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§1. Introduction 

This is the ninth in a projected series of papers in which we plan to come to grips with 

the Selberg trace formula, the ultimate objective being a reasonably explicit expression. 

In our last publication [2-(h)], we isolated the contribution to the trace arising from the 

continuous spectrum, call it 

Con-Sp(a:r). 

Here, we shall initiate the study of the contribution to the trace arising from the conjugacy 

classes, call it 

Con- Cl(o:: r). 

Thus, in the usual notation, one has 

tr(L~jr(o:)) =Con- Cl(o:: r) +Con- Sp(o:: r). 

And, thanks to Theorem 4.3 of [2-(h)], there is a formula for 

Con- Sp(o:: r) 

involving familiar ingredients, namely c-functions, exponentials, and Ind-functions. As for 

Con-Cl(a:r), 

it will tum out that 

eon- Cl(o: = r) = L L eon- Cl(o: = rc,co), 
Co C!:::Co 

reflecting the partition 

r =LI LI rc,Co 
Co C!:::Co 

explained in §2. The objective then is to find a formula for 

Con- Cl(o:: rc,co) 

involving familiar ingredients, namely orbital integrals (weighted or not) and their variants. 

[Note: Strictly speaking (and in complete analogy with the conclusions of [2-(h)]), the 

formula will also contain a parameter H from the truncation space that, however, we shall 

ignore for the purposes of this Introduction.] 
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The simplest case is when c = Co' r Co ,Co being what we like to think of as the Co-regular 

elements of r. Each such element is necessarily semisimple and the identity component of 

its centralizer is contained in the r-Levi subgroup minimal with respect to "E", although 

this need not be true of the full centralizer, a complicating circumstance. The situation is 

therefore similar to that considered by Arthur [1-(b }, §8), although a little more general 

due to the last mentioned point. The basis for our analysis will be the machinery set down 

in [ 2-( f}], applied to the case at hand. Its consistent use serves to smooth out most of the 

technical wrinkles, permitting the exposition to proceed in a systematic fashion. 

We begin in §2 with a classification of the elements of r, introducing in particular 

the rc,Co· This material generalizes the rank-1 considerations of (2-(a), §5]. In §3, the fine 

structure of r Co,Co is examined. §4 is a brief exposition of the "big picture" and may be 

regarded as a supplement to this Introduction. The study of 

is taken up in §5, the main result being Theorem 5.4, which then, in §6, is recast inductively 

as Theorem 6.3. 

Finally, in what follows, the abbreviation TES will refer to our monograph, 

The Theory of Eisenstein Systems, Academic Press, N.Y., 1981. 
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§2. Classification of the Elements of r 

The purpose of this § is to devise a delineation of the elements of r suitable for the 

calculations which are to follow (here and elsewhere). 

Given / Er, let us agree to write {1}a (respectively {1}r) for its G-conjugacy class 

(respectively r-conjugacy class), G"Y (respectively r "Y) for its G-centralizer (respectively 

r-centralizer ). 

Put 

Zr = center of r. 

Proposition 2.1. Suppose that I E Zr-then / is semisimple. Furthermore, r "Y is a 

nonuniform lattice in G"Y. 

[To prove this, one need only repeat the discussion on p. 19 of [2-(a)], the assumption 

there that rank(r) = 1 being of no relevance at all.] 

An element r E r is said to be G-regular provided that r belongs to no proper 

r-cuspidal parabolic subgroup of G. Denote by r G the set of such-then r G is obvi

ously invariant under r -conjugacy. Calling [r a] some choice of representatives for the 

r-conjugacy classes in r G, form 

LI (G/r"Y) x {1} 
"YE[ra] 

and let cp be the canonical map from this set to G, viz. 

Proposition 2.2. cp is a proper map. 

We shall need a preliminary result. 

Lemma 2.3. Let P be a r -percuspidal parabolic subgroup of G with split component A. 

Suppose that 

are sequences such that 

a!~ -oo(,\ E Ei(g, a)) 
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and 

an1na;;1 stays bounded. 

Then eventually 

In E PF, F = L;~(g, a) - {A}. 

Proof. Let T/ E r n NF-then 

and so 

or still 

Thanks to the lemma on p. 4 7 of TES, 

. eventually. Consequently, upon taking generators for r n NF' 

eventually. This implies that for all sufficiently large n, 

Ad( ln)n F C n, 

from which, passing to orthocomplements, 

Ad( ln)P F ::> p, 

i.e., 

Therefore, Vn > > 0, 

as desired. 

Proof of Proposition 2.2. Let Ca be a compact subset of G-then we must show that 

~-I (Ca) is a compact subset of 

LI (G/r,) x {1}. 
;e[ra] 
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For this purpose, let 

be a sequence in ~-1 (Ca). Since G can be covered by finitely many 6 • r, 6 a Siegel 

domain relative to a r-percuspidal P, there is no loss of generality in supposing to begin 

with that Xn E s. r Vn. That being, write as usual 

Because 

stays bounded, the same holds for 

But 

VF # ~~(g, a) 

and so, on the basis of the foregoing lemma, an must stay bounded too. Therefore, after 

passing to a subsequence if necessary, we may assume that kn, an, and Sn are all convergent, 

along with Xnlnx;; 1 • Accordingly, bn!n6;;1 is convergent, hence is eventually constant. 

Thus, by definition of [ra], Vn >> 0, In = 1 and 6nr -r = 6r, implying that limxnr -r 

exists. This establishes the compactness in 

LI (G/r-r) x {1} 
-re[rG] 

of ~-1 (Ca). 

The following points are immediate corollaries. 

(1) V1Era,1 is semisimple and r -r is a uniform lattice in G-r. 

(2) V compactum Ca C G, 

# ( {I E (r a] : {I} a n Ca =F 0}) < +oo. 

(3) V compactum Ca c G and V1 Era, 

{ x E G : x1x-1 E Ca} 

is compact mod G-y. 
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(4) \11 Era, 

Observe that nor-central element can belong to ra. Indeed, if 1 E Zr, then r 1 is a 

nonuniform lattice in G-y, whereas if 1 Era, then r -r is a uniform lattice in G1 . 

Suppose now that Pis a r-cuspidal parabolic subgroup of G-then an element 1 Er 

is said to be P-regular if 1 E P but 1 '/:. P' for all P' -< P. Denote by r p the set of 

such-then 

although, of course, there is overlap in the union on the right. 

Proposition 2.4. If 

then P1 and P2 are associate. 

Admitting this momentarily, given an association class C, put 

Since 

,r P,-1 = r iP-r-1, 

it is clear that re is invariant under r-conjugacy and, by the above, 

C' i= C":::} re, n re,, = 0, 

so 

Needless to say, 

In general, if P is a r-cuspidal parabolic subgroup of G with uni potent radical N, 

then a Levi subgroup L of P is a closed reductive subgroup with the property that the 

multiplication L x N -+ P is an isomorphism of analytic manifolds (cf. TES, p. 31 ). To 

reflect r-cuspidality, it will be best to specialize this notion, using the 

2-4 



formalism in TES (pp. 40-41 ), putting for 1 ~ i ~ r 

and 

ar = G#/II Gj 
j¢i 

rr = r# • II Gj I II Gj 
j¢i j¢i 

xr = (xZ. Gc,ss). II Gj (x E G). 
j¢i 

By a r-Levi subgroup L of P we shall then understand a Levi subgroup L of P such that 

(i) When i ~ ri,Lr = ar. 
(ii) When ri < i ~ r2, Lr is a Levi subgroup of pi# (per rr). 

(iii) When r 2 < i ~ r, Ad(Lr) is a Q-Levi subgroup of Ad(Pi#) (per Ad(rr)). 

Generically, let 

I= lslu 

be the Jordan decomposition of I· Note that 

Moreover, if Lis a I'-Levi subgroup of P, then 

Lemma 2.5. Suppose that I E r p-then there exists a I'-Levi subgroup L = M • A of 

P such that Is EM. In addition, Pis minimal with respect to "Is E P". 

Proof. In view of the reductions outlined above, we can deal with each possibility sepa

rately, mentally making the necessary changes in the notation. Start off with any M and 

let { 8} = Mn IN-then 8 E r M and we claim that 8 is M-regular, hence semisimple. For 

otherwise, 

8 E 'P => 8N C P' => I E P', 

an impossibility. Let 

n(8) = Im(Ad(8) - 1) 

and use the surjection 

·{n(8)xN6-+N 
</> • (X, n) -+ 8-1 exp(X)( 8n) exp(-X) 
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to write 

'Y = S¢(X, n) = exp(X)(Sn) exp(-X). 

Since Sand n commute, 

'Y = [exp(X)S exp(-X)] • [exp(X)n exp(-X)] 

is the Jordan decomposition of 'Y· In particular, 

'Ys E exp(X)M exp(-X), 

leading to the first assertion. As for the second, if the contrary were true, then the M

regulari ty of 'Ys would be violated. 

In passing, observe that Lis actually minimal with respect to "rs E L". 

Proof of Proposition 2.4. Let 

To prove that P 1 and P2 are associate, we need only produce an L = M • A with 'Ys E M 

that is simultaneously a r-Levi subgroup for both Pi and P2 • To this end, we shall proceed 

on a case-by-case basis. If i ~ ri, then there is nothing to prove. If r 1 < i ~ r2, then 

either P1 = P2 or P 1 f=. P2 and in the latter situation 

P1 n P2 = L = M • A => , E M => , = rs. 

Finally, if r 2 < i ~ r, then L is minimal with respect of "rs E L" iff A is maximal with 

respect to A C G~s, meaning that A is a maximal Q-split torus in G~s. Any two such are 

conjugate. Because 

are minimal Q-parabolic subgroups, they share a split component and we can take for L 
its G-centralizer. 

Having decomposed r as a disjoint union 

the next step will be to fix a Co and decompose r Co still further in terms of the c !::::: Co. 

2-6 



Lemma 2.6. Let L = M •A bear-Levi subgroup of P. Suppose that 

IE P and /s EM. 

Then the following conditions are equivalent: 

(i) Ni= {1}; 

(ii) Ni.= {1}; 

(iii) Pis c L 

(iv) G~. c L. 

[The verification is straightforward, hence can be omitted.] 

Remark. As can be seen by example, one cannot improve (iv) to read Gia C L. For 

instance, take 

G = PSL2(C), r = PSL2 ( Z[vCTJ) 

and consider 

( o ±R) 1 = =i=R o · 

Proposition 2.7. If P1 and P2 are minimal with respect to "! E P and Ni= {1}", then 

P1 and P2 are associate. 

Proof. Once again, we shall examine cases. If i ~ r 1 , then there is nothing to prove. If 

ri < i ~ r2, then either / and G~s are contained in a proper r-cuspidal or they are not. 

Finally, if r 2 < i ~ r, then /s lies in Lq and 

Denote by H the reductive algebraic Q-group- generated by Is and G~.-then H C Gia 

and £ 1 and £ 2 are minimal with respect to "H C L", thus are the centralizers of maximal 

Q-split tori in Ca(H)0 (which is reductive), so are conjugate. 

Fix an association class C0 • Given a C !:::: C0 , call 

the set of / E r c0 for which there exists a P E C minimal with respect to "! E P and 

Ni= {1}". On the basis of the proposition supra, 
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hence 

In particular, 

rco = LI rc,Co· 
Ct Co 

C0 the association class made up of the r-percuspidals. 

Heuristically, 

rco,Co 

are the C0-regular elements of r (cf. [2-(a)] when rank (r) = 1). 

Remark. Because 

{ 

')'r C,C0 1'-l = rc,C0 ( 1' E r) 

1' E rc,c0 n P ~ 1' • (r n N) C rc,c0 , 

the partition 

satisfies the general assumptions laid down on pp. 1376-1377 of [2-(f)]. The associated 

r-compatible families are therefore estimable (cf. [2-( f), p. 1413]). 
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§3. The Structure of rc0 ,c0 

The purpose of this § is to look more closely at the structure of r Co ,Co, the results 

obtained being essential preparation for the analysis carried out in §5 infra. 

We shall begin with a series of simple observations. 

Put .6. = rco,Co and decompose .6. into r-conjug~y classes .6.i: 

Fix an index i, say i = 0, and fix a ;o E .6.o. 

Let Po be an element of Co minimal with respect to ";o E P and N-y0 = {1}". Choose, 

as is possible (cf. Lemma 2.5), a r-Levi subgroup Lo of Po such that ss(;o) E Lo- then the 

centralizer of ss( ; 0 ) in N 0 is necessarily trivial (cf. Lemma 2.6), thus actually ;o = ss( ;o) 

and so ;o is semisimple. 

Accordingly, Lo is minimal with respect to ";0 E L" and is in fact the only r-Levi 

subgroup with this property. To see this, examine cases, the nontrivial one being the 

algebraic situation. But, from the proof of Proposition 2.4, Lo is minimal with respect to 

";0 E L" iff L0 is the G-centralizer of a maximal Q-split torus in G~0 , itself unique as 

G~0 C Lo (cf. Lemma 2.6), from which the uniqueness of Lo. Of course, there is exactly 

one splitting Lo= Mo• Ao with ;o E Mo. 

Denote by 

Po( Lo) 

the set of parabolics having Lo for a Levi factor-then all such are r -cuspidal. To see this, 

again examine cases, the nontrivial one being the rank-1 situation, covered, fortunately, 

by Lemma 9.3 in [2-(a)]. Obviously, therefore, 

If now by 

we understand 

then it is clear that 

Po(Lo) ={Po E Co : ;o E Po}. 

P(Lo) 

{PECr:;oEP}, 

P(Lo) = {PE Cr: P ~ Po(3Po E Po(Lo)) }· 
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Evidently, 

VP E P{Lo): r -ro n P = r -ro n L, 

L :::>Lo a r-Levi subgroup of P. 
Given 

let 

Then 

{
PE P{Lo) 

Q E Cr, 

D..o(P)q = {rror- 1 
: r Pr-1 = Q}. 

D..o(P)q =/; 0 

iff P and Qare r-conjugate. Moreover, 

D..o(P)p 

is the r n P-conjugacy class of {O· 

Lemma 3.1. Vr Er, 

D..o(P)-rQ-r-1 = rilo(P)q(- 1
• 

[The verification is immediate.] 

Let Q be an element of Cr with the property that 

Let E be the set of all P E P( Lo) that are r-conjugate to Q-then we claim that E is a 

r-conjugacy class in P( Lo). To check that this is the case, we need only convince ourselves 

that a r-conjugate of Q is in P(L 0 ). But, for some r Er, 

rror-1 E D..o n Q 

=> ro E r- 1Qr => ,-1Q1 E P(Lo), 

as desired. Consequently, 

On the other hand, from the defintions, 

VP EE, D..o(P)q C D..o n Q. 
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Therefore 

~on Q = UPeE~o(P)q. 

To render this union disjoint, let E( ; 0 ) stand for a set of representatives from E per 

r 'YO -Conjugacy-then the lemma infra implies that 

~on Q = LI ~o(P)q. 
PEE(-yo) 

Lemma 3.2. Suppose that 

are r-conjugate to a Q E Cr-then the following are equivalent: 

(i) ~o(P1 )Q = ~o(P2)q; 
(ii) ~o(P1)Q n ~o(P2)Q f:. 0; 

(iii) P1 and P2 are r 'Yo -conjugate. 

[The verification is immediate.] 

Up until this point, we have worked with a fixed ; 0 • For the remainder of this §, it 

will be necessary to work with a variable ; , the corresponding notational changes being 

Mo• Ao= Lo-+ Lo(;)= Mo(;)• Ao(;) 

to signify dependence on ; . 

{
'Po( Lo)-+ 'Po (Lo(;)) Po(;) 

'P(Lo)-+ 'P(Lo(;)) P(;) 

Proposition 3.3. Let C be a compact subset of G-then 

#( { {1}r: 1 E rc0 ,c0 · & {1'}G n C =/; 0}) <+ex>. 

[Note: When rank (r) = 1, this is Proposition 5.15 in [2-(a)].] 

To get at this, some preparation will be required. We can certainly assume that 

K • C • K = C. Given now a PE Cr, put 

Gp= c. N n M("-' (C n S). N/N), 
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a compact subset of M. 

Lemma 3.4. Let/ E rc0 ,c0 • Suppose that Po(!) E 'Po(Lo(T))-then the following are 

equivalent: 
(i) {1}anC:f=0; 

(ii) {I} Moh) n C Poh) :/= 0. 

[Note: To avoid any possibility of confusion, the relevant Langlands decomposition of 

Po{!) is Mo(!)• Ao{!)• No{!), where/ E Mo{/).] 
Proof. {i) =>{ii). By hypothesis, there exists an x E G such that x7x-1 EC. Per Po(!), 

write, as usual, x = kmna. Because a7a-1 = /, we have 

=> mn1n-1m-1 EK• C • K = C 

=> m1m-1 • m{7-1n1n-1)m-1 EC 

=> m1m-1 EC• No(!) 

=> {1 }Moh) n CPoh) =I= 0. 

(ii) => {i). By hypothesis, there exists an m E Mo{!) such that m1m-1 E CPoh)· 

Accordingly, m1m -l = en. Since 

there exists an no E No ( /) such that 

Remark. The second criterion of the lemma does not depend on the choice of Po(!) E 

'Po(Lo(1)). Moreover, the use of Mo(I) is not crucial: One can move to the ambient special 

"M" provided/ is replaced by 6, {6} = "M" n 1No(1). 

Passing to the proof of the proposition, let us proceed by contradiction and assume 

that the cardinality in question is infinite. There will then be infinitely many { / }r{T E 

rc0 ,c0 ) having a member in some fixed P0 (T) = P (for short), this because there are but 

finitely many Piµ- Working with the special "M", as always from I E r we determine 

6 E r M via { 6} = M n / N, the r-conjugacy class of / filling out the r M-conjugacy class 
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of 8. And, in the case at hand, o is M-regular. The number of M-conjugacy classes of 

M-regular elements that can meet Gp is finite (cf. §2). So, there are infinitely many 

{' }r (I E r Co ,Co) producing a fixed 0' the corresponding set of ' being precisely r n 0 N. 

However, we claim that r n o N is the union of 

jdet (Ad (o)ln - 1)1 

r n N -conjugacy classes. Granted this, we have our ·contradiction. 

The plan will be to appeal to a generality from [2-(a)], namely: 

Proposition. Let N be a connected, simply connected nilpotent Lie group; let r be a 

lattice in N. Suppose that</>: N--+- N is an automorphism of N carrying r into itself with 

det ( d</> - 1) ;if 0. Put 

.6. = {n EN: </>(n)n-1 Er}. 

Then .6. is a ( fi.ni te) union of ldet ( d</> - 1) I right cosets of r. 

[For the details, the reader is referred to pp. 24-25 of [2-(a)]. The argument, as given 

there, is marginally incomplete, so we shall take this opportunity to set things straight. 

The difficulty is that in general the Leray-Serre spectral sequence uses local coefficients 

when the base space is not simply connected, a point that we had overlooked at the time. 

But here the local coefficients of H. of the fiber are global. Thus, take a path in Z • r\N 

and lift it to a path joining 1 and z1-then we must show that multiplication by Z( on 

(Znr)\Z'"" r\Z•r 

is the identity map on 

H. ((Zn r)\Z). 

Because Z is the center of N, multiplication by I is the identity and, as Z is arcwise 

connected, multiplication by z is homotopic to- the identity.] 

We come now to the claim. Simply fix a 1 Er n oN and, in the notation employed 

above, let 
A.. -1 
""' n--+- I n1. 

Conclude by observing that 

with 

det (Ad (o)ln -1) = det (Ad ("Y)ln -1) 

= det (Ad (1)ln) • det (1-Ad ("Y-1)ln), 

ldet (Ad ( 1)ln )I = 1. 
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§4. Rappel 

The purpose of this § is to recall the main result of [2-(h)], which will then enable us 

to put into perspective the central theme of the present paper. 

Thus, let a be a K-central, K-finite element of C~( G)-then, subject to the assump

tions and conventions of [2-(g), §9], 

L~ir(a) 

is of the trace class, its trace being equal to 

K(H: a: r) 

less 

Fnc(H : Ho : a : r), 

where (cf. Theorem 4.3 of [2-(h)]) 

Fnc(H : Ho : a : r) 

is equal to 

1 
x~~~~~~~~~~-

ldet((l - wJ
0
)IIm (1 - w]

0
))I 

l_ 

xc(P;0 IA;0 :Pi 0 IAi0 :'w;0 i0 :A~0 ) 

xc(Pio IAi 0 : Pio IAi 0 : w]
0 

: 0) • lndg
0 
((Oi0 , A~0 ))(a)))ldA~0 I· 

Upon setting Ho =Hin 

Fnc(H : Ho : a : r) 
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we get a polynomial in H, 

Con - Sp (H : a : r), 

that represents the contribution to the trace arising from the continuous spectrum (cf. 

[2-(h), §5]). 

It remains to analyze 

K(H: a: r). 

Referring to [2-( f), p. 1433] for its definition, break up r, 

r =LI LI rc,co, 
Co CtCo 

and write, as is permissible, 

K(H: a: r) = L L K(H: a: rc,co)· 
Co CtCo 

It will therefore be enough to analyze each of the 

separately. And the easiest of these to handle is the case when C = Co: 

the study of which will occupy us for the remainder of the paper. 
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§5. Analysis of K(B: t:r: rc0 ,c0 ) 

The purpose of this § is to determine the contribution to the trace furnished by 

As we shall see, the evaluation will ultimately be in terms of weighted orbital integrals (or 

just orbital integrals if C0 = { G} ). 

Put ~ = rc0 ,c0 (cf. §3) and, as in [2-(f), §5], form 

Then, by definition, 

tP = {Ka,a(P :?) : PE Cr}. 

K(H: a:~)= f Q(H: tP)(x)da(x). 
lair 

Thanks to what can be found in [2-(f), §7], 

f Q(H: tP)(x)da(x) 
lair 

is a polynomial in H. Next, as in [2-(f), §5], form 

We shall prove eventually that 

</> = {ka,a(P :?) : PE Cr}. 

f Q(H: </>)(x)da(x) 
lair 

is also a polynomial in H if H << 0. On the other hand, Theorem 5.3 in [2-(f)] implies 

that the difference 

f Q(H: tP)(x)da(x) - f Q(H: </>)(x)da(x) 
lair lair 

is o(H), hence vanishes. So, it will be enough to examine 

f Q(H: </> )(x )da(x ). 
lair 

To this end, keep to the notation of §3 and decompose~ into r-conjugacy classes ~i: 
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Form anew 

Then 

</>i = { ka,a, (P :?) : P E Cr}. 

ka,a = L ka,ai, 
i 

a locally finite sum, and, on the basis of Proposition .5.2 in [2-(f)], 

f Q(H: </>)(x)da(x) = L f Q(H: </>i)(x)da(x), 
la;r i la;r 

thereby r~ducing our study to that of 

i = 0 being the fixed index. 

f Q(H : </>o )( x )da( x ), 
la;r 

An additional reduction is possible provided that we take into account the machinery 

from §3. Indeed, by definition, at any particular Q E Cr, 

ka,a 0 (Q: x) = L a(x-yx-1 
). 

"YEaonQ 

But (cf. §3), 

L\o n Q = LI L\o(P)Q· 
PEE(-yo) 

The cardinality of the r -y0 -equivalence class of P in P(Lo) is 

It therefore follows that 

ka,ao(Q: x) = L ( r . ; n P]. L a: (x-yx-1)) . 
PE'P(Lo) [ "Yo • -Yo "YEao(P)q 

In this connection, bear in mind that 

L\o(P)Q #- 0 

iff P and Q are r -conjugate, so we have not really overloaded the sum. Each summand 

determines a r-compatible family of functions on G (cf. Lemma 3.1), call it <P(P). The 

focal point of the analysis thus becomes 

[ L Q(H: <P(P))(x)da(x). 
la;r PE'P(Lo) 
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Individually, 

[ Q(H: ~(P))(x)da(x) 
la;r 

may well diverge. To deal with this difficulty, we shall need a lemma. 

Lemma 5.1. Let f be a bounded, compactly supported, measurable function on G/r-
then 

is equal to 

f Q(H: ~(P))(x)f(x)da(x) 
la;r 

(-lYank(P) 1 
----- • a(x1ox-1 )f(x) 
[r "Yo : r "Yo n Lo] G /r "'fO nLo 

XXP,A:<D (H(P) - HPIA(x ))da(x ). 

[Note: Here, the split component A of P is per 

(P, S; A) t (Po, So; Ao) (Po E Po(Lo)), 

where Lo= Mo• Ao with 10 E M0 (cf. §3).] 

Proof. In fact, 

f Q(H: ~(P))(x)f(x)da(x) 
la;r 

(-lyank(P) 1 
= [r · r n P] • L L 

"Yo • "Yo G/r fJer /rnP "YEAo(P)p 

xa(x616-1 x)f(x)xP,A:'D (H(P) - HPIA(x1))da(x) 

(-lyank(P) 1-·· 
= • L [r "Yo : r "Yo n P] G/rnP 

"YEao(P)p 

xa(x1x-1 )f(x)xP,A:9 (H(P) - HPIA(x))da(x) 

(-lyank(P) 1 
- . """ -[r ·r nP] ~ 

"Yo · "Yo G /rnP "YErnP /r ..,
0 
nP 

xa(x1101-1 x-1 )f(x)xP,A:'9(H(P) - HPIA(x))da(x) 

(-lYank(P) 1 -1 

=[r ·r nP]• a(x1ox )J(x) 
"Yo • "Yo G/r..,0 nP 

XXP,A:9(H(P) - HPIA(x))da(x) 
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(-lyank(P) 1 
= • a(x1ox-1 )f(x) 

[r ;o : r ;o n Lo] G/r..,onLo 

XXP,A:~(H(P) - HPIA(x))da(x), 

as desired. 

If H << 0, then 

Q(H: <Po) 

has bounded support (cf. Proposition 5.2 in [2-(f)]), so, if f = 1 on a large enough set, 

then 

is equal to 

or still 

f Q(H: <Po)(x)da(x) 
la;r 

---
1
--....,. • [ a(x1ox-1 )f(x) 

[r ;o : r ;o n Lo] la;r..,onLo 

X ( L (-lyank(P)XP,A: <9(H(P) - HPIA(x))) da(x) 
PE'P(Lo) 

1 
• f a(x1ox-1 )f. f(xeH) 

[r ;o : r ;on Lo] la/Ao•(r..,onLo) Go 

x ( L (-lYank(P)XP,A: 9(H(P) -HPIA(x)- H)) dHda(x). 
PE'P(Lo) 

We shall see in a bit how the "!" can be eliminated. Anticipating this, let us consider in 

more detail 

J. ( L (-l)'ank(P)XP,A:9(H(P) - HPIA(x) - H))dH. 
Go PE'P(Lo) 

As might be expected, the issue is primarily combinatorial in character. That being 

the case, our basic tools will be drawn from the repository in [2-(b ), §2] and [2-( d), §3], 

the notation of which will be employed below without further comment. 

It is well-known and familiar that there is a one-to-one correspondence between 

(i) {PE P(Lo)}; 

(ii) {a,Ca}; 

(iii) {W,Cw}. 
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The following lemma gives yet another parameterization. Put <P = ~(g, ao). 

Lemma 5.2. Fix a chamber Co in a0-then the set of all pairs (W, Cw) is in a one-to-one 

correspondence with the set of all pairs (C0 , F0 ), where 

and 

{ 
W = ao(Fo) 
(C(Fo),Cw) ~Co. 

Proof. It suffices to show that for each W there exists a unique C(W) such that Fo(C(W)) C 

cp+ (Co). But the projection of Co onto W is a connected open set on which an element of 

<P(W) is either positive or negative, hence is contained in a unique chamber C(W). And 

C(W) will do. If ?(W) is another chamber, some member of F0 (?(W)) must be negative 

on C(W), thus negative on the projection of Co and so negative on Co. This means that 

C(W) is the only chamber that will do. 

In the terminology of Arthur, if H < < 0, then 

{H(Po) - HPolAo(x): Po E 'Po( Lo)} 

is a negative Ao-orthogonal set (cf. [1-(a), p. 221]). The elements Co of Co(Ao) are in a 

one-to-one correspondence with the elements Po of Po( Lo) (cf. TES, p. 66). Assuming 

that Co +-----+Po, put 

We can now get on with the manipulation. Thus 

L (-lYank(P)XP,A:G)(H(P) - HPIA(x)- H) 
PEP( Lo) 

= L Lc-1yank(P)x•,Fo(C.)(Tco(x: H) - H) 
a C1 

_ L (-l)io-dim(W)XFo(C(W)),Fo(Co)(Tco(x : H) _ H) 
W,Cw 

=L 
Co {F:FCFo(Co)ntt+(Co)} 

The sum over F can be cut down considerably. Indeed, if X is a variable, then 

XF,Fo(Co)(X) = { 
0
1 if ;\i(X) > 0 V Ai E Fo(Co) - F 

otherwise. 
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So, with 

Fo(X) = {Ai E Fo(Co) : .\i(X) ~ O}, 

L (-l)lo-#(F)XF,Fo(Co)(X) 

{F:FCFo(Co)nc)+(Co)} 

(-1 )lo-#(F) 

{F:Fo(X)CFCFo(Co)nc)+(Co)} 

= { (-l)'o-#(Fo(Co)nc)+(co)) if F 0 (X) = Fo(Co) n cp+(Co) 

0 otherwise 

or still 
L (-l)lo-#(F)XF,Fo(Co)(X) 

{F:FCFo(Co)nc)+(Co)} 

= ( -1 )lo-#(Fo(Co)nc)+(c0 )) 

xr•,Fo(C0 )(Fo(Co) - cp+(Co) : X). 

Inserting this then leads to 
L( -1 )#(Fo(Co)-c)+(co)) 

Co 

xr•,Fo(Co)(Fo(Co) - cp+(Co) : Tc0 (x : H) - H), 

the characteristic function of the convex hull of the Tc0 (x : H) (cf. [1-(a), pp. 218-219]). 

Integrating over a0 then gives its volume, call it 

Va0 (x : H). 

In summary, therefore, if we ignore the "!.'~, then 

is equal to 

And: 

Lemma 5.3. The integral 

{ Q(H: </>o)(x)da(x) 
la;r 
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is compactly supported. 

Proof. The centralizer of ; 0 in Mo is the same as the centralizer of ;o in So. Moreover, 

;o is Mo-regular, thus the quotient 

(Mo) 10 /r 10 n Mo 

is compact (cf. §2 : r n Mo has finite index in r Mo). So, 

= vol((Mo),o/r IO n Mo) 

x f a(s;os-1 )va0 (s : H)ds(s ). 
} So/(So)...,0 

It remains only to note that the So-orbit of ;o is the Mo-orbit of ;o times No, which is 

closed. 

Consequently, the "f" can in fact be dispensed with. 

Remark. One would like to say that 

is a weighted orbital integral. This is certainly the case if G10 is contained in Lo. But, 

as we have already noted in §2, this need not be true in general although G~0 is always 

contained in Lo (cf. Lemma 2.6). On the other hand, it is not difficult to see that 

is at least compact, thus 
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the density 

Aver 'Yo ( v a0 ( X : H)) 

= { Va0 (xy: H)da..,
0 
(y) 

J G..,0 /Ao•(r -ro nLo) 

being an averaged volume element. 

Having evaluated 

[ Q(H: </>o)(x)da(x) 
la;r 

in closed form, the next step in the analysis is to prove that it is a polynomial in H if 

H<<O. 

For this purpose, recall that from the 

{

-HpolAo(x) 
(Po E Po(Lo)) 

H(Po) - HPolAo(x) 

one can manufacture Detroit families 

by exponentiation (cf. [2-( d), p. 163]). Put 

{ 

Va0 (x) = (-l)l0 Ille-H?(z)(0) 

Va0 (x : H) = (-l)l0 IlleH(?)-H?(x)(O) 

a permissible agreement. Owing now to Corolla_!y 3.2 in [2-(h)], we have 

Va0 (x : H) = (-l)l0
IlleH(?)-H?(x/O) 

= (-l)lo L IIIe-H?(z)(Cw)(O) • AeH,cw(O) 
W,Cw 

L va~(mx) • p(r: P: H(P)), 
PE"P(Lo) 

where vat is the daggered analogue of Va0 and p(r : P :?) is an Arthur polynomial (cf. 
0 

[2-( f), p. 1429]). Accordingly, 
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is the sum over the P E 'P( Lo) of the 

times 

And so 

1 a:(x1ox-1 )vat (mx)da(x) 
G/Ao•(r...,0 nLo) 0 

p(r: P: H(P)). 

1 Q(H: </>o)(x)da(x) 
G/r 

is in fact a polynomial in H if H < < 0. 

While we are at it, let us also observe that 

= [ 1 
] • [ [ a(nm-yom-1n-1 )v

0
t(m)dM(m)dN(n) 

ri'o:ri'onLo jNjM/A~(r...,0 nL0 ) 0 

1 1 
= ·-------[r i'o : r i'o n M] ldet(Ad( /o)ln - 1)1 

x { a:P(m1om-1 )vat(m)dM(m), 
J M/A~•(r...,0 nM) o 

the last integral being the M -analogue of the integral 

on G. 

Remark. When a0 is special, one can interpret Va0 ( x) geometrically in that it then gives 

the volume of the convex hull of the { -H p 0 IAo ( x)} but this will not be true in general. 

Our initial objective can now be realized. Because the support of a: is compact, 

Proposition 3.3 guarantees us that only finitely many 

actually intervene, so all H < < 0 will work for each of them simultaneously. Hence: 
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Theorem 5 .4. K(H : a : r Co ,Co) is equal to 

x [ a(x1x-1 )va_o('Y)(x: H)da(x) 
JG/Ao( "t)•(r ...,nLo( "t)) 

or still 

xp(I': P: H(P)) 

x [ aP(m1m-1 )vat(-y)(m)dM(m). 
JM/A~(-y)•(r...,nM) 0 

[Note: For the sake of brevity, we have written P = M • A • N in place of P( I) = 

M( 1) •A( 1) • N(F).] 
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§6. Passage to Standard Form 

The purpose of this § is to recast the expression obtained in Theorem 5.4 for 

so as to reflect the presence of the Piµ = Miµ • Aiµ • Niµ with Aiµ special (cf. [2-(a), 

pp. 65-70]), the point being that these are the parabolics of reference. The issue is therefore 

primarily one of bookkeeping, albeit a little on the involved side. 

We can evidently write 

in the form 

xp(r: P: H(P)) 

x { a( x1x-1 )v a~(-y) ( x )da( x ), 
la/Ao( "Y)•(r ..,nMo("Y)) 

the effect of which is to base part of the data at the Lo( 'Y )-level. Now introduce a parameter 

Ho E a-then still another way to write 

IS 
1 

E E [r · r n M ( )] 
b}r:"YErc

0
,c

0 
PE'P(Lo("Y)) "Y · "Y O 'Y 

xp(r: p: H(P) - Ho(P)) 

x f a(x1x-1 )vat("Y)(x: lM(Ho))da(x). 
Ja/Aoh)•(r..,nMoh)) 0 

As we shall see, the rationale here is that the introduction of Ho allows certain transitions 

to take place without the need for the introduction of compensating factors. 

Consider an arbitrary PE P(L0('Y)). Choose 1(i: µ) Er such that 

1(i: µ)P1(i: µ)-1 =Piµ 

and let 

'Yiµ = 1(i: µ)T1(i: µ)-1
. 
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Obviously, 

but there is no reason to expect that 

L( riµ) = M( riµ) •A( riµ) 

is the special Liµ = Miµ • Aiµ. 
It is clear that 

p(r : p : H(P) - Ho(P)) 

= p(r : Piµ : H(Piµ) - Ho( Piµ)). 

Additionally, one can verify that 

= 1 o:(xriµx- 1 )v 0~hi")(x: IMhi")(Ho))da(x). 
GI Ao( "Yiµ )•(r -Yiµ nMo( "Yiµ)) 

These are the two crucial relations which allow passage from 'Y to 'Yiµ· They would fail to 

hold if it were not for the presence of Ho. 
Accordingly, integrating out Niµ, 

becomes 

1 
x~~~~~~~~ 

jdet(Ad(riµ)lniµ -1)1 

xp(r: Piµ: H(Piµ) - Ho( Piµ)) 

x f 
1 

ap'• (rri7;,.m-1 )v«t(-r,,)(m : lM(·r;,)(Ho))dM(-y,,)(m). 
JM( "Yiµ)/ A 0 ( "Yiµ )•(r -Yiµ nMo( "Yiµ)) 

Next, determine niµ E Niµ so that 

Passing now from 'Yiµ to 
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and agreeing to write 

instead of niµMo( liµ)ni
1
} 

instead of niµAo( liµ)ni
1
}, 

the foregoing then reads 

by 

L L 
h}r:-yerc0 ,c0 PEP(Lo("Y)) 

[(r Mi,JDiµ n Mo( biµ) : niµr "Yiµ n-;,} n Mo( hiµ)] 

[niµr "Yi" n-;1} : niµr "Yi" n-;1} n Mo( 6i" )] 

1 
x~~~~~~~~-

ldet(Ad( liµ)lniµ - 1)1 

xp(r: Piµ : H(Piµ) - Ho(Piµ)) 

x { 
1 

aP;•(m6;,.m-1 )v
0
l(6;,)(m: IM;,(Ho))dM;,(m). 

J Mi" I A 0 ( Di" )•((r Mi" )6i" nMo(c5i")) 

To get an inductive object out of this expression, it will be necessary to replace 

L L 
h}r:-yerc 0 ,c0 PEP(Lo("Y)) 

As a preliminary, we remark that our notation is slightly deceptive in that biµ really 

depends on 1. However, a choice of 

singles out uniquely 

{ 
1 E rco,Co 
PE P(Lo(1)) 

This said, recall that via the daggering procedure Co will induce a disjoint union 

cJ =LI cJ(i: µ). 

Of course, 

{6iµ}rMi" E (rMi")cJ,cJ = LJ(rMi")cJ(i:µ),cJ(i:µ)· 

And, the ambient r Miµ -Levi subgroup of the ambient r Miµ -cuspidal parabolic in p J (Lo (hiµ)) 

is A~( hiµ)• Mo( hiµ)· 
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Consequently, 

reduces to 

xp(r : Piµ : H(Piµ) - Ho(Piµ)) 

x { t ap'• (m.5;,.m-1 )v0~(6,,)(m: IM,, (Ho ))dM,, (m). 
1 Miµ/Ao(Oiµ)•((rM· )6· nMo(Oiµ)) 

'" '" 
Here, the constant 

is, by definition, the sum 

L [(rM,, k. n Mo(6;,.) : n;,.r "Yiµ n;,,1nMo(6;,.)] 

[niµr '"Yiµ n~1 
: niµr '"Yiµ n~1 n Mo( biµ)] 

1 
x~~~--~~~~ 

ldet(Ad( 1'iµ)jniµ - 1)1 

over all possible 

which give rise to a fixed 

The main technical claim is then: 

{ 
1' E rco,Co 
PE P(Lo( 1)) 

Lemma 6.1. C(Piµ, { biµ}rM· ) is equal to 
'" 

1 

Proof. The way to keep track of what's coming and going is to look at the nonempty 

The cardinality of the r ')'-conjugacy class of P in P( Lo ( 1')) is 
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or still 

Since 
[niµr "Yiµ. ni;} : niµr "Yiµ. ni"µ1 n Miµ] 

[niµr "Yiµ ni"µ1 
: niµr "Yiµ. ni"µ1 n Mo( 8iµ)] 

1 

= [niµr "Yiµ. ni"µ1 n Miµ : niµr "Yiµ. ni"µ1 n Mo( 8iµ)] ' 

C(Piµ, { 8;µ}rMiµ.) is equal to 

or still 

L [(r M;. k. n Mo( 8;,.) : n;,.r -i;. n;;.1 n Mo( 8;,.)] 

[niµr "Yiµ. ni"µ1 n M;µ : niµr "Yiµ. ni"µ1 n Mo( 8;µ)] 

1 
x~~~~~~~~ 

ldet(Ad{l;µ)lniµ - 1)1 

1 

[(rMiµ.)o,"' : (rMiµ)cSiµ n Mo(8;µ)] 

x Ll<r Miµ. )oiµ. : niµr "Yiµ. n;,} n Miµ] 

1 
x ldet(Ad( 8;µ)lniµ - 1)' 

the summation in either case extending over all nonempty 

It remains only to show that the second sum is one. For this, it will be enough to check 

that a given nonempty 

includes 

[(r Miµ )oiµ : n;,.S "Yiµ ni'µ1 n Miµ} 

r n Niµ-conjugacy classes, there being precisely 

of these. Since the problem is one of counting and therefore, in an obvious sense, is 

"conjugation invariant", we can assume without loss of generality that {iµ = 8;µ, then 

drop the i and the µ from the notation and finish by proving: 
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Lemma 6.2. The r n P-conjugacy class of 1 intersected with 1N n r includes 

r n N -conjugacy classes in 1 N n r. 

Proof. From the definitions, 

{1}rnP n (1N n r) = {11111-1 : 11 E (rM('Y))..,. • N n r}. 

And 

Conjugation by the latter gives a r n N-conjugacy class. Suppose that 

and suppose that 77117711 and 77217721 are r n N-conjugate, say 

Then 
-1 -1 -1 

1 = 771 n2 7721772 n2 771 

==*°771
1 

n2772 E r..,. 

==*-771 (r..,. n P) = n2772(r..,. n P) 

==*-771 (r..,. n P) • (r n N) = 772(r..,. n P) • (r n N). 

Because each such coset fills out a full rnN-conjugacy class, the number of rnN-conjugacy 

classes in question is 

The map 

has kernel r n N, so our number is 

or still 

(cp((rMh>)..,. • N n r): cp((r..,. n P) • (r n N))] 

[(rMh>)..,.: r..,. n M(T)], 
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as desired. 

Hence: 

Theorem 6.3. K(H: a: rc0 ,c0 ) is equal to 

xp(r: Piµ: H(Piµ) - Ho( Piµ)) 

x { 
1 

aP'" (m.5;,.m-1 )v.~(6,,)(m : IM,, (Ho ))dM,, (m). 
J Mi" /A0 (6iµ)•((r Mi" )6i" nMo(c5iµ)) 

Denote by 

Con - Cl(H: a: rc0 ,c0 ) 

the result of setting Ho = H in Theorem 6.3. Since 

p(r : Piµ : 0) = 0 

unless Piµ = G, 

can also be explicated by Theorem 5.4. It is then possible to go further but the discussion 

is combinatorially messy and unenlightening, thus will be omitted. 
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