)} .
$$

14.11 REMARK Suppose that L is nondegenerate -- then 14.10 implies that
a curve $\gamma: I \rightarrow T M$ is an integral curve of Γ_{L} iff it is an integral curve of K_{L}. Therefore

$$
\begin{aligned}
& \Gamma_{L} \circ \gamma=\dot{\gamma} \\
& \Rightarrow \quad \\
& \\
&=K_{L} \circ \gamma
\end{aligned}
$$

Since γ is arbitrary, it follows that

$$
\mathrm{TFL} \circ \Gamma_{\mathrm{L}}=\mathrm{K}_{\mathrm{L}}
$$

Because

$$
\mathrm{K}_{\mathrm{L}} \in D^{I}\left(\mathrm{~T}^{*} \mathrm{M}_{;} \mathrm{TM} ; \mathrm{FL}\right)
$$

there is an arrow

$$
\mathrm{D}_{\mathrm{K}_{\mathrm{L}}}: \mathrm{C}^{\infty}\left(\mathrm{T}^{*} \mathrm{M}\right) \rightarrow \mathrm{C}^{\infty}(\mathrm{TM})
$$

Locally, $\forall \mathrm{f} \in \mathrm{C}^{\infty}\left(\mathrm{T}^{*} \mathrm{M}\right)$,

$$
\begin{aligned}
& D_{K_{L}}^{f} \\
& \quad=v^{i} \frac{\partial}{\partial q^{i}}(f \circ F L)+\frac{\partial L}{\partial q^{i}} \frac{\partial}{\partial p_{i}}(f \circ F L) .
\end{aligned}
$$

Let M be a connected C^{∞} manifold of dimension n.

- A distribution on M is a subset Σ of $T M$ such that $\forall x \in M, \Sigma_{x}=\Sigma \cap T_{x} M$ is a linear subspace of $T_{X} M$ and we define $\rho_{\Sigma}: M \rightarrow \underline{R}$ by

$$
\rho_{\Sigma}(x)=\operatorname{dim} \Sigma_{x} .
$$

One calls Σ differentiable if $\forall x \in M, \forall V_{x} \in \Sigma_{x}, \exists$ a neighborhood U of x and a vector field $x \in D^{I}(U)$ such that $X_{x}=V_{x}$ and $X_{y} \in \Sigma_{Y}(Y \in U)$.
[Note: A differentiable distribution Σ is linear if ρ_{Σ} is constant. Therefore the linear distributions are precisely the vector subbundles of TM.]

- A codistribution on M is a subset Σ^{*} of $T * M$ such that $\forall x \in M, \Sigma_{x}^{*}=$ $\Sigma^{*} \cap T_{X}^{*} M$ is a linear subspace of $T_{X}^{*} M$ and we define $\rho_{\Sigma^{\star}}: M \rightarrow \underline{R}$ by

$$
\rho_{\Sigma^{\star}}(x)=\operatorname{dim} \Sigma_{x}^{*}
$$

One calls Σ^{*} differentiable if $\forall x \in M, \forall \alpha_{x} \in \Sigma_{X^{\prime}}^{*} \exists$ a neighborhood U of x and a l-form $\omega \in D_{1}(U)$ such that $\omega_{x}=\alpha_{x}$ and $\omega_{y} \in \Sigma_{y}^{*}(y \in U)$.
[Note: A differentiable codistribution Σ^{*} is linear if $\rho_{\Sigma^{\star}}$ is constant. Therefore the linear codistributions are precisely the vector subbundles of $T * M$.
15.1 REMARK The underlying assumption is that we are working in the C^{∞} category. However, on occasion, it is convenient to work in the c^{ω} category,
since there certain results can be significantly strengthened.
[Note: Tacitly, M is paracompact, thus admits an analytic structure which is unique up to a C^{∞} diffeomorphism.]

15.2 LEMMA If

$$
\int_{-} \quad \Sigma
$$

are differentiable, then the functions

$$
\left.\right|_{-} \rho_{\Sigma}
$$

are lower semicontinuous.
15.3 EXAMPLE Take $M=\underline{R}$ and let

$$
\Sigma_{x}=\operatorname{span}\left\{x(x) \frac{\partial}{\partial x}\right\}
$$

where

$$
x(x)=\left.\right|_{0} ^{0} \begin{array}{cc}
(x \neq 0) \\
1 & (x=0)
\end{array}
$$

Then ρ_{Σ} is not lower semicontinuous, hence Σ is not differentiable.

Given a differentiable distribution Σ or a differentiable codistribution Σ^{*},
a point $x \in M$ is regular if ρ_{Σ} or $\rho_{\Sigma^{\star}}$ is constant in a neighborhood of x; otherwise x is singular.
15.4 LEMMA The set of regular points per Σ or \sum^{*} is open and dense.
15.5 EXAMPLE The set of regular points need not be connected. E.g.:

Take $M=\underline{R}^{2}$ and let

$$
\Sigma_{(x, y)}=\operatorname{span}\left\{\frac{\partial}{\partial x}, y \frac{\partial}{\partial y}\right\}
$$

Then Σ is differentiable. Moreover, its set of singular points is the x-axis while its set of regular points has two connected components, namely the upper half-plane $\mathrm{y}>0$ and the lower half-plane $\mathrm{y}<0$.
15.6 EXAMPLE Take $M=10,1[$ and fix $\varepsilon(0<\varepsilon<1)$ - then \exists a closed subset $A \subset M$ of Lebesgue measure ε such that $M-A$ is open and dense in M. Choose $\mathrm{f} \in \mathrm{C}^{\infty}(\mathrm{M}): \mathrm{f}^{-1}(0)=\mathrm{A}$. Define a differentiable distribution Σ by

$$
\Sigma_{x}=\operatorname{span}\left\{f(x) \frac{\partial}{\partial x}\right\} .
$$

Then

$$
\left[\begin{array}{rl}
\mathrm{M}-\mathrm{A} & =\text { set of regular points of } \Sigma \\
\mathrm{A} & =\text { set of singular points of } \Sigma .
\end{array}\right.
$$

[Note: Let M be a nonempty open subset of \underline{R}^{n}. Suppose that Σ is an analytic distribution - then it can be shown that the Lebesgue measure of the set of
singular points of Σ is zero.

- Let Σ be a distribution on M - then the annihilator Ann Σ of Σ is the codistribution on M specified by

$$
(\operatorname{Ann} \Sigma)_{x}=\left\{\alpha_{x} \in T_{x}^{* M}: \alpha_{x}\left(V_{x}\right)=0 \forall V_{x} \in \Sigma_{x}\right\}
$$

- Let Σ^{*} be a codistribution on $\mathrm{M}-$ then the annihilator Ann Σ^{*} of Σ^{*} is the distribution on M specified by

$$
\left(\operatorname{Ann} \Sigma^{*}\right)_{x}=\left\{V_{x} \in T_{x} M: \alpha_{x}\left(V_{x}\right)=0 \forall \alpha_{x} \in \Sigma_{x}^{*}\right\}
$$

Obviously,

$$
\operatorname{Ann}(\operatorname{Ann} \Sigma)=\Sigma, \operatorname{Ann}\left(\operatorname{Ann} \Sigma^{\star}\right)=\Sigma^{\star} .
$$

N.B. Suppose that $\Sigma\left(\Sigma^{*}\right)$ is differentiable -- then $\rho_{\text {Ann } \Sigma\left(\rho_{\text {Ann } \Sigma^{*}}\right)}$
is upper semicontinuous (cf. 15.2), so Ann $\Sigma\left(\operatorname{Ann} \Sigma^{*}\right)$ is not differentiable unless $\Sigma\left(\Sigma^{\star}\right)$ is linear.
15.7 EXAMPLE Take $M=\underline{R}^{2}$ and define a differentiable distribution Σ by

$$
\Sigma_{(x, y)}=\operatorname{span}\left\{x \frac{\partial}{\partial x}, y \frac{\partial}{\partial y}\right\}
$$

Then

$$
(\operatorname{Ann} \Sigma)_{(x, y)}=\left.\right|^{T_{(x, y)^{M}}} \begin{array}{ll}
-(x=y=0) \\
\operatorname{span}\{d x\} & (x=0, y \neq 0) \\
\operatorname{span}\{d y\} & (x \neq 0, y=0) \\
\{0\} \text { otherwise } .
\end{array}
$$

- Let Σ be a distribution on M-- then an immersed, connected submanifold N of M is called an integral manifold of Σ if $T_{Y} N=\Sigma_{Y} \forall y \in N$.
- Let Σ^{*} be a codistribution on M -- then an immersed, connected submanifold N of M is called an integral manifold of Σ^{*} if $T_{Y} N=\left(A n n \Sigma^{*}\right)_{y} \forall y \in N$.
15.8 EXAMPIE Assume that $\mathrm{X} \in D^{1}(\mathrm{M})$ never vanishes and let $\Sigma_{\mathrm{x}}=\operatorname{span}\left\{\mathrm{X}_{\mathrm{x}}\right\}$ ($x \in M$) -- then the trajectories of X are integral manifolds of Σ.

A differentiable distribution Σ on M is integrable if $\forall x \in M$, there exists an integral manifold of Σ containing x.
15.9 THEOREM Suppose that Σ is integrable -- then $\forall x \in M$, there exists a unique integral manifold N of Σ containing x and which is maximal w.r.t. containment.
[Note: If N and N^{\prime} are integral manifolds of Σ such that $N \cap N^{\prime} \neq \varnothing$, then $\mathrm{N} \cap \mathrm{N}^{\prime}$ is open in N and N^{\prime} and the differentiable structures induced on $\mathrm{N} \cap \mathrm{N}^{\prime}$ by those of N and N^{\prime} are identical. Furthermore, $N \cup N^{\prime}$ is an integral manifold of Σ in which both N and N^{\prime} are open.]
15.10 REMARK The maximal integral manifolds of Σ form a partition of M, the foliation F_{Σ} of M determined by Σ (the N being the leaves of F_{Σ}).
15.11 EXAMPLE Suppose that $\pi: E \rightarrow M$ is a fibration. Consider VE $\subset T E$ - then VE is a vector subbundle of TE , hence is a linear distribution. In addition, VE is
integrable and the leaves of the associated foliation of E are the connected components of the $E_{x}=\pi^{-1}(x) \quad(x \in M)$.
[Note: An Ehresmann connection for the fibration $\pi: E \rightarrow M$ is a linear distribution $H \subset T E$ such that $\forall E \in E$,

$$
\left.\left.V E\right|_{e} \oplus H_{e}=T_{e} E \cdot\right]
$$

15.12 EXAMPLE Let $\alpha \in \Lambda^{P_{M}}$ be a nonzero closed p-form on $M-$ then the characteristic subspace of α at a point $x \in M$ is Ker α_{x}, where

$$
\text { Ker } \alpha_{x}=\left\{V_{x} \in T_{x} M: 1_{V_{x}}^{\alpha_{x}}=0\right\}
$$

and the characteristic distribution $\operatorname{Ker} \alpha$ of α is the assigmment

$$
x \rightarrow \operatorname{Ker} \alpha_{x}
$$

In general, Ker α is not differentiable. To remedy this, let $D(\alpha)$ be the set of all locally defined vector fields X on M such that

$$
{ }^{\mathrm{l}} \mathrm{x}^{\alpha}=0
$$

Define a distribution $\Sigma(\alpha)$ on M by specifying that $\Sigma(\alpha)_{X}$ is to be the subspace of $T_{X} M$ spanned by the $X_{x}(X \in D(\alpha), x \in \operatorname{Dom} X)$-- then $\Sigma(\alpha)$ is contained in Ker α. Moreover, $\Sigma(\alpha)$ is differentiable and, in fact, integrable. Recall now that the rank of α_{x} is

$$
r k_{x} \alpha^{\prime}=\operatorname{dim}\left(T_{x} M / \operatorname{Ker} \alpha_{x}\right),
$$

thus

$$
\mathrm{p} \leq \mathrm{rk}_{\mathrm{x}} \alpha \leq \mathrm{n} .
$$

Impose the restriction that $\mathrm{x} \rightarrow r \mathrm{k}_{\mathrm{x}} \alpha$ is constant (i.e., that α be of constant rank) -- then in this situation,

$$
\operatorname{Ker} \alpha=\Sigma(\alpha) .
$$

Therefore Ker α is linear or still, is a vector subbundle of TM. And the fiber dimension of Ker α is k if $n-k=r k_{x} \alpha(x \in M)$.
[Note: Take $M=\underline{R}^{2}$ and let $\alpha=x d x$ - then α is closed and

$$
\left.\operatorname{Ker} \alpha\right|_{(x, y)}= \begin{cases}\{0\} \times \underline{R} & (x \neq 0) \\ \underline{R}^{2} & (x=0) .\end{cases}
$$

Therefore Ker α is not differentiable (cf. 15.2). On the other hand, if x is a vector field defined on a connected open subset of \underline{R}^{2}, then $X \in \mathcal{D}(\alpha)$ iff X has the form $g \frac{\partial}{\partial y}$, g a differentiable function. So $\Sigma(\alpha)$ is generated by $\frac{\partial}{\partial y}$, hence $\Sigma(\alpha)$ is strictly contained in Ker α.]
15.13 REMARK Let $L \in C^{\infty}$ (TM) be a lagrangian. To be in agreement with 15.12, assume that ω_{L} has constant rank, thus $\mathrm{Ker} \omega_{\mathrm{L}}$ is a vector subbundle of TTM. But in $\S 8$, we put

$$
\operatorname{Ker} \omega_{L}=\left\{X \in \mathcal{D}^{1}(T M): 1_{X} \omega_{L}=0\right\}
$$

This, of course, is an abuse of notation in that the sections of the bundle are being denoted by the same symbol as the bundle itself. However, no real confusion should arise from this practice.

If Σ is an integrable distribution, then a function $f \in C^{\infty}(M)$ is a first integral for Σ provided the restriction of f to each leaf $N \in F_{\Sigma}$ is constant.
N.B. There may be no nontrivial first integrals. E.g.: If Σ has a leaf which is dense in M, then the only first integrals for Σ are the constants.
15.14 EXAMPLE Suppose that (M, ω) is a symplectic manifold. Given a linear distribution Σ, define a linear distribution $\omega^{\perp} \Sigma$ by

$$
\left.\omega^{\perp} \Sigma\right|_{x}=\left\{V_{x} \in T_{x} M: \omega_{x}\left(V_{x} x_{x}\right)=0 \forall x_{x} \in \Sigma_{x}\right\}
$$

In terms of

$$
\omega^{b}: T M \rightarrow T * M
$$

and its inverse

$$
\omega^{\#}: T * M \rightarrow T M,
$$

we have

$$
\omega^{\#}(\operatorname{Ann} \Sigma)=\omega^{\perp} \Sigma \text {. }
$$

Assume now that Σ is integrable and let f be a first integral for $\Sigma-$ then $\omega^{\#} d f$ is a section of $\omega^{\perp} \Sigma$. Thus, $\forall X \in \sec \Sigma$,

$$
\omega\left(\omega^{\#} d f, X\right)=\imath_{\omega^{\#} d f} \omega(X)
$$

9.

$$
\begin{aligned}
& =d f(X) \\
& =\mathrm{Xf} \\
& =0,
\end{aligned}
$$

the last step following from the fact that X is tangent to the leaves of F_{Σ}.
15.15 LEMMA If Σ is integrable and if x is a regular point, then \exists a chart ($U,\left\{x^{1}, \ldots, x^{n}\right\}$) with $x \in U$ such that

$$
E_{y}=\operatorname{span}\left\{\left.\frac{\partial}{\partial x^{I}}\right|_{y}, \ldots,\left.\frac{\partial}{\partial x^{k}}\right|_{Y}\right\} \quad(y \in U) .
$$

[Note: Here

$$
\left.k=\rho_{\Sigma}(x) \quad\left(=\operatorname{dim} \Sigma_{x}\right) .\right]
$$

A differentiable distribution Σ on M is involutive if \forall pair X, Y of vector fields defined on some open subset $U \subset M$ such that $\forall x \in U, X_{X} \& Y_{x} \in \Sigma_{x}$, we also have

$$
[\mathrm{X}, \mathrm{Y}]_{\mathrm{x}} \in \Sigma_{\mathrm{X}} .
$$

15.16 LEMMA If Σ is integrable, then Σ is involutive.
15.17 EXAMPIE Take $M=\underline{R}^{2}$ and let

$$
\Sigma_{(x, y)}=\operatorname{span}\left\{\frac{\partial}{\partial x}, \phi(x) \frac{\partial}{\partial y}\right\}
$$

where $\phi(x)$ is a C^{∞} function which is 0 for $x \leq 0$ and >0 for $x>0$ - then Σ is

$$
\begin{gathered}
{\left[\frac{\partial}{\partial x^{\prime}},\right.} \\
\left.\phi(x) \frac{\partial}{\partial y}\right]_{(x, y)} \\
\quad=\phi^{\prime}(x) \frac{\partial}{\partial y} .
\end{gathered}
$$

Therefore Σ is involutive. Still, Σ is not integrable.
15.18 THEOREM (Frobenius) Suppose that Σ is linear - then Σ is integrable iff Σ is involutive.
15.19 LEMMA A linear distribution Σ is involutive iff sec Σ is a Lie subalgebra of $\mathcal{D}^{1}(\mathrm{M})$.
15.20 EXAMPIE A presymplectic manifold is a pair (M, ω), where ω is a closed 2-form of constant rank. Consider Ker $\omega \subset$ TM (cf. 15.12) -- then Ker ω is linear and we claim that Ker ω is involutive. To see this, let $X, Y \in \sec \operatorname{Ker} \omega$-- then

$$
\begin{aligned}
{ }^{\imath}[X, Y]^{\omega} & =\left(L_{X} \circ \imath_{Y}-\imath_{Y} \circ L_{X}\right) \omega \\
& =-{ }^{\imath_{Y}} L_{X} \omega \\
& =-{ }^{\imath_{Y}}\left(\imath_{X} \circ d+d \circ{ }_{X}\right) \omega \\
& =0,
\end{aligned}
$$

so

$$
[\mathrm{X}, \mathrm{Y}] \in \sec \operatorname{Ker} \omega .
$$

Therefore Ker ω is involutive (cf. 15.19), hence integrable (cf. 15.18).
[Note: The rank of ω is necessarily even.]
15.21 THEOREM (Nagano) An analytic distribution is integrable iff it is involutive.
15.22 EXAMPLE Take $M=\underline{R}^{2}$ and let

$$
\Sigma_{(x, y)}=\operatorname{span}\left\{x \frac{\partial}{\partial x}, y \frac{\partial}{\partial y}\right\} .
$$

Then Σ is involutive, thus is integrable (being analytic). As for the foliation $F_{\Sigma^{\prime}}$ it has 9 leaves, viz.

$$
\begin{aligned}
& \{(0,0)\} ;
\end{aligned}
$$

15.23 LEMMA Suppose that \sum is linear of fiber dimension k-- then $\forall \mathrm{x} \in \mathrm{M}$, \exists a neighborhood U of x and linearly independent l-forms $\omega^{l}, \ldots, \omega^{n-k}$ on U such that

$$
\Sigma_{Y}=\left.\left.\operatorname{Ker} \omega^{1}\right|_{Y} \cap \cdots \cap \operatorname{Ker} \omega^{n-k}\right|_{Y} \quad(y \in U)
$$

[Note: Introduce

$$
\left.\right|_{-} \hat{\omega}^{\mathrm{l}}: T \mathrm{TU} \rightarrow \underline{\mathrm{R}} \quad \begin{aligned}
& \\
& \vdots \\
& \hat{\omega}^{\mathrm{n}-\mathrm{k}}: T \mathrm{U} \rightarrow \underline{\mathrm{R}}
\end{aligned} \quad \text { (cf. 8.19) }
$$

Then what is being said is that $\Sigma \mid U$, viewed as a subset of $T U$, can be characterized as

$$
\left(\hat{\omega}^{1}\right)^{-1}(0) \cap \cdots \cap\left(\hat{\omega}^{n-k}\right)^{-1}(0)
$$

Locally,

$$
\begin{aligned}
& \omega^{i}=\sum_{j=1}^{n} a_{j}^{i} d x^{j} \\
& \Rightarrow \\
& \hat{\omega}^{i}\left.=\sum_{j=1}^{n}\left(a_{j}^{i} \circ \pi_{U}\right) v^{j} .\right]
\end{aligned}
$$

15.24 REMARK Σ is involutive on U iff $\exists l$-forms θ_{j}^{i} on U such that

$$
d \omega^{i}=\sum_{j=1}^{n-k} \theta_{j}^{i}{ }_{j} \omega^{j} \quad(i=1, \ldots, n-k) .
$$

[Note: One can go further: Each $x \in U$ admits a neighborhood $U_{x} \subset U$ on which $\exists C^{\infty}$ functions $C^{i}{ }_{j}, f^{j}(i, j=1, \ldots, n-k)$ such that

$$
\left.\omega^{i}=\sum_{j=1}^{n-k} c_{j}^{i} d f^{j} \cdot\right]
$$

If $\omega^{l}, \ldots, \omega^{n-k}$ are linearly independent 1 -forms on M, then the prescription

$$
\Sigma_{x}=\left.\left.\operatorname{Ker} \omega^{1}\right|_{x} \cap \cdots \cap \operatorname{Ker} \omega^{n-k}\right|_{x} \quad(x \in M)
$$

defines a linear distribution Σ on M of fiber dimension k.
[Note: If it is a question of a single l-form, then the assumption is that this l-form is nowhere vanishing.]
15.25 EXAMPLE Take $M=\underline{R}^{3}$ and let

$$
\omega=d x+x y d z
$$

Then

$$
\Sigma_{(x, y, z)}=\operatorname{span}\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial z}-x y \frac{\partial}{\partial x}\right\}
$$

15.26 REMARK Take $M=\underline{R}^{3}$ and let

$$
\left.\right|_{-\quad \omega^{I}=d x+y d z} ^{\omega^{2}=d x+z d y} .
$$

Then ω^{1} and ω^{2} are not linearly independent. Since

$$
\left[\begin{array}{l}
\operatorname{Ker} \omega^{l}=\operatorname{span}\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial z}-y \frac{\partial}{\partial x}\right\} \\
\operatorname{Ker} \omega^{2}=\operatorname{span}\left\{\frac{\partial}{\partial z}, \frac{\partial}{\partial y}-z \frac{\partial}{\partial x}\right\}
\end{array}\right.
$$

we have

$$
\left[\begin{array}{l}
\Sigma_{(x, 0,0)}=\operatorname{span}\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\} \\
\Sigma_{(x, 0, z)}=\operatorname{span}\left\{\frac{\partial}{\partial z}\right\} \quad(z \neq 0) \\
\Sigma_{(x, y, 0)}=\operatorname{span}\left\{\frac{\partial}{\partial y}\right\} \quad(y \neq 0) \\
\Sigma_{(x, y, z)}=\operatorname{span}\left\{-z \frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{z}{y} \frac{\partial}{\partial z}\right\} \quad(y \neq 0, z \neq 0)
\end{array}\right.
$$

So, along the x-axis ρ_{Σ} is not lower semicontinuous, which implies that Σ is not differentiable (cf. 15.2).
15.27 LEMMA Σ is integrable iff

$$
d \omega^{i} \wedge\left(\omega^{1} \wedge \ldots \wedge \omega^{n-k}\right)=0 \quad(i=1, \ldots, n-k)
$$

E.g.: If the issue is that of ($\mathrm{n}-\mathrm{l}$) l-forms, then

$$
d \omega^{i} \wedge\left(\omega^{l} \wedge \ldots \wedge \omega^{n-1}\right)=0 \quad(i=1, \ldots, n-1)
$$

Therefore Σ is integrable.
15.28 EXAMPLE Take $M=\underline{R}^{3}$ and let

$$
\omega=A d x+B d y+C d z
$$

where A, B, C are differentiable functions of x, y, z (not all vanishing simultaneously) -then Σ is integrable iff

$$
A\left(\frac{\partial B}{\partial z}-\frac{\partial C}{\partial y}\right)+B\left(\frac{\partial C}{\partial x}-\frac{\partial A}{\partial z}\right)+C\left(\frac{\partial A}{\partial y}-\frac{\partial B}{\partial x}\right)=0
$$

Thinking of A, B, C as the components of a vector field \vec{F}, the condition thus amounts to requiring that

$$
\vec{F} \cdot \operatorname{curl} \overrightarrow{\mathrm{~F}}=0
$$

E.g.: Σ is integrable if

$$
\omega=y z(y+z) d x+z x(z+x) d y+x y(x+y) d z
$$

but Σ is not integrable if

$$
\omega=x d y+d z
$$

15.29 REMARK Take $M=\underline{R}^{3}$ and work with l-forms $\left.\right|_{-\omega^{2}} ^{\omega^{1}}$-- then it may very
 integrable. Nevertheless, the distribution Σ per $\left.\right|_{-\omega^{2}} ^{\omega^{1}}$ collectively must be
integrable (cf. 15.27):

$$
d \omega^{i} \wedge\left(\omega^{1} \wedge \omega^{2}\right)=0 \quad(i=1,2) .
$$

Informally, constraints are conditions imposed on a mechanical system that restrict access to its configuration space or its velocity phase space.

So, as usual, let M be a connected C^{∞} manifold of dimension n. Fix a riemannian structure g on M and let $T=\frac{1}{2} g$ - then we shall work with the mechanical system $M=(M, T, \Pi)$, where Π is horizontal.
[Note: Recall from $\S 10$ that the second order vector field Γ_{M} is characterized by the property that

$$
\left.{ }^{\imath} \Gamma_{M} \omega_{T}=-d T+\Pi .\right]
$$

By a system of constraints, one understands a set $\omega^{1}, \ldots, \omega^{n-k}$ of linearly independent l-forms on M. As will become apparent, the key point is to first study the case when $k=n-1$.

To this end, fix a nowhere vanishing 1-form $\omega \in \Lambda^{1} \mathrm{M}-$ then $\hat{\omega} \in C^{\infty}$ (TM) (cf. 8.19) and since $\pi_{M^{*}}^{*} \omega \in h \Lambda^{1}{ }^{1}$, \exists a unique vertical X_{ω} :

$$
{ }^{\imath} X_{\omega} \omega_{T}=\pi_{M}^{*} \omega \quad \text { (cf. 8.23) }
$$

N.B. Locally, if

$$
\omega=a_{i} d x^{i},
$$

then

$$
X_{\omega}=\left(W^{i j}(T)\left(a_{j} \circ \pi_{M}\right)\right) \frac{\partial}{\partial v^{i}}
$$

Here, as in §8,

$$
W(T)=\left[W_{i j}(T)\right]
$$

where

$$
W_{i j}(T)=\frac{\partial^{2} T}{\partial v^{i} \partial v^{j}} \quad\left(=g_{i j} \circ \pi_{M}\right)
$$

and we have abbreviated

$$
\left(W(T)^{-1}\right)^{i j}
$$

to

$$
w^{i j}(T) \quad\left(=g^{i j} \circ \pi_{M}\right) .
$$

16.1 LEMMA Determine $X_{\hat{\omega}} \in D^{1}(T M)$ via the prescription
ω

$$
{ }^{2} X_{n} \omega_{T}=\hat{d \hat{\omega}} .
$$

ω
Then

$$
\mathrm{Sx}_{\hat{\omega}}=-\mathrm{X}_{\omega} .
$$

$\underline{\text { PROOF }}$ From the definitions, $S^{*}(\hat{d} \hat{\omega})=\pi_{M}^{*} \omega$, hence

$$
\begin{aligned}
S^{*}\left(\imath_{\hat{\omega}} \omega_{T}\right) & =S^{*}(\partial \hat{\omega}) \\
& =\pi_{M}^{*} \omega \\
& =\imath_{X_{\omega}} \omega_{T} .
\end{aligned}
$$

But, on general grounds (see below), $\forall \mathrm{X} \in \mathrm{D}^{1}$ (TM),

$$
S^{*}\left(l_{X} \omega_{T}\right)+\imath_{S X}{ }^{\omega} T=0 .
$$

Therefore

$$
\begin{aligned}
& =-{ }^{l} X_{\omega}{ }_{\omega} T \\
\Rightarrow \quad & \\
S_{\hat{\omega}} & =-X_{\omega} .
\end{aligned}
$$

[Note: According to 6.3, $\forall \mathrm{X} \in \mathrm{D}^{1}$ (TM),

$$
{ }^{l_{X}} \circ \delta_{S}-\delta_{S}{ }^{\circ}{ }^{l} X={ }^{1} S X
$$

So

$$
\begin{aligned}
{ }^{1} S X^{\omega_{T}} & =\left(\imath_{X} \circ \delta_{S}-\delta_{S}{ }^{\circ}{ }^{\imath} X\right) \omega_{T} \\
& =-\delta_{S}{ }^{\imath} X^{\omega} T \quad \text { (cf. 8.1) } \\
& \left.=-S^{*}{ }^{1} X^{\omega} T_{T} \cdot\right]
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\mathrm{X}_{\omega} \hat{\omega} & =d \hat{\omega}\left(\mathrm{X}_{\omega}\right) \\
& =\left(\imath_{\hat{\omega}} \mathrm{X}_{\hat{T}}\right)\left(\mathrm{X}_{\omega}\right) \\
& =\omega_{\mathrm{T}}\left(\mathrm{X}_{\hat{\omega}}, \mathrm{X}_{\omega}\right) \\
& =\omega_{\mathrm{T}}\left(\mathrm{X}_{\hat{\omega}},-\mathrm{SX}_{\hat{\omega}}\right) \\
& =\omega_{\mathrm{T}}\left(\mathrm{SX}_{\hat{\omega}}, \mathrm{X}_{\hat{\omega}}\right)
\end{aligned}
$$

16.2 REMARK The function $\mathrm{X}_{\omega} \hat{\omega}$ is never zero and, in fact, is strictly positive.

4.

For locally,

$$
\begin{aligned}
x_{\omega} \hat{\omega} & =\left(W^{i j}(T)\left(a_{j} \circ \pi_{M}\right) \frac{\partial}{\partial v^{i}}\left(\left(a_{k} \circ \pi_{M}\right) v^{k}\right)\right. \\
& =\left(g^{i j} \circ \pi_{M}\right)\left(a_{j} \circ \pi_{M}\right)\left(a_{i} \circ \pi_{M}\right) \\
& =g(\omega, \omega) \circ \pi_{M} \\
& >0 .
\end{aligned}
$$

Let $\Sigma_{\omega} \subset$ TM be the linear distribution on M determined by ω-- then the assumption is that $\Sigma_{\omega}\left(=(\hat{\omega})^{-1}(0)\right)$ is the arena for the constrained dynamics.
[Note: The fiber dimension of Σ_{ω} is $n-1$ and Σ_{ω} does not have the structure of a tangent bundle.]

Given $\lambda \in C^{\infty}(T M)$, put

$$
\Gamma_{\lambda}=\Gamma_{M}+\lambda X_{\omega}
$$

Then $\Gamma_{\lambda} \in S O(T M)$ (X_{ω} being vertical).
N.B. Along an interval curve γ of Γ_{λ}, we have

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial v^{i}}\right)-\frac{\partial T}{\partial q^{i}}=\Pi_{i}+\lambda\left(a_{i} \circ \pi_{M}\right) \quad(i=1, \ldots, n) .
$$

16.3 LEMMA There exists a unique $\lambda_{0} \in C^{\infty}$ (TM) such that

$$
\Gamma_{\lambda_{0}} \hat{\omega}=0
$$

PROOF If

$$
\begin{aligned}
\Gamma_{\lambda_{0}} \hat{\omega} & =\left(\Gamma_{M}+\lambda_{0} x_{\omega}\right)(\hat{\omega}) \\
& =\Gamma_{M} \hat{\omega}+\lambda_{0} x_{\omega} \hat{\omega} \\
& =0
\end{aligned}
$$

then

$$
\lambda_{0}=-\frac{\Gamma_{M} \hat{\omega}}{x_{\omega} \hat{\omega}} \quad \text { (cf. 16.2) }
$$

This particular choice of λ_{0} is called the Lagrange multiplier: So we pass from

$$
(M, T, \Pi) \text { to }(M, T, \Pi, \omega)
$$

and from

$$
(M, T, \Pi, \omega) \text { to }\left(M, T, \Pi, \omega, \lambda_{0}\right) \text {. }
$$

16.4 LEMMA If λ_{0} is the Lagrange multiplier, then $\Gamma_{\lambda_{0}}$ is tangent to Σ_{ω}.
[A vector field $X \in D^{l}(T M)$ is tangent to Σ_{ω} iff $\left.\hat{X \omega}\right|_{\Sigma_{\omega}}=0$.]

It is now a definition that the constrained dynamics is given by the restriction of $\Gamma_{\lambda_{0}}$ to Σ_{ω}.

Locally,

$$
\Gamma_{M}=v^{i} \frac{\partial}{\partial q^{i}}+C_{M}^{i} \frac{\partial}{\partial v^{i}}
$$

where

$$
C_{M}^{i}=W^{i j}(T) \quad\left(\frac{\partial T}{\partial q^{j}}-\frac{\partial^{2} T}{\partial v^{j} \partial q^{k}} v^{k}+\Pi_{j}\right)
$$

Put

$$
|\omega|^{2}=g(\omega, \omega) \circ \pi_{M^{-}}
$$

Then

$$
\lambda_{0}=-\frac{1}{|\omega|^{2}}\left(\frac{\partial\left(a_{i} \circ \pi_{M}\right)}{\partial q^{j}} v^{i} v^{j}+\left(a_{k} \circ \pi_{M}\right) C_{M}^{k}\right)
$$

And the equations of motion are

$$
\dot{q}^{i}=v^{i}, \dot{v}^{i}=c_{M}^{i}+\lambda_{0}\left(w^{i j}(T)\left(a_{j} \circ \pi_{M}\right)\right)
$$

16.5 EXAMPLE Take $M=\underline{R}^{3}$ and

$$
\begin{aligned}
\quad & g=m\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right) \\
\Rightarrow \quad T & =\frac{m}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}\right),
\end{aligned}
$$

where m is a positive constant. Write

$$
\Pi=\Pi_{1} d q^{1}+\Pi_{2} d q^{2}+\Pi_{3} d q^{3}
$$

Let

$$
\omega=-x^{2} d x^{1}+d x^{3}\left(\Rightarrow a_{1}=-x^{2}, a_{2}=0, a_{3}=1\right)
$$

Then

$$
\left.\Sigma_{\omega}\right|_{\left(x^{1}, x^{2}, x^{3}\right)}=\operatorname{span}\left\{\frac{\partial}{\partial x^{1}}+x^{2} \frac{\partial}{\partial x^{3}}, \frac{\partial}{\partial x^{2}}\right\}
$$

and, in view of $15.28, \Sigma_{\omega}$ is not integrable. Since

$$
\omega_{T}=m\left(d v^{1} \wedge d q^{1}+d v^{2} \wedge d q^{2}+d v^{3} \wedge d q^{3}\right)
$$

and

$$
\pi_{M}^{*} \omega=-q^{2} d q^{1}+d q^{3}
$$

it follows that

$$
x_{\omega}=\frac{1}{m}\left(-q^{2} \frac{\partial}{\partial v^{1}}+\frac{\partial}{\partial v^{3}}\right)
$$

To compute the Lagrange multiplier

$$
\lambda_{0}=-\frac{\Gamma_{M} \hat{\omega}}{X_{\omega} \hat{\omega}^{\prime}}
$$

note that

$$
\hat{\omega}=-q^{2} v^{1}+v^{3}
$$

Using the formula for Γ_{M} given in 10.3, we have

$$
\Gamma_{M} \hat{\omega}=-v^{1} v^{2}-q^{2} \frac{\Pi_{1}}{m}+\frac{\Pi_{3}}{m}
$$

On the other hand,

$$
x_{\omega} \hat{\omega}=\frac{1}{m}\left(\left(q^{2}\right)^{2}+1\right)
$$

Therefore

$$
\lambda_{0}=\frac{m v^{1} v^{2}+q^{2} \Pi_{1}-\Pi_{3}}{\left(q^{2}\right)^{2}+1}
$$

And finally

$$
\left[\begin{array}{l}
\ddot{q}^{1}=\frac{\Pi_{1}}{m}-q^{2} \frac{\lambda_{0}}{m} \\
\ddot{q}^{2}=\frac{\Pi_{2}}{m} \\
\ddot{q}^{3}=\frac{\Pi_{3}}{m}+\frac{\lambda_{0}}{m}
\end{array}\right.
$$

[Note: Take $m=1, \Pi_{1}=\Pi_{2}=\Pi_{3}=0$, and, using the notation of the Appendix to $\S 8$, put

$$
\bar{v}^{1}=v^{1}, \bar{v}^{2}=v^{2}, \bar{v}^{3}=v^{3}-q^{2} v^{1}
$$

Then

$$
\left\{\bar{q}^{1}, \bar{q}^{2}, \bar{q}^{3}, \bar{v}^{1}, \bar{v}^{2}, \bar{v}^{3}\right\}
$$

is a coordinate system adapted to Σ_{ω}. Here

$$
\left[f_{j}^{i}\right]=\left|\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-y & 0 & 1
\end{array}\right|
$$

while

$$
\left[\overline{\mathrm{f}}_{\mathrm{j}}^{\mathrm{i}}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\mathrm{y} & 0 & 1
\end{array}\right]
$$

And

$$
\text { - } \begin{aligned}
\Gamma_{M} & =v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}} \\
& =\bar{v}^{1} \bar{x}_{1}+\bar{v}^{2} \bar{x}_{2}+\bar{v}^{3} \bar{x}_{3}-\bar{v}^{1} \bar{v}^{2} \frac{\partial}{\partial \bar{v}^{3}}
\end{aligned}
$$

9.

- $x_{\omega}=-q^{2} \frac{\partial}{\partial v^{I}}+\frac{\partial}{\partial v^{3}}$

$$
=-\bar{q}^{2} \frac{\partial}{\partial \bar{v}^{1}}+\left(\left(\bar{q}^{2}\right)^{2}+1\right) \frac{\partial}{\partial \bar{v}^{3}}
$$

- $\lambda_{0}=\frac{\bar{v}^{1}-\bar{v}^{2}}{\left(\bar{q}^{2}\right)^{2}+1}$.

Therefore

$$
\begin{aligned}
\Gamma_{\lambda_{0}} & =\Gamma_{M}+\lambda_{0} X_{\omega} \\
& =\bar{v}^{1} \bar{x}_{1}+\bar{v}^{2} \bar{x}_{2}+\bar{v}^{3} \bar{x}_{3}-\frac{\bar{v}^{1} \bar{v}^{2}}{\left(\bar{q}^{2}\right)^{2}+1} \bar{q}^{2} \frac{\partial}{\partial \bar{v}^{1}}
\end{aligned}
$$

So the constrained dynamics is given by

$$
\left.\Gamma_{\lambda_{0}} \left\lvert\,{ }_{\omega}=\bar{v}^{1} \bar{x}_{1}+\bar{v}^{2} \bar{x}_{2}-\frac{\bar{v}^{1} \bar{v}^{2}}{\left(\bar{q}^{2}\right)^{2}+1} \bar{q}^{2} \frac{\partial}{\partial \bar{v}^{1}} .\right.\right]
$$

16.6 LEMMA We have

$$
L_{X_{\omega}} \theta_{T}=\pi_{M}^{*} \omega .
$$

PROOF By definition,

$$
{ }^{l} X_{\omega} \omega_{T}=\pi_{M}^{*} \omega .
$$

Now expand the LHS:

$$
\begin{aligned}
{ }^{l} x_{\omega} \omega_{T} & ={ }^{2} X_{\omega}^{d \theta} T \\
& =\left(L_{x_{\omega}}-d \circ{ }^{2} x_{\omega}\right) \theta_{T}
\end{aligned}
$$

10.

But θ_{T} is horizontal while X_{ω} is vertical, hence $\theta_{T}\left(X_{\omega}\right)=0$ (cf. 6.14). Therefore

$$
{ }^{2} X_{\omega} \omega_{T}=L_{X_{\omega}} \theta_{T}
$$

16.7 LEMMA We have

$$
L_{\Gamma_{\lambda_{0}}} \theta_{\mathrm{T}}=d T+\Pi+\lambda_{0} \pi_{M}^{*} \omega
$$

PROOF Write

$$
\begin{aligned}
L_{\Gamma_{\lambda_{0}}} \theta_{T} & =L_{\Gamma_{M}}+\lambda_{0} X_{\omega}{ }^{\theta} T \\
& =L_{\Gamma_{M}} \theta_{T}+\lambda_{0} L_{X_{\omega}} \theta_{T} \\
& =L_{\Gamma_{M}} \theta_{T}+\lambda_{0}{ }^{\pi *_{M}} \omega \quad \text { (cf. 16.6). }
\end{aligned}
$$

Because r_{M} is second order,

$$
\begin{aligned}
{ }^{l} \Gamma_{M}{ }_{M} T & =\Delta T \quad \text { (cf. 8.13) } \\
& =2 T .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
L_{\Gamma_{M}} \theta_{T} & =\left({ }^{\imath} \Gamma_{M} \circ d+d \circ{ }^{\imath^{\prime}} \Gamma_{M}\right) \theta_{T} \\
& ={ }^{\imath} \Gamma_{M} \omega_{T}+d(2 T) \\
& =-d T+\Pi+2 d T \\
& =d T+\pi .
\end{aligned}
$$

16.8 LEMMA Suppose that $\mathrm{f} \in \mathrm{C}_{\Gamma_{M}^{\infty}}^{\infty}$ (TM). Define $X_{f} \in D^{1}$ (IM) by

$$
{ }^{\imath} x_{f} \omega_{T}=d f
$$

Then

$$
\Gamma_{\lambda_{0}}(f)=-\lambda_{0} \pi_{M}^{*} \omega\left(X_{f}\right)
$$

PROOF First

$$
\begin{aligned}
\Gamma_{\lambda_{0}}(f) & ={ }^{\imath} \Gamma_{\lambda_{0}} d f \\
& ={ }^{\imath} \Gamma_{\lambda_{0}}{ }^{2} x_{f}{ }^{\omega}{ }^{\prime} T \\
& =-{ }^{1} X_{f}{ }^{1} \Gamma_{\lambda_{0}} \omega_{T} .
\end{aligned}
$$

And

$$
\begin{aligned}
& { }^{l} \Gamma_{\lambda_{0}}{ }^{\omega}{ }^{\prime}={ }^{l} \Gamma_{\lambda_{0}} d \theta_{T} \\
& =\left(L_{\Gamma_{\lambda_{0}}}-d \circ{ }^{l_{\Gamma_{\lambda_{0}}}}{ }\right) \theta_{\mathrm{T}} \\
& =L_{\Gamma_{\lambda_{0}}} \theta_{T}-\mathrm{d}(2 \mathrm{~T}) \quad \text { (cf. 8.13) } \\
& =d T+\pi+\lambda_{0} \pi_{M}^{\pi_{m}} \omega-2 d T \text { (cf. 16.7) } \\
& =-d T+\Pi+\lambda_{0} \pi_{M}^{\star} \omega .
\end{aligned}
$$

But

$$
0=\Gamma_{M}{ }^{f}
$$

$$
\begin{aligned}
& ={ }^{\imath} \Gamma_{M}{ }^{d f} \\
& ={ }^{\imath} \Gamma_{M}{ }^{\imath} x_{f}{ }^{\omega} T \\
& =-{ }^{\imath} X_{f}{ }^{\imath} \Gamma_{M}{ }^{\omega} T \\
& =-{ }^{l} X_{f}(-d T+I I) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\Gamma_{\lambda_{0}}(f) & =-{ }_{l_{X}}\left(-d T+\pi+\lambda_{0} \pi_{M}^{*_{N}}\right) \\
& =-{ }^{{ }_{f}} X_{f} \lambda_{0} \pi_{M}^{*} \omega \\
& =-\lambda_{0} \pi_{M}^{*} \omega\left(X_{f}\right)
\end{aligned}
$$

It is thus a corollary that

$$
\pi_{M}^{*} \omega\left(X_{f}\right)=0 \Rightarrow f \in C_{\Gamma_{\lambda_{0}}}^{\infty}(T M)
$$

16.9 焉MARK Take $\mathbb{I}=0$ and let $\mathrm{f}=\mathrm{E}_{\mathrm{T}}$-- then $\mathrm{E}_{\mathrm{T}} \in \mathrm{C}_{\Gamma_{\mathrm{T}}}^{\infty}$ (TM) (cf. 8.10). Here $X_{E_{T}}=-\Gamma_{T}\left({ }^{1} \Gamma_{T} \omega_{T}=-d E_{T}\right)$ and from the above

$$
\begin{aligned}
\Gamma_{\lambda_{0}} E_{T} & =-\lambda_{0} \pi \mathrm{M}^{*} \omega\left(-\Gamma_{\mathrm{T}}\right) \\
& =\lambda_{0} \hat{\omega}_{r}
\end{aligned}
$$

so $\mathrm{E}_{\mathrm{T}} \mid \Sigma_{\omega}$ is a first integral for $\Gamma_{\lambda_{0}} \mid{ }_{\omega}{ }_{\omega}$.

Proceeding to the general case, let $\omega^{l}, \ldots, \omega^{n-k}$ be a set of linearly independent l-forms on M-- then the prescription

$$
\Sigma_{x}=\left.\left.\operatorname{Ker} \omega^{I}\right|_{x} \cap \ldots \cap \operatorname{Ker} \omega^{n-k k}\right|_{x} \quad(x \in M)
$$

defines a linear distribution $\Sigma\left(=\prod_{\mu=1}^{n-k} \sum_{\omega^{\mu}}\right)$ of fiber dimension k. Write X_{μ} in place of $X_{\omega^{\mu}}$, thus

$$
{ }^{\imath} X_{\mu} \omega_{T}=\pi_{M}^{*} \omega^{\mu} \quad(\mu=1, \ldots, n-k)
$$

Given $\lambda^{l}, \ldots, \lambda^{n-k} \in C^{\infty}$ (TM), put

$$
\Gamma_{\underline{\lambda}}=\Gamma_{M}+\lambda^{\mu} x_{\mu} .
$$

16.10 LEMMA The matrix $\left[M_{\mu}{ }^{\nu}\right]$ defined by

$$
M_{\mu}{ }^{\nu}=X_{\mu} \hat{\omega}^{\nu}
$$

is nonsingular (and symmetric).
[In fact,

$$
x_{\mu} \hat{\omega}^{\nu}=g\left(\omega^{\mu}, \omega^{\nu}\right) \circ \pi_{M} \quad \text { (cf. 16.2).1 }
$$

16.11 LEMMA There exists a unique ($n-k)$ tuple $\hat{\lambda}_{0}=\left(\lambda_{0}^{1}, \ldots, \lambda_{0}^{n-k}\right)$ $\left(\lambda_{0}^{\mu} \in C^{\infty}\right.$ (TM) $\left., \mu=1, \ldots, n-k\right)$ such that

$$
\Gamma_{\lambda_{0}} \hat{\omega}^{\nu}=0 \quad(\nu=1, \ldots, n-k)
$$

PROOF If

$$
\begin{aligned}
\Gamma_{\underline{\lambda}_{0}} \hat{\omega}^{\nu} & =\left(\Gamma_{M}+\lambda_{0}^{\mu_{x}}\right)\left(\hat{\omega}^{\nu}\right) \\
& =\Gamma_{M} \hat{\omega}^{\nu}+\lambda_{0}^{\mu} x_{\mu} \hat{\omega}^{\nu} \\
& =0
\end{aligned}
$$

then

$$
\lambda_{0}^{\mu}=-M^{\mu} \nu^{\mu} M^{\omega^{\omega}}
$$

where the matrix $\left[M^{\mu}{ }_{\nu}{ }^{\prime}\right.$] is the inverse of the matrix $\left[M_{\mu}{ }_{\mu}\right.$].

We shall call $\underline{\lambda}_{0}$ the Lagrange multiplier. So, by construction, $\Gamma_{\underline{\lambda}_{0}}$ is tangent to $\Sigma(c f .16 .4)$ and the agreement is that the constrained dynamics is given by $\left.\Gamma_{\lambda_{0}}\right|^{\Sigma .}$
N.B. The equations of motion are $\ddot{q}^{i}=v^{i}, \dot{\mathrm{v}}^{i}=C_{M}^{i}+\lambda_{0}^{\mu}\left(W^{i j}(T)\left(a_{j}^{\mu}{ }_{j} \pi_{M}\right)\right.$).
16.12 EXAMPLE Take $M=\underline{R}^{2} \times \underline{S}^{1} \times \underline{S}^{1}$ and

$$
\begin{aligned}
& \\
\Rightarrow & \\
\Rightarrow & m\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}\right)+I_{3} d x^{3} \otimes d x^{3}+I_{4} d x^{4} \otimes d x^{4} \\
& T=\frac{m}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right)+\frac{1}{2} I_{3}\left(v^{3}\right)^{2}+\frac{1}{2} I_{4}\left(v^{4}\right)^{2},
\end{aligned}
$$

where m, I_{3}, I_{4} are positive constants and, to keep things simple, assume that $\Pi=0 . \quad$ Let

$$
\left[\begin{array}{rl}
\omega^{1} & =d x^{1}-\left(R \cos x^{3}\right) d x^{4} \\
\omega^{2} & =d x^{2}-\left(R \sin x^{3}\right) d x^{4}
\end{array} \quad(R>0)\right.
$$

Then ω^{1}, ω^{2} are linearly independent 1 -forms on M and

$$
\begin{aligned}
& \Sigma \mid\left(x^{1}, x^{2}, x^{3}, x^{4}\right) \\
= & \operatorname{span}\left\{R \cos x^{3} \frac{\partial}{\partial x^{1}}+R \sin x^{3} \frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial x^{4}}, \frac{\partial}{\partial x^{3}}\right\}
\end{aligned}
$$

So Σ is actually analytic but it is not involutive, hence is not integrable (cf. 15.18) . Here

$$
\omega_{T}=m\left(d v^{1} \wedge d q^{1}+d v^{2} \wedge d q^{2}\right)+I_{3}\left(d v^{3} \wedge d q^{3}\right)+I_{4}\left(d v^{4} \wedge d q^{4}\right)
$$

And

$$
\left[\begin{array}{l}
x_{1}=\frac{1}{m} \frac{\partial}{\partial v^{I}}-\frac{R}{I_{4}} \cos q^{3} \frac{\partial}{\partial v^{4}} \\
x_{2}=\frac{1}{m} \frac{\partial}{\partial v^{2}}-\frac{R}{I_{4}} \sin q^{3} \frac{\partial}{\partial v^{4}}
\end{array}\right.
$$

These relations and the fact that

$$
\left.\right|_{-\quad \hat{\omega}^{1}=v^{1}-\left(R \cos q^{3}\right) v^{4}} ^{\hat{\omega}^{2}=v^{2}-\left(R \sin q^{3}\right) v^{4}}
$$

then lead to

$$
\left[\begin{array}{l}
\lambda_{0}^{1}=-\left(m R \sin q^{3}\right) v^{3} v^{4} \\
\lambda_{0}^{2}=\left(m R \cos q^{3}\right) v^{3} v^{4}
\end{array}\right.
$$

Therefore

$$
\begin{gathered}
\Gamma_{\lambda_{0}}=v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}}+v^{4} \frac{\partial}{\partial q^{4}} \\
-\left(R \sin q^{3}\right) v^{3} v^{4} \frac{\partial}{\partial v^{1}}+\left(R \cos q^{3}\right) v^{3} v^{4} \frac{\partial}{\partial v^{2}}
\end{gathered}
$$

from which:

$$
\begin{gathered}
\ddot{q}^{1}=-\left(R \sin q^{3}\right) \dot{q}^{3} \dot{q}^{4}, \ddot{q}^{2}=\left(R \cos q^{3}\right) \dot{q}^{3} \dot{q}^{4} \\
\ddot{q}^{3}=0, \ddot{q}^{4}=0
\end{gathered}
$$

or still, subject to the initial conditions $q_{0}^{i}, v_{0}^{i} \quad(i=1,2,3,4)$,

$$
\left[\begin{array}{l}
q^{1}(t)=R \frac{v_{0}^{4}}{v_{0}^{3}} \sin \left(v_{0}^{3} t+q_{0}^{3}\right)+A_{1} t+B_{1} \\
q^{2}(t)=-R \frac{v_{0}^{4}}{v_{0}^{3}} \cos \left(v_{0}^{3} t+q_{0}^{3}\right)+A_{2} t+B_{2}
\end{array}\right.
$$

and

$$
\left.\right|_{-} ^{q^{3}(t)=v_{0}^{3} t+q_{0}^{3}} \begin{aligned}
& q^{4}(t)=v_{0}^{4} t+q_{0}^{4}
\end{aligned}
$$

$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$ being constants. But

$$
\hat{\omega}^{1}, \hat{\omega}^{2} \in C_{\Gamma_{\underline{\lambda}_{0}}^{\infty}} \text { (TM) (cf. 16.11) }
$$

thus are constant on the trajectories of $\Gamma_{\lambda_{0}}$ (cf. 1.1). Indeed,

$$
\begin{aligned}
\hat{\omega}^{I}(q(t), v(t)) & =R v_{0}^{4} \cos \left(v_{0}^{3} t+q_{0}^{3}\right)+A_{1}-R \cos \left(v_{0}^{3} t+q_{0}^{3}\right) v_{0}^{4} \\
& =A_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{\omega}^{2}(q(t), v(t)) & =R v_{0}^{4} \sin \left(v_{0}^{3} t+q_{0}^{3}\right)+A_{2}-R \sin \left(v_{0}^{3} t+q_{0}^{3}\right) v_{0}^{4} \\
& =A_{2}
\end{aligned}
$$

So

$$
\mathrm{A}_{1}=\mathrm{A}_{2}=0
$$

if the initial conditions lie in $\Sigma=\left(\hat{\omega}^{1}\right)^{-1}(0) \cap\left(\hat{\omega}^{2}\right)^{-1}(0)$.
[Note: The mechanical system represented by the preceding data is the vertical disc of radius R and of uniformly distributed mass m that rolls without slipping on a horizontal plane (I_{3} and I_{4} being the appropriate moments of inertia).]

Suppose again that $\omega \in \Lambda^{1} \mathrm{M}$ is a nowhere vanishing l-form - then in general, Σ_{ω} is not integrable.
16.13 RAPPEL \sum_{ω} is integrable iff the 3 -form $d \omega \wedge \omega$ vanishes:

$$
d \omega \wedge \omega=0 \quad \text { (cf. 15.27). }
$$

16.14 REMARK An integrating factor for ω is a nowhere vanishing $\phi \in C^{\infty}(M)$ such that $d(\phi \omega)=0$. If ω admits an integrating factor ϕ, then Σ_{ω} is integrable. Proof:

$$
\begin{aligned}
d(\phi \omega)=0 & \Rightarrow d \phi \wedge \omega+\phi \wedge d \omega=0 \\
& \Rightarrow \phi \wedge d \omega \wedge \omega=0 \Rightarrow d \omega \wedge \omega=0 .
\end{aligned}
$$

Conversely, the assumption that \sum_{ω} is integrable implies that locally ω admits an integrating factor ϕ (cf. 15.24), hence locally

$$
\phi \omega=d f(\exists f) \Rightarrow \omega=\frac{1}{\phi} d f .
$$

If $\omega=d f\left(f \in C^{\infty}(M), d f_{x} \neq 0 \forall x \in M\right)$, then $\Sigma_{d f}\left(=(\hat{d f})^{-1}(0)\right)$ is integrable (cf. 16.13).

Set

$$
\bar{M}=f^{-1}(0)
$$

Then \bar{M} is a submanifold of M and, in obvious notation, there is an induced mechanical system $\bar{M}=(\bar{M}, \bar{T}, \bar{M})$.
[Note: \bar{M} is not necessarily connected but this point causes no difficulties.]
16.15 LEMMA The vector field $\Gamma_{\lambda_{0}}$ is tangent to $T \bar{M}$ and

$$
\Gamma_{\bar{M}}=\Gamma_{\lambda_{0}} \mid \overline{T M}
$$

Here is a corollary. Assume that $\Pi=0$ - then

$$
\Gamma_{\lambda_{0}}=\Gamma_{\mathrm{T}}+\lambda_{0} \mathrm{X}_{\hat{\mathrm{df}}}
$$

Therefore

$$
\Gamma_{\bar{T}}=\left.\Gamma_{\lambda_{0}}\right|^{T \bar{M}}
$$

[Note: The integral curves of $\Gamma_{\bar{T}}$ are in a one-to-one correspondence with the geodesics of ($\overline{\mathrm{M}}, \overline{\mathrm{g}}$) (cf. 10.6). Bear in mind too that an integral curve of $\Gamma_{\lambda_{0}}$ that passes through a point of $\overline{T M}$ is contained in T MM.]
16.16 EXAMPLE Take $M=\underline{R}^{3}-\{0\}$,

$$
\left[\begin{array}{l}
g=m\left(d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}+d x^{3} \otimes d x^{3}\right)(m>0) \\
f=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}+\left(x^{3}\right)^{2}-R^{2} \quad(R>0)
\end{array}\right.
$$

and suppose that $\Pi=0$ - then

$$
\left[\begin{array}{l}
x_{\hat{d f}}=\frac{2 q^{i}}{m} \frac{\partial}{\partial v^{i}} \quad\left(\hat{d f}=2 q^{i} v^{i}\right) \\
\lambda_{0}=-\frac{m}{2|q|^{2}}|v|^{2} \quad \text { (notation as in 9.21) }
\end{array}\right.
$$

Therefore

$$
\begin{aligned}
& \quad \Gamma_{\lambda_{0}} & =v^{i} \frac{\partial}{\partial q^{i}}-\frac{|v|^{2}}{|q|^{2}} q^{i} \frac{\partial}{\partial v^{i}} \\
\Rightarrow \quad & \Gamma_{\bar{T}} & =v^{i} \frac{\partial}{\partial q^{i}}-\frac{|v|^{2}}{R^{2}} q^{i} \frac{\partial}{\partial v^{i}} .
\end{aligned}
$$

And on $f^{-1}(0)$,

$$
\ddot{x}^{i}(t)+\frac{\left.\dot{x}(t)\right|^{2}}{R^{2}} x^{i}(t)=0 \quad(i=1,2,3)
$$

In anticipation of the developments to come, we shall shift our point of view and fix a nondegenerate lagrangian L. Let $\omega^{1}, \ldots, \omega^{n-k}$ be a system of constraints -- then \exists a unique vertical X_{μ} :

$$
{ }^{l} x_{\mu} \omega_{L}=\pi_{M}^{*} \omega^{\mu} \quad(\mu=1, \ldots, n-k) \quad \text { (cf. 8.23) }
$$

Given $\lambda^{1}, \ldots, \lambda^{n-k} \in C^{\infty}$ (TM) , put

$$
\Gamma_{\underline{\lambda}}=\Gamma_{L}+\lambda^{\mu} X_{\mu} .
$$

Then the crux is the validity of 16.10 which, in general, will fail.
[Note: Locally,

$$
\left.x_{\mu} \hat{\omega}^{\nu}=\left(\omega(L)^{-1}\right)^{k \ell} \frac{\partial \hat{\omega}^{\mu}}{\partial v^{k}} \frac{\partial \hat{\omega}^{\nu}}{\partial v^{l}} \cdot\right]
$$

16.17 EXAMPLE Take $M=\underline{R}^{3}$ and define $L: T_{R} \underline{R}^{3} \rightarrow \underline{R}$ by

$$
\begin{aligned}
& L\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right) \\
& \quad=\frac{1}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}-\left(v^{3}\right)^{2}\right)
\end{aligned}
$$

Then L is nondegenerate and

$$
\omega_{L}=d v^{1} \Lambda d q^{1}+d v^{2} \wedge d q^{2}-d v^{3} \Lambda d q^{3}
$$

Letting

$$
\omega=d x^{2}+d x^{3}
$$

we have

$$
x_{\omega}=\frac{\partial}{\partial v^{2}}-\frac{\partial}{\partial v^{3}}
$$

But

$$
\begin{aligned}
\mathrm{x}_{\omega} \hat{\omega} & =\left(\frac{\partial}{\partial v^{2}}-\frac{\partial}{\partial v^{3}}\right)\left(v^{2}+v^{3}\right) \\
& =1-1=0
\end{aligned}
$$

[Note: L is the " T " per the semiriemannian structure

$$
g=d x^{1} \otimes d x^{1}+d x^{2} \otimes d x^{2}-d x^{3} \otimes d x^{3}
$$

on \underline{R}^{3}.]

Call

$$
\left(L,\left\{\omega^{1}, \ldots, \omega^{n-k}\right\}\right)
$$

regular if the matrix

$$
\left[x_{\mu} \hat{\omega}^{\nu}\right]
$$

is nonsingular; otherwise, call

$$
\left(L,\left\{\omega^{1}, \ldots, \omega^{n-k_{1}}\right\}\right)
$$

irregular.
N.B. If

$$
\mathrm{L}=\mathrm{T}-\mathrm{V} \circ \pi_{\mathrm{M}^{\prime}}
$$

where g is riemannian, then

$$
\left(\mathrm{L},\left\{\omega^{I}, \ldots, \omega^{\mathrm{n}-\mathrm{k}}\right\}\right)
$$

is regular.

The upshot, therefore, is that in the presence of regularity one can determine the Lagrange multiplier λ_{0} and proceed as before.

In the irregular situation, matters are not straightforward and there may be no resolution at all. For sake of argument, let us assume that it is a question of a single constraint ω and consider the equation of tangency:

$$
\Gamma_{L} \hat{\omega}+\lambda_{0} X_{\omega} \hat{\omega}=0
$$

If $X_{\omega} \hat{\omega}$ is never zero, then

$$
\lambda_{0}=-\frac{\Gamma_{L} \hat{\omega}}{x_{\omega} \hat{\omega}}
$$

and we are in business. Suppose that $X_{\omega} \hat{\omega} \equiv 0$. If $\Gamma_{L} \hat{\omega}=0$ on $\Sigma_{\omega^{\prime}}$ then the dynamics is undetermined, i.e., $\forall \lambda$,

$$
\Gamma_{L} \hat{\omega}+\lambda X_{\omega} \hat{\omega}=0
$$

However, if $x_{\omega} \hat{\omega} \equiv 0$ and $\Gamma_{L} \hat{\omega} \not \equiv 0$ on Σ_{ω}, then $\forall \lambda$,

$$
\Gamma_{L} \hat{\omega}+\lambda x_{\omega} \hat{\omega}=0
$$

on

$$
\Sigma_{\omega}^{1}=\left(\Gamma_{L} \hat{\omega}^{-1}(0) \cap \Sigma_{\omega}\right.
$$

and we are led to the secondary equation of tangency

$$
\Gamma_{L} \Gamma_{L} \hat{\omega}+\lambda \frac{1}{0} X_{\omega} \Gamma_{L} \hat{\omega}=0
$$

whose solution is

$$
\lambda_{0}^{1}=-\frac{\Gamma_{\mathrm{L}} \Gamma_{\mathrm{L}} \hat{\omega}}{\mathrm{X}_{\omega} \Gamma_{\mathrm{L}} \hat{\omega}}
$$

provided $X_{\omega} \Gamma_{L} \hat{\omega}$ is never zero. But this may fail. In that event, if $\Gamma_{L} \Gamma_{L} \hat{\omega}=0$ on Σ_{ω}^{1} as well, then the dynamics is undetermined. Still, it might happen that $\Gamma_{L} \Gamma_{L} \hat{\omega} \not \equiv 0$ on Σ_{ω}^{1} and when this is so, one can pass to $\Sigma_{\omega}^{2} \subset \Sigma_{\omega}^{1} \cdots$.
16.18 EXAMPLE In the setup of 16.17, $\mathrm{x}_{\omega} \hat{\omega}=0$ and

$$
\begin{aligned}
\Gamma_{L} \hat{\omega} & =\left(v^{1} \frac{\partial}{\partial v^{1}}+v^{2} \frac{\partial}{\partial v^{2}}+v^{3} \frac{\partial}{\partial v^{3}}\right)\left(v^{2}+v^{3}\right) \\
& =0
\end{aligned}
$$

so the dynamics is undetermined. Now modify L by appending the term $\frac{1}{2}\left(q^{1}\right)^{2}$ and change ω to $d x^{1}+d x^{3}-$ then

$$
\begin{aligned}
x_{\omega} & =\frac{\partial}{\partial v^{1}}-\frac{\partial}{\partial v^{3}} \\
\Rightarrow \quad x_{\omega} \hat{\omega} & =\left(\frac{\partial}{\partial v^{1}}-\frac{\partial}{\partial v^{3}}\right)\left(v^{1}+v^{3}\right) \\
& =1-1=0
\end{aligned}
$$

And

$$
\begin{aligned}
\Gamma_{L} \hat{\omega} & =\left(v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}}+q^{1} \frac{\partial}{\partial v^{1}}\right)\left(v^{1}+v^{3}\right) \\
& =q^{1} .
\end{aligned}
$$

Therefore $\Gamma_{L} \hat{\omega} \nexists 0$ on

$$
\Sigma_{\omega}=\left\{\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right): v^{1}+v^{3}=0\right\}
$$

and

$$
\Sigma_{\omega}^{1}=\left\{\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right): q^{1}=0, v^{1}+v^{3}=0\right\} .
$$

But

$$
X_{\omega} \Gamma_{L} \hat{\omega}=X_{\omega} q^{I}=0
$$

while

$$
\Gamma_{L} \Gamma_{L} \hat{\omega}=\Gamma_{L} q^{I}=v^{1}
$$

so the next step in the procedure outlined above is to pass to

$$
\Sigma_{\omega}^{2}=\left\{\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right): q^{1}=0, v^{1}=0, v^{3}=0\right\}
$$

Since

$$
X_{\omega} \Gamma_{L} \Gamma_{L} \hat{\omega}=X_{\omega} v^{l}=1
$$

the algorithim stabilizes at Σ_{ω}^{2}, the Lagrange multiplier being

$$
\lambda_{0}^{2}=-\frac{\Gamma_{\Sigma} v^{1}}{x_{\omega} v^{1}}=-q^{1}
$$

and

$$
\left(\Gamma_{L}-q^{1} x_{\omega}\right) \mid \Sigma_{\omega}^{2}
$$

realizes the dynamics on Σ_{ω}^{2}.

By an affine system of constraints we shall understand a system of constraints $\omega^{1}, \ldots, \omega^{n-k}$ together with functions $\phi^{l}, \ldots, \phi^{n-k} \in C^{\infty}(M)$. Put

$$
\Phi^{\mu}=\hat{\omega}^{\mu}+\phi^{\mu} \circ \pi_{M} \quad(\mu=1, \ldots, \mathrm{n}-\mathrm{k})
$$

and set

$$
\mathrm{C}=\stackrel{n}{\mu=1} \mathrm{n}^{\mathrm{n}-\mathrm{k}}\left(\Phi^{\mu}\right)^{-1}(0)
$$

Assuming that

$$
\left(L,\left\{\omega^{l}, \ldots, \omega^{n-k}\right\}\right)
$$

is regular, 16.11 then implies that there exists a unique ($n-k$)-tuple $\underline{\lambda}_{0}=\left(\lambda_{0}^{1}, \ldots, \lambda_{0}^{n-k}\right)\left(\lambda_{0}^{\mu} \in C^{\infty}(T M), \mu=1, \ldots, n-k\right)$ such that

$$
\Gamma_{\lambda_{0}} \Phi^{\nu}=0 \quad(\nu=1, \ldots, n-k)
$$

And again the agreement is that the constrained dynamics is given by $\Gamma_{\lambda_{0}} \mid c$.
[Note: As regards the Lagrange multiplier $\hat{\lambda}_{0}$, we have

$$
\begin{aligned}
\Gamma_{\underline{\lambda}_{0}} \Phi^{\nu} & =\Gamma_{L} \Phi^{\nu}+\lambda_{0}^{\mu} \mathrm{X}_{\mu} \Phi^{\nu} \\
& =\Gamma_{L} \Phi^{\nu}+\lambda_{0}^{\mu} \mathrm{X}_{\mu} \hat{\omega}^{\nu} .
\end{aligned}
$$

Here

$$
\mathrm{X}_{\mu}\left(\phi^{\nu} \circ \pi_{\mathrm{M}}\right)=0,
$$

X_{μ} being vertical.]
16.19 REMARK Consider the case when $\Phi=\omega+\phi-$ then

$$
\Gamma_{\lambda_{0}} E_{L}=\lambda_{0} \hat{\omega} \quad \text { (cf. 16.9) }
$$

And, on C,

$$
\lambda_{0} \hat{\omega}=-\lambda_{0}\left(\phi \circ \pi_{M}\right)
$$

which, in general, is nonzero.
16.20 IEMMA Suppose that

$$
\left(\mathrm{L},\left\{\omega^{\mathrm{l}}, \ldots, \omega^{\mathrm{n}-\mathrm{k}^{\prime}}\right\}\right)
$$

is regular -- then along an integral curve γ of ${ }^{\Gamma_{\lambda_{0}}}$, we have

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=\sum_{\mu=1}^{n-k} \lambda_{0}^{\mu} \frac{\partial \Phi^{\mu}}{\partial v^{i}} \quad(i=1, \ldots, n) .
$$

[This is an immediate consequence of the definitions.]

16.21 EXAMPLE Take

$$
\left.M=\underline{R}^{2} \times\right] 0,2 \pi[\times] 0, \pi[\times] 0,2 \pi[
$$

and define $L: T M \rightarrow$ R by

$$
\begin{aligned}
& L\left(q^{1}, q^{2}, q^{3}, q^{4}, q^{5}, v^{1}, v^{2}, v^{3}, v^{4}, v^{5}\right) \\
& \quad=\frac{m}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right) \\
& +\frac{I}{2}\left(\left(v^{3}\right)^{2}+\left(v^{4}\right)^{2}+\left(v^{5}\right)^{2}+2 v^{3} v^{5} \cos q^{4}\right)
\end{aligned}
$$

where $m>0, I>0--$ then L is nondegenerate (see the Appendix, A.24). Given $R>0, \Omega_{0} \neq 0$, let

$$
\left[\begin{array}{l}
\omega^{I}=d x^{1}-\left(R \sin x^{5}\right) d x^{4}+\left(R \sin x^{4} \cos x^{5}\right) d x^{3} \\
\omega^{2}=d x^{2}+\left(R \cos x^{5}\right) d x^{4}+\left(R \sin x^{4} \sin x^{5}\right) d x^{3}
\end{array}\right.
$$

and

$$
\left.\right|_{-\quad \phi^{1}=\Omega_{0} x^{2}} ^{\phi^{2}}=-\Omega_{0} x^{1} .
$$

Put

$$
C=\left(\Phi^{1}\right)^{-1}(0) \cap\left(\Phi^{2}\right)^{-1}(0)
$$

Then

$$
\mid\left(x^{1}, x^{2}, x^{3}, x^{4}, x^{5}\right)
$$

is an affine subspace of

$$
{ }_{\left(x^{1}, x^{2}, x^{3}, x^{4}, x^{5}\right)^{M}}^{M}
$$

viz.

$$
\begin{aligned}
& \operatorname{span}\left\{\left(R \sin x^{5}\right) \frac{\partial}{\partial x^{1}}-\left(R \cos x^{5}\right) \frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial x^{4}}\right. \\
& \left.-\left(R \sin x^{4} \cos x^{5}\right) \frac{\partial}{\partial x^{1}}-\left(R \sin x^{4} \sin x^{5}\right) \frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial x^{3}}, \frac{\partial}{\partial x^{5}}\right\} \\
& \\
& +\left(-\Omega_{0} x^{2} \frac{\partial}{\partial x^{1}}+\Omega_{0} x^{1} \frac{\partial}{\partial x^{2}}\right)
\end{aligned}
$$

Since

$$
\left(L,\left\{\omega^{1}, \omega^{2}\right\}\right)
$$

is regular, the Lagrange multiplier $\underline{\lambda}_{0}=\left(\lambda_{0}^{1}, \lambda_{0}^{2}\right)$ exists, from which $\Gamma_{\underline{\lambda}_{0}} \mid C$. on general grounds,

$$
\ddot{q}^{i}=C^{i}+\lambda_{0}^{\mu}\left(W^{i j}(L)\left(a_{j}^{\mu} \circ \pi_{M}\right) \quad(i=1,2,3,4,5) .\right.
$$

Here

$$
\left\{\begin{array}{l}
a_{1}^{1}=1, a_{2}^{1}=0, a_{3}^{1}=R \sin x^{4} \cos x^{5}, a_{4}^{1}=-R \sin x^{5}, a_{5}^{1}=0 \\
a_{1}^{2}=0, a_{2}^{2}=1, a_{3}^{2}=R \sin x^{4} \sin x^{5}, a_{4}^{2}=R \cos x^{5}, a_{5}^{2}=0
\end{array}\right.
$$

Accordingly,

$$
\begin{aligned}
& \ddot{q^{1}=}=C^{1}+\lambda_{0}^{1}\left(W^{11}(L)\left(a_{1}^{1} \circ \pi_{M}\right)\right. \\
& \left.\quad+W^{13}(L)\left(a_{3}^{1} \circ \pi_{M}\right)+W^{14}(L)\left(a_{4}^{1} \circ \pi_{M}\right)\right) \\
& +\lambda_{0}^{2}\left(W^{12}(L)\left(a_{2}^{2} \circ \pi_{M}\right)+W^{13}(L)\left(a_{3}^{2} \circ \pi_{M}\right)+W^{14}(L)\left(a_{4}^{2} \circ \pi_{M}\right)\right) \\
& = \\
& =0+\lambda_{0}^{1}\left(\frac{1}{m}+0+0\right)+\lambda_{0}^{2}(0+0+0) \\
& =
\end{aligned}
$$

And likewise

$$
\ddot{q}^{2}=\frac{\lambda_{0}^{2}}{m}
$$

One can also explicate $\ddot{q}^{3}, \ddot{q}^{4}, \ddot{q}^{5}$ but the final formulas are on the complicated side, hence will be amitted (they will not be necessary in what follows). It remains to compute $\lambda_{0}^{1}, \lambda_{0}^{2}$. This can be done mechanistically by feeding the data into the machine and grinding it out. However, to shorten the discussion, we shall confine our attention just to C and employ an artifice. Consider an integral curve γ of $\Gamma_{\lambda_{0}}$ lying in C (recall that $\Gamma_{\lambda_{0}}$ is, by construction, tangent to C).
29.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{\partial L}{\partial v^{3}}=I v^{3}+I v^{5} \cos q^{4} \\
\frac{\partial L}{\partial q^{3}}=0
\end{array}\right.} \\
& \text { => } \\
& \frac{d}{d t}\left(I v^{3}+I v^{5} \cos q^{4}\right)=\lambda_{0}^{1} \frac{\partial \Phi^{1}}{\partial v^{3}}+\lambda_{0}^{2} \frac{\partial \Phi^{2}}{\partial v^{3}} \\
& =R \sin q^{4}\left(\lambda_{0}^{1} \cos q^{5}+\lambda_{0}^{2} \sin q^{5}\right) . \\
& \left.\right|_{-} ^{-\frac{\partial L}{\partial v^{4}}=I v^{4}} \begin{array}{l}
\frac{\partial L}{\partial q^{4}}=-I v^{3} v^{5} \sin q^{4}
\end{array} \\
& \text { => } \\
& \frac{d}{d t} I v^{4}+I v^{3} v^{5} \sin q^{4}=\lambda_{0}^{1} \frac{\partial \Phi^{1}}{\partial v^{4}}+\lambda_{0}^{2} \frac{\partial \Phi^{2}}{\partial v^{4}} \\
& =\lambda_{0}^{1}\left(-R \sin q^{5}\right)+\lambda_{0}^{2}\left(R \cos q^{5}\right) . \\
& \int^{-} \frac{\partial L}{\partial v^{5}}=I v^{5}+I v^{3} \cos q^{4}
\end{aligned}
$$

30.

$$
\Rightarrow
$$

$$
\begin{aligned}
\frac{d}{d t}\left(I v^{5}+I v^{3} \cos q^{4}\right) & =\lambda_{0}^{1} \frac{\partial \Phi^{1}}{\partial v^{5}}+\lambda_{0}^{2} \frac{\partial \Phi^{2}}{\partial v^{5}} \\
& =\lambda_{0}^{1}(0)+\lambda_{0}^{2}(0) \\
& =0
\end{aligned}
$$

So

$$
\begin{aligned}
& \cos q^{5}\left(I v^{4}+I v^{3} v^{5} \sin q^{4}\right) \\
& \quad=\lambda_{0}^{1}\left(-R \sin q^{5} \cos q^{5}\right)+R \lambda_{0}^{2}\left(\cos q^{5}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\sin q^{5}}{\sin q^{4}} \frac{d}{d t}\left(I v^{3}+I v^{5} \cos q^{4}\right) \\
& \quad=\lambda_{0}^{1}\left(R \sin q^{5} \cos q^{5}\right)+R \lambda_{0}^{2}\left(\sin q^{5}\right)^{2}
\end{aligned}
$$

Now add these equations to get

$$
\begin{aligned}
R \lambda_{0}^{2} & =\cos q^{5}\left(I v^{4}+I v^{3} v^{5} \sin q^{4}\right) \\
& +\frac{\sin q^{5}}{\sin q^{4}} \frac{d}{d t}\left(I v^{3}+I v^{5} \cos q^{4}\right)
\end{aligned}
$$

or still,

$$
\begin{aligned}
R \lambda_{0}^{2} & =I\left(\dot{v}^{4} \cos q^{5}+v^{3} v^{5} \sin q^{4} \cos q^{5}\right. \\
& \left.+\dot{v}^{3} \frac{\sin q^{5}}{\sin q^{4}}+\dot{v}^{5} \sin q^{5} \frac{\cos q^{4}}{\sin q^{4}}-v^{4} v^{5} \sin q^{5}\right)
\end{aligned}
$$

But

$$
\begin{aligned}
& \dot{v}^{5}+\dot{v}^{3} \cos q^{4}-v^{3} v^{4} \sin q^{4}=0 \\
\Rightarrow & \dot{v}^{5} \sin q^{5} \frac{\cos q^{4}}{\sin q^{4}} \\
& =\left(v^{3} v^{4} \sin q^{4}-\dot{v}^{3} \cos q^{4}\right) \sin q^{5} \frac{\cos q^{4}}{\sin q^{4}} \\
\Rightarrow \quad & \begin{aligned}
& \dot{v}^{3} \frac{\sin q^{5}}{\sin q^{4}}-\dot{v}^{3}\left(\cos q^{4}\right)^{2} \frac{\sin q^{5}}{\sin q^{4}} \\
& =\frac{\dot{v}^{3}}{\sin q^{4}} \sin ^{5}\left(1-\left(\cos q^{4}\right)^{2}\right) \\
& =\dot{v}^{3} \sin ^{4} q^{\sin q^{5}} .
\end{aligned}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
R \lambda_{0}^{2} & =I\left(\dot{v}^{4} \cos q^{5}+v^{3} v^{5} \sin q^{4} \cos q^{5}\right. \\
& \left.+\dot{v}^{3} \sin q^{4} \sin q^{5}+v^{3} v^{4} \cos q^{4} \sin q^{5}-v^{4} v^{5} \sin q^{5}\right)
\end{aligned}
$$

On C,

$$
v^{2}+\left(R \cos q^{5}\right) v^{4}+\left(R \sin q^{4} \sin q^{5}\right) v^{3}-\Omega_{0} q^{1}=0
$$

Thus along γ,

$$
\begin{aligned}
& \left(-R \sin q^{5}\right) v^{4} v^{5}+\left(R \cos q^{5}\right) \dot{v}^{4} \\
+ & \left(R \cos q^{4} \sin q^{5}\right) v^{3} v^{4}+\left(R \sin q^{4} \cos q^{5}\right) v^{3} v^{5}+\left(R \sin q^{4} \sin q^{5}\right) \dot{v}^{3}
\end{aligned}
$$

$$
=-\dot{v}^{2}+\Omega_{0} v^{1}
$$

And then

$$
\begin{aligned}
R \lambda_{0}^{2} & =\frac{I}{R}\left(-\dot{v}^{2}+\Omega_{0} v^{1}\right) \\
& =\frac{I}{R}\left(-\ddot{q}^{2}+\Omega_{0} \dot{q}^{1}\right) \\
& =\frac{I}{R}\left(-\frac{\lambda_{0}^{2}}{m}+\Omega_{0} \dot{q}^{1}\right) .
\end{aligned}
$$

I.e.:

$$
\begin{aligned}
\lambda_{0}^{2} & =\frac{\frac{I}{R}}{R+\frac{I}{m R}} \Omega_{0} \dot{q}^{1} \\
& =\frac{m I}{I+m R^{2}} \Omega_{0} \dot{q}^{1} \\
\Rightarrow \quad \ddot{q}^{2} & =\frac{\lambda_{0}^{2}}{m}=\frac{I}{I+m R^{2}} \Omega_{0} \dot{q}^{1} .
\end{aligned}
$$

Analogously,

$$
\ddot{q}^{1}=\frac{\lambda_{0}^{I}}{m}=-\frac{I}{I+m R^{2}} \Omega_{0} \dot{q}^{2}
$$

[Note: A corollary is that

$$
\mathrm{E}_{\mathrm{L}}\left|\mathrm{C} \notin \mathrm{C}_{\Gamma_{\lambda_{0}}^{\infty}}\right| \mathrm{C}^{(\mathrm{C})}
$$

or still,

$$
\left(\Gamma_{\lambda_{0}} \mid C\right)\left(E_{L} \mid C\right)=\Gamma_{\lambda_{0}} E_{L} \mid C
$$

$\neq 0$.

In fact,

$$
\begin{aligned}
\Gamma_{\lambda_{0}} E_{L}= & \lambda_{0}^{I} \hat{\omega}^{I}+\lambda_{0}^{2} \hat{\omega}^{2} \quad \text { (cf. 16.19) } \\
\Rightarrow \quad{ }_{{ }_{\lambda_{0}}} E_{L} \mid C & =\left(\lambda_{0}^{l} \hat{\omega}^{l}+\lambda_{0}^{2} \hat{\omega}^{2}\right) \mid C \\
& =-\left(\lambda_{0}^{I} \Omega_{0} q^{2}-\lambda_{0}^{2} \Omega_{0} q^{1}\right) \mid C \\
& \left.=-\frac{m I}{I+m R^{2}} \Omega_{0}^{2}\left(-v^{2} q^{2}-v^{I} q^{1}\right) \right\rvert\, C \\
& \left.=\frac{m I}{I+m R^{2}} \Omega_{0}^{2}\left(q^{1} v^{1}+q^{2} v^{2}\right) \right\rvert\, C .
\end{aligned}
$$

Turning to the physics that realizes the above setup, consider a homogeneous ball of radius R and mass m which rolls without slipping on a horizontal plate that rotates with constant angular velocity $\Omega_{0} \neq 0$ about a vertical axis through one of its points -- then $M=\underline{R}^{2} \times \underline{S O}(3)$. Fix a reference frame with origin the center of rotation of the plate and vertical axis the rotation axis of the plate. Let $\left(x^{1}, x^{2}\right)$ denote the point of contact of the ball and the plate and let $\left(x^{3}, x^{4}, x^{5}\right)$ be a chart on SO(3) per the 3-1-3 system of Euler angles (see the Appendix) -- then L, $\omega^{1}, \omega^{2}, \phi^{1}, \phi^{2}$ are as above (the potential energy corresponding to the gravitational force is constant, so there is no loss of generality in setting it equal to zero). Spelled out in traditional notation, the lagrangian is

$$
\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{I}{2}\left(\dot{\phi}^{2}+\dot{\theta}^{2}+\dot{\psi}^{2}+2 \dot{\phi} \dot{\psi} \cos \theta\right)
$$

the constraint equations expressing the condition of rolling without slipping are

$$
\left[\begin{array}{l}
\dot{x}-R \dot{\theta} \sin \psi+R \dot{\phi} \sin \theta \cos \psi+\Omega_{0} y=0 \\
\dot{y}+R \dot{\theta} \cos \psi+R \dot{\phi} \sin \theta \sin \psi-\Omega_{0} x=0
\end{array}\right.
$$

and

$$
\left[\begin{array}{l}
\ddot{x}+\frac{I}{I+m R^{2}} \Omega_{0} \dot{y}=0 \\
\ddot{y}-\frac{I}{I+m R^{2}} \Omega_{0} \dot{x}=0
\end{array}\right.
$$

But $I=\frac{2}{5} m R^{2}$ (see the Appendix, A.13), hence

$$
\left[\begin{array}{l}
\ddot{x}+\frac{2}{7} \Omega_{0} \dot{y}=0 \\
\ddot{y}-\frac{2}{7} \Omega_{0} \dot{x}=0
\end{array}\right.
$$

It is then an elementary matter to determine the motion:

$$
\begin{aligned}
& +\left[\begin{array}{c}
x(0)-\frac{7}{2} \frac{1}{\Omega_{0}} \dot{y}(0) \\
y(0)+\frac{7}{2} \frac{1}{\Omega_{0}} \dot{x}(0)
\end{array}\right] .
\end{aligned}
$$

35.

Therefore the orbit of the point of contact of the ball is a circle on the plate.]
16.22 REMARK If we take $\Omega_{0}=0$ in the above, then the constraints are linear rather than affine. Consider

$$
\left[\begin{array}{c}
\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi \\
\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi \\
\dot{\phi} \cos \theta+\dot{\psi}
\end{array}\right]
$$

It has already been pointed out that

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\dot{\phi} \cos \theta+\dot{\psi})=0
$$

Next, from the preceding analysis,

$$
R \lambda_{0}^{2}=I \frac{d}{d t}(\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi)
$$

But

$$
\begin{aligned}
\Omega_{0}=0 & \Rightarrow \lambda_{0}^{2}=0 \\
& \Rightarrow \frac{d}{d t}(\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi)=0
\end{aligned}
$$

Ditto

$$
\frac{d}{d t}(\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi)=0
$$

The upshot, therefore, is that the ball rolls at constant speed in a straight line and its body angular velocity $\Omega(t)$ is constant in time (however, $\Omega(t)$ is not necessarily horizontal since $\dot{\phi} \cos \theta+\dot{\psi}$, while constant, is typically nonzero). Moreover, in this situation, $E_{L} \mid C$ is a first integral for $\Gamma_{\lambda_{0}} \mid C$.

§17. LIE ALGEBROIDS

Let $\pi: E \rightarrow M$ be a vector bundle of fiber dimension k.

- Assume: sec E is a Lie algebra with bracket $[,]_{\mathrm{E}}$.
- Assume: $\rho: E \rightarrow T M$ is a vector bundle morphism over M, i.e.,

Then the triple ($E,[,]_{E^{\prime}} \rho$) is called a Lie algebroid over M if $\forall f \in C^{\infty}(M)$, $\forall s_{1}, s_{2} \in \sec E$,

$$
\left[s_{1}, f s_{2}\right]_{E}=f\left[s_{1}, s_{2}\right]_{E}+\left(\left(\rho \circ s_{1}\right) f\right) s_{2}
$$

[Note: ρ is referred to as the anchor map.]
N.B. The arrow

$$
\left.\right|_{-\quad \sec E \rightarrow \sec T M\left(=D^{l}(M)\right)} \quad s \rightarrow \rho \circ s
$$

is a homomorphism of Lie algebras: $\forall s_{1}, s_{2} \in \sec \mathrm{E}$,

$$
\rho \circ\left[\mathbf{s}_{1}, \mathbf{s}_{2}\right]_{\mathrm{E}}=\left[\rho \circ \rho_{1} \circ \mathbf{s}_{1}, \rho \circ \mathbf{s}_{2}\right]
$$

where the bracket on the RHS is the usual commutator of vector fields. In fact, $\forall f \in C^{\infty}(M), \forall s_{1}, s_{2}, s_{3} \in \sec E$,

$$
\left[\left[s_{1}, s_{2}\right]_{E^{\prime}} f s_{3}\right]_{E}=f\left[\left[s_{1}, s_{2}\right]_{E^{\prime}} s_{3}\right]_{E}+\left(\left(\rho \circ\left[s_{1}, s_{2}\right]_{E}\right) f\right) s_{3}
$$

2.

On the other hand,

$$
\begin{aligned}
& {\left[\left[s_{1}, s_{2}\right]_{E^{\prime}} \mathrm{fs}_{3}\right]_{E}} \\
& \left.=-\left[\left[s_{2}, f s_{3}\right]_{E^{\prime}} s_{1}\right]_{E^{\prime}} s_{1}\right]_{E}-\left[\left[f_{s_{3}}, s_{1}\right]_{E^{\prime}} s_{2}\right] E \\
& =-\left[\left[s_{2}, f s_{3}\right]_{E^{\prime}}, s_{1}\right]_{E}+\left[\left[s_{1}, f s_{3}\right]_{E^{\prime}} s_{2}\right]_{E} \\
& =-\left[f\left[s_{2}, s_{3}\right]_{E}+\left(\left(\rho \circ s_{2}\right) f\right) s_{3}, s_{1}\right]_{E} \\
& +\left[f\left[s_{1}, s_{3}\right]_{E}+\left(\left(\rho \circ s_{1}\right) f\right) s_{3}, s_{2}\right]_{E} \\
& =\left[s_{1}, f\left[s_{2}, s_{3}\right]_{E}\right]_{E}+\left[s_{1},\left(\left(\rho \circ s_{2}\right) f\right) s_{3}\right]_{E} \\
& -\left[s_{2}, f\left[s_{1}, s_{3}\right]_{E}\right]_{E}-\left[s_{2},\left(\left(\rho \circ s_{1}\right) f\right) s_{3}\right]_{E} \\
& =f\left[s_{1},\left[s_{2}, s_{3}\right]_{E}\right]_{E}+\left(\left(\rho \circ s_{1}\right) f\right)\left[s_{2}, s_{3}\right]_{E} \\
& +\left(\left(\rho \circ s_{2}\right) f\right)\left[s_{1}, s_{3}\right]_{E}+\left(\left(\rho \circ s_{1}\right)\left(\rho \circ s_{2}\right) f\right) s_{3} \\
& -f\left[s_{2},\left[s_{1}, s_{3}\right]_{E}\right]_{E}-\left(\left(\rho \circ s_{2}\right) f\right)\left[s_{1}, s_{3}\right]_{E} \\
& -\left(\left(\rho \circ s_{1}\right) f\right)\left[s_{2}, s_{3}\right]_{E}-\left(\left(\rho \circ s_{2}\right)\left(\rho \circ s_{1}\right) f\right) s_{3} \\
& =\mathrm{f}\left(\left[\mathrm{~s}_{1},\left[s_{2}, s_{3}\right]_{\mathrm{E}}\right]_{\mathrm{E}}-\left[\mathrm{s}_{2},\left[\mathrm{~s}_{1}, \mathrm{~s}_{3}\right]_{\mathrm{E}}\right]_{\mathrm{E}}\right) \\
& +\left(\left(\rho \circ s_{1}\right)\left(\rho \circ s_{2}\right) f\right) s_{3}-\left(\left(\rho \circ s_{2}\right)\left(\rho \circ s_{1}\right) f\right) s_{3} \\
& =f\left[\left[s_{1}, s_{2}\right] E^{\prime \prime} s_{3}\right] E+\left(\left[\rho \circ s_{1}, \rho \circ s_{2}\right] f\right) s_{3} .
\end{aligned}
$$

Therefore

$$
\rho \circ\left[\mathbf{s}_{1}, \mathbf{s}_{2}\right]_{E}=\left[\rho \circ \mathrm{s}_{1}, \rho \circ \mathrm{~s}_{2}\right]
$$

17.1 EXAMPLE Every finite dimensional Lie algebra g "is" a Lie algebroid over a single point.
17.2 EXAMPLE The triple

$$
\left(\mathrm{TM},[,], i d_{T M}\right)
$$

is a Lie algebroid: $\forall f \in C^{\infty}(M), \forall X, Y \in \mathcal{D}^{1}(M)$,

$$
[\mathrm{X}, \mathrm{fY}]=\mathrm{f}[\mathrm{X}, \mathrm{Y}]+(\mathrm{Xf}) \mathrm{Y} .
$$

[Note: If $\Sigma \subset$ TM is an integrable linear distribution, then Σ is involutive (cf. 15.18), hence can be viewed as a Lie algebroid in the obvious way.]

Other examples will be given later on.
17.3 RAPPEL $\Lambda^{0} E=C^{\infty}(M)$ and $\Lambda^{P_{E}}(P \geq 1)$ is the set of multilinear maps $\omega: \sec \mathrm{E} \times \ldots \times \sec \mathrm{E} \rightarrow \mathrm{C}^{\infty}(\mathrm{M})$
which are skewsymetric if $p>1$.
[Note: Take $E=T M-$ then $\sec E=D^{1}(M)$ and in this context, ΛP_{E} is what one normally calls $\Lambda^{P_{M}}$, thus the symbol $\Lambda^{\mathrm{P}} \mathrm{E}$ is not $\Lambda^{\mathrm{P}_{T M}}$ (as it is usually understood).]
17.4 LEMMA Suppose that ($E,[,]_{E^{\prime}} \rho$) is a Lie algebroid over M. Define

$$
d_{E}: \Lambda^{p_{E}} \rightarrow \Lambda^{p+1} E
$$

by

$$
\begin{aligned}
& d_{E \omega}\left(s_{0}, \ldots, s_{p}\right) \\
& \\
& =\sum_{i=0}^{p}(-1)^{i}\left(\rho \circ s_{i}\right) \omega\left(s_{0}, \ldots, \hat{s}_{i}, \ldots, s_{p}\right) \\
& +\sum_{i<j}(-1)^{i+j_{\omega}}\left[\left[s_{i}, s_{j}\right]_{E^{\prime}}, s_{0}, \ldots, \hat{s}_{i}, \ldots, \hat{s}_{j}, \ldots, s_{p}\right)
\end{aligned}
$$

Then

$$
\mathrm{d}_{\mathrm{E}}^{2}=0
$$

[Note: In the case of a Lie algebra $\underline{g},{\underset{\underline{g}}{ }}$ is the Chevalley-Eilenberg differential and in the case of a tangent bundle TM, $d_{T M}$ is the exterior derivative.]
N.B. As regards the wedge product,

$$
d_{E}\left(\omega_{1} \wedge \omega_{2}\right)=d_{E} \omega_{1} \wedge \omega_{2}+(-1)^{p_{1}} \omega_{\omega_{1} \wedge d_{E} \omega_{2}}\left(\omega_{1} \in \Lambda^{p} 1_{E_{,} \omega_{2}} \in \Lambda^{\star} E\right)
$$

17.5 EXAMPLE Consider the arrow

$$
\operatorname{TIM} \xrightarrow{\mu \circ v} \operatorname{TIM} \quad \text { (cf. §5). }
$$

Then

$$
\pi_{T M} \circ \mu \circ v=\mathrm{pr}_{1} \circ v=\pi_{T M} .
$$

So $\mu \circ v$ is a vector bundle morphism over TM. Next, given $X, Y \in \mathcal{D}^{1}(T M)$, put

$$
[X, Y]_{S}=[S X, Y]+[X, S Y]-S[X, Y]
$$

Equipped with this bracket, $D^{l}(T M)$ is a Lie algebra and $\forall \mathrm{f} \in \mathrm{C}^{\infty}$ (TM),

$$
[X, f Y]_{S}=f[X, Y]_{S}+((S X) f) Y
$$

Therefore the triple

$$
\left(T \mathrm{TM},[,]_{S^{\prime}} \mu \circ \nu\right)
$$

is a Lie algebroid over TM. And, by definition,

$$
\begin{aligned}
& d_{\operatorname{ITM}} \omega\left(x_{0}, \ldots, x_{p}\right) \\
& \quad=\sum_{i=0}^{p}(-1)^{i}\left(S x_{i}\right) \omega\left(x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{p}\right) \\
& +\sum_{i<j}(-1)^{i+j_{\omega}} \omega\left(\left[x_{i}, x_{j}\right]_{S}, x_{0}, \ldots, \hat{x}_{i}, \ldots, \hat{x}_{j}, \ldots, x_{p}\right) .
\end{aligned}
$$

I.e.:

$$
\left.d_{T I M}{ }^{\omega}=d_{S} \omega \quad \text { (cf. } \S 6\right)
$$

Let $s \in \sec E-$ then the Lie derivative w.r.t. s is the operator

$$
L_{S}: \Lambda^{P_{E}} \rightarrow \Lambda^{P_{E}}
$$

given by

$$
L_{S}=\imath_{s} \circ d_{E}+d_{E} \circ \imath_{s}
$$

E.g.: Take $p=0$ - then $\Lambda^{0} E=C^{\infty}(M),{ }^{\imath} s^{0} E=0$, and $\forall f \in C^{\infty}(M)$,

$$
L_{s} f={ }_{s} d_{E} f=\left(d_{E} f\right)(s)=(\rho \circ s) f=L_{(\rho \circ s)^{f} .}
$$

17.6 LEMMA $\forall \mathrm{s} \in \sec \mathrm{E}$,

$$
L_{S} \circ d_{E}=d_{E} \circ L_{S}
$$

Moreover, $\forall \mathbf{s}_{1}, s_{2} \in \sec E$,

$$
\left\{\begin{array}{l}
-L_{s_{1}} \circ L_{s_{2}}-L_{s_{2}} \circ L_{s_{1}}=L_{\left[s_{1}, s_{2}\right]} \\
L_{s_{1}} \circ{ }^{\imath} s_{2}-{ }^{\imath} s_{2} \circ L_{s_{1}}={ }^{\imath}\left[s_{1}, s_{2}\right]
\end{array}\right.
$$

And $\forall \omega_{1}, \omega_{2} \in \Lambda^{\star} E$,

$$
L_{s}\left(\omega_{1} \wedge \omega_{2}\right)=L_{s} \omega_{1} \wedge \omega_{2}+\omega_{1} \wedge L_{s} \omega_{2}
$$

Suppose that

$$
\left.\int_{-}^{-}\left(E_{,}[,]_{E^{\prime}} \rho\right) \text { is a Lie algebroid over } M \text {, }\right]_{\left.E^{\prime}, \rho^{\prime}\right) \text { is a Lie algebroid over } M^{\prime} .}
$$

Then a vector bundle morphism

$$
\begin{gathered}
\mathrm{E} \xrightarrow[\mathrm{M} \underset{\mathrm{E}}{\mathrm{~F}} \mathrm{M}^{\prime}]{\mathrm{F}} \mathrm{E}^{\prime} \\
\mathrm{T}^{\prime}
\end{gathered}
$$

is said to be a Lie algebroid morphism if $\forall p, \forall \omega^{\prime} \in \Lambda^{P_{E}}$,

$$
(F, f) *\left(d_{E}, \omega^{\prime}\right)=d_{E}\left((F, f) * \omega^{\prime}\right)
$$

[Note: For $p \geq 1$,

$$
\begin{aligned}
& \left((F, f) *_{\omega^{\prime}}\right)_{x}\left(e_{1}, \ldots, e_{p}\right) \\
& \quad=\omega_{f(x)}^{\prime}\left(F e_{1}, \ldots, F e_{p}\right) \quad\left(x \in M \text { and } e_{1}, \ldots, e_{p} \in E_{x}\right),
\end{aligned}
$$

while for $p=0$,

$$
\left.(F, f) * f^{\prime}=f^{\prime} \circ f \quad\left(f^{\prime} \in C^{\infty}\left(M^{\prime}\right)\right) .\right]
$$

N.B. If the vector bundle morphism

is a Lie algebroid morphism, then the diagram

commutes.
17.7 EXAMPLE If $\mathrm{f}: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ is a C^{∞} function, then there is a vector bundle
morphism

which is, in fact, a Lie algebroid morphism.
17.8 EXAMPIE In the notation of the Appendix, the arrows
are morphisms of Lie algebroids.
17.9 REMARK Matters simplify if $M=M^{\prime}, f=i d_{M}$. For then the pair ($F, i d_{M}$) is a Lie algebroid morphism iff

$$
\mathrm{F}\left[\mathrm{~s}_{1}, \mathrm{~s}_{2}\right]_{\mathrm{E}}=\left[\mathrm{Fs}_{1}, \mathrm{Fs}_{2}\right]_{\mathrm{E}}, \quad\left(\mathrm{~s}_{1}, \mathrm{~s}_{2} \in \sec \mathrm{E}\right)
$$

and

$$
\rho^{\prime} \circ F s=\rho \circ s \quad(s \in \sec E)
$$

17.10 LEMMA If

are Lie algebroid morphisms, then the composition

is a Lie algebroid morphism.
[Note: This justifies the term "Lie algebroid morphism" in that there is a category whose objects are the Lie algebroids.]

Suppose that ($\mathrm{E},[,]_{E^{\prime}} \rho$) is a Lie algebroid over M and let $\Phi: M^{\prime} \rightarrow M$ be a fibration. Form the pullback square

and put

$$
E^{\prime}=T M^{\prime} \times{ }_{T M} E .
$$

Then the points in E ' are the pairs

$$
\left(\left(x^{\prime}, X_{x}^{\prime}\right), e\right) \quad\left(X_{x^{\prime}}^{\prime} \in T_{x^{\prime}} M^{\prime}, e \in E\right)
$$

such that

$$
d \Phi_{x^{\prime}}\left(X_{x}^{\prime}\right)=\rho(e)
$$

[Note: It is automatic that

$$
\left.\Phi\left(\mathrm{x}^{\prime}\right)=\pi(\mathrm{e}) .\right]
$$

17.11 LEMMA E^{\prime} is a vector bundle over M^{\prime} (via $\pi^{\prime}=\pi_{M^{\prime}} \circ p r_{1}$). PROOF Given $X^{\prime} \in M^{\prime}$,

$$
\left(\pi^{\prime}\right)^{-1}\left(x^{\prime}\right)=E_{x^{\prime}}^{\prime}
$$

is a vector subspace of $T_{X^{\prime}} M^{\prime} \times E_{\Phi\left(x^{\prime}\right)}$ of dimension

$$
\begin{aligned}
k+n^{\prime} & -\operatorname{dim}\left(d_{X^{\prime}}\left(T_{x^{\prime}} M^{\prime}\right)+\rho\left(E_{\Phi\left(x^{\prime}\right)}\right)\right) \\
& =k+n^{\prime}-n .
\end{aligned}
$$

The claim now is that this data gives rise to a Lie algebroid ($E^{\prime},[,]_{E^{\prime}}, \rho^{\prime}$)
over M^{\prime}. Of course the definition of ρ^{\prime} is immediate, viz. take $\rho^{\prime}=\mathrm{pr}_{1}$. However, it is not so obvious just how to define [,] ${ }^{1}$, which requires some preparation.
17.12 RAPPEL Suppose that

is a vector bundle morphism. Form the pullback square

Then there is an arrow

$$
E \xrightarrow{\zeta} M \times_{M^{\prime}} E^{\prime}
$$

and a commutative diagram

Denote by ζ^{*} the induced map

$$
\sec E \rightarrow \sec M \times_{M^{\prime}} E^{\prime}
$$

of $C^{\infty}(M)$-modules:

$$
\zeta^{*} s=\zeta \circ s \quad(s \in \sec E) .
$$

But

$$
C^{\infty}(M) \otimes_{C^{\infty}\left(M^{\prime}\right)} \sec E^{\prime} \approx \sec M \times_{M^{\prime}} E^{\prime}
$$

where

$$
\phi \otimes s^{\prime} \rightarrow \phi \overline{s^{\prime}}
$$

and

$$
\bar{s}^{\prime}(x)=\left(x, s^{\prime}(f(x))\right) \quad(x \in M) .
$$

So, modulo this identification, given $s \in \sec E$, we can write

$$
\zeta^{*} \mathbf{S}=\sum_{i}\left(\phi_{i} \otimes s_{i}^{\prime}\right)
$$

or still,

$$
F \circ s=\sum_{i} \phi_{i}\left(s_{i}^{\prime} \circ f\right)
$$

12.

Consider anew the commutative diagram

There are pullback squares

and arrows

$$
\left\{\begin{aligned}
& M^{\prime} \times_{M} E \rightarrow M^{\prime} \times{ }_{M} T M \\
& T M^{\prime} \rightarrow M^{\prime} \times{ }_{M} T M
\end{aligned}\right.
$$

Now form the pullback square

$$
\begin{aligned}
& \begin{array}{l}
? \rightarrow M^{\prime}{ }^{\times}{ }_{M} \mathrm{E} \\
\downarrow
\end{array} \\
& \mathrm{TM}^{\prime} \longrightarrow \mathrm{M}^{\prime} \times_{\mathrm{M}}{ }^{T M}
\end{aligned}
$$

in the category of vector bundles over M^{\prime}-- then

$$
\begin{aligned}
& ?=T M^{\prime} \times{ }_{M^{\prime}} \times_{M} T M^{M^{\prime}} \times_{M} E \\
& \approx \quad \mathrm{TM}^{\prime} \times{ }_{\mathrm{TM}} \mathrm{E}=\mathrm{E}^{\prime} .
\end{aligned}
$$

Accordingly, the sections s^{\prime} of E^{\prime} are pairs ($\mathrm{X}^{\prime}, \sigma$), where

$$
\left\lvert\, \begin{aligned}
& X^{\prime} \in \sec \mathbb{T M}^{\prime} \\
& \sigma^{\prime} \in \sec M^{\prime} X_{M} E
\end{aligned}\right.
$$

subject to the coincidence

$$
\left[\begin{array}{l}
M^{\prime} \xrightarrow{X^{\prime}} \mathbb{T M}^{\prime} \longrightarrow M^{\prime} \times_{M} T M \\
M^{\prime} \xrightarrow{\sigma^{\prime}} M^{\prime} \times_{M} E \rightarrow M^{\prime} \times_{M} T M
\end{array}\right.
$$

N.B. The elements of $\sec M^{\prime}{ }^{\times}{ }_{M} E$ can be regarded as the sections of E along Φ (cf. 13.2), thus we can write

$$
\sigma^{\prime}=\sum_{i} \phi_{i}^{\prime}\left(s_{i} \circ \Phi\right)
$$

where $\phi_{i}^{\prime} \in C^{\infty}\left(M^{\prime}\right)$ and $s_{i} \in \sec E$.
Finally, define

$$
[,]_{E^{\prime}}: \sec E^{\prime} \times \sec E^{\prime} \rightarrow \sec E^{\prime}
$$

by

$$
\begin{aligned}
& {\left[s_{1}^{\prime}, s_{2}^{\prime}\right] E^{\prime} } \\
& =\left[\left(X_{1}^{\prime}, \sigma_{1}^{\prime}\right),\left(X_{2}^{\prime}, \sigma_{2}^{\prime}\right)\right]_{E^{\prime}}^{\prime} \\
= & {\left[\left(X_{1}^{\prime}, \sum_{i_{1}} \phi_{i_{1}}^{\prime}\left(s_{i_{1}} \circ \Phi\right)\right),\left(X_{2}^{\prime}, \sum_{i_{2}} \phi_{i_{2}}^{\prime}\left(s_{i_{2}} \circ \Phi\right)\right)\right]_{E^{\prime}} } \\
= & \left(\left[X_{1}^{\prime}, X_{2}^{\prime}\right], W\right),
\end{aligned}
$$

W being

$$
\begin{aligned}
& \sum_{i_{1}}, \dot{i}_{2} \phi_{i_{1}}^{\prime} \phi_{\dot{i}_{2}}^{\prime}\left(\left[s_{i_{1}}, s_{i_{2}}\right]_{E} \circ \Phi\right) \\
& +\sum_{i_{2}} X_{1}^{\prime}\left(\phi_{i_{2}}^{\prime}\right)\left(s_{i_{2}} \circ \Phi\right)-\sum_{i_{1}} X_{2}^{\prime}\left(\phi_{i_{1}}^{\prime}\right)\left(s_{i_{1}} \circ \Phi\right) .
\end{aligned}
$$

One can show that $[,]_{E}$ is welldefined. Granted this, it is then easy to check that $\left(E^{\prime},[,]_{E^{\prime}}, \rho^{\prime}\right)$ is a Lie algebroid over M^{\prime}.
17.13 LEMMA The vector bundle morphism

is a Lie algebroid morphism.
[Note:

$$
\begin{aligned}
& \\
\Rightarrow \quad \rho \circ \mathrm{pr}_{2} & =\mathrm{T} \Phi \circ \mathrm{pr}_{1} \\
\pi_{\mathrm{M}} \circ \rho \circ \mathrm{pr}_{2} & =\pi_{\mathrm{M}} \circ \mathrm{~T} \Phi \circ \mathrm{pr}_{1} \\
\Rightarrow \quad & \\
\pi \circ \mathrm{pr}_{2} & =\Phi \circ \pi_{\mathrm{M}^{\prime}} \circ \mathrm{pr}_{1} \\
& \left.=\Phi \circ \pi^{\prime} .\right]
\end{aligned}
$$

An important special case of the foregoing generalities arises when we take $M^{\prime}=E, \Phi=\pi:$

Put

$$
\mathrm{IE}=\mathrm{TE} \times_{\mathrm{TM}} \mathrm{E}
$$

and write ρ_{E} in place of pr_{1}-- then $L E$ is called the prolongation of E and
(LE, [, $]_{L E^{\prime}} \rho_{\mathrm{E}}$) is a Lie algebroid over E :

[Note: The fiber dimension of LE is

$$
\mathrm{k}+(\mathrm{k}+\mathrm{n})-\mathrm{n}=2 \mathrm{k} \quad \text { (cf. } 17.11)
$$

k being the fiber dimension of E.]
N.B. The points in LE are the pairs

$$
\left(\left(e, X_{e}\right), p\right) \quad\left(X_{e} \in T_{e} E, p \in E\right)
$$

such that

$$
d \pi_{e}\left(X_{e}\right)=\rho(p)
$$

with $\pi(e)=\pi(p)$.
17.14 EXAMPIE Let $E=T M-$ then LTM $=$ TIM and the Lie algebroid structure of the theory is precisely that of 17.2, i.e.,
(TIM, [,], id TITM .

Suppose that the vector bundle morphism

is a Lie algebroid morphism. Define

$$
L F: L E \rightarrow L E^{\prime}
$$

by

$$
\operatorname{LF}\left(\left(\left(e, X_{e}\right), p\right)\right)=\left(\left(F e, d F_{e}\left(X_{e}\right)\right), F p\right)
$$

17.15 LEMMA The vector bundle morphism
17.
is a Lie algebroid morphism.

Coming back to

call the elements of $\mathrm{Ker} \mathrm{pr}_{2}$ vertical and denote the set of such by VLE -- then VLE is a vector subbundle of $L E$ and its points have the form

$$
\left(\left(e, x_{e}\right), 0\right),
$$

where X_{e} is a vertical vector tangent to E at e.
Given e,p $\in E$ with $\pi(e)=\pi(p)$, denote by $X_{e, p}^{V} \in T_{e} E$ the vector tangent to the curve $e+t p$ at $t=0$-- then it is clear that

$$
\left(\left(e, x_{e, p}^{v}\right), 0\right) \in V L E .
$$

This said, define

$$
E^{\mathrm{V}}: E \times_{M} E \rightarrow V L \mathbb{E}
$$

by

$$
E^{\mathrm{V}}(e, p)=\left(\left(e, x_{e, p}^{v}\right), 0\right) .
$$

Then Ξ^{V} is an isomorphism of vector bundles over E :

$$
\begin{aligned}
& E \times_{M} E \xrightarrow{\Xi^{\mathrm{V}}} \mathrm{VIE} \\
&\left.\mathrm{pr}_{1}\right|_{申} \\
& \mathrm{E} \quad \|_{\mathrm{E}}{ }^{\circ} \rho_{\mathrm{E}} \\
& \mathrm{E} .
\end{aligned}
$$

17.16 EXAMPLE Put

$$
\Delta_{E}(e)=\Xi^{v}(e, e) \quad(e \in E)
$$

Then

$$
\triangle_{E} \in \sec \mathrm{VLE}
$$

[Note:

$$
\rho_{E} \circ \Delta_{E} \in \sec V E
$$

is the dilation vector field Δ on E (cf. 4.2). In detail: Identify $V E$ with $E \times_{M} E(c f .85)-$ then Δ corresponds to the section $p \rightarrow(p, p)$ of $\left.E \times_{M} E.\right]$
17.17 IEMMA If $s_{1}, s_{2} \in \sec V L E$, then

$$
\left[s_{1}, s_{2}\right]_{\mathrm{LE}} \in \sec \operatorname{VLE}
$$

We shall now extend the operations

$$
\left.\right|_{-} ^{\sec \mathrm{TM} \rightarrow \sec \mathrm{TTM}} \begin{array}{c|c}
\mathrm{sec} \mathrm{TM} \rightarrow \sec \mathrm{TTM} \\
\mathrm{X} \rightarrow \mathrm{X}^{\mathrm{V}}, & \mathrm{x} \rightarrow \mathrm{X}^{\top}
\end{array}
$$

to operations
17.18 RAPPEL Every $\omega \in \Lambda^{1} E$ determines a C^{∞} function $\hat{\omega}: E \rightarrow$ R.
[Note: Given $f \in C^{\infty}(M)$, put

$$
\mathrm{f}^{\top}=\mathrm{d}_{\mathrm{E}}^{\hat{f}} \mathrm{f}
$$

Then

$$
\left.f^{\top}(e)=\rho(e) f \quad(e \in E) .\right]
$$

Let $s \in \sec E-$ then its vertical lift is the section s^{v} of LE defined by the prescription

$$
s^{\mathrm{V}}(\mathrm{e})=\Xi^{\mathrm{V}}(\mathrm{e}, \mathrm{~s}(\pi(\mathrm{e}))) \quad(\mathrm{e} \in E) .
$$

17.19 LEMMA $\forall f \in C^{\infty}(M)$,

$$
(f s)^{V}=(f \circ \pi) s^{V} \text { and }\left(\rho_{E} \circ s^{V}\right)(f \circ \pi)=0
$$

17.20 LEMMA $\forall \omega \in \Lambda^{1} E$,

$$
\left(\rho_{E} \circ s^{v}\right) \hat{\omega}=v_{s} \circ \pi
$$

17.21 RAPPEL Let $\mathrm{S}_{\text {TM }}$:TTM \rightarrow TTM be the canonical involution -- then $\forall X \in D^{l}(T M)$,

$$
X^{\top}=s_{T M} \circ T X \quad(c f . \S 4)
$$

Fix a point

$$
\left(\left(e, x_{e}\right), p\right) \in L E
$$

Then

$$
\pi_{E} \circ \rho_{E}\left(\left(\left(e, x_{e}\right), p\right)\right)=\pi_{E}\left(e, x_{e}\right)=e .
$$

I.e.:

$$
\left(\left(e, X_{e}\right), p\right) \in(L E) e^{0}
$$

17.22 LEMMA Put $x=\pi(e)(=\pi(p))$-- then \exists a unique tangent vector $V_{p} \in T_{p} E$ such that

1. $\forall f \in C^{\infty}(M)$,

$$
V_{p}(f \circ \pi)=f^{\top}(e)
$$

2. $\forall \omega \in \Lambda^{l} \mathrm{E}$,

$$
V_{p} \hat{\omega}=x_{e} \hat{\omega}+\left.\left(d_{E} \omega\right)\right|_{x}(e, p)
$$

PROOF V_{p} is determined by its action on the $f \circ \pi$ and the $\hat{\omega}$ provided that the conditions are compatible. First

$$
\begin{aligned}
V_{p}(\hat{f} \hat{\omega}) & =V_{p}((f \circ \pi) \hat{\omega}) \\
& =V_{p}(f \circ \pi) \hat{\omega}(p)+(f \circ \pi)(p)\left(V_{p} \hat{\omega}\right) \\
& =f^{\top}(e) \hat{\omega}(p)+f(x)\left(V_{p} \hat{\omega}\right)
\end{aligned}
$$

Now compare this with

$$
V_{p}(\hat{f} \hat{\omega})=X_{e}(\hat{f} \hat{\omega})+\left.d_{E}(f \omega)\right|_{x}(e, p)
$$

$$
\begin{gathered}
=X_{e}(f \circ \pi) \hat{\omega}(e)+(f \circ \pi)(e) X_{e} \hat{\omega} \\
+\left.\left(d_{E} f \wedge \omega\right)\right|_{x}(e, p)+\left.f(x)\left(d_{E} \omega\right)\right|_{x}(e, p) \\
=f(x)\left(X_{e} \hat{\omega}+\left.\left(d_{E} \omega\right)\right|_{X}(e, p)\right) \\
+X_{e}(f \circ \pi) \hat{\omega}(e)+f^{\top}(e) \hat{\omega}(p)-(\rho(p) f) \hat{\omega}(e) \\
=f(x)\left(V_{p} \hat{\omega}\right)+f^{\top}(e) \hat{\omega}(p)
\end{gathered}
$$

[Note: Here we have used the fact that $\left.X_{e}(f \circ \pi)=d \pi e_{e}\left(X_{e}\right) f=\rho(p) f.\right]$
N.B. $\forall f \in C^{\infty}(M)$,

$$
d \pi_{p}\left(V_{p}\right) f=V_{p}(f \circ \pi)=f^{\top}(e)=\rho(e) f .
$$

17.23 LEMMA Define

$$
s_{E}: L E \rightarrow I E
$$

by

$$
s_{E}\left(\left(e, x_{e}\right), p\right)=\left(\left(p, v_{p}\right), e\right)
$$

Then

$$
s_{E} \circ s_{E}=i d_{L E} \text { and } \mathrm{pr}_{2} \circ s_{E}=\pi_{E} \circ \rho_{E}
$$

[Both points are immediate. Incidentally, s_{E} is smooth (argue locally (cf. infra)).]

We shall call s_{E} the canonical involution associated with the Lie algebroid E.
[Note: If $E=T M$, then $S_{T M}$ is the canonical involution on TTM (cf. 17.21).]
17.24 REMARK The vector bundle $T \pi: T E \rightarrow T M$ can be equipped with a Lie algebroid structure in which the anchor map is $\mathrm{s}_{\mathrm{TM}}{ }^{\circ} \mathrm{T} \rho$. Proceeding, one can then construct a Lie algebroid structure on the vector bundle $\mathrm{TE} \times{ }_{T M} \mathrm{E} \xrightarrow{\mathrm{pr}_{2}} \mathrm{E}$. On the other hand, s_{E} is a vector bundle morphism

that, in fact, is a Lie algebroid morphism.

Let $s \in \sec E-$ then

$$
\begin{aligned}
s: M \rightarrow E & \Rightarrow T s: T M \rightarrow T E \\
& \Rightarrow T s \circ \rho: E \rightarrow T E .
\end{aligned}
$$

Abuse the notation and regard Ts $\circ \rho$ as an element of

$$
\sec \left(T E \times_{T M} E \xrightarrow{\mathrm{pr}_{2}} \mathrm{E}\right)
$$

Put

$$
s^{\top}=s_{E} \circ T \mathbf{T} \circ \rho
$$

Then

$$
\begin{aligned}
\pi_{E} \circ \rho_{E} \circ s^{\top} & =\pi_{E} \circ \rho_{E} \circ s_{E} \circ T s \circ \rho \\
& =p r_{2} \circ T s \circ \rho \\
& =i d_{E} .
\end{aligned}
$$

Therefore

$$
s^{\top}: E \rightarrow L E
$$

is a section of LF, the lift of s.
[Note: We have

$$
\begin{aligned}
\mathrm{pr}_{2} \circ \mathbf{s}^{\top} & =\mathrm{pr}_{2} \circ \mathbf{s}_{E} \circ \mathrm{Ts} \circ \rho \\
& =\pi_{E} \circ \rho_{E} \circ \mathrm{Ts} \circ \rho \\
& =\pi_{E} \circ \mathrm{Ts} \circ \rho \\
& =s \circ \pi \cdot]
\end{aligned}
$$

17.25 LEMMA $\forall \mathrm{f} \in \mathrm{C}^{\infty}(\mathrm{M})$,

$$
(f s)^{\top}=(f \circ \pi) s^{\top}+f^{\top} s^{V}
$$

and

$$
\left(\rho_{E} \circ s^{\top}\right)(f \circ \pi)=L_{S} f \circ \pi(=((\rho \circ s) f) \circ \pi)
$$

17.26 LEMMA $\forall \omega \in \Lambda^{1} E$,

$$
\left(\rho_{E} \circ s^{\top}\right) \hat{\omega}=\hat{L_{S}} \hat{\omega}
$$

17.27 REMARK Viewed as a map $s^{\top}: E \rightarrow I E$,

$$
\mathbf{s}^{\top}=\left(\rho_{E} \circ \mathbf{s}^{\top}, \mathbf{s} \circ \pi\right),
$$

where $\rho_{E} \circ s^{\top} \in D^{l}(E)$ is characterized by its action on the $f \circ \pi$ and the $\hat{\omega}$. To confirm compatibility, write

$$
\begin{aligned}
& \left(\rho_{E} \circ \mathbf{s}^{\top}\right)(\hat{f} \omega)=\left(\rho_{E} \circ s^{\top}\right)((f \circ \pi) \hat{\omega}) \\
& \quad=\left(\rho_{E} \circ s^{\top}\right)(f \circ \pi) \hat{\omega}+(f \circ \pi)\left(\rho_{E} \circ s^{\top}\right) \hat{\omega} \\
& \quad=\left(L_{s} f \circ \pi\right) \hat{\omega}+(f \circ \pi) \hat{L_{s}} \hat{\omega}
\end{aligned}
$$

or

$$
\begin{aligned}
\left(\rho_{E} \circ s^{\top}\right)(\hat{f \omega}) & =\left(L_{s}(f \omega)\right)^{\wedge} \\
& =\left(\left(L_{s} f\right) \omega\right)^{\hat{}}+\left(f\left(L_{s} \omega\right)\right)^{\wedge} \\
& =\left(L_{s} f \circ \pi\right) \hat{\omega}+(f \circ \pi) \hat{L_{s}} \omega
\end{aligned}
$$

17.28 LEMMA $\forall f \in C^{\infty}(M)$,

$$
\left[\begin{array}{l}
\left(\rho_{E} \circ s^{\mathrm{V}}\right) f^{\top}=((\rho \circ s) f) \circ \pi \\
\quad\left(\rho_{E} \circ s^{\top}\right) f^{\top}=((\rho \circ s) f)^{\top}
\end{array}\right.
$$

Let $s_{1}, s_{2} \in \sec E-$ then

$$
\left\lvert\, \begin{aligned}
& {\left[\mathrm{s}_{1}^{\mathrm{V}}, \mathrm{~s}_{2}^{\mathrm{v}}\right]_{\mathrm{LE}}=0} \\
& {\left[\mathrm{~s}_{1}^{\mathrm{V}}, \mathrm{~s}_{2}^{\top}\right]_{\mathrm{LE}}=\left[\mathrm{s}_{1}, \mathrm{~s}_{2}\right]_{\mathrm{E}}^{\mathrm{V}}} \\
& {\left[\mathrm{~s}_{1}^{\top}, s_{2}^{\top}\right]_{\mathrm{LE}}=\left[\mathrm{s}_{1}, \mathrm{~s}_{2}\right]_{\mathrm{E}}^{\top} .}
\end{aligned}\right.
$$

[Note: We have

$$
\begin{aligned}
{\left[\mathrm{s}_{1}^{\top}, \mathrm{s}_{2}^{\mathrm{v}}\right]_{\mathrm{LE}} } & =-\left[\mathrm{s}_{2}^{\mathrm{V}}, \mathrm{~s}_{1}^{\top}\right]_{\mathrm{LE}} \\
& =-\left[\mathrm{s}_{2}, \mathrm{~s}_{1}\right]_{\mathrm{E}}^{\mathrm{v}} \\
& \left.=\left[\mathrm{s}_{1}, s_{2}\right]_{\mathrm{E}}^{\mathrm{V}}\right]
\end{aligned}
$$

17.29 EXAMPLE To run a reality check, let $f \in C^{\infty}(M)$-- then

$$
\begin{gathered}
{\left[s_{1}^{\top},\left(f s_{2}\right)^{\top}\right]_{L E}=\left[s_{1}, f s_{2}\right]_{E}^{\top}} \\
=\left(f\left[s_{1}, s_{2}\right]_{E}+\left(\left(\rho \circ s_{1}\right) f\right) s_{2}\right)^{\top} \\
=(f \circ \pi)\left[s_{1}, s_{2}\right]_{E}^{\top}+f^{\top}\left[s_{1}, s_{2}\right]_{E}^{V}+\left(\left(\left(\rho \circ s_{1}\right) f\right) \circ \pi\right) s_{2}^{\top}+\left(\left(\rho \circ s_{1}\right) f\right)^{\top} s_{2}^{V} .
\end{gathered}
$$

On the other hand,

$$
\left[s_{1}^{\top},\left(f s_{2}\right)^{\top}\right]_{L E}=\left[s_{1}^{\top}(f \circ \pi) s_{2}^{\top}+f^{\top} s_{2}^{V}\right]_{L E}
$$

$$
\begin{gathered}
=\left[s_{1}^{\top},(f \circ \pi) s_{2}^{\top}\right]_{L E}+\left[s_{1}^{\top}, f^{\top} s_{2}^{V}\right]_{L E} \\
=(f \circ \pi)\left[s_{1}^{\top}, s_{2}^{\top}\right]_{L E}+\left(\left(\rho_{E} \circ s_{1}^{\top}\right)(f \circ \pi)\right) s_{2}^{\top}+f^{\top}\left[s_{1}^{\top}, s_{2}^{V}\right]_{L E}+\left(\left(\rho_{E} \circ s_{1}^{\top}\right) f^{\top}\right) s_{2}^{V} \\
=(f \circ \pi)\left[s_{1}, s_{2}\right]_{E}^{\top}+\left(\left(\left(\rho \circ s_{1}\right) f\right) \circ \pi\right) s_{2}^{\top}+f^{\top}\left[s_{1}, s_{2}\right]_{E}^{V}+\left(\left(\rho \circ s_{1}\right) f\right)^{\top} s_{2}^{V}
\end{gathered}
$$

17.30 RAPPEL Let $x \in D^{1}(M)$ - then

$$
\left[\begin{array}{rl}
-\quad\left[\Delta, x^{V}\right]=-x^{V} & \text { (cf. 4.6) } \\
-\left[\Delta, x^{T}\right]=0 & \text { (cf. 4.4) }
\end{array}\right.
$$

NeB. $\forall f \in C^{\infty}(M)$,

$$
\left(\rho_{E} \circ \Delta_{E}\right)(f \circ \pi)=0,
$$

and $\forall \omega \in \Lambda^{1} E$,

$$
\left(\rho_{E} \circ \Delta_{E}\right) \hat{\omega}=\hat{\omega}
$$

17.31 LENMA Let $s \in \sec E-$ then

$$
\left\lvert\, \begin{aligned}
& {\left[\Delta_{E}, s^{v}\right]_{L E}=-s^{v}} \\
& {\left[\Delta_{E}, s^{\top}\right]_{L E}=0}
\end{aligned}\right.
$$

$\underline{\text { PROOF }}$ To check the first point, note that $\left[\Delta_{E}, s^{\mathrm{V}}\right]_{\mathrm{LE}}$ is vertical (cf. 17.17),
hence it suffices to show that

$$
\left(\rho_{E} \circ\left[\Delta_{E^{\prime}} s^{v}\right]_{L E}\right) \hat{\omega}=-\left(\rho_{E} \circ s^{v}\right) \hat{\omega}
$$

for all $\omega \in \Lambda^{l} E$. But

$$
\begin{aligned}
& \left(\rho_{E} \circ\left[\Delta_{E}, s^{v}\right]_{L E}\right) \hat{\omega}=\left[\rho_{E} \circ \Delta_{E}, \rho_{E} \circ s^{v}\right] \hat{\omega} \\
= & \left(\rho_{E} \circ \Delta_{E}\right)\left(\rho_{E} \circ s^{v}\right) \hat{\omega}-\left(\rho_{E} \circ s^{v}\right)\left(\rho_{E} \circ \Delta_{E}\right) \hat{\omega} \\
= & \left(\rho_{E} \circ \Delta_{E}\right)\left(1 s^{\omega} \circ \pi\right)-\left(\rho_{E} \circ s^{v}\right) \hat{\omega} \quad(\text { cf. } 17.20) \\
= & -\left(\rho_{E} \circ s^{v}\right) \hat{\omega} .
\end{aligned}
$$

Turning to the second point, $\forall \mathrm{f} \in \mathrm{C}^{\infty}(\mathrm{M})$,

$$
\begin{aligned}
& \quad\left(\rho_{E} \circ\left[\Delta_{E^{\prime}} s^{\top}\right]_{L E}\right)(f \circ \pi) \\
& =\left(\rho_{E} \circ \Delta_{E}\right)\left(\rho_{E} \circ s^{\top}\right)(f \circ \pi)-\left(\rho_{E} \circ s^{\top}\right)\left(\rho_{E} \circ \Delta_{E}\right)(f \circ \pi) \\
& =\left(\rho_{E} \circ \Delta_{E}\right)\left(L_{s} f \circ \pi\right) \quad \text { (cf. 17.25) } \\
& =0
\end{aligned}
$$

and $\forall \omega \in \Lambda^{I} \mathrm{E}$,

$$
\begin{aligned}
& \left(\rho_{E} \circ\left[\Delta_{E}, s^{\top}\right]_{L E}\right) \hat{\omega} \\
= & \left(\rho_{E} \circ \Delta_{E}\right)\left(\rho_{E} \circ s^{\top}\right) \hat{\omega}-\left(\rho_{E} \circ s^{\top}\right)\left(\rho_{E} \circ \Delta_{E}\right) \hat{\omega} \\
= & \left(\rho_{E} \circ \Delta_{E}\right) \hat{L}_{s} \omega-\left(\rho_{E} \circ s^{\top}\right) \hat{\omega} \quad \text { (cf. 17.26) }
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{L_{s}} \hat{w}^{\omega}-\hat{\hat{L}_{s}}{ }^{\omega} \\
& =0 .
\end{aligned}
$$

Let S stand for the composition of the arrow

$$
\left.\right|_{-} ^{-} \quad \begin{aligned}
& L E \longrightarrow \times_{M} E \\
& \left(\left(e, x_{e}\right), p\right) \rightarrow(e, p)
\end{aligned}
$$

with \bar{Z}^{V}-- then S is called the vertical morphism:

[Note: $\forall s \in \sec E$,

$$
\left[\begin{array}{l}
s \circ s^{\top}=s^{v} \\
s \circ s^{v}=0.1
\end{array}\right.
$$

17.32 LEMMA $\mathrm{S}^{2}=0$ and

$$
\text { Ker } S=\operatorname{Im} S \text {, }
$$

the vertical subbundle VLE of LE.
17.33 RAPPEL $\Gamma \in D^{1}(T M)$ is second order provided $\Gamma T M \subset T^{2} M$ or still, if $T \pi_{M} \circ \Gamma=i d_{T M}$.

Put

$$
\operatorname{Adm}(E)=\left\{\left(\left(e, x_{e}\right), p\right) \in L E: e=p\right\}
$$

Let $\Gamma \in \sec L E$ - then Γ is second order provided $I E \subset A d m(E)$ or still, if $\mathrm{pr}_{2}{ }^{\circ} \Gamma=\mathrm{id}$.
17.34 LEMMA Let $\Gamma \in \sec L E-$ then Γ is second order iff $S \circ \Gamma=A_{E}$ (cf. 5.8).

PROOF Suppose that $T E \subset \operatorname{Adm}(E)$ - then $\forall e \in E$,

$$
\begin{aligned}
& \Gamma(e)=\left(\left(e, X_{e}\right), e\right) \\
\Rightarrow \quad & \\
& \\
& S(\Gamma(e))=\Xi^{V}(e, e)=\Delta_{E}(e) .
\end{aligned}
$$

Conversely, if

$$
\Gamma(e)=\left(\left(e, x_{e}\right), p\right),
$$

then

$$
\begin{aligned}
S(\Gamma(e)) & =\Xi^{\mathrm{V}}(\mathrm{e}, \mathrm{p}) \\
& =\left(\left(\mathrm{e}, \mathrm{x}_{\mathrm{e}, \mathrm{p}}^{\mathrm{V}}\right), 0\right)
\end{aligned}
$$

But

$$
\begin{aligned}
& S \circ \Gamma=\Delta_{E} \\
\Rightarrow \quad & \left(\left(e, x_{e, p}^{v}\right), 0\right)=\left(\left(e, x_{e, e}^{v}\right), 0\right) \\
\Rightarrow \quad & x_{e, p}^{v}=x_{e, e}^{v}=>e=p .
\end{aligned}
$$

Therefore

$$
\Gamma(e) \in \operatorname{Adm}(E) .
$$

A Lie algebroid ($E,[,]_{E^{\prime}} \rho$) over M can be localized to any nonempty open subset $U \subset M$, the claim being that the bracket

$$
[,]_{E}: \sec E \times \sec E \rightarrow \sec E
$$

induces a Lie algebroid structure on $\pi^{-1}(\mathrm{U})$. To see this, it is enough to prove that if $s_{1}, s_{2} \in \sec E$ and if $s_{2} \mid U=0$, then $\left[s_{1}, s_{2}\right]_{E} \mid U=0$. Thus let $x_{0} \in U$ and choose $f \in C^{\infty}(M): f\left(X_{0}\right)=0 \& f(M-U)=1$ - then

$$
\begin{aligned}
& {\left[s_{1}, s_{2}\right]_{E}\left(x_{0}\right)=\left[s_{1}, f s_{2}\right]_{E}\left(x_{0}\right)} \\
& =f\left(x_{0}\right)\left[s_{1}, s_{2}\right]_{E}\left(x_{0}\right)+\left.\left(\left(\rho \circ s_{1}\right) f\right)\right|_{x_{0}} s_{2}\left(x_{0}\right) \\
& =0
\end{aligned}
$$

Work now with local coordinates $\left\{x^{i}, y^{\alpha}\right\}$ in $\pi^{-l}(U)$ determined by local coordinates $x^{i}(i=1, \ldots, n)$ in U and a frame $e_{\alpha}(\alpha=1, \ldots, k)$ for E over U-then from the definitions

$$
\rho \circ e_{\alpha}=\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}} \text { and }\left[e_{\alpha}, e_{\beta}\right]_{E}=C_{\alpha \beta}^{\gamma} e_{\gamma} .
$$

Here

$$
\rho_{\alpha}^{j} \frac{\partial \rho_{\beta}^{i}}{\partial x^{j}}-\rho_{\beta}^{j} \frac{\partial \rho_{\alpha}^{i}}{\partial x^{j}}=\rho_{\gamma}^{i} C_{\alpha \beta}^{\gamma}
$$

and

$$
\begin{aligned}
& \rho_{\alpha}^{i} \frac{\partial C_{\beta \gamma}^{\nu}}{\partial x^{i}}+\rho_{\beta}^{i} \frac{\partial C_{\gamma \alpha}^{\nu}}{\partial x^{i}}+\rho_{\gamma}^{i} \frac{\partial C_{\alpha \beta}^{\nu}}{\partial x^{i}} \\
& +C_{\beta \gamma}^{\mu} c_{\alpha \mu}^{\nu}+C_{\gamma \alpha}^{\mu} C_{\beta \mu}^{\nu}+C_{\alpha \beta}^{\mu} C_{\gamma \mu}^{\nu}=0 .
\end{aligned}
$$

[Note: The ρ_{α}^{i} and the $C_{\alpha \beta}^{\gamma}$ are C^{∞} functions on U. Of course an x^{i}, when viewed as a function on $\pi^{-1}(U)$, should really be denoted by $x^{i} \circ \pi \ldots$...]
17.35 EXAMPLE If $E=g$ (cf. 17.1), then $\rho_{\alpha}^{i}=0$ and the $C_{\alpha \beta}^{\gamma}$ are the structure constants of the Lie algebra.
17.36 EXAMPLE If $\mathrm{E}=\mathrm{TM}$ (cf. 17.2), if the x^{i} are the q^{i}, and if the y^{α} are the v^{i}, then $\rho_{j}^{i}=\delta_{j}^{i}, c_{i j}^{k}=0$.
[Note: Make the replacements

$$
\left[\begin{array}{l}
\mathrm{M} \rightarrow \mathrm{TM} \\
-\mathrm{TM} \rightarrow \mathrm{TIM} .
\end{array}\right.
$$

Then in the notation of the Appendix to $\S 8$, the set

$$
\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}, \frac{\partial}{\partial \bar{v}^{1}}, \ldots, \frac{\partial}{\partial \bar{v}^{-1}}\right\}
$$

is a basis for

$$
D^{1}\left(\left(\pi_{M}\right)^{-1} U\right)
$$

And

$$
\left.\left[\bar{x}_{i}, \bar{x}_{j}\right]=\gamma_{i j}^{k} \bar{x}_{k} \cdot\right]
$$

17.37 REMARK Let $\left\{e^{\alpha}\right\}$ be the frame dual to $\left\{e_{\alpha}\right\}$-- then $\forall f \in C^{\infty}(M)$,

$$
d_{E} f=\frac{\partial f}{\partial x^{i}} \rho_{\alpha}^{i} e^{\alpha},
$$

hence

$$
f^{\top}\left(\mathbf{x}^{i}, Y^{\alpha}\right)=\left(\frac{\partial f}{\partial X^{i}} \circ \pi\right)\left(\rho_{\alpha}^{i} \circ \pi\right) y^{\alpha} .
$$

Starting with the e_{α}, put

$$
x_{\alpha}=e_{\alpha}^{T}+\left(C_{\alpha \beta}^{\gamma} \circ \pi\right) y^{\beta} e_{\alpha}^{v} \text { and } y_{\alpha}=e_{\alpha}^{v}
$$

Then $\left\{X_{\alpha}, y_{\alpha}\right\}$ is a frame for LE over $\pi^{-1}(U)$.
[Note: Let

$$
U_{L E}=\left(\pi_{E} \circ \rho_{E}\right)^{-1}\left(\pi^{-1}(U)\right)
$$

Then

$$
\left[\begin{array}{l}
x_{\alpha} \in \sec \left(U_{L E} \rightarrow \pi^{-1}(\mathrm{U})\right) \\
y_{\alpha} \in \sec \left(U_{L E} \rightarrow \pi^{-1}(U)\right)
\end{array}\right.
$$

And

$$
\left[\begin{array}{rl}
s x_{\alpha} & =y_{\alpha} \\
s y_{\alpha} & =0.3
\end{array}\right.
$$

17.38 EXAMPLE Locally,

$$
\Delta_{E}=y^{\alpha} y_{\alpha} \text { and } \rho_{E} \circ \Delta_{E}=y^{\alpha} \frac{\partial}{\partial y^{\alpha}} .
$$

17.39 LEMMA We have

$$
\left[X_{\alpha^{\prime}}, X_{\beta}\right]_{I E}=\left(C_{\alpha \beta}^{\gamma} \circ \pi\right) X_{\gamma}
$$

and
17.40 LEMMA We have

$$
\left(\rho_{E} \circ X_{\alpha}\right)=\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial}{\partial x^{i}}, \rho_{E} \circ y_{\alpha}=\frac{\partial}{\partial y^{\alpha}}
$$

N.B. If $\left\{x^{\alpha}, y^{\alpha}\right\}$ is the frame dual to $\left\{x_{\alpha}, y_{\alpha}\right\}$, then

$$
d_{L E} \phi=\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial \phi}{\partial x^{i}} x^{\alpha}+\frac{\partial \phi}{\partial y^{\alpha}} y^{\alpha} \quad\left(\phi \in C^{\infty}\left(\pi^{-1}(\mathrm{U})\right)\right)
$$

In particular:

$$
\left[\begin{array}{l}
\alpha_{L E^{\prime}} x^{i}=\left(\rho_{\alpha}^{i} \circ \pi\right) x^{\alpha} \\
\alpha_{L E} Y^{\alpha}=y^{\alpha}
\end{array}\right.
$$

Furthermore

$$
d_{L E} X^{\alpha}=-\frac{1}{2}\left(C_{B \gamma}^{\alpha} \circ \pi\right) X^{\beta} \wedge X^{\gamma}
$$

while

$$
\alpha_{L E} y^{\alpha}=0 .
$$

Suppose that $\Gamma \in \sec$ LE is second order -- then locally,

$$
\Gamma=y^{\alpha} x_{\alpha}+c^{\alpha} y_{\alpha}
$$

and

$$
\rho_{E} \circ \Gamma=\left(\rho_{\alpha}^{i} \circ \pi\right) y^{\alpha} \frac{\partial}{\partial x^{i}}+c^{\alpha} \frac{\partial}{\partial y^{\alpha}} .
$$

[Note: An integral curve γ of $\rho_{E} \circ \Gamma$ is a solution to

$$
\left.\frac{d x^{i}}{d t}=\left(\rho_{\beta}^{i} \circ \pi\right) y^{\beta}, \frac{d y^{\alpha}}{d t}=c^{\alpha} .\right]
$$

Suppose that C is a vector subbundle of $E-$ then the restriction $\pi \mid C: C \rightarrow M$ is a fibration. So we can form the pullback square

and put

$$
L_{C} E=T C \times{ }_{T M} E
$$

to get a Lie algebroid ($L_{C} E,[,]_{L_{C}}, \rho_{C}$) over C.
[Note: Here C plays the role of M^{\prime} and $\pi \mid C$ plays the role of $\left.\Phi.\right]$

There is another pullback square that can be formed, namely
35.

Put

$$
L C=T C \times{ }_{T M} C
$$

Then, in general, the vector bundle LC $\rightarrow \mathrm{C}$ is not a Lie algebroid (but it will be if C is a Lie subalgebroid of E, i.e., if sec C is closed per [,] ${ }_{E}$).
N.B. $L C$ is a vector subbundle of $L_{C} E$.
17.41 EXAMPLE Take $E=T M$ and write Σ in place of $C-$ then $L_{\Sigma} E=T \Sigma$ and $\mathrm{L} \sum$ is a linear distribution on \sum. E.g.: Let $\omega^{1}, \ldots, \omega^{\mathrm{n}-\mathrm{k}}$ be a system of constraints and

$$
\Sigma=\bigcap_{\mu=1}^{\mathrm{n}-\mathrm{k}} \sum_{\omega^{\mu}} \quad \text { (cf. §16) }
$$

where

$$
\Sigma_{\omega^{\mu}}=\left(\tilde{\omega}^{\mu}\right)^{-1}(0)
$$

Set

$$
\Sigma^{\star}={\underset{\mu=1}{n-k}}_{n}^{n e r} \pi_{M}^{\star}\left(\omega^{\mu}\right)
$$

Then Σ^{*} is a linear distribution on $T M$ and

$$
\mathrm{L} \Sigma=\Sigma^{*} \cap \mathrm{~T} \Sigma
$$

Suppose that $\Gamma \in S O(T M)$, thus

$$
\forall \mu,\left(\pi_{M_{M}^{*}}{ }^{\mu}\right)(\Gamma)=\hat{\omega}^{\mu}
$$

So, if Γ is tangent to Σ, then

$$
\Gamma \mid \Sigma \in \sec L \Sigma .
$$

APPENDIX

Suppose that

is a morphism of fibered manifolds. Let

$$
\left[\begin{array}{l}
\left(\mathrm{E}_{1},[,]_{\mathrm{E}_{1}}, \rho_{1}\right) \text { be a Lie algebroid over } \mathrm{M}_{1} \\
\left(\mathrm{E}_{2},[,]_{\mathrm{E}_{2}}, \rho_{2}\right) \text { be a Lie algebroid over } \mathrm{M}_{2}
\end{array}\right.
$$

and let

be a vector bundle morphism such that $T \Psi \circ \rho_{1}=\rho_{2} \circ$ F. Form

and let

$$
F^{\prime}: E_{1}^{\prime} \rightarrow E_{2}^{\prime}
$$

be the arrow that sends

$$
\left(\left(x^{\prime}, X_{x}^{\prime},\right), e\right) \text { to }\left(\left(\Psi^{\prime}\left(x^{\prime}\right), d \Psi_{X}^{\prime},\left(X_{x}^{\prime},\right)\right), F(e)\right) .
$$

Then F^{\prime} determines a vector bundle morphism

such that $T \Psi^{\prime} \circ \rho_{1}^{\prime}=\rho_{2}^{\prime} \circ F^{\prime}$. Moreover, F^{\prime} is a Lie algebroid morphism iff F is a Lie algebroid morphism.
[Note: This construction is "functorial" w.r.t. composition.]

§18. LAGRANGIAN FORMALISM

It is straightforward to extend the considerations of $\S 8$ to an arbitrary Lie algebroid ($\mathrm{E},[,]_{E^{\prime}}$) over M, bearing in mind that

$$
\left.\right|_{-} \mathrm{E} \leftrightarrow \mathrm{TM} .
$$

First, we shall agree that a lagrangian is simply any element $L \in C^{\infty}(E)$.
[Note: Local coordinates in E are the x^{i} and the y^{α}, hence it makes sense to take the partial derivatives of L w.r.t. the x^{i} and the y^{α}.]
18.1 RAPPEL If $E=T M$, then

$$
\theta_{L}=d_{S}{ }^{L}
$$

or still,

$$
\theta_{L}=S^{*}(\partial L)
$$

or still,

$$
\theta_{L}=S^{*}\left(d_{T T M}{ }^{L}\right) .
$$

[Note: Spelled out,

$$
d_{\mathrm{TM}} \leftrightarrow d \operatorname{per} \Lambda^{*} \mathrm{M}
$$

and

$$
d_{\text {TITM }} \leftrightarrow d \text { per } \Lambda * \text { TM.] }
$$

N.B. The vertical morphism S:LE \rightarrow LE induces a map

$\sec \mathrm{LE} \rightarrow \sec \mathrm{LE}$,

hence operates by duality on $\Lambda *$ LE, thus there is an arrow

$$
S^{*}: \Lambda * \operatorname{IE} \rightarrow \Lambda^{*} L E .
$$

In particular:

$$
\left.\left.\right|_{-} ^{s \circ x_{\alpha}=y_{\alpha}} \begin{aligned}
& \\
& s \circ y_{\alpha}=0
\end{aligned} \quad \Rightarrow\right|_{-} s^{*} x^{\alpha}=0
$$

Given L, put

$$
\theta_{L}=S^{*}\left(d_{L E}{ }^{L}\right)
$$

18.2 LEMMA Locally,

$$
\theta_{L}=\frac{\partial L}{\partial y^{\alpha}} x^{\alpha} .
$$

[On general grounds,

$$
\left.\alpha_{L E} L=\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial L}{\partial x^{i}} x^{\alpha}+\frac{\partial L}{\partial y^{\alpha}} y^{\alpha} \cdot\right]
$$

Given L, put

$$
\omega_{L}=\alpha_{L E} \theta_{L} .
$$

18.3 LEMMA Locally,

$$
\begin{aligned}
\omega_{L} & =-\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} x^{\alpha} \wedge y^{\beta} \\
& +\left(\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial^{2} L}{\partial x^{i} \partial y^{\beta}}-\frac{1}{2}\left(C_{\alpha \beta}^{\gamma} \circ \pi\right) \frac{\partial L}{\partial y^{\gamma}}\right) x^{\alpha} \wedge x^{\beta} .
\end{aligned}
$$

PROOF For

$$
\begin{gathered}
\alpha_{L E} \theta_{L}=\left(\alpha_{L E} \frac{\partial L}{\partial y^{\beta}}\right) \wedge x^{\beta}+\frac{\partial L}{\partial y^{\gamma}} \wedge \alpha_{L E} x^{\gamma} \\
=\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial^{2} L}{\partial x^{i} \partial y^{\beta}} x^{\alpha} \wedge x^{\beta}+\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} y^{\alpha} \wedge x^{\beta} \\
+\frac{\partial L}{\partial y^{\gamma}}\left(-\frac{1}{2}\left(C_{\alpha \beta}^{\gamma} \circ \pi\right)\right) x^{\alpha} \wedge x^{\beta} .
\end{gathered}
$$

Given L, put

$$
E_{L}=\left(\rho_{E} \circ \Delta_{E}\right) L-L\left(\equiv L_{\Delta_{E}} L-L\right) .
$$

Then E_{L} is the energy function attached to L.
[Note: Locally,

$$
\left.E_{L}=\frac{\partial L}{\partial y^{\alpha}} y^{\alpha}-L .\right]
$$

18.4 LEMMA We have

$$
{ }^{l} \Delta_{E} \omega_{L}=S^{*}\left(d_{L E} E_{L}\right)
$$

4.

PROOF Locally,

$$
\Delta_{E}=y^{\alpha} y_{\alpha} \quad \text { (cf. 17.38) }
$$

Therefore

$$
\left[\begin{array}{l}
{ }^{1} \Delta_{E} x^{\beta}=x^{\beta}\left(\Delta_{E}\right)=0 \\
{ }_{-}{ }^{\imath} \Delta_{E} y^{\beta}=y^{\beta}\left(\Delta_{E}\right)=y^{\beta}
\end{array}\right.
$$

Consequently,

$$
\begin{aligned}
&{ }^{\imath} \Delta_{E} \omega_{L}\left.=-\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}}{ }^{(\imath} \Delta_{E} x^{\alpha}{ }_{\wedge} y^{\beta}-x^{\alpha}{ }_{\wedge \imath}{\Delta_{E}}^{y^{\beta}}\right) \\
&+(\ldots)\left(\imath_{\Delta_{E}} x^{\alpha} \wedge x^{\beta}-x^{\alpha}{ }_{\wedge \imath} \Delta_{E} x^{\beta}\right) \\
&=\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} y^{\beta} x^{\alpha} .
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
S^{*}\left(\alpha E^{E_{L}} E_{L}\right)=\frac{\partial E_{L}}{\partial y^{\alpha}} x^{\alpha} \\
=\frac{\partial}{\partial y^{\alpha}}\left(\frac{\partial L}{\partial y^{\beta}} y^{\beta}-L\right) x^{\alpha} \\
=\left(\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} y^{\beta}+\frac{\partial L}{\partial y^{\alpha}}-\frac{\partial L}{\partial y^{\alpha}}\right) x^{\alpha} \\
=\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} x^{\alpha} .
\end{gathered}
$$

L is said to be nondegenerate if ω_{L} is symplectic; otherwise, L is said to be degenerate. The analog of 8.5 is valid: L is nondegenerate iff for all coordinate systems $\left\{x^{i}, y^{\alpha}\right\}$,

$$
\operatorname{det}\left|{\frac{\partial}{}{ }^{2} L}_{\partial y^{\alpha} \partial y^{\beta}}^{-}\right| \neq 0
$$

18.5 EXAMPLE Define a lagrangian $L: E \rightarrow \underline{R}$ by

$$
L(e)=\frac{1}{2} G(e, e)-(V \circ \pi)(e) \quad(e \in E)
$$

where $G: E \times_{M} E \rightarrow \underline{R}$ is a bundle metric on E and V is a C^{∞} function on $M-$ then L is nondegenerate.

Let

$$
D_{L}=\left\{x \in \sec L E: l_{X L}{ }_{L}=-d_{L E} E_{L}\right\}
$$

Then L is said to admit global dynamics if D_{L} is nonempty.
18.6 LEMMA Let $X \in D_{L}-$ then $L_{X}{ }_{L}=0$.

PROOF One has only to write

$$
\begin{aligned}
L_{X} \omega_{L} & =\left(\imath_{X} \circ d_{L E}+d_{L E} \circ t_{X}\right) \omega_{L} \\
& =0+d_{L E}\left(-d_{L E} E_{L}\right) \\
& =0
\end{aligned}
$$

[Note: Recall that

$$
\left.a_{L E}^{2}=0 .\right]
$$

$$
\begin{aligned}
& 18.7 \text { REMARK Let } x \in D_{L}-\text { then } \\
& \qquad \begin{aligned}
L_{X} E_{L} & ={ }^{2} x_{L E} E_{L} \\
& =-{ }^{2} x^{2} x^{(1)} \\
& =0 .
\end{aligned}
\end{aligned}
$$

But

$$
L_{X} E_{L}=\left(\rho_{E} \circ X\right) E_{L}
$$

Therefore E_{L} is a first integral for $\rho_{E}{ }^{\circ} \mathrm{X}$ (cf. 8.10).
18.8 LEMMA $\forall X \in \sec L E$,

$$
{ }^{1} S \circ x^{\omega_{L}}=-S^{*}\left(1_{X} \omega_{L}\right)
$$

18.9 LEMMA If L is nondegenerate, then L admits global dynamics: \exists a (unique) $\Gamma_{L} \in \sec L E$ such that

$$
{ }^{2} \Gamma_{L} \omega_{L}=-\alpha_{L E} E_{L} .
$$

And Γ_{L} is second order.
PROOF The existence (and uniqueness) of Γ_{L} is implied by the assumption that ω_{L} is symplectic. To establish that Γ_{L} is second order, write

$$
\begin{aligned}
{ }^{2} \Delta_{E} \omega_{L} & =S^{*}\left(\alpha_{L E} E_{L}\right) \quad \text { (cf. 18.4) } \\
& =-S^{*}\left(\imath_{\Gamma_{L}} \omega_{L}\right) \\
& ={ }^{2} S \circ \Gamma_{L} \omega_{L} \quad \text { (cf. 18.8). }
\end{aligned}
$$

But then

$$
S \circ \Gamma_{L}=\Delta_{E}
$$

so Γ_{L} is second order (cf. 17.34).
[Note: Locally,

$$
\Gamma_{L}=y^{\alpha} x_{\alpha}+c^{\alpha} y_{\alpha}
$$

And $\forall \alpha$,

$$
\begin{aligned}
& \left(\rho_{\beta}^{i} \circ \pi\right) y^{\beta} \frac{\partial^{2} L}{\partial x^{i} \partial y^{\alpha}}+C^{\beta} \frac{\partial^{2} L}{\partial y^{\beta} \partial y^{\alpha}} \\
& \quad=\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial L}{\partial x^{i}}-\left(C_{\alpha \beta}^{\gamma} \circ \pi\right) y^{\beta} \frac{\partial L}{\partial y^{\gamma}}
\end{aligned}
$$

or still,

$$
\begin{aligned}
L_{\Gamma_{L}}\left(\frac{\partial L}{\partial y^{\alpha}}\right) & =\left(\rho_{E} \circ \Gamma_{L}\right) \frac{\partial L}{\partial y^{\alpha}} \\
& \left.=\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial L}{\partial x^{i}}-\left(C_{\alpha \beta}^{\gamma} \circ \pi\right) y^{\beta} \frac{\partial L}{\partial y^{\gamma}} \cdot\right]
\end{aligned}
$$

18.10 REMARK Along an integral curve γ of $\rho_{E} \circ \Gamma_{L}$, we have

$$
\frac{d x^{i}}{d t}=\left(\rho_{\beta}^{i} \circ \pi\right) y^{\beta}, \frac{d y^{\alpha}}{d t}=c^{\alpha}
$$

Therefore

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial L}{\partial y^{\alpha}}\right) & =\frac{\partial^{2} L}{\partial x^{i} \partial y^{\alpha}} \frac{d x^{i}}{d t}+\frac{\partial^{2} L}{\partial y^{\beta} \partial y^{\alpha}} \frac{d y^{\beta}}{d t} \\
& =\frac{\partial^{2} L}{\partial x^{i} \partial y^{\alpha}}\left(\rho_{\beta}^{i} \circ \pi\right) y^{\beta}+\frac{\partial^{2} L}{\partial y^{\beta} \partial y^{\alpha}} C^{\beta} .
\end{aligned}
$$

I.e.:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial y^{\alpha}}\right)=\left(\rho_{\alpha}^{i} \circ \pi\right) \frac{\partial L}{\partial x^{i}}-\left(C_{\alpha \beta}^{\gamma} \circ \pi\right) y^{\beta} \frac{\partial L}{\partial y^{\gamma}},
$$

which will be termed the equations of Lagrange.]
18.11 EXAMPLE Let \underline{g} be a finite dimensional Lie algebra. Fix a basis e_{α} for $\underline{g}(\alpha=1, \ldots, k)(k=\operatorname{dim} \underline{g})-$ then

$$
\left[e_{\alpha}, e_{\beta}\right]=C_{\alpha \beta}^{\gamma} e_{\gamma}
$$

and the equations of Lagrange are

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial y^{\alpha}}\right)=-C_{\alpha \beta}^{\gamma} y^{\beta} \frac{\partial L}{\partial y^{\gamma}} .
$$

E.g.: Take $\underline{g}=\underline{R}^{3}$ and

$$
\left[\begin{array}{l}
e_{1}=(1,0,0) \\
e_{2}=(0,1,0) \\
e_{3}=(0,0,1) .
\end{array}\right.
$$

Then

$$
\left[e_{\alpha}, e_{\beta}\right]=e_{\alpha} \times e_{\beta}=\sum_{\gamma=1}^{3} \varepsilon_{\alpha \beta \gamma} e_{\gamma}
$$

and in vector notation

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial y}\right)=\frac{\partial L}{\partial y} \times y
$$

To illustrate, let

$$
L(y)=L\left(y^{1}, y^{2}, y^{3}\right)=\frac{1}{2}\left(I_{1}\left(y^{1}\right)^{2}+I_{2}\left(y^{2}\right)^{2}+I_{3}\left(y^{3}\right)^{2}\right)
$$

where $I_{1}>0, I_{2}>0, I_{3}>0$ - then the equations of Lagrange become

$$
\left[\begin{array}{rl}
\dot{y}^{1} & =\frac{\left(I_{2}-I_{3}\right)}{I_{1}} y^{2} y^{3} \\
\dot{y}^{2} & =\frac{\left(I_{3}-I_{1}\right)}{I_{2}} y^{3} y^{1} \\
\dot{y}^{3}= & \frac{\left(I_{1}-I_{2}\right)}{I_{3}} y^{1} y^{2}
\end{array}\right.
$$

So, from the Lie algebroid viewpoint, the "Euler equations" of the Appendix are instances of the equations of Lagrange.

APPENDIX

Suppose that ($E_{r}[,]_{E^{\prime}} \rho$) is a Lie algebroid over M. Let $\pi^{\prime}: E^{\prime} \rightarrow M$ be a vector bundle -- then an E-connection on E ' is a map

$$
\left\lvert\, \begin{gathered}
\nabla: \sec E \times \sec E^{\prime} \rightarrow \sec E^{\prime} \\
\left(s, s^{\prime}\right) \rightarrow \nabla \mathbf{s}^{\prime}
\end{gathered}\right.
$$

such that

1. $\nabla_{\mathrm{s}_{1}+\mathrm{s}_{2}} \mathrm{~s}^{\prime}=\nabla_{\mathrm{s}_{1}} \mathrm{~s}^{\prime}+\nabla_{\mathrm{s}_{2}} \mathrm{~s}^{\prime}$;
2. $\nabla_{s}\left(s_{1}^{\prime}+s_{2}^{\prime}\right)=\nabla_{s} s_{1}^{\prime}+\nabla_{s} s_{2}^{\prime} ;$
3. $\nabla_{f s} s^{\prime}=f \nabla_{s} s^{\prime}$;
4. $\nabla_{s}\left(f s^{\prime}\right)=((\rho \circ s) f) s^{\prime}+f \nabla_{s^{\prime}} s^{\prime}$.
A. 1 REMARK The choice

$$
\left(E,[,]_{E^{\prime}} \rho\right)=\left(T M,[,], i d_{T M}\right)
$$

leads to the usual notion of a connection in a vector bundle.

In what follows, we shall take $\mathrm{E}^{\prime}=\mathrm{E}$ and use the term "connection on E ".
So let ∇ be a connection on E - then locally, the connection coefficients of ∇ are the C^{∞} functions $\Gamma_{\alpha \beta}^{\gamma}$ on U defined by

$$
\nabla_{e_{\alpha}} e_{\beta}=\Gamma_{\alpha \beta}^{\gamma} e_{\gamma} .
$$

Accordingly, if

$$
\left.\right|_{-} ^{s=s^{\alpha} e_{\alpha}} \begin{aligned}
& t=t^{\beta} e_{\beta}
\end{aligned} \quad\left(s^{\alpha}, t^{\beta} \in c^{\infty}(U)\right)
$$

then

$$
\nabla_{s} t=s^{\alpha} \nabla_{e_{\alpha}}\left(t^{\beta} e_{\beta}\right)
$$

$$
\begin{aligned}
& =s^{\alpha}\left(\left(\left(\rho \circ e_{\alpha}\right) t^{\beta}\right) e_{\beta}+t^{\beta} \nabla_{e_{\alpha}} e_{\beta}\right) \\
& =s^{\alpha}\left(\rho_{\alpha}^{i} \frac{\partial t^{\beta}}{\partial x^{i}} e_{\beta}+t^{\beta} \Gamma_{\alpha \beta}^{\gamma} e_{\gamma}\right) \\
& =s^{\alpha}\left(\rho_{\alpha}^{i} \frac{\partial t^{\gamma}}{\partial x^{i}}+t^{\beta} \Gamma_{\alpha \beta}^{\gamma}\right) e_{\gamma} .
\end{aligned}
$$

Assume now that $G: E{ }_{M} E \rightarrow \underline{R}$ is a bundle metric on E.
A. 2 LEMMA There exists a unique connection ∇^{G} on E such that

$$
\nabla_{s_{1}}^{G} s_{2}-\nabla_{s_{2}}^{G} s_{1}=\left[s_{1}, s_{2}\right] E
$$

and

$$
\left(\rho \circ s_{1}\right)\left(G\left(s_{2}, s_{3}\right)\right)=G\left(\nabla_{s_{1}}^{G} s_{2}, s_{3}\right)+G\left(s_{2}, \nabla_{s_{1}}^{G} s_{3}\right)
$$

PROOF ∇^{G} is determined by the formula

$$
\begin{gathered}
2 G\left(\nabla_{s_{1}}^{G} s_{2}, s_{3}\right)=\left(\rho \circ s_{1}\right) G\left(s_{2}, s_{3}\right)+\left(\rho \circ s_{2}\right) G\left(s_{1}, s_{3}\right)-\left(\rho \circ s_{3}\right) G\left(s_{1}, s_{2}\right) \\
+G\left(s_{1},\left[s_{3}, s_{2}\right]_{E}\right)+G\left(s_{2},\left[s_{3}, s_{1}\right]_{E}\right)+G\left(\left[s_{1}, s_{2}\right]_{E}, s_{3}\right)
\end{gathered}
$$

N.B. ∇^{G} is called the metric connection attached to G.

Locally,

$$
G=G_{\alpha \beta} e^{\alpha} \otimes e^{\beta}
$$

and the connection coefficients of ∇^{G} are given by

$$
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} G^{\alpha \nu}([\nu, \beta ; \gamma]+[\nu, \gamma ; \beta]+[\beta, \gamma ; \nu]),
$$

where

$$
[\alpha, \beta ; \gamma]=\frac{\partial G_{\alpha \beta}}{\partial x^{i}} \rho_{\gamma}^{i}+C_{\alpha \beta}^{\mu} G_{\mu \gamma} .
$$

A. 3 LEMMA Put

$$
L_{G}(e)=\frac{1}{2} G(e, e) \quad(e \in E) \quad(c f .18 .5)
$$

Write Γ_{G} in place of $\Gamma_{L_{G}}$ (cf. 18.9) -- then locally,

$$
\Gamma_{G}=y^{\gamma} X_{\gamma}-\left(\Gamma_{\alpha \beta}^{\gamma} \circ \pi\right) y^{\alpha} y^{\beta} y_{\gamma} \quad \text { (cf. 10.6) }
$$

Given $V \in C^{\infty}(M)$, its gradient grad $_{G} V$ is the section of E characterized by

$$
G\left(\operatorname{grad}_{G} V, s\right)=d_{E} V(s) \quad(s \in \sec E)
$$

Locally,

$$
\operatorname{grad}_{G} v=\left(G^{\alpha \beta} \rho_{\beta}^{i} \frac{\partial V}{\partial x^{i}}\right) e_{\alpha} .
$$

A. 4 LEMMA Put

$$
L_{G, V}(e)=\frac{1}{2} G(e, e)-(V \circ \pi)(e) \quad(e \in E) \quad(c f .18 .5) .
$$

Write $\Gamma_{G, V}$ in place of $\Gamma_{L_{G, V}}$ (cf. 18.9) -- then

$$
\Gamma_{G, V}=\Gamma_{G}-\left(\operatorname{grad}_{G} V\right)^{v} \quad(\text { cf. 10.8) }
$$

§19. CONSTRAINT THEORY

To set the stage, let us recall the following points.
19.1 RAPPEL Suppose given C^{∞} functions

$$
\Phi^{\mu}: T M \rightarrow R \quad(\mu=1, \ldots, n-k) .
$$

Then the Φ^{μ} combine to give a map

$$
\Phi: T \mathrm{M} \rightarrow \underline{\mathrm{R}}^{\mathrm{n}-\mathrm{k}}
$$

Consider the level set $\Phi^{-1}(0)$. Assume: $\forall p \in \Phi^{-1}(0),\left.\Phi_{*}\right|_{p}$ has rank $n-k-$ then $\Phi^{-1}(0)$ is a closed submanifold of TM.
[Note: The assumption is equivalent to demanding that $\forall p \in \Phi^{-1}(0)$, the 1-forms

$$
\left.d \Phi^{1}\right|_{p}, \ldots,\left.d \Phi^{n-k}\right|_{p}
$$

are linearly independent or still, that

$$
\mathrm{d} \Phi^{1} \wedge \cdots \wedge \mathrm{~d}^{\mathrm{n}-\mathrm{k}} \neq 0
$$

on $\Phi^{-1}(0)$.]
19.2 EXAMPLE Take $M=\underline{R}$ and let $\Phi(q, v)=v-$ then $\Phi^{-1}(0)=\{(q, v): v=0\}$ satisfies the above conditions. On the other hand, the alternative descriptions of the q-axis given by

$$
\Phi(q, v)=v^{2} \text { or } \Phi(q, v)=\sqrt{|v|}
$$

are not admissible.
19.3 EXAMPLE Take $M=\underline{R}^{4}$ and define $\Phi: T M=\underline{R}^{4} \times \underline{R}^{4}$ by

$$
\begin{aligned}
& \Phi\left(q^{1}, q^{2}, q^{3}, q^{4}, v^{1}, v^{2}, v^{3}, v^{4}\right) \\
& \left.\quad=v^{1} v^{4}-v^{2} v^{3}=\operatorname{det} \left\lvert\, \begin{array}{ccc}
-v^{1} & v^{2} & \\
v^{3} & v^{4}
\end{array}\right.\right] .
\end{aligned}
$$

Then the level set $\Phi^{-1}(0)$ is not a submanifold of TM.
[Note: Removing the zero section from $\Phi^{-1}(0)$ gives rise to a submanifold of TM. Physically, it is a question of two point masses A and B forced to move in a plane with parallel velocities. The lagrangian is

$$
\frac{1}{2} m_{A}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right)+\frac{1}{2} m_{B}\left(\left(v^{3}\right)^{2}+\left(v^{4}\right)^{2}\right)
$$

and Φ represents the constraints on the velocities. Elimination of the zero section imposes the additional restriction that the velocities cannot be simultaneously zero.]

A constraint is a submanifold $C \subset$ TM such that $\pi_{M} \mid C$ is a fibration. E.g.: C might be a vector or affine subbundle of TM.

In the applications, however, one is ordinarily handed C^{∞} functions

$$
\Phi^{\mu}: T M \rightarrow \underline{R} \quad(\mu=1, \ldots, n-k)
$$

satisfying the conditions of 19.1 and then one takes

$$
C=\Phi^{-1}(0)
$$

the data being such that $\pi_{M} \mid C$ is a fibration. So, in the sequel, this will be
our standing assumption.
19.4 REMARK Suppose given an affine system of constraints

$$
\Phi^{\mu}=\hat{\omega}^{\mu}+\phi^{\mu} \circ \pi_{M} \quad(\mu=1, \ldots, n-k)
$$

Then

$$
C=\Phi^{-1}(0)
$$

is a constraint. To see this, work locally -- then the rank of

$$
\left[\begin{array}{ccc}
\frac{\partial \Phi^{1}}{\partial v^{1}} & \cdots & \frac{\partial \Phi^{1}}{\partial v^{n}} \\
\cdot & & \cdot \\
\cdot & \cdot \\
\frac{\partial \Phi^{n-k}}{\partial v^{1}} & \cdots & \frac{\partial \Phi^{n-k}}{\partial v^{n}}
\end{array}\right]
$$

equals the rank of

$$
\left[\begin{array}{ccc}
a_{1}^{1} & \cdots & a_{n}^{1} \\
\vdots & & \cdot \\
\vdots & & \vdots \\
a^{n-k} & & a_{1}^{n-k} \\
a_{n} & \cdots & a^{n}
\end{array}\right]
$$

But the rank of the latter is precisely $n-k$ (recall that the set $\omega^{1}, \ldots, \omega^{n-k}$ is linearly independent).
[Note:

$$
\begin{aligned}
& \omega^{\mu}=a_{i}^{\mu} d x^{i} \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\omega}^{\mu}=\left(a_{i}^{\mu} \circ \pi_{M}\right) v^{i} \\
& \Rightarrow \\
& \begin{aligned}
\frac{\partial \Phi^{\mu}}{\partial v^{i}} & =\frac{\partial \hat{\omega}^{\mu}}{\partial v^{i}}+\frac{\partial\left(\phi^{\mu} \circ \pi_{M}\right)}{\partial v^{i}} \\
& =\frac{\partial \hat{\omega}^{\mu}}{\partial v^{i}} \\
& \left.=a_{i}^{\mu}{ }_{i} \circ \pi_{M \cdot}\right]
\end{aligned}
\end{aligned}
$$

19.5 LEMMA Given a point $\left(x, V_{X}\right) \in C, \exists$ an open interval I containing the origin and a curve $\gamma: I \rightarrow M$ such that $\dot{\gamma}(0)=V_{x}$ and $(\gamma(t), \dot{\gamma}(t)) \in C(t \in I)$.

PROOF Since $\pi_{M} \mid C$ is a fibration, hence is a submersion, \exists an open set $U \subset M$ containing x and a local section $X: U \rightarrow C$ such that $X(x)=\left(x, V_{x}\right)$. This said, choose an integral curve $\gamma: I \rightarrow M$ for X such that $\dot{\gamma}(0)=V_{x}$ and $\gamma(t) \in U(t \in I)$.

Fix a nondegenerate lagrangian L. Define $X_{\mu} \in \mathcal{D}^{1}$ (TM) by the requirement that

$$
{ }^{2} x_{\mu} \omega_{L}=S^{*}\left(\mathrm{~d}^{\mu}\right) \quad(\mu=1, \ldots, n-k)
$$

Then X_{μ} is necessarily vertical (cf. 8.23). Given $\lambda^{I}, \ldots, \lambda^{n-k} \in C^{\infty}$ (TM), put

$$
\Gamma_{\underline{\lambda}}=\Gamma_{L}+\lambda^{\mu_{X}}{ }_{\mu} .
$$

Impose the condition of tangency

$$
0=\Gamma_{\underline{\lambda}}\left(\Phi^{\nu}\right)
$$

$$
=\Gamma_{L}\left(\Phi^{V}\right)+\lambda^{\mu} X_{\mu}\left(\Phi^{V}\right)
$$

Call

$$
\left(\mathrm{L},\left\{\Phi^{1}, \ldots, \Phi^{\mathrm{n}-\mathrm{k}}\right\}\right)
$$

regular if the matrix

$$
\left[\mathrm{x}_{\mu} \Phi^{\nu}\right]
$$

is nonsingular; otherwise, call

$$
\left(\mathrm{L},\left\{\Phi^{\mathrm{I}}, \ldots, \Phi^{\mathrm{n}-\mathrm{k}}\right\}\right)
$$

irregular.
So, in the regular situation, one can determine the Lagrange multiplier λ_{0} and the dictum is that the constrained dynamics is given by $\Gamma_{\lambda_{0}} \mid C$.
N.B. Locally,

$$
X_{\mu} \Phi^{\nu}=\left(W(L)^{-1}\right)^{k \ell} \frac{\partial \Phi^{\mu}}{\partial v^{k}} \frac{\partial \Phi^{\nu}}{\partial v^{\ell}}
$$

Therefore

$$
\left(\mathrm{L},\left\{\Phi^{\mathrm{l}}, \ldots, \Phi^{\mathrm{n}-\mathrm{k}_{\}}}\right\}\right)
$$

is regular if

$$
\mathrm{L}=\mathrm{T}-\mathrm{V} \circ \pi_{\mathrm{M}^{\prime}}
$$

where g is riemannian.
19.6 EXAMPLE Take $M=\underline{R}^{3}$ and put

$$
|v|=\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}\right)^{1 / 2}
$$

Let

$$
L=\frac{m}{2}\left(|v|^{2}\right)-m g q^{3}(m>0, g>0)
$$

6.

Then

$$
\mathrm{E}_{\mathrm{L}}=\frac{\mathrm{m}}{2}\left(|\mathrm{v}|^{2}\right)+\mathrm{mgq}^{3}
$$

and

$$
\left.\right|_{-} ^{-} \omega_{L}=m\left(d v^{1} \wedge d q^{1}+d v^{2} \wedge d q^{2}+d v^{3} \wedge d q^{3}\right), ~ r_{L}=v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}}-g \frac{\partial}{\partial v^{3}} .
$$

Take

$$
\Phi=|v|^{2}-R(R>0)
$$

Then

$$
S^{*}(d \Phi)=2 v^{1} \frac{\partial}{\partial q^{I}}+2 v^{2} \frac{\partial}{\partial q^{2}}+2 v^{3} \frac{\partial}{\partial q^{3}}
$$

Define X_{Φ} by

$$
{ }^{\mathrm{l}} \mathrm{X}_{\Phi}{ }_{\mathrm{L}}=S^{*}(\mathrm{~d} \Phi) .
$$

Then

$$
X_{\Phi}=\frac{2}{m}\left(v^{I} \frac{\partial}{\partial v^{I}}+v^{2} \frac{\partial}{\partial v^{2}}+v^{3} \frac{\partial}{\partial v^{3}}\right)
$$

To compute the Lagrange multiplier

$$
\lambda_{0}=-\frac{\Gamma_{L^{\Phi}}}{\mathrm{X}_{\Phi^{\prime}} \Phi^{\prime}}
$$

note that

$$
\Gamma_{L} \Phi=-2 g v^{3}
$$

and

$$
\mathrm{X}_{\Phi} \Phi=\frac{4}{\mathrm{~m}}|\mathrm{v}|^{2}
$$

Therefore

$$
\lambda_{0}=\frac{\mathrm{mgv}^{3}}{2|\mathrm{v}|^{2}}
$$

So

$$
\begin{aligned}
& \Gamma_{\lambda_{0}}\left|C=\left(\Gamma_{L}+\lambda_{0} X_{\Phi}\right)\right| C \\
& =v^{1} \frac{\partial}{\partial q^{I}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}} \\
& +\frac{g}{R} v^{3} v^{I} \frac{\partial}{\partial v^{1}}+\frac{g}{R} v^{3} v^{2} \frac{\partial}{\partial v^{2}}+\left(\frac{g v^{3}}{R}-g\right) \frac{\partial}{\partial v^{3}} .
\end{aligned}
$$

19.7 EXAMPLE Take $M=\underline{R}^{4}$ and consider the setup of 19.3 - then

$$
\omega_{L}=m_{A}\left(d v^{1} \wedge d q^{1}+d v^{2} \wedge d q^{2}\right)+m_{B}\left(d v^{3} \wedge d q^{3}+d v^{4} \wedge d q^{4}\right)
$$

while

$$
S^{*}(d \Phi)=v^{4} d q^{1}-v^{3} d q^{2}-v^{2} d q^{3}+v^{1} d q^{4}
$$

Therefore

$$
x_{\Phi}=\frac{1}{m_{A}}\left(v^{4} \frac{\partial}{\partial v^{1}}-v^{3} \frac{\partial}{\partial v^{2}}\right)+\frac{1}{m_{B}}\left(-v^{2} \frac{\partial}{\partial v^{3}}+v^{1} \frac{\partial}{\partial v^{4}}\right) .
$$

Determine λ_{0} per

$$
\lambda_{0}=-\frac{\Gamma_{L}{ }^{\Phi}}{\bar{X}_{\Phi}{ }^{\Phi}}
$$

Since

$$
\Gamma_{L}=v^{1} \frac{\partial}{\partial q^{I}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}}+v^{4} \frac{\partial}{\partial q^{4}}
$$

it is clear that $\Gamma_{L} \Phi=0$. Thus the upshot is that the motion is the free motion of the point masses A and B subject to parallel initial velocities.
[Note: Strictly speaking, the analysis is formal since $\Phi^{-1}(0)$ is not a submanifold of TM. However, matters are correct provided we stay away from the zero section. In this connection, observe that

$$
\left.\mathrm{X}_{\Phi} \Phi=\frac{1}{m_{A}}\left(\left(\mathrm{v}^{3}\right)^{2}+\left(\mathrm{v}^{4}\right)^{2}\right)+\frac{1}{m_{B}}\left(\left(\mathrm{v}^{1}\right)^{2}+\left(\mathrm{v}^{2}\right)^{2}\right) .\right]
$$

A constraint C is said to be hamogeneous if Δ is tangent to C.
19.8 LEMMA C is homogeneous iff

$$
\left.\Delta \Phi^{\mu}\right|_{C}=0 \quad(\mu=1, \ldots, \mathrm{n}-\mathrm{k})
$$

or still, iff

$$
\left.\mathrm{v}^{\mathrm{i}} \frac{\partial \Phi^{\mu}}{\partial \mathrm{v}^{i}}\right|_{C}=0 \quad(\mu=1, \ldots, \mathrm{n}-\mathrm{k})
$$

19.9 EXAMPLE If each Φ^{μ} is homogeneous of degree $r(\mu) \geq 0$ in the velocities, i.e., if

$$
\Phi^{\mu}\left(\mathrm{x}, \mathrm{tx}_{\mathrm{x}}\right)=\mathrm{t}^{r(\mu)}{ }_{\Phi}^{\mu}\left(\mathrm{x}, \mathrm{x}_{\mathrm{x}}\right) \quad(0 \leq t \leq 1)
$$

then C is homogeneous. Indeed,

$$
\begin{aligned}
& \Phi^{\mu}\left(q^{1}, \ldots, q^{n}, t v^{1}, \ldots, t v^{n}\right) \\
& \quad=t^{r(\mu)}{ }_{\Phi^{\mu}}\left(q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad v^{i} \frac{\partial \Phi^{\mu}}{\partial v^{i}}=r(\mu) \Phi^{\mu} \\
& \left.\Rightarrow v^{i} \frac{\partial \Phi^{\mu}}{\partial v^{i}}\right|_{C}=\left.r(\mu) \Phi^{\mu}\right|_{C}=0 .
\end{aligned}
$$

E.g.: The linear distribution Σ defined by a system of constraints $\omega^{1}, \ldots, \omega^{n-k}$ is homogeneous.
19.10 LEMMA Suppose that C is homogeneous -- then $E_{L} \mid C$ is a first integral for $\Gamma_{\lambda_{0}} \mid C$:

$$
\mathrm{E}_{\mathrm{L}}\left|\mathrm{C} \in \mathrm{C}_{\mathrm{T}_{0}}^{\infty}\right| C^{(\mathrm{C})}
$$

PROOF In fact,

$$
\begin{aligned}
\Gamma_{\lambda_{0}} E_{L} & =\left(\Gamma_{L}+\lambda_{0}^{\mu} X_{\mu}\right) E_{L} \\
& =\lambda_{0}^{\mu} X_{\mu} E_{L} \\
& =\lambda_{0}^{\mu} \partial E_{L}\left(X_{\mu}\right) \\
& =-\lambda_{0}^{\mu} \Gamma_{L} \omega_{L}\left(X_{\mu}\right) \\
& =-\lambda_{0}^{\mu} \omega_{L}\left(\Gamma_{L}, X_{\mu}\right) \\
& =\lambda_{0}^{\mu} \omega_{L}\left(X_{\mu}, \Gamma_{L}\right)
\end{aligned}
$$

10.

$$
\begin{aligned}
& =\lambda_{0}^{\mu}{ }_{X_{\mu}}^{\omega_{L}}\left(\Gamma_{L}\right) \\
& =\lambda_{0}^{\mu} S^{*}\left(d \Phi^{\mu}\right)\left(\Gamma_{L}\right) \\
& =\lambda_{0}^{\mu} d^{\mu}\left(S \Gamma_{L}\right) \\
& =\lambda_{0}^{\mu} d_{\Phi}^{\mu}(\Delta) \\
& =\lambda_{0}^{\mu} \Delta \Phi^{\mu}
\end{aligned}
$$

19.11 EXAMPLE In the notation of 19.6,

$$
\Phi=|v|^{2}-R(R>0)
$$

is not homogeneous. Here

$$
E_{L} \left\lvert\, C=\frac{m}{2} R+m g q^{3}\right.
$$

and

$$
\left(\Gamma_{\lambda_{0}} \mid C\right)\left(F_{L} \mid C\right)=\operatorname{mgv}^{3} \neq 0
$$

Suppose now that ($E,[,]_{E^{\prime}} \rho$) is a Lie algebroid over $M-$ then in this context, a constraint is a submanifold $C \subset E$ such that $\pi \mid C$ is a fibration.
[Note: The constraint is linear if C is a vector subbundle of E. .]
N.B. Consider the pullback square

Put

$$
L_{C} E=T C \times T M E
$$

Then

$$
\left(L_{C} E,[,]_{L_{C} E^{\prime}} \rho_{C}\right)
$$

is a Lie algebroid over C , the prolongation of C over E .
[Note: Needless to say, $\mathrm{L}_{\mathrm{E}} \mathrm{E}=\mathrm{LE}$.]
In line with the earlier theory, we shall assume henceforth that $\exists C^{\infty}$ functions

$$
\Phi^{\mu}: E \rightarrow \underline{R} \quad(\mu=1, \ldots, K)
$$

such that

$$
\mathrm{C}=\bigcap_{\mu=1}^{\mathrm{K}}\left(\Phi^{\mu}\right)^{-1}(0) \quad \text { (cf. 19.1) }
$$

[Note: The fiber dimension of C is

$$
r=\operatorname{dim} C-\operatorname{dim} M=\operatorname{dim} C-n .
$$

And

$$
\begin{aligned}
K & =\operatorname{dim} E-\operatorname{dim} C \\
& =(n+k)-(n+r) \\
& =k-r,
\end{aligned}
$$

k the fiber dimension of E (as in §17). To run a reality check, take $\mathrm{E}=\mathrm{TM}$, thus in this case $k=n$. On the other hand, the codimension of $C \subset T M$ is, by our notational agreements, $\mathrm{n}-\mathrm{k} . .$. . Therefore

$$
\begin{aligned}
& \operatorname{dim} C=2 n-(n-k) \\
& =n+k \\
& \text { => } \\
& r=(n+k)-n=k \\
& \text { => } \\
& \mathrm{K}=\mathrm{n}-\mathrm{k} .]
\end{aligned}
$$

Fix a nondegenerate lagrangian L. Define $X_{\mu} \in \sec L E$ by the requirement that

$$
{ }^{{ }^{2}} X_{\mu} \omega_{L}=S^{*}\left(d_{L E} \Phi^{\mu}\right) \quad(\mu=1, \ldots, K)
$$

19.12 LEMMA X_{μ} is vertical, i.e.,

$$
X_{\mu} \in \sec \text { VLE. }
$$

Locally,

$$
x_{\mu}=\left(W(L)^{-1}\right)^{\alpha \beta} \frac{\partial \Phi^{\mu}}{\partial y^{\alpha}} y_{\beta} .
$$

[Note: $W(L)^{-1}$ is the inverse of

$$
W(L)=\left[W_{\alpha \beta}(L)\right],
$$

where

$$
\left.W_{\alpha \beta}(L)=\frac{\partial^{2} L}{\partial y^{\alpha} \partial y^{\beta}} \cdot\right]
$$

N.B. Locally,

$$
S^{*}\left(\mathrm{~d}_{\mathrm{LE}} \overline{\underline{\Phi}}^{\mu}\right)=\frac{\partial \Phi^{\mu}}{\partial Y^{\alpha}} x^{\alpha} .
$$

19.13 LEMMA Let $s \in \sec$ LE. Suppose that

$$
\left(\rho_{E} \circ s\right) \Phi^{\mu}=0 \quad(\mu=1, \ldots, K)
$$

Then

$$
s \mid C \in \sec L_{C} E
$$

[Note: Recall that

$$
\left.\rho_{E} \circ s \in D^{1}(E) \cdot\right]
$$

Given $\lambda^{l}, \ldots, \lambda^{K} \in C^{\infty}(E)$, put

$$
\Gamma_{\underline{\lambda}}=\Gamma_{L}+\lambda^{\mu} X_{\mu}
$$

In view of 19.13 , to force

$$
\Gamma_{\underline{\lambda}} \mid C \in \sec L_{C} E
$$

it suffices to demand that

$$
\left(\rho_{E} \circ \Gamma_{\lambda}\right) \Phi^{\nu}=0 \quad(\nu=1, \ldots, K)
$$

or still,

$$
\left(\rho_{E} \circ \Gamma_{L}\right) \Phi^{\nu}+\lambda^{\mu}\left(\rho_{E} \circ X_{\mu}\right) \Phi^{\nu}=0 \quad(\nu=1, \ldots, K)
$$

Call

$$
\left(\mathrm{L},\left\{\Phi^{\mathrm{I}}, \ldots, \Phi^{\mathrm{K}}\right\}\right)
$$

regular if the matrix

$$
\left[\left(\rho_{\mathrm{E}} \circ \mathrm{X}_{\mu}\right) \Phi^{\nu}\right]
$$

is nonsingular; otherwise, call

$$
\left(L,\left\{\Phi^{1}, \ldots, \Phi^{K}\right\}\right)
$$

irregular.
So, when

$$
\left(\mathrm{L},\left\{\Phi^{\mathrm{I}}, \ldots, \Phi^{\mathrm{K}^{\prime}}\right\}\right)
$$

is regular, one can find the Lagrange multiplier λ_{0}, thence

$$
\Gamma_{\underline{\lambda}_{0}} \mid C \in \sec L_{C} E
$$

N.B. Locally,

$$
\begin{aligned}
\left(\rho_{E} \circ X_{\mu}\right) \Phi^{\nu} & =\left(W(L)^{-1}\right)^{\alpha \beta} \frac{\partial \Phi^{\mu}}{\partial y^{\alpha}}\left(\rho_{E} \circ y_{\beta}\right) \Phi^{\nu} \\
& =\left(W(L)^{-1}\right)^{\alpha \beta} \frac{\partial \Phi^{\mu}}{\partial y^{\alpha}} \frac{\partial \Phi^{\nu}}{\partial y^{\beta}} \quad \text { (cf. 17.40) }
\end{aligned}
$$

Therefore

$$
\left(\mathrm{L},\left[\Phi^{\mathrm{l}}, \ldots, \Phi^{\mathrm{K}}\right\}\right)
$$

is regular if

$$
L=\frac{1}{2} G-V \circ \pi
$$

where $G: E \times_{M} E \rightarrow \underline{R}$ is a bundle metric on E and V is a C^{∞} function on M.
19.14 EXAMPLE Keep to the assumptions and notation of 18.11. Define

$$
I_{0}: \underline{R}^{3} \rightarrow \underline{R}^{3} \text { by }
$$

$$
\left[\begin{array}{l}
I_{0} e_{1}=I_{1} e_{1} \\
I_{0} e_{2}=I_{2} e_{2} \\
I_{0} e_{3}=I_{3} e_{3}
\end{array}\right.
$$

Then

$$
\mathrm{L}(\mathrm{y})=\frac{1}{2}\left\langle\mathrm{I}_{0} \mathrm{Y}, \mathrm{Y}\right\rangle \quad\left(\mathrm{y} \in \underline{\mathrm{R}}^{3}\right)
$$

And Γ_{L} is the Euler vector field $\Gamma_{0}: \underline{R}^{3} \rightarrow \underline{R}^{3}$, thus

$$
\Gamma_{0} y=I_{0}^{-1}\left(I_{0} y \times y\right) \quad\left(y \in \underline{R}^{3}\right) \text { (see the Appendix, A.16). }
$$

Fix a unit vector $U \in \underline{R}^{3}$. Let $\Phi: \underline{R}^{3} \rightarrow \underline{R}$ be the function $y \rightarrow\langle y, U\rangle$ and take

$$
C=\Phi^{-1}(0) .
$$

Then

$$
\begin{aligned}
& \mathrm{W}(\mathrm{~L})
\end{aligned} \quad\left|\begin{array}{ccc}
\mathrm{I}_{1} & 0 & 0 \\
0 & \mathrm{I}_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right|
$$

$$
\begin{aligned}
& =\frac{\left(U^{1}\right)^{2}}{I_{1}}+\frac{\left(U^{2}\right)^{2}}{I_{2}}+\frac{\left(U^{3}\right)^{2}}{I_{3}} \\
& =\left\langle U, I_{0}^{-1} U\right\rangle .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lambda_{0}(\mathrm{y}) & =-\frac{\Gamma_{0} \Phi}{\mathrm{X}_{\Phi} \Phi}(\mathrm{y}) \\
& =-\frac{\left\langle\mathrm{I}_{0} \mathrm{Y} \times \mathrm{Y}, \mathrm{I}_{0}^{-1} \mathrm{U}\right\rangle}{\left\langle\mathrm{U}, \mathrm{I}_{0}^{-1} \mathrm{U}\right\rangle} .
\end{aligned}
$$

19.15 REMARK If C is linear and, in addition, is a Lie subalgebroid of E, then

$$
\Gamma_{\lambda_{0}} \mid C \in \sec L C
$$

and

$$
\Gamma_{L \mid C}=\Gamma_{\underline{\lambda}_{0}} \mid C .
$$

19.16 LEMMA If $\rho_{E} \circ \triangle_{E}$ is tangent to C, then

$$
\left(\rho_{C} \circ \Gamma_{\underline{\lambda}_{0}} \mid C\right)\left(E_{L} \mid C\right)=0 \quad \text { (cf. 19.10). }
$$

[Note: The tangency assumption is always met by a linear C.]
19.17 EXAMPLE To check the validity of 19.16 in the setting of 19.14,
note that

$$
\begin{aligned}
\left(y^{1} \frac{\partial}{\partial y^{1}}+\right. & \left.y^{2} \frac{\partial}{\partial y^{2}}+y^{3} \frac{\partial}{\partial y^{3}}\right)\langle y, U\rangle \\
& =y^{1} U^{1}+y^{2} U^{2}+y^{3} U^{3} \\
& =\langle y, U\rangle=\Phi(y)
\end{aligned}
$$

Of course, one can also proceed directly, bearing in mind that here $E_{L}=L$, hence

$$
\Gamma_{L} E_{L}=0 .
$$

On the other hand,

$$
\mathrm{X}_{\Phi} \mathrm{L}=\Phi .
$$

§20. CHAPLYGIN SYSTEMS

Suppose that $\pi: E \rightarrow M$ is a fibration (cf. §ll) -- then an Ehresmann connection is a linear distribution $H \subset T E$ such that $\forall e \in E$,

$$
\left.\mathrm{VE}\right|_{e} \oplus \quad H_{e}=T_{e} E \quad \text { (cf. 15.11) }
$$

[Note: Let k be the fiber dimension of E, thus $\operatorname{dim} E=n+k$. Since

$$
\left.V E\right|_{e}=T_{e}\left(E_{\pi(e)}\right),
$$

it follows that

$$
\begin{aligned}
\operatorname{dim} H_{e} & =\operatorname{dim} T_{e} E-\left.\operatorname{dim} V E\right|_{e} \\
& =n+k-k=n .
\end{aligned}
$$

Therefore

$$
\operatorname{dim} \mathrm{H}=2 \mathrm{n}+\mathrm{k} .]
$$

Associated with H are vertical and horizontal projections

$$
\left\{\begin{array}{l}
\underline{\mathrm{V}}: D^{1}(\mathrm{E}) \rightarrow \sec \mathrm{VE} \\
\underline{\mathrm{~h}}: D^{\mathrm{l}}(\mathrm{E}) \rightarrow \sec \mathrm{H}
\end{array}\right.
$$

and its curvature is the map

$$
\mathrm{R}: \mathcal{D}^{I}(\mathrm{E}) \times D^{l}(\mathrm{E}) \rightarrow D^{l}(\mathrm{E})
$$

defined by

$$
\begin{aligned}
& R(X, Y) \\
& =[\underline{h} X, \underline{h} Y]-\underline{h}[\underline{h} X, Y]-\underline{h}[X, \underline{h} Y]+\underline{h}[X, Y] .
\end{aligned}
$$

20.1 LEMMA $\forall X, Y \in D^{1}(E)$,

$$
R(\underline{h X}, \underline{h} Y)=\underline{v}([\underline{h} X, \underline{h} Y])
$$

and

$$
\left\lvert\, \begin{aligned}
& R(\underline{h X}, \underline{v} Y)=0=R(\underline{v X}, \underline{h} Y) \\
& R(\underline{v X}, \underline{v Y})=0 .
\end{aligned}\right.
$$

Therefore

$$
\begin{aligned}
& R(X, Y)=R(\underline{h} X+\underline{v X}, \underline{h} Y+\underline{v} Y) \\
&=R(\underline{h X}, \underline{h Y})+R(\underline{h X}, \underline{v} Y)+R(\underline{v} X, \underline{h} Y)+R(\underline{v} X, \underline{v} Y) \\
&=R(\underline{h} X, \underline{h} Y) \\
&=\underline{v}([\underline{h} X, \underline{h} Y]) .
\end{aligned}
$$

20.2 LENMA H is integrable (or still, involutive (cf. 15.18)) iff $R=0$. PROOF Suppose that $R=0-$ then $\forall X, Y \in D^{1}(E)$,

$$
\begin{aligned}
{[\underline{h} X, \underline{h Y}] } & =\underline{h}[\underline{h X}, Y]+\underline{h}[X, \underline{h} Y]-\underline{h}[X, Y] \\
& =\underline{h}([\underline{h} X, Y]+[X, \underline{h Y}]-[X, Y]) \\
& \in \sec H .
\end{aligned}
$$

Therefore H is involutive (cf. 15.19). Conversely,

$$
\begin{aligned}
R(X, Y) & =\underline{v}([\underline{h} X, \underline{h} Y]) \\
& =0
\end{aligned}
$$

if H is involutive.
20.3 RAPPEL Because $\pi: E \rightarrow M$ is a fibration, hence a submersion, each point in E admits a neighborhood U on which \exists local coordinates

$$
\left\{x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{k}\right\}
$$

such that

$$
(\pi \mid U)\left(x^{i}, y^{\alpha}\right)=\left(x^{i}\right) .
$$

Denote by X^{h} the horizontal lift of an $X \in D^{1}(M)$, thus

$$
\left.x^{h}\right|_{e}=\left.\left(T_{e} \pi \mid H_{e}\right)^{-1} x\right|_{\pi(e)}
$$

[Note: Bear in mind that

$$
\mathrm{T} \pi \mid \mathrm{H}: \mathrm{H} \rightarrow \mathrm{TM}
$$

is a fiberwise isomorphism.]
The distribution H is locally spanned by the vector fields

$$
\left(\frac{\partial}{\partial x^{i}}\right)^{h}=\frac{\partial}{\partial x^{i}}-A_{i}^{\alpha} \frac{\partial}{\partial y^{\alpha}} \quad(1 \leq i \leq n),
$$

where $A_{i}^{\alpha} \in C^{\infty}(U)$, i.e.,

$$
H_{e}=\operatorname{span}\left\{\left.\left(\frac{\partial}{\partial x^{i}}\right)^{h}\right|_{e}, \ldots,\left.\left(\frac{\partial}{\partial x^{n}}\right)^{h}\right|_{e}\right\} \quad(e \in U) .
$$

N.B. The set

$$
\left\{\left(\frac{\partial}{\partial x^{i}}\right)^{h}, \frac{\partial}{\partial y^{\alpha}}\right\}
$$

is a basis for $D^{1}(\mathrm{U})$.
20.4 REMARK The A_{i}^{α} are called the connection components of the Ehresmann connection H. E.g.: Take $E=T M$ and let $\Gamma \in S O(T M)$-- then as we have seen in §5, one may attach to Γ an Ehresmann connection H, where

$$
A_{i}^{j}=-\frac{1}{2} \frac{\partial C^{j}}{\partial v^{i}}
$$

if

$$
\Gamma=v^{i} \frac{\partial}{\partial q^{i}}+c^{i} \frac{\partial}{\partial v^{i}}
$$

Put

$$
\omega^{\alpha}=A_{i}^{\alpha} d x^{i}+d y^{\alpha} \quad(1 \leq \alpha \leq k) .
$$

20.5 LEMMA The 1-forms $\omega^{l}, \ldots, \omega^{k}$ on U are linearly independent and

$$
H_{e}=\left.\left.\operatorname{Ker} \omega^{1}\right|_{e} \cap \ldots \cap \operatorname{Ker} \omega^{k}\right|_{e} \quad(e \in U) .
$$

[Note: This is 15.23 in the present setting (the dimension of E is $\mathrm{n}+\mathrm{k}$ and the fiber dimension of H is n , so the " $\mathrm{n}-\mathrm{k}$ " there is $\mathrm{n}+\mathrm{k}-\mathrm{n}=\mathrm{k}$ here.]
N.B. Denote the velocity coordinates by $v^{i}(i=1, \ldots, n)$ and $u^{\alpha}(\alpha=1, \ldots, k)$. Put

$$
\Phi^{\alpha}=A_{i}^{\alpha} v^{i}+u^{\alpha} \quad \text { (a.k.a. } \hat{\omega}^{\alpha} \text {). }
$$

Then the Φ^{α} combine to give a map

$$
\Phi: T \mathrm{~F} \rightarrow \underline{\mathrm{R}}
$$

and locally,

$$
H=\Phi^{-1}(0) .
$$

[Note: To be completely precise, $H \mid \mathrm{U}$ is a vector subbundle of $T \mathrm{~T}$ ($\equiv \mathrm{TE} \mid \mathrm{U}$) and what we are saying is that

$$
H \mid U=\Phi^{-1}(0) .
$$

Also, in the definition of Φ^{α}, there is an abuse of notation in that

$$
A_{i}^{\alpha} \circ \pi_{E}
$$

has been abbreviated to A_{i}^{α}.]
Write

$$
R\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=R_{i j}^{\alpha} \frac{\partial}{\partial y^{\alpha}} .
$$

20.6 LEMMA We have

$$
R_{i j}^{\alpha}=\frac{\partial A_{i}^{\alpha}}{\partial x^{j}}-\frac{\partial A_{j}^{\alpha}}{\partial x^{i}}+A_{i}^{\beta} \frac{\partial A_{j}^{\alpha}}{\partial y^{\beta}}-A_{j}^{\beta} \frac{\partial A_{i}^{\alpha}}{\partial y^{\beta}} .
$$

Fix a nondegenerate lagrangian L (per TE, not TM). Working locally, define a vector field $X_{\alpha} \in D^{l}$ (TU) by the requirement that

$$
{ }^{\imath} X_{\alpha}{ }^{\omega}{ }_{L}=\pi_{U}^{*_{U}}{ }^{\alpha} \quad(\alpha=1, \ldots, k) .
$$

20.7 LEMMA \exists one and only one distribution Σ_{L} on TE which is locally generated by the X_{α}.

Since H is a vector subbundle of TE, it can play the role of a constraint (but H is not necessarily the zero set of a C^{∞} function). This said, let us term the pair (L, H) regular if locally,

$$
\left(\mathrm{L},\left\{\Phi^{\mathrm{l}}, \ldots, \Phi^{\mathrm{k}}\right\}\right)
$$

is regular, i.e., if the matrix

$$
\left[x_{\alpha} \Phi^{\beta}\right]
$$

is nonsingular.
20.8 LEMMA Suppose that (L, H) is regular - then $\forall x \in H$,

$$
\left.\mathrm{T}_{\mathrm{X}} \mathrm{H} \cap \Sigma_{\mathrm{L}}\right|_{\mathrm{X}}=0
$$

PROOF Let $\left.X_{x} \in T_{x} H \cap \Sigma_{L}\right|_{x}$ - then

$$
\begin{array}{cc}
& x_{x}=\left.\sum_{\alpha} \lambda^{\alpha} x_{\alpha}\right|_{x} \quad\left(\lambda^{\alpha} \in \underline{R}\right) \\
\Rightarrow \quad & \left.\sum_{\alpha} \lambda^{\alpha}\left(x_{\alpha} \Phi^{\beta}\right)\right|_{x}=0 \quad(\beta=1, \ldots, k) \\
\Rightarrow \quad & \lambda^{1}=0, \ldots, \lambda^{k}=0 \\
\Rightarrow \quad & x_{x}=0
\end{array}
$$

Put

$$
\Sigma_{(L, H)}=\Sigma_{L} \mid H .
$$

Then from the above,

$$
T T E \mid H=T H \oplus \Sigma_{(L, H)}
$$

so there are projections P and Q given pointwise by

$$
\begin{aligned}
& \left.\right|^{-} P_{x}: T_{x} T E \rightarrow T_{x} H \\
& \text { (} x \in H \text {). } \\
& \mathcal{Z}_{\mathrm{X}} \mathrm{Q}_{\mathrm{x}}:\left.\mathrm{TE}^{\mathrm{TE}} \rightarrow{ }_{(L, H)}\right|_{\mathrm{x}}
\end{aligned}
$$

The fundamental stipulation is now:

$$
\Gamma_{(L, H)} \equiv P\left(\Gamma_{L} \mid H\right)
$$

represents the constrained dynamics.
[Note:

$$
\begin{aligned}
& \Gamma_{\mathrm{L}} \mid H \in \sec (\mathrm{THE} \mid H) \\
\Rightarrow & \\
& \\
& P\left(\Gamma_{L} \mid H\right) \in \sec \mathrm{TH} .
\end{aligned}
$$

I.e.:

$$
\left.P\left(\Gamma_{L} \mid H\right) \in D^{1}(H) \cdot\right]
$$

20.9 REMARK Working locally, define the Lagrange multiplier $\underline{\lambda}_{0}$ in the evident manner and form

$$
\Gamma_{\lambda_{0}}=\Gamma_{L} \mid T U+\lambda^{\alpha} X_{\alpha} .
$$

Explicating the relation

$$
\Gamma_{(L, H)}=\Gamma_{L} \mid H-Q\left(\Gamma_{L} \mid H\right)
$$

then gives

$$
\Gamma_{\lambda_{0}}\left|(\mathrm{H} \mid \mathrm{U})=\Gamma_{(\mathrm{L}, \mathrm{H})}\right|(\mathrm{H} \mid \mathrm{U}) .
$$

Furthermore, along an integral curve γ of $\Gamma_{\lambda_{0}}$, we have

$$
\left[\begin{array}{c}
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial x^{i}}=\sum_{\alpha=1}^{k} \lambda_{0}^{\alpha} \frac{\partial \Phi^{\alpha}}{\partial v^{i}} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial u^{\alpha}}\right)-\frac{\partial L}{\partial y^{\alpha}}=\sum_{\beta=1}^{k} \lambda_{0}^{\beta} \frac{\partial \Phi^{\beta}}{\partial u^{\alpha}}
\end{array}\right.
$$

or still,

$$
\left[\begin{array}{l}
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial x^{i}}=\sum_{\alpha=1}^{k} \lambda_{0}^{\alpha} A_{i}^{\alpha} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial u^{\alpha}}\right)-\frac{\partial L}{\partial y^{\alpha}}=\lambda_{0}^{\alpha}
\end{array}\right.
$$

To reflect the presence of the connection, call L H-invariant if $\forall x \in M \&$ $\forall X_{x} \in T_{x}{ }^{M}$,

$$
L\left(e_{1},\left(x_{x}\right)^{h} \mid e_{1}\right)=L\left(e_{2},\left.\left(x_{x}\right)^{h}\right|_{e_{2}}\right)
$$

where

$$
\pi\left(e_{1}\right)=x=\pi\left(e_{2}\right) .
$$

[Note: If L is H-invariant, then

$$
L\left(x^{i}, y^{\alpha}, v^{i},-A_{i}^{\alpha} v^{i}\right)
$$

is independent of y^{α}. Therefore

$$
\left.\frac{\partial L}{\partial y^{\alpha}}=\frac{\partial L}{\partial u^{\beta}} v^{i} \frac{\partial^{A}{ }_{i}^{\beta}}{\partial y^{\alpha}} .\right]
$$

20.10 EXAMPLE Take $E=\underline{R}^{2} \times \underline{S}^{1}, M=\underline{R}^{2}$, and let

$$
\pi\left(x^{1}, x^{2}, \theta\right)=\left(x^{1}, x^{2}\right) \quad\left(\theta=y^{1}\right) .
$$

Put

$$
\mathrm{L}=\frac{1}{2}\left(\left(\mathrm{v}^{1}\right)^{2}+\left(\mathrm{v}^{2}\right)^{2}\right)+\frac{1}{2}\left(\mathrm{v}^{2}\right) \quad\left(\mathrm{v}=\mathrm{u}^{1}\right)
$$

Define the Ehresmann connection H by

$$
{ }_{\left(x^{1}, x^{2}, \theta\right)}=\operatorname{span}\left\{\frac{\partial}{\partial x^{1}}-\sin \theta \frac{\partial}{\partial \theta}, \frac{\partial}{\partial x^{2}}+\cos \theta \frac{\partial}{\partial \theta}\right\} .
$$

Then L is not H-invariant.

If L is H-invariant, then L induces a lagrangian $\bar{L} \in C^{\infty}$ (TM) via the prescription

$$
\bar{L}\left(x, X_{x}\right)=L\left(e,\left.\left(X_{x}\right)^{h}\right|_{e}\right) \quad(\pi(e)=x) .
$$

[Note: Locally,

$$
\left.\bar{L}\left(x^{i}, v^{i}\right)=L\left(x^{i}, y^{\alpha}, v^{i},-A_{i}^{\alpha} v^{i}\right) .\right]
$$

10.

20.11 LEMMA Suppose that L is H-invariant -- then (L, H) is regular iff $\overline{\mathrm{L}}$ is nondegenerate.

PROOF Let $W=W(L)^{-1}$ (recall that by assumption, L is nondegenerate) - then

$$
W=\left|\begin{array}{cc}
-w^{i j} & w^{i \beta} \\
w^{\alpha j} & w^{\alpha \beta}
\end{array}\right|
$$

and we have

$$
x_{\alpha} \Phi^{\beta}=W^{i j} A_{i}^{\alpha} A_{j}^{\beta}+w^{i \beta} A_{i}^{\alpha}+w^{\alpha j_{A}}{ }_{j}^{\beta}+w^{\alpha \beta}
$$

or still,
where

$$
A_{\alpha i}=A_{i}^{\alpha}
$$

On the other hand,

$$
\begin{gathered}
\frac{\partial^{2} \bar{L}}{\partial v^{i} \partial v^{j}} \\
=\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}-A_{i}^{\alpha} \frac{\partial^{2} L}{\partial u^{\alpha} \partial v^{j}}-A_{j}^{\beta} \frac{\partial^{2} L}{\partial u^{\beta} \partial v^{i}}+A_{i}^{\alpha} A_{j}^{\beta} \frac{\partial^{2} L}{\partial u^{\alpha} \partial u^{\beta}}
\end{gathered}
$$

or still,

$$
W(\bar{L})=\left[\begin{array}{cc}
-I_{n} \times n & 0 \\
0 & -A^{\top}
\end{array}\right] W^{-1}\left[\begin{array}{cc}
I_{n} \times n & 0 \\
0 & -A^{\top}
\end{array}\right]^{T}
$$

$W(L)$ being W^{-1}. Combining these facts with some elementary matrix theory then leads to the desired conclusion.

Assume henceforth that L is H-invariant and (L, H) is regular. Let

$$
\gamma(t)=\left(x^{i}(t), y^{\alpha}(t), v^{i}(t), u^{\alpha}(t)\right)
$$

be an integral curve for

$$
\Gamma_{\lambda_{0}}\left|(\mathrm{H} \mid \mathrm{U})=\Gamma_{(\mathrm{L}, \mathrm{H})}\right|(\mathrm{H} \mid \mathrm{U}) .
$$

Pass to

$$
\bar{L}\left(x^{i}(t), v^{i}(t)\right)
$$

and consider

$$
\frac{d}{d t}\left(\frac{\partial \bar{I}}{\partial v^{i}}\right)-\frac{\partial \bar{L}}{\partial x^{i}}
$$

taken along

$$
\bar{\gamma}(t)=\left(x^{i}(t), v^{i}(t)\right)
$$

1. $\frac{\partial \bar{L}}{\partial x^{i}}=\frac{\partial L}{\partial x^{i}}+\frac{\partial L}{\partial u^{\alpha}} \frac{\partial}{\partial x^{i}}\left(-A_{j}^{\alpha} v^{j}\right)$

$$
=\frac{\partial L}{\partial x^{i}}+\frac{\partial L}{\partial u^{\alpha}}\left(-\frac{\partial A_{j}^{\alpha}}{\partial x^{i}} v^{j}\right)
$$

2. $\frac{\partial \bar{L}}{\partial v^{i}}=\frac{\partial L}{\partial v^{i}}+\frac{\partial L}{\partial u^{\alpha}} \frac{\partial}{\partial v^{i}}\left(-A_{j}^{\alpha} v^{j}\right)$

$$
=\frac{\partial L}{\partial v^{i}}+\frac{\partial L}{\partial u^{\alpha}}\left(-A_{i}^{\alpha}\right)
$$

3. $\frac{d}{d t}\left(\frac{\partial \bar{L}}{\partial v^{i}}\right)=\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)+\frac{d}{d t}\left(\frac{\partial L}{\partial u^{\alpha}}\left(-A_{i}^{\alpha}\right)\right)$

$$
\begin{aligned}
& => \\
& \begin{aligned}
\frac{d}{d t}\left(\frac{\partial \bar{L}}{\partial v^{i}}\right) & -\frac{\partial \bar{L}}{\partial x^{i}} \\
& =\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial x^{i}} \\
& +\frac{d}{d t}\left(\frac{\partial L}{\partial u^{\alpha}}\right)\left(-A_{i}^{\alpha}\right)+\frac{\partial L}{\partial u^{\alpha}} \frac{d}{d t}\left(-A_{i}^{\alpha}\right)+\frac{\partial L}{\partial u^{\alpha}} v^{j} \frac{\partial A_{j}^{\alpha}}{\partial x^{i}} .
\end{aligned}
\end{aligned}
$$

4. $\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial x^{i}}=\sum_{\alpha=1}^{k} \lambda_{0}^{\alpha} A_{i}^{\alpha}$.
5. $\frac{d}{d t}\left(\frac{\partial L}{\partial u^{\alpha}}\right)-\frac{\partial L}{\partial y^{\alpha}}=\lambda_{0}^{\alpha}$.
6. $\frac{\partial L}{\partial y^{\alpha}}=\frac{\partial L}{\partial u^{\beta}} v^{j} \frac{\partial A_{j}^{\beta}}{\partial y^{\alpha}}$
=>

$$
\frac{d}{d t}\left(\frac{\partial \bar{L}}{\partial v^{i}}\right)-\frac{\partial \bar{L}}{\partial x^{i}}
$$

$$
\begin{aligned}
& =\sum_{\alpha=1}^{k} \lambda_{0}^{\alpha} A_{i}^{\alpha}-\sum_{\alpha=1}^{k} \lambda_{0}^{\alpha} A_{i}^{\alpha}+\frac{\partial L}{\partial y^{\alpha}}\left(-A_{i}^{\alpha}\right) \\
& +\frac{\partial L}{\partial u^{\alpha}} \frac{d}{d t}\left(-A_{i}^{\alpha}\right)+\frac{\partial L}{\partial u^{\alpha}} v^{j} \frac{\partial A_{j}^{\alpha}}{\partial x^{i}} \\
& =\frac{\partial L}{\partial u^{\beta}} v^{j} \frac{\partial A_{j}^{\beta}}{\partial y^{\alpha}}\left(-A_{i}^{\alpha}\right) \\
& \\
& +\frac{\partial L}{\partial u^{\alpha}} \frac{d}{d t}\left(-A_{i}^{\alpha}\right)+\frac{\partial L}{\partial u^{\alpha}} v^{j} \frac{\partial A_{j}^{\alpha}}{\partial x^{i}} .
\end{aligned}
$$

7. $\frac{d}{d t} x^{j}(t)=v^{j}(t) \equiv v^{j}$.
8. $\frac{d}{d t} y^{\beta}(t)=u^{\beta}(t) \equiv-v^{j} A_{j}^{\beta}$.
9. $\frac{\partial L}{\partial u^{\alpha}} \frac{d}{d t}\left(-A_{i}^{\alpha}\right)$

$$
\begin{aligned}
& =\frac{\partial L}{\partial u^{\alpha}} \frac{d}{d t}\left(-A_{i}^{\alpha}\left(x^{j}(t), y^{\beta}(t)\right)\right) \\
& =\frac{\partial L}{\partial u^{\alpha}}\left(-\frac{\partial A_{i}^{\alpha}}{\partial x^{j}} \frac{d}{d t} x^{j}(t)-\frac{\partial A_{i}^{\alpha}}{\partial y^{\beta}} \frac{d}{d t} y^{\beta}(t)\right) \\
& =\frac{\partial L}{\partial u^{\alpha}}\left(v^{j}\left(-\frac{\partial A_{i}^{\alpha}}{\partial x^{j}}\right)+v^{j} A_{j}^{\beta} \frac{\partial A_{i}^{\alpha}}{\partial y^{\beta}}\right) \\
\Rightarrow \quad & \begin{aligned}
\frac{d}{d t}\left(\frac{\partial \bar{L}}{\partial v^{i}}\right) & -\frac{\partial \bar{L}}{\partial x^{i}} \\
& =\frac{\partial L}{\partial u^{\alpha}}\left(-A_{i}^{\beta}\right) \frac{\partial A_{j}^{\alpha}}{\partial y^{\beta}}
\end{aligned} .
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\partial L}{\partial u^{\alpha}} v^{j}\left(-\frac{\partial A_{i}^{\alpha}}{\partial x^{j}}+A_{j}^{\beta} \frac{\partial A_{i}^{\alpha}}{\partial y^{\beta}}\right) \\
& +\frac{\partial L}{\partial u^{\alpha}} v^{j} \frac{\partial A_{j}^{\alpha}}{\partial x^{i}} \\
& =\frac{\partial L}{\partial u^{\alpha}} v^{j}\left(\frac{\partial A_{j}^{\alpha}}{\partial x^{i}}-\frac{\partial A_{i}^{\alpha}}{\partial x^{j}}+A_{j}^{\beta} \frac{\partial A_{i}^{\alpha}}{\partial y^{\beta}}-A_{i}^{\beta} \frac{\partial A_{j}^{\alpha}}{\partial y^{\beta}}\right) \\
& =-\frac{\partial L}{\partial u^{\alpha}} v^{j} R_{i j}^{\alpha} \quad \text { (cf. 20.6). }
\end{aligned}
$$

This sets the stage for reduction theory which, however, we are not going to delve into. Let's just say: Under certain circumstances, the vector field $\Gamma_{(L, H)}$ is $T \pi$-projectable onto a second order vector field $\bar{\Gamma}_{(L, H)} \in \mathcal{D}^{1}(T M)$ such that

$$
\bar{\Gamma}_{(\mathrm{L}, \mathrm{H})} \overline{\mathrm{L}}^{\omega}=-\mathrm{dE}_{\overline{\mathrm{L}}}+{ }^{\Pi_{(L, H)}},
$$

where $\Pi_{(L, H)}$ is a horizontal l-form on TM given locally by

$$
-\frac{\partial L}{\partial u^{\alpha}} v^{j} \mathrm{R}_{\mathrm{ij}}^{\alpha} \mathrm{dq}^{i}
$$

a potentially ambiguous expression.
20.12 REMARK It can be shown that

$$
\bar{\Gamma}_{(L, H)}{ }^{\Pi}(L, H)=0
$$

Consequently,

$$
\bar{\Gamma}_{(\mathrm{L}, \mathrm{H})}{ }^{\mathrm{E}} \overline{\mathrm{~L}}
$$

$$
\begin{aligned}
& =\left\langle\bar{\Gamma}(\mathrm{L}, \mathrm{H}), \stackrel{\left.\partial E_{\bar{L}}\right\rangle}{ }\right. \\
& =\left\langle\bar{\Gamma}_{(\mathrm{L}, \mathrm{H})},-\bar{\tau}_{(\mathrm{L}, \mathrm{H})} \omega_{\bar{L}}+\Pi_{(\mathrm{L}, \mathrm{H})}\right\rangle \\
& =-\omega_{\mathrm{L}}\left(\bar{\Gamma}_{(\mathrm{L}, \mathrm{H})}, \bar{\Gamma}_{(\mathrm{L}, \mathrm{H})}\right)+\overline{\mathrm{I}}_{(\mathrm{L}, \mathrm{H})} \quad \Pi(\mathrm{L}, \mathrm{H}) \\
& =0 \text {. }
\end{aligned}
$$

So E_{L} is a first integral for $\bar{\Gamma}_{(\mathrm{L}, \mathrm{H})}$ (cf. 8.10).
N.B. In the language of $\$ 10$, the triple $M=\left(M, \bar{L}_{, ~}^{\Pi}(\mathrm{L}, \mathrm{H})\right.$) is a nondegenerate mechanical system, $I_{(L, H)}$ being the (external) force field.
20.13 REMARK If $\Pi_{(L, H)}$ is not identically zero, then $\Pi_{(L, H)}$ is not closed (in which case our mechanical system is not conservative). To see this, let

$$
\Gamma=\bar{\Gamma}_{(\mathrm{L}, \mathrm{H})}
$$

and write

$$
\Pi_{(L, H)}=a_{i} d q^{i} \quad\left(a_{i}=-\frac{\partial L}{\partial u^{\alpha}} v^{j_{i j}}{ }_{i j}^{\alpha}\right)
$$

Then

$$
\begin{array}{ll}
& d \Pi(L, H)=0 \\
\Rightarrow & L_{\Gamma} \Pi_{(L, H)}=\left(\imath_{\Gamma} \circ d+d \circ \imath_{\Gamma}\right) \Pi_{(L, H)}
\end{array}
$$

$$
\begin{aligned}
&=0 \\
& \Rightarrow \\
&=\left(L_{\Gamma} a_{i}\right) d q^{i}+a_{i}\left(L_{\Gamma} d q^{i}\right) \\
&=\left(L_{\Gamma} a_{i}\right) d q^{i}+a_{i}\left(d L_{\Gamma} q^{i}\right) \\
&=\left(L_{\Gamma} a_{i}\right) d q^{i}+a_{i} d v^{i} \quad(\Gamma \in S O(T M)) \\
& \Rightarrow \quad a_{i} \equiv 0 \Rightarrow \Pi_{(L, H)} \equiv 0 .
\end{aligned}
$$

[Note: If H is integrable, then $\Pi_{(L, H)}$ is identically zero (cf. 20.2) (but the converse is false (cf. 20.15)).]
20.14 EXAMPIE Take $E=\underline{R}^{3}, M=\underline{R}^{2}$ and let

$$
\pi\left(x^{1}, x^{2}, y^{1}\right)=\left(x^{1}, x^{2}\right) .
$$

Then

$$
\left.H\right|_{\left(x^{1}, x^{2}, y^{1}\right)}=\operatorname{span}\left\{\frac{\partial}{\partial x^{1}}+x^{2} \frac{\partial}{\partial y^{1}}, \frac{\partial}{\partial x^{2}}\right\}
$$

is an Ehresmann connection. Here

$$
\begin{array}{ll}
& \omega^{1}=-x^{2} d x^{1}+d y^{1} \\
\Rightarrow \quad & A_{1}^{1}=-x^{2}, A_{2}^{1}=0
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \\
& \\
& \int_{-} \mathrm{R}_{11}^{1}=0, \mathrm{R}_{21}^{1}=1 \\
& \mathrm{R}_{12}^{1}=-1, \mathrm{R}_{22}^{1}=0
\end{aligned} \quad \text { (cf. 20.6). } \quad . \quad .
$$

Let

$$
L=\frac{1}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(u^{1}\right)^{2}\right)
$$

Then L is H-invariant and (L, H) is regular. To compute $\Pi_{(L, H)}$, note that

$$
\begin{gathered}
\left.\left\lvert\, \begin{array}{c}
\frac{\partial L}{\partial u^{1}}\left(v^{1} R_{11}^{1}+v^{2} R_{12}^{1}\right) d q^{1}=-u^{1} v^{2} d q^{1}=-q^{2} v^{1} v^{2} d q^{1} \\
\frac{\partial L}{\partial u^{2}}\left(v^{1} R_{21}^{1}+v^{2} R_{22}^{1}\right) d q^{2}=u^{1} v^{1} d q^{2}=q^{2}\left(v^{1}\right)^{2} d q^{2}
\end{array}\right.\right] \\
\Rightarrow \quad \Pi_{(L, H)}=q^{2} v^{1} v^{2} d q^{1}-q^{2}\left(v^{1}\right)^{2} d q^{2} .
\end{gathered}
$$

In addition,

$$
\bar{L}=\frac{1}{2}\left(\left(\left(q^{2}\right)^{2}+1\right)\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right)
$$

But, as has been seen in 16.5,

$$
\begin{aligned}
\Gamma_{\lambda_{0}}= & v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+v^{3} \frac{\partial}{\partial q^{3}} \\
& +\frac{v^{1} v^{2}}{\left(q^{2}\right)^{2}+1}\left(-q^{2} \frac{\partial}{\partial v^{1}}+\frac{\partial}{\partial v^{3}}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
\Gamma_{(L, H)}= & v^{1} \frac{\partial}{\partial q^{1}}+v^{2} \frac{\partial}{\partial q^{2}}+q^{2} v^{1} \frac{\partial}{\partial q^{3}} \\
& -\frac{v^{1} v^{2}}{\left(q^{2}\right)^{2}+1} q^{2} \frac{\partial}{\partial v^{1}}
\end{aligned}
$$

from which

$$
\bar{\Gamma}_{(L, H)}=v^{1} \frac{\partial}{\partial q^{I}}+v^{2} \frac{\partial}{\partial q^{2}}-\frac{v^{1} v^{2}}{\left(q^{2}\right)^{2}+1} q^{2} \frac{\partial}{\partial v^{1}}
$$

To check that

$$
{ }_{\bar{\Gamma}(L, H)} \bar{L}^{\omega}=-\mathrm{dE}_{\overline{\mathrm{L}}}+\Pi_{(\mathrm{L}, \mathrm{H})^{\prime}}
$$

it suffices to check that

$$
L_{\bar{\Gamma}(L, H)}{ }^{\theta} \bar{L}=d \bar{L}+\overline{I I}_{(L, H)} \quad \text { (cf. 8.14). }
$$

To this end, write

$$
\begin{aligned}
\theta_{\bar{L}} & =\frac{\partial \bar{L}}{\partial v^{1}} d q^{1}+\frac{\partial \bar{L}}{\partial v^{2}} d q^{2} \\
& =\left(\left(q^{2}\right)^{2}+1\right) v^{1} d q^{1}+v^{2} d q^{2}
\end{aligned}
$$

Then

$$
\begin{gathered}
L_{\bar{\Gamma}(L, H)}{ }^{\theta} \overline{\bar{L}} \\
=L_{\bar{\Gamma}(L, H)}\left(\left(\left(q^{2}\right)^{2}+l\right) v^{1}\right) \wedge d q^{1}
\end{gathered}
$$

$$
\begin{aligned}
& +\left(\left(q^{2}\right)^{2}+1\right) v^{1} \wedge L_{\bar{\Gamma}(L, H)} d q^{1} \\
& +L_{\bar{\Gamma}(L, H)} v^{2} \wedge d q^{2}+v^{2} \wedge L_{\bar{\Gamma}(L, H)} d q^{2} \\
& =q^{2} v^{1} v^{2} d q^{I}+\left(\left(q^{2}\right)^{2}+1\right) v^{1} d v^{1}+v^{2} d v^{2} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& d \bar{L}+\Pi_{(L, H)} \\
&= q^{2}\left(v^{1}\right)^{2} d q^{2}+\left(\left(q^{2}\right)^{2}+1\right) v^{1} d v^{1}+v^{2} d v^{2} \\
&+q^{2} v^{1} v^{2} d q^{1}-q^{2}\left(v^{1}\right)^{2} d q^{2} \\
&= q^{2} v^{1} v^{2} d q^{1}+\left(\left(q^{2}\right)^{2}+1\right) v^{1} d v^{1}+v^{2} d v^{2} \\
&= L_{\bar{\Gamma}(L, H)}{ }^{\theta} \cdot
\end{aligned}
$$

[Note: $E_{\bar{L}}$ is a first integral for $\bar{\Gamma}\left(L_{1}, H\right)$ (cf. 20.12). Proof:

$$
\begin{aligned}
& \bar{\Gamma}_{(L, H)}\left(\frac{1}{2}\left(\left(\left(q^{2}\right)^{2}+1\right)\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right)\right) \\
& \quad=v^{2} q^{2}\left(v^{1}\right)^{2}-\frac{v^{1} v^{2}}{\left(\left(q^{2}\right)^{2}+1\right)} q^{2}\left(\left(q^{2}\right)^{2}+1\right) v^{1} \\
& \quad=q^{2}\left(v^{1}\right)^{2} v^{2}-q^{2}\left(v^{1}\right)^{2} v^{2} \\
& \quad=0
\end{aligned}
$$

Another first integral for $\bar{\Gamma}(\mathrm{L}, \mathrm{H})$ is the function

$$
\left(\left(q^{2}\right)^{2}+1\right)^{1 / 2} v^{1}
$$

Proof:

$$
\begin{aligned}
& \bar{\Gamma}_{(\mathrm{L}, \mathrm{H})}\left(\left(\left(q^{2}\right)^{2}+1\right)^{1 / 2} \mathrm{v}^{1}\right) \\
&= \mathrm{v}^{1} \mathrm{v}^{2} \frac{q^{2}}{\left(\left(q^{2}\right)^{2}+1\right)^{1 / 2}}-\frac{\mathrm{v}^{1} \mathrm{v}^{2}}{\left(\left(q^{2}\right)^{2}+1\right)} q^{2}\left(\left(q^{2}\right)^{2}+1\right)^{1 / 2} \\
&\quad=0 .]
\end{aligned}
$$

20.15 EXAMPLE Take $E=\underline{S}^{1} \times \underline{S}^{1} \times \underline{R}^{2}, M=\underline{S}^{1} \times \underline{S}^{1}$ and let

$$
\pi\left(\theta^{1}, \theta^{2}, y^{1}, y^{2}\right)=\left(\theta^{1}, \theta^{2}\right)
$$

Then the distribution Σ figuring in 16.12 is an Ehresmann connection, call it H:

$$
\begin{gathered}
H \mid\left(\theta^{1}, \theta^{2}, y^{I}, y^{2}\right) \\
=\operatorname{span}\left\{R \cos \theta^{1} \frac{\partial}{\partial y^{1}}+R \sin \theta^{1} \frac{\partial}{\partial y^{2}}+\frac{\partial}{\partial \theta^{2}}, \frac{\partial}{\partial \theta^{1}}\right\} .
\end{gathered}
$$

Here

$$
\begin{aligned}
& {\left[\begin{array}{rl}
-\quad \omega^{1} & =-\left(R \cos \theta^{1}\right) d \theta^{2}+d y^{1} \\
\omega^{2} & =-\left(R \sin \theta^{1}\right) d \theta^{2}+d y^{2}
\end{array}\right.} \\
& \text { => } \\
& {\left[\begin{array}{l}
A_{1}^{1}=0, A_{2}^{1}=-R \cos \theta^{1} \\
A_{1}^{2}=0, A_{2}^{2}=-R \sin \theta^{1}
\end{array}\right.}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \\
l_{R_{11}}^{1}=0, R_{12}^{1}=-R \sin \theta^{1}, R_{21}^{1}=R \sin \theta^{1}, R_{22}^{1}=0 \\
\quad R_{11}^{2}=0, R_{12}^{2}=R \cos \theta^{1}, R_{21}^{2}=-R \cos \theta^{1}, R_{22}^{2}=0
\end{gathered}
$$

Let

$$
L=\frac{1}{2} I_{1}\left(v^{1}\right)^{2}+\frac{1}{2} I_{2}\left(v^{2}\right)^{2}+\frac{m}{2}\left(\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}\right),
$$

where I_{1}, I_{2}, and m are positive constants -- then L is H-invariant and (L, H) is regular. And, from the definitions,

$$
\bar{L}=\frac{1}{2}\left(I_{1}\left(v^{1}\right)^{2}+\left(m R^{2}+I_{2}\right)\left(v^{2}\right)^{2}\right)
$$

However, in this situation,

$$
\pi_{(L, H)}=0 .
$$

E.g.: The coefficient of $d q^{1}$ is the negative of

$$
\begin{gathered}
\frac{\partial L}{\partial u^{1}}\left(v^{1} R_{11}^{1}+v^{2} R_{12}^{1}\right)+\frac{\partial L}{\partial u^{2}}\left(v^{1} R_{11}^{2}+v^{2} R_{12}^{2}\right) \\
=m u^{1}\left(v^{2}\left(-R \sin \theta^{1}\right)\right)+m u^{2}\left(v^{2}\left(R \cos \theta^{1}\right)\right) \\
=m\left(R \cos \theta^{1}\right) v^{2}\left(v^{2}\left(-R \sin \theta^{1}\right)\right) \\
+m\left(R \sin \theta^{l}\right) v^{2}\left(v^{2}\left(R \cos \theta^{1}\right)\right) \\
=0
\end{gathered}
$$

[Note: H is not involutive, hence is not integrable (cf. 15.18).]

A Chaplygin system has two ingredients.

- A principal bundle $\pi: E \rightarrow M$ with structure group G and a principal connection H .
- A nondegenerate lagrangian $L \in C^{\infty}$ (TE) that is G-invariant for the lifted action of G on TE and for which (L, H) is regular.

It is then a fundamental point that this data realizes all the assumptions of the preceding setup.
[Note: The dynamics on H can be reconstructed from the dynamics on TM via the horizontal lift operation.]

§21. DEPENDENCE ON TIME

Let M be a connected C^{∞} manifold of dimension n. Put

$$
\left\{\begin{aligned}
J^{0} M & =\underline{R} \times M \\
J^{1} M & =\underline{R} \times T \mathbb{M} \\
J^{2} M & =\underline{R} \times T^{2} M
\end{aligned}\right.
$$

Then $J^{1} \mathrm{M}$ is called the evolution space of a time-dependent (a.k.a. non-autonomous) mechanical system whose configuration space is M.
21.1 EXAMPLE Consider the motion of a plane pendulum whose length $\ell(t)>0$ is a function of time -- then

$$
M=\underline{S}^{1} \Rightarrow J^{1} M=\underline{R} \times\left(\underline{S}^{1} \times \underline{R}\right)
$$

and its motion is governed by the differential equation

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \sin \theta-\frac{2}{l} \frac{d l}{d t} \frac{d \theta}{d t}
$$

where $\theta=\theta(t)$ is the angle made by the pendulum with the vertical and g is the gravitational acceleration (cf. 21.19).

Local coordinates in $J^{1} \mathrm{M}$ are $\left(\mathrm{t}, \mathrm{q}^{i}, \mathrm{v}^{i}\right)$ and there is a canonical inclusion

$$
\mathrm{J}^{1} \mathrm{M} \rightarrow \mathrm{TJ}^{0} \mathrm{M},
$$

viz.

$$
\left(t, q^{i}, v^{i}\right) \rightarrow\left(t, q^{i}, l, v^{i}\right)
$$

Local coordinates in $J^{2} M$ are $\left(t, q^{i}, v^{i}, a^{i}\right)$ (cf. 1l.6) and there is a cononical inclusion

$$
\mathrm{J}^{2} \mathrm{M} \rightarrow \underline{R} \times T \mathrm{TM}
$$

viz.

$$
\left(t, q^{i}, v^{i}, a^{i}\right) \rightarrow\left(t, q^{i}, v^{i}, v^{i}, a^{i}\right)
$$

Since $\underline{R} \times T$ MM can be embedded in $T J^{l} M$, it makes sense to write

$$
J^{2} \mathrm{M} \subset \mathrm{TJ}^{1} \mathrm{M} .
$$

This being the case, let $\Gamma \in D^{l}\left(J^{I} M\right)$ - then Γ is said to be second order provided $\Gamma J^{1} \mathrm{M} \subset \mathrm{J}^{2} \mathrm{M}$.
21.2 LEMMA Let $\Gamma \in D^{I}\left(J^{1} M\right)$ - then Γ is second order iff locally,

$$
\Gamma=\frac{\partial}{\partial t}+v^{i} \frac{\partial}{\partial q^{i}}+c^{i} \frac{\partial}{\partial v^{i}}
$$

where

$$
c^{i}=c^{i}\left(t, q^{i}, v^{i}\right)
$$

The vertical morphism

$$
\mathrm{S}: D^{1}(\mathrm{TM}) \rightarrow D^{1}(\mathrm{TM})
$$

and the dilation vector field

$$
\Delta \in D^{1}(\mathbb{T})
$$

can be regarded as living on J^{1} M. Agreeing to denote these extensions by the same symbols, define

$$
\mathrm{S}_{d t} \in D_{1}^{1}\left(\mathrm{~J}^{1} \mathrm{M}\right)
$$

by

$$
s_{d t}=s-\Delta \otimes d t
$$

Then locally,

$$
S_{d t}=\frac{\partial}{\partial v^{i}} \otimes\left(d q^{i}-v^{i} d t\right)
$$

N.B. Viewing $S_{d t}$ as an element of

$$
\operatorname{Hom}_{C^{\infty}\left(J^{1} M\right)}\left(D^{1}\left(J^{1} M\right), D^{\perp}\left(J^{1} M\right)\right)
$$

we have

$$
S_{d t}\left(\frac{\partial}{\partial t}\right)=-v^{i} \frac{\partial}{\partial v^{i}}, S_{d t}\left(\frac{\partial}{\partial q^{i}}\right)=\frac{\partial}{\partial v^{i}}, S_{d t}\left(\frac{\partial}{\partial v^{i}}\right)=0 .
$$

The triple $\left(J^{1} M_{r} J^{0} M_{r} \pi^{10}\right)$ is a fibered manifold, from which

$$
\mathrm{V}^{10} \mathrm{~J}^{1} \mathrm{M} \subset \mathrm{TJ}^{1} \mathrm{M} \quad \text { (cf. §ll). }
$$

21.3 LEMMA $S_{d t}^{2}=0$, hence

$$
\operatorname{Im} S_{d t} \subset \operatorname{Ker} S_{d t}
$$

Moreover,

$$
\operatorname{Im} S_{d t}=\sec V^{10} J^{1} \mathrm{M} \equiv v^{10}\left(J^{1} \mathrm{M}\right)
$$

4.

[Note: The containment

$$
\operatorname{Im} S_{d t} \subset \operatorname{Ker} S_{d t}
$$

is proper.]
21.4 REMARK It can be shown that $\forall \mathrm{X}, \mathrm{Y} \in D^{1}\left(\mathrm{~J}^{1} \mathrm{M}\right)$,

$$
\begin{aligned}
& {\left[S_{d t} X, S_{d t} Y\right]-S_{d t}\left[S_{d t} X, Y\right]-S_{d t}\left[X, S_{d t} Y\right]} \\
& \left.\quad=\left(1_{X} d t\right) S_{d t} Y-\left(1_{Y} d t\right) S_{d t} X \quad \text { (cf. } 5.9\right)
\end{aligned}
$$

21.5 LEEMA Let $\Gamma \in D^{I}\left(J^{l} M\right)$ - then Γ is second order iff $S \Gamma=\Delta$ and $S_{d t} \Gamma=0$.

PROOF The necessity is obvious. To see the sufficiency, work locally and write

$$
\Gamma=\tau \frac{\partial}{\partial t}+A^{i} \frac{\partial}{\partial q^{i}}+B^{i} \frac{\partial}{\partial v^{i}} .
$$

Then

$$
\begin{array}{cc}
& \\
\Rightarrow & \\
\Rightarrow & \\
& 0=S_{d t} \Gamma=(1-\tau) v^{i} \frac{\partial}{\partial v^{i}} \\
\Rightarrow & v^{i} \quad(1 \leq i \leq n) \\
& \\
& (1-\tau) v^{i}=0 \quad(1 \leq i \leq n) \\
& \Rightarrow \tau=1 .
\end{array}
$$

21.6 LEMMA Let $\Gamma \in D^{1}\left(J^{1} M\right)$-- then Γ is second order iff $d t(\Gamma)=1$ and $S_{d t}{ }^{\Gamma}=0$.
21.7 LEMMA Suppose that $\Gamma \in D^{1}\left(J^{1} M\right)$ is second order -- then $\forall \pi^{10}$-vertical X ,

$$
S_{d t}([X, \Gamma])=x .
$$

An element $L \in C^{\infty}\left(J^{1} M\right)$ is, by definition, a (time-dependent) lagrangian. This said, put

$$
\left[\begin{array}{l}
\theta_{L}=S_{d t}^{\star}(d L)+L d t \\
\Omega_{L}=d \theta_{L} .
\end{array}\right.
$$

21.8 LEMMA Locally,

$$
\theta_{L}=\frac{\partial L}{\partial v^{i}}\left(d q^{i}-v^{i} d t\right)+L d t .
$$

[One has only to note that

$$
\left.S_{d t}^{\star}(d t)=0, S_{d t}^{\star}\left(d q^{i}\right)=0, S_{d t}^{*}\left(d v^{i}\right)=d q^{i}-v^{i} d t .\right]
$$

N.B. On general grounds (cf. 13.4), the horizontal 1-forms $\alpha \in \Lambda^{1} J^{1} M$ per the fibration $\pi^{10}: J^{1} \mathrm{M} \rightarrow J^{0} \mathrm{M}$ are characterized by the property that they annihilate the sections of $V^{10} J^{1} M$. Locally, these are the $\alpha \in \Lambda^{1} J^{1} M$ that can be written in the form

$$
\alpha=a d t+a_{i} d q^{i}
$$

where

$$
\left.\right|_{\quad} \quad \begin{aligned}
a & =a\left(t, q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right) \\
a_{i} & =a_{i}\left(t, q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right) .
\end{aligned}
$$

In particular: θ_{L} is π^{10}-horizontal.
21.9 LEMMA Locally,

$$
\begin{aligned}
\Omega_{L}= & \frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} d q^{i} \wedge d q^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j} \\
& +\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} v^{i} d t \wedge d v^{j} \\
+ & \left(\frac{\partial^{2} L}{\partial v^{i} \partial t}+\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} v^{j}-\frac{\partial L}{\partial q^{i}}\right) d t \wedge d q^{i} .
\end{aligned}
$$

Therefore

$$
d t \wedge \Omega_{L}^{n}= \pm n!\operatorname{det}\left|\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right| d t \wedge d v^{1} \wedge \ldots \wedge_{-}^{-}{ }^{n}{ }^{-} \lambda^{1} q^{1} \wedge \ldots \wedge q^{n} .
$$

Motivated by this, call L nondegenerate if $d t \wedge \Omega_{L}^{n}$ is a volume form; otherwise, call L degenerate.
21.10 LEMMA L is nondegenerate iff for all coordinate systems $\left\{t, q^{1}, \ldots, q^{n}, v^{l}, \ldots, v^{n}\right\}$,

$$
\operatorname{det}\left|\left.\right|_{-} ^{-} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}-\right| \neq 0
$$

everywhere (cf. 8.5).
21.11 EXAMPLE Take $M=\underline{R}$ and let

$$
L=\frac{1}{2} v^{2}-\frac{1}{2} \omega^{2}(t) q^{2}
$$

Then L is nondegenerate.
[Note: This lagrangian is that of the time dependent harmonic oscillator.]
21.12 EXAMPIE Take $M=\underline{R}^{2}$ and let

$$
L=\frac{1}{2}\left(v^{1}+t v^{2}\right)^{2}
$$

Then

$$
\operatorname{det}\left|\left.\right|_{-} ^{-} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right|=\operatorname{det}\left|\begin{array}{cc}
1 & t \\
t & t^{2}
\end{array}\right|=0,
$$

so L is degenerate.
21.13 RAPPEL Suppose that N is a connected ($2 n+1$)-dimensional manifold -then a cosymplectic structure on N is a pair (η, Ω), where $\eta \in \Lambda^{1} N$ is a closed 1-form on N and $\Omega \in \Lambda^{2} N$ is a closed 2-form on N such that $\eta \wedge \Omega^{n} \neq 0$.
[Note: It follows that the rank of Ω is 2 n.]

Accordingly, a nondegenerate lagrangian L determines a cosymplectic structure $\left(d t, \Omega_{L}\right)$ on $J^{1} M=\underline{R} \times T M$.
21.14 LEMMA Suppose that (η, Ω) is a cosymplectic structure on N - then there exists a unique vector field $x_{\eta, \Omega} \in D^{l}(N)$:

$$
\int_{-}{ }^{2} x_{n, \Omega}{ }^{\Omega}=0 .
$$

PROOF The arrow

$$
\mathrm{b}_{n, \Omega}: D^{1}(\mathrm{~N}) \rightarrow D_{1}(\mathrm{~N})
$$

that sends X to

$$
{ }^{l} X^{\Omega}+n(X) n
$$

is an isomorphism. Put

$$
x_{n, \Omega}=\left(b_{n, \Omega}\right)^{-1}(n)
$$

thus

$$
{ }^{2} x_{n, \Omega} \Omega+\eta\left(x_{n, \Omega}\right) \eta=\eta .
$$

To check that $X_{\eta, \Omega}$ has the stated properties, observe that

$$
{ }^{2} x_{\eta, \Omega}{ }^{1} x_{\eta, \Omega} \Omega+\eta\left(x_{n, \Omega}\right) \eta\left(x_{\eta, \Omega}\right)=\eta\left(x_{\eta, \Omega}\right) .
$$

I.e.:

$$
\begin{aligned}
& n\left(x_{\eta, \Omega}\right)^{2}=n\left(x_{n, \Omega}\right) \\
\Rightarrow \quad & n\left(x_{n, \Omega}\right) \equiv 0 \text { or } n\left(x_{\eta, \Omega}\right) \equiv 1 .
\end{aligned}
$$

9.

The first possibility would imply that

$$
{ }^{1} x_{\eta, \Omega} \Omega=\eta .
$$

But then

$$
\begin{array}{ll}
& \eta \wedge \Omega^{n} \neq 0 \\
\Rightarrow & \\
& x_{\eta, \Omega} \Omega \wedge \Omega \Omega^{n} \neq 0 .
\end{array}
$$

On the other hand,

$$
\begin{aligned}
& \Omega \wedge \Omega^{n}=0 \\
& \text { => }
\end{aligned}
$$

$$
\begin{aligned}
& \text { => } \\
& { }^{2} \mathrm{x}_{\eta, \Omega}{ }^{\Omega \wedge \Omega^{\mathrm{n}}+{ }^{\mathrm{t}} \mathrm{X}_{\eta, \Omega}{ }^{\Omega}{ }^{\mathrm{n}} \wedge \Omega=0} \\
& \text { => } \\
& (n+1) l_{x_{n, \Omega}} \quad \Omega \wedge \Omega^{n}=0,
\end{aligned}
$$

a contradiction. Therefore

$$
\begin{array}{ll}
& n\left(x_{\eta, \Omega}\right)=1 \\
& \\
& \\
& \\
& x_{\eta, \Omega} \Omega+\eta=n \\
& \\
& \\
& x_{\eta, \Omega} \Omega=0 .
\end{array}
$$

[Note: $X_{\eta, \Omega}$ is called the Reeb vector field attached to (η, Ω).]
21.15 EXAMPIE Let Ω be the fundamental 2-form on $T * M$. Form the product $\underline{R} \times T * M$ and let $\pi^{*}: \underline{R} \times T * M \rightarrow T^{*} M$ be the projection - then the pair ($d t, \pi^{*} \Omega$) is a cosymplectic structure on $\underline{R} \times T * M$ and its Reeb vector field is $\frac{\partial}{\partial t}$.

Given a nondegenerate lagrangian L, set

$$
\Gamma_{L}=x_{d t, \Omega_{L}}
$$

Then

$$
\left.\right|_{\quad}{ }^{2} \Gamma_{L} \Omega_{L}=0
$$

21.16 REMARK Suppose that $L: T M \rightarrow \underline{R}$ is a nondegenerate lagrangian. Define $\tilde{L}: J^{1} M \rightarrow \underline{R}$ by $\tilde{L}=L \circ \pi$, where $\pi: \underline{R} \times T M \rightarrow T M$ is the projection - then \tilde{L} is nondegenerate and

$$
\Omega_{\tilde{L}}=-\pi^{*} \omega_{L}+d t \wedge \pi^{*}\left(d E_{L}\right)
$$

Furthermore,

$$
\Gamma_{\tilde{L}}=\frac{\partial}{\partial t}+\Gamma_{L} .
$$

[Note: Recall that ${ }_{\imath_{~}} \omega_{L}=-d F_{L}$ and $\left.\Gamma_{L} E_{L}=0.\right]$
21.17 LEMMA Γ_{L} is second order.

PROOF To apply 21.2 , write

$$
\Gamma_{L}=\tau \frac{\partial}{\partial t}+x^{i} \frac{\partial}{\partial q^{i}}+c^{i} \frac{\partial}{\partial v^{i}} .
$$

Then

$$
I={ }^{1} \Gamma_{L} d t=\tau_{\text {. }}
$$

As for the x^{i}, use the fact that ${ }_{r_{L}} \Omega_{L}=0$ and 21.9 to conclude:

$$
x^{i} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}=v^{i} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}
$$

But L is nondegenerate, so

$$
x^{i}=v^{i} .
$$

Let

$$
\gamma(s)=\left(t(s), q^{1}(s), \ldots, q^{n}(s), v^{1}(s), \ldots, v^{n}(s)\right)
$$

be an integral curve of Γ_{L}-- then

$$
\frac{d}{d s} t(s)=1
$$

Because of this, we can and will choose the evolution parameter s to be the "time" t.
[Note: Time reparametrization is thus a form of "gauge fixing".]
21.18 LEMMA If

$$
\gamma(t)=\left(t, q^{1}(t), \ldots, q^{n}(t), v^{1}(t), \ldots, v^{n}(t)\right)
$$

is an integral curve of Γ_{I}, then

$$
\frac{d}{d t} q^{i}(t)=v^{i}(t), \frac{d^{2}}{d t^{2}} q^{i}(t)=c^{i}
$$

and along γ, the equations of Lagrange

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0 \quad(i=1, \ldots, n)
$$

are in force.
[Manipulation of the relation ${ }_{l_{L}} \Omega_{L}=0$ gives

$$
\left.\frac{\partial^{2} L}{\partial t \partial v^{i}}+v^{j} \frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}+C^{j} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}-\frac{\partial L}{\partial q^{i}}=0 \quad(i=1, \ldots, n) .\right]
$$

21.19 EXAMPLE Take $M=\underline{S}^{1}$ and consider the setup of 21.1. Let

$$
L(t, \theta, v)=\frac{1}{2} m \ell^{2} v^{2}+m g \ell \cos \theta \quad(\theta=q)
$$

Explicating the equations of Lagrange then leads to the differential equation stated there.

Given any $L \in C^{\infty}\left(J^{1} M\right)$, its energy is the function

$$
E_{L}=\Delta L-L
$$

N.B. We have

$$
\theta_{L}=S^{*}(d L)-E_{L} d t
$$

21.20 LEMMA Suppose that L is nondegenerate - then

$$
\Gamma_{L} E_{L}=-\frac{\partial L}{\partial t}
$$

PROOF For

$$
\begin{aligned}
& \Gamma_{L} E_{L}=l_{\Gamma_{L}} d E_{L} \\
& =-{ }^{l} \Gamma_{L} d l^{d} \partial \partial{ }^{\ominus}{ }_{L} \\
& =-{ }^{\imath} \Gamma_{L}\left(L_{\partial / \partial t}-{ }^{i} \partial / \partial t^{d}\right) \theta_{L} \\
& ={ }^{1} \Gamma_{L}{ }^{l} \partial / \partial t \theta_{L} \theta^{1}{ }^{1} \Gamma_{L} L_{\partial / \partial t}{ }^{\prime} L \\
& ={ }^{1} \Gamma_{L}{ }^{l} \partial / \partial t^{\Omega} L^{-}{ }^{2} \Gamma_{L}{ }^{L_{\partial}} \partial / \partial t^{\theta}{ }_{L} \\
& =-{ }^{\imath} \partial / \partial t^{2} \Gamma_{L} \Omega_{L}-{ }^{1} \Gamma_{L} L_{\partial} \partial t^{\theta}{ }_{L} \\
& =-{ }_{r_{\Gamma}} L_{\partial / \partial t}{ }_{L} \\
& ={ }^{l}\left[\partial / \partial t, \Gamma_{L}\right]^{\Theta_{L}}-L_{\partial / \partial t^{2}} \Gamma_{L}{ }^{\theta_{L}} \\
& =-L_{\partial / \partial t^{l} \Gamma_{L}}{ }_{L}
\end{aligned}
$$

$$
\begin{aligned}
& =-L_{\partial / \partial t^{1} \Gamma_{L}\left(S_{d t}^{*}(d L)+L d t\right)}=-L_{\partial / \partial t^{2} \Gamma_{L} S_{d t}^{*}(d L)-L_{\partial / \partial t^{L 1} \Gamma_{L} d t}^{d t}}^{=-L_{\partial / \partial t^{2} S_{d t} \Gamma_{L}} d L-\frac{\partial L}{\partial t}} \\
& =-L_{\partial / \partial t^{2} 0^{d L}-\frac{\partial L}{\partial t} \quad \text { (cf. 21.5) }}^{=-\frac{\partial L}{\partial t} .}
\end{aligned}
$$

21.21 REMARK Maintaining the assumption that L is nondegenerate, let $\gamma(t)$ be an integral curve of Γ_{L} and consider $\left.E_{L}\right|_{\gamma(t)}$-- then

$$
\begin{aligned}
\frac{d E}{d t} & =\frac{d}{d t}\left(v^{i} \frac{\partial L}{\partial v^{i}}-L\right) \\
& =\frac{d v^{i}}{d t} \frac{\partial L}{\partial v^{i}}+v^{i} \frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial t}-\frac{\partial L}{\partial q^{i}} \frac{d q^{i}}{d t}-\frac{\partial L}{\partial v^{i}} \frac{d v^{i}}{d t} \\
& =v^{i}\left(\frac{d}{d t}\left(\frac{\partial L}{\partial v^{i}}\right)-\frac{\partial L}{\partial q^{i}}\right)-\frac{\partial L}{\partial t} \\
& =-\frac{\partial L}{\partial t} \text { (cf. 21.18). }
\end{aligned}
$$

It is not difficult to extend constraint theory to the time-dependent case but I shall not stop to run through the formalities. However, there is one point to be made, namely that in general the constraints will depend on time. To illustrate, consider a particle of mass m moving in the plane and subject to the
constraint

$$
v^{1}-t v^{2}-c=0 \quad(c \in \underline{R})
$$

This constraint is affine in the velocities and the 1-form

$$
\omega=d q^{1}-t d q^{2}
$$

defines a time-dependent vector subbundle of $\mathrm{TR}^{2}=\underline{R}^{4}$.
[Note: Refer back to 16.21 but assume that the horizontal plate rotates with nonconstant angular velocity $\Omega(t)$-- then the vector field

$$
-\Omega(t) x^{2} \frac{\partial}{\partial x^{1}}+\Omega(t) x^{1} \frac{\partial}{\partial x^{2}}
$$

now depends on time. Still, the analysis given there goes through without essential change.]

There is one final topic that demands consideration, viz. the notion of fiber derivative. So let $L \in C^{\infty}\left(J^{1} M\right)$ be an arbitrary lagrangian. Since θ_{L} is π^{10}-horizontal, it determines a fiber preserving C^{∞} function

$$
\hat{F L}: \mathrm{J}^{1} \mathrm{M} \rightarrow \mathrm{~T}^{*} \mathrm{~J}^{0} \mathrm{M}
$$

over $J^{0} M$, i.e., the diagram

commutes.

Locally,

$$
\hat{F L}\left(t, q^{i}, v^{i}\right)=\left(t, q^{i},-E_{L^{\prime}} \frac{\partial L}{\partial v^{i}}\right) .
$$

N.B. If θ is the fundamental l-form on $T^{*} \mathcal{J}^{0} \mathrm{M}$, then

$$
\theta_{L}=(\hat{F L}) * \theta
$$

We have

$$
\begin{aligned}
T^{*} J^{0} M & =T^{*}(\underline{R} \times M) \\
& \approx T^{*} \underline{R} \times T^{*} M \\
{ }^{p r} \xrightarrow{R} & \underline{R} \times T^{*} M
\end{aligned}
$$

where

$$
\underset{\underline{R}}{p}=\pi_{\underline{R}}^{*} \times \mathrm{id}_{\mathrm{T} * \mathrm{M}} .
$$

The fiber derivative FL of L is then the composition

$$
\mathrm{pr}_{\underline{\mathrm{R}}} \circ \hat{\mathrm{FL}}
$$

Therefore

$$
\text { FL: } \underline{R} \times T M \rightarrow \underline{R} \times T * M
$$

and there is a commutative diagram

> FL
> $\underline{R} \times T M \longrightarrow \quad R \times T * M$
> $\left\|\| i d_{\underline{R}} \times \pi_{M}^{*}\right.$ $\underline{R} \times T M \underset{\pi^{10}}{\longrightarrow} \underline{R} \times M$.

Locally,

$$
F L\left(t, q^{i}, v^{i}\right)=\left(t, q^{i}, \frac{\partial L}{\partial v^{i}}\right)
$$

21.22 LEMMA The pair ($\alpha t, \Omega_{L}$) is a cosymplectic structure on $J^{1} M$ iff FL is a local diffeomorphism.

The central conclusion of this § is that the time-dependent theory is more or less parallel to the time-independent theory. But there is one important difference: If L_{1} and L_{2} are nondegenerate and if $\Omega_{L_{1}}=\Omega_{L_{2}}$, then $\Gamma_{L_{1}}=\Gamma_{L_{2}}$, the analog of this in the autonomous setting being false.
21.23 EXAMPLE Take $M=\underline{R}$ and let

$$
\left\{\begin{array}{l}
L_{1}(q, v)=\frac{v^{2}}{2} \\
L_{2}(q, v)=\frac{v^{2}}{2}+q .
\end{array}\right.
$$

Then both L_{1} and L_{2} are nondegenerate with

$$
\int_{-}^{\omega_{L_{1}}} \begin{aligned}
& \\
& \\
& \\
& \omega_{L_{2}} \\
& \\
& \\
&
\end{aligned}
$$

However

$$
\left.\right|_{-\quad \Gamma_{L_{1}}=v \frac{\partial}{\partial q}} ^{\Gamma_{L_{2}}=v \frac{\partial}{\partial q}+\frac{\partial}{\partial v}} .
$$

§22. DEGENERATE LAGRANGIANS

Up until now, the focus has been on nondegenerate lagrangians but, for the applications, it is definitely necessary to consider degenerate lagrangians as well (a case in point being general relativity, albeit this is an infinite dimensional setting).

Suppose, therefore, that $L \in C^{\infty}(T M)$ is degenerate -- then ω_{L} is no longer of maximal rank and, in general, is not of constant rank.
22.1 EXAMPLE Take $M=\underline{R}$ and let

$$
L(q, v)=v^{3} .
$$

Then

$$
\begin{aligned}
\omega_{L}=\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} d q^{i} \wedge d q^{j} & +\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j} \\
& =6 v d v \wedge d q,
\end{aligned}
$$

so ω_{L} is not of constant rank.

Henceforth, our standing assumption will be that the rank of ω_{L} is constant, thus the pair ($T M, \omega_{L}$) is a presymplectic manifold (cf. 15.20).
N.B. Recall the convention of 15.13: Ker ω_{L} has two meanings, dictated by context.

Let

$$
D_{L}=\left\{X \in D^{l}(T M): r_{X}{ }_{L}{ }_{L}=-d E_{L}\right\} .
$$

Then in the terminology of $£ 8, L$ is said to admit global dynamics if D_{L} is nonempty.
22.2 LEMMA If L admits global dynamics and if ${ }^{l} X^{\omega}{ }_{L}=-d E_{L}$ is a particular solution, then the general solution has the form $X+Z$, where $Z \in \operatorname{Ker} \omega_{L}$.

While a given lagrangian might not admit global dynamics, there still might be a subset of TM on which the relation

$$
{ }^{{ }^{2} X_{L}}=-d E_{L}
$$

does obtain.
22.3 EXAMPLE Take $M=R^{3}$ and let

$$
L\left(q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right)=v^{1} v^{3}+\frac{1}{2}\left(\left(q^{2}\right)^{2} q^{3}\right)
$$

Then

$$
\begin{aligned}
\omega_{L} & =\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} d q^{i} \wedge d q^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j} \\
& =d v^{1} \wedge d q^{3}+d v^{3} \wedge d q^{1} .
\end{aligned}
$$

So

$$
\left.\right|^{\omega_{L}^{2} \neq 0} \begin{aligned}
& \\
& \omega_{L}^{3}=0
\end{aligned} \quad \Rightarrow \operatorname{rank} \omega_{L}=4
$$

And Ker ω_{L} is generated by $\frac{\partial}{\partial q^{2}}$ and $\frac{\partial}{\partial v^{2}}$. Next

$$
{ }^{1} X^{\omega}{ }_{L}=B^{3} d q^{1}+B^{1} d q^{3}-A^{3} d v^{1}-A^{1} d v^{3}
$$

if

$$
x=A^{i} \frac{\partial}{\partial q^{i}}+B^{i} \frac{\partial}{\partial v^{i}}
$$

On the other hand,

$$
-d F_{L}=q^{2} q^{3} d q^{2}+\frac{\left(q^{2}\right)^{2}}{2} d q^{3}-v^{3} d v^{1}-v^{1} d v^{3}
$$

Therefore

$$
{ }^{2} X_{L}{ }_{L} \neq-d E_{L}
$$

unless $q^{2} q^{3}=0$, in which case

$$
\left.\right|_{-} ^{A^{1}=v^{1}} \begin{aligned}
& A^{3}=v^{3} \\
& B^{1}=\frac{\left(q^{2}\right)^{2}}{2} \\
& B^{3}=0
\end{aligned}
$$

The general solution on $q^{2} q^{3}=0$ is thus

$$
v^{1} \frac{\partial}{\partial q^{1}}+v^{3} \frac{\partial}{\partial q^{3}}+\frac{\left(q^{2}\right)^{2}}{2} \frac{\partial}{\partial v^{1}}+A^{2} \frac{\partial}{\partial q^{2}}+B^{2} \frac{\partial}{\partial v^{2}}
$$

where A^{2}, B^{2} are arbitrary C^{∞} functions.
[Note: The condition $q^{2} q^{3}=0$ does not, strictly speaking, define a submanifold of TM.]

Put

$$
\operatorname{Ker}^{v} \omega_{\mathrm{L}}=\operatorname{Ker} \omega_{\mathrm{L}} \cap V(\mathrm{TM})
$$

22.4 LEMMA We have

$$
S\left(\operatorname{Ker} \omega_{L}\right) \subset \operatorname{Ker}^{v} \omega_{L}
$$

PROOF Let $Z \in \operatorname{Ker} \omega_{L}$ - then

$$
{ }^{2} Z_{L} \omega_{L}=0 .
$$

But

$$
{ }^{1} Z^{\omega_{L}}=-\eta_{Z} \omega_{L} \circ S \quad \text { (see the note appended to 16.1). }
$$

Therefore

$$
{ }^{2}{ }_{S Z}{ }^{\omega_{L}}=0 \Rightarrow S Z \in \operatorname{Ker} \omega_{L} .
$$

And

$$
S Z \in V(T M) .
$$

Terminology: L is

$$
\left\lvert\, \begin{aligned}
& \text { Type I if } S\left(\operatorname{Ker} \omega_{L}\right)=\operatorname{Ker}^{v} \omega_{L} \\
& \text { Type II if } S\left(\operatorname{Ker} \omega_{L}\right) \neq \operatorname{Ker}^{v} \omega_{L} .
\end{aligned}\right.
$$

22.5 EXAMPLE Take $M=\underline{R}^{2}$ and let

$$
L\left(q^{1}, q^{2}, v^{1}, v^{2}\right)=\frac{1}{2}\left(v^{1}\right)^{2} e^{q^{2}}
$$

Then

$$
\omega_{L}=\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} d q^{i} \wedge d q^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j}
$$

$$
=v^{1} e^{q^{2}} d q^{2} \wedge d q^{1}+e^{q^{2}} d v^{1} \wedge d q^{1}
$$

So

$$
\left.\right|^{\omega_{L} \neq 0} \begin{aligned}
& \omega_{L}^{2}=0
\end{aligned} \quad \Rightarrow \operatorname{rank} \omega_{L}=2 \text {. }
$$

To determine Ker ω_{L}, write

$$
X=A^{I} \frac{\partial}{\partial q^{I}}+A^{2} \frac{\partial}{\partial q^{2}}+B^{I} \frac{\partial}{\partial v^{I}}+B^{2} \frac{\partial}{\partial v^{2}}
$$

and set ${ }^{l}{ }^{\prime}{ }^{\omega}{ }_{L}$ equal to zero, hence

$$
\begin{aligned}
& {\left[\begin{array}{c}
A^{1} e^{q^{2}}=0 \Rightarrow A^{1}=0 \\
\\
\Rightarrow
\end{array} A^{2} v^{1}+B^{1}\right) e^{q^{2}}=0 \Rightarrow B^{1}=-A^{2} v^{1} } \\
& x=A^{2}\left(\frac{\partial}{\partial q^{2}}-v^{1} \frac{\partial}{\partial v^{1}}\right)+B^{2} \frac{\partial}{\partial v^{2}} .
\end{aligned}
$$

Therefore Ker ω_{L} is generated by

$$
\frac{\partial}{\partial q^{2}}-v^{1} \frac{\partial}{\partial v^{1}} \text { and } \frac{\partial}{\partial v^{2}}
$$

And here

$$
\begin{aligned}
\operatorname{Ker}^{v} \omega_{L} & =\left\{f \frac{\partial}{\partial v^{2}}: f \in C^{\infty}\left(\underline{R}^{4}\right)\right\} \\
& =S\left(\operatorname{Ker} \omega_{L}\right)
\end{aligned}
$$

meaning that L is Type I. Still, L does not admit global dynamics.
22.6 LEMMA If L admits giobal dynamics and is Type I, then \exists a $\Gamma \in D^{1}$ (TM) of second order such that

$$
{ }^{2} \Gamma \omega_{L}=-d E_{L} .
$$

PROOF Choose $\mathrm{X} \in \mathrm{D}^{l}(\mathrm{TM}):$

$$
{ }^{\imath} X_{L} \omega_{L}=-d E_{L} .
$$

Then

$$
\begin{aligned}
{ }^{2} S X-\Delta^{\omega_{L}} & =-{ }^{2} X^{\omega_{L}} \circ S-{ }^{2} \Delta_{L} \omega_{L} \\
& =d E_{L} \circ S-d E_{L} \circ S \quad \text { (cf. 8.7) } \\
& =0 \\
\Rightarrow \quad S X-\Delta & \in \operatorname{Ker}^{v} \omega_{L} \\
\Rightarrow \quad S X-\Delta & =S Y\left(\exists Y \in \operatorname{Ker} \omega_{L}\right) \\
\Rightarrow \quad & \\
\Rightarrow \quad{ }^{2} X-Y^{\omega_{L}} & ={ }^{2} X{ }^{\omega_{L}} \\
& \\
&
\end{aligned}
$$

And

$$
\begin{gathered}
S(X-Y)=\Delta \\
\Rightarrow
\end{gathered}
$$

$$
\Gamma=X-Y \in S O \text { (TM) } \quad \text { (cf. 5.8). }
$$

22.7 EXAMPLE Let $g \in D_{2}^{0}(M)$ be symmetric. Assign to each $x \in M$ the subspace

$$
K_{x}=\left\{X_{x} \in T_{x} M: g_{x}\left(X_{x}, Y_{x}\right)=0 \forall Y_{x} \in T_{x} M\right\}
$$

Then g is said to be a degenerate metric if $\exists d>0$ such that $\forall x \in M$, dim $K_{x}=d$ and the bilinear form induced by g_{x} on $T_{x} M / K_{X}$ is positive definite. It has been shown by Crampin that there exists a linear connection ∇ with zero torsion such that $\nabla \mathrm{g}=0$ iff $L_{\mathrm{Z}} \mathrm{g}=0$ for all $\mathrm{z} \in \mathrm{K}=\underset{\mathrm{x} \in \mathrm{M}}{\cup} \mathrm{K}_{\mathrm{x}}$ (the null distribution attached to g$)$. This condition implies that K is integrable. In fact, if $\mathrm{Y}, \mathrm{Z} \in \mathrm{K}$, then for any X ,

$$
\begin{aligned}
& 0=\left(L_{Y} g\right)(Z, X)=Y g(Z, X)-g([Y, Z], X)-g(Z,[Y, X]) \\
& \Rightarrow \\
& \quad g([Y, Z], X)=Y g(Z, X)-g(Z,[Y, X]) \\
&=0 .
\end{aligned}
$$

On the other hand, K may be integrable even when this condition is not satisfied. For example, let $M=\underline{R}^{2}$ and put $g=\phi\left(q^{1}\right) d q^{2} d q^{2}$ with $\phi>0-$ then K is spanned by $\partial / \partial q^{l}$, hence is integrable, but $L_{\partial / \partial q^{1}} \neq 0$ unless ϕ is a constant. Take now for $L \in C^{\infty}$ (TM) the function

$$
\left(x, X_{x}\right) \rightarrow \frac{1}{2} g_{x}\left(X_{x}, X_{x}\right) \quad\left(X_{x} \in T_{x} M\right)
$$

Then it turns out that L is Type I iff K is integrable and when this is so, L admits global dynamics iff $L_{Z} g=0 \forall Z \in K$.
22.8 EXAMPLE Let $\omega \in \Lambda^{1} M$ and put $L=\hat{\omega}$ (cf. 8.19) -- then

$$
\left[\begin{array}{l}
\theta_{L}=\pi_{M}^{*} \omega \\
\omega_{L}=\pi_{M}^{*} d \omega
\end{array}\right.
$$

Furthermore, in suggestive notation,

$$
\omega_{L}(X, \quad)=d \omega\left(\left(\pi_{M}\right) * X, \quad\right),
$$

which implies that

$$
\text { Ker } \omega_{L} \supset V(T M)
$$

Accordingly, if $d \omega$ is nondegenerate, then

$$
\text { Ker } \omega_{L}=V(T M)
$$

and L is Type II. For instance, take $M=\underline{R}^{2}$ and consider

$$
L\left(\left(q^{1}, q^{2}\right),\left(v^{1}, v^{2}\right)\right)=\frac{1}{2}\left(q^{2} v^{1}-q^{1} v^{2}\right)
$$

Let

$$
\omega=\frac{1}{2}\left(q^{2} d q^{1}-q^{1} d q^{2}\right) .
$$

Then $L=\hat{\omega}$. Since $d \omega=d q^{2} \wedge d q^{1}$ is nondegenerate, Ker ω_{L} is generated by $\frac{\partial}{\partial v^{1}}$ and $\frac{\partial}{\partial v^{2}} \cdot$
22.9 LEMMA We have

$$
\operatorname{Ker}^{v} \omega_{\mathrm{L}}=\operatorname{Ker} \mathrm{FL}_{\star}
$$

It remains to consider the time-dependent situation. So suppose that $L \in C^{\infty}\left(J^{I} M\right)$ is degenerate, hence $d t \wedge \Omega_{L}^{n}$ is not a volume form. Given $t \in \underline{R}$, let

$$
L_{t}=L \mid\{t\} \times T M
$$

Then in what follows it will be assumed that $\exists \mathrm{r}: 0<\mathrm{r}<\mathrm{n}(=\operatorname{dim} \mathrm{M})$, where \forall $t \in \underline{R}$,

$$
\operatorname{rank} \omega_{L_{t}}=2 r
$$

Therefore

$$
\begin{aligned}
& \quad d t \wedge \Omega_{L}^{r} \neq 0, d t \wedge \Omega_{L}^{r+1}=0, \Omega_{L}^{2 r+2}=0 \\
& \Rightarrow
\end{aligned}
$$

$$
2 r \leq \operatorname{rank} \Omega_{L} \leq 2 r+2 .
$$

N.B. While convenient, this assumption is certainly not automatic: Take $M=\underline{R}$ and consider

$$
L(t, q, v)=t \frac{v^{2}}{2}
$$

22.10 EXAMPIE Take $M=\underline{R}^{2}$ and let

$$
L=\frac{1}{2}\left(v^{1}+t v^{2}\right)^{2}
$$

Then L is degenerate (cf. 21.12). We have

$$
\begin{aligned}
{ }^{\omega}{L_{t}} & =\frac{\partial^{2} L_{t}}{\partial q^{i} \partial v^{j}} d q^{i} \wedge d q^{j}+\frac{\partial^{2} L_{t}}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j} \\
& =d v^{1} \wedge d q^{1}+t d v^{1} \wedge d q^{2}+t d v^{2} \wedge d q^{1}+t^{2} d v^{2} \wedge d q^{2} .
\end{aligned}
$$

So $\forall t$,

$$
\left.\right|_{\omega_{L_{t}} \neq 0} \quad=\operatorname{rank} \omega_{L_{t}}=2
$$

Now use 21.9 to get

$$
\begin{aligned}
\Omega_{\mathrm{L}}= & t d v^{2} \wedge d q^{1}+v^{2} d t \wedge d q^{1}+t d v^{1} \wedge d q^{2} \\
& +t^{2} d v^{2} \wedge d q^{2}+\left(v^{1}+2 t v^{2}\right) d t \wedge d q^{2} \\
+ & \left(v^{1}+\right. \\
& \left.t v^{2}\right) d t \wedge d v^{1}+d v^{1} \wedge d q^{1}+t\left(v^{1}+t v^{2}\right) d t \wedge d v^{2}
\end{aligned}
$$

Therefore

$$
2 \leq \operatorname{rank} \Omega_{L} \leq 4
$$

Let $C=f^{-1}(0)$, where

$$
f\left(t, q^{I}, q^{2}, v^{1}, v^{2}\right)=v^{1}+t v^{2} .
$$

Then

$$
C=\left\{x=\left(t, q^{1}, q^{2}, v^{1}, v^{2}\right): \operatorname{rank}\left(\Omega_{L}\right) x=2\right\}
$$

Motivated by 21.14 (and subsequent discussion), let

$$
D_{L}=\left\{X \in D^{1}\left(J^{1} M\right): l_{X} \Omega_{L}=0,{ }^{1} X^{d t}=1\right\}
$$

Then L is said to admit global dynamics if D_{L} is nonempty.
22.11 LEMMA L admits global dynamics iff Ω_{L} has constant rank $2 r$.

This is a consequence of 22.12 and 22.14 infra.
22.12 LEMMA Fix $x \in J^{\top} M-$ then $\operatorname{rank}\left(\Omega_{L}\right)_{x}=2 r$ iff $\exists X_{x} \in T_{x} J^{l} M$ such that ${ }^{r_{X}}{ }_{x}\left(\Omega_{L}\right)_{x}=0,{ }^{l_{X}}{ }_{x}(d t)_{x}=1$.

PROOF If $\operatorname{rank}\left(\Omega_{L}\right)_{x}=2 r$, then \exists a linearly independent set

$$
\left\{e^{l}, \ldots, e^{r}, e^{r+2}, \ldots, e^{2 r}\right\} \subset T_{x}^{* J^{1} M}
$$

such that

$$
\left(\Omega_{L}\right)=\sum_{i=1}^{r} e^{i} \wedge e^{r+i}
$$

But (dt) $x^{\wedge\left(\Omega_{L}\right)} x^{\neq 0}$, thus

$$
\left\{(d t)_{x^{\prime}}, e^{l}, \ldots, e^{r}, e^{r+1}, \ldots, e^{2 r}\right\} \subset T_{x}^{*} J^{l} M
$$

is also linearly independent. Complete it to a basis

$$
\left\{(d t)_{x}, e^{1}, \ldots, e^{r}, e^{r+1}, \ldots, e^{2 r}, f^{1}, \ldots, f^{2 n-2 r}\right\}
$$

for $T_{X}^{* J}{ }^{l} M$ and pass to the dual basis

$$
\left\{x_{x}, e_{1}, \ldots, e_{r}, e_{r+1}, \ldots, e_{2 r}, f_{1}, \ldots, f_{2 n-2 r}\right\}
$$

for $T_{X} J^{1} M$-- then

$$
\begin{array}{ll}
& \quad(d t)_{x}\left(x_{x}\right)=1 \text { and } e^{i}\left(x_{x}\right)=e^{r+i}\left(x_{x}\right)=f^{j}\left(X_{x}\right)=0 \\
\Rightarrow \\
\int_{-}^{-}{ }^{{ }^{2} x_{x}\left(\Omega_{L}\right)_{x}=0} \\
{ }^{l} x_{x}(d t)_{x}=1 .
\end{array}
$$

Conversely, if X_{x} has the stated properties, then

$$
\begin{aligned}
0= & \imath_{X_{x}}\left((d t)_{x^{\wedge}}^{\left.\left(\Omega_{L}\right)_{x}^{r+1}\right)}\right. \\
= & \left(\Omega_{L}\right)_{x}^{r+1} \\
\Rightarrow \quad & \operatorname{rank}\left(\Omega_{L}\right)_{x}=2 r .
\end{aligned}
$$

22.13 RAPPEL Suppose that N is a connected ($2 \mathrm{n}+1$)-dimensional manifold -then a precosymplectic structure on N of rank $2 r$ is a pair (η, Ω), where $\eta \in \Lambda^{1} N$ is a closed l-form on N and $\Omega \in \Lambda^{2} N$ is a closed 2-form on N of constant rank $2 r$ such that $\eta \wedge \Omega^{r} \neq 0$.
22.14 LEMMA If (η, Ω) is a precosymplectic structure on N of rank $2 r$, then there exists a vector field $\mathrm{X} \in \mathcal{D}^{1}(\mathrm{~N})$:

$$
\left.\right|_{-\quad} \quad x^{1} x^{\Omega}=0
$$

PROOF By a variation on a wellknown theme, each $y \in N$ admits a neighborhood U_{y} with local coordinates $\left\{\left(t, q^{i}, p_{i}, u^{s}\right\}(1 \leq i \leq r, l \leq s \leq 2 n-2 r)\right.$ such that

$$
\Omega=d p_{i} \wedge d q^{i}, n=d t
$$

Therefore

$$
\left.\right|_{-\quad} ^{1} \partial / \partial t^{\Omega}=0 .
$$

Pass from this point via a partition of unity... .
[Note: In general, X is far from unique.]
22.15 EXAMPLE Take $M=\underline{R}^{3}$ and let

$$
L\left(t, q^{1}, q^{2}, q^{3}, v^{1}, v^{2}, v^{3}\right)=\frac{1}{2}\left(v^{1}\right)^{2}-v^{2} q^{3}-v\left(t, q^{1}, q^{2}, q^{3}\right)
$$

where $V: \underline{R} \times \underline{R}^{3} \rightarrow \underline{R}$ is $C^{\infty}-$ then it is clear that L is degenerate. Moreover,

$$
\begin{aligned}
\omega_{L_{t}} & =\frac{\partial^{2} L_{t}}{\partial q^{i} \partial v^{j}} d q^{i} \wedge d q^{j}+\frac{\partial^{2} L_{t}}{\partial v^{i} \partial v^{j}} d v^{i} \wedge d q^{j} \\
& =d q^{2} \wedge d q^{3}+d v^{1} \wedge d q^{1} \\
\Rightarrow & \quad \begin{array}{l}
\omega_{L_{t}}^{2} \neq 0 \quad \Rightarrow \operatorname{rank} \omega_{L_{t}}=4 . \\
\omega_{L_{t}}^{3}=0
\end{array}
\end{aligned}
$$

Next (cf. 21.9)

$$
\begin{gathered}
\Omega_{L}=v^{1} d t \wedge d v^{1}+d q^{2} \wedge d q^{3}+d v^{1} \wedge d q^{1} \\
+ \\
\frac{\partial V}{\partial q^{1}} d t \wedge d q^{1}+\frac{\partial V}{\partial q^{2}} d t \wedge d q^{2}+\frac{\partial V}{\partial q^{3}} d t \wedge d q^{3} .
\end{gathered}
$$

So
rank $\Omega_{L}=4$.

Therefore L admits global dynamics (cf. 22.11), the general solution being

$$
\begin{aligned}
X= & \frac{\partial}{\partial t}+v^{1} \frac{\partial}{\partial q^{I}}-\frac{\partial V}{\partial q^{3}} \frac{\partial}{\partial q^{2}}+\frac{\partial V}{\partial q^{2}} \frac{\partial}{\partial q^{3}} \\
& -\frac{\partial V}{\partial q^{1}} \frac{\partial}{\partial v^{1}}+B^{2} \frac{\partial}{\partial v^{2}}+B^{3} \frac{\partial}{\partial v^{3}} .
\end{aligned}
$$

Here B^{2}, B^{3} are arbitrary C^{∞} functions on $J^{1} \underline{R}^{3}$.
22.16 REMARK The lagrangian

$$
L=\frac{1}{2}\left(v^{1}+t v^{2}\right)^{2}
$$

figuring in 22.10 does not admit global dynamics. However, if matters are limited to the submanifold $C=f^{-1}(0)$, then

$$
T C=\left\{\frac{\partial}{\partial t}-v^{2} \frac{\partial}{\partial v^{1}}, \frac{\partial}{\partial q^{1}}, \frac{\partial}{\partial q^{2}}, \frac{\partial}{\partial v^{2}}-t \frac{\partial}{\partial v^{1}}\right\}
$$

and the general solution is

$$
x=\frac{\partial}{\partial t}-A t \frac{\partial}{\partial q^{1}}+A \frac{\partial}{\partial q^{2}}-\left(v^{2}+B t\right) \frac{\partial}{\partial v^{1}}+B \frac{\partial}{\partial v^{2}},
$$

where A, B are C^{∞} functions on C.

Put

$$
K_{L}=\operatorname{Ker} d t \cap \operatorname{Ker} \Omega_{L}
$$

and then set

$$
K_{L}^{V}=K_{L} \cap V^{10}\left(J^{1} M\right)
$$

15.

22.17 LEMMA We have

$$
S_{d t}\left(K_{L}\right) \subset K_{L}^{V}
$$

22.18 LEMMA We have

$$
\mathrm{S}_{\mathrm{dt}}\left(\operatorname{Ker} \Omega_{\mathrm{L}}\right) \subset \operatorname{Ker} \Omega_{\mathrm{L}} \cap V^{10}(\mathrm{TM})
$$

N.B.

$$
22.18 \text { => } 22.17
$$

For

$$
\begin{aligned}
x \in K_{L} & \Rightarrow X \in \operatorname{Ker} \Omega_{L} \\
& \Rightarrow S_{d t} X \in \operatorname{Ker} \Omega_{L} \cap V^{10}\left(J^{1} M\right)
\end{aligned}
$$

On the other hand,

$$
S_{d t}^{*}(d t)=0 \Rightarrow d t\left(\operatorname{Im} S_{d t}\right)=0
$$

The proof of 22.18 hinges on an auxilliary result.
22.19 LEMMA $\forall X, Y \in D^{1}\left(J^{1} M\right)$ and $\forall \omega \in D_{1}\left(J^{1} M\right)$,

$$
\begin{gathered}
\left(d\left(\omega \circ S_{d t}\right)+\omega \wedge d t\right)\left(S_{d t} X, Y\right)+\left(d\left(\omega \circ S_{d t}\right)+\omega \wedge d t\right)\left(X, S_{d t} Y\right) \\
=d \omega\left(S_{d t} X, S_{d t} Y\right) .
\end{gathered}
$$

PROOF Since $S_{d t}^{2}=0$ (cf. 21.3),

$$
\begin{aligned}
& {\left[d\left(\omega \circ S_{d t}\right)\left(S_{d t} X, Y\right)=S_{d t} X\left(\omega\left(S_{d t} Y\right)\right)-\omega\left(S_{d t}\left[S_{d t} X, Y\right]\right)\right.} \\
& d\left(\omega \circ S_{d t}\right)\left(X, S_{d t} Y\right)=-S_{d t} Y\left(\omega\left(S_{d t} X\right)\right)-\omega\left(S_{d t}\left[X, S_{d t}{ }^{Y]}\right)\right. \\
& \text { => } \\
& \begin{array}{l}
d\left(\omega \circ S_{d t}\right)\left(S_{d t} X, Y\right)+d\left(\omega \circ S_{d t}\right)\left(X, S_{d t} Y\right) \\
=S_{S t} X\left(\omega\left(S_{d t} Y\right)\right)-S_{d t} Y\left(\omega\left(S_{d t} X\right)\right) \\
\quad-\omega\left(S_{d t}\left[S_{d t} X, Y\right]\right)-\omega\left(S_{d t}\left[X, S_{d t} Y\right]\right) \\
= \\
d \omega\left(S_{d t} X, S_{d t} Y\right)+\omega\left(\left[S_{d t} X, S_{d t} Y\right]\right) \\
\quad-\omega\left(S_{d t}\left[S_{d t} X, Y\right]\right)-\omega\left(S_{d t}\left[X, S_{d t} Y\right]\right) \\
=d \omega\left(S_{d t} X, S_{d t} Y\right)+\omega\left(\left(\tau_{X} X t\right) S_{d t} Y-\left(\imath_{Y}{ }^{X t}\right) S_{d t} X\right) \quad \text { (cf. 21.4). }
\end{array}
\end{aligned}
$$

But

$$
\left[\begin{array}{l}
(\omega \wedge d t)\left(S_{d t} X, Y\right)=\omega\left(S_{d t} X\right) r_{Y} d t-\omega(Y) d t\left(S_{d t} X\right) \\
(\omega \wedge d t)\left(X, S_{d t} Y\right)=\omega(X) d t\left(S_{d t} Y\right)-\omega\left(S_{d t} Y\right) r_{X} d t
\end{array}\right.
$$

or still,

$$
\begin{aligned}
& \int^{-}(\omega \wedge d t)\left(S_{d t} X, Y\right)=\omega\left(S_{d t} X\right) i_{Y} d t \\
& (\omega \wedge d t)\left(X, S_{d t} Y\right)=-\omega\left(S_{d t}{ }^{Y}\right) i_{X} d t \\
& \text { => } \\
& (\omega \wedge d t)\left(S_{d t} X, Y\right)+(\omega \wedge d t)\left(X, S_{d t}{ }^{Y}\right) \\
& \left.=\omega\left(\tau_{Y} d t\right) S_{d t} X-\left(l_{X} d t\right) S_{d t}{ }^{Y}\right) .
\end{aligned}
$$

In 22.19, let $\omega=\mathrm{dL}-$ then

$$
\begin{aligned}
& \theta_{L}=d L \circ S_{d t}+L d t \\
\Rightarrow \quad & \Omega_{L}=d \theta_{L}=d\left(d L \circ S_{d t}\right)+d L \wedge d t
\end{aligned}
$$

So, $\forall X, Y \in D^{1}\left(J^{1} M\right)$,

$$
\begin{aligned}
\Omega_{L}\left(S_{d t} X, Y\right)+\Omega_{L}\left(X, S_{d t} Y\right) & =d(d L)\left(S_{d t} X, S_{d t} Y\right) \\
& =0 .
\end{aligned}
$$

Accordingly,

$$
\begin{aligned}
& X \in \operatorname{Ker} \Omega_{L} \Rightarrow \Omega_{L}\left(X, S_{d t} Y\right)=0 \\
\Rightarrow & \Omega_{L}\left(S_{d t} X, Y\right)=0 \Rightarrow S_{d t} X \in \operatorname{Ker} \Omega_{L^{\prime}}
\end{aligned}
$$

thereby establishing 22.18.

Terminology:
L is

$$
\begin{aligned}
& \text { Type I if } S_{d t}\left(K_{L}\right)=K_{L}^{V} \\
& \text { Type II if } S_{d t}\left(K_{L}\right) \neq K_{\mathrm{L}}^{\mathrm{V}}
\end{aligned}
$$

22.20 LEEMMA If L admits global dynamics and is Type I, then \exists a $\Gamma \in D^{1}\left(J^{1} M\right)$ of second order such that

$$
\int_{-\quad} \quad \begin{aligned}
{ }^{t} \Omega_{\Gamma}{ }_{L} & =0 \\
{ }_{\Gamma} d t & =1
\end{aligned}
$$

18.

PROOF Choose $\mathrm{X} \in \mathcal{D}^{1}\left(\mathrm{~J}^{1} \mathrm{M}\right)$:

$$
\int_{-\quad}^{{ }^{2} X^{\Omega} \Omega_{L}=0} \begin{aligned}
& { }^{2} d t=1
\end{aligned}
$$

Then

$$
S_{d t} X=Y \in K_{L}^{V}
$$

Choose $Z \in K_{I}$:

$$
s_{d t}{ }^{Z}=\mathrm{Y}
$$

and let $\Gamma=X-Z-$ then

$$
\left\{\begin{array}{l}
{ }^{1} \Gamma^{\Omega_{L}}={ }^{1} X^{\Omega} L-{ }^{2} z^{\Omega} L=0 \\
{ }^{1} \Gamma d t={ }^{1}{ }_{X} d t-{ }_{z} d t=1
\end{array}\right.
$$

Finally

$$
\begin{aligned}
S_{d t} \Gamma & =S_{d t} \mathrm{X}-S_{d t} Z \\
& =\mathrm{Y}-\mathrm{Y} \\
& =0 .
\end{aligned}
$$

Therefore Γ is second order (cf. 21.6).
22.21 REMARK The lagrangian introduced in 22.15 admits global dynamics but there are no second order solutions, thus L is not Type I.
22.22 LEMMA We have

$$
\operatorname{Ker} \Omega_{\mathrm{L}} \cap V^{10}\left(J^{1} \mathrm{M}\right)=\operatorname{Ker} \mathrm{FL}_{*}=\operatorname{Ker} \hat{F L}_{*}
$$

APPENDIX

Fix a lagrangian $L \in C^{\infty}(T M)$ and put
where

$$
\int_{W_{i j}(L)}=\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}, ~ \begin{aligned}
T_{i j}(L) & =\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}-\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}}
\end{aligned}
$$

Let

$$
X=A^{i} \frac{\partial}{\partial q^{i}}+B^{i} \frac{\partial}{\partial v^{i}}
$$

Then in abbreviated notation, the differential equations that govern the relation

$$
{ }^{2} x^{\omega_{L}}=-d E_{L}
$$

are

$$
\left.\left.\left[\begin{array}{cc}
\mathrm{T}(\mathrm{~L}) & \mathrm{W}(\mathrm{~L}) \\
-\mathrm{W}(\mathrm{~L}) & 0
\end{array}\right] \right\rvert\, \begin{array}{c}
\mathrm{A} \\
\mathrm{~B}
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{d}_{\mathrm{L}} \mathrm{~L} \\
-W(L) \mathrm{V}
\end{array}\right]
$$

or still,

$$
\left.\right|_{-\quad T(L) A+W(L) B=-d_{q} E_{L}} ^{-W(L)(A-v)=0}
$$

Therefore

$$
\mathrm{A}=\mathrm{v}+\xi(\mathrm{W}(\mathrm{~L}) \xi=0)
$$

so

$$
\begin{aligned}
W(L) B & =-T(L)(v+\xi)-d_{q} E_{L} \\
& =-T(L) V-d_{q} E_{L}-T(L) \xi \\
& =\Xi-T(L) \xi .
\end{aligned}
$$

Here

$$
\begin{gathered}
\Xi=-T(L) v-d_{q} E \\
\Rightarrow \quad \Xi_{i}=\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} v^{j}-\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}} v^{j}-\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} v^{j}+\frac{\partial L}{\partial q^{i}} \\
= \\
\end{gathered}
$$

An integral curve γ for

$$
x=\left(v^{i}+\xi^{i}\right) \frac{\partial}{\partial q^{i}}+B^{i} \frac{\partial}{\partial v^{i}}
$$

is determined by the differential equations

$$
\left[\begin{array}{rl}
\dot{q}^{i}= & \frac{d q^{i}(\gamma(t))}{d t}=v^{i}(\gamma(t))+\xi^{i}(\gamma(t)) \\
& \frac{d v^{i}(\gamma(t))}{d t}=B^{i}(\gamma(t))
\end{array}\right.
$$

But

$$
\begin{aligned}
& \mathrm{W}(\mathrm{~L}) \mathrm{B}=\Xi-\mathrm{T}(\mathrm{~L}) \boldsymbol{\xi} \\
& \text { => } \\
& \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} B^{j}=\frac{\partial L}{\partial q^{i}}-\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}} v^{j}+\left(\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}}-\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}\right) \xi^{j} \\
& \text { => } \\
& \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\left(\ddot{q}^{j}-\dot{\xi}^{j}\right)=\frac{\partial L}{\partial q^{i}}-\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}}\left(\dot{q}^{j}-\xi^{j}\right)+\left(\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}}-\frac{\partial^{2} L}{\partial v^{\dot{i}} \partial q^{j}}\right) \xi^{j} \\
& =\frac{\partial L}{\partial q^{i}}-\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}} \dot{q}^{j}+\frac{\partial^{2} L}{\partial q^{i} \partial v^{j}} \xi^{j} \\
& \text { => } \\
& \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} \ddot{q}^{j}+\frac{\partial^{2} L}{\partial v^{i} \partial q^{j}} \dot{q}^{j}-\frac{\partial L}{\partial q^{i}} \\
& =\frac{\partial^{2} L}{\partial v^{\dot{i}} \partial v^{j}} \dot{\xi}^{j}+\frac{\partial^{2} L}{\partial q^{\dot{i}} \partial v^{j}} \xi^{j} .
\end{aligned}
$$

These relations are thus a generalization of the equations of Lagrange (to which they reduce when $\xi=0$).
A. 1 REMARK It is to be emphasized that this analysis is predicated on the assumption that L admits global dynamics:

$$
{ }^{2} X_{L}{ }_{L}=-d F_{L} \quad\left(\exists X \in D^{l}(T M)\right) .
$$

A. 2 EXAMPLE Take $M=R$ and let $L(q, v)=q-$ then

$$
W(L)=\left[\begin{array}{lll}
0 & 0 & \\
& & 0
\end{array}\right]
$$

And

$$
\omega_{L}=0, E_{L}=-q
$$

so $\nexists \mathrm{X}: \quad{ }^{2}{ }^{{ }^{\omega_{L}}}=-d E_{L}$. In addition, the preceding differential equation reduces to " $1=0$ ".
A. 3 EXAMPIE Take $M=\underline{R}$ and let $L(q, v)=v-$ then

$$
\mathrm{W}(\mathrm{~L})=\left|\begin{array}{lll}
0 & 0 \\
& 0 & 0
\end{array}\right|
$$

And

$$
\omega_{L}=0, E_{L}=0,
$$

so $\forall \mathrm{X}: \quad{ }^{\mathrm{l}} \mathrm{X}^{\omega}{ }_{L}=-d \mathrm{~F}_{\mathrm{L}}$. In addition, the preceding differential equation reduces to " $0=0$ ".

There are similar results in the time-dependent case but I shall leave their explication to the reader.

§23. PASSAGE TO THE COTANGENT BUNDLE

Let M be a connected C^{∞} manifold of dimension n. Suppose that $L \in C^{\infty}$ (IM) is degenerate.
23.1 ASSUMPTION For some $k<n$, FL is of constant rank $n+k, \sum=F L$ (TM) is a closed submanifold of $T * M$ of dimension $n+k$, and $\forall \sigma \in \Sigma$, the fiber $\left(\mathrm{FL}^{-1}(\sigma)\right.$ is connected.
[Note: $\quad \forall \sigma \in \Sigma$,

$$
\begin{aligned}
\operatorname{dim}(\mathrm{FL})^{-1}(\sigma) & =\operatorname{dim} \mathrm{TM}-\operatorname{dim} \Sigma \\
& =2 n-(\mathrm{n}+\mathrm{k}) \\
& =\mathrm{n}-\mathrm{k} .]
\end{aligned}
$$

N.B. The matrix

$$
W(L)=\left[W_{i j}(L)\right],
$$

where

$$
W_{i j}(L)=\frac{\partial^{2} L}{\partial v^{i} \partial v^{j}},
$$

has constant rank k.
[Note: A $2 \mathrm{n} \times 2 \mathrm{n}$ matrix of the form

$$
\left|\begin{array}{lll}
I_{n} & 0 \\
A & x & \\
\mathrm{~A} &
\end{array}\right|
$$

is row equivalent to

$$
\left.\left\lvert\, \begin{array}{lll}
I_{n} & 0 \\
& & \\
0 & x & -]
\end{array}\right.\right]_{0}
$$

For motivation, recall the following standard fact.
23.2 RAPPEL Let $M^{\prime}, M^{\prime \prime}$ be C^{∞} manifolds; let $f: M^{\prime} \rightarrow M^{\prime \prime}$ be a C^{∞} map of constant rank r-- then each point of M^{\prime} admits a neighborhood U such that $f(U)$ is an r-dimensional submanifold of $M "$ and the restriction $U \rightarrow f(U)$ is a submersion with connected fibers.

Since FL:'TM $\rightarrow \sum$ is a fibration, the kernel of

$$
\text { TFL:TTM } \rightarrow T \Sigma
$$

determines a vector subbundle V_{L} IM of TIM (cf. §ll). Viewed as a linear distribution, V_{L} TM is integrable and the leaves of the associated foliation of $T M$ are the $(F L)^{-1}(\sigma) \quad(\sigma \in \Sigma) \quad(c f .15 .11):$

$$
\mathrm{TM}=\frac{11}{\sigma \in \Sigma}(\mathrm{FL})^{-1}(\sigma)
$$

N.B. The fiber dimension of $\operatorname{Ker}^{\mathrm{V}}{ }_{\omega_{L}}$ is $\mathrm{n}-\mathrm{k}$ (cf. 22.9).

We claim now that ω_{L} has constant rank, thus the machinery developed in $\S 22$ is applicable. To this end, let Ω be the fundamental 2-form on $T * M$ and put

$$
\Omega_{\Sigma}=i_{\Sigma}^{*} \Omega \quad\left(i_{\Sigma}: \Sigma \rightarrow T^{*} M\right)
$$

23.3 LEMMA The rank of Ω_{Σ} is constant and, in fact,

$$
\operatorname{rank} \Omega_{\Sigma}=k+l,
$$

where $\mathrm{k} \leq \ell \leq \mathrm{n}(\mathrm{k}<\mathrm{n})$.
[Note: The pair (Σ, Ω_{Σ}) is a presymplectic manifold (cf. 15.20) and the fiber dimension of $\mathrm{Ker} \Omega_{\Sigma}$ is

$$
(\mathrm{n}+\mathrm{k})-(\mathrm{k}+\ell)=\mathrm{n}-\ell .]
$$

Therefore

$$
\operatorname{rank} \omega_{L}=k+\ell
$$

N.B. The fiber dimension of Ker ω_{L} is

$$
2 n-(k+\ell)=(n-k)+(n-\ell)
$$

23.4 REMARK L is Type I iff

$$
(n-k)+(n-\ell)=2(n-k),
$$

i.e., iff $\ell=k$.
23.5 RAPPEL Let (V, Ω) be a symplectic vector space of dimension 2 n . Given a subspace $W \subset V$, its symplectic complement W^{\perp} is

$$
\{\mathrm{v} \in \mathrm{~V}: \Omega(\mathrm{v}, \mathrm{~W})=0\}
$$

and

$$
\operatorname{dim} W+\operatorname{dim} W^{\perp}=2 n
$$

Denote by Ω_{W} the restriction of Ω to $\mathrm{W} \times \mathrm{W}$ - then

$$
\operatorname{Ker} \Omega_{W}=\left\{w \in W: l_{w}{ }^{\Omega} W=0\right\}=W \cap W^{\perp},
$$

4.

so (W, Ω_{W}) is a symplectic vector space iff $W \cap W^{\perp}=\{0\}$.

Given $\sigma \in \Sigma$, regard $\mathrm{T}_{\sigma} \Sigma$ as a subspace of $\mathrm{T}_{\sigma} \mathrm{T}^{*} \mathrm{M}$-- then

$$
\left(T_{\sigma} \Sigma\right)^{\perp}=\left\{X_{\sigma} \in T_{\sigma} T^{*} M: \Omega_{\sigma}\left(X_{\sigma}, T_{\sigma} \Sigma\right)=0\right\}
$$

Following Dirac, Σ is said to be first class if $\forall \sigma \in \Sigma$,

$$
\left(\mathrm{T}_{\sigma^{\prime}} \Sigma\right)^{\perp} \subset \mathrm{T}_{\sigma} \Sigma
$$

or second class if $\forall \sigma \in \Sigma$,

$$
T_{\sigma} \Sigma \cap\left(T_{\sigma} \Sigma\right)^{\perp}=\{0\}
$$

23.6 LEMMA \sum is first class iff $\ell=k$.

PROOF To begin with,

$$
\begin{aligned}
& (n-k)+\operatorname{dim} \Sigma=(n-k)+(n+k)=2 n \\
\Rightarrow \quad & (n-k)+\operatorname{dim} T_{\sigma^{\Sigma}}=2 n \\
\Rightarrow \quad & (n-k)=\operatorname{dim}\left(T_{\sigma} \Sigma\right)^{\perp} .
\end{aligned}
$$

But

$$
(n-k)+(n-\ell)=(n-k)+\operatorname{dim}\left(T_{\sigma} \Sigma \cap\left(T_{\sigma} \Sigma\right)^{\perp}\right)
$$

Therefore $\ell=k$

$$
\begin{aligned}
& \Leftrightarrow(n-k)+(n-l)=2(n-k) \\
& \Leftrightarrow(n-k)+\operatorname{dim}\left(T_{\sigma} \Sigma \cap\left(T_{\sigma} \Sigma\right)^{\perp}\right) \\
& \Leftrightarrow \operatorname{dim}\left(T_{\sigma} \Sigma\right)^{\perp}=\operatorname{dim}\left(T_{\sigma} \Sigma \cap\left(T_{\sigma} \Sigma\right)^{\perp}\right) \\
& \Leftrightarrow\left(T_{\sigma^{\prime}} \Sigma\right)^{\perp} \subset T_{\sigma} \Sigma .
\end{aligned}
$$

23.7 LEMMA Σ is second class iff $\ell=n$.
[Note: When this is the case, the pair (Σ, Ω_{Σ}) is a symplectic manifold.]
23.8 REMARK Because k is less than $n, ~ \Sigma$ cannot be simultaneously first and second class.
[Note: In general, Σ is neither but rather is of "mixed type".]

The $F \in C^{\infty}$ (TM) which are constant on the (FL) ${ }^{-1}(\sigma)$ are annihilated by the $x \in \operatorname{Ker}{ }^{v} \omega_{L}$ and conversely. Denote by $C_{L}^{\infty}(T M)$ the set of such -- then $C^{\infty}(\Sigma) \approx C_{L}^{\infty}$ (TM) via

$$
f \rightarrow(\mathrm{FL}) * f \quad(=f \circ \mathrm{FL}) .
$$

23.9 LEMMA The energy $E_{L}=\Delta L-L$ lies in $C_{L}^{\infty}($ TMM $)$, hence

$$
\mathrm{E}_{\mathrm{L}}=\left(\mathrm{F}^{\prime}\right) *_{\mathrm{E}^{\prime}}
$$

where $H_{\Sigma} \in C^{\infty}(\Sigma)$.
PROOF Working locally, take an $\mathrm{x} \in \operatorname{Ker}^{v} \omega_{\mathrm{L}}$ and write

$$
X=A^{i} \frac{\partial}{\partial q^{i}}+B^{i} \frac{\partial}{\partial v^{i}}
$$

Then

$$
A^{i}=0, \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}} B^{j}=0 .
$$

Therefore

$$
X E_{L}=\sum_{i} \sum_{j} B^{j} \frac{\partial}{\partial v^{j}}\left(v^{i} \frac{\partial L}{\partial v^{i}}\right)-\sum_{i} B^{i} \frac{\partial L}{\partial v^{i}}
$$

$$
\begin{aligned}
& =\sum_{i} \sum_{j} B^{j}\left(\frac{\partial v^{i}}{\partial v^{j}} \frac{\partial L}{\partial v^{i}}-v^{i} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}\right)-\sum_{i} B^{i} \frac{\partial L}{\partial v^{i}} \\
& =\sum_{i} B^{i} \frac{\partial L}{\partial v^{i}}-\sum_{i} v^{i} \sum_{j} B^{j} \frac{\partial^{2} L}{\partial v^{i} \partial v^{j}}-\sum_{i} B^{i} \frac{\partial L}{\partial v^{i}} \\
& =0 .
\end{aligned}
$$

[Note: H_{Σ} is the hamiltonian attached to L.]
23.10 CORRESPONDENCE PRINCIPLE To each $X_{L} \in D^{1}$ (TM) such that

$$
{ }^{\imath} X_{L} \omega_{L}=-d E_{L}
$$

there corresponds an $X_{\Sigma} \in D^{1}(\Sigma)$ such that

$$
{ }^{\mathrm{l}} \mathrm{X}_{\Sigma} \Omega_{\Sigma}=-\mathrm{dH}{ }_{\Sigma}
$$

with

$$
\left.X_{L} F\right|_{\left(x, X_{x}\right)}=\left.X_{\Sigma} f\right|_{F L\left(x, X_{x}\right)} \quad(F=(F L) * f)
$$

Conversely, to each $X_{\Sigma} \in D^{l}(\Sigma)$ such that

$$
{ }^{2} \mathrm{x}_{\Sigma} \Omega_{\Sigma}=-\mathrm{d} \mathrm{H}_{\Sigma}
$$

there corresponds an $X_{L} \in D^{I}$ (TM) such that

$$
{ }^{\imath} X_{L} \omega_{L}=-d E_{L}
$$

with

$$
\left.X_{L} F\right|_{\left(x, X_{x}\right)}=\left.X_{\Sigma} f\right|_{F L}\left(x, x_{x}\right) \quad\left(F=(F L) *_{f}\right) .
$$

[Note: As a corollary, L admits global dynamics iff H_{Σ} admits global dynamics (in the obvious sense).]

To proceed further, it will be convenient to assume that $\exists \Phi_{\mu} \in C^{\infty}\left(T^{*} M\right)$ $(\mu=k+1, \ldots, n)$ such that

$$
\Sigma=\bigcap_{\mu}\left(\Phi_{\mu}\right)^{-1}(0)
$$

with

$$
\hat{\mu}^{d} \Phi_{\mu} \neq 0
$$

on Σ.
[Note: Bear in mind that $\operatorname{dim} \Sigma=n+k=2 n-(n-k)$.
23.11 EXAMPLE Take $M=\underline{R}^{n}$ and let $L=0-$ then $k=0$ and Σ consists of those points

$$
\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right) \in \underline{R}^{2 n}
$$

such that

$$
p_{i}=0 \quad(i=1, \ldots, n)
$$

so

$$
\Phi_{1}=p_{1}, \ldots, \Phi_{n}=p_{n}
$$

And here, of course, $\mathrm{H}_{\Sigma}=0$.
23.12 EXAMPLE Take $M=\underline{R}^{n}$ and let

$$
L\left(q^{1}, \ldots, q^{n}, v^{1}, \ldots, v^{n}\right)=-\sum_{i=1}^{n} \frac{1}{2}\left(q^{i}\right)^{2}
$$

Then $k=0$ and Σ is the same as in 23.11 but this time

$$
\mathrm{H}_{\Sigma}\left(q^{1}, \ldots, q^{n}\right)=\sum_{i=1}^{n} \frac{1}{2}\left(q^{i}\right)^{2}
$$

23.13 EXAMPLE Take $M=\underline{R}^{2}$ and let

$$
L\left(q^{1}, q^{2}, v^{1}, v^{2}\right)=\frac{1}{2}\left(v^{1}\right)^{2} e^{q^{2}}
$$

Then $k=1$ and

$$
\begin{aligned}
& F L\left(q^{1}, q^{2}, v^{1}, v^{2}\right)=\left(q^{1}, q^{2}, v^{1} e^{q^{2}}, 0\right) \\
\Rightarrow & \quad \Sigma=\left\{\left(q^{1}, q^{2}, p_{1}, p_{2}\right) \in \underline{R}^{4}: p_{2}=0\right\}
\end{aligned}
$$

Furthermore

$$
\begin{gathered}
\Omega_{\Sigma}=i_{\Sigma}^{\star}\left(d p_{1} \wedge d q^{1}+d p_{2} \wedge d q^{2}\right)=d p_{1} \wedge d q^{1} \\
\Rightarrow \operatorname{rank} \Omega_{\Sigma}=2 \Rightarrow l=1 .
\end{gathered}
$$

So L is Type I (cf. 23.4) . Finally

$$
H_{\Sigma}\left(q^{1}, q^{2}, p_{1}\right)=\frac{1}{2}\left(p_{1}\right)^{2} e^{-q^{2}}
$$

Indeed

$$
\begin{aligned}
H_{\Sigma} & \circ F L\left(q^{1}, q^{2}, v^{1}, v^{2}\right) \\
& =H_{\Sigma}\left(q^{1}, q^{2}, v^{1} e^{q^{2}}\right) \\
& =\frac{1}{2}\left(v^{1} e^{q^{2}}\right) 2 e^{-q^{2}} \\
& =\frac{1}{2}\left(v^{1}\right)^{2} e^{2}
\end{aligned}
$$

$$
=E_{L}\left(q^{1}, q^{2}, v^{1}, v^{2}\right)
$$

[Note: L does not admit global dynamics (cf. 22.5), thus 23.10 is not applicable.]

Any $f \in C^{\infty}\left(T^{*} M\right)$ such that

$$
\Sigma \subset f^{-1}(0)
$$

is called a constraint.
[Note: The Φ_{μ} are called primary constraints.]
N.B. A vector field $X \in D^{l}\left(T^{*} M\right)$ is tangent to Σ iff $X f \mid \Sigma=0$ for all constraints f.
[Note: $\forall \sigma \in \Sigma, T_{\sigma} \Sigma$ consists of those $X_{\sigma} \in T_{\sigma} T^{*} M$ such that $X_{\sigma} f=0$ for all constraints f.]
23.14 LEMMA Let f be a constraint -- then $\exists C^{\infty}$ functions f^{μ} such that

$$
f=\sum_{\mu} f^{\mu_{\Phi}} .
$$

PROOF Given a point $\sigma \in \Sigma$, choose a coordinate system $\{\phi, \psi\}$ valid in a neighborhood U_{σ} of σ having the Φ_{μ} as its first coordinates. By hypothesis,

$$
\begin{aligned}
f(0, \psi) & =0 \\
\Rightarrow \quad & \\
\quad f(\phi, \psi) & =\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{f}(\mathrm{t} \phi, \psi) \mathrm{dt} \\
& =\sum_{\mu} f_{\sigma^{\prime} \mu^{\prime}}^{\mu_{\Phi}}
\end{aligned}
$$

where

$$
f_{\sigma}^{\mu}=\int_{0}^{l} f_{r_{\mu}}(t \phi, \psi) d t .
$$

To extend this to all of $T^{*} M$, let U_{μ} be the set where $\Phi_{\mu} \neq 0$ and fix a C^{∞} partition of unity $\left\{\zeta_{\mu}, \zeta_{\sigma}\right\}$ subordinate to the open covering

$$
\left(U_{\mu} U_{\mu}\right) \quad \cup \underset{\sigma}{\left(U U_{\sigma}\right)}
$$

Put

$$
f^{\mu}=f \frac{\zeta_{\mu}}{\Phi_{\mu}}+\sum_{\sigma} f_{\sigma}^{\mu} \zeta_{\sigma} .
$$

Then

$$
\begin{aligned}
f & =\underset{\mu}{f}\left(\sum_{\mu} \zeta_{\mu}+\sum_{\sigma} \zeta_{\sigma}\right) \\
& =\sum_{\mu} \mathrm{f} \zeta_{\mu}+\sum_{\sigma} \mathrm{f} \zeta_{\sigma} \\
& =\sum_{\mu} \mathrm{f} \frac{\zeta_{\mu}}{\Phi_{\mu}} \Phi_{\mu}+\sum_{\sigma \mu} \sum_{\mu} f_{\sigma}^{\mu} \zeta_{\sigma} \Phi_{\mu} \\
& =\sum_{\mu} f^{\mu} \Phi_{\mu} .
\end{aligned}
$$

23.15 RAPPEL There are two arrows

$$
\left[\begin{array}{rl}
\Omega^{\downarrow}: D^{I}\left(T^{*} \mathrm{M}\right) & \rightarrow D_{1}\left(T^{*} M\right) \\
\Omega^{\#}: D_{1}\left(T^{*} \mathrm{M}\right) & \rightarrow D^{I}\left(T^{*} M\right)
\end{array}\right.
$$

that are mutually inverse, the hamiltonian vector fields being those elements of
the form $X_{f}=-\Omega^{\#} d f\left(f \in C^{\infty}\left(T^{*} M\right)\right)$.
[Note: The explanation for the minus sign is this. If in canonical local coordinates

$$
d f=\sum_{i}\left(\frac{\partial f}{\partial q^{i}} d q^{i}+\frac{\partial f}{\partial p_{i}} d p_{i}\right),
$$

then

$$
-\Omega^{\#} d f=\sum_{i}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial}{\partial q^{i}}-\frac{\partial f}{\partial q^{i}} \frac{\partial}{\partial p_{i}}\right) .
$$

Therefore, along an integral curve of X_{f}, we have

$$
\left[\begin{array}{l}
\dot{q}^{i}=\frac{d q^{i}}{d t}=\frac{\partial f}{\partial p_{i}} \\
\dot{p}_{i}=\frac{d p_{i}}{d t}=-\frac{\partial f}{\partial q^{i}},
\end{array}\right.
$$

the equations of Hamilton.]
23.16 LEMMA Put $X_{\mu}=X_{\Phi}(\mu=k+1, \ldots, n)-$ then $\forall \sigma \in \Sigma$, the span of the $\left.X_{\mu}\right|_{\sigma}$ is $\left(T_{\sigma}\right)^{\perp}$.
[Note: If f is a constraint, then

$$
\left.\left.\mathrm{X}_{\mathrm{f}}\right|^{\Sigma} \in(\mathrm{T} \mathrm{\Sigma})^{\perp}=\underset{\sigma \in \Sigma}{\cup}\left(\mathrm{T}_{\sigma} \Sigma\right)^{\perp} \cdot\right]
$$

The issue of whether L admits global dynamics can be shifted to the issue of whether H_{Σ} admits global dynamics (cf. 23.10). And for the latter there is a criterion.
23.17 THEOREM The equation

$$
{ }^{\mathrm{l} \mathrm{x}_{\Sigma} \Omega_{\Sigma}=-\mathrm{dH}}{ }_{\Sigma}
$$

has a solution X_{Σ} iff \exists an extension $H \in C^{\infty}\left(T^{*} M\right)$ of H_{Σ} with the property that

$$
\left.\mathrm{X}_{\mathrm{H}}\right|_{\sigma} \in \mathrm{T}_{\sigma} \Sigma \forall \sigma \in \Sigma .
$$

$\underline{\text { PROOF }}$ Under the assumption that such an extension exists, put $X_{\Sigma}=\left.X_{H}\right|_{\Sigma}-$ then $\forall \mathrm{X} \in \mathcal{D}^{1}(\Sigma)$,

$$
\begin{aligned}
{ }^{2} \mathrm{X}_{\Sigma} \Omega_{\Sigma}(\mathrm{X}) & =\Omega\left(\mathrm{X}_{\Sigma}, \mathrm{X}\right) \\
& =\Omega\left(\mathrm{X}_{\mathrm{H}} \mid \Sigma, \mathrm{X}\right) \\
& =-\mathrm{d}(\mathrm{H} \mid \Sigma)(\mathrm{X}) \\
& =-d \mathrm{H}_{\Sigma}(\mathrm{X})
\end{aligned}
$$

Turning to the converse, let H be any extension of $H_{\Sigma}-$ then $\forall \sigma \in \Sigma \& \forall X \in T_{\sigma} \Sigma$,

$$
\begin{aligned}
& \Omega_{\sigma}\left(\mathrm{X}_{\Sigma} \mid \sigma\right.\left.-\left.\mathrm{X}_{\mathrm{H}}\right|_{\sigma}, \mathrm{X}\right) \\
&=-\left.\left.\mathrm{dH}\right|_{\Sigma}\right|_{\sigma}(\mathrm{X})+\left.\mathrm{dH}\right|_{\sigma}(\mathrm{X}) \\
&=0 \\
&\left.\Rightarrow \quad \mathrm{X}_{\Sigma}\right|_{\sigma}-\left.\mathrm{X}_{\mathrm{H}}\right|_{\sigma} \in\left(\mathrm{T}_{\sigma^{\Sigma}}\right)^{\perp} .
\end{aligned}
$$

So, $\exists \Lambda^{\mu} \in C^{\infty}\left(T^{*} M\right)$ such that on Σ,

$$
X_{\Sigma}-X_{H}=\Lambda^{\mu_{X}} X_{\mu} \quad \text { (cf. 23.16) }
$$

But $H+\Lambda^{\mu_{\Phi}}$ is also an extension of H_{Σ} and on Σ

$$
\begin{aligned}
d(H & \left.+\Lambda^{\mu} \Phi_{\mu}\right) \\
& =d H+\left(d \Lambda^{\mu}\right) \Phi_{\mu}+\Lambda^{\mu}\left(d_{\mu}\right) \\
& =d H+\Lambda^{\mu}\left(d \Phi_{\mu}\right) \\
& =-\Omega^{b}\left(X_{H}\right)-\Lambda^{\mu} \Omega^{b}\left(X_{\mu}\right) \\
& =-\Omega^{b}\left(X_{H}+\Lambda^{\mu} X_{\mu}\right) \\
& =-\Omega^{b}\left(X_{\Sigma}\right)
\end{aligned}
$$

Therefore the hamiltonian vector field corresponding to $H+\Lambda^{\mu} \Phi_{\mu}$ is tangent to Σ.
23.18 EXAMPLE Take $M=\underline{R}^{2}$ and let

$$
L\left(q^{1}, q^{2}, v^{1}, v^{2}\right)=\frac{1}{2}\left(v^{1}+v^{2}\right)^{2}-v\left(q^{1}+q^{2}\right) \quad\left(v \in C^{\infty}(\underline{R})\right)
$$

Then $k=1$ and

$$
\begin{aligned}
& F L\left(q^{1}, q^{2}, v^{1}, v^{2}\right)=\left(q^{1}, q^{2}, v^{1}+v^{2}, v^{1}+v^{2}\right) \\
& \Rightarrow \\
& \quad \Sigma=\left\{\left(q^{1}, q^{2}, p_{1}, p_{2}\right) \in \underline{R}^{4}: p_{1}-p_{2}=0\right\}
\end{aligned}
$$

so \exists one primary constraint, viz.

$$
\Phi\left(q^{1}, q^{2}, p_{1}, p_{2}\right)=p_{1}-p_{2}
$$

thus

$$
\begin{aligned}
\Omega_{\Sigma} & =i_{\Sigma}^{\star}\left(d p_{1^{\wedge}} d q^{1}+d p_{2^{\wedge d q}}^{2}\right) \\
& =d p_{1^{\wedge}} \Delta q^{1}+d p_{1^{\wedge}} d q^{2}
\end{aligned}
$$

Consequently, if

$$
x=f \frac{\partial}{\partial p_{1}}+A^{1} \frac{\partial}{\partial q^{I}}+A^{2} \frac{\partial}{\partial q^{2}},
$$

then

$$
{ }^{2} X^{\Omega} \Sigma=f d q^{1}+f d q^{2}-\left(A^{1}+A^{2}\right) d p_{1}
$$

Therefore Ker Ω_{Σ} is spanned by $\frac{\partial}{\partial q^{1}}-\frac{\partial}{\partial q^{2}}$. Noting that

$$
H_{\Sigma}\left(q^{1}, q^{2}, p_{1}, p_{2}\right)=\frac{1}{2}\left(p_{1}\right)^{2}+V\left(q^{1}+q^{2}\right)
$$

consider the equation

$$
\begin{aligned}
{ }^{\mathrm{I}} \mathrm{X}_{\Sigma} \Omega_{\Sigma} & =-d H_{\Sigma} \\
& =-p_{1} d p_{1}-\mathrm{V}^{\prime}\left(q^{1}+q^{2}\right) d q^{1}-\mathrm{V}^{\prime}\left(q^{1}+q^{2}\right) d q^{2}
\end{aligned}
$$

Then a particular solution is

$$
x_{\Sigma}=-v^{\prime}\left(q^{1}+q^{2}\right) \frac{\partial}{\partial p_{1}}+p_{1} \frac{\partial}{\partial q^{1}}
$$

and the general solution is

$$
x_{\Sigma}+F\left(\frac{\partial}{\partial q^{1}}-\frac{\partial}{\partial q^{2}}\right)
$$

where F is some C^{∞} function.
[Note: Since $\ell=k=1, \Sigma$ is first class (cf. 23.6). It is also clear that H_{Σ} can be extended to an H whose hamiltonian vector field X_{H} is tangent to Σ.]
23.19 RAPPEL The Poisson bracket is the bilinear function

$$
\{,\}: C^{\infty}(T * M) \times C^{\infty}(T * M) \rightarrow C^{\infty}(T * M)
$$

defined by the rule

$$
\{f, g\}=X_{f} g\left(=-X_{g} f\right)=\Omega\left(X_{f}, X_{g}\right)
$$

Properties:

1. $\{f, g\}=-\{g, f\} ;$
2. $\left\{f_{1} f_{2}, g\right\}=\left\{f_{1}, g\right\} f_{2}+f_{1}\left\{f_{2}, g\right\} ;$
3. $\left\{f, g_{1} g_{2}\right\}=\left\{f, g_{1}\right\} g_{2}+g_{1}\left\{f, g_{2}\right\} ;$
4. $\{f,\{g, h\}\}+\{g,\{h, f\}\}+\{h,\{f, g\}\}=0$;
5. $X_{\{f, g\}}=\left[X_{f}, X_{g}\right]$.

In canonical local coordinates,

$$
\{f, g\}=\sum_{i}\left(\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q^{i}}-\frac{\partial f}{\partial q^{i}} \frac{\partial g}{\partial p_{i}}\right) .
$$

Therefore

$$
\left\{q^{i}, q^{j}\right\}=0,\left\{p_{i}, p_{j}\right\}=0,\left\{p_{i}, q^{j}\right\}=\delta_{i}^{j}
$$

[Note: Fix $H \in C^{\infty}\left(T^{*} M\right)$ and consider any C^{∞} function $F\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)$ of the canonical local coordinates - then along an integral curve of X_{H},
16.

$$
\begin{aligned}
\frac{d F}{d t} & =\sum_{i}\left(\frac{\partial F}{\partial q^{i}} \dot{q}^{i}+\frac{\partial F}{\partial p_{i}} \dot{p}_{i}\right) \\
& =\sum_{i}\left(\frac{\partial F}{\partial q^{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial F}{\partial p_{i}} \frac{\partial H}{\partial q^{i}}\right) \\
& =\{H, F\} .
\end{aligned}
$$

In particular:

$$
\left.\dot{\mathrm{q}}^{\mathrm{i}}=\left\{\mathrm{H}, \mathrm{q}^{i}\right\}, \dot{\mathrm{p}}_{\mathrm{i}}=\left\{\mathrm{H}, \mathrm{p}_{\mathrm{i}}\right\} .\right]
$$

23.20 EXAMPLE Suppose that

$$
{ }^{\mathrm{l}} \mathrm{X}_{\Sigma} \Omega_{\Sigma}=-\mathrm{dH}{ }_{\Sigma} \quad\left(\mathrm{X}_{\Sigma} \in D^{1}(\Sigma)\right)
$$

Let $H \in C^{\infty}\left(T^{*} M\right)$ be any extension of $H_{\Sigma}-$ then $\exists \Lambda^{\mu} \in C^{\infty}\left(T^{*} M\right)$ such that

$$
{ }_{H}+\Lambda^{\mu_{\Phi}}
$$

is tangent to Σ (cf. 23.17). Accordingly on Σ, \forall constraint f

$$
\begin{aligned}
0 & =\mathrm{X} \\
& =\left\{\mathrm{H}+\Lambda^{\mu_{\Phi_{\mu}}} \mathrm{f}\right. \\
& \left.=\{\mathrm{H}, \mathrm{f}\} \Phi_{\mu^{\prime}}, \mathrm{f}\right\} \\
& =\{\mathrm{H}, \mathrm{f}\}+\left\{\Lambda^{\left.\mu_{\Phi_{\mu}}, \mathrm{f}\right\}}\right. \\
& =\left\{\Lambda^{\mu}, \mathrm{f}\right\} \Phi_{\mu}+\Lambda^{\mu}\left\{\Phi_{\mu}, \mathrm{f}\right\} \\
& +\Lambda^{\left.\mu_{\left\{\Phi_{\mu}\right.}, \mathrm{f}\right\}} .
\end{aligned}
$$

Let $f \in C^{\infty}\left(T^{*} M\right)$-- then f is said to be first class (w.r.t. Σ) if X_{f} is tangent to Σ.
23.21 REMARK In this terminology, one can restate 23.17: The equation

$$
{ }^{\mathrm{l}} \mathrm{x}_{\Sigma}{ }^{\Omega_{\Sigma}}=-\mathrm{dH}{ }_{\Sigma}
$$

has a solution X_{Σ} iff \exists an extension $H \in C^{\infty}(T * M)$ of H_{Σ} which is first class.
23.22 IEMMA A function $f \in C^{\infty}\left(T^{*} M\right)$ is first class iff

$$
\left\{\mathrm{f}, \Phi_{\mu}\right\} \mid \Sigma=0
$$

for all primary constraints Φ_{μ}.
$\underline{\text { PROOF }}$ If f is first class, then X_{f} is tangent to Σ, so $\forall \mu, X_{f} \Phi_{\mu} \mid \Sigma=0$, i.e.,

$$
\left\{\mathrm{f}, \Phi_{\mu}\right\} \mid \Sigma=0 .
$$

To go the other way, take any constraint g and using 23.14, write

$$
g=\sum_{\mu} g^{\mu} \Phi_{\mu}
$$

Then

$$
X_{f} g=\sum_{\mu}^{\Sigma}\left(X_{f} g^{\mu}\right) \Phi_{\mu}+\sum_{\mu} g^{\mu}\left(X_{f} \Phi_{\mu}\right) .
$$

But

$$
\Phi_{\mu} \mid \Sigma=0 \text { and } X_{f} \Phi_{\mu} \mid \Sigma=0
$$

Therefore

$$
\mathrm{x}_{\mathrm{f}} \mathrm{~g} / \Sigma=0
$$

E.g.: If f is a constraint, then f^{2} is first class. Proof: $\forall \mu$,

$$
\begin{aligned}
& \left\{\mathrm{f}^{2}, \Phi_{\mu}\right\}=2 \mathrm{f}\left\{\mathrm{f}, \Phi_{\mu}\right\} \\
\Rightarrow \quad & \\
& \left\{\mathrm{f}^{2}, \Phi_{\mu}\right\} \mid \Sigma=0 .
\end{aligned}
$$

N.B. Σ is first class iff each of the primary constraints Φ_{μ} is first class or still, iff $\forall \mu^{\prime}, \mu^{\prime \prime}$:

$$
\left.{\left\{\Phi_{\mu^{\prime}}\right.}^{\prime} \Phi_{\mu^{\prime \prime}}\right\} \mid \Sigma=0 \quad \text { (cf. 23.16). }
$$

23.23 EXAMPLE In the setup of $23.20, \mathrm{H}$ is first class provided Σ is first class. To see this, take $f=\Phi_{\mu_{0}}$-- then as there,

$$
\begin{aligned}
0 & =\left\{\mathrm{H}, \Phi_{\mu_{0}}\right\}\left|\Sigma+\Lambda^{\mu}\left\{\Phi_{\mu}, \Phi_{\mu_{0}}\right\}\right| \Sigma \\
& =\left\{\mathrm{H}, \Phi_{\mu_{0}}\right\} \mid \Sigma .
\end{aligned}
$$

Finish by quoting 23.22.
23.24 REMARK It can be shown that a necessary and sufficient condition that the hamiltonian vector field $X_{f} \in D^{l}\left(T^{*} M\right)$ be the projection through the fiber derivative FL of a vector field $\overline{\mathrm{X}}_{\mathrm{f}} \in \mathcal{D}^{1}$ (TM) is that f be first class.
[Note: There is then a commutative diagram
19.

where \bar{X}_{f} is unique up to an element of Ker TFL (= Ker FL_{\star}). By means of a careful analysis, matters can be arranged so that

$$
\overline{\mathrm{X}}_{\mathrm{f}}((\mathrm{FL}) * \mathrm{~g})=(\mathrm{FL}) *\{\mathrm{f}, \mathrm{~g}\} \quad\left(\mathrm{g} \in \mathrm{C}^{\infty}\left(\mathrm{T}^{*} \mathrm{M}\right)\right)
$$

and

$$
\left[\overline{\mathrm{x}}_{\mathrm{f}_{1}}, \overline{\mathrm{x}}_{\mathrm{f}_{2}}\right]=\overline{\mathrm{x}}_{\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}}
$$

the second point making sense since $\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}$ is again first class (cf. 23.25).

Let F_{Σ} be the set of functions $f \in C^{\infty}\left(T^{*} M\right)$ which are first class.
23.25 IEMMA F_{Σ} is closed under the formation of the Poisson bracket.

PROOF Let $f_{1}, f_{2} \in F_{\Sigma}$ and fix μ-- then

$$
\left.\right|_{-} \begin{aligned}
& \left\{\mathrm{f}_{1}, \Phi_{\mu}\right\} \mid \Sigma=0 \\
& \left\{\mathrm{f}_{2}, \Phi_{\mu}\right\} \mid \Sigma=0
\end{aligned} \quad \text { (cf. 23.22) }
$$

But this simply means that

$$
\left.\right|_{-} \begin{aligned}
& \left\{\mathrm{f}_{1}, \Phi_{\mu}\right\} \\
& \\
& \\
& \left\{\mathrm{f}_{2}, \Phi_{\mu}\right\}
\end{aligned}
$$

are constraints, thus in view of 23.14

$$
\left.\right|_{-} \begin{aligned}
& \left\{f_{1}, \Phi_{\mu}\right\}=\Phi_{1} \\
& \left\{f_{2}, \Phi_{\mu}\right\}=\Phi_{2}
\end{aligned}
$$

where Φ_{1}, Φ_{2} are certain C^{∞} linear combinations of the primary constraints. Now write

$$
\begin{aligned}
\left\{\left\{\mathrm{f}_{1}, \mathrm{f}_{2}\right\}, \Phi_{\mu}\right\} \mid \Sigma & =\left\{\mathrm{f}_{1},\left\{\mathrm{f}_{2}, \Phi_{\mu}\right\}\right\}\left|\Sigma-\left\{\mathrm{f}_{2},\left\{\mathrm{f}_{1}, \Phi_{\mu}\right\}\right\}\right| \Sigma \\
& =\left\{\mathrm{f}_{1}, \Phi_{2}\right\}\left|\Sigma-\left\{\mathrm{f}_{2}, \Phi_{1}\right\}\right| \Sigma \\
& =0 .
\end{aligned}
$$

If Σ is not first class ($=>\mathrm{k}<\ell$ (cf. 23.6)), then it is possible to choose the primary constraints Φ_{μ} in such a way that

$$
\Phi_{\ell}+1^{\prime} \cdots \Phi_{n}
$$

are first class,

$$
\Phi_{k}+1^{\prime \cdots} \Phi_{\ell}
$$

then being termed second class primary constraints.
[Note: To arrange this, assume outright that the matrix

$$
\left[\left\{\Phi_{\mu^{\prime}} \Phi_{v}\right\}\right]
$$

has constant rank $\ell-k$ on an open subset U of $T * M$ containing Σ and redefine the data (building in 23.27 below).]
23.26 EXAMPLE Take $M=\underline{R}^{4}$ and let

$$
\begin{aligned}
& L\left(q^{1}, q^{2}, q^{3}, q^{4}, v^{1}, v^{2}, v^{3}, v^{4}\right) \\
& =\left(q^{2}+q^{3}\right) v^{1}+q^{4} v^{3}+\frac{1}{2}\left(\left(q^{4}\right)^{2}-2 q^{2} q^{3}-\left(q^{3}\right)^{2}\right)
\end{aligned}
$$

Then

$$
W(\mathrm{~L})=\left[\mathrm{O}_{4}\right]
$$

thus $k=0$. Since

$$
\frac{\partial L}{\partial v^{1}}=q^{2}+q^{3}, \frac{\partial L}{\partial v^{2}}=0, \frac{\partial L}{\partial v^{3}}=q^{4}, \frac{\partial L}{\partial v^{4}}=0
$$

there are four primary constraints:

$$
\Phi_{1}=\mathrm{p}_{1}-\mathrm{q}^{2}-\mathrm{q}^{3}, \Phi_{2}=\mathrm{p}_{2}, \Phi_{3}=\mathrm{p}_{3}-\mathrm{q}^{4}, \Phi_{4}=\mathrm{p}_{4}
$$

We have

$$
\left.\left[\left\{\Phi_{\mu}, \Phi_{\nu}\right\}\right]=\left\lvert\, \begin{array}{rrrr}
0 & 1 & 1 & 0 \\
-1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right.\right]
$$

so $\Phi_{1}, \Phi_{2}, \Phi_{3}, \Phi_{4}$ are second class primary constraints. Next

$$
\begin{aligned}
\Omega_{\Sigma} & =i_{\Sigma}^{\star}\left(d p_{1} \wedge d q^{1}+d p_{2} \wedge d q^{2}+d p_{3} \wedge d q^{3}+d p_{4} \wedge d q^{4}\right) \\
& =d q^{2} \wedge d q^{1}+d q^{3} \wedge d q^{1}+d q^{4} \wedge d q^{3}
\end{aligned}
$$

which is symplectic, hence Σ is second class. Here

$$
\begin{aligned}
& H_{\Sigma}\left(q^{1}, q^{2}, q^{3}, q^{4}, p_{1}, p_{3}\right) \\
& \quad=-\frac{1}{2}\left(q^{2}\right)^{2}+\frac{1}{2}\left(p_{1}\right)^{2}-\frac{1}{2}\left(p_{3}\right)^{2}
\end{aligned}
$$

Indeed

$$
\begin{aligned}
& \mathrm{H}_{\Sigma} \circ F L\left(q^{1}, q^{2}, q^{3}, q^{4}, v^{1}, v^{2}, v^{3}, v^{4}\right) \\
& =-\frac{1}{2}\left(q^{2}\right)^{2}+\frac{1}{2}\left(q^{2}+q^{3}\right)^{2}-\frac{1}{2}\left(q^{4}\right)^{2} \\
& =-\frac{1}{2}\left(\left(q^{4}\right)^{2}-2 q^{2} q^{3}-\left(q^{3}\right)^{2}\right) \\
& =E_{L}\left(q^{1}, q^{2}, q^{3}, q^{4}, v^{1}, v^{2}, v^{3}, v^{4}\right)
\end{aligned}
$$

And the unique $X_{\Sigma} \in D^{\perp}(\Sigma)$ such that

$$
{ }^{1} \mathrm{X}_{\Sigma}{ }^{\Omega}{ }_{\Sigma}=-\mathrm{dH}{ }_{\Sigma}
$$

is

$$
x_{\Sigma}=q^{3} \frac{\partial}{\partial q^{1}}+q^{4} \frac{\partial}{\partial q^{2}}-q^{4} \frac{\partial}{\partial q^{3}}-q^{2} \frac{\partial}{\partial q^{4}}
$$

At this point, it will be necessary to adopt an index convention, say:

$$
\left\{\begin{array}{l}
k+1 \leq a, b \leq \ell \\
\quad \ell+1 \leq u, v \leq n .
\end{array}\right.
$$

Then

$$
\left[\begin{array}{l}
x_{a}=x_{\Phi_{a}}, x_{b}=x_{\Phi_{b}} \\
x_{u}=x_{\Phi_{u}}, x_{v}=x_{\Phi_{v}}
\end{array}\right.
$$

Put

$$
\left.\left[C_{a b}\right]=\left\lvert\, \begin{array}{ccc}
\left\{\Phi_{k+1}, \Phi_{k}+1^{\}}\right. & \cdots & \left\{\Phi_{k+1}, \Phi_{\ell}\right\} \\
\cdot & & \cdot \\
\cdot & \cdot \\
\left\{\Phi_{\ell}, \Phi_{k}+1\right\} & \cdots & \left\{\Phi_{\ell^{\prime}} \Phi_{\ell}\right\}
\end{array}\right.\right] .
$$

23.27 LEMMA The matrix $\left[C_{a b}\right]$ is skewsymmetric and nonsingular on an open subset U of $T * M$ containing Σ.
[Note: Therefore the number of second class primary constraints is even.]

For simplicity, it will be assumed in what follows that $U=T * M$ (which is typically the case in practice) and we shall agree to write $\left[C^{a b}\right]$ for the inverse of $\left[C_{a b}\right]$.

Suppose that

$$
\left\langle\operatorname{Ker} \Omega_{\Sigma},-\mathrm{dH}_{\Sigma}\right\rangle=0 .
$$

Then for any extension $H \in C^{\infty}\left(T^{*} M\right)$ of H_{Σ},

$$
\left\{\mathrm{H}, \Phi_{\mathrm{v}}\right\} \mid \Sigma=0 \quad(\mathrm{v}=\ell+1, \ldots, \mathrm{n}) .
$$

Given $\Lambda^{\mathrm{u}} \in \mathrm{C}^{\infty}\left(\mathrm{T}^{*} \mathrm{M}\right)$, let

$$
x=\left\{H, \Phi_{a}\right\} c^{a b} x_{b}-X_{H}+\Lambda^{u} X_{u} .
$$

23.28 LEMMA X is tangent to Σ.

PROOF The Φ_{u} are first class, thus it is automatic that $\Lambda^{u^{\prime}}{ }_{u}$ is tangent
to Σ, so we need only consider

$$
\begin{aligned}
& \left\{H, \Phi_{a}\right\} C^{a b} X_{b}-X_{H} . \\
& \text { - }\left\{\mathrm{H}, \Phi_{\mathrm{a}}\right\} \mathrm{C}^{\mathrm{ab}} \mathrm{X}_{\mathrm{b}} \Phi_{\mathrm{V}}\left|\Sigma-\mathrm{X}_{\mathrm{H}} \Phi_{\mathrm{V}}\right| \Sigma \\
& =\left\{\mathrm{H}_{\mathrm{r}} \Phi_{\mathrm{a}}\right\} \mathrm{C}^{\mathrm{ab}}\left\{\Phi_{\mathrm{b}}, \Phi_{\mathrm{v}}\right\}\left|\Sigma-\left\{\mathrm{H}, \Phi_{\mathrm{v}}\right\}\right| \Sigma \\
& =0 \text { (cf. 23.22). } \\
& \text { - }\left\{\mathrm{H}, \Phi_{a}\right\} \mathrm{C}^{\mathrm{ab}} \mathrm{X}_{\mathrm{b}} \Phi_{a^{\prime}}-\mathrm{X}_{\mathrm{H}} \Phi_{a^{\prime}} \\
& =\left\{H, \Phi_{a}\right\} C^{a b} C_{b a^{\prime}}-\left\{H, \Phi_{a^{\prime}}\right\} \\
& =\left\{\mathrm{H}, \Phi_{a^{\prime}}\right\}=\left\{\mathrm{H}, \Phi_{a^{\prime}}\right\} \\
& =0 \text {. }
\end{aligned}
$$

Set

$$
\mathrm{x}_{\Sigma}=\mathrm{x} \mid \Sigma .
$$

Then the definitions imply that

$$
{ }^{\mathrm{l}} \mathrm{X}_{\Sigma} \Omega_{\Sigma}=-\mathrm{dH} H_{\Sigma}
$$

Therefore H_{Σ} admits global dynamics.
23.29 REMARK In general, the equation

$$
{ }^{2} X_{\Sigma}{ }^{\Omega_{\Sigma}}=-d H_{\Sigma}
$$

need not be solvable on all of Σ. This sets the stage for an implementation of the constraint algorithm, the subject of the next §.

The foregoing theory can also be written in the time-dependent case. While relevant and interesting, I am nevertheless going to omit the details.

§24. THE CONSTRAINT ALGORITHM

Let M_{0} be a connected C^{∞} manifold of dimension n_{0}. Fix a closed 2-form $\omega_{0} \in \Lambda^{2} M_{0}$ of constant rank which is degenerate in the sense that

$$
\text { Ker } \omega_{0}=\left\{x_{0} \in D^{l}\left(M_{0}\right): l_{x_{0}} \omega_{0}=0\right\}
$$

is nontrivial.
[Note: The pair $\left(M_{0}, \omega_{0}\right)$ is a presymplectic manifold (cf. 15.20).]
Let $\alpha_{0} \in \Lambda^{1} M_{0}$ be a closed 1-form. Consider the equation

$$
{ }^{2} x_{0} \omega_{0}=\alpha_{0} \quad\left(x_{0} \in D^{1}\left(M_{0}\right)\right)
$$

Then a solution, if there is one, is determined only up to an element of Ger ω_{0}.
[Note:

$$
\begin{aligned}
&{ }^{l} x_{0} \omega_{0}=\alpha_{0} \\
& \Rightarrow \\
& L_{x_{0}}{ }_{0}=\left({ }^{l} x_{0} \circ d+d \circ{ }^{l} x_{0}\right) \omega_{0} \\
&=d{ }_{x_{0}}{ }^{\omega}{ }_{0} \\
&\left.=d \alpha_{0}=0 .\right]
\end{aligned}
$$

24.1 EXAMPLE To realize this setup, take

$$
\left[\begin{array}{rl}
M_{0} & =T M \\
\omega_{0} & =\omega_{L} \\
\alpha_{0} & =-d E_{L^{\prime}}
\end{array}\right.
$$

where L is a degenerate lagrangian per $\S 22$.
24.2 EXAMPLE To realize this setup, take

$$
\left.\right|_{\quad \begin{array}{l}
M_{0}
\end{array}=\Sigma} \begin{aligned}
\omega_{0} & =\Omega_{\Sigma} \\
\alpha_{0} & =-d H_{\Sigma^{\prime}}
\end{aligned}
$$

where L is a degenerate lagrangian per $\S 23$.

Let $M \subset M_{0}$ be a submanifold, $i: M \rightarrow M_{0}$ the inclusion. Write

$$
\left[\begin{array}{l}
D^{1}\left(\mathrm{M}_{0} ; \mathrm{M}\right) \text { in place of } D^{1}\left(\mathrm{M}_{0} ; \mathrm{M}^{\prime} ; \mathrm{i}\right) \\
D_{1}\left(\mathrm{M}_{0} ; \mathrm{M}\right) \text { in place of } D_{1}\left(\mathrm{M}_{0} ; \mathrm{M}^{\mathrm{M} ; \mathrm{i})}\right.
\end{array} \quad\right. \text { (cf. §13). }
$$

Then there is a canonical pairing

$$
D^{I}\left(\mathrm{M}_{0} ; \mathrm{M}\right) \times D_{1}\left(\mathrm{M}_{0} ; \mathrm{M}\right) \rightarrow C^{\infty}(\mathrm{M}) .
$$

Let

$$
\operatorname{Ker}\left(\omega_{0} \mid M\right)=\left\{X_{0} \in D^{l}\left(M_{0} ; M\right):\left(\omega_{0} \mid M\right)\left(X_{0}, X\right)=0 \forall x \in D^{l}(M)\right\}
$$

Denote by $\left(\omega_{0} \mid M\right)^{b}$ the map $D^{1}(M) \rightarrow D_{1}\left(M_{0} ; M\right)$ which sends X to $\left(\omega_{0} \mid M\right)(X, \longrightarrow)$.
24.3 LLEMMA The range of $\left(\omega_{0} \mid M\right)^{b}$ consists of those $\alpha \in D_{1}\left(M_{0} ; M\right)$ such that

$$
\left\langle\operatorname{Ker}\left(\omega_{0} \mid M\right), \alpha\right\rangle=0 .
$$

PROOF The annihilator of

$$
\left(\omega_{0} \mid \mathrm{M}\right)^{b}\left(D^{1}(\mathrm{M})\right)
$$

is comprised of those $X_{0} \in D^{\perp}\left(M_{;} M_{0}\right)$ with the property that

$$
\left\langle X_{0^{\prime}}\left(\omega_{0} \mid M\right)(X, \longrightarrow)\right\rangle=0 \forall X \in D^{l}(M)
$$

or still,

$$
\left(\omega_{0} \mid M\right)\left(X_{0}, X\right)=0 \forall X \in D^{1}(M)
$$

I.e.:

$$
\begin{aligned}
& \quad \operatorname{Ann}\left(\left(\omega_{0} \mid M^{b}\left(D^{1}(M)\right)\right)=\operatorname{Ker}\left(\omega_{0} \mid M\right)\right. \\
& \Rightarrow \quad \\
& \quad\left(\omega_{0} \mid M\right)^{b}\left(D^{1}(M)\right)= \operatorname{Ann} \operatorname{Ann}\left(\left(\omega_{0} \mid M\right)^{b}\left(D^{1}(M)\right)\right) \\
&=\operatorname{Ann~Ker}\left(\omega_{0} \mid M\right)
\end{aligned}
$$

Consider again the equation

$$
{ }^{l} x_{0} \omega_{0}=\alpha_{0}
$$

Since ω_{0}^{b} is not surjective, the relation

$$
\left\langle\operatorname{Ker} \omega_{0}, \alpha_{0}\right\rangle=0
$$

need not be true, so let

$$
M_{1}=\left\{x_{0} \in M_{0}:<\operatorname{Ker} \omega_{0}, \alpha_{0}>\left(x_{0}\right)=0\right\}
$$

We assume that M_{1} is a submanifold. Put

$$
\omega_{1}=\omega_{0}\left|M_{1}, \quad \alpha_{1}=\alpha_{0}\right| M_{1}
$$

and consider the equation

$$
{ }^{\prime} x_{1} \omega_{1}=\alpha_{1}
$$

where now $\mathrm{X}_{1} \in D^{l}\left(\mathrm{M}_{1}\right)$. If α_{1} is in the range of ω_{1}, the process stops. Otherwise, let

$$
M_{2}=\left\{x_{1} \in M_{1}:\left\langle\operatorname{Ker} \omega_{1}, \alpha_{1}\right\rangle\left(x_{1}\right)=0\right\}
$$

and continue on, generating thereby a chain of submanifolds

$$
\ldots M_{2} \rightarrow M_{1} \rightarrow M_{0}
$$

If at the $\mathrm{k}^{\text {th }}$ stage,

$$
\left\langle\operatorname{Ker} \omega_{k}, \alpha_{k}\right\rangle=0
$$

on all of $M_{k^{\prime}}$, the procedure ends since by construction $\exists X_{k} \in D^{I}\left(M_{k}\right)$:

$$
{ }^{l} \mathrm{x}_{\mathrm{k}} \omega_{\mathrm{k}}=\alpha_{\mathrm{k}} .
$$

M_{k} is called the final constraint manifold.
[Note: Conceivably, M_{k} could be empty or discrete, possibilities that we shall simply ignore.]

On the final constraint submanifold M_{k}, we have

$$
{ }^{\imath} \mathrm{x}_{\mathrm{k}} \omega_{\mathrm{k}}=\alpha_{\mathrm{k}}
$$

for same $X_{k} \in D^{l}\left(M_{k}\right)$. I.e.:

$$
\left(\omega_{0} \mid M_{k}\right)\left(X_{k^{\prime}} \longrightarrow\right)=\alpha_{0} \mid M_{k^{\prime}}
$$

this being an equality of elements of $D_{1}\left(M_{0} ; M_{k}\right)$. Let $i_{k}: M_{k} \rightarrow M_{0}$ be the inclusion then $\forall X \in D^{1}\left(M_{K}\right)$,

$$
\left(\omega_{0} \mid M_{k}\right)\left(X_{k^{\prime}}, X\right)=\left(\imath_{X_{k}}\left(i_{k}^{*} \omega_{0}\right)\right)(X)
$$

and

$$
\left(\alpha_{0} \mid M_{k}\right)(X)=\left(i_{k}^{*} \alpha_{0}\right)(X),
$$

thus

$$
{ }^{\imath} x_{k}\left(i_{k}^{*} \omega_{0}\right)=i_{k}^{*} \alpha_{0}
$$

[Note: In general, the set of X_{k} for which

$$
{ }^{2} \mathrm{x}_{\mathrm{k}} \omega_{\mathrm{k}}=\alpha_{\mathrm{k}}
$$

is strictly contained in the set of X_{k} for which

$$
\left.{ }^{l} x_{k}\left(i_{k}^{*} \omega_{0}\right)=i_{k}^{*} \alpha_{0} \cdot\right]
$$

24.4 REMARK If

$$
z \in D^{I}\left(M_{k}\right) \cap \operatorname{Ker}\left(\omega_{0} \mid M_{k}\right)
$$

then, as a functional on $D^{l}\left(M_{0} ; M_{k}\right)$,

$$
\left(\omega_{0} \mid M_{k}\right)(\mathrm{z}, \longrightarrow)=0,
$$

hence

$$
\begin{array}{ll}
& { }^{l} x_{k} \omega_{k}=\alpha_{k} \\
\Rightarrow & { }^{l} x_{k}+z^{\omega}{ }_{k}=\alpha_{k} .
\end{array}
$$

This failure of uniqueness is called gauge freedom.]
24.5 EXAMPLE Let M_{0} be the submanifold of $T^{*} \underline{R}^{4}$ determined by the conditions $p_{1}-q^{4}=p_{3}=p_{4}=0$ and take for ω_{0} the pullback

$$
\begin{aligned}
i_{0}^{*} \Omega & =i_{0}^{*}\left(\sum_{i=1}^{4} d p_{i} \wedge d q^{i}\right) \\
& =d p_{1} \wedge d q^{1}+d q^{4} \wedge d q^{2}
\end{aligned}
$$

$i_{0}: M_{0} \rightarrow T * \underline{R}^{4}$ the inclusion -- then

$$
\operatorname{rank} \omega_{0}=4
$$

and Ker ω_{0} is spanned by $\frac{\partial}{\partial q^{3}}$. Let $\alpha_{0}=-d H_{0}$, where

$$
H_{0}=\frac{1}{2}\left(\left(p_{1}-q^{2}\right)^{2}+\left(q^{3}\right)^{2}\right),
$$

and consider the equation

$$
{ }^{2} x_{0} \omega_{0}=-d H_{0} \quad\left(x_{0} \in D^{\perp}\left(M_{0}\right)\right)
$$

Using $q^{1}, q^{2}, q^{3}, q^{4}, p_{1}$ as coordinates on M_{0}, write

$$
X_{0}=f \frac{\partial}{\partial p_{1}}+\sum_{i=1}^{4} A^{i} \frac{\partial}{\partial q^{i}}
$$

Then

$$
\left.\right|_{-} ^{l^{x_{0}}\left(d p_{1} \wedge d q^{1}\right)=f d q^{1}-A^{1} d p_{1}} \begin{aligned}
& { }^{l} x_{0}\left(d q^{4} \wedge d q^{2}\right)=A^{4} d q^{2}-A^{2} d q^{4}
\end{aligned}
$$

=>

$$
{ }^{l} X_{0}{ }_{0}=-A^{1} d p_{1}+f d q^{1}+A^{4} d q^{2}-A^{2} d q^{4}
$$

On the other hand,

$$
d H_{0}=\left(p_{1}-q^{2}\right) d p_{1}+\left(q^{2}-p_{1}\right) d q^{2}+q^{3} d q^{3}
$$

Restricting the data to $M_{1}=\left\{q^{3}=0\right\}$ and comparing ${ }^{l} x_{0} \omega_{0}$ with $-d H_{0}$, we find that $A^{1}=p_{1}-q^{2}, A^{2}=0, A^{4}=p_{1}-q^{2}, f=0$, thus

$$
x_{0}=\left(p_{1}-q^{2}\right)\left(\frac{\partial}{\partial q^{1}}+\frac{\partial}{\partial q^{4}}\right)+A^{3} \frac{\partial}{\partial q^{3}},
$$

A^{3} being undetermined. Now choose $A^{3}=0-$ then

$$
x_{1}=\left(p_{1}-q^{2}\right)\left(\frac{\partial}{\partial q^{1}}+\frac{\partial}{\partial q^{4}}\right)
$$

is tangent to M_{1}, so the algorithm terminates at this point.

Expanding on 23.29, if H_{Σ} does not admit global dynamics, then the resolution is to set the constraint algoritlm into motion:

$$
\Sigma \supset \Sigma^{\prime}, \Sigma^{\prime} \supset \Sigma^{\prime \prime}, \ldots .
$$

Here (cf. 24.2),

$$
\begin{gathered}
M_{0} \leftrightarrow \Sigma \\
M_{1} \leftrightarrow \Sigma^{\prime} \\
M_{2} \leftrightarrow \Sigma^{\prime \prime} \\
\\
\vdots \\
\end{gathered}
$$

In more detail, one supposes that there is a solution valid on some submanifold $\Sigma^{\prime} \subset \Sigma$ which is described by secondary constraints. Such a solution need not be tangent to Σ^{\prime}. One then has to pass to a submanifold $\Sigma^{\prime \prime} \subset \Sigma^{\prime}$ where the solution is tangent to $\Sigma^{\prime}, \Sigma^{\prime \prime}$ being described by tertiary constraints. And so forth... . For a physical system with reasonable dynamics this process terminates at a submanifold $\Sigma_{0} \subset \Sigma$ described by certain constraints and on which the equation

$$
{ }^{2} x_{\Sigma_{0}} \Omega_{\Sigma_{0}}=-d H_{\Sigma_{0}}
$$

can be solved (but, of course, it need not be true that $\pi_{M}^{*}\left(\Sigma_{0}\right)=M$).
To make matters precise, let us suppose that Σ^{\prime} is a submanifold of Σ of dimension $(n+k)+\left(n-k^{\prime}\right)$, where $n \leq k^{\prime} \leq n+(n+k)$ (thus the codimension of Σ^{\prime} w.r.t. Σ is $(n+k)-\left((n+k)+\left(n-k^{\prime}\right)\right)=k^{\prime}-n$ and the codimension of Σ^{\prime} w.r.t. $T^{*} M$ is $\left.2 n-\left((n+k)+\left(n-k^{\prime}\right)\right)=k^{\prime}-k\right)$. In addition, we shall impose a regularity condition, viz. that $\exists X_{\tau} \in C^{\infty}\left(T^{*} M\right)\left(\tau=n+1, \ldots, k^{\prime}\right)$ such that

$$
\Sigma^{\prime}=\Sigma \cap \cap_{\tau} \chi_{\tau}^{-1}(0)
$$

with

$$
\hat{\tau}^{d} \chi_{\tau \mid \sigma^{\prime}} \neq 0 \forall \sigma^{\prime} \in \Sigma^{\prime} .
$$

[Note: The X_{τ} are called secondary constraints.]
24.6 REMARK Initially,

$$
\Sigma^{\prime}=\left\{\sigma \in \Sigma:<\operatorname{Ker} \Omega_{\Sigma^{\prime}}, \mathrm{dH}_{\Sigma}>(\sigma)=0\right\}
$$

and, by construction,

$$
\Sigma^{\prime \prime}=\left\{\sigma^{\prime} \in \Sigma^{\prime}:\left\langle\operatorname{Ker}\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right), d H_{\Sigma} \mid \Sigma^{\prime}\right\rangle\left(\sigma^{\prime}\right)=0\right\}
$$

To say that there are no tertiary constraints amounts to saying that $\Sigma^{\prime}=\Sigma^{\prime \prime}$, thus the final constraint submanifold is Σ^{\prime} itself. So, $\exists X_{\Sigma^{\prime}} \in D^{1}\left(\Sigma^{\prime}\right)$:

$$
\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right)\left(X_{\Sigma^{\prime}}, \rightarrow\right)=-d H_{\Sigma} \mid \Sigma^{\prime},
$$

this being an equality of elements of $D_{1}\left(\Sigma ; \Sigma^{\prime}\right)$. Put

$$
\Omega_{\Sigma^{\prime}}=i_{\Sigma^{*}}^{*} \Omega_{\Sigma}\left(i_{\Sigma^{\prime}}: \Sigma^{\prime} \rightarrow \Sigma\right)
$$

Then

$$
{ }^{{ }^{2} X_{\Sigma^{\prime}}} \Omega_{\Sigma^{\prime}}=-\mathrm{dH}_{\Sigma^{\prime}},
$$

where $H_{\Sigma^{\prime}}=H_{\Sigma^{\prime}} \mid \Sigma^{\prime}$ (observe that $\left.d H_{\Sigma^{\prime}}=\mathrm{d}\left(\mathrm{H}_{\Sigma} \mid \Sigma^{\prime}\right)=\mathrm{d}\left(\mathrm{i}_{\Sigma}^{\star}, \mathrm{H}_{\Sigma}\right)=\mathrm{i}_{\Sigma^{\star}}, \mathrm{dH}_{\Sigma^{\prime}}\right)$.
24.7 EXAMPLE Take $M=\underline{R}^{2}$ and let

$$
L\left(q^{1}, q^{2}, v^{1}, v^{2}\right)=\frac{1}{2}\left(v^{1}\right)^{2}+\frac{1}{2}\left(q^{1}\right)^{2} q^{2}
$$

Then

$$
\left.W(L)=\left\lvert\, \begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right.\right]
$$

thus $k=1$. Because

$$
\frac{\partial L}{\partial v^{I}}=v^{l}, \frac{\partial L}{\partial v^{2}}=0
$$

there is one primary constraint, viz.

$$
\Phi\left(q^{I}, q^{2}, p_{1}, p_{2}\right)=p_{2}
$$

So

$$
\Sigma=\left\{\left(q^{1}, q^{2}, p_{1}, p_{2}\right): p_{2}=0\right\}
$$

And

$$
\left.\right|_{-} ^{\Omega_{\Sigma}}=\frac{d p_{1} \wedge d q^{1}}{} \begin{aligned}
& H_{\Sigma}=\frac{1}{2}\left(p_{1}\right)^{2}-\frac{1}{2}\left(q^{1}\right)^{2} q^{2}
\end{aligned}
$$

Given

$$
X_{\Sigma}=f \frac{\partial}{\partial p_{1}}+A^{1} \frac{\partial}{\partial q^{I}}+A^{2} \frac{\partial}{\partial q^{2}} \in D^{I}(\Sigma)
$$

we have

$$
\begin{aligned}
{ }^{\mathrm{l}} \mathrm{x}_{\Sigma}{ }^{\Omega}{ }_{\Sigma} & ={ }^{\mathrm{l}} \mathrm{x}_{\Sigma}\left(\mathrm{dp}_{1} \wedge \mathrm{dq}^{1}\right) \\
& =\mathrm{fdq}^{1}-\mathrm{A}^{1} \mathrm{dp}_{1}
\end{aligned}
$$

Accordingly, Ker Ω_{Σ} is spanned by $\frac{\partial}{\partial q^{2}}$. But

$$
d H_{\Sigma}=p_{1} d p_{1}-q^{1} q^{2} d q^{1}-\frac{1}{2}\left(q^{1}\right)^{2} d q^{2}
$$

hence

$$
\begin{aligned}
\Sigma^{\prime} & =\left\{\sigma \in \Sigma:<\operatorname{Ker} \Omega_{\Sigma^{\prime}} \mathrm{dH}_{\Sigma}>(\sigma)=0\right\} \\
& =\left\{\left(q^{1}, q^{2}, p_{1}, 0\right): q^{1}=0\right\}
\end{aligned}
$$

Therefore Σ^{\prime} is described by the secondary constraint

$$
x\left(q^{1}, q^{2}, p_{1}, p_{2}\right)=q^{1}
$$

However $\nexists X_{\Sigma^{\prime}} \in D^{l}\left(\Sigma^{\prime}\right):$

$$
\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right)\left(\mathrm{X}_{\Sigma^{\prime}}, \longrightarrow\right)=-\mathrm{dH}_{\Sigma} \mid \Sigma^{\prime} .
$$

To proceed, it is necessary to impose the tertiary constraint $p_{1}=0$. To confirm this, let us determine $\Sigma^{\prime \prime}$ which, by definition, is the set of $\sigma^{\prime} \in \Sigma^{\prime}$:

$$
\left\langle\operatorname{Ker}\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right), \mathrm{dH}_{\Sigma} \mid \Sigma^{\prime}\right\rangle\left(\sigma^{\prime}\right)=0
$$

Let

$$
\left[\begin{array}{l}
X=F \frac{\partial}{\partial p_{1}}+A^{l} \frac{\partial}{\partial q^{1}}+A^{2} \frac{\partial}{\partial q^{2}} \in D^{I}\left(\Sigma ; \Sigma^{\prime}\right) \\
Y=G \frac{\partial}{\partial p_{1}}+B^{2} \frac{\partial}{\partial q^{2}} \in D^{l}\left(\Sigma^{\prime}\right)
\end{array}\right.
$$

Then

$$
\mathrm{x} \in \operatorname{Ker}\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right)
$$

iff $\forall Y$,

$$
\begin{gathered}
\mathrm{dp}_{1} \wedge \mathrm{dq}^{1}(\mathrm{X}, \mathrm{Y})=0 \\
\Leftrightarrow \\
\Leftrightarrow \mathrm{dp} \mathrm{P}_{1}(\mathrm{X}) \mathrm{dq}^{1}(\mathrm{Y})-\mathrm{dp}_{1}(\mathrm{Y}) \mathrm{dq}^{1}(\mathrm{X})=0 \\
\end{gathered}
$$

Since

$$
d H_{\Sigma} \mid \Sigma^{\prime}=p_{1} d p_{1^{\prime}}
$$

it follows that

$$
\left\langle F \frac{\partial}{\partial p_{1}}+A^{2} \frac{\partial}{\partial q^{2}}, p_{1} d p_{1}\right\rangle=F p_{1}
$$

is zero for all F precisely at those σ^{\prime} at which $p_{1}=0$. Moreover the dynamics on $\Sigma^{\prime \prime}$ are trivial. Indeed,

$$
{ }_{\partial / \partial q^{2}}{ }^{\Omega_{\Sigma}}\left|\Sigma^{\prime \prime}=0=\mathrm{dH}_{\Sigma}\right| \Sigma^{\prime \prime}
$$

[Note: Consider the constraints of the preceding example:

$$
\begin{aligned}
& \mathrm{p}_{2}=0-\text { primary } \\
& \mathrm{q}^{1}=0-\text { secondary } \\
& \mathrm{p}_{1}=0-\text { tertiary. }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\{p_{1}, p_{1}\right\}=0,\left\{p_{2}, p_{2}\right\}=0,\left\{q^{1}, q^{1}\right\}=0 \\
& \left.\left\{p_{1}, p_{2}\right\}=0,\left\{p_{1}, q^{1}\right\}=1,\left\{p_{2}, q^{1}\right\}=0 .\right]
\end{aligned}
$$

APPENDIX

There are physically reasonable lagrangians that lead to constraints beyond the tertiary level.

Thus let $M=\underline{R}^{3}$ and put

$$
L=\frac{1}{2}\left(\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}\right)-\frac{1}{2} q^{3}\left(\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}-1\right) .
$$

Since

$$
\left.W(L)=\left\lvert\, \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right.\right]
$$

has constant rank $k=2$, it follows that $\operatorname{dim} \sum=n+k=3+2=5$, the primary constraint being $p_{3}=0$. Therefore

$$
\Omega_{\Sigma}=d p_{1} \wedge q^{1}+d p_{2} \wedge \mathrm{dq}^{2}
$$

So, if

$$
X_{\Sigma}=f_{1} \frac{\partial}{\partial p_{1}}+f_{2} \frac{\partial}{\partial p_{2}}+\sum_{i=1}^{3} A^{i} \frac{\partial}{\partial q^{i}}
$$

then

$$
{ }^{\mathrm{l}} \mathrm{X}_{\Sigma} \Omega_{\Sigma}=\mathrm{f}_{1} d q^{1}+\mathrm{f}_{2} d q^{2}-\mathrm{A}^{1} d p_{1}-\mathrm{A}^{2} d p_{2}
$$

Accordingly, $\operatorname{ker} \Omega_{\Sigma}$ is spanned by $\frac{\partial}{\partial q^{3}}$. On the other hand,

$$
\begin{gathered}
\mathrm{H}_{\Sigma}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{2} q^{3}\left(\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}-1\right) \\
\Rightarrow \quad \\
\quad d H_{\Sigma}=p_{1} d p_{1}+p_{2} d p_{2}+q^{1} q^{3} d q^{1}+q^{2} q^{3} d q^{2}+\frac{1}{2}\left(\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}-1\right) d q^{3} .
\end{gathered}
$$

Thus

$$
\begin{aligned}
\Sigma^{\prime} & =\left\{\sigma \in \Sigma:<\operatorname{Ker} \Omega_{\Sigma}, \mathrm{dH}_{\Sigma}>(\sigma)=0\right\} \\
& =\left\{\left(q^{1}, q^{2}, q^{3}, p_{1}, p_{2}\right):\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}=1\right\}
\end{aligned}
$$

I.e.: Σ^{\prime} is described by the secondary constraint $\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}=1$ and there

$$
{ }^{\mathrm{l}} \mathrm{X}_{\Sigma} \Omega_{\Sigma}=-\mathrm{dH}{ }_{\Sigma}{ }^{\prime}
$$

where

$$
x_{\Sigma}=-q^{1} q^{3} \frac{\partial}{\partial p_{1}}-q^{2} q^{3} \frac{\partial}{\partial p_{2}}+p_{1} \frac{\partial}{\partial q^{I}}+p_{2} \frac{\partial}{\partial q^{2}} .
$$

But X_{Σ} is not tangent to Σ^{\prime} unless we impose the tertiary constraint $p_{1} q^{1}+p_{2} q^{2}=0$.

To see that this agrees with what is predicted by the theory, it is necessary to consider $\Sigma^{\prime \prime}$, the set of $\sigma^{\prime} \in \Sigma^{\prime}$:

$$
\left\langle\operatorname{Ker}\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right), \mathrm{dH}_{\Sigma} \mid \Sigma^{\prime}\right\rangle\left(\sigma^{\prime}\right)=0 .
$$

Let

$$
\left[\begin{array}{l}
X=F_{1} \frac{\partial}{\partial p_{1}}+F_{2} \frac{\partial}{\partial p_{2}}+\sum_{i=1}^{3} A^{i} \frac{\partial}{\partial q^{1}} \in D^{1}\left(\Sigma ; \Sigma^{\prime}\right) \\
Y=G_{1} \frac{\partial}{\partial p_{1}}+G_{2} \frac{\partial}{\partial p_{2}}+-q^{2} \frac{\partial}{\partial q^{1}}+q^{1} \frac{\partial}{\partial q^{2}} \in D^{1}\left(\Sigma^{\prime}\right)
\end{array}\right.
$$

Then

$$
x \in \operatorname{Ker}\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right)
$$

iff $\forall Y$,

$$
\begin{array}{ll}
& {d p_{1} \wedge d q^{1}(X, Y)+d p_{2} \wedge d q^{2}(X, Y)=0}^{\Leftrightarrow} \quad-q^{2} F_{1}+q^{1} F_{2}=G_{1} A^{l}+G_{2} A^{2} \\
& \\
& \\
& A^{-A^{1}=0} \\
&
\end{array}
$$

G_{1} and G_{2} being arbitrary. But

$$
d H_{\Sigma} \mid \Sigma^{\prime}=p_{1} d p_{1}+p_{2} d p_{2}+q^{1} q^{3} d q^{1}+q^{2} q^{3} d q^{2}
$$

hence

$$
\left\langle\mathrm{X}, \mathrm{dH}{ }_{\Sigma} \mid \Sigma^{\prime}\right\rangle=\mathrm{p}_{1} \mathrm{~F}_{1}+\mathrm{p}_{2} \mathrm{~F}_{2}
$$

vanishes for all $X \in \operatorname{Ker}\left(\Omega_{\Sigma} \mid \Sigma^{\prime}\right)$ at those σ^{\prime} :

$$
p_{1} F_{1}+p_{2} F_{2}=0
$$

subject to

$$
-q^{2} F_{1}+q^{1} F_{2}=0
$$

The condition

$$
p_{1} q^{I}+p_{2} q^{2} \neq 0
$$

allows only the trivial solution $F_{1}=F_{2}=0$, thus the tertiary constraint is $p_{1} q^{1}+p_{2} q^{2}=0$.

Recall now that

$$
x_{\Sigma}=-q^{1} q^{3} \frac{\partial}{\partial p_{1}}-q^{2} q^{3} \frac{\partial}{\partial p_{2}}+p_{1} \frac{\partial}{\partial q^{1}}+p_{2} \frac{\partial}{\partial q^{2}} \in D^{1}\left(\Sigma ; \Sigma^{\prime}\right)
$$

and put

$$
x_{\Sigma}^{\prime}=x_{\Sigma} \mid \Sigma " .
$$

Then $X_{\Sigma}^{\prime} \in \mathcal{D}^{1}\left(\Sigma^{\prime} ; \Sigma^{\prime \prime}\right)$ but X_{Σ}^{\prime} is not tangent to $\Sigma^{\prime \prime}$, thus it will be necessary to impose yet another constraint. Consider

$$
A \frac{\partial}{\partial q^{I}}+B \frac{\partial}{\partial q^{2}}+C \frac{\partial}{\partial p_{1}}+D \frac{\partial}{\partial p_{2}} \in T_{\sigma^{\prime}} \Sigma^{\prime} .
$$

To figure out the conditions on $A_{r} B, C, D$ which guarantee that this vector is in $T_{\sigma^{\prime \prime}} \Sigma^{\prime \prime}$, let

$$
\mathrm{f}\left(\mathrm{q}^{1}, \mathrm{q}^{2}, \mathrm{p}_{1}, \mathrm{p}_{2}\right)=\mathrm{p}_{1} \mathrm{q}^{1}+\mathrm{p}_{2} \mathrm{q}^{2}
$$

Then

$$
\begin{aligned}
& \frac{\partial f}{\partial q^{1}}=p_{1}, \frac{\partial f}{\partial q^{2}}=p_{2} \\
& \frac{\partial f}{\partial p_{1}}=q^{1}, \frac{\partial f}{\partial p_{2}}=q^{2} \\
& \text { => } \\
& \nabla E \cdot(A, B, C, D) \\
& =p_{1} A+p_{2} B+q^{1} C+q^{2} D .
\end{aligned}
$$

Therefore

$$
A \frac{\partial}{\partial q^{1}}+B \frac{\partial}{\partial q^{2}}+C \frac{\partial}{\partial p_{1}}+D \frac{\partial}{\partial p_{2}} \in T_{\sigma^{\prime}} \Sigma^{\prime \prime}
$$

iff

$$
p_{1} A+p_{2}^{B}+q^{1} C+q^{2} D=0 .
$$

In our case:

$$
A=p_{1}, B=p_{2}, C=-q^{1} q^{3}, D=-q^{2} q^{3}
$$

so the next constraint is

$$
p_{1}^{2}+p_{2}^{2}-q^{3}\left(\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}\right)=0
$$

or still,

$$
p_{1}^{2}+p_{2}^{2}=q^{3}
$$

Additional computation shows that there are no other constraints. Therefore the final constraint submanifold $\Sigma_{0} \subset \Sigma$ is described by

$$
\left.\right|_{-} ^{\left(q^{1}\right)^{2}+\left(q^{2}\right)^{2}}=1 \begin{aligned}
p_{1} q^{1}+p_{2} q^{2} & =0 \\
p_{1}^{2}+p_{2}^{2} & =q^{3}
\end{aligned}
$$

hence Σ_{0} is two dimensional.
We have

$$
\Sigma \supset \Sigma^{\prime} \supset \Sigma^{\prime \prime} \supset \Sigma_{0}
$$

with

$$
\left[\begin{array}{l}
x_{\Sigma} \in D^{l}\left(\Sigma ; \Sigma^{\prime}\right) \\
x_{\Sigma}^{\prime} \in D^{l}\left(\Sigma^{\prime} ; \Sigma^{\prime \prime}\right)
\end{array}\right.
$$

So, if $X_{0}=X_{\Sigma}^{\prime} \mid \Sigma_{0}$, then by construction,

$$
x_{0} \in D^{l}\left(\Sigma_{0}\right)
$$

and

$$
{ }^{l} x_{0}\left(\Omega_{\Sigma} \mid \Sigma_{0}\right)=-d H_{\Sigma} \mid \Sigma_{0}
$$

this being an equality of elements of $D_{1}\left(\Sigma_{i} \Sigma_{0}\right)$ (or $D_{1}\left(\Sigma_{0}\right)$, provided the data is pulled back to Σ_{0}).

The integral curves of X_{0} depend on two parameters θ, ω and are given by

$$
\left.\begin{array}{|l}
\left.\right|_{-} ^{q^{1}(t)}=\cos (\omega t+\theta) \\
q^{2}(t)
\end{array}\right)=\sin (\omega t+\theta) \quad q^{3}(t)=\omega^{2},
$$

N.B. In the situation at hand, there is no gauge freedom, i.e., X_{0} is unique. To see this, it suffices to note that the pullback of

$$
d p_{1} \wedge d q^{1}+d p_{2} \wedge d q^{2}
$$

to Σ_{0} is nondegenerate. Thus define a map

$$
\mathrm{f}:] 0,2 \pi\left[\times \underset{\sim}{\mathrm{R}} \rightarrow \Sigma_{0}\right.
$$

by the prescription

$$
\left.\right|_{-} ^{q^{1}}=\cos \theta, q^{2}=\sin \theta, q^{3}=\omega^{2}, ~=-\omega \sin \theta, p_{2}=\omega \cos \theta . ~ \$
$$

Then

$$
\begin{aligned}
& d(-\omega \sin \theta) \wedge d \cos \theta+d(\omega \cos \theta) \wedge d \sin \theta \\
& =(-\sin \theta d \omega-\omega \cos \theta d \theta) \wedge(-\sin \theta) d \theta \\
& +(\cos \theta d \omega-\omega \sin \theta d \theta) \wedge(\cos \theta) d \theta \\
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right) d \omega \wedge d \theta=d \omega \wedge d \theta .
\end{aligned}
$$

Turning to the physical interpretation, the above lagrangian is that of a
19.
particle of unit mass moving on a circle of radius 1 in a two dimensional plane spanned by q^{1}, q^{2} with q^{3} being the force necessary to make the particle stay on the circle.

§25. FIRST CLASS SYSTEMS

Let (M, Ω) be a symplectic manifold of dimension $2 n$ (M connected). Suppose that $C \subset M$ is a closed connected submanifold. Assume: $\exists \Phi_{\mu} \in C^{\infty}(M)$ $(\mu=1, \ldots, k(k<n))$ such that

$$
C=\bigcap_{\mu}\left(\Phi_{\mu}\right)^{-l}(0)
$$

with

$$
\hat{\mu}_{\mu}^{d} \Phi_{\mu} \neq 0
$$

on C .
Put

$$
\omega_{C}=i_{C}^{*} \Omega \quad\left(i_{C}: C \rightarrow M\right)
$$

and impose the a priori hypothesis that the rank of ω_{C} is constant, hence that the pair (C, ω_{C}) is a presymplectic manifold. Therefore Ker ω_{C} is integrable (cf. 15.20), so there is a decomposition

$$
c=\frac{1}{i} C_{i}
$$

C_{i} a generic leaf of the associated foliation.
Next, introduce

$$
(\mathrm{TC})^{i} \subset \mathrm{TM} \mid \mathrm{C}
$$

Then C is said to be first class if

$$
(\mathrm{TC})^{\perp} \subset \mathrm{TM}
$$

N.B. Consequently,

$$
\operatorname{Ker} \omega_{C}=(T C)^{\perp}
$$

In what follows, we shall take C first class.
Let $f \in C^{\infty}(M)$-- then f is said to be a Dirac observable if X_{f} is tangent to C.
[Note: As usual, X_{f} is the hamiltonian vector field attached to $\left.f.\right]$
25.1 REMARK In the context of $\S 23$, the Dirac observables are precisely the $f \in C^{\infty}\left(T^{*} M\right)$ which are first class (w.r.t. Σ).
25.2 LEMMA A function $f \in C^{\infty}(M)$ is a Dirac observable iff $\forall \mu$,

$$
\left\{\mathrm{f}, \Phi_{\mu}\right\} \mid C=0 .
$$

[The argument used in 23.22 is clearly applicable here as well.]

In particular: $\quad \forall \mu^{\prime}, \mu^{\prime \prime}$,

$$
\begin{array}{ll}
& \left\{\Phi_{\mu^{\prime \prime}}, \Phi_{\mu^{\prime \prime}}\right\} \mid C=0 \\
\Rightarrow & \\
& \left\{\Phi_{\mu^{\prime}} \prime^{\prime} \Phi_{\mu^{\prime \prime}}\right\}=\sum_{\mu} f_{\mu^{\prime} \mu^{\prime \prime}}{ }^{\prime} \Phi_{\mu^{\prime}}
\end{array}
$$

where

$$
f_{\mu^{\prime} \mu^{\prime \prime}}^{\mu^{\prime}} \in C^{\infty}(\mathbb{M}) \quad \text { (cf. 23.14). }
$$

Fix a positive definite quadratic form K and let

$$
\underline{M}=\frac{1}{2} K^{\mu \nu} \Phi_{\mu} \Phi_{\nu} .
$$

Then

$$
\mathrm{C}=\underline{M}^{-\mathrm{l}}(0)
$$

[Note:

$$
\begin{gathered}
d M=\frac{1}{2}\left(K^{\mu \nu}\left(d \Phi_{\mu}\right) \Phi_{\nu}+K^{\left.\mu \nu_{\Phi_{\mu}}\left(d \Phi_{\nu}\right)\right)}\right. \\
\Rightarrow \\
\quad d \underline{M} \mid C=0.1
\end{gathered}
$$

25.3 LEMMA $\forall f \in C^{\infty}(M)$,

$$
\{\mathrm{f}, \mathrm{M}\} \mid C=0 .
$$

PROOF In fact,

$$
\begin{aligned}
\{\mathrm{f}, \mathrm{M}\} \mid C & =\left(\mathrm{X}_{\mathrm{f}} \mathrm{M}\right) \mid C \\
& =\mathrm{dM}\left(\mathrm{X}_{\mathrm{f}}\right) \mid C \\
& =0
\end{aligned}
$$

25.4 LEMMA Let $f \in C^{\infty}(M)$-- then f is a Dirac observable iff

$$
\{f,\{\mathrm{f}, \mathrm{M}\}\} \mid \mathrm{C}=0 .
$$

PROOF We have

$$
\begin{aligned}
& \{\mathrm{f},\{\mathrm{f}, \underline{M}\}\} \\
& =\frac{1}{2}\left\{\mathrm{f},\left\{\mathrm{f}, \mathrm{~K}^{\left.\left.\mu \nu_{\Phi_{\mu}} \Phi_{\nu}\right\}\right\}}\right.\right. \\
& \left.=\frac{1}{2}\left\{\mathrm{f}, \mathrm{~K}^{\mu \nu} \mathrm{ff}, \Phi_{\mu} \Phi_{\nu}\right\}\right\} \\
& =\frac{1}{2}\left\{\mathrm{f}, \mathrm{~K}^{\mu \nu}\left(\left\{\mathrm{f}, \Phi_{\mu}\right\} \Phi_{\nu}+\left\{\mathrm{f}, \Phi_{\nu}\right\} \Phi_{\mu}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{2} K^{\mu \nu}\left(\left\{\mathrm{f},\left\{\mathrm{f}, \Phi_{\mu}\right\} \Phi_{\nu}\right\}+\left\{\mathrm{f},\left\{\mathrm{f}, \Phi_{\nu}\right\} \Phi_{\mu}\right\}\right) \\
&=\frac{1}{2} K^{\mu \nu}\left(\left\{\mathrm{f},\left\{\mathrm{f}, \Phi_{\mu}\right\}\right\} \Phi_{\nu}+\left\{\mathrm{f}, \Phi_{\nu}\right\}\left\{\mathrm{f}, \Phi_{\mu}\right\}\right. \\
&\left.+\left\{\mathrm{f},\left\{\mathrm{f}, \Phi_{\nu}\right\}\right\} \Phi_{\mu}+\left\{\mathrm{f}_{,} \Phi_{\mu}\right\}\left\{\mathrm{f}, \Phi_{\nu}\right\}\right) \\
& \Rightarrow \\
& \quad\{\mathrm{f},\{\mathrm{f}, \mathrm{M}\}\} \mid C \\
&=\left(\left\{\mathrm{f}, \Phi_{\mu}\right\} \mid C\right) K^{\mu \nu}\left(\left\{\mathrm{f}, \Phi_{\nu}\right\} \mid C\right) .
\end{aligned}
$$

Therefore

$$
\{\mathrm{f},\{\mathrm{f}, \underline{M}\}\} \mid \mathrm{C}=0
$$

iff

$$
\left\{f, \Phi_{1}\right\}\left|C=0, \ldots,\left\{f, \Phi_{k}\right\}\right| C=0
$$

or still,

$$
\{\mathrm{f},\{\mathrm{f}, \mathrm{M}\}\} \mid \mathrm{C}=0
$$

iff f is a Dirac observable (cf. 25.2).

Let $H \in C^{\infty}(C)$-- then H is said to admit global dynamics if $\exists X_{H} \in D^{1}(C)$:

$$
{ }^{2} \mathrm{X}_{\mathrm{H}}{ }^{\omega} \mathrm{C}=-\mathrm{dH} .
$$

25.5 LEEMMA If H admits global dynamics, then H is constant on the C_{i}, hence is a first integral for Ker ${ }^{\omega_{C}}$.

PROOF Suppose that X is tangent to C_{i}, thus $X \in(T C)^{\perp}$ and

$$
\begin{aligned}
\mathrm{XH} & =\mathrm{dH}(\mathrm{X}) \\
& =-{ }^{2} \mathrm{X}_{\mathrm{H}} \omega_{\mathrm{C}}(\mathrm{X}) \\
& =-\omega_{\mathrm{C}}\left(\mathrm{X}_{\mathrm{H}}, \mathrm{X}\right) \\
& =\omega_{\mathrm{C}}\left(\mathrm{X}, \mathrm{X}_{\mathrm{H}}\right) \\
& =0 .
\end{aligned}
$$

In general, the quotient $C / K e r \omega_{C}$ does not carry the structure of a C^{∞} manifold. However, let us assume that it does and that the projection

$$
\pi: C \rightarrow C / \operatorname{Ker} \omega_{C}
$$

is a fibration.
N.B. Under these circumstances, one calls $C / K e r \omega_{C}$ the reduced phase space of the theory.

Write \tilde{C} for $C / \operatorname{Ker} \omega_{C}-$ then there is a 2 -form $\omega_{\tilde{C}}$ on \tilde{C} such that

$$
{ }^{\omega_{C}}=\pi^{*} \omega_{\tilde{C}} .
$$

To see this, let $\tilde{x}_{1}, \tilde{x}_{2}$ be two vectors tangent to $\tilde{x} \in \tilde{C}$. Choose a point x in the leaf C_{i} lying over \tilde{x} and let x_{1}, x_{2} be two vectors tangent to x :

$$
\left.\right|_{-} ^{-\tilde{\mathrm{x}}_{1}=\pi_{*} \mathrm{x}_{1}} \begin{gathered}
\tilde{\mathrm{x}}_{2}=\pi_{*} \mathrm{x}_{2}
\end{gathered}
$$

Set

$$
\left.\omega_{\tilde{C}}\right|_{\mathrm{x}}\left(\tilde{\mathrm{x}}_{1}, \tilde{\mathrm{x}}_{2}\right)=\left.\omega_{\mathrm{C}}\right|_{\mathrm{x}}\left(\mathrm{X}_{1}, \mathrm{x}_{2}\right)
$$

25.6 LEMMA ω_{\sim} is welldefined.

PROOF We have to show that the definition is independent of the choice of x and the choice of X_{1}, X_{2}. First, ω_{C} is constant along a leaf: $\forall z \in(T C)^{\perp}$,

$$
L_{z} \omega_{C}=\left(l_{z} \circ d+d \circ \imath_{z}\right) \omega_{C}=0 .
$$

Second, if

$$
\left.\right|_{-} ^{\tilde{\mathrm{X}}_{1}=\pi_{*} \mathrm{Y}_{1}} \begin{gathered}
\tilde{\mathrm{x}}_{2}=\pi_{*} \mathrm{Y}_{2}
\end{gathered}
$$

then

$$
\left.\right|_{-} ^{Y_{1}=x_{1}+z_{1}} \begin{aligned}
& Y_{2}=x_{2}+z_{2}
\end{aligned}
$$

where $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in(\mathrm{TC})^{\perp}$. Therefore

$$
\begin{aligned}
\left.\omega_{\mathrm{C}}\right|_{\mathrm{X}}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right) & =\left.\omega_{\mathrm{C}}\right|_{\mathrm{x}}\left(\mathrm{X}_{1}+\mathrm{Z}_{1}, \mathrm{X}_{2}+\mathrm{Z}_{2}\right) \\
& =\left.\omega_{\mathrm{C}}\right|_{\mathrm{x}}\left(\mathrm{X}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

25.7 LEMMA $\omega_{\tilde{C}}$ is symplectic.

PROOF Suppose that for some $\tilde{\mathrm{X}}_{0}$:

$$
\omega_{\tilde{C}}\left(\tilde{X}_{0}, \tilde{X}\right)=0 \forall \tilde{X} .
$$

Then

$$
\begin{array}{cc}
& \left.\omega_{\mathrm{C}}\right|_{\mathrm{x}}\left(\mathrm{x}_{0}, \mathrm{x}\right)=0 \forall \mathrm{x} \\
\Rightarrow & \\
& \left.\mathrm{x}_{0} \in \operatorname{Ker} \omega_{\mathrm{C}}\right|_{\mathrm{x}} \\
\Rightarrow \quad & \\
& \tilde{\mathrm{x}}_{0}=\pi_{*} \mathrm{x}_{0}=0 .
\end{array}
$$

The function H projects to a function $\tilde{\mathrm{H}} \in \mathrm{C}^{\infty}(\tilde{\mathrm{C}})$ (cf. 25.5). Furthermore, there exists a unique $\mathrm{X}_{\tilde{\mathrm{H}}} \in D^{1}(\tilde{\mathrm{C}})$:

$$
{ }^{2} \mathrm{X}_{\tilde{H}}{ }_{\tilde{\mathrm{C}}}=-\mathrm{d} \tilde{H} .
$$

And finally $\mathrm{X}_{\tilde{\mathrm{H}}}$ is the projection of any X_{H} :

$$
{ }^{2} \mathrm{X}_{\mathrm{H}}{ }^{\omega} \mathrm{C}=-\mathrm{dH} .
$$

25.8 REMARK All Dirac observables project to \tilde{C}.

To establish notation, let

$$
\left\{\begin{array}{l}
\underline{S O}(3)=\left\{A \in \underline{G L}(3, \underline{R}): A A^{\top}=I, \operatorname{det} A=1\right\} \\
\underline{S O}(3)=\left\{x \in \underline{g \ell}(3, \underline{R}): X+X^{\top}=0\right\}
\end{array}\right.
$$

the " T " standing for transpose -- then so(3) is the Lie algebra of SO(3).
A. 1 RAPPEL The arrow $\underline{\mathrm{R}}^{3} \rightarrow$ so (3) that sends

$$
x=\left(x^{1}, x^{2}, x^{3}\right)
$$

to

$$
\hat{x}=\left|\begin{array}{ccc}
0 & -x^{3} & x^{2} \\
x^{3} & 0 & -x^{1} \\
-x^{2} & x^{1} & 0
\end{array}\right|
$$

is an isomorphism of the Lie algebra $\left(\underline{R}^{3}, x\right)$ with the Lie algebra (so(3), [,]):

$$
(x \times y) \hat{y}=[\hat{x}, \hat{y}] \quad\left(x, y \in \underline{R}^{3}\right)
$$

It is equivariant in the sense that $\forall \mathrm{A} \in \underline{S O}(3)$,

$$
(A x)^{\wedge}=\hat{x x A}^{-1} \quad\left(x \in R^{3}\right)
$$

[Note: Equip so(3) with the metric derived from the Killing form, thus

$$
k(X, Y)=-\frac{1}{2} \operatorname{tr}(X Y) \quad(X, Y \in \underline{s o}(3)) .
$$

Then the arrow $\mathrm{x} \rightarrow \hat{\mathrm{x}}$ is an isometry:

$$
\left.\langle x, y\rangle=k(\hat{x}, \hat{y}) \quad\left(x, y \in \underline{R}^{3}\right) .\right]
$$

The tangent bundle TSO(3) admits two trivializations, viz.

$$
\left[\begin{array}{l}
\lambda: T \underline{T S O}(3) \rightarrow \underline{S O}(3) \times \underline{\text { sO }}(3) \\
\quad(\text { left }) \\
\quad \rho: T \underline{T S O}(3) \rightarrow \underline{S O}(3) \times \underline{\text { SO}}(3) \quad \text { (right) } .
\end{array}\right.
$$

To explain this, view $\underline{G}(3, \underline{R})$ as an open subset of $\underline{R}^{3 \times 3}$ - then the tangent space
 contained in $\underline{G L}(3, \underline{R})$, it follows that the elements of $T_{A} S_{O}(3)$ are matrix pairs (A, X). One then puts

$$
\left[\begin{array}{r}
\lambda(A, X)=\left(A, A^{-1} X\right) \\
\quad \rho(A, X)=\left(A, X A^{-1}\right)
\end{array}\right.
$$

 $A(0)=A, A^{\prime}(0)=x-$ then

$$
\begin{gathered}
\quad A(t)^{\top} A(t)=I \\
\Rightarrow \quad \\
\quad \dot{A}(t)^{\top} A(t)+A(t)^{\top} \dot{A}(t)=0
\end{gathered}
$$

=>

$$
X^{\top} A+A^{\top} X=0
$$

=>

$$
\begin{aligned}
\left(A^{-1} X\right)^{\top} & =\left(A^{\top} X\right)^{\top} \\
& =X^{\top} A \\
& =-A^{\top} X \\
& \left.=-A^{-1} X .\right]
\end{aligned}
$$

N.B. The classical terminology is that

$$
\left\lvert\, \begin{aligned}
& A^{-1} X \text { is the body angular velocity per } X \\
& X A^{-1} \text { is the spatial angular velocity per } X .
\end{aligned}\right.
$$

It is also traditional to write

$$
\left.\right|_{-} \begin{array}{lll}
\hat{\Omega} & & \\
& \text { for a generic } & \left.\right|_{-} ^{\text {body }} \\
& \text { angular velocity }
\end{array} \quad \text { spatial } \quad \text { and }
$$

at A, hence

Suppose that $A: I \rightarrow \underline{S O}(3)$ is a curve -- then its lift to $T S O(3)$ is given by

$$
t \rightarrow(A(t), \dot{A}(t))
$$

Write

$$
\left.\right|_{-} \hat{\Omega}(t)=A(t)^{-1} \dot{A}(t) \quad \begin{aligned}
& \hat{\omega}(t)=\dot{A}(t) A(t)^{-1}
\end{aligned}
$$

Then

$$
\int_{-} \begin{aligned}
& t \rightarrow \Omega(t) \\
& t \rightarrow \omega(t)
\end{aligned}
$$

are curves in R^{3}.

A. 2 EXAMPLE If

$$
\left.A(t)=\left\lvert\, \begin{array}{ccc}
-\cos \phi(t) \cos \theta(t) & \sin \phi(t) \cos \theta(t) & \sin \theta(t) \\
\cos \phi(t) \sin \theta(t) & \sin \phi(t) \sin \theta(t) & -\cos \theta(t) \\
-\sin \phi(t) & \cos \phi(t) & 0
\end{array}\right.\right],
$$

then

$$
\hat{\Omega}(t)=\left[\begin{array}{ccc}
0 & \dot{\phi}(t) & \dot{\theta}(t) \cos \phi(t) \\
-\dot{\phi}(t) & 0 & \dot{\theta}(t) \sin \phi(t) \\
-\dot{\theta}(t) \cos \phi(t) & -\dot{\theta}(t) \sin \phi(t) & 0
\end{array}\right],
$$

so

$$
\Omega_{4}(t)=(-\dot{\theta}(t) \sin \phi(t), \dot{\theta}(t) \cos \phi(t),-\dot{\phi}(t))
$$

[Note: Analogously,

$$
\left.\hat{\omega}(t)=\left\lvert\, \begin{array}{ccc}
0 & -\dot{\theta}(t) & \dot{\phi}(t) \cos \theta(t) \\
\dot{\theta}(t) & 0 & \dot{\phi}(t) \sin \theta(t) \\
-\dot{\phi}(t) \cos \theta(t) & -\dot{\phi}(t) \sin \theta(t) & 0
\end{array}\right.\right],
$$

so

$$
\omega(t)=(-\dot{\phi}(t) \sin \theta(t), \dot{\phi}(t) \cos \theta(t), \dot{\theta}(t)) .]
$$

A rigid body is a pair (E, μ), where $\Xi \subset \underline{R}^{3}$ is compact and μ is a finite Borel measure on \underline{R}^{3} with spt $\mu=E$. One calls

$$
\mu(\Xi)=\int_{\Xi} d \mu(\xi)
$$

the mass of the body, its center of mass then being the point

$$
\xi_{C}=\frac{1}{\mu(\Xi)}\left(\int_{\Xi} \xi d \mu(\xi)\right)
$$

[Note: ξ_{C} is the unique point for which

$$
\int_{\Xi}\left(\xi-\xi_{C}\right) d \mu(\xi)=0.1
$$

A. 3 EXAMPLE A particle of mass m is a special case of a rigid body. Thus suppose the particle is situated at a point $\xi_{0} \in \underline{R}^{3}$ and take $\mu=m \delta_{\xi_{0}}$-- then spt $\mu=\left\{\xi_{0}\right\}$ and the center of mass is

$$
\xi_{C}=m^{-1}\left(m \xi_{0}\right)=\xi_{0} .
$$

The inertia operator of a rigid body (Ξ, μ) about a point $x_{0} \in \underline{R}^{3}$ is the linear map

$$
I_{x_{0}}: \underline{R}^{3} \rightarrow \underline{R}^{3}
$$

defined by

$$
I_{x_{0}}(x)=\int_{\Xi}\left(\xi-x_{0}\right) \times\left(x \times\left(\xi-x_{0}\right)\right) d \mu(\xi)
$$

[Note: We have

$$
\begin{aligned}
& \left(\xi-x_{0}\right) \times\left(x \times\left(\xi-x_{0}\right)\right) \\
& \left.\quad=\left|\xi-x_{0}\right|^{2} x-<\xi-x_{0}, x>\left(\xi-x_{0}\right) \cdot\right]
\end{aligned}
$$

A. 4 EXAMPLE Keeping to the setup of A.3,

$$
I_{x_{0}}(x)=m\left(\xi_{0}-x_{0}\right) \times\left(x \times\left(\xi_{0}-x_{0}\right)\right)
$$

Let $\left(a^{1}, a^{2}, a^{3}\right)$ be the components of $a=\xi_{0}-x_{0}-$ then the matrix of $I_{x_{0}}$ is

$$
\left.m \left\lvert\, \begin{array}{ccc}
\left(a^{2}\right)^{2}+\left(a^{3}\right)^{2} & -a^{1} a^{2} & -a^{1} a^{3} \\
-a^{2} a^{1} & \left(a^{3}\right)^{2}+\left(a^{1}\right)^{2} & -a^{2} a^{3} \\
-a^{3} a^{1} & -a^{3} a^{2} & \left(a^{1}\right)^{2}+\left(a^{2}\right)^{2}
\end{array}\right.\right]
$$

and its eigenvalues are

$$
\left\{m|a|^{2}, m|a|^{2}, 0\right\}
$$

A. 5 LEMMA $I_{x_{0}}$ is symmetric, i.e., $\forall x_{1}, x_{2}$,

$$
\left\langle I_{x_{0}}\left(x_{1}\right), x_{2}\right\rangle=\left\langle x_{1}, I_{x_{0}}\left(x_{2}\right)\right\rangle
$$

and positive semidefinite, i.e., $\forall x$,

$$
\left\langle I_{x_{0}}(x), x\right\rangle \geq 0
$$

PROOF First write

$$
\begin{aligned}
& \left\langle I_{x_{0}}\left(x_{1}\right), x_{2}\right\rangle \\
& =\int_{\Xi}\left\langle\left(\xi-x_{0}\right) \times\left(x_{1} \times\left(\xi-x_{0}\right)\right), x_{2}\right\rangle d \mu(\xi) \\
& =\int_{\Xi}\left\langle x_{1} \times\left(\xi-x_{0}\right), x_{2} \times\left(\xi-x_{0}\right)\right\rangle d \mu(\xi) \\
& =\int_{\Xi}\left\langle x_{1},\left(\xi-x_{0}\right) \times\left(x_{2} \times\left(\xi-x_{0}\right)\right)\right\rangle d \mu(\xi) \\
& =\left\langle x_{1}, I_{x_{0}}\left(x_{2}\right)\right\rangle .
\end{aligned}
$$

Then take $\mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{x}$ to get

$$
\begin{aligned}
& <I_{x_{0}}(x), x> \\
& =\int_{\Xi}<x \times\left(\xi-x_{0}\right), x \times\left(\xi-x_{0}\right)>d \mu(\xi) \\
& \geq 0
\end{aligned}
$$

Therefore the eigenvalues of $I_{x_{0}}$ are real and nonnegative.
A. 6 LEMMA If $I_{x_{0}}$ has a zero eigenvalue, then the other two eigenvalues are equal.
[Note: $I_{x_{0}}$ has a zero eigenvalue iff E is contained in a line through x_{0}.]
A. 7 LEMMA If $I_{x_{0}}$ has two zero eigenvalues, then $\Xi=\left\{x_{0}\right\}$.
A. 8 REMARK If there is no line through x_{0} that contains the support of μ, then $I_{x_{0}}$ is an isomorphism.

Take $x_{0}=\xi_{C}$ and write I_{C} in place of $I_{\xi_{C}}$.
A. 9 IEMMA $\forall x \in \underline{R}^{3}$,

$$
\begin{aligned}
I_{C}(x) & =\int_{E} \xi \times(x \times \xi) d \mu(\xi) \\
& -\mu(E)\left(\xi_{C} \times\left(x \times \xi_{C}\right)\right) .
\end{aligned}
$$

In the case of a particle ξ_{0} of mass $\mathrm{m}, \mu=\mathrm{m} \delta_{\xi_{0}}$, hence

$$
\begin{aligned}
I_{C}(x) & =m\left(\xi_{0} \times\left(x \times \xi_{0}\right)\right)-m\left(\xi_{0} \times\left(x \times \xi_{0}\right)\right) \\
& =0 .
\end{aligned}
$$

A. 10 REMARK Given x_{0}, define C by $x_{0}=\xi_{C}+C$ - then

9.

$$
I_{x_{0}}(x)=I_{C}(x)+\mu(E)(C \times(x \times C))
$$

E.g.: Take $x_{0}=0-$ then $C=-\xi_{C}$, so

$$
\begin{aligned}
I_{0}(x) & =\int_{\Xi} \xi \times(x \times \xi) d \mu(\xi) \\
& =I_{C}(x)+\mu(\Xi)\left(-\xi_{C} \times\left(x \times-\xi_{C}\right)\right)
\end{aligned}
$$

or still,

$$
\begin{aligned}
& I_{C}(x)=\int_{\Xi} \xi \times(x \times \xi) d \mu(\xi) \\
&-\mu(\Xi)\left(\xi_{C} \times\left(x \times \xi_{C}\right)\right),
\end{aligned}
$$

in agreement with A. 9 .
[Note: Bear in mind that

$$
\left.\delta_{E}\left(\xi-\xi_{C}\right) d \mu(\xi)=0 .\right]
$$

Let us now consider the description of the free rotation of an isolated rigid body (Ξ, μ) about a fixed point, which we take to be the origin in \underline{R}^{3}, and, to minimize trivialities, we shall assume that I_{0} is positive definite.

Define a lagrangian

$$
\mathrm{L}_{0}: \mathrm{TSO}(3) \rightarrow \underline{\mathrm{R}}
$$

by

$$
L_{0}(A, X)=\frac{1}{2}\left\langle I_{0} \Omega, \Omega\right\rangle
$$

[Note: Recall that Ω depends on (A, X) via the prescription

$$
\left.A^{-1} X=\hat{\Omega} .\right]
$$

Explicated,

$$
\begin{aligned}
\left.\frac{1}{2}<I_{0} \Omega r \Omega\right\rangle & =\frac{1}{2} \int_{\Xi}<\xi \times(\Omega \times \xi), \Omega>d \mu(\xi) \\
& =\frac{1}{2} \delta_{\Xi}|\Omega \times \xi|^{2} \mathrm{~d} \mu(\xi)
\end{aligned}
$$

or still,

$$
\begin{aligned}
& \frac{1}{2}<I_{0} \Omega, \Omega>=\frac{1}{2}<I_{C} \Omega, \Omega> \\
& \quad+\frac{1}{2} \mu(\Xi)<\Omega \times \xi_{C}, \Omega \times \xi_{C}>.
\end{aligned}
$$

N.B. SO(3) operates to the left on TSO (3) and relative to this action, L_{0} is invariant.
A. 11 REMARK Define an inner product $<,\rangle_{0}$ on \underline{R}^{3} by

$$
\langle\mathrm{x}, \mathrm{Y}\rangle_{0}=\delta_{E}<\mathrm{x} \times \xi, \mathrm{y} \times \xi>\mathrm{d} \mu(\xi)
$$

Transfer it to so(3), viewed as the tangent space to the identity of $\operatorname{SO}(3)$, thence by left translation to the tangent space at an arbitrary point of SO(3). Call g_{0} the left invariant riemannian structure resulting thereby -- then its "kinetic energy" is L_{0}, i.e., in the notation of 8.4,

$$
L_{0}=\frac{1}{2} g_{0} .
$$

Consequently, L_{0} is nondegenerate.
[Note: The metric connection ∇_{0} associated with g_{0} is left invariant, thus,
on general grounds, induces a bilinear map

$$
\underline{\text { so }}(3) \times \text { so }(3) \rightarrow \text { so }(3)
$$

or still, a bilinear map

$$
\underline{R}^{3} \times \underline{R}^{3} \rightarrow \underline{R}^{3}
$$

viz.

$$
\left.(x, y) \rightarrow \frac{1}{2}(x \times y)+\frac{1}{2} I_{0}^{-1}\left(x \times I_{0} y+y \times I_{0} x\right) .\right]
$$

A. 12 LEMMA We have

$$
I_{0}=\int_{\Xi}\left[\begin{array}{ccc}
\left(\xi^{2}\right)^{2}+\left(\xi^{3}\right)^{2} & -\xi^{1} \xi^{2} & -\xi^{1} \xi^{3} \\
-\xi^{2} \xi^{1} & \left(\xi^{3}\right)^{2}+\left(\xi^{1}\right)^{2} & -\xi^{2} \xi^{3} \\
-\xi^{3} \xi^{1} & -\xi^{3} \xi^{2} & \left(\xi^{1}\right)^{2}+\left(\xi^{2}\right)^{2}
\end{array}\right] d \mu(\xi)
$$

A. 13 EXAMPLE Take for Ξ a ball of radius R centered at the origin and suppose that μ has a spherically symetric density: $d \mu(\xi)=\rho(|\xi|) d \xi-$ then

$$
\left.I_{0}=\left\lvert\, \begin{array}{lll}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right.\right]
$$

where

$$
\begin{aligned}
3 I & =2 \int_{\Xi} \rho(|\xi|)|\xi|^{2} d \xi \\
& =8 \pi \int_{0}^{R} \rho(r) r^{4} d r .
\end{aligned}
$$

Therefore

$$
I=\frac{8 \pi}{3} \int_{0}^{R} \rho(r) r^{4} d r
$$

If the mass distribution is actually homogeneous, i.e.,

$$
\rho=\frac{3 m}{4 \pi R^{3}}
$$

then $I=\frac{2}{5} m R^{2}$, hence the inner product $\left.<,\right\rangle_{0}$ arising from the choices $m=\frac{5}{2}$, $R=1$ is the usual inner product on \underline{R}^{3}.
A. 14 EXAMPLE Take for Ξ a cone with vertex at the origin and of height h above the $\xi^{l} \xi^{2}$-plane $\left(\xi^{3}=\mathrm{h}\left(\frac{\mathrm{r}}{\mathrm{R}}\right) \quad(0 \leq \mathrm{r} \leq \mathrm{R})\right)$. Assume that the mass distribution is homogeneous, thus $\rho=3 m / \pi R^{2} h$ and the center of mass is at $\left(0,0, \frac{3 h}{4}\right)$. Here, the off diagonal entries in A. 12 are obviously zero, so

$$
I_{0}=\left|\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right|
$$

and by an elementary calculation, one finds that

$$
\left[\begin{array}{l}
I_{1}=I_{2}=(3 / 5) m\left(\frac{R^{2}}{4}+h^{2}\right) \\
I_{3}=(3 / 10) \mathrm{mR}^{2}
\end{array}\right.
$$

Using A.9, one can then compute the matrix representing I_{C}, which is necessarily
diagonal:

$$
I_{C}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

In the formula

$$
\begin{aligned}
\xi_{C} \times & \left(x \times \xi_{C}\right) \\
& =\left\langle\xi_{C^{\prime}} \xi_{C^{\prime}}>x-\left\langle\xi_{C^{\prime}} \times>\xi_{C^{\prime}}\right.\right.
\end{aligned}
$$

successively insert

$$
x=(1,0,0),(0,1,0),(0,0,1) .
$$

Then it follows that

$$
\left[\begin{array}{l}
\lambda_{1}=I_{1}-m\left(\frac{3 h}{4}\right)^{2}=(3 / 20) m\left(R^{2}+\frac{h^{2}}{4}\right) \\
\lambda_{2}=I_{2}-m\left(\frac{3 h}{4}\right)^{2}=(3 / 20) m\left(R^{2}+\frac{h^{2}}{4}\right)
\end{array}\right.
$$

and

$$
\lambda_{3}=I_{3}+(3 / 10) \mathrm{mR}^{2}
$$

Determine $\Gamma_{L_{0}} \in D^{1}(T S O(3))$ per 8.12.
A. 15 THEOREM Let

$$
\gamma(t)=(A(t), \dot{A}(t))
$$

be a curve in TSO (3). Put

$$
\hat{\Omega}(t)=A(t)^{-1} \dot{A}(t)
$$

Then $\gamma(t)$ is an integral curve of $\Gamma_{L_{0}}$ iff $\Omega(t)$ satisfies Euler's equations, i.e., iff

$$
I_{0} \dot{\Omega}(t)=I_{0} \Omega(t) \times \Omega(t)
$$

A. 16 REMARK The projection $\pi_{\underline{S O}(3)}: T S O(3) \rightarrow \underline{S O}(3)$ of the integral curves of $\Gamma_{L_{0}}$ are the geodesics of $\left(\underline{S O}(3), g_{0}\right)$ (cf. 10.6) and these are what the motion should follow. Define now the Euler vector field $\Gamma_{0}: \underline{R}^{3} \rightarrow \underline{R}^{3}$ by

$$
\Gamma_{0} \xi=I_{0}^{-1}\left(I_{0} \xi \times \xi\right) \quad\left(\xi \in \underline{R}^{3}\right)
$$

Then a curve $t \rightarrow \xi(t)$ is an integral curve of Γ_{0} iff

$$
\dot{\xi}(t)=\left(\Gamma_{0}\right)_{\xi(t)}
$$

or still, iff

$$
I_{0} \dot{\xi}(t)=I_{0} \xi(t) \times \xi(t)
$$

One can thus view A. 15 as providing an alternative description of the motion, which turns out to be more amenable to explicit computation.

Define a function

$$
\Pi: S O(3) \rightarrow \underline{R}^{3}
$$

by

$$
\Pi(A, X)=A I_{0} \Omega
$$

[Note: I is called the angular momentum of the system.]
A. 17 IEMMA I is constant on the trajectories γ of $\Gamma_{L_{0}}$. PROOF Consider the restriction of Π to such a γ :

$$
t \rightarrow A(t) I_{0} \Omega(t)
$$

Then

$$
\begin{aligned}
& \left(A(t) I_{0} \Omega(t)\right) \\
= & \dot{A}(t) I_{0} \Omega(t)+A(t) I_{0} \dot{\Omega}(t) \\
= & \dot{A}(t) I_{0} \Omega(t)+A(t)\left(I_{0} \Omega(t) \times \Omega(t)\right) \\
= & A(t) \hat{\Omega}(t) I_{0} \Omega(t)+A(t)\left(I_{0} \Omega(t) \times \Omega(t)\right) \\
= & A(t)\left(\Omega(t) \times I_{0} \Omega(t)\right)+A(t)\left(I_{0} \Omega(t) \times \Omega(t)\right) \\
= & 0 .
\end{aligned}
$$

[Note: Therefore the components of Π are first integrals for $\Gamma_{L_{0}}$ (cf. 1.1). Another first integral for $\Gamma_{L_{0}}$ is $E_{L_{0}}$ (cf. 8.10):

$$
\begin{aligned}
& \quad \begin{array}{ll}
E_{L_{0}}(\gamma(t)) & =L_{0}(\gamma(t)) \\
& =\frac{1}{2}\left\langle I_{0} \Omega(t), \Omega(t)\right\rangle \\
\Rightarrow \quad & \\
& \frac{d}{d t} \frac{1}{2}\left\langle I_{0} \Omega(t), \Omega(t)\right\rangle
\end{array} .
\end{aligned}
$$

$$
\left.\left\lvert\, \begin{array}{lll}
\tau & 0 & 0 \\
0 & \tau & 0 \\
0 & 0 & \tau
\end{array}\right.\right]
$$

$$
\left[\begin{array}{llll}
\tau & 0 & 0 \\
0 & \tau & 0 \\
0 & 0 & \tau
\end{array}\right]_{\text {pure } \frac{\varepsilon^{\gamma}}{u}=0 \text { чəч7 }} \quad \tau^{\gamma u \frac{\varepsilon}{z}=0_{I}}
$$

$$
\begin{aligned}
& . \tau_{\vartheta} \tau_{\mho} \frac{\varepsilon_{I}}{\left({ }^{I}-{ }^{T} I\right)}=\varepsilon_{\vartheta} \\
& \tau_{\vartheta} \varepsilon_{\vartheta} \frac{\tau_{I}}{\left({ }^{\tau_{I}} \varepsilon_{I}\right)}=\tau_{\vartheta} \\
& \varepsilon_{\vartheta} \tau_{\vartheta} \frac{\tau_{I}}{\left(\varepsilon_{I-} Z_{I}\right)}=\tau_{\vartheta}
\end{aligned}
$$

$$
\varepsilon_{G} \varepsilon_{\vartheta}+\tau_{\mathrm{G}} \tau_{\vartheta}+\tau_{T r} \tau_{\vartheta}=\mho
$$

บวบน
is

$$
\begin{aligned}
& (1-\lambda)^{3}-3 c^{2}(1-\lambda)+2 c^{3} \\
& =(1-\lambda-c)^{2}(1-\lambda+2 c)=0,
\end{aligned}
$$

the solutions to which are

$$
I_{1}=\frac{1}{4}, I_{2}=\frac{11}{8}, I_{3}=\frac{11}{8} .
$$

An unnormalized eigenvector per I_{1} is ($1,1,1$), hence lies along the diagonal of the cube. On the other hand, eigenvectors per $I_{2}=I_{3}$ constitute a subspace of dimension 2 perpendicular to the diagonal.
[Note: From the definitions,

$$
\xi_{C}=\left(\frac{\ell}{2}, \frac{\ell}{2}, \frac{\ell}{2}\right) .
$$

Claim: The eigenvalues of I_{C} are

$$
\left\{\frac{m \ell^{2}}{6}, \frac{m \ell^{2}}{6}, \frac{m \ell^{2}}{6}\right\}
$$

In fact, thanks to A.9,

$$
\begin{aligned}
I_{C}\left(\xi_{C}\right) & =I_{0}\left(\xi_{C}\right)-m\left(\xi_{C} \times\left(\xi_{C} \times \xi_{C}\right)\right) \\
& =I_{0}\left(\xi_{C}\right) \\
& =\frac{m \ell^{2}}{6} \xi_{C} .
\end{aligned}
$$

Now let $\Lambda \in\left\{\xi_{C}\right\}^{\perp}-$ then

$$
\xi_{C} \times\left(\Lambda \times \xi_{C}\right)
$$

$$
\begin{aligned}
& =\left\langle\xi_{C} C^{\prime} \xi_{C}>\Lambda-\left\langle\xi_{C^{\prime}}{ }^{\Lambda\rangle \xi_{C}}\right.\right. \\
& =\frac{3 \ell^{2}}{4} \Lambda .
\end{aligned}
$$

So, applying A. 9 once again,

$$
\begin{aligned}
I_{C}(\Lambda) & =I_{0}(\Lambda)-(3 / 4) m \ell^{2} \Lambda \\
& =(11 / 12) m \ell^{2} \Lambda-(3 / 4) m \ell^{2} \Lambda \\
& \left.=\frac{m \ell^{2}}{6} \Lambda .\right]
\end{aligned}
$$

Put

$$
\left[\begin{array}{l}
2 E=I_{1} \Omega_{1}^{2}+I_{2} \Omega_{2}^{2}+I_{3} \Omega_{3}^{2} \\
L=I_{1}^{2} \Omega_{1}^{2}+I_{2}^{2} \Omega_{2}^{2}+I_{3}^{2} \Omega_{3}^{2}
\end{array}\right.
$$

Then 2E and L are first integrals for Γ_{0} (cf. A.18).
Turning to the solutions of the Euler equations, we shall consider three cases.

$$
\begin{array}{ll}
\text { Case 1: } & I_{1}=I_{2}=I_{3} . \\
\text { Case 2: } & I_{1}=I_{2} \neq I_{3} . \\
\text { Case 3: } & I_{1}<I_{2}<I_{3} .
\end{array}
$$

The first case is trivial: \exists constants C_{1}, C_{2}, C_{3} such that

$$
\Omega_{1}=C_{1}, \Omega_{2}=C_{2}, \Omega_{3}=C_{3} .
$$

As for the second case, we have

$$
\left[\begin{array}{l}
I_{1} \dot{\Omega}_{1}-\left(I_{2}-I_{3}\right) \Omega_{2} \Omega_{3}=0 \\
I_{1} \dot{\Omega}_{2}-\left(I_{3}-I_{1}\right) \Omega_{3} \Omega_{1}=0
\end{array}\right.
$$

and

$$
\dot{\Omega}_{3}=0
$$

So $\Omega_{3}=C_{3}$ and matters reduce to

$$
\left[\begin{array}{l}
-\dot{\Omega}_{1}-\mathrm{C} \Omega_{2}=0 \\
\dot{\Omega}_{2}+\mathrm{C} \Omega_{1}=0
\end{array}\right.
$$

where

$$
\mathrm{C}=\frac{\left(\mathrm{I}_{1}-I_{3}\right) C_{3}}{I_{1}}
$$

Eliminating Ω_{2} gives

$$
\ddot{\Omega}_{1}+c^{2} \Omega_{1}=0
$$

the general solution to which is

$$
\Omega_{1}=K \sin (C t+\tau)
$$

for certain constants K and τ. And then

$$
\Omega_{2}=K \cos (C t+\tau)
$$

N.B. Here

$$
\begin{aligned}
2 E & =I_{1}\left(\Omega_{1}^{2}+\Omega_{2}^{2}\right)+I_{3} C_{3}^{2} \\
& =I_{1} K^{2}+\left.\left.I_{3}\right|_{-} ^{-} \frac{I_{1} C}{I_{1}-I_{3}}\right|_{-} ^{2} \\
& =I_{1}\left(K^{2}+\frac{I_{1} I_{3}}{\left(I_{1}-I_{3}\right)^{2}} C^{2}\right)
\end{aligned}
$$

and, analogously,

$$
L=I_{1}^{2}\left(K^{2}+\frac{I_{3}^{2}}{\left(I_{I}-I_{3}\right)^{2}} c^{2}\right)
$$

Therefore

$$
\mathrm{K}^{2}=\frac{1}{\mathrm{I}_{1}\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right)}\left(\mathrm{L}-2 \mathrm{I}_{3} \mathrm{E}\right)
$$

while

$$
c^{2}=\frac{I_{1}-I_{3}}{I_{1}^{2} I_{3}}\left(2 I_{1} E-L\right)
$$

The third case is more complicated but doable, the details being a bit messy. Suffice it to say that explicit solutions can be given in terms of the Jacobi elliptic functions sn, cn, dn.
[Note: In \underline{R}^{3}, consider the differential equations

$$
\left[\begin{array}{rl}
\dot{x} & =y z \\
\dot{y} & =-x z \\
\dot{z} & =-k^{2} x y \quad(0<k<1)
\end{array}\right.
$$

Then the triple

$$
t \rightarrow(\operatorname{sn}(t ; k), c n(t ; k), d n(t ; k))
$$

is the solution to this system subject to the initial condition $(0,1,1)$ (if $k=0$, then $\operatorname{sn}(t ; 0)=\sin t, \operatorname{cn}(t ; 0)=\cos t, d n(t ; 0)=1)$. To see where this is going, put

$$
\left[\begin{array}{l}
c_{1}=I_{1}^{-1}, c_{2}=I_{2}^{-1}, c_{3}=I_{3}^{-1} \\
u_{1}=I_{1} \Omega_{1}, u_{2}=I_{2} \Omega_{2}, u_{3}=I_{3} \Omega_{3}
\end{array}\right.
$$

and rewrite the Euler equations as

$$
\left[\begin{array}{l}
\dot{u}_{1}=-\left(c_{2}-c_{3}\right) u_{2} u_{3} \\
\dot{u}_{2}=\left(c_{1}-c_{3}\right) u_{1} u_{3} \\
\dot{u}_{3}=-\left(c_{1}-c_{2}\right) u_{1} u_{2}
\end{array}\right.
$$

the point of departure... .]
The motion of (E, μ) is a geodesic w.r.t. the left invariant riemannian structure g_{0}. To exploit A.15, fix $A_{0} \in \underline{S O}(3), X_{0} \in T_{A_{0}} S O(3)$. Translate X_{0} to so(3) and then to \underline{R}^{3} to get Ω_{0}. Let $\Omega(t)$ be the solution of the Euler equations subject to the initial condition Ω_{0}. Pass to $\hat{\Omega}(t)$ - then

$$
\dot{A}(t)=A(t) \hat{\Omega}(t)
$$

is a system of linear differential equations with time dependent coefficients,
the so-called reconstruction equation. Solve it for $A(t)$, subject to $A(0)=A_{0}$, thus

$$
\begin{aligned}
\dot{A}(0) & =A(0) \hat{\Omega}_{0} \\
& =A_{0}\left(A_{0}^{-1} X_{0}\right) \\
& =X_{0}
\end{aligned}
$$

and so

$$
\gamma(t)=(A(t), \dot{A}(t))
$$

is an integral curve of $\Gamma_{L_{0}}$ passing through (A_{0}, X_{0}) at $t=0$.
N.B. This is what happens in principle. What happens in practice is, however, a different matter, at least if one wants to be completely explicit. Case 3 is particularly vexsome but Case 1 is simple. For then $\hat{\Omega}(t)$ is constant in time: $\hat{\Omega}(t)=\hat{\Omega}_{0} \forall t$, hence the solution is

$$
A(t)=A_{0} e^{t \hat{\Omega}_{0}}
$$

A. 20 RAPPEL Let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}$ be the standard basis for $\underline{R}^{3}-$ then $\left\{\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right\}$ is the standard basis for so(3).

The manifold SO(3) can be equipped with a number of charts, all derived from the notion of "Euler angle", but the subject is potentially confusing due to the variety of choices that can be made.

Given ϕ, θ, ψ, put

$$
\left.\left.\left.\right|_{-} ^{\mathbf{c}_{\phi}=\cos \phi} \begin{aligned}
& \mathbf{s}_{\phi}=\sin \phi
\end{aligned}\right|_{-} ^{\mathbf{c}_{\theta}=\cos \theta} \begin{aligned}
& \mathbf{s}_{\theta}=\sin \theta
\end{aligned}\right|_{-} ^{\mathbf{c}_{\psi}=\cos \psi} \mathbf{s}_{\psi}=\sin \psi .
$$

Then

$$
\exp \left(\hat{\mathrm{e}}_{1}\right)=\left|\begin{array}{ccc}
-1 & 0 & 0 \\
0 & c_{\phi} & -s_{\phi} \\
0 & s_{\phi} & c_{\phi}
\end{array}\right|
$$

$$
\exp \left(\theta \hat{e}_{2}\right)=\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]
$$

$$
\exp \left(\psi \hat{e}_{3}\right)=\left[\begin{array}{ccc}
c_{\psi} & -s_{\psi} & 0 \\
s_{\psi} & c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

A. 21 LEMMA The map

$$
]-\pi, \pi[\times]-\frac{\pi}{2}, \frac{\pi}{2}[\times]-\pi, \pi[
$$

that sends (ψ, θ, ϕ) to

$$
A(\psi, \theta, \phi)=\exp \left(\psi \hat{e}_{3}\right) \exp \left(\hat{\theta e_{2}}\right) \exp \left(\phi \hat{e}_{1}\right)
$$

is one-to-one and its image U_{321} is open.
[Note: The inverse

$$
\left.U_{321} \rightarrow\right]-\pi, \pi[\times]-\frac{\pi}{2}, \frac{\pi}{2}[\times]-\pi, \pi[
$$

can be computed in terms of $\operatorname{atan}(x, y)$, the 2 -argument arctangent function.]

Therefore this data defines a chart on SO(3) with local coordinates ψ, θ, ϕ.
[Note: Local coordinates on TSO (3) will be denoted by $\psi, \theta, \phi, \mathrm{v}_{\psi}, \mathrm{v}_{\theta}, \mathrm{v}_{\phi}$]
Given $A \in U_{321}$, the entries of the associated triple (ψ, θ, ϕ) are called its 3-2-1 Euler angles.
N.B. All told, there are 12 possible rotation sequences, namely:

$1-2-1$	$2-1-2$	$3-1-3$
$1-3-1$	$2-3-2$	$3-2-3$
$1-2-3$	$2-3-1$	$3-1-2$
$1-3-2$	$2-1-3$	$3-2-1$.

A. 22 REMARK In the engineering literature, the 3-2-1 rotation sequence is referred to as yaw-pitch-roll.

The 3-1-3 convention is also a popular choice:

$$
\left[\begin{array}{l}
A \longleftrightarrow(\phi, \theta, \psi) \\
A=\exp \left(\phi \hat{e}_{3}\right) \exp \left(\theta \hat{e}_{1}\right) \exp \left(\psi \hat{e}_{3}\right),
\end{array}\right.
$$

where

$$
0<\phi<2 \pi, 0<\theta<\pi, 0<\psi<2 \pi .
$$

Consider a curve $t \rightarrow A(t)$ and pass to $\hat{\Omega}(t)=A(t)^{-1} \dot{A}(t)$. Put

$$
\left.\right|_{\quad A_{\phi}}=\exp \left(\phi(t) \hat{e}_{3}\right), ~ \begin{aligned}
A_{\theta} & =\exp \left(\theta(t) \hat{e}_{1}\right) \\
A_{\psi} & =\exp \left(\psi(t) \hat{e}_{3}\right)
\end{aligned}
$$

Then

$$
\begin{gathered}
\Omega(t)=\left(A_{\phi} A_{\theta} A_{\psi}\right)^{-1} \frac{d}{d t}\left(A_{\phi} A_{\theta} A_{\psi}\right) \\
=A_{\psi}^{-1} A_{\theta}^{-1} A_{\phi}^{-1}\left(\dot{\phi}\left(\frac{d}{d \phi} A_{\phi}\right) A_{\theta} A_{\psi}\right. \\
\\
\left.\quad+\dot{\theta} A_{\phi}\left(\frac{d}{d \theta} A_{\theta}\right) A_{\psi}+\dot{\psi} A_{\phi} A_{\theta}\left(\frac{d}{d \psi} A_{\psi}\right)\right) \\
=\dot{\phi A_{\psi}^{-1} A_{\theta}^{-1} A_{\phi}^{-1}\left(\frac{d}{d \phi} A_{\phi}\right) A_{\theta} A_{\psi}} \\
\quad+\dot{\theta} A_{\psi}^{-1} A_{\theta}^{-1}\left(\frac{d}{d \theta} A_{\theta}\right) A_{\psi}+\dot{\psi A_{\psi}^{-1}\left(\frac{d}{d \psi} A_{\psi}\right) .}
\end{gathered}
$$

A. 23 LENMA We have

$$
\Omega(t)=\left|\begin{array}{c}
\dot{\phi} \sin \theta \sin \psi+\dot{\theta} \cos \psi \\
\dot{\phi} \sin \theta \cos \psi-\dot{\theta} \sin \psi \\
\dot{\phi} \cos \theta+\dot{\psi}
\end{array}\right|
$$

A. 24 EXAMPLE Take for Ξ a uniform ball of mass m and radius R centered at the origin, hence $I=\frac{2}{5} m R^{2}$ (cf. A.13). Locally, in the 3-1-3 system,

$$
\begin{aligned}
& I_{0}(\phi, \theta, \psi) \\
= & \frac{1}{2} I\left(\left(v_{\phi} \sin \theta \sin \psi+v_{\theta} \cos \psi\right)^{2}\right. \\
& \left.+\left(v_{\phi} \sin \theta \cos \psi-v_{\theta} \sin \psi\right)^{2}+\left(v_{\phi} \cos \theta+v_{\psi}\right)^{2}\right)
\end{aligned}
$$

or still,

$$
L_{0}(\phi, \theta, \psi)=\frac{1}{2} I\left(v_{\phi}^{2}+v_{\theta}^{2}+v_{\psi}^{2}+2 v_{\phi} v_{\psi} \cos \theta\right) .
$$

1. Abraham, R. and Marsden, J., Foundations of Mechanics, Perseus Books, 1978.
2. Bloch, A., Nonholonomic Mechanics and Control, Springer-Verlag, 2003.
3. Brogliato, B., Nonsmooth Impact Mechanics, Springer-Verlag, 1996.
4. Bullo, F. and Lewis, A., Geometric Control of Mechanical Systems, SpringerVerlag, 2005.
5. Cortes, J., Geometric, Control and Numerical Aspects of Nonholonomic Systems, Springer-Verlag, 2002.
6. Curtis, W. and Miller, F., Differential Manifolds and Theoretical Physics, Academic Press, 1985.
7. Cushman, R. and Bates, L., Global Aspects of Classical Integrable Systems, Birkhäuser, 1997.
8. Godbillon, C., Géométric Diffêrentielle et Mécanique Analytique, Hermann, 1969.
9. Greiner, W., Classical Mechanics, Springer-Verlag, 2003.
10. Heard, W., Rigid Body Mechanics, Wiley-VCH, 2006.
11. Henneaux, M. and Teitelboim, C., Quantization of Gauge Systems, Princeton University Press, 1992.
12. Holm, D., Geometric Mechanics (I,II), World Scientific, 2008.
13. José, J. and Saletan, E., Classical Dynamics, Cambridge University Press, 1998.
14. de León, M. and Rodrigues, P., Methods of Differential Geometry in Analytical Mechanics, North-Holland, 1989.
15. Libermann, P. and Marle, C-M., Symplectic Geometry and Analytical Mechanics, Reide1, 1987.
16. Marmo, G., et al., Dynamical Systems, Wiley, 1985.
17. Marsden, J. and Ratiu, T., Introduction to Mechanics and Symmetry, SpringerVerlag, 1999.
18. Marsden, J., et al., Hamiltonian Reduction by Stages, Springer-Verlag, 2007.
19. Neimark, J. and Fufaev, N., Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, AMS, 1972.
20. Oliva, W., Geometric Mechanics, Springer-Verlag, 2002.
21. Olver, P., Applications of Lie Groups to Differential Equations, SpringerVerlag, 2000.
22. Pars, L., A Treatise on Analytical Dynamics, Wiley, 1965.
23. Rosenberg, R., Analytical Dynamics, Plenum Press, 1977.
24. Udwadia, F. and Kalaba, R., Analytical Dynamics, Cambridge University Press, 1996.
25. Wells, D., Theory and Problems of Lagrangian Dynamics, Schaum Publishing Co., 1967.

[^0]: * * *

 ACKNOWLEDGEMENT Many thanks to Judith Clare Salzer for typing the manuscript with great competence and dispatch.

