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PREFACE 

This book is addressed to those readers who have been through Rotmant (or its 
equivalent), possess a wellthumbed copy of Spanier;, and have a good background in 

algebra and general topology. 

Granted these prerequisites, my intention is to provide at the core a state of the art 

treatment of the homotopical foundations of algebraic topology. The depth of coverage is 

substantial and I have made a point to include material which is ordinarily not included, 

for instance,-an account of algebraic K-theory in the sense of Waldhausen. There is also 

a systematic treatment of ANR theory (but, reluctantly, the connections with modern 

geometric topology have been omitted). However, truly advanced topics are not considered 

(e.g., equivariant stable homotopy theory, surgery, infinite dimensional topology, etale K

theory, ... ). Still, one should not get the impression that what remains is easy: There 

are numerous difficult technical results that have to be brought to heel. 

Instead of laying out a synopsis of each chapter, here is a sample of some of what is 

taken up. 

(1) Nilpotency and its role in homotopy theory. 

(2) Bousfield's theory of the localization of spaces and spectra. 

(3) Homotopy limits and colimits and their applications. 

(4) The James construction, symmetric products, and the Dold-Thom theorem. 

(5) Brown and Adams represent ability in the setting of triangulated categories. 

(6) Operads and the May-Thomason theorem on the uniqueness of infinite loop 
space machines. 

(7) The plus construction and theorems A and B of Quillen. 

(8) Hopkins' global picture of stable homotopy theory. 

(9) Model categories, cofibration categories, and Waldhausen categories. 

(10) The Dugundji extension theorem and its consequences. 

A book of this type is not meant to be read linearly. For example, a reader wishing 
to study stable homotopy theory could start by perusing §12 and §15 and then proceed 
to §16 and §17 or a reader who wants to learn the theory of dimension could immediately 
turn to §19 and §20. One could also base a second year course in algebraic topology on 
§3-§11. Many other combinations are possible. 

t An Introduction to Algebraic Topology, Springer Verlag (1988). 

:j: Algebraic Topology, Springer Verlag (1989). 



Structurally, each § has its own set of references (both books and articles). No attempt 

has been made to append remarks of a historical nature but for this, the reader can do no 

better than turn to Dieudonnet . Finally, numerous exercises and problems (in the form of 

"examples" and "facts") are scattered throughout the text, most with partial or complete 

solutions. 

t A History of Algebraic and Differential Topology 1900-1960, Birkhauser (1989); see also, Adams, 

Proc. Sympos. Pure Math. 22 (1971), 1-22 and Whitehead, Bull. Amer. Math. Soc. 8 (1983), 1-29. 



NOTATION 

(1) N, the positive integers; Z, the integers; Q, the rational numbers; P, the 

irrational numbers; R, the real numbers; C, the complex numbers; H, the quaternions; fi, 

. the prime numbers. 

(2) R" = R x ... x R (n factors); D" = {x E R" : IIxll < 1}; B" = {x E R" : 
IIxll < 1}; S,,-l = {x E R" : IIxll = 1}j T" = Sl X ... X Sl (n factors). 

(3) ~"= {x E R,,+l : EXi = 1 & \:I i,Xi ~ O}j 6" = {x E R"+l : EXi = 1 
i i 

& \:I i, Xi > O}; L1" = {x E R,,+l : EXi = 1 & 3 i, Xi = O}. 
i 

(4) w = first infinite ordinal; n = first uncountable ordinal. 

(5) cl = closure, fr = frontier, wt = weight, int = interior, osc = oscillation. 

(6) Given a set S, XS is the characteristic function of S and #(S) is the 

cardinality of S. 

(7) Given a topological space X, C(X) is the set of real valued continuous 

functions on X and BC(X) is the set of real valued bounded continuous functions on X. 

(8) Given a topological space X, Xoo is the one point compactification of X. 
/'" (9) Given a completely regular Hausdorff' space X, /3X is the Stone-Cech com-

- pactification of X. 

(10) Given a completely regular Hausdorff' space X, vX is the R-compactifi

cation of X. 
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§o. CATEGORIES AND FUNCTORS 

In addition to establishing notation and fixing terminology, background material from 

the theory relevant to the work as a whole is collected below and will be referred to as the 

need arises. 

Given a category C, denote by Ob C its class of objects and by Mor C its class of 

morphisms. H X, Y E Ob C is an ordered pair of objects, then Mor(X, Y) is the set of 

morphisms (or arrows) from X to Y. An element J E Mor(X, Y) is said to have domain 

X and codomain Y. One writes J : X -+ Y or X L Y. Functors preserve the arrows, while 

cofunctors reverse the arrows, i.e., a cofunctor is a functor on COP, the category opposite 

to C. 

Here is a list of frequently occurring categories. 

(1) SET, the category of sets, and SET., the category of pointed sets. H 

X, Y E ObSET, then Mor(X, Y) = F(X, Y), the functions from X to Y, and if (X,xo), 

(Y, Yo) E ObSET., then Mor «X, xo), (Y, yo)) = F(X, Xo; Y, Yo), the base point preserving 

functions from X to Y. 

(2) TOP, the category of topological spaces, and TOP., the category of pointed 

topological spaces. If X, Y E ObTOP, then Mor(X, Y) = C(X, Y), the continuous 

functions from X to Y, and if (X,xo), (Y,Yo) E ObTOP., then Mor«X,xo),(Y,yo)) = 

C(X, Xoj Y, Yo), the base point preserving continuous functions from X to Y. 

(3) SET2, the category of pairs of sets, and SET!, the category of pointed 

pairs of sets. If (X, A), (Y, B) E Ob SE~, then Mor «X, A), (Y, B)) = F(X, Aj Y, B), the 

functions from X to Y that take A to B, and if (X, A, Xo ), (Y, B, Yo) E Ob SET!, then 

Mor«X,A,xo),(Y,B,yo)) = F(X,A,xo;Y,B,yo), the base point preserving functions 

from X to Y that take A to B. 

( 4) TOP2, the category of pairs of topological spaces, and TOP!, the category of 

pointed pairs oftopological spaces. H(X, A), (Y, B) E ObTOP2, then Mor «X, A), (Y,B)) 

= C(X, Aj Y, B), the continuous functions from X to Y that take A to B, and if (X, A, xo), 

(Y,B,yo) E ObTOP~, then Mor«X,A,xo),(Y,B,yo)) = C(X,A,xo;Y,B,yo), the base 
point preserving continuous functions from X to Y that take A to B. 

(5) HTOP, the homotopy category of topological spaces, and HTOP., the ho

motopy ca.tegory of pointed topological spaces. H X, Y E ObHTOP, then Mor(X, Y) = 
[X,Y], the homotopy classes in C(X,Y), and if (X,xo),(Y,Yo) E ObHTOP., then 

Mor«X,xo),(Y,yo)) = [X,XOjY,yo], the homotopy classes in C(X,XOjY,yo). 

(6) HTOp2 , the homotopy category of pairs of topological spaces, and HTOP!, 

thehomotopyca.tegoryofpointed pairs of topological spaces. H(X, A), (Y, B)EOb HTOP2, 
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then Mor (X, A), (Y, B)) = [X, A; Y, B], the homotopy classes in C(X, A; Y, B), and if 

(X,A,xo), (Y,B,yo) E ObHTOP!, then Mor (X,A,xo),(Y,B,yo)) = [X,A,xo;Y,B,yo], 
the homotopy classes in C( X, A, Xo; Y, B, yo). 

(7) HAUS, the full subcategory of TOP whose objects are the Hausdorff spaces 

and CPTHAUS, the full subcategory of HAUS whose objects are the compact spaces. 

(8) nx, the fundamental groupoid of a topological space X. 

(9) GR, AB, RG (A-MOD or MOD-A), the category of groups, abelian 

groups, rings with unit (left or right A-modules, A E Ob RG). 

(10) 0, the category with no objects and no arrows. 1, the category with one 

object and one arrow. 2, the category with two objects and one arrow not the identity. 

A category is said to be discrete if all its morphisms are identities. Every class is the 

class of objects of a discrete category. 

[Note: A category is small if its cl~s of objects is a set; otherwise it is large. A 

category is finite (countable) if its class of morphisms is a finite (countable) set.] 

In this book, the foundation for category theory is the "one universe" approach taken by HerrIich

Strecker and Osborne (referenced at the end of the i). The key words are "set", "Class", and "conglomer

ate". Thus the issue is not only one of size but also of membership (every set is a class and every class is 

a conglomerate). Example: {Ob SET} is a conglomerate, not a class (the members of a class are sets). 

[Note: A functor F : C - D is a function from Mor C to Mor D that preserves identities and respects 

composition. In particular: F is a class, hence {F} is a conglomerate.] 

A metacategory is defined in the same way as a category except that the objects and the morphisms 

are allowed to be conglomerates and the requirement that the conglomerate of morphisms between two 

objects be a set is dropped. While there are exceptions, most categorical concepts have metacategorical 

analogs or interpretations. Example: The "category of categories" is a metacategory. 

[Note: Every category is a metacategory. On the other hand, it can happen that a metacategory 

is isomorphic to a category but is not itself a category. Still, the convention is to overlook this technical 

nicety and treat such a metacategory as a category.] 

Given categories A, B, C and functors {~~ ~ : ~ , the comma category IT,51 is 

the category whose objects are the triples (X, I, Y) : { -:. ~ g~: & I E Mor(TX,5Y) 

and whose morphisms (X, I, Y) -+ (X', I', Y') are the pairs (l/>, tP) : { ~ ~ ~:: ~~::'? for 
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TX -L. sy 
which the square TIP 1 

TX' ---+ 
I' 

18 1/1 commutes. Composition is defined componentwise 
sy' 

and the identity attached to (X, I, Y) is (idx , idy). 

(A\C) Let A E ObC and write KA for the constant functor 1 ~ C with value 

A-then A\C = IKA, ide I is the category of objects under A. 
(C/B) Let BE ObC and write KB for the constant functor 1 ~ C with value 

B-then C / B = lide, K B I is the category of objects over B. 

Putting together A\C & C/B leads to the category of objects under A and over B: 
A \ C / B. The notation is incomplete since it fails to reflect the choice of the structural 

morphism A ~ B. Examples: (1) 0\TOP/* = TOP; (2) *\TOP/* = TOP.; (3) 

A\TOP/* = A\TOPj (4) 0\TOP/B = TOP/Bj (5) B\TOP/B = TOP(B), the 

"exspaces" of James (with structural morphism idB). 

The arrow category C(~) of C is the comma category lide,idel. Examples: (1) 

TOp2 is a subcategory of TOP( ~)j (2) TOP! is a subcategory of TOP.( ~ ). 

[Note: There are obvious notions of homotopy in TOP( ~ ) or TOP.( ~), from which 

HTOP(~) or HTOP.(~).] 

The comma category IKA,KBI is Mor(A,B) viewed as a discrete category. 

A morphism I : X ~ Y in a category C is said to be an isomorphism if there exists 

a morphism 9 : Y ~ X such that 9 0 I = idx and log = idy. IT 9 exists, then 9 is 

unique. It is called the inverse of I and is denoted by 1-1. Objects X, Y E Ob C are said 

to be isomorphic, written X ~ Y, provided that there is an isomorphism I : X ~ Y. The 

relation "isomorphic to" is an equivalence relation on Ob C. 

The isomorphisms in SET are the bijective maps, in TOP the homeomorphisms, in HTOP the 

homotopy equivalences. The isomorphisms in any full subcategory of TOP are the homeomorphisms. 

Let { ~ ~ ~ =: ~ be functors-then a natural transformation E from F to G is a 

function that assigns to each X E ObC an element Ex E Mor(FX,GX) such that 
FX Ex. GX 

for every I E Mor (X, Y) the square F 11 1 G I commutes, E being termed a 
FY ---+ GY 

Ey 
natural isomorphism if all the Ex are isomorphisms, in which case F and G are said to be 

naturally isomorphic, written F ~ G. 
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Given categories {~ , the functor category [C, D] is the metacategory whose ob

. jects are the functors F : C -to D and whose morphisms are the natural transformations 

Nat(F, G) from F to G. In general, [C, D] need not be isomorphic to a category, although 

this will be true if C is small. 

[Note: The isomorphisms in [C, D] are the natural isomorphisms.] 

G· . { C d fun t { K : A -to C h fun { [K, D] : [C, D] 
lven categories D an c ors L: D -to B ,t ere are ctors [C, L] : [C, D] 

-to [A,D] {precomposition. _ . {'EK 
[C B] defined by t 't" H.::. E Mor([C,DD, then we shall WrIte L-

-to , pos compOSI Ion .::. 

in place of { f~:~li, so L('EK) = (L'E)K. 

There is a simple calculus that governs these operations: 

~d . { 
5(K 0 K') = (5K)K' { (L' 0 L)5 = L'(LS) 

(5' o5)K = (5' K) 0 (5K) L(5' 0 5) = (L5/) 0 (L5) 

A functor F : C -to D is said to be faithful (full) if for any ordered pair X, Y E Ob C, 

the map Mor (X, Y) -to Mor (F X, FY) is injective (surjective). If F is full and faithful, 

then F is conservative, i.e., f is an isomorphism iff F f is an isomorphism. 

A category C is said to be concrete if there exists a faithful functor U : C -+ SET. Example: TOP 

is concrete but HTOP is not. 

[Note: A category is concrete iff it is isomorphic to a subcategory of SET.] 

Associated with any object X in a category C is the functor Mor (X, -) E Ob [C, SET] 
and the cofunctor Mor (-, X) E Ob [CoP, SET]. H F E Ob [C, SET] is a functor or if 

F E Ob [COP, SET] is a cofurictor, then the Yoneda lemma establishes a bijection LX 

between Nat(Mor(X,-),F) or Nat(Mor(-,X),F) and FX, viz. LX('E) = 'Ex (idx). . {X -to Mor(X,-) {COP -to rc, SET] 
Therefore the asSIgnments X -to Mor (_, X) lead to functors C -to [COP, SET] that 

are full, faithful, and injective on objects, the Yoneda embeddings. One says that F is 

representable (by X) if F is naturally isomorphic to Mor(X,-) or Mor(-,X). Repre

senting objects are isomorphic. 

The forgetful functors TOP -+ SET, GR -+ SET, RG -+ SET are representable. The power set 

cofunctor SET -+ SET is representable. 



0-5 

A functor F : C -+ D is said to be an isomorphism if there exists a functor G : D -+ C 

such that Go F = ide and FoG = idD. A functor is an isomorphism iff it is full, faithful, 

and bijective on objects. Categories C and D are said to be isomorphic provided that 

there is an isomorphism F : C -+ D. 

[Note: An isomorphism between categories is the same as an isomorphism in the 

"category of categories" .J 

The full subcategory of TOP whose objects are the A spaces is isomorphic to the category of ordered 

sets and order preserving maps (reflexive + transitive = order). 

[Note: An A space is a topological space X in which the intersection of every collection of open sets 

is open. Each z E X is contained in a minimal open set U,. and the relation z ~ JI iff z E U" is an order 

on X. On the other hand, if ~ is an order on a set X, then X becomes an A space by taking as a basis 

the sets UI/t = {y: JI ~ z} (z EX).] 

A functor F : C -+ D is said to be an equivalence if there exists a functor G : D -+ C 

such that Go F::::::: ide and FoG::::::: idD' A functor is an equivalence iff it is full, faithful, 

and has a representative image, i.e., for any Y E ObD there exists an X E ObC such that 

F X is isomorphic to Y. Categories C and D are said to be equivalent provided that there 

is an equivalence F : C -+ D. The object isomorphism types of equivalent categories are 

in a one-to-one correspondence. 

(Note: IT F and G are injective on objects, then C and D are isomorphic (categorical 

"Schroeder-Bernstein"). J 

The functor from the category of metric spaces and continuous functions to the category of metrizable 

spaces and continuous functions which assigns to a pair (X, d) the pair (X, 'T .d. 'Ttl the topology on X 

determined by d, is an equivalence but not an isomorphism. 

[Note: The category of metric spaces and continuous functions is not a subcategory of TOP.] 

A category is skeletal if isomorphic objects are equal. Given a category C, a skeleton 

of C is a full, skeletal subcategory C for which the inclusion C -+ C has a representative 

image (hence is an equivalence). Every category has a skeleton and any two skeletons of a 

category are isomorphic. A category is skeletally small if it has a small skeleton. 

The full subcategory of SET whose objects are the cardinal numbers is a skeleton of SET. 

A morphism f : X -+ Y in a category C is said to be a monomorphism if it is left 

cancellable with respect to composition, i.e., for any pair of morphisms 'U, v: Z -+ X such 

that f 0 'U = f 0 v, there follows 'U = V. 
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A morphism I : X ~ Y in a category C is said to be an epimorphism if it is right 

cancellable with respect to composition, i.e., for any pair of morphisms u, v: Y ~ Z such 

that u 0 I = v 0 I, there follows it = v. 

A morphism is said to be a bimorphism if it is both a monomorphism and an epimor

phism. Every isomorphism is a bimorphism. A category is said to be balanced if every 

bimorphism is an isomorphism. The categories SET, GR, and AB are balanced but the 

category TOP is not. 

In SET, GR, and AD, .. morphism is .. monomorphism (epimorphism) iff it is injective (surjective). 

In any full subcategory of TOP, .. morphism is a monomorphism iff it is injective. In the full subcategory 

of TOP", whose objects are the connected spaces, there are monomorphisms that are not inj~tive on the 

underlying sets (covering projections in this category are monomorphisms). In TOP, a morphism is an 

epimorphism iff it is surjective but in HA US. a morphism is an epimorphism iff it has a dense range. The 

homotopy class of .. monomorphism (epimorphism) in TOP need. not be .. monomorphism (epimorphism) 

inHTOP. 

Given a category C and an object X in C, let M(X) be the class of all pairs (Y, f), 
where I : Y ~ X is a monomorphism. Two elements (Y,f) and (Z,g) of M(X) are 

deemed equivalent if there exists an isomorphism ¢> : Y ~ Z such that I = go¢>. A 

representative class of monoI:llorphisms in M(X) is a subclass of M(X) that is a system 

of representatives for this equivalence relation. C is said to be wellpowered provided that 

each of its objects has a representative class of monomorphisms which is a set. 

Given a category C and an object X in C, let E(X) be the class of all pairs (Y, f), 
where I : X ~ Y is an epimorphism. Two elements (Y,/) and (Z,g) of E(X) are 

deemed equivalent if there exists an isomorphism ¢> : Y ~ Z such that 9 = ¢> 0 I. A 

representative class of epimorphisms in E(X) is a subclass of E(X) that is a system of 

representatives for this equivalence relation. C is said to be cowellpowered provided that 

each of its objects has a representative class of epimorphisms which is a set. 

SET, GR, AD, TOP (or HAUS) are wellpowered and cowellpowered. The category of ordinal 

numbers is wellpowered but not cowellpowered. 

A monomorphism I : X ~ Y in a category C is said to be extremal provided that in 

any factorization I = hog, if 9 is an epimorphism, then 9 is an isomorphism. 

An epimorphism I : X ~ Y in a category C is said to be extremal provided that in 

any factorization I = hog, if h is a monomorphism, then h is an isomorphism. 
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In a balanced category, every monomorphism (epimorphism) is extremal. In any 

category, a morphism is an isomorphism iff it is both a monomorphism and an extremal 

epimorphism iff it is both an extremal monomorphism and an epimorphism. 

In TOP, a monomorphism is extremal iff it is an embedding but in HAUS, a monomorphism is 

extremal iff it is a closed embedding. In TOP or HAUS, an epimorphism is extremal iff it is a quotient 

map. 

A source in a category C is a collection of morphisms Ii : X ~ Xi indexed by a set I 

and having a common domain. An n-source is a source for which #(1) = n. 

A sink in a category C is a collection of morphisms Ii : Xi ~ X indexed by a set I 

and having a common codomain. An n-sink is a sink for which #(1) = n. 

A diagram in a category C is a functor D. : I ~ C, where I is a small category, the 

indexing category. To facilitate the introduction of sources and sinks associated with D., 

we shall write D.i for the image in Db C of i E Db I. 

(lim) Let D. : I ~ C be a diagram-then a source {Ii : X ~ D.i} is said to be 

natural if for each 6 E Mor I, say i ~ j, D.6 0 Ii = 1;. A limit of D. is a natural source 

{.ei : L ~ D.i} with the property that if {Ii: X ~ D.i} is a natural source, then there 

exists a unique morphism 4> : X ~ L such that Ii = .ei 0 4> for all i E Db I. Limits are 

essentially unique. Notation: L = limI D. (or lim D.). 

(colim) Let D. : I ~ C be a diagram-then a sink {Ii: D.i ~ X} is said to be 

natural if for each 6 E Mor I, say i ~ j, Ii = I; 0 D.6. A coli mit of D. is a natural sink 

{.ei : D.i ~ L} with the property that if {Ii: D.i ~ X} is a natural sink, then there exists a 

unique morphism 4> : L ~ X such that Ii = 4> O.ei for all i E Db I. Colimits are essentially 

unique. Notation: L = colimI D. (or colim D.). 

There are a number of basic constructions that can be viewed as a limit or colimit of 

a suitable diagram. 

Let I be a set; let I be the discrete category with Db I = I. Given a collection 

{Xi: i E I} of objects in C, define a diagram D. : I ~ C by D.i = Xi (i E I). 

(Products) A limit {.ei : L ~ D.i} of D. is said to be a product of the Xi. 

Notation: L = IIXi (or Xl if Xi = X for all i), .ei = pri' the projection from II Xi to 
i i 

Xi. Briefly put: Products are limits of diagrams with discrete indexing categories. In 

particular, the limit of a diagram having 0 for its indexing category is a final object in C. 

[Note: An object X in a category C is said to be final if for each object Y there is 

exactly one morphism from Y to X.] 
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(Coproducts) A colimit {ii : ..6.i -+ L} of ..6. is said to be a coproduct of the 

Xi. Notation: L = II Xi (or I· X if Xi = X for all i), i;, = in;" the injection from Xi to 
;, 

II Xi. Briefly put: Coproducts are colimits of diagrams with discrete indexing categories. 
i 

In particular, the colimit of a diagram having 0 for its indexing category is an initial object 

in C. 

[Note: An object X in a category C is said to be initial if for each object Y there is 

exactly one morphism from X to Y.] 

In the full subcategory of TOP whose objects are the locally connected spaces, the product is the 

product in SET equipped with the coarsest locally connected topology that is finer than the product 

topology. In the full subcategory of TOP whose objects are the compact Hausdorff spaces, the coproduct 

is the Ston&-Cech compactification of the coproduct in TOP. 

IJ 

Let I be the category 1 • ::::: • 2. Given a pair of morphisms u, v : X -+ Y in C, define 
6 

a diagram ..6. : I -+ C by { ~~ : & { ~: :. 

(Equalizers) An equalizer in a category C of a pair of morphisms u, v : X -+ Y 

is a morphism / : Z -+ X with u 0 / = v 0 / such that for any morphism f' : Z' -+ X 

with u 0 f' = v 0 /' there exists a unique morphism ¢ : Z' -+ Z such that /' = /0 ¢o The 

2-source X I- Z ~ Y is a limit of ..6. iff Z .!... X is an equalizer of u, v : X -+ Y. Notation: 

Z = eq(u,v). 

[Note: Every equalizer is a monomorphism. A monomorphism is regular if it is an 

equalizer. A regular monomorphism is extremal. In SET, GR, AB, TOP (or HAUS), 

an extremal monomorphism is regular.] 

(Coequalizers) A coequalizer in a category C of a pair of morphisms u, v : X -+ Y 

is a morphism / : Y -+ Z with / 0 u = / 0 v such that for any morphism /' : Y -+ Z' 

with /' 0 u = /' 0 v there exists a unique morphism ¢: Z -+ Z' such that f' = ¢ 0 /. The 

2-sink Y.!... Z ~ X is a colimit of ..6. iff Y.!... Z is a coequalizer of u, v: X -+ Y. Notation: 

Z = coeq(u, v). 

[Note: Every coequalizer is an epimorphism. An epimorphism is regular if it is a 

coequalizer. A regular epimorphism is extremal. In SET, GR, AB, TOP (or HAUS), 
an extremal epimorphism is regular.] 

There are two aspects to the notion of equalizer or coequalizer, namely: (1) Existence of I and 

(2) Uniqueness of tP. Given (1), (2) is equivalent to requiring that I be a monomorphism or an epimor

phism. If (1) is retained and (2) is abandoned, then the terminology is weak equalizer or weak coequalizer. 
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For example, HTOP. has neither equalizers nor coequalizers but does have weak equalizers and weak 

coequalizers. 

Let I be the category 1 • ~ • :- • 2. Given morphisms {I : yX -+ ZZ in C, define a 
3 g: -+ 

{ ~1 =X {~- I 
diagram ~ : I -+ C by ~: ~ & ~: - g . p ~ Y 

(Pullbacks) Given a 2-sink X ~ Z ~ y, a commutative diagram (1 1 9 is 
X ---+ Z 

f 
(' , 

said to be a pullback square if for any 2-source x+- p' .!.. Y with loe' = go.,,' there exists a 

unique morphism ¢> : p' -+ P such that e' = eo¢> and .,,' = ." 0 ¢>. The 2-source X ~ P ~ Y 

is called a pullback of the 2-sink X ~ Z ~ Y. Notation: P = X Xz Y. Limits of ~ are 

pullback squares and conversely. 

Let I be the category 1 • ~ • ~ • 2. Given morphisms {I : ZZ -+ yX in C, define a 
3 g: -+ 

{ ~1 =X {~ I 
diagram ~ : I -+ C by ~2 = Y & ~: g' 

~3=Z Z 

(Pushouts) Given a 2-source X ~ Z ~ Y, a commutative diagram f 1 
X 

Y 

---+ 
( 

(' , 
said to be a pushout square if for any 2-sink X -+ P' J!- Y with e' 0 I = .,,' 0 g there exists a 

unique morphism ¢> : P -+ P' such that e' = ¢> 0 e and .,,' = ¢> 0.". The 2-sink X..!. P;!.... Y 

is called a pushout of the 2-source X ~ Z ~ Y. Notation: P = Xu Y. Colimits of ~ are 
Z 

pushout squares and conversely. 

The result of dropping uniqueness in t/J is weak pullback or weak pushout. Examples are the com

mutative squares that define fibration and cofibration in TOP. 

Let I be a small category, ~ : lOP x I -+ C a diagram. 

(Ends) A source {Ii : X -+ ~i,i} is said to be dinatural if for each 0 E MorI, 

say i ~ j, ~(id,o) 0 Ii = ~(o,id) 0 1;. An end of ~ is a dinatural source {ei : E -+ ~i,i} 
with the property that if {Ii: X -+ ~i,i} is a dinatural source, then there exists a unique 

morphism ¢> : X -+ E such that Ii = ei 0 ¢> for all i E Ob I. Every end is a limit (and every 

limit is an end). Notation: E = 1 ~i,i (or 1~· 
(Coends) A sink {Ii : ~i,i -+ X} is said to be dinatural if for each 0 E Mor I, 

say i ~ j, Ii 0 ~(o, id) = I; 0 ~(id, 0). A coend of ~ is a dinatural sink {ei : ~i,i -+ E} 

with the property that if {Ii : ~i,i -+ X} is a dinatural sink, then there exists a unique 



0-10 

morphism <p : E -+ X such that Ii = <p 0 fa for all i E Ob I. Every coend is a colimit (and 
i I 

every colimit is a coend). Notation: E = f di,i (or f d). 

Let befunctol'll-then the assignment (i,j) - Mor(Fi,Gj) defines a diagram lOP xI-{
F:I-e 

G:I-e 

SET and Nat(F,G) is the end iMOr(Fi,Gi). 

INTEGRAL YONEDA LEMMA Let I be a small category, e a complete and cocomplete 

category-then for every F in [IOP, el, Ji Mor(-,i) . Fi ~ F ~ 1 FiMor(i,-). 

Let I =F 0 be a small category-then I is said to be filtered if 

(Fd Given any pair of objects i,j in I, there exists an object k and morphisms 

{ 
i -+ k 
j -+ k' 

(F2 ) Given any pair of morphisms a, b : i -+ j in I, there exists an object k and 

a morphism c : j -+ k such that c 0 a = cob. 

Every nonempty directed set (I, <) can be viewed as a filtered category I, where 

ObI = I and Mor(i,j) is. a one element set when i < j but is empty otherwise. 

Example: Let [N] be the filtered category associated with the directed set of non

negative integers. Given a category C, denote by FIL(C) the functor category [[N], C]

then an object (X,f) in FIL(C) is a sequence {Xn,/n}, where Xn E ObC & In E 

Mor (Xn' Xn+d, and a morphism <p : (X, f) -+ (Y, g) in FIL(C) is a sequence {<Pn}, where 

<Pn E Mor(Xn, Yn) & 9n 0 <Pn = <Pn+l 0 In. 

(Filtered Colimits) A filtered colimit in C is the colimit of a diagram d : I -+ C, 

where I is filtered. 

(Cofiltered Limits) A cofi1tered limit in C is the limit of a diagram d : 1-+ C, 

where I is cofiltered. 

[Note: A small category I =F 0 is said to be cofiltered provided that lOP is filtered.] 

A Hausdorff space is compactly generated iff it is the filtered colimit in TOP of its compact subspaces. 

Every compact Hausdorff space is the cofiltered limit in TOP of compact metrizable spaces. 

Given a small category C, a path in C is a diagram 0' of the form Xo -+ Xl +- ... -+ 

X2n-l +- X 2n (n ~ 0). One says that 0' begins at Xo and ends at X 2n . The quotient of 

Ob C with respect to the equivalence relation obtained by declaring that X' fV X" iff there 
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exists a path in C which begins at X' and ends at X" is the set ?ro(C) of components of 

C, C being called connected when the cardinality of ?ro(C) is one. The full subcategory of 

C determined by a component is connected and is maximal with respect to this property. 

H C has an initial object or a final object, then C is connected. 

[Note: The concept of "path" makes sense in any category.] 

Let I#-O be a small category-then I is said to be pseudofiltered if 

(PFl) Given any pair of morphisms { a : ~ - j in I, there exists an object l and morphisms 
b: 1- k 

{
C:;_l 

such that c 0 a = d 0 bj 
d:k-l 

(PF2) Given any pair of morphisms a, b : i - ; in I, there exists a morphism c : j - k such 

that co a = cob. 

I is filtered iff I is connected and pseudofiltered. I is pseudofiltered iff its components are filtered. 

Given small categories { ~ , a functor V : J --+ I is said to be final provided that for 

every i E ObI, the comma category IKi, VI is nonempty and connected. If J is filtered 

and V : J --+ I is final, then I is filtered. 

[Note: A subcategory of a small category is final if the inclusion is a final functor.] 

Let V : J --+ I be final. Suppose that ~ : I --+ C is a diagram for which colim ~ 0 V 

exists-then colim ~ exists and the arrow colim ~ 0 V --+ colim ~ is an isomorphism. 

Corollary: Hi is a final object in I, then colim ~ ~ ~i. 

[Note: Analogous considerations apply to limits so long as "final" is replaced through

out by "initial".] 

Let I be a filtered category-then there exists a directed set (J, $) and a final functor v: J - I. 

Limits commute with limits. In other words, if ~ : I x J --+ C is a diagram, then 

under the obvious assumptions 

limI limJ ~ ~ limIxJ ~ ~ limJ xl ~ ~ limJ limI ~. 
Likewise, colimits commute with colimits. In general, limits do not commute with co

limits. However, if ~ : I x J --+ SET and if I is finite and J is filtered, then the arrow 

colimJ limI ~ --+ limI colimJ ~ is a bijection, so that in SET filtered colimits commute 

with finite limits. 

[Note: In GR, AB or RG, filtered colimits commute with finite limits. But, e.g., 

filtered colimits do not commute with finite limits in SEToP .] 

In AB (or any Grothendieck category), pseudofiltered colimits commute with finite limits. 
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A category C is said to be complete (cocomplete) if for each small category I, every 

~ E Ob [I, C] has a limit (colimit). The following are equivalent. 

(1) C is complete (cocomplete). 

(2) C has products and equalizers (coproducts and coequalizers). 

(3) C has products and pullbacks (coproducts and pushouts). 

(4) C has a final object and multiple pullbacks (initial object and multiple 

pushouts). 

[Note: A source {e.: P ~ Xi} (sink {ei: Xi ~ P}) is said to be a multiple pullback 

(multiple pushout) of a sink {Ii : Xi ~ X} (source {Ii : X ~ Xi}) provided that 

Ii 0 ei = I; 0 ej (e. 0 Ii = ej 01;) v {~ and if for any source {e~ : P' ~ Xi} (sink 

{e~ : Xi ~ P'}) with Ii 0 e~ = I; 0 ej (e~ 0 Ii = ej 0 1;) v {~, there exists a unique 

morphism </> : P' ~ P (</> : P ~ P') such that V i, e~ = ei 0 </> (e~ = </> 0 ei). Every multiple 

pullback (multiple pushout) is a limit (colimit).) 

The categories SET, GR, and AB are both complete and cocomplete. The same is true of TOP 

and TOP. but not of HTOP and HTOP •. 

[Note: HAUS is complete; it is also cocomplete, being epireflective in TOP.] 

A category C is said to be finitely complete (finitely cocomplete) if for each finite 

category I, every ~ E Ob [I, C] has a limit (colimit). The following are equivalent. 

(1) C is finitely complete (finitely cocomplete). 

(2) C has finite products and equalizers (finite coproducts and coequalizers). 

(3) C has finite products and pullbacks (finite coproducts and pushouts). 

(4) C has a final object and pullbacks (initial object and pushouts). 

The full subcategory of TOP whose objects are the finite topological spaces is finitely complete and 

finitely cocomplete but neither complete nor cocomplete. A nontrivial group, considered as a category, 

has multiple pullbacks but fails to have finite products. 

If C is small and D is finitely complete and wellpowered (finitely cocomplete and 

cowellpowered), then [C, D) is wellpowered (cowellpowered). 

SET(-), GR(-),AB(-), TOP(-) (or HAUS(-» are wellpowered and cowellpowered. 

[Note: The arrow category C(-) of any category C is isomorphic to [2, C].] 

Let F: C ~ D be a functor. 
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(a) F is said to preserve a limit {i. : L -+ ~.} (colimit {i. : ~i -+ L}) of a 

diagram ~: 1 -+ C if {Fl. : FL -+ F~i} ({Fl. : F~. -+ FL}) is a limit (colimit) of the 
diagram F 0 ~ :,1 -+ D. 

(b) F is said to preserve limits (colimits) over an indexing category 1 if F pre

serves all limits (colimits) of diagrams ~ : I -+ C. 

( c) F is said to preserve limits (colimits) if F preserves limits (colimits) over all 

indexing categories I. 

The forgetful functor TOP - SET preserves limits and colimits. The forgetful functor GR - SET 

preserves limits and filtered colimits but not coproducts. The inclusion HAUS - TOP preserves limits 

and coproduct. but not coequalizers. The inclusion AD - GR preserves limits but not colimits. 

There are two rules that determine the behavior of {~::~X',X~ with respect to 

limits,and colimits. 

(1) The functor Mor(X,-) : C -+ SET preserves limits. Symbolically, there

fore, Mor (X,lim~) ~ lim(Mor(X,-) 0 ~). 

(2) The cofunctor Mor (-, X) : C -+ SET converts colimits into limits. Sym

bolically, therefore, Mor ( colim ~, X) ~ lim(Mor (-, X) 0 ~). 

REPRESENTABLE FUNCTOR THEOREM Given a complete category C, a functor 

F : C -+ SET is representable iff F preserves limits and satisfies the solution set condition: 

There exists a set {X.} of objects in C such that for each X E Ob C and each y E F X, 

there is an i, a Y' E FX., and an f : X. -+ X such that y = (Ff)Yi. 

Take for C the category opposite to the category of ordinal numbers-then the functor C - SET 

defined by a _ * has a complete domain and preserves limits but is not representable. 

Limits and colimits in functor categories are computed "object by object". So, if C is 

a small category, then D (finitely) complete =? [C,D] (finitely) complete and D (finitely) 

cocomplete =? [C, D] (finitely) cocomplete. 

Given a small category C, put C = [CoP, SET]-then C is complete and cocomplete. 

The Yoneda embedding Yc : C -+ C preserves limits; it need not, however, preserve finite 

colimits. The image of C is "colimit dense" in C, i.e., every cofunctor C -+ SET is a 

colimit of representable cofunctors. 

An indobject in a small category C is a diagram ~ : I -+ C, where I is filtered. 

Corresponding to an indobject ~, is the object Lt:.. in C defined by Lt:.. = colim(Yc 0 ~). 
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The indcategory IND(C) of C is the category whose objects are the indobjects and whose 

morphisms are the sets Mor (6', 6") = Nat(L~/,L~,,). The functor L: IND(C) -+ C 
that sends 6 to L~ is full and faithful (although in general not injective on objects), hence 

establishes an equivalence between IND(C) and the full subcategory of C whose objects 

are the cofunctors C -+ SET which are filtered colimits of representable cofunctors. The 

category IND( C) has filtered colimits; they are preserved by L, as are all limits. Moreover, 

in IND( C), filtered colimits commute with finite limits. If C is finitely cocomplete, then 

IND( C) is complete and cocomplete. The functor K : C -+ IND( C) that sends X 

to Kx, where Kx : 1 -+ C is the constant functor with value X, is full, faithful, and 
injective on objects. In addition, K preserves limits and finite colimits. The composition 

C ~ IND(C) ~ C is the Yoneda embedding Ye. A cofunctor F E Ob C is said to be 

indrepresentable if it is naturally isomorphic to a functor of the form L~, 6 E Ob IND( C). 

An indrepresentable cofunctor converts finite colimits into finite limits and conversely, 

provided that C is finitely cocomplete. 

[Note: The procategory PRO(C) is by definition IND(CoP)OP. Its objects are the 

proobjects in C, i.e., the diagrams defined on cofiltering categories.] 

The full subcategory of SET whose objects are the finite sets is equivalent to a small category. Its 

indcategory is equivalent to SET and its procategory is equivalent to the full subcategory of TOP whose 

objects are the totally disconnected compact Hausdorff spaces. 

[Note: There is no small category e for which PRO(e) is equivalent to SET. This is because in 

SET, cofiltered limits do not commute with finite colimits.] 

Given categories { ~ , functors { ~ ~ ~ : ~ are said to be an adjoint pair if the func

tors { MMor 0 ((~d P x iGdD) ) from CoP x D to SET are naturally isomorphic, i.e., if it is 
or 0 I COP x 

possible to assign to each ordered pair { : ~ g~ ~ a bijective map Ex I Y : Mor (F X, Y) -+ 

Mor(X,GY) which is functorial in X and Y. When this is so, F is a left adjoint for G 
and G is a right adjoint for F. Any two left (right) adjoints for G (F) are naturally 

isomorphic. Left adjoints preserve colimits; right adjoints preserve limits. In order that 

(F, G) be an adjoint pair, it is necessary and sufficient that there exist natural transfor-
. {p, E Nat(ide, Go F) . {(GV) 0 (p,G) = idG . 

matlons v E Nat(F 0 G,idD) subject to (vF) 0 (Fp,) = idF' The data (F,G,p"v) IS 

~ d ad···· h al ~ t' { p, : ide -+ G 0 F b . relerre to as an JOInt SItuatIon, t e natur translorma Ions F G 'd emg 
v: 0 -+lD 

the arrows of adjunction. 

(UN) Suppose that G has a left adjoint F-then for each X E ObC, each 
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Y E ObD, andea.ch I: X -+ GY, there exists auniqueg : FX -+ Y such that 1= Ggop.x. 
[Note: When reformulated, this property is characteristic.] 

The forgetful functor TOP - SET has a left adjoint that sends a set X to the pair (X, r). where r 

is the discrete topology, and a right adjoint that sends a set X to the pair (X, r), where r is the indiscrete 

topology. 

Let I be a small category, C a complete and cocomplete category. Examples: (1) The constant 

diagram functor K : C - (I, C] has a left adjoint, viz. colim: (I, C] - C, and a right adjoint, viz. 

lim: [I, C] - Cj (2) The functor C - [lop X I, C] that sends X to (i,j) - Mor(i, j) . X is a left adjoint 

for end and the functor that sends X to (i,j) - xMor(i,i) is a right adjoint for coend. 

GENERAL ADJOINT FUNCTOR THEOREM Given a complete category D, a func

tor G : D -+ C has a left adjoint iff G preserves limits and satisfies the solution set 

condition: For each X E Ob C, there exists a source {Ii : X -+ GY;} such that for every 

I: X -+ GY, there is an i and a 9 : Y; -+ Y such that 1= Gg 0 Ii. 

The general adjoint functor theorem implies that a small category is complete iff it is cocomplete. 

KAN EXTENSION THEOREM Given small categories { ~ , a complete ( cocomplete) 

category S, and a functor K : C -+ D, the functor [K, SJ :[D, SJ -+ [C, SJ has a right 

(left) adjoint ran (Ian) and preserves limits and colimits. 

[Note: If K is full and faithful, then ran (Ian) is full and faithful.J 

Suppose that S is complete. Let T E Ob [C, SJ-then ran T is called the right Kan 

extension of T along K. In terms of ends, (ranT)Y = Ix TXMor(Y,KX). There is a 

"universal" arrow (ran T) 0 K -+ T. It is a natural isomorphism if K is full and faithful. 

Suppose that S is cocomplete. Let T E Ob [C, SJ-then Ian T is called the left Kan 

extension of T along K. In terms of coends, (lanT)Y = jX Mor(KX, y). TX. There is 

a "universal" arrow T -+ (lan T) 0 K. It is a natural isomorphism if K is full and faithful. 

Application: If C and D are small categories and if F : C -+ D is a functor, then the 

precomposition functor fi -+ C has a left adjoint if': C -+ fi and if' 0 Yc ~ YD 0 F. 

[Note: One can always arrange that if' 0 Yc = YD 0 F.] 

The construction of the right (left) adjoint of [K, S1 does not use the assumption that 

D is small, its role being to ensure that [D, S1 is a category. For example, if C is small 
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and S is cocomplete, then taking K = Yc, the functor [Yc, S] : [C, S] -+ [C, S] has a left 

adjoint that sends T E Ob [C, S] to r T E Ob [C, S], where rT 0 Yc = T. On an object 

F E C, rTF = JX Nat(YcX, F) . TX = JX FX . TX. rT is the realization functor; it 

is a left adjoint for the singular functor ST, the composite of the Yoneda embedding S -+ 
[SoP, SET] and the precomposition functor [SoP, SET] -+ [CoP, SET], thus (STY)X = 
Mor(TX, Y). 

[Note: The arrow of adjunction rT 0 ST -+ ids is a natural isomorphism iff ST is full 

and faithful.] 

CAT is the category whose objects are the small categories and whose morphisms 

are the functors between them: C,D E ObCAT ::} Mor(C,D) = Ob[C,D]. CAT is 

concrete and complete and cocomplete. 0 is an initial object in CAT and 1 is a final 

object in CAT. 

Let 'lro : CAT -+ SET be the functor that sends C to 'lro(C), the set of components of Cj let 

dis: SET -+ CAT be the functor that sends X to disX, the discrete category on X j let ob : CAT -+ SET 

be the functor that sends C to ObC, the set of objects in Cj let grd : SET -+ CAT be the functor that 

sends X to grdX, the category whose objects are the elements of X and whose morphisms are the elements 

of X x X -then 'lro is a left adjoint for dis, dis is a left adjoint for ob, and ob is a left adjoint for grd. 

[Note: 'lro preserves finite productsj it need not preserve arbitrary products.] 

GRD is the full subcategory of CAT whose objects are the groupoids, i.e., the small 

categories in which every morphism is invertible. Example: The assignment 

{
TOP-+GRD. 

II: X -+ IIX IS a functor. 

Let iso: CAT -+ GRD be the functor that sends C to isoC, the groupoid whose objects are those 

of C and whose morphisms are the invertible morphisms in C-then iso is a right adjoint for the inclusion 

GRD -+ CAT. Let 'lrl : CAT -+ GRD be the functor that sends C to 'lrl(C), the fundamental groupoid 

of C, i.e., the localization of Cat MorC-then 'lrl is a left adjoint for the inclusion GRD -+ CAT. 

11 is the category whose objects are the ordered sets [n] = {O, 1, ... ,n} (n ~ 0) 

and whose morphisms are the order preserving maps. In 11, every morphism can be 

written as an epimorphism followed by a monomorphism and a morphism is a monomor

phism (epimorphism) iff it is injective (surjective). The face operators are the monomor

phisms 6i : [n - 1] -+ [n] (n > 0,0 ~ i ~ n) defined by omitting the value i. The. 

degeneracy operators are the epimorphisms O'i : [n + 1] -+ [n] (n ~ 0,0 ~ i ~ n) de

fined by repeating the value i. Suppressing superscripts, if a E Mor([m], [n]) is not 



~17 

the identity, then 0 has a unique factorization 0 = (Dil 0 ••• 0 Di;p) 0 (u it ° ... 0 U jf)' 

where n > i1 > ... > ip ::::: 0, 0 < it < ... < i q < m, and m + p = n + q. Each 

o E Mor([m], [nD determines a linear transformation R m +1 
-. R n+1 which restricts to a 

map !::,.Ct : !::,.m -. !::,.n. Thus there is a functor!::,.1 : A -. TOP that sends [n] to !::,.n and 

o to !::,. Ct. Since the objects of A are themselves small categories, there is also an inclusion 

i:A-. CAT. 

Given a category C, write SIC for the functor category [A oP, C] and COSIC for the 

functor category [A, C]-then by definition, a simplicial objeCt in C is an object in SIC 

and a cosimplicial object in C is an object in COSIC. Example: YA = !::,. is a cosimplicial 

object in .6.. 
Specialize to C = SET-then an object in SISET is called a simplicial set and a 

morphism in SISET is called a simplicial map. Given a simplicial set X, put Xn = X([n]), 

{
d. - XD' 

so for 0 : [m] -. [n], Xo : Xn -. X m • If s: - Xu:' then di and Si are connected by the 

simplicial identities: 

{ 
dj ° dj = dj-l ° di (i <j) 

(; ~ J') , SjOSj=Sj+1 0Si • { 

Sj-1 Odi (i <i) 
di ° S j = id (~ = ~ or i i + 1) . 

Sj 0 dj-1 (, > J + 1) 

The simplicial standard n-simplex is the simplicial set !::"[n] = Mor (-, [nD, i.e., !::"[n] is 

the result of applying!::" to [n], so for 0 : [m] -. [n}, !::"[o] : !::"[m] -. !::"[n]. Owing to the 

Yoneda lemma, if X is a simplicial set and if x E X n, then there exists one and only one 

simplicial map !::":r; : !::"[n] -. X that takes ic1rn] to x. SISET is complete and cocomplete, 

wellpowered and cowellpowered. 

Let X be a simplicial set-then one writes xE X when one means x E UXn. With 
n 

this understanding, an x E X is said to be degenerate if there exists an epimorphism 

o =F id and ayE X such that x = (X 0 )y; otherwise, x E X is said to be non degenerate. 

The elements of Xo (= the vertexes of X) are nondegenerate. Every x E X admits a 

unique representation x = (X o)y, where 0 is an epimorphism and y is nondegenerate. 

The nondegenerate elements in !::"[n] are the monomorphisms 0: [m] -. [n] (m ~ n). 
A simplicial subset of a simplicial set X is a simplicial set Y such that Y is a subfunctor 

of X, i.e., Yn C Xn for all n and the inclusion Y -. X is a simplicial map. Notation: 

Y C X. The n-skeleton of a simplicial set X is the simplicial subset x(n) (n ::::: 0) of 

X defined by stipulating that XJ,n) is the set of all x E Xp for which there exists an 

epimorphism 0 : [PI -. [q] (q ~ n) and ayE Xq such that x = (Xo)y. Therefore 

XJ,n) = Xp (p ~ n); furthermore, X(O) C X(l) C ... and X = colim x(n). A proper 

simplicial subset of !::"[n] is contained in !::"[n]<n-l), the frontier .6.[n] of !::"[n]. Of course, 
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~[O] = 0. X(O) is isomorphic to Xo . ~[O]. In general, let x1t be the set of nondegenerate 

elements of X n. Fix a collection {~[n]z : x E x1t} of simplicial standard n-simplexes 

indexed by X1t-then the simplicial maps ~z : ~[n] -+ ~ (x E X!!) determine an arrow 
xt . ~[n] ---. x(n-l) 

x1t . ~[n] -+ x(n) and the commutative diagram 1 1 is a pushout 

xt . ~[n] ---. x(n) 
square. Note too that ~[n] is a coequalizer: Consider the diagram 

II ~[n - 2]i,i =: II ~[n - l]i, 
0Si<iSn v OSiSn 

where tt is defined by the ~[5j':-11] and v is defined by the ~[5;-1]-then the ~[5r] define a 

simplicial map I: II ~[n -l]i -+ ~[n] that induces an isomorphism coeq( tt, v) -+ ~[n]. 
OSiSn 

Call 4" the full subcategory of 4 whose objects are the [m] (m ~ n). Given a category C, denote 

by SIC" the functor category [A!?P, C]. The objects of SIC" are the "n-truncated simplicial objects" 

in C. Employing the notation of the Kan extension theorem, take for K the inclusion A~P ...... AOP and 

write tr(") in place of [K, Cl, so tr(") : SIC ...... SICft . If C is complete (cocomplete), then tr(ft) has a left 

(right) adjoint sk(ft) (cosk(ft». Put d:(ft) = sk(ft) 0 tr(ft) (the n-skeleton>, cod:(ft) = cosk(ft) 0 tr(ft) (the 

n-coskeleton). Example: Let C = SET-then for any simplicial set X, .k(ft) X R:j X(ft.). 

(Geometric Realizations) The realization functor r.c.,! is a functor SISET -+ 

TOP such that r.c.,! 0 ~ = ~? It assigns to a simplicial set X a topological space 

j
[n] 

IXI = Xn . ~n, the geometric realization of X, and to a simplicial map I : X -+ Y 

a continuous function III : IXI -+ IYI, the geometric realization of I. In particular, 

1~[n1l = ~n and 1~[a1l = ~a. There is an explicit description of IXI: Equip Xn with 

the discrete topology and Xn x ~n with the product topology-then IXI can be identified 

with the quotient Il Xn x ~ n / ..... , the equivalence relation being generated by writing 
n 

«Xa)x,t) ..... (x,~at). These relations are respected by every simplicial map I: X -+ Y. 
Denote by [x, t] the equivalence class corresponding to (x, t). The projection (x, t) -+ [x, t] 

of Il Xn x ~ n onto IX I restricts to a map Il x1t x ! n -+ IX I that is in fact a set theoretic 
n n 

bijection. Consequently, if we attach to each x E x1t the subset ez of IXI consisting 

of all [x,t] (t E !n), then the collection {ez : x E x1t (n > On partitions IXI. It 

follows from this that a simplicial map I : X -+ Y is injective (surjective) iff its geometric 

realization III : IXI -+ IYI is injective (surjective). Being a left adjoint, the functor 

I?I : SISET -+ TOP preserves colimits. So, e.g., by taking the geometric realization of 
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the diagram 

II ~[n - 2li,j ~ II ~[n - 1]., 
O~i<j~n v O~i~n 

and unraveling the definitions, one finds that 16.[n] I can be identified with 6.n. 

[Note: It is also true that the arrow I~[m] x ~[n]l-+ 1~[mll x 1~[n]1 associated with 

the geometric realization of the projections {~: ~ ~f:~ : ~f:~ =: ~f~] is a homeo-

morphism but this is not an a priori property of 111.] 
(Singular Sets) The singular functor S~T is a functor TOP -+ SISET that 

assigns to a topological space X a simplicial set sinX, the singular set of X : sinX([n]) = 

sinn X = C(~ n, X). 111 is a left adjoint for sin. The arrow of adjunction X -+ sin IXI 

sends x E Xn to I~:.c I E C( ~ n, lXI), where I~:.c I( t) = [x, t]; it is a monomorphism. The 

arrow of adjunction I sinXI -+ X sends [x, t] to x(t); it is an epimorphism. 

There is a functor T from SlAB to the category of chain complexes of abelian groups: Take an X 

and let TX be Xo !-Xl !-X2!-"" where 8 = E(-l)idi (d, : Xn - Xn-!). That 808 = 0 is implied 
o 

by the simplicial identities. One can then apply the homology functor H. and end up in the category of 

graded abelian groups. On the other hand, the forgetful functor AB - SET has a left adjoint F .. b that 

sends a set X to the free abelian group F .. bX on X. Extend it to a functor F .. b : SISET - SlAB. In 

this terminology, the singular homology H.(X) of a topological space X is H.(TF .. b(sinX». 

(Categorical Realizations) The realization functor r, is a functor SISET -+ 

/

[n1 
CAT such that r,o~ = t. It assigns to a simplicial set X a small category eX = Xn·[n] 

called the categorical realization of X. In particular, c~[n] = [n]. In general, eX can be 

represented as a quotient category CXI "'. Here, CX is the category whose objects are 

the elements of Xo and whose morphisms are the finite sequences (XI, ... ,xn ) of elements 

of Xl such that dOXi = dIXi+I. Composition is concatenation and the empty sequences 

are the identities. The relations are Sox = id:.c (x E Xo) and (dox) 0 (d2 x) = dlx (x E X 2 ). 

(Nerves) The singular functor S, is a functor CAT -+ SISET that assigns to 

a small category C a simplicial set nerC, the ~ of C : nerC([nD = nernC, the set of 

all diagrams in C of the form Xo A X I -- ... __ X n- 1 f~l X n. Therefore, neroC = Ob C 

and nerl C = Mor C. e is a left adjoint for nero Since ner is full and faithful, the arrow of 

adjunction e 0 ner -+ idcAT is a natural isomorphism. The classifying space of C is the 

geometric realization of its nerve: BC == Iner CI. Example: BC ~ BCoP • 

Thecomp06ite n = '/1"1 0 c is a functor SISET - GRD that sends a simplicial set X to its 

funda.mental groupoid nx. Example: If X is a topological space, then nx ~ n(sinX). 
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Let C be a small category. Given a cofunctor F : C -+ SET, the Grothendieck 

construction on F is the category grocF whose objects are the pairs (X, x), where X is an 

object in C with x E FX, and whose morphisms are the arrows f: (X, x) -+ (Y,y), where 

f: X -+ Y is a morphism in C with (Ff)y = x. Denoting by 7rF the projection grocF-+ 

C, if S is cocomplete, then for any T E Ob [C, S], rTF ~ colim(grocF ~ C ..!. S). In 

particular: F ~ colim(grocF ~ C ~ C). 
[Note: The Grothendieck construction on a functor F : C -+ SET is the category 

grocF whose objects are the pairs (X, x), where X is an object in C with x E FX, and 

whose morphisms are the arrows f : (X, x) -+ (Y, y), where f : X -+ Y is a morphism in 
C with (Ff)x = y. Example: grocMor(X,-) ~ X\C.] 

Let "Y: C - CAT be the functor that sends X to C/X-then the realization functor r"Y assigns to 

each F in a its Grothendieck construction, Le., r"YF ~ grocF. 

A full, isomorphism closed subcategory D of a category C is said to be a reflective 

( coreflective) subcategory of C if the inclusion D -+ C has a left (right) adjoint R, a 

reflector (coreflector) for D. 

[Note: A full subcategory D of a category C is isomorphism closed provided that 

every object in C which is isomorphic to an object in D is itself an object in D.] 

SET has precisely three (two) reflective (coreflective) subcategories. TOP has two reflective sub

categories whose intersection is not reflective. The full subcategory of GR whose objects are the finite 

groups is not a reflective subcategory of GR. 

Let D be a reflective subcategory of C, R a reflector for D-then one may attach 

to each X E Ob C a morphism r x : X -+ RX in C with the following property: Given 

any Y E Ob D and any morphism f : X -+ Y in C, there exists a unique morphism 

9 : RX -+ Y in D such that f = 9 0 r x. H the r X are epimorphisms, then D is said to be 

an epireflective subcategory of C. 

[Note: H the r x are monomorphisms, then the r X are epimorphisms, so "monoreflec

tive" => "epireflective".] 

A reflective subcategory D of a complete (cocomplete) category C is complete (co
complete). 

[Note: Let 6: I -+ D be a diagram in D. 

(1) To calculate a limit of 6, post compose 6 with the inclusion D -+ C and let 

{ii : L -+ 6i} be its limit in C-then L E ObD and {ii : L -+ 6i} is a limit of 6. 
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(2) To calculate a colimit of ~, post compose ~ with the inclusion D -+ C and 

let {li : Ai -+ L} be its colimit in C-then {rL 0 li : Ai -+ RL} is a colimit of A.] 

EPIREFLECTIVE CHARACTERIZATION THEOREM If a category C is complete, 

wellpowered, and cowell powered , then a full, isomorphism closed subcategory D of C is 

an epireflective subcategory of C iff D is closed under the formation in C of products and 

extremal monomorphisms. 

[Note: Under the same assumptions on C, the intersection of any conglomerate of 

epireflective subcategories is epireflective.] 

A full, isomorphism closed subcategory of TOP (HAUS) is an epireflective subcat

egory iff it is closed under the formation in TOP (HAUS) of products and embeddings 

(products and closed embeddings). 

(hX) HAUS is an epireflective subcategory of TOP. The reflector sends X to 

its maximal Hausdorff quotient hX. 

(crX) The full subcategory of TOP whose objects are the completely regular 

Hausdorff spaces is an epireflective subcategory of TOP. The reflector sends X to its 

complete regularization crX. 

({3X) The full subcategory of HAUS whose objects are the compact spaces is an 

epireflective subcategory of HAUS. Therefore the category of compact Hausdorff spaces 

is an epireflective subcategory of the category of completely regular Hausdorff spaces and 

the reflector sends X to {3X, the Stone-Gech compactification of X. 

[Note: If X is Hausdorff, then (3( crX) is its compact reflection.] 

(vX) The full subcategory of HAUS whose objects are the R-compact spaces is 

an epireflective subcategory of HAUS. Therefore the category of R-compact spaces is an 

epireflective subcategory of the category of completely regular Hausdorff spaces and the 

reflector sends X to vX, the R-compactification of X. 

[N ote: If X is Hausdorff, then v( crX) is its R-compact reflection.] 

A full, isomorphism closed subcategory of GR or AD is an epireflective subcategory iff it is closed 

under the formation of products and subgroups. Example: AD is an epireflective subcategory of GR, the 

reflector sending X to its abelianization X/[X,X]. 

If C is a full subcategory of TOP (HAUS), then there is a smallest epireflective 

subcategory of TOP (HAUS) containing C, the epireflective hull of C. If X is a topo

logical space (Hausdorff topological space), then X is an object in the epireflective hull of 
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C in TOP (HAUS) iff there exists a set {Xi} C Ob C and an extremal monomorphism 

I:X-+TIXi. 
i 

The epireflective hull in TOP (HAUS) of [0,1] is the category of completely regular Hausdorffspaces 

(compact Hausdorff spaces). The epirefiective hull in TOP of [0,1]/[0, 1[ is the full subcategory of TOP 

whose objects satisfy the To separation axiom. The epireflective hull in TOP (HAUS) of {O, I} (discrete 

topology) is the full subcategory of TOP (HAUS) whose objects are the zero dimensional Hausdorff 

spaces (zero dimensional compact Hausdorff spaces). The epireflective hull in TOP of {O, I} (indiscrete 

topology) is the full subcategory of TOP whose objects are the indiscrete spaces. 

[Note: Let E be a nonempty Hausdorff space--then a Hausdorff space X is said to be E-compact 

provided that X is in the epireflective hull of E in HAUS. Example: A Hausdorff space is N-compact iff 

it is Q-compact iff it is P-compact. There is no E such that every Hausdorff space is E-compact. In fact, 

given E, there exists a Hausdorff space XE with #(XE) > 1 such that every element of C(XE,E) is a 

constant.] 

A morphism I : A -+ B and an object X in a category C are said to be orthogonal 

(J .1...X) if the precomposition arrow r : Mor(B,X) -+ Mor(A,X) is bijective. Given a 

class S C Mor C, Sol. is the class of objects orthogonal to each I E S and given a class 

D C Ob C, Dol. is the class of morphisms orthogonal to each XED. One then says that 

a pair (S, D) is an orthogonal pair provided that S = Dol. and D = Sol.. Example: Since 

.1....1....1...=.1..., for any S, (Sol.ol., Sol.) is an orthogonal pair, and for any D, (Dol., Dol.ol.) is an 

orthogonal pair. 

[Note: Suppose that (S, D) is an orthogonal pair-then (1) S contains the isomor

phisms of C; (2) S is closed under composition; (3) S is cancellable, i.e., go I E S & 
A --+ A' 

I E S => 9 E S and 9 0 I E S & 9 E S => I E S. In addition, if I 1 11' is a 

B --+ B' 
pushout square, then I E S => I' E S, and if:=: E Nat(il, il'), where il, il' : 1-+ C, then 

:=:i E S (V i) => colim:=: E S (if colimil, colimil' exist).] 

Every reflective subcategory D of C generates an orthogonal pair. Thus, with R : 
C -+ D the reflector, put T = "0 R, where " : D -+ C is the inclusion, and denote 

by E : ide -+ T the associated natural transformation. Take for S C Mor C the class 

consisting of those I such that T I is an isomorphism and take for D C Ob C the object 

class of D, i.e., the class consisting of those X such that EX is an isomorphism-then (S, D) 

is an orthogonal pair. 

A full, isomorphism closed subcategory D of a category e is said to be an orthogonal subcategory 
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of C if ObD = SJ. for some class S C MorC. If D is reflective, then D is orthogonal but the converse is 

false (even in TOP). 

[Note: Let (S, D) be an orthogonal pair. Suppose that for each X E Ob C there exists a morphism 

fX : X - T X in S, where T XED-then for every f : A - B in S and for every 9 : A - X there exists 

a uniCJ"ue t : B - T X such that fX 0 9 = to f. So, for any arrow X - Y, there is a commutative diagram 
X ~ TX 

1 1 ,thus T defines a functor C - C and f : ide - T is a natural transformation. Since 

Y ---+ TY 
~y 

fT = Tf is a natural isomorphism, it follows that SJ. = D is the object class of a reflective subcategory of 

c.] 

(,,-DEF) Fix a regular cardinal ,,-then an object X in a cocomplete category 

C is said to be ,,-definite provided that V regular cardinal ,,' ~ ", Mor(X,-) preserves 

colimits over [0, ,,'[, so for every diagram ~ : [0, ,,'[-+ C, the arrow colim Mor(X, ~Q) -+ 

Mor (X, coHm ~Q) is bijective. 

Given a group G, there is a K. for which G is K.-definite and all finitely presented groups are w-definite. 

REFLECTIVE SUBCATEGORY THEOREM Let C be a cocomplete category. Sup

pose that So C Mor C is a set with the property that for some ", the domain and codomain 

of each f E So are ,,-definite-then st is the object class of a reflective subcategory of C. 

(P-Localization) Let P be a set of primes. Let Sp = {I} U {n > 1 : pEP ~ 

pln}-then a group G is said to be P-Iocal if the map {G -+ ~ is bijective V n ESp. 
g-+g 

GRp, the full subcategory of GR whose objects are the P-Iocal groups, is a reflective 

subcategory of GR. In fact, ObGRp = Sj;, where now Sp stands for the set of homo-

morphisms { ~ :: (n ESp). The reHector L p : { ~ ~ -;;:-Rp is called P-Iocalization. 

P-localization need not preserve short exact sequences. For example, 1 - A3 - S3 - S3/A3 - 1, 

when localized at P = {3}, gives 1 - A3 - 1 - 1 - 1. 

A category C with finite products is said to be cartesian closed provided that each of 

the functors-xY : C -+ C has aright adjoint Z -+ ZY, so Mor(XxY, Z) ::::: Mor(X, ZY). 

The object ZY is called an exponential object. The evaluation morphism evy,z is the 

morphism ZY x Y -+ Z such that for every f: X x Y -+ Z there is a unique 9 : X -+ ZY 

such that f = evy,Z 0 (g x idy). 
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In a cartesian closed category: 

(1) XYxZ ~ (XY)Z; 

(2) UIXi)Y ~ II(Xr); 
i i 
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(3) 

(4) 

II¥; 
Xi ~ TI(X¥;); 

i 
X x (II Yi) ~ II(X x Yi). 

i i 

SET is cartesian closed but SEToP is not cartesian closed. TOP is not cartesian closed but does 

have full, cartesian closed subcategories, e.g., the category of compactly generated Hausdorff spaces. 

[Note: If C is cartesian closed and has a zero object, then C is equivalent to 1. Therefore neither 

SET. nor TOP. is cartesian closed.] 

CAT is cartesian closed: Mor(C x D,E) ~ Mor(C,ED), where ED = [D,E]. SISET is cartesian 

closed: Nat(X x Y,Z) ~ Nat(X,ZY), where ZY([n]) = Nat(Y X ~[n],Z). 

[Note: The functor ner : CAT -+ SISET preserves exponential objects.] 

A monoidal category is a category C equipped with a functor ® : C x C -+ C (the 

multiplication) and an object e E Db C (the unit), together with natural isomorphisms R, 

L, and A, where {~; ; ;®®; :; and Ax,y,z : X ® (Y ® Z) -+ (X ® Y) ® Z, subject 

to the following assumptions. 

(MC l ) The diagram 

A A 
X ® (Y ® (Z ® W)) ---+1 (X ® Y) ® (Z ® W) ---+1 (X ® Y) ® Z) ® W 

id®A 1 r A®id 

X ® (Y ® Z) ® w) I (x ® (Y ® Z)) ® W 
A 

commutes. 

(MC2 ) The diagram 

A 
X ® (e ®Y)---+I(X ®e) ®Y 

W®L1 1R®W 
X®Y X®Y 

commutes. 

[Note: The "coherency" principle then asserts that "all" diagrams built up from in

stances of R, L, A (or their inverses), and id by repeated application of ® necessarily 

commute. In particular, the diagrams 

e®(X®Y) 
A 

l(e ®X) ®Y X®(Y®e) 
A 

I(X®Y)®e 

L1 1 L®id id®R 1 1R 
X®Y X®Y X®Y X®Y 
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commute and Le = Re : e ® e -+ e.] 

Any category with finite products (coproducts) is monoidal: Take X ® Y to be X II Y (X II Y) and 

let e be a final (initial) object. The category AD is monoidal: Take X ® Y to be the tensor product and 

let e be Z. The category SET. is monoidal: Take X ® Y to be the smash product X#Y and let e be the 

two point set. 

A symmetry for a monoidal category C is a natural isomorphism T, where Tx,Y : 

X®Y -+ Y®X, such that TY,xoTx,Y: X®Y -+ X®Y is the identity, Rx = Lx o TX,e, 

and the diagram 

A T 
X ® (Y ® Z)---+I(X ® Y) ® Z---+I Z ® (X ® Y) 

id@Tl 1 A 

X ® (Z ® Y) ---+1 (X ® Z) ® Y ---+I(Z ® X) ® Y 
A T@id 

commutes. A symmetric monoidal category is a monoidal category C endowed with a 

symmetry T. A monoidal category can have more than one symmetry (or none at all). 

[Note: The "coherency" principle then asserts that "all" diagrams built up from in

stances of R, L, A, T (or their inverses), and id by repeated application of ® necessarily 

commute.] 

Let C be the category of chain complexes of abelian groups; let D be the full subcategory of C whose 

objects are the graded abelian groups. C and D are both monoidal: Take X ® Y to be the tensor product 

{
X = {X,,} 

and let e = {en} be the chain complex defined by eo = Z and en = 0 (n :F 0). If and if 
Y = {Yq} 

{ 
z EX" {X ® Y - Y ® X 

, then the assignment is a symmetry for C and there are no others. 
yEYq z®y-(-l)"'(y®z) 

{
X®Y_Y®X 

By contrast, D admits a second symmetry, namely the assignment . 
z®y-y®z 

A closed category is a symmetric monoidal category C with the property that each 

of the functors ® Y : C -+ C has a right adjoint Z -+ homeY, Z), so Mor(X ® Y, Z) ~ 
Mor (X,hom(Y,Z»). The functor hom: CoP xC -+ C is called an internal hom functor. 

The evaluation morphism evy,z is the morphism homeY, Z) ® Y -+ Z such that for every 

f : X ® Y -+ Z there is a unique 9 : X -+ homeY, Z) such that f = evy,z 0 (g ® idy). 

Agreeing to write Ue for the functor Mor(e,-) (which need not be faithful), one has 

Ueohom ~ Mor. Consequently, X ~ hom(e, X) andhom(X®Y,Z) ~ hom(X,hom(Y,Z»). 
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A cartesian closed category is a closed category. AB is a closed category but is not 

cartesian closed. 

TOP admits, to within isomorphism, exactly one structure of a closed category. For let X and Y 

be topological spaces-then their product X ® Y is the cartesian product X X Y supplied with the final 

topology determined by the inclusions (z EX, 11 E Y), the unit being the one point {
{Z}XY_XXY 

Xxb}-XxY 
space. The associated internal hom functor hom(X, Y) sends (X, Y) to C(X, Y), where C(X, Y) carries 

the topology of pointwise convergence. 

Given a monoidal category C, a monoid in C is an object X E Ob C together with 

morphisms m : X ® X -+ X and e : e -+ X subject to the following assumptions. 

(MOl) The diagram 

A m®id 
X ® (X ® X)----+I(X ®X) ® X I X ®X 

~®m1 1m 

X ®x ------------+1 X 
m 

commutes. 

(M02 ) The diagrams 

e®X 
E®id 

---+1 X®X 
id®E 

X®X +-1-- X®e 

m1 1R 
X=====,X 

commute. 

MONe is the category whose objects are the monoids in C and whose morphisms 

(X,m,e) -+ (X',m',e') are the arrows I: X -+ X' such that 10m = m' 0 (I ® f) and 

loe=e'. 

MONsET is the category of semigroups with unit. MONAB is the category of rings with unit. 

Given a monoidal category C, a left action of a monoid X in C on an object Y E Ob C 

is a morphism I : X ® Y -+ Y such that the diagram 

A 
, X®(X ® Y) ----+1 (X ® X) ® Y 

m®id E®id 
---+1 X ® Y +-(-- e®Y 

id®11 

X®Y 
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commutes. 

[Note: The definition of a right action is analogous.] 

LACTx is the category whose objects are the left actions of X and whose morphisms 

(Y, I) -+ (Y', I') are the arrows / : Y -+ Y' such that /0 I = I' 0 (id ® f). 

If X is a monoid in SET, then LACTx is isomorphic to the functor category [X, SET], X the 

category having a single object * with Mor (*, *) = X. 

A triple T = (T, m, E) in a category C consists of a functor T : C -+ C and natural 

transformations { ~ E E:a:~}Jc: ;) T) subject to the following assumptions. 

(Td The diagram 

mT 
ToToT IToT 

Tml 1m 
ToT 1 T m 

commutes. 

(T2 ) The diagrams 

ET ToT! TE T T IToT 

idl 1m ml lid 
T T T T 

commute. 

[Note: Formally, the functor category [C, C] is a monoidal category: Take F ® G to 

be FoG and let e be idc. Therefore a triple in C is a monoid in [C, C] (and a cotriple in 

C is a monoid in [C, C]OP), a morphism of triples being a morphism in the metacategory 

MON[C,C).] 

Given a tripleT = (T, m, E) in C, a T-algebra is an object X in C and a morphism 

e : T X -+ X subject to the following assumptions. 

(TAl) The diagram 
Te 

T(TX) ---+1 TX 

TX 
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commutes. 

(TA2) The diagram 
EX 

X---+ITX 

Ie 
x==x 

commutes. 

T-ALG is the category whose objects are the T-a.lgebras and whose morphisms 

(X, e) -+ (y,,,) are the arrows f : X -+ Y such that foe = " 0 T f. 
[Note: If T = (T, m, E) is a cotriple in C, then the relevant notion is T-coalgebra and 

the relevant category is T-COALG.] 

Take C = AB. Let A E ObRG. Define T : AB -+ AB by TX = A ® X, m E Nat(T 0 T,T) by 

{
A ® (A ® X) -+ A ® X {X -+ A ® X 

mx : , E E Nat(idAB, T) by EX : -then T-ALG is isomorphic 
a ® (b ® z) -+ ab ® z z -+ 1 ® z 

to A-MOD. 

Every adjoint situation (F, G, 1', v) determines a triple in C, viz. (G 0 F, GvF, 1') (and 

a cotriple in D, viz. (F 0 G, FJ.'G, v». Different adjoint situations can determine the same 

triple. Conversely, every triple is determined by at least one adjoint situation, in general by 

many. One realization is the construction of Eilenberg-Moore: Given a triple T = (T, m, E) 
in C, call FT the functor C -+ T-ALG that sends X ~ Y to(T X, mx ) ~(TY, my), call 

GT the functor T-ALG -+ C that sends (X, e) ~(y,,,) to X ~ Y, put J.'X = EX, and 

V(X,e> = e-then FT is a left adjoint for GT and this adjoint situation determines T. 

Suppose that C = SET, D = MONsET. Let F : C -+ D be the functor that sends X to the 

free semigroup with unit on X-then F is a left adjoint for the forgetful functor G : D -+ C. The triple 

determined by this adjoint situation is T = (T, m, E), where T : SET -+ SET assigns to each X the set 
00 

TX = UX", mx : T(TX) -+ TX is defined by concatenation and EX : X -+ TX by inclusion. The 
o 

corresponding category of T-algebras is isomorphic to MONsET. 

Let (F,G,J.',v) be an adjoint situation. If T = (G 0 F,GvF,J.') is the associated 

triple in C, then the comparison functor ~ is the functor D -+ T-ALG that sends Y to 

(GY, Gvy) and 9 to Gg. It is the only functor D -+ T-ALG for which ~ 0 F = FT and 

GT o~ = G. 

Consider the adjoint situation produced by the forgetful functor TOP -+ SET-then T-ALG = 

SET and the comparison functor TOP -+ SET is the forgetful functor. 
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Given categories { ~ , a functor G : D --+ C is said to be monadic (strictly monadic) 

provided that G has a left adjoint F : C --+ D and the comparison functor ~ : D --+ T-ALG 

is an equivalence (isomorphism) of categories. 

In order that G be monadic, it is necessary that G be conservative. So, e.g., the forgetful functor 

TOP - SET is not monadic. If D is the category of Banach spaces and linear contractions and if 

G : D - SET is the "unit ball" functor, then G haa a left adjoint and is conservative, but not monadic. 

Theorems due to Beck, Duskin and others lay down conditions that are necessary and sufficient for a 

functor to be monadic or strictly monadic. In pariicular, these results imply that if D is a "finitary 

category of algebraic structures" , then the forgetful functor D - SET is strictly monadic. Therefore the 

forgetful functor from GR, RG, ... , to SET is strictly monadic. 

[Note: No functor from CAT to SET can be monadic.] 

Among the possibilities of determining a triple T - (T, m, f) in C by an adjoint 

situa.tion, the construction of Eilenberg-Moore is "maximal". The "minimal" construction 

is that of Kleisli: KL(T) is the category whose objects are those of C, the morphisms 

from X to Y being Mor(X,TY) with fX E Mor(X, TX) serving as the identity. Here, the 

composition of { : ~ ~ in KL(T) i. mzo T go f (calculated in C). H KT : C -+ KL(T) 

is the functor that sends X -L. Y to X E~f TY and if LT : KL(T) --+ C is the functor that 

sends X -L. TY to T X m~Tf TY, then KT is a left adjoint for LT wit~ arrows of adjunction 

fx,idTx and this adjoint situa.tion determines T. 
[Note: Let G : D --+ C be a functor-then the shape of G is the metacategory 

So whose objects are those of C, the morphisms from X to Y being the conglomerate 

Nat(Mor(Y, G-), Mor(X, G-». While ad hoc arguments can sometimes be used to show 

that So is isomorphic to a category, the situation is optimal when G has a left adjoint 

F : C --+ D since in this case So is isomorphic to KL(T), T the triple in C determined 

by F and G.] 

Consider the adjoint situation produced by the forgetful functor GR - SET-then KL(T) is 

isomorphic to the full subcategory of GR whose objects are the free groups. 

A triple T = (T, m, f) in C is said to be idempotent provided that m is a natural 

isomorphism (hence fT = m-1 = Tf). H T is idempotent, then the comparison functor 

KL(T) --+ T-ALG is an equivalence of categories. Moreover, GT : T-ALG --+ C is full, 

faithful, and injective on objects. Its image is a reflective subcategory of C, the objects 
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being those X such that €x : X -+ TX is an isomorphism. On the other hand, every 

reflective subcategory of C generates an idempotent triple. Agreeing that two idempotent 

triples T and T' are equivalent if there exists a natural isomorphism r : T -+ T' such that 

l = r 0 € (thus also rom = m' 0 rT' 0 Tr), the conclusion is that the conglomerate of 

reflective subcategories of C is in a one-to-one correspondence with the conglomerate of 

idempotent triples in C modulo equivalence. 

[Note: An idempotent triple T = (T, m, €) determines an orthogonal pair (8, D). Let 
f : X -+ Y be a morphism-then f is said to be T-Iocalizing if there is an isomorphism 

4> : T X -+ Y such that f = 4> 0 €x. For this to be the case, it is necessary and sufficient 

that f E 8 and Y E D. If C' is a full subcategory of C and if T' = (T', m', €') is an 

idempotent triple in C', then T (or T) is said to extend T' (or T') provided that 8' C 8 

and D' C D (in general, (8')l. J D J (D')l.l., where orthogonality is meant in C).] 

Let (F, G, 1', v) be an adjoint situation-then the following conditions are equivalent: (1) (G 0 

F,GvF,I') is an idempotent triple; (2) I'G is a natural isomorphism; (3) (F 0 G,FI'G,v) is an idem

potent cotriple; (4) vF is a natural isomorphism. And: (1), ... ,(4) imply that the full subcategory C'" of 

C whose objects are the X such that I'X is an isomorphism is a reflective subcategory of C and the full 

subcategory Dv of D whose objects are the Y such that Vy is an isomorphism is a coreflective subcategory 

ofD. 

[Note: C'" and Dv are equivalent categories.] 

Given a category C and a class 8 C MorC, a localization of C at S is a pair (8-1C, 

Ls), where 8-1C is a metacategory and Ls : C -+ 8-1C is a functor such that V s E 8, 
Lss is an isomorphism, (8-1 C, Ls) being initial among all pairs ha.ving this property, 

i.e., for any metacategory D and for any functor F : C -+ D such that V s E 8, F s is 

an isomorphism, there exists a unique functor F' : 8-1C -+ D such thatF = F' 0 Ls. 
8-1C exists, is unique up to isomorphism, and there is a representative that has the same 

objects as C itself. Example: Take C = TOP and let 8 C MorC be the class of homotopy 

equivalences-then 8-1C = HTOP. 

[Note: If 8 is the class of all morphisms rendered invertible by Ls (the saturation of 

8), then the arrow 8-1C -+ 8-10 is an isomorphism.] 

Fix a class I which is not a set. Let C be the category whose objects are X, Y, and {Zi : i E I} and 

whose morphisms, apart from identities, are Ii : X -+ Z, and g. : Y -+ Zi. Take 8 = {gi : i E I}-then 

8-1 C is a metacategory that is not isomorphic to a category. 

[Note: The localization of a small category at a set of morphisms is again small.] 
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Let C be a category and let S C Mor C be a class containing the identities of C and 

closed with respect to composition-then S is said to admit a calculus of left fractions if 

(LF 1) Given a 2-80urce X' :-X 1. Y (8 E S), there exists a commutative square 
X ~ Y 
,,1 1t, where t E S; 
X' ---+ Y' 

/' 
(LF2 ) Given /,g : X -+ Y and 8 : X' -+ X (8 E S) such that /08 = go 8, 

there exists t : Y -+ Y' (t E S) such that to/ = tog. 
[Note: Reverse the arrows to define "calculus of right fractions".] 

Let S C Mor C be a class containing the identities of C and closed with respect to composition such 

that V (8, t) : to 8 E S & 8 E S ~ t E S-then S admits a calculus of left fractions if every 2-source 
X ~ y 

X, ~ X !... y (8 E S) can be completed to a weak pushout square ·1 1 t, where t E S. For an 

X' ---+ yl 

illustration, takeC = HTOP and consider the class of homotopy classes t; homology equivalences. 

Let C be a category and let S C Mor C be a class admitting a calculus of left fractions. 

Given X,Y E ObS-1C,Mor(X,Y) is the conglomerate of equivalence classes of pairs 

(s, /) : X 1. Y' :- Y, two pairs {~:::1 being equivalent iff there exist u, v E Mor C : 

{ u 0 s. E S, with u 0 8 = V 0 t and U 0/ = v 0 g. Every morphism in S-IC can be 
vot 

represented in the form (LSS)-1 Ls/ and if Ls/ = Lsg, then there is an s E S such that 

so/ = 80 g. 

[Note: S-IC is a metacategory. To guarantee that S-IC is isomorphic to a category, 

it suffices to impose a solution set condition: For each X E Ob C, there exists a source 

{Si : X --+ Xn (8i E S) such that for every s : X -+ X' (s E S), there is an i and a 

U : X' --+ Xi such that U 0 s = 8i. This, of course, is automatic provided that X\S, the 

full subcategory of X\C whose objects are the 8 : X --+ X' (8 E S), has a final object.] 

If C is the full subcategory of HTOP. whose objects are the pointed connected CW complexes and 

if S is the class of pointed homotopy classes of pointed n-equivalences, then S admits a calculus of left 

fractions and satisfies the solution set condition. 

Let (F, G, p., v) be an adjoint situation. Assume: G is full and faithful or, equivalently, 

that v is a natural isomorphism. Take for S C MorC the class consisting of those s such 

""""-' that Fs is an isomorphism (so F = F' 0 Ls)-then {p.x} C S and S admits a calculus 
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of left fractions. Moreover, 8 is saturated and satisfies the solution set condition (in 

fact, V X E ObC, X\8 has a final object, viz. p.x : X -+ GFX). Therefore 8-1C is 

isomorphic to a category and Ls : C -+ 8-1C has a right adjoint that is full and faithful, 

while F' : 8-1C -+ D is an equivalence. 

[Note: Suppose that T = (T, m, E) is an idempotent triple in C. Let D be the 

corresponding reflective subcategory of C with reflector R : C -+ D, so T = toR, where 

t : D -+ C is the inclusion. Take for 8 c Mor C the class consisting of those f such 

that T f is an isomorphism-then 8 is the class consisting of those f such that Rf is an 

isomorphism, hence 8 admits a calculus of left fractions, is saturated, and satisfies the 

solution set condition. The Kleisli category of T is isomorphic to 8-1C and T factors as 

C -+ 8-1C -+ D -+ C, the arrow 8-1C -+ D being an equivalence.] 

{ 
s = {px} C Mor C { S-1 C 

Let (F, G,p, v) be an adjoint situation. Put -then 1 are isomor-
T= {vy} C MorD T- D 

{
F {F':S-IC_T-1D {G'OF'~ids-1C 

phic to categories and induce functors 1 1 such that I thus 
G G': T- D - S- C F' oG' ~idT_1D 

{

S-1 C 
1 

are equivalent. In particular, when G is full and faithful, S-1 C is equivalent to D (the saturation 
T- D 

of S being the class consisting of those 8 such that F8 is an isomorphism, i.e., S is the "s" considered 

above). 

Given a category e, a set U of objects in e is said to be a separating set if for every 

pair X ~ Y of distinct morphisms, there exists a U E U and a morphism (1' : U -+ X such 
9 

that f 0(1' -:F gO(1'. An object U in e is said to be a separator if {U} is a separating set, i.e., 

if the functor Mor (U, -) : e -+ SET is faithful. H e is balanced, finitely complete, and 

has a separating set, then e is wellpowered. Every cocomplete cowellpowered category 

with a separator is wellpowered and complete. H e has coproducts, then a U E Ob e is a 

separator iff each X E Ob e admits an epimorphism II U -+ X. 
[Note: Suppose that e is small-then the representable functors are a separating set 

for [e, SET].] 

Every nonempty set is a separatorfor SET. SET x SET has no separators but the set {(e, {O}), ({O}, 

e)} is a separating set. Every nonempty discrete topological space is a separator for TOP (or HAUS). 

Z is a separator for GR and AB, while Z[t] is a separator for RG. In A-MOD, A (as a left A-module) 

is a separator and in MOD-A, A (as a right A-module) is a separator. 

Given a category e, a set U of objects in e is said to be a coseparating set if for 
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f 
every pair X ~ Y of distinct morphisms, there exists a U E U and a morphism (T : Y -+ 

9 
U such that (T 0 f =I (T 0 g. An object U in C is said to be a coseparator if {U} is 

a coseparating set, i.e., if the cofunctor Mor(-, U) : C -+ SET is faithful. IT C is 

balanced, finitely cocomplete, and has a coseparating set, then C is cowellpowered. Every 

complete wellpowered category with a coseparator is cowellpowered and cocomplete. IT C 

has products, then a U E Ob C is a coseparator iff each X E Ob C admits a monomorphism 

X -+ nU. 

Every set with at least two elements is a coseparator for SET. Every indiscrete topological space 

with at least two elements is a coseparator for TOP. Q/Z is a coseparator for AB. None of the categories 

GR, RG, HAUS has a coseparating set. 

SPECIAL ADJOINT FUNCTOR THEOREM Given a complete wellpowered category 

D which has a coseparating set, a functor G : D -+ C has a left adjoint iff G preserves 

limits. 

A functor from SET, AB or TOP to a category C has a left adjoint iff it preserves limits and a 

right adjoint iff it preserves colimits. 

Given a category C, an object Pin C is said to be projective if the functor Mor (P, -) : 
C -+ SET preserves epimorphisms. In other words: P is projective iff for each epimor

phism f : X -+ Y and each morphism 4> : P -+ Y, there exists a morphism 9 : P -+ X 

such that fog = 4>. A coproduct of projective objects is projective. 

A category C is said to have enough projectives provided that for any X E Ob C 

there is an epimorphism P -+ X, with P projective. IT a category has enough projectives 

and a separator, then it he.s a projective separator. IT a category has coproducts and a 

projective separator, then it has enough projectives. 

The projective objects in the category of compact Hausdorff spaces are the extremally disconnected 

spaces. The projective objects in AB or GR are the free groups. The full subcategory of AB whose 

objects are the torsion groups has no projective objects other than the initial objects. In A-MOD or 

MOD-A, an object is projective iff it is a direct summand of a free module (and every free module is a 

projective separator). 

Given a category C, an object Q in C is said to be injective if the cofunctor Mor(-, Q) : 
C -+ SET converts monomorphisms into epimorphisms. In other words: Q is injective 
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iff for each monomorphism f : X -+ Y and each morphism 4> : X -+ Q, there exists a 

morphism 9 : Y -+ Q such that go f = 4>. A product of injective objects is injective. 

A category C is said to have enough injectives provided that for any X E Ob C, there 

is a monomorphism X -+ Q, with Q injective. If a category has enough injectives and 

a coseparator, then it has an injective coseparator. If a category has products and an 

injective coseparator, then it has enough injectives. 

The injective objects in the category of compact Hausdorft" spaces are the retracts of products 

II[O,1]. The injective objects in the category of Banach spaces and linear contractions are. up to iso

morphism, the C(X), where X is an extremally disconnected compact Hausdorft" space. In AD, the 

injective objects are the divisible abelian groups (and Q/Z is an injective coseparator) but the only injec

tive objects in GR or RG are the final objects. The module Homz(A, Q/Z) is an injective coseparator 

in A-MOD or MOD-A. 

A zero object in a category C is an object which is both initial and final. The cat

egories TOP., GR, and AB have zero objects. If C has a zero object Oc (or 0), then 

for any ordered pair X, Y E Ob C there exists a unique morphism X -+ Oc -+ Y, the 

zero morphism OXY (or 0) in Mor (X, Y). It does not depend on the choice of a zero ob

ject in C. An equalizer (coequalizer) of an I E Mor(X, Y) and OXY is said to be a kernel 

(cokernel) of f. Notation: ker f (coker /). 

[Note: Suppose that C has a zero object. Let {X, : i E I} be a collection of objects in 

C for which n Xi and II Xi exist. The morphisms ~ij : Xi -+ Xj defined by {lo'dX;(i( ,j),) 
, i X; X; , r J 

then determine a morphism t : II Xi -+ n Xi such that prj 0 t 0 in, = ~ij. Example: Take 
i i 

#(1) = 2-then this morphism can be a monomorphism (in TOP.), an epimorphism (in 

GR), or an isomorphism (in AB).] 

A pointed category is a category with a zero object. 

Let C be a category with a zero object. Assume that C has kernels and cokernels. 

Given a morphism f : X -+ Y, an image (coimage) of I is a kernel of a cokernel (cokeniel 

of a kernel) for I. Notation: iml (coim/). There is a commutative diagram 

f 
ker f IX I Y I coker I 

1 
coim 1---+1 im I, 

7 
where f is the morphism parallel to I. If parallel morphisms are isomorphisms, then C is 

said to be an exact category. 
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[Note: In general, 1 need be neither a monomorphism nor an epimorphism and 1 can 

be a bimorphism without being an isomorphism.] 

A category C that has a zero object is exact iff every monomorphism is the kernel 

of a morphism, every epimorphism is the cokemel of a morphism, and every morphism 

admits a factorization: f = go h (g a monomorphism, h an epimorphism). Such a fac

torization is essentially unique. An exact category is balanced; it is wellpowered iff it is 

cowellpowered. Every exact category with a separator or a coseparator is wellpowered and 

cowellpowered. If an exact category has finite products (finite coproducts), then it has 

equalizers (coequalizers), hence is finitely complete (finitely cocomplete). 

AD is an exact category but the full subcategory of AD whose objects are the torsion free abelian 

groups is not exact. Neither GR nor TOP. is exact. 

Let C be an exact category. 

(EX) A sequence· .. -+ X n- l d~l Xn ~ X n+l -+ ... is said to be exact provided 

that im dn - l ~ ker dn for all n. 

[Note: A short exact sequence is an exact sequence of the form 0 -+ X' -+ X -+ X" -+ 

0.] 
(Ker-Coker Lemma) Suppose that the diagram 

Xl IX2 IXa 10 

lit 112 l /a 

0 IYi .112 I Ya 

is commutative and has exact rows-then there is a morphism h : ker fa -+ coker It, the 

connecting morphism, such that the sequence 

6 
ker It -+ ker h -+ ker fa -+ coker It -+ coker h -+ coker fa 

is exact. Moreover, if Xl -+ X 2 (Y2 -+ Ya) is a monomorphism (epimorphism), then 

ker It -+ ker h (coker h -+ coker fa) is a monomorphism (epimorphism). 

(Five Lemma) Suppose that the diagram 

Xl IX2 IXa IX. IXs 

1ft 112 l /a 1/4 1/5 
yi I Y2 I Ya I Y. I Ys 

is commutative and has exact rows. 
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(1) If h. and I( are epimorphisms and Is is a monomorphism, then fa is an 

epimorphism, 

(2) If h. and I( are monomorphisms and It is an epimorphism, then fa is a 

monomorphism. 

(Nine Lemma) Suppose that the diagram 

0 0 0 

1 1 1 
IX' 0---+ IX ,x" 

1 1 1 
IY' 0---+ ,y ,Y" 

1 1 1 
IZ' 0---+ ,Z IZ" 

1 1 1 
0 0 0 

is commutative, has exact columns, and an exact middle row-then the bottom row is 

exact iff the top row is exact. 

In an exact ca.tegory C I there are two short exact sequences associa.ted with each morphism f : X -+ 
. { 0 -+ ker f -+ X -+ coim f -+ 0 

Y,~z. . 
0-+ imf -+ Y -+ coker f -+ 0 

An additive category is a category C that has a zero object and which is equipped with 

a function + that assigns to each ordered pair I, 9 E Mor C having common domain and 

codomain, a morphism 1 + 9 with the same domain and codomain satisfying the following 

conditions. 

(ADD}) On each morphism set Mor (X, Y), + induces the structure of an abelian 

group. 

(ADD ) C 't" di t 'b t' { 1 0 (g + h) = (log) + (I 0 h) 
2 ompoSI Ion IS s r1 u lve over +: (g + h) 0 k = (g 0 k) + (h 0 k)' 

(ADD3) The zero morphismsare identities with respect to + : 0+ 1 = 1+0 = J. 
An additive category has finite products iff it has finite coproducts and when this is 

so, finite coproducts are finite products. 

[Note: .If 0 is small and D is additive, then [0, D] is additive,] 
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AD is an additive category but GR is not. Any ring with unit can be viewed as an additive 

category having exactly one object (and conversely). The category of Banach spaces and continuous linear 

transformations is additive but not exact. 

An abelian category is an exact category C that has finite products and finite co

products. Every abelian category is additive, finitely complete, and finitely cocomplete. 

A category C that has a zero object is abelian iff it has pullbacks, pushouts, and ev

ery monomorphism (epimorphism) is the ke~nel (cokernel) of a morphism. In an abelian 
n n 

category, t: 11 Xi -+ n Xi is an isomorphism. 
i=l i=l 

[Note: If C is small and D is abelian, then [C, D] is abelian.] 

AD is an abelian category, as is its full subcategory whose objects are the finite abelian groups but 

there are full subcategories of AD which are exact and additive, yet not abelian. 

A Grothendieck category is a cocomplete abelian category C in which filtered colimits 

commute with finite limits or, equivalently, in which filtered co1imits of exact sequences 

are exact. Every Grothendieck category with a separator is complete and has an injective 

coseparator, hence has enough injectives (however there exist wellpowered Grothendieck 

categories that do not have enough injectives). In a Grothendieck category, every fil

tered colimit of monomorphisms is a monomorphism, coproducts of monomorphisms are 

monomorphisms, and t: 11 Xi -+ nXi is a monomorphism. 
i i 

[Note: If C is small and D is Grothendieck, then [C, D] is Grothendieck.] 

AD is a Grothendieck category but its full subcategory whose objects are the finitely generated 

abelian groups, while abelian, is not Grothendieck. If A is a ring with unit, then A-MOD and MOD-A 

are Grothendieck categories. 

Given exact categories { ~ , a functor F : C -+ D is said to be left exact (right exact) 

if it preserves kernels (cokernels) and exact if it is both right and left exact. F is left exact 

(right exact) iff for every short exact sequence 0 -+ X' -+ X -+ X" -+ 0 in C, the sequence 

0-+ FX' -+ FX -+ FX" (FX' -+ FX -+ FX" -+ 0) is exact in D. Therefore F is exact 

iff F preserves short exact sequences or still, iff F preserves arbitrary exact sequences. 

[Note: F is said to be half exact if for every short exact sequence 0 -+ X' -+ X -+ 

X" -+ 0 in C, the sequence FX' -+ FX -+ FX" is exact in D.] 

The projective (injective) objects in an abelian category are those for which Mor(X,-)(Mor (-,X» 

is exact. In AD, X ® - is exact iff X. is flat or here, torsion free. If I is small and filtered and if 0 is 

Grothendieck, then colim : [I,O] - 0 is exact. 
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Given additive categories { ~ , a functor F : C ~ D is said to be additive if for all 

X, Y E ObC, the map Mor(X, Y) ~ Mor (FX, FY) is a homomorphism of abelian groups. 

Every half exact functor between abelian categories is additive. An additive functor be
tween abelian categories is left exact (right exact) iff it preserves finite limits (finite co

limits). The additive functor category [C, D]+ is the full submetacategory of [C, D] whose 

objects are the additive functors. There are Yoneda embeddings { ~o~ ~b~: !:l:. H 

C and D are abelian categories with C small, if K : C ~ D is additive, and if S is a 

complete (cocomplete) abelian category, then there is an additive version of Kan extension 

applicable to {(~: ~1:' The functors produced need not agree with those obtained by 

forgetting the additive structure. 

Let A be a ring with unit viewed as an additive category having exactly one object-then A-MOD 

is isomorphic to [A, AD]+ and MOD-A is isomorphic to [AOP, AD]+. 

[Note: A right A-module X and a left A-module Y define a diagram AOP X A -+ AD (tensor product 

over Z) and the coend fAx ® Y is X ®A Y, the tensor product over A.] 

H C is small and additive and if D is additive, then 

(1) D finitely complete and wellpowered (finitely cocomplete and cowellpowered) 

:::} [C, D]+ wellpowered (cowellpowered)j 

(2) D (finitely) complete:::} [C, D]+ (finitely) complete and D (finitely) cocom

plete :::} [C, D]+ (finitely) cocompletej 

(3) D abelian (Grothendieck) :::} [C,D}+ abelian (Grothendieck). 

[Note: Suppose that C is small. H C is additive, then [C, AB]+ is a complete 

Grothendieck category and if C is exact and additive, then [C, AB]+ has a separator 

which as a functor C ~ AB is left exact.} 

Given a small abelian category C and an abelian category D, write LEX(C, D) for the 

full, isomorphism closed subcategory of [C, D]+ whose objects are the left exact functors. 

DERIVED FUNCTOR THEOREM H C is a small abelian category and if D is 

a wellpowered Grothendieck category, then LEX( C, D) is a reflective subcategory of 

[C, D]+. As such, it is Grothendieck. Moreover, the reflector is an exact functor. 

[Note: The reflector sends F to its zeroth right derived functor RfJ F.] 

If C is a small abelian category, then LEX( C, AB) is a Grothendieck category with 

a separator. Therefore LEX(C,AB) has enough injectives. Every injective object in 
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LEX(C,AB)is an exact functor. The Yoneda embedding CoP --+ [C, AB]+ is left exact. 

It factors through LEX(C, AB) and is then exact. 

[Note: Since C is abelian, every object in [C, AB]+ is a colimit of representable 

functors and every object in LEX(C, AB) is a filtered colimit of representable functors. 

Thus LEX(C,AB) is equivalent to IND(COP) and so LEX(C,AB)OP is equivalent to 

PRO(C).] 

The full subcategory of AD whose objects are the finite abelian groups is equivalent to a small 

category. Its procategory is equivalent to the opposite of the full subcategory of AD whose objects are 

the torsion abelian groups. 

Given an abelian category C, a nonempty class C C Ob C is said to be a Serre class 

provided that for any short exact sequence 0 --+ X' --+ X --+ X" --+ 0 in C, X E C iff 

{r {r X" E C or, equivalently, for any exact sequence X' --+ X --+ X" in C, X" E C => 

XEC. 

[Note: Since Cis nonempty, C contains the zero objects of C.] 

Given an abelian category C. with a separator and a Serre class C, let Se C Mor C 

be the class consisting of those s such that ker sEC and coker sEC-then Se admits a 

calculus of left and right fractions and Se = Se, i.e., Se is saturated. The metacategory 

S;lC is isomorphic to a category. As such, it is abelian and Lsc : C --+ S;lC is exact 

and additive. An object X in C belongs to C iff LscX is a zero object. Moreover, if Dis 

an abelian category and F : C --+ D is an exact functor, then F can be factored through 

Lsc iff all the objects of C are sent to zero objects by F. 

[Note: Suppose that C is a Grothendieck category with a separator U-then for any 

Serre class C, Lsc : C --+ S;lC has a right adjoint iff C is closed under coproducts, in 

which case S;lC is again Grothendieck and has LscU as a separator.] 

Take C = AD and let C be the class of torsion abelian groups-then C is a Serre class and Sc1C is 

equivalent to the category of torsion free divisible abelian groups or still, to the category of vector spaces 

over Q. 

Given a Grothendieck category C with a separator, a reB.ective subcategory D of C 

is said to be a Giraud subc~tegory provided that the reHector R : C --+ D is exact. Every 

Giraud subcategory of C is Grothendieck and has a separator. There is a one-to-one 

correspondence between the Serre classes in C which are closed under coproducts and the 

Giraud subcategories of C. 
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[Note: The Gabriel-Popescu theorem says that every Grothendieck category with a 

separator is equivalent to a Giraud subcategory of A-MOD for some A.] 

Attached to a topological space X is the category OP(X) whose objects are the open subsets of X 

and whose morphisms are the inclusions. The functor category [OP(X)OP, AB] is the category of abelian 

presheaves on X, It is Grothendieck and has a separator. The full subcategory of [OP(X)OP, AB] whose 

objects are the abelian sheaves on X is a Giraud subcategory, 

Fix a symmetric monoidal category V-then a V -category M consists of a class 

o (the objects) and a function that assigns to each ordered pair X, YEO an object 

HOM(X, Y) in V plus morphismsCx,Y,z : HOM(X, Y) 0 HOM(Y, Z) ~ HOM{X, Z), 

Ix : e ~ HOM(X, X) satisfying the following conditions. 

(V-cat} ) The diagram 

HOM (X, Y) ® (HOM(Y, Z) ® HOM(Z, W)) id®C~ HOM (X, Y) ® HOM(Y, W) 

Aj 
(HOM(X, Y) ® HOM(Y, Z)) ® HOM(Z, W) c 

C"id j 
HOM (X, Z) ® HOM(Z, W) ----c::----~~ HOM(X, W) 

commutes. 

(V-cat2) The diagram 

e ® HOM(X, Y) _----=L=---------+) HOM(X, Y) +-< _,----=R'-=--_ HOM(X, Y) ® e 

J@dj jid"J 
HOM(X, X) ® HOM(X, Y) ----:c::--+1 HOM(X, Y) ~< -c- HOM(X, Y) ® HOM(Y, Y) 

commutes. 

[Note: The opposite of a V-category is a V-category and the product of two V

categories is a V-category.] 

The underlying category UM of a V-category M has for its class of objects the class 0, 

Mor(X,Y) being the set Mor(e,HOM(X,Y)). Composition Mor(X,Y) x Mor(Y,Z) ~ 
/®g 

Mor (X, Z) is calculated from e ~ e ® e --t HOM(X, Y) ® HOM(Y, Z) ~ HOM(X, Z), 

while Ix serves as the identity in Mor (X, X). 

[Note: A closed category V can be regarded as a V-category (take HOM(X, Y) 

hom(X, Y)) and UV is isomorphic to V.] 
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Every category is a SET-category and every additive category is an AB-category. 

A morphism F : V -+ W of symmetric monoidal categories is a functor F : V -+ W, a morphism 

€ : e -+ Fe, and morphisms Tx,Y : FX ® FY -+ F(X ® Y) natural in X, Y such that the diagrams 

Fe ® F X _-=T_~) F(e ® X) FX ® Fe _-=T,--~) F(X ® e) 

'@ldl IFL Id@{ IF. 
e ® F X ---:-L-----)o) F X F X ® e --R-:::---~) F X 

F X ® (FY ® F Z) _...:.A:........~) (F X ® FY) ® F Z 

id@TI IT@id 

FX®F(Y®Z) F(X®Y)®FZ 

TI IT 
F(X ® (Y ® Z» --::F-:-A ----+) F«X ® Y) ® Z) 

commute with FTx,Y o Tx,Y = Ty,x 0 TFX,FY. 

Example: Given a symmetric monoidal category V, the representable functor Mor (e, -) determines 

a morphism V -+ SET of symmetric monoidal categories. 

Let F: V -+ W be a morphism of symmetric monoidal categories. Suppose that M is a V-category. 

Definition: F.M is the W-category whose object class is 0, the rest of the data being FHOM(X, Y), 
T Fe. FI 

FHOM(X, Y)®FHOM(Y, Z) -+ F(HOM(X, Y)®HOM(Y, Z» -+ FHOM(X, Z), e -+ Fe -+ FHOM(X, X). 

[Note: Take W = SET and F = Mor(e,-) to recover UM.] 

Fix a symmetric monoidal category V. Suppose given V-categories M, N-then a 

V-functor F : M -+ N is the specification of a rule that assigns to each object X in Man 

object F X in N and the specification of a rule that assigns to each ordered pair X, YEO 

a morphism Fx,y : HOM(X, Y) -+ HOM(FX,FY) in V such that the diagram 

HOM(X, Y) ® HOM(Y, Z) _--,,-c_~) HOM (X, Z) 

FX,Y@FY,ZI IFX,z 
HOM(FX, FY) ® HOM(FY, FZ) -----::c::---"+) HOM(FX, FZ) 

commutes with Fx,x 0 Ix = IFx. 

[Note: The underlying functor U F : UM -+ UN sends X to F X and f e-+ 

HOM(X, Y) to Fx,y 0 f.] 
"'-' Example: HOM: MOP x M -+ V is a V-functor if V is closed. 
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A V-category is small if its class of objects is a set; otherwise it is large. V-CAT, 

.......,/ the category of small V-categories and V-functors, is a symmetric monoidal category. 

Take V = AB-then an additive functor between additive categories "is" a V-functor. 

Fix a symmetric monoidal category V. Suppose given V-categories M, Nand V

functors. F, G : M --t N-then a V-natural transformation B from F to G is a class of 

morphisms Bx : e --t HOM(FX,GX) for which the diagram 

e ® HOM(X,Y) Sx®Gx,y~ HOM(FX,GX) ® HOM(GX,GY) 

L-'I 1e 
HOM(X,Y) HOM(FX,GY) 

r'l Ie 
HOM(X, Y) ® e Fx,y®Sy ~ HOM(~X, FY) ® HOM(FY, GY) 

commutes. 

Assume that V is complete and closed. Let M, N be V-categories with M small-then the category 

V[C, D] whose objects are the V-functors M -> N and whose morphisms are the V-natural transfor

mations is a V-category if HOM(F,G) = [HOM(FX,GX), the equalizer of n HOM(FX,GX)::::; 
Jx xeo n hom(HOM(X', X"), HOM(FX', GX"». 

x/,x"eo 

Let C be a category with pullbacks-then an internal category (or a category object) 

in C consists of an object M, an object 0, and morphisms s : M --t 0, t : M --t 0, 
e : a --t M, c : M x 0 M --t M satisfying the usual category theoretic relations (here, 

MXoM ~ M 

! 
M 

8 

!t). Notation: M = (M,O,s,t,e,c). 

a 
[Note: There are obvious notions of internal functor and internal natural transforma-

tion.] 

An internal category in SET is a small category. An internal category in SISET is a simplicial 

object in CAT. 

An internal category in CAT is a (small) double category. 

[Note: Spelled out, such an entity consists of objects X, Y, . .. , horizontal morphisms I, g, ... , ver

tical morphisms q" 1/1, ... , and bimorphisms (represented diagramatically by squares). The objects and 
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h 
the horizontal morphisms form a category with identities X ~ X. The objects and the vertical mor-

X 

phisms form a category with identities 1J X 1. The bimorphisms have horizontal and vertical laws of 

X 

• ---+ • 
• ---+ • ---+ • 1 1 

composition 1 1 1, • ---+ • under which they form a category with identities 

• ---+ • ---+ • 1 1 
• ---+ • 

• ---+ • ---+ • 
X 

hx 
X X 

J 
Y 

1 1 1 
---+ ---+ 

¢1 id¢ 1¢, 1JX1 idJ 11Jy
· In the situation • ---+ • ---+ • , the result of composing 

y ---+ y X ---+ Y 
1 1 1 hy J 

• ---+ • ---+ • 
horizontally and then vertically is the same as the result of composing vertically and then horizontally. 

Furthermore, horizontal composition of vertical identities gives a vertical identity and vertical compo

sition of horizontal identities gives a horizontal identity. Finally, the horizontal and vertical identities 
hx hx 

X ---+ X X ---+ X 

Example: Let C be a small category-then db C is the double category whose objects are those of 

C, whose horizontal and vertical morphisms are those of C, and whose bimorphisms are the commutative 

squares in C. All sources, targets, identities, and compositions come from C. 

Let C be a category with pullbacks. Given an object 0 in C, an O-graph is an object 

A and a pair of morphisms s, t : A -+ O. O-GR is the category whose objects are the 

O-graphs and whose morphisms (A, s, t) -+ (A', S', t') are the arrows f : A -+ A' such that 

A Xo A' ---+ A' 

s = s' 0 f, t = t' 0 f. If Ax ° A' is defined by the pullback square 1 1 t' and 
A ---+0 

s 

if the structural morphisms are A x 0 A' -+ A' ~ 0, A x ° A' -+ A ~ 0, then A x ° A' is an 

O-graph. Therefore O-GR is a monoidal category: Take A 0 A' to be A Xo A' and let e 

be (O,ido,ido). A monoid M in O-GR is an internal category in C with object element 

O. 
Let C be a category with pullbacks. Given an internal category M in C, the nerve 
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nerM of M is the simplicial object in C defined by neroM = 0, ner1M = M, nernM = 

M Xo ... Xo M (n fact~rs). At the bottom, {~: : nerIM - neroM is {~ , while 

higher up, in terms of the underlying projections, do = (71'"1,'" ,7I'"n-I), dn = (71'"2, ••• ,7I'"n), 

di = (7I'"1l ... , co 71'" n-i,n-i+I, ... ,71'" n) (0 < i < n), and at the bottom, So : neroM - nerl M 

is e, while higher up, Si = ei 0 (7i, where (7i inserts 0 at the n - i + 1 spot and ei is 

id Xo'" Xo e Xo ... Xo id placed accordingly (0 :5 i :5 n). 
[Note: An internal functor M - M' induces a morphism ner M - ner M' of simplicial 

objects.] 

Suppose that C is a. small category. Consider nerC-then an element 1 of ner"C is a diagram of 
10 1,,-1 

the form Xo - Xl - ... - Xn- l - Xn and 

{ 

Xl-",-Xn 

dd = Xo - ... - Xi_l 

Xo - ",-Xn- l 

(i = 0) 
lioli-l 

--------+. Xi+l - ... - Xn 

(i = n) 

(0 < i < n), 

idX' 

ad = Xo - ... - Xi ~Xi - ... - X n . The abstract definition thus reduces to these formulas since 

1 corresponds to the n-tuple (/n-l, ... ! 10)' 

Let C be a category with pullbacks. Given an internal category M in C, a left M-object 

is an object T: Y - 0 in C/O and a morphism A: M Xo Y - Y such that 

MxoY 

and 1 
M ----+ 

t 

M Xo Y ----+ Y 

M x 0 M x 0 Y _C x-,o,-id--l» M x 0 Y -4-( _e x_o:-i_d_ 0 X 0 Y 

;dxo ,l 1, 1 L 

M x 0 Y ----=-A---+> Y Y 

Y 

IT 
o 

commute, where M x 0 Y is defined by the pullback square 

I IT . Example: Take C = SET-then M is a small category and the 
M ----+ 0 

8 

category of left M-objects is equivalent to the functor category [M, SET]. 

[Note: A right M-object is an object S : X - 0 in C/O and a morphism p 

X x 0 M - X such that the analogous diagrams commute, where X x 0 M is defined 
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x Xo M ---+- M 

by the pullback square 1 1 t . Example: Take C = SET-then M is a 
X---+-O 

s 
small category and the category of right M-objects is equivalent to the functor category 

[MoP, SET).] 

Let C be a category with pullbacks. Given an internal category M in C and a 

left M-object Y, the translation category tranY of Y is the category object My 
(My,Oy,sy,ty,ey,cy) in C, where My M x 0 Y,Oy = Y, sy is the projection 

M Xo Y -t Y, ty is the action>.: M Xo Y -t Y, and ey,cy are derived from e: 0 -t M, 

c : M x 0 M -t M. Example: Take C = SET, let M be a small category, and suppose that 

G : M -t SET is a functor-then G determines a left M-object YG and the translation 

category of YG can be identified with the Grothendieck construction on G. 

Let G be a semigroup with unit, G the category having a single object * with Mor(*, *) = G. 

Suppose that Y is a left G-set, i.e., an object in LACTG or still, a left G-object. The translation 

category ofY is (G x y, y, By, ty, ey, cy), where sy(g, y) = y, ty(g, y) = g. y, ey(y) = (e, y), Cy«g2' Y2), 

(gl, Y1» (g2 gl , Y1). E1pecialize and let y = G-then the objects of the translation category of G are the 

elements of G and Mor (gl , g2) ~ {g : ggl = g2 }. 

Let C be a category with pullbacks. Given an internal category M in C, and a 

right M-object X and a left M-object Y, the bar construction bar(X; M; Y) on (X, Y) 

is the simplicial object in C defined by barn(X; M; Y) = X Xo nernM Xo Y. Note that 

p appears only in dn and>' appears only in do. The translation category tran(X, Y) of 

(X,Y) is the category object Mx,y = (Mx,y,Ox,y,sX,y,tx,y,ex,y,cx,Y) in C, where 

Mx,y = X Xo M Xo Y,OX,y = X Xo Y,SX,y = p Xo idy,tx,y = idx Xo >.,ex,y & 
cX,y being definable in terms of e & c. Therefore bar(X; M; Y) ~ ner Mx,y, Example: 

o can be viewed as a right M-object via 0 Xo M!:." M ~ 0 and as a left M-object via 

M Xo 0 ~ M ~ 0, and M can be viewed as a right M-object via M Xo M ...;. M ~ 0 and 

as a left M-object via M X 0 M ~ M ~ 0, so bar( 0; Mj 0), bar( OJ Mj M), bar(Mj Mj 0), 

bar( M j M; M) are meaningful. 

Let G be a group, G the groupoid having a single object * with Mor(*,*) = G. View G as a 

left G-set-then bar(*; G; G) is isomorphic to the nerve of grdG. In fact, the objects of grdG are the 

elements of G and the morphisms of grdG are the elements of G x G (s(g, h) = g, t(g, h) = h, idg = (g, g), 

(h, Ie)o(g, h) = (g, Ie», thus nern grdG = Gx·· . xG (n+l factors) and d.(go, ... , gn) = (gO, ... ,m, ... , gn), 

Si (gO, . .. , gn) = (gO, ... , g. , g. , . .. ,gn)' On the other hand, bar( *; G; G) is the nerve of the translation 

category of G. The functor tranG -+ grdG which is the identity on objects and sends a morphism (g, h) 
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in tranG to the morphism (h, 9 . h) in grdG induces an isomorphism nertranG -+ nergrdG of simplicial 

sets. For (gO, .. . ,gn) --+ (gn, gn -1 gn, ... ,go" . gn) is the arrow nern tranG -+ nern grdG, its inverse 

being (gO,· ... ,g",) --+ (g",g;;~1,g"'-19;;~2"" ,go)· Both nertranG and nergrdG are simplicial right G

sets, viz. (gO, ... ,g",) . g = (gO, ... ,g",g) and (gO, ... ,gn) . g = (gOg, ... ,gng), and the isomorphi~m 

ner tranG --+ ner grdG is equivariant. 

Let T = (T, m, e) be a triple in a category C-then a right T-functor in a category V 

is a functor F : C -+ V plus a natural transformation p : F 0 T -+ F such that the diagrams 

FoToT 

Fml 
FoT 

pT F 
---+ FoT F~FoT 

---+ 
p 

lp, "-lp commute and a left T-functor in a category V is 

F F 

a functor G : V -+ C plus a natural transformation A : ToG -+ G such that the diagrams 
TJ. 

ToToG ---+ 

mal commute. The bar construction bare F; T; G) on 

ToG ---+ 
J. 

(F, G) is the simplicial object In [V, V] defined by barn(F; T; G) = F 0 Tn 0 G, where 
do = pTn-1G, di = FTi-lmTn-i-lG (0 < i < n), dn = FTn-l A, and Sj = FTieTn-iG. 

In particular: barl(F; T; G) = FoToG, baro(F; T; G) = FoG, and do, d1 : FoToG -+ FoG 

are pG, FA, while So : FoG -+ F 0 ToG is Ft:.G. 

Example: If X is aT-algebra in C with structural morphism ~ : T X -+ X, then X 

determines a left T-functor G : 1 -+ C and one writes bar(F; Tj X) for the associated bar 

construction. 

Take V = e, F = T, p = m, and put T = €TG (thus T : ToG -+ To To G). There is a commutative 

diagram 

ToG A ~G 

~ Y 
ToToG~ToG 

~ ~ 
ToG -------------~ G 

from which it follows that A : ToG -+ G is a coequalizer of (do, dt) = (mG, T A). Consider the string 

of arrows ToT'" 0 G ~ T 0 Tn-loG -+ ... -+ ToT 0 G ~ ToG ~ G ~ ToG ~ ToT 0 G -+ .. , -+ 

To T n- 1 oG ~ ToTn 
0 G. Viewing G as a constant simplicial object in [.&. oP, [e, V]], there are simplicial 

morphismsG -+ bar(T;TjG), bar(T;T;G) -+ G, viz. S~O€G: G -+ ToTnoG, Aodo : ToTnoG -+ G, a.nd 

the composition G -+ bareT; T; G) -+ G is the identity. On the other hand, if hi : ToTn oG -+ ToTn+1 oG 
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is defined by h; = Sb(fTn-;+l G)db (0 ::; i ::; n), then do 0 ho = id, dn +1 0 h n = So 0 fG 0 A 0 do, and 

(i < j) 

{ 
hi+1 0 S; 

(i = j > 0) , S; 0 hi = 
hi 0 S;_l 

(i>j+l) 

(i ::; j) 

(i > j) 

[Note: Take instead U = C, G = T, A = m-then with T = FTf, p : F 0 T ---> F is a coequalizer of 

(d1 , do) = (Fm, pT) and the preceding observations dualize.] 
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§1. COMPLETELY REGULAR HAUSDORFF SPACES 

The reader is assumed to be familiar with the elements of general topology. Even so, 

I think it best to provide a summary of what will be needed in the sequeL Not all terms 

will be defined; most proofs will be omitted. 

Let X be a locally compact Hausdorff space (LCH space). 

PROPOSITION 1 A subspace of X is locally compact iff it is loca.l.ly closed, i.e., has 

the form A n U, where A is closed and U is open in X. 

The class of nonempty LCH spaces is closed. under the formation in TOP of finite products and 

arbitrary coproducts. 

[Note: An arbitrary product of nonempty LCH spaces is a LCH space iff all but finitely many of the 

factors are compact.] 

In practice, various additional conditions are often imposed on a LCH space X. The 

connections among the most common of these can be summarized as follows: 

/ metrizable • paracompact ---I>. normal 

compact metrizable 1 
~oompact , .. -compact 

~LindelOf/ 
EXAMPLE Let 0 be the first uncountable ordinal and consider [0,0] (in the order topology)

then [0,0] is Hausdorff. And: (i) [0,0] is compact but not metrizablej (ii) [O,O[ is locally compact and 

normal but not paracompactj (iii) [0,0] x [0, O[ is locally compact but not normal. 

Here are some important points to keep in mind. 

(LCHt) X is completely regular, i.e., X has enough real valued continuous func

tions to separate points and closed sets in the sense that for every point x E X and for every 

closed subset A C X not containing x, there exists a continuous function 4> : X -+ [0,1] 

such that 4>(x) = 1, 4>IA = O. 

(LCH2) X is O'-compact iff X possesses a sequence of exhaustion, i.e., an in

creasing sequence {Un} of relatively compact open sets Un C X such that Un C Un+1 and 

X=UUn • 
n 
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(LCH3 ) x is paracompact iff X admits a representation X = LI Xi, wherethe 
I 

Xi are pairwise disjoint nonempty open u-compact subspaces of X. 

(LCH,,) X is second countable iff X is u-compact and metrizable. 

(a) H X is metrizable, then X is completely metrizable. 

(b) H X is metrizable and connected, then X is second countable. 

Let X be a topological space-then a collection S = {S} of subsets of X is said to be: 

point finite if each z E X belongs to at most finitely many S E Sj 

neighborhood finite if each z E X has a neighborhood meeting at most finitely many 

SESj 

discrete if each z E X has a neighborhood meeting at most one S E S. 

{

point finite 
A collection which is the union of a countable number of neighborhood finite 

discrete 
sub collections is said to be 

{ 

u-point finite 
u-neighborhood finite 
u-discrete. 

A collection S = {S} of subsets of X is said to be closure preserving if for every subcollection So C S, 

USo = USo, So the collection {S: S E So}. 

A collection which is the union of a countable number of closure preserving subcollections is said to 

be IT-closure preserving. 

Every neighborhood finite collection of subsets of X is closure preserving but the converse is certainly 

false since any collection of subsets of a discrete space is closure preserving. A point finite closure preserving 

closed collection is neighborhood finite. However, this is not necessarily true if "closed" is replaced by 

"open" as can be seen by taking X = [0,1], S = {]O, l/n[: n EN}. 

Let S = {S} be a collection of subsets of X. The order of a point z E X with respect 

to S, written ord( z, S), is the cardinality of {S E S : z E S}. S is of finite order if ord( S) = 

sup ord(z, S) < w. The star of a subset Y C X with respect to S, written st(Y, S), is the 
z€x 
set U{S E S : S n Y "I 0}. S is star finite if 'V So E S : #{S E S : S n So "I 0} < w. 

Suppose that U = {Ui : i E I} is a covering of X-then a covering V = {Vj : j E J} 
of X is a refinement (star refinement) of U if each Vj (st(Vj, V» is contained in some Ui 

and is a precise refinement of U if 1= J and Vi CUi for every i. H U admits a point finite 

(open) or a neighborhood finite (open, closed) refinement, then U admits a precise point 

finite (open) or neighborhood finite (open, closed) refinement. 
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To illustrate the terminology, recall that if X is metrizable, then every open covering 

of X has an open refinement that is both neighborhood finite and a-discrete. 

Let X be a completely regular Hausdorff space (CRH space). 

(C) X is compact iff every open covering of X has a finite (neighborhood finite, 

point finite) sub covering. 

(P) X is paracompact iff every open covering of X has a neighborhood finite 

open (closed) refinement. 

(M) X is metacompact iff every open covering of X has a point finite open 

refinement. 

The following conditions are equivalent to paracompactness. 

(PI) Every open covering of X has a closure preserving open refinement. 

(P2) Every open covering of X has a u-closure preserving open refinement. 

(P3 ) Every open covering of X has a closure preserving closed refinement. 

(P4 ) Every open covering of X has a closure preserving refinement. 

PROPOSITION 2 A LCH space X is paracompact iff every open covering of X has 

a star finite open refinement. 

[Suppose that X is paracompact. Given an open covering U = {Ud of X, choose a 

relatively compact open refinement V = {Vj} of U such that each V j is contained in some 

Uj-then every neighborhood finite open refinement of V is necessarily star finite.] 

A collection S = {S} of subsets of a CRH space X is said to be directed if for all SI, S2 E S, there 

exists 83 E S such that 81 u 82 C 83. 

The following condition is equivalent to metacompactness. 

(M)o Every directed open covering of X has a closure preserving closed refinement. 

Given an open covering U of X, denote by UF the collection whose elements are the unions of the finite 

sub collections of U-then UF is directed and refines U if U itself is directed. So the above characterization 

of metacompactness can be recast: 

(M)F For every open covering U of X, UF has a closure preserving closed refinement. 

It is therefore clear that a LCH space X is metacompact iff X admits a representation X = U Ki, 
i 

where {Ki} is a closure preserving collection of compact subsets of X. 

A CRH space X is said to be subparacompact if every open covering of X has a 

a-discrete closed refinement. 

[Note: This definition is partially suggested by the fact that X IS paracompact iff 

every open covering of X has a a-discrete open refinement.] 
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Suppose that X is subparacompact. Let U = {U} be an open covering of X-then U 

has a closed refinement A = U An, where each An is discrete. Every A E An is contained 
n 

in some U A E U. The collection 

is an open refinement of U and V x EX 3 nz : ord(x, Vn .,) = 1. 

FACT X is subparacompact iff every open covering of X has a cr-closure preserving closed refinement. 

A CRH space X is said to be submetacompact if for every open covering U of X there 

exists a sequence {Vn } of open refinements of U such that V x EX 3 nx : ord(x, Vn .,) < W. 

FACT X is submetacompact iff every directed open covering of X has a cr-closure preserving closed 

refinement. 

These properties are connected by the implications: 

metacompact ~ submetacompact 

compact • paracOffiPact( / 

subparacompact 

Each is hereditary with respect to closed subspaces and, apart from compactness, 

each is hereditary with respect to Fu-subspaces (and all subspaces if this is so of open 

subspaces ). 

EXAMPLE (The Thomas Plank) Let Lo = {(:.c,0) : 0 < :.c < I} and for n 2:: 1, let Ln. = 
00 

{(:.c, lin) : 0 ~ :.c < I}. Put X = ULn.. Topologize X as follows: For n 2:: 1, each point of Ln. except 
o 

for (0, lin) is isolated, basic neighborhoods of (0, lin) being subsets of Ln. containing (0, lin) and having 

finite complements, while for n = 0, basic neighborhoods of(:.c, 0) are sets of the form {(:.c, O)}u {(:.c, 11m) : 

m 2:: n} (n = 1,2, ... ). X is a LCH space. Moreover, X is metacompact: Every open covering of X has 

an open refinement consisting of one basic neighborhood for each :.c E X and any such refinement is point 

finite since the order of each :.c E X with respect to it is at most three. But X is not paracompact. In 

fact, X is not even normal: A = {(O, lin) : n = I,2, ... } and B = Lo are disjoint closed subsets of X 
00 

and every neighborhood of A contains all but count ably many points of U Ln., while every neighborhood 
1 

00 

of B contains uncountably many points of U Ln.. Finally, X is subparacompact. This is because X is a 
1 

countable union of closed paracompact subspaces. 
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EXAMPLE (The Burke Plank) Take X = [0, n+[x[o,n+[-{(o, On, n+ the cardinal successor of 

n. For 0 < a < n+, put 

{
Ha = [O,n+[x{a} 

Va = {a} x [0, n+[. 

Topologize X as follows: Isolate all points except those on the vertical or horizontal axis, the basic neigh-

{ 
(O,a) {Ha {(o,a) borhoods of being the subsets of containing and having finite complements. 
(a,O). Va (a, 0) 

X is a metacompact LCH space. But X is not subparacompact. To see this, first observe that if Sand 

T are subsets of X such S n Ha and Tn Va are countable for every a < n+, then X ::F S u T. Let 

U = {Ha : 0 < a < n+} u {Va: 0 < a < n+}. U is an open covering of X and the claim is: U does not 

have a O'-discrete closed refinement V = UVn . To get a contradiction suppose that such a V does exist. 
n 

Let Sn and Tn be the elements of Vn which are contained in {Ha : 0 < a < n+} and {Va: 0 < a < n+ h 

{ 
S = uS,. {S = uS 

respectively-then Vn = S .. u Tn. Write T = ~ Tn where n _ n • Since the V .. are 
n Tn - UTn 

discrete, S n Ha and Tn Va are countable for every a < n+, thus X ::F S U T = uV and so V does not 

cover X. 

[Note: Why does one work with n+ rather than n? Reason: In general, if the weight of X is $ n, 

then X is subparacompact iff X is submetacompact.] 

EXAMPLE (Isbell-Mrowka Space) Let D be an infinite set. Choose a maximal infinite collection S 

of almost disjoint count ably infinite subsets of D, almost disjoint meaning that V S1 ::F S2 E S, #(S1 nS2) < 
w. Observe that S is uncountable. Put 'i{I(D) = SuD. Topologize 'i{I(D) as follows: Isolate the points of 

D and take for the basic neighborhoods of a point S E S all sets of the form {S} U (S - F), F a finite 

subset of S. 'i{I(D) is a LCH space. In addition: S is closed and discrete, while D is open and dense. 

Specialize and let D = N-then X = 'i{I(N) is subparacompact, being a Moore space (cf. p. 1-17), but is 

not metacompact. In fact, since S is uncountable, the open covering {N} U {{ S} uS: S E S} cannot have 

a point finite open refinement. 

[Note: The Isbell-Mrowka space 'i{I(N) depends on S. Question: Up to homeomorphism how many 

distinct 'i{I(N) are there? Answer: 22'" .J 

The coproduct of the Burke plank and the Isbell-Mrowka space provides an example of a submeta

compact X that is neither metacompact nor subparacompact. 

EXAMPLE (The van Douwen Line) The object is to equip X = R with a first countable, sepa.rable 

topology that is finer than the usual topology (hence Hausdorff) and under which X = R is locally compact 

but not submetacompact. Given x E R, choose a sequence {qn(xn C Q such that Ix - qn(x)1 < lin. 
Next, let {Ga : a < 2"'} be an enumeration of the countable subsets Ga of R with #( G a) = 2"'. For 

a < 2"', N = 0,1,2, ... , pick inductively a point 

xaN E Ga - (Q U {XpM : {3 < a or {3 = a and M < N}). 
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Put 

{
50 = {:l:aO : c:w < 2"'} 

5N = {:l:aN : c:w < 2'" and COl C 50} (N = 1,2, ... ) 

00 

and write 5 in place of R - U 5 N. Observe that Q U 50 C 5 and that the 5 N are pairwise disjoint. Given 
1 . 

:I: = :l:aN E R - 5, choose a sequence {Cm(:I:)} C Ca(C 50 C 5) such that 1:1: - em (:I:) I < 11m. Topologize 

X = R as follows: Isolate the points of Q and take for the basic neighborhoods of the sets . {:l:E5- Q 
:l:ER-5 

This prescription defines a first countable, separable topology on the line that is. finer than the usual 

topology. And, since the Kit are compact, it is a locally compact topology. However, it is not a sub

metacompact topology. Thus let UN = 5 U 5N-then UN is open and U = {UN} is an open covering 

of X. Consider any sequence {VM} of open refinements of U. For M = 1,2, ... , and N = 1,2, ... , let 

WMN = U{V E VM : Vn5N ¢'} and form Wo = 50 n n WMN = 50 - U (50 - WMN)' Since 
M,N M,N 

#(50 ) = 2'" and since the 50 - WMN are countable, Wo is nonempty. But any :1:0 in Wo necessarily 

belongs to infinitely many distinct elements of VM (M = 1,2, ... ). Consequently, the topology is not 

8ubmetacompact. 

JONES' LEMMA If a Hausdorff space X contains a dense set D and a closed discrete subspace 

5 with #(5) ~ 2#(D), then X is not normal. 

Application: The van Douwen line is not normal. 

[In fact, each 5N is closed and discrete with #(5N) = 2"'.] 

Let X be a LCH space. Under what conditions is it true that X metacompact ~ X 

paracompact? For example, is it true that if X is normal and metacompact, then X is 

paracompact? This is an open question. There are no known counterexamples in ZFC or 

under any additional set theoretic assumptions. Two positive results have been obtained. 

(1) (Danielst ) A normal LCH space X is paracompact provided that it is bound

edly metacompact, i.e., every open covering of X has an open refinement of finite order. 

(2) (Gruenhage*) A normal LCH space X is paracompact provided that it is 

locally connected and submetacompact. 

t Ganad. J. Math. 35 (1983), 807-823; see also TopologV Appl. 28 (1988), 113-125. 

t TopologV Proc. 4: (1979), 393-405. 
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Suppose tha.t X is normal and metacompact-then on general grounds all that one can say is this. 

Consider any open covering U of X: By metacompactness, U has a point finite open refinement V which, 

by normality, has a precise open refinement W with the property that W is a precise closed refinement of 

V. 

FACT Let X be a CRR space. Suppose that X is submetacompact-then X is normal iff every 

open covering of X has a precise closed refinement. 

A Hausdorff space X is said to be perfect if every closed subset of X is a Gs. The 

Isbell-Mrowka space w(N) is perfect; however, it is not normal (cf. p. 1-12). 
A Hausdorff space X is said to be perfectly normal if it is perfect and normal. The 

ordinal space [0,S1], while normal, is not perfectly normal since the point {S1} is not a Gs. 
On the other hand, X metrizable => X perfectly normal. Every perfectly normal LCH 

space X is first countable. 

[Note: The assumption of perfect normality can be used to upgrade the strength of a 

covering property. 

(1) (Arhangel'skiit) Let X be a LCH space. If X is perfectly normal and meta

compact, then X is paracompact. 

(2) (Bennett-Lutzert ) Let X be a LCH space. If X is perfectly normal and 

submetacompact, then X is subparacompact.] 
A CRH space X is said to be count ably paracompact if every countable open covering 

of X has a neighborhood finite open refinement. The ordinal space [0, S1[ is countably para
compact (being count ably compact) and normal, whereas the ordinal space [0, S1] x [0, S1[ is 
count ably paracompact (being compact x count ably compact = count ably compact) but 

not normal. On the other hand, X perfectly normal => X count ably paracompact. 
To recapitulate: 

paracompact 

~ 1 ~ 
metrizable normal count ably paracompact 

~ T ~ 
perfectly normal 

FACT Suppose that X is normal-then X is countably paracompact iff every countable open 

covering of X has a D'-discrete closed refinement. 

t Soviet Math. Dokl. 13 (1972), 517-520. 

t General Topology Appl. 2 (1972), 49-54. 
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So: In the presence of normality, X subparacompa.ct => X countably paracompact. This implication 

is strict since the ordinal space [O,O[ is normal and countably paracompactj however,.it is not even 

submetacompact (d. p. 1-12). On the other hand: (i) The ordinal space [0, OJ x [O,O[ is nonnormal and 

countably paracompact but not subparacompactj (ii) The Isbell-Mrowka. space "'(N) is nonnormal and 

subparacompact but not countably paracompact (c!. p. 1-12). 

[Note: To verify that X = [0,0] x [O,O[ is not subparacompact, let A = {(O, a) : a < O} and 

B = {(a, a) : a < O}-the~ A and B are disjoint dosed subsets of X. Therefore X = U u V, where 

U = X - A and V = X-B. Since the open covering {U, V} has no u-discrete dosed refinement, X is not 

sUbparacompact.] 

Is every normal LCH space count ably paracompact? This question is a reinforcement 

of the "Dowker problem". Dropping the supposition of local compactness, a Dowker space 

is by definition a normal Hausdorff space which fails to be count ably paracompact or, 

equivalently, whose product with [0,1] is not normal. Do such spaces exist? The answer is 

"yes", the first such example within ZFC being a construction due to M.E. Rudin t. Her 

example is not locally compact and only by imposing assumptions beyond ZFC has it been 

possible to produce locally compact examples. 

The ordinal space [0,0] x [0, O[ is neither first countable nor separable. Can one construct an example 

of a nonnormal countably paracompact LCH space with both of these properties? The answer is "yes". 

Let Sand T be subsets of N. Write S S; T if #(S - T) < w; write S < T if S S; T and #(T - S) = w. 

{ 
s+_ = {st_ : a < O} LEMMA (Hausdorff) There exist collections 
S = {Sa: a < O} 

following properties: 

(1) Va: #(N - (st uS;;» = w. 

(2) V a, V P : P < a => st < sj and Sr; < S; . 
(3) Va: #(st n S;) < w. 

of subsets of N with the 

(4) Va, V n EN: #{p: p < a &. st nSr; C Fn} < w (Fn = {I, ... ,n}), 

There is then no HeN such that Va: st S; Hand S; S; N - H. 

[We shall establish the existence of S+ and S- by constructing their elements via induction on a. 

Start by setting Sit = 0 and SO' = 0. Given st and S;, decompose N - (st US;) into three infinite 

pairwise disjoint sets Nt, N;;, and Na . Put 

t Fund. Math. 73 (1971), 179-186; see also Balogh, Proc. Amer. Math. Soc. 124 (1996), 2555-2560. 
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Then this definition handles the successor ordinals < O. Suppose now that ° < A < 0 is a limit ordinal. 

Choose a strictly increasing sequence {ad c [0,0[: al = 0, supai = A. Fix ni E N such that st, n 
U S;;j C Fni and write Tt for U(sti - Fni )· Note that V a < A : st < Tt and Vi: #(Tt n S;;i) < w. 

j:$;i i 

If Ii = {a : ai :$ a < ai+l & Tt nS;; C Fd and if 1= UIi' then each Ii is finite andso In [0, a[ is 
i 

finite for every a < A. Assign to each nonzero a E li the infinite set S;; - U{S;;j : aj < a} and denote 

by n(a) its minimum element in N - Fi. Relative to this data, define s;t = Tt U {n(a) : a E I (a i:- On. 

Then it is not difficult to verify that 

{
Va < A : st < s1 and Vi: #( S1 n S;;i) < W 

V n EN: #{a: a < A & S1 n S;; C Fn} < w. 

As for SA' observe that (N - S1) - U S;;j is infinite, thus there exists an infinite set LA C (N - S1) 
j :$;i 

such that LA n S;;. is finite for every i. Defining SA = N - (S1 U LA), we have 

{
Va < A : S;; < SA 

s1 n SA = 0,#(N - (S1 USA» = w, 

which completes the induction. There remains the assertion of nonseparation. To deal with it, assume 

that there exists an HeN such that st - Hand S;; n H are both finite for every a < O. Choose an 

n EN: W = {a : S;; n H C Fn} is uncountable. Fix an a E W with the property that W n [O,a[ is 

infinite. If st - He Fm , then {,B : ,B < a & st n Si C Fmax(m,n)} contains W n [0, a[. Contradiction.] 

EXAMPLE (van Douwen Space) Let 

{
X+ = {+I}X]O,O[ 

X- = {-I}x]O,O[ 

and put X = X+ U X- uN. Topologize X as follows: Isolate the points of N and take for the basic 

neighborhoods of a point all sets of the form { 
(+I,a) E X+ 

(-I,a) E X-

{ 
K ( + 1, a : /3, F) = {( + 1, 'Y) : ,B < 'Y ~ a} U « st - st) - F) 

K( -1, a: /3, F) = {(-I, 'Y) :,B < 'Y ~ a} U «S;; - Si) - F), 

where,B < a and FeN is finite. Since the K(±I,a : /3,F) are compact, X is a LCB space. Obviously, 

X is first countable and separable; in addition, X is countably paracompact, X± being a copy of ]0,0[. 

Still, X is not normal. 

[Suppose that the disjoint closed sets X+ and X- can be separated by disjoint open sets U+ and 

U-. Given a E ]0, Or. select an ordinal f(a) < a and a finite subset F(a) C N such that K(±I, a : 

f( a), F( a)) C U±. Choose a ,. < 0 and a cofinal K C [0, O[ such that flK = ,. (by "pressing down" , i.e., 

Fodor's lemma). Put 

{ 
H+ = (st U (N n U+)) - S; 

H- = (S; u (N n U-)) - st. 
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Then H+ n H- = 0. Let a < n be arbitrary. Using the cofinaJity of le and the relation file = K, one finds 

that S~ ~ H±. Contradiction.] 

A CRH space X is said to be countably compact if every countable open covering 

of X has a finite subcovering· or, equivalently, if every neighborhood finite collection of 

nonempty subsets of X is finite. The ordinal space [0, n[ is count ably compact but not 

compact. The van Douwen space is not count ably compact but is count ably paracompact. 

Associated with this ostensibly simple concept are some difficult unsolved problems. Sample: Within 

ZFC, does there exist a first countable, separable, countably compact LCH space X that is not compact? 

This is an open question. But under CH, e.g., such an X does exist (cf. p. 1-17). Consider the asser

tion: Every perfectly normal, count ably compact LCH space X is compact. While innocent enough, this 

statement is undecidable in ZFC (Ostaszewski f , Weisst). 

PROPOSITION 3 X is countably compact iff every point finite open covering of X 

has a finite sub covering. 

[Suppose that X is countably compact. Let U be a point finite open covering of X

then, on general grounds, U admits an irreducible subcovering V. This minimal covering 

must be finite: For otherwise there would exist an infinite subset SeX such that ea"ch 

~ x E X has a neighborhood containing exactly one point of S, an impossibility. 

Suppose that X is not count ably compact-then there exists a count ably infinite 

discrete closed subset D C X, say D = {xn}. Choose a sequence {Un} of nonempty 

open sets whose closures are pairwise disjoint such that V n : Xn E Un. The collection 

{X - D, U1 , U2 , ••• } is a point finite open covering of X which has no finite subcovering.] 

A CRH space X is said to be pseudocompact if every countable open covering of X 

has a finite subco,llection whose closures cover X or, equivalently, if every neighborhood 

finite collection of nonempty open subsets of X is finite. The Isbell-Mrowka space weN) 
is pseudocompact but not count ably compact (cf. p. 1-12). 

PROPOSITION 4 X is pseudocompact iff every real valued continuous function on 

X is bounded. 

[Suppose that X is not pseudocompact-then there exists a count ably infinite neigh

borhood finite collection {Un} of nonempty open subsets of X. Choose a point Xn E Un. 

J. London Math. Soc. 14 (1976), 505-516. 

Ganad. J. Math. 30 (1978), 243-249. 
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Since X is completely regular, there exists a continuous function In : X ~ [0, n] such that 

In(xn) = n, Inl X - Un = O. Put 1= E In: I is continuous and unbounded.] 
n 

A CRH space X is said to be count ably metacompact if every countable open covering 

of X has a point finite open refinement. The ordinal space [0, O[ is countably metacompact 

but not metacompact (cf. p. 1-12). Every perfect X is count ably metacompact. 

The relative position of these conditions is shown by: 

compact ----------+> paracompact ----------+> metacompact 

1 1 1 
count ably compact ---;.) countably paracompact ---+> countably metacompact 

1 
pseudocompact 

FACT X is countably metacompact iff for every countable open covering U of X there exists a 

sequence {Vn} of open refinements of U such that V:z; E X 3 n", : ord(:z;, Vn",) < w. 

[The point here is to show that the stated condition forces X to be countably metacompact. Enu

merate the elements of U : Un (n = 1,2, ... ). Write Wn for the set of all :z; E Un such that V m ~ n 3 V E 

Vm : :z; E V and V rt. U Ui. Then W = {Wn} is a point finite open refinement of U = {Un}. 1 
i<n 

So: X submetacompact => X count ably metacompact. The van Douwen line is not count ably 

metacompact (inspect the argument used to establish nonsubmetacompactness). The Tychonoff plank is 

countably metacompact but is neither submetacompact nor countably paracompact (cf. p. 1-12). 

PROPOSITION 5 If X is pseudocompact and either normal or count ably paracom

pact, then X is count ably compact. 

[Suppose that X is normal. If X is not count ably compact, then there exists a count

ably infinite discrete closed subset D eX, say D = {xn }. By the Tietze extension the

orem, there exists a continuous function I : X ~ R such that I(xn) = n (n = 1,2, ... ). 

Contradiction. 

Suppose that X is countably paracompact. If X is not count ably compact, then there 

exists a countable open covering {Un} of X that cannot be reduced to a finite covering. 

Let {Vn } be a precise neighborhood finite open refinement of {Un}-then there exists a 

finite subset FeN such that Vn =1= 0 iff n E F. But U Vn = X. Contradiction.] 
n 
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EXAMPLE The Isbell-Mrowka space w(N) is not count ably compact. However, w(N) is pseu

docompact so, by the above, it is neither normal nor countably paracompact. 

[Put X = w(N) and suppose that I : X -4 R is continuous but unbounded. Since V S E S, {S} U S 

is compact, liS is bounded. This means that there exists a sequence {:I1n} of distinct points in X such 

that (i) I/(zn)1 ~ nand (ii) V S E S, #({:I1n} n S) < w. The maximality of S then implies that {:I1n} E S. 

Contradiction.] 

EXAMPLE (The Tychonoff Plank) Let X = [0,11] x [O,w]-{(11, w)}. X is not countably compact 

(consider {(11, n) : ° $ n < w}). However, X is pseudocompact so, by the above, it is neither normal nor 

countably paracompact. 

[Suppose that I : X -4 R is continuous-then it suffices to show that I exte~ds continuously to 

{(11,w)}. Because every real valued continuous function on [0,11[ is constant on some tail [a, 11[, Vn $ w, 

there exists an an < 11 and a constan(rn such that I(a,n) = Tn V a ~ an. Put ao = supan-then 

ao < 11. One can therefore let 1(11, w) = rw.] 

PROPOSITION 6 If X is countably compact and submetacompact, then X is com

pact. 

[Let U be an open covering of X. Let {Vn } be a sequence of open refinements of U 

such that V x E X 3 nx: ord(x, VnJ < w. Write Amn for {x : ord(x, Vn) ~ m}-then 

Amn is a closed subspace of X, hence is count ably compact, and Vn is point finite on Amn. 

Proposition 3 therefore implies that Amn can be covered by finitely many elements of Vn . 

Every x E X is in some Amn , so there is a countable open covering of X made up of 

elements from the sequence {Vn }. This covering has a finite subcovering, thus so does U.] 

Consequently, the ordinal space [0,11[ is not submetacompact. It then follows from this that the 

Tychonoff plank is not submetacompact (since [0, 11[ sits inside it as a closed subspace). 

Let X be a eRH space. A 71'-basis for X is a collection 'P of nonempty open subsets 

of X such that if 0 is a nonempty open subset of X, then for some P E 'P, P cO. 

LEMMA Suppose that X is Baire. Let U be a point finite open covering of X-then 

there exists a 71'-basis 'P for X such that V P E 'P and VU E U, either Pc U or pn U = 0. 
[For n 1,2, ... , denote by Xn the subset of X consisting of those points that are in 

at most n elements of U. Each Xn is closed and X = UXn • Let 0 be a nonempty open 
n 

subset of X. Since 0 = U 0 n X n, there will be an n such that 0 n X n has a nonempty 
n 

interior. Let nCO) be the smallest such n. Let Uo C onxn(O) be a nonempty open subset 
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of X. Choose an Xo E Uo that belongs to exactly nCO) elements of U and write P for 

their intersection with Uo-then P = {P} is a 7r-basis for X with the stated properties.] 

Suppose that X is pseudocompact-then X is Baire. To see this, let {On} be a 

decreasing sequence of dense open subsets of X. Let U be a nonempty open subset of 

X. Inductively choose nonempty open sets Vn : VI = U & V n+l C U n On n Vn. By 

pseudocompactness, n V n =1= 0, hence un (n On) =1= 0. 
n n 

PROPOSITION., If X is pseudocompact and metacompact, then X is compact. 

[Let 0 be an open covering of X. Let U = {U} be a point :6.nite open re:6.nement of 

o with the property that U = {U} refines O. Use the lemma to determine a 7r-basis P for 

X per U. Fix PI E P. Consider {U E U : un PI =1= 0}. Since Un PI =1= 0 =? PI C U and 

since U is point :6.nite, it is clear that this is a :6.nite set. If X = st(Pl,U), then :6.nitely 

many elements of 0 cover X and we are done. Otherwise, proceed inductively and, using 

the fact that P is a 7r-basis for X, given n E N choose a Pn +1 E P such that 

Pn+1 eX - U st(Pm,U). 
m~n 

We claim that the process terminates, from which the result. Suppose the opposite--then, 

due to the pseudocompactness of X, {Pn } cannot be neighborhood finite. Therefore there 

exists x E Ux E U with Ux n Pn =1= 0 for infinitely many n, contrary to construction.] 

One cannot replace "metacompact" by "submetacompact" in the preceding result: The Isbell-Mrowka 

space W(N) is pseudocompact and submetacompact but not compact. However, the argument does go 

through under the weaker condition: Every open covering of X has a c:r-point finite open refinement. 

PROPOSITION 8 If X is normal and countably metacompact, then X is countably 

. paracompact. 

One can check: 

(CP) X is countably paracompact iff for every decreasing sequence {An} of 

closed sets such that nAn = 0, there exists a decreasing sequence {Un} of open sets with 
n 

An C Un for every n and such that n Un = 0. 
n 

(CM) X is count ably metacompact iff for every decreasing sequence {An} of 

closed sets such that nAn = 0, there exists a decreasing sequence {Un} of open sets with 
n 

An C Un for every n and such that nUn 0. 
n 
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It remains only to note that for normal X, CP # CM. 

If X is the Tychonoffplank, then X = YuZ, whereY = U [O,i'l] X {n} a.nd Z = [O,i'l[x{w}. Since 
n<w 

Y is an open paracompact subspace of X a.nd Z is a closed countably compact subspace of X, it is clear 

that X is count ably metacompact. Because X is not count ably paracompact, Proposition 8 allows one to 

infer once again that X is not normal (cf. Proposition 5). 

A Hausdorff space X is said to be collectionwise normal if for every discrete collection 

{Aj : i E I} of closed subsets of X there exists a pairwise disjoint collection {Uj : i E I} of 

open subsets of X such that ViE I : Ai C Uj. 
Of course, X collectionwise normal :::} X normal. On the other hand, X normal and 

count ably compact :::} X collectionwise normal. So, the ordinal space [0, U[ is collectionwise 

normal. However, it is not perfectly normal since the set of all limit ordinals a < U, while 

closed, is not a Gs. Rudin's Dowker space is collectionwise normal. 

LEMMA Suppose that X is collectionwise normal. Let {Ai : i E I} be a discrete 

collection of closed subsets of X-then there exists a discrete collection {OJ : i E I} of 

open subsets of X such that ViE I: Ai C Oi. 

[Let {Uj : i E I} be a pairwise disjoint collection of open subsets of X such that 

ViE I : Ai C Uj. Choose an open set U subject to U Aj cUe U c U Ui and then put 
j i 

Suppose that X is normal. Let {An} be a countable discrete collection of closed subsets 

of X-then there exists a countable pairwise disjoint collection {Un} of open subsets of X 

such that V n : An C Un. In fact, given n E N, choose a pair (On, Pn) of disjoint open 

subsets of X such that On :::> An, Pn :::> U Am and then put Un = On n n Pm. 
m~n m<n 

PROPOSITION 9 If X is paracompact, then X is collectionwise normal. 

[Let {Ai : i E I} be a discrete collection of closed subsets of X. Put OJ = X -

U Aj-then the collection {OJ : i E I} is an open covering of X, hence, in view of the 
j# 
paracompactness of X, hasa precise neighborhood finite closed refinement {Gi : i E I}. If 

Uj = X - U Gj, then {Uj : i E I} is a pairwise disjoint collection of open subsets of X 
i~j 

such that ViE I: Aj CUi. Therefore X is collectionwise normal.] 

PROPOSITION 10 If X is collectionwise normal and metacompact, then X is para

compact. 
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[It is enough to prove that a given point finite open covering ° = {O} of X has a 

O'-discrete open refinementU = UUn. Put An = {x: ord(x, O) 5: n}-then An is a closed 
n . 

subspace of X and X = U An. Assign to each x E X the open set Ox = n{O EO: 
n 

X EO}. Using the Ox, we shall construct the Un by induction. To start off, observe that 

{O.t; n Al : x E Ad is a discrete collection of closed subsets of X covering AI. So, by 

collectionwise normality, there exists a discrete collection U1 of open subsets of X covering 

Al such that each element of U1 is contained in some element of O. Proceeding, suppose 
n 

that U Um is a covering of An by open subsets of X, each of which is contained in some 
m=l 

element of 0, with Um discrete. Let Un = U{ U : U E Um, 1 5: m 5: n }-then Un :::> An and 

{ O.t; n (An+ 1 - Un) : x E An+ I - Un} is a discrete collection of closed subsets of X covering 

An+I - Un. Once again, by collectionwise normality, there exists a discrete collection Un+! 

of open subsets of X covering An+I - Un such that each element of Un+! is contained in 
n+l 

some element of 0. And An+l C U Um.] 
m=I 

Trifling modifications in the preceding argument allow one to replace "metacompact" by "submeta

compact" and still arrive at the same conclusion. 

Kemoto t has shown by very different methods that if a normal LCH space X is submetacompact, 

then X is subparacompact. Example: The Burke plank is not normal. 

Let X be a LCH space. Does the chart 

paracompact --~) collectionwise normal ) normal 

~ 
perfectly normal 

admit any additional arrows? We do know that there exists a paracompact X that is not 

perfectly normal and a collectionwise normal X that is not paracompact. 

(Qa) Is every normal LCH space X collectionwise normal? 

[There are counterexamples under MA +-, CH (cf. p. 1-18). Consistency has been 

established modulo the consistency of the existence of a supercompact cardinal.] 

(Qb) Is every perfectly normal LCH space X collectionwise normal? 

[This is undecidable in ZFC.] 

(Qc) Is every perfectly normal LCH space X paracompact? 

t Fund. Math. 132 (1989), 163-169. 
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[The Kunen line under CH and the rational sequence topology over a CUE-set under 

MA +. CH are counterexamples. However, under ZFC alone, the issue has not been 

resolved.] 

These questions (and many others) are discussed by Watson t . 

The construction of topologies by transfinite recursion is an important technique that can be used to 

produce a variety of illuminating examples. 

EXAMPLE [Assume CH] (The Kunen Line) The object is to equip X = R with a first countable, 

separable topology that is finer than the usual topology (hence Hausdorff) and under which X = R is 

locally compact and perfectly normal but not Lindelof, hence not paracompact (since paracompact + 
separable => Lindelof). It will then turn out that the resulting topology is even hereditarily separable and 

collectionwise normal. 

Let {zo. : a < n} be an enumerationofR and put Xo. = {z.8 : j3 < a}, so Xo = R. Let {Go. : a < n} 

be an enumeration of the countable subsets of R such that Va: Go. C Xo.. We shall now construct by 

induction on a :5 n a collection {T a : a :5 n}, where l' a is a topology on X Ot (with dosure operator d a ) 

subject to: 

(a) Va: Ta is a first countable, zero dimensional, locally compact topology on Xa that is finer 

than the usual topology on Xa (as a subspace of R) and, if 01< n, is metrizable. 

(b) V j3 < a : (X(3, 1'.8) is an open subspace of (Xa, Ta). 

(c) V'Y:5 j3 < a: If zf3 E da(G"")'), then z.8 E da(G..,). 

First, take TOt discrete if a :5 w. Assume next that w < a :5 n. If a is a limit ordinal, take for To. 

the topology on XOt generated by U 1'(3. If a is a successor ordinal, say a = j3 + 1, then the problem is 
(3<a 

to define 1'(% on Xa = X.8 U {z(3} and for that we distinguish two cases. 

(*) If there is no 'Y ~ j3 such that z(3 E cIa(G"")'), isolate zf3 and take for 1'(% the topology 

generated by 1'(3 and {z(3}. 

-.( *) Let hn} enumerate h :5 j3 : Z (3 E cIa (G.., )}, each 'Y being listed w times. Put In = 
]z.8 -l/n, Zf3 + l/n[ and pick a sequence {Yn} of distinct points Yn E G"'n nI,.. Choose a discrete collection 

{Kn.(3} of T.8-cIOpen compact sets Kn,fJ : Yn E 1(,.,(3 C In. To complete the induction, take for Ta the 

topology generated by 1'.8 and the sets {zfJ} U U K m • .8 (n = 1,2, ... ). 
m~,. 

It follows that R or still, Xo = U Xa is a first countable, LCH space under TO' Because each Xa 
a<O 

is To-open, Xo is not Lindelof. Every Z E Xo has a countable dopen neighborhood. 

Claim: Let S C R-then #(da(S) - doeS»~ :5 w. 

t In: Open Problems in Topology, J. van Mill and G. Reed (ed.), North Holland (1990), 37-76. 
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[Fix a countable subset G C S such that cla(G) = cla(S). Write G = Gao (some 010 < 0). If 

01 > 010 and ifza E cla{G), then Za E cln(G). Thereforecla(S) -cln(S) C {za: 01 ~ OIO}'] 

The fact that Xn is hereditarily separable is thus immediate. To establish perfect normality, suppose 

that A C Xn is closed-then it is a question of finding a sequence {Un} C 1"n such that A = nUn = 
n 

ncln(Un). Since R is perfectly normal, there exists a sequence {On} of R-open sets such that cIa (A) = 
n 

nOn = ncla(On). From the claim, cIa(A) - A can be enumerated: {an}. Each an E Xn - A, so 
n n 
3 Kn E 'Tn: an E Kn C Xn - A, Kn clopen. Bearing in mind that 'Tn is finer than the usual topology on 

R, we then have 

The final point is collectionwise normality. But as CH is in force, Jones' lemma implies that Xn, being 

separable and normal, has no uncountable closed discrete subspaces. 

[Note: Xn is not metacompact (cf. Proposition 10). However, Xn is countably paracompact (being 

perfectly normal).] 

Retaining the assumption CH and working with 

{ 
Xn = N U ({O} x [O,O[) 

Xa = N U {(O,,B) :,B < OI}, 

one can employ the foregoing methods and construct an example of a first countable, separable, count ably 

compact, noncompact LCH space (cf. p. 1-10). Recursive techniques can also be used in conjunction with 

set theoretic hypotheses other than CH to manufacture the same type of example. 

A eRH space X is said to be a Moore space if it admits a development. 

[Note: A development for X is a sequence {Un} of open coverings of X such that 

V x EX: {st(x,Un )} is a neighborhood basis at x.] 
Every Moore space is first countable and perfect. Any first countable X that is 

expressible as a countable union of closed discrete subspaces Xn is Moore, so, e.g., the 

Isbell-Mrowka space \lI(N) is Moore. 

FACT Suppose that X is a Moore space-then X is subparacompact. 

[Let 0 = {Oi : i E I} be an open covering of X -then the claim is that 0 has a O"-discrete closed 

refinement. Fix a development {Un} for X. Equip I with a well ordering < and put 

Each Ai,n is closed and their totality A covers X. Denote by An the collection {Ai,n : i E I}-then An 

is discrete, so A = U An is a O"-discrete closed refinement of 0.] 
n 
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The metrization theorem of Bing says: X is metrizable iff X is a collectionwise normal 

Moore space. Equivalently: X is metrizable iff X is a paracompact Moore space (d. 
Proposition 9). 

The Kunen line is not a Moore space. For if it were, then, being collectionwise normal, it would be 

metrizable, hence paracompact, which it is not. Variant: The Kunen line is not submetacompact, therefore 

is not subparacompact (cf. the remark following the proof of Proposition 10), proving once again that it 

is not a Moore space. 

Let X be a LCH space. If X is locally connected, normal, and Moore, then X 

is metrizable (Reed-Zenor). Proof: (1) X Moore::;. X subparacompact; (2) X locally 

connected, normal, and subparacompact (hence submetacompact) ::;. X paracompact (via 

the result of Gruenhage mentioned on p. 1-6). Now cite Bing. 

Question: Is every locally compact normal Moore space metrizable? It turns out that this question 

is undecidable in ZFC. 

(1) Under V = L, every locally compact normal Moore space is metrizable. 

[Watson t proved that under V = L, every normal submetacompact LCH space X is paracompact. 

This leads at once to the result.] 

(2) Under MA + ..... CH, there exist locally compact normal Moore spaces that are not metriz-

able. 

[Many examples are known that illustrate this phenomenon. A particularly simple case in point is that 

of the rational sequence topology over a CUE-set. By definition, a CUE-set 5 is an uncountable subset of R 

with the property that VT c 5, there exists a sequence {Un} of open subsetsofRsuch that T = 5n(n Un), 
n 

i.e., T is a relative G6. Assuming MA + ..... CH, it can be shown that every uncountable subset of R having 

cardinality < 2'" is a CUE-set. This said, let 5 be any uncountable subset of the irrationals of cardinality 

< 2"'. Put X = (Q x Q) U (5 x {OJ). Topologize X as follows: Isolate the points of Q x Q and take 

for the basic neighborhoods of (8,0)(8 E 5) the sets {(s,O)} U {(8m, 11m) : m ~ n} (n = 1,2, ... ), where 

{Sn} is a fixed sequence of rationals converging to 8 in the usual sense. X is a separable LCH space. It is 

clear that X is Moore but not metrizable, hence (i) X is perfect but not collectionwise normal and (ii) X 

is subparacompact but not metacompact (since separable + metacompact => Lindelof => paracompact). 

Nevertheless, X is normal. Indeed, given T C 5, it suffices to produce disjoint open sets U, V C X: U :) T 

and V :) 5 - T. Using the fact that 5 is a CUE-set, write T = 5n(n Un) and 5 - T = 5n(n Vn ), where 
n n 

{Un} and {Vn} are sequences of open subsets of R : V n, Un :) Un+1 & Vn :) Vn+1 . Choose open sets 

t Ganad. J. Math. 34 (1982), 1091-1096. 
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{ 
(8 -.!) - Un e Pn 

TnPn =0. 

A topological space X is said to be locally metrizable if every point In X has a 

metrizable neighborhood. H X is paracompact and locally metrizable, then X is metriz

able. Proof: Fix a neighborhood finite open covering U = {Uj : i E I} of X consisting of 

metrizable Ui and choose a development {Ui(n)} for Ui such that V n : Ui(n + 1) refines 

Ui(n)-then the sequence {UUi(l), UUi(2), ... } is a development for X. 
i i 

FACT Suppose that X is submetacompact and locally metrizable--then X is a Moore space. 

[Under the stated conditions, every open covering of X has a closed refinement that is neighborhood 

countable (obvious definition). Construct a a-closure preserving closed refinement for the latter and thus 

conclude that X is subparacompact (by the characterization mentioned on p. 1-4). Suppose, then, tha.t 

X is subparacompact and locally metrizable or, more generally, locally developable in the sense that every 

:II E X has a neighborhood UI/& with a development {Un (:II)}. Let V = UVn be a a-discrete closed refinement 
n 

of {Uz : :II E X}. Assign to each V E Vn an element:llv E X for which V e Uzv ' put Uv = X - (UVn - V), 

and let Um,n(V) = Uv nUm(:IIv). The collection Um,n = {U : U E Um,n(V)(V E Vn )} U {X - UVn } is an 

open covering of X and the sequence {Um •n } is a development for X.] 

A topological manifold (or an n-manifold) is a Hausdorff space X for which there 

exists a nonnegative integer n such that each point of X has a neighborhood that is 

homeomorphic to an open subset of R n • 

[Note: We shall refer to n as the euclidean dimension of X. Homeomorphic topological 

manifolds have the same euclidean dimension (c!. p. 19-25).] 

Let X be a topological manifold-then X is a LCH space. As such, X is locally con

nected. The components of X are therefore elopen. Note too that X is locally metrizable. 

FACT Let X be a second countable topological manifold of euclidean dimension n. Assume: X is 

connected-then there exists a surjective local homeomorphism R n - X. 

PROPOSITION 11 Let X be a topological manifold-then X is metrizable iff X is 

paracompact. 
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[Note: Taking into account the results mentioned on p. 1-2, it is also clear that X is 

metrizable iff each component of X is O'-compact or, equivalently, iff each component of X 

is second countable.] 

A topological manifold is a Moore space iff'it is submetacompact. 

EXAMPLE (The Long Line) Put X = [0, O[x[O, l[ and order X by stipulating that (0:, z) < ({3, y) 

if 0: < {3 or 0: = {3 and z < y. Give X the associated order topology-then the long ray L+ is X - {(O, On 

and the long line L is X II XI,..." ,..., meaning that the two origins are identified. Both L and L + are normal 

connected I-manifolds. Neither L nor L+ is (T-(!ompact, so neither L nor L+ is metrizable. Therefore 

neither L nor L+ is Moore: Otherwise, Reed-Zenor would imply that they are metrizable. Variant: Moore 

=? perfect, which they are not. So, neither L nor L + is submetacompact. Finally, observe that L is not 

homeomorphic to L +. Reason: L is countably compact but L + is not. 

EXAMPLE (The Priifer Manifold) Assign to each r ERa copy of the plane: R; = R2 X {r} = 
{(a, b, r) == (a, b)r}. Denote by Lr the dosed lower half plane in R~, Lr the open lower half plane in R~, 

and 8Lr the horizontal axis in R~. Let H stand for the open upper half plane in R 2• Put X = H u U Lr . 
. r 

Topologize X as follows: Equip H and each Lr with the usual topology and take for the basic neighborhoods 

of a typical point (a,O)r E 8Lr the sets N(a : r : e), a given such being the union of the open rectangle in 

Lr with comers at (a ±e, O)r and (a ±e, -e)r and the open wedge consisting of all points within e of (r, 0) 

in the open sector of H bounded by the'lines of slope l/(a - e) and l/(a + e) emanating from (r,O). So, 

e.g., the sequence (r+ lin, l/n(a+e» converges to (a+e, O)r in the topology of X (although it converges 

to (r,O) in the usual topology). The subspace H U {(O, O)r : r E R} (which is not locally compact) is 

{ 
(z, y) -+ (z, y2) 

homeomorphic to the Niemytzki plane: . X is a connected 2-manifold. Reason: A 
(O,O)r -+ (r,O) 

closed wedge with its apex removed is homeomorphic to a closed rectangle with one side removed. It is 

clear that X is not separable. Moreover, X is not second countable, hence is not metrizable (and therefore 

is not paracompact). But X is a Moore space: Let Un be the collection comprised of all open disks of 

radius lin in H and the Lr together with all the N(a : r : l/n)-then {Un} is a development for X. This 

remark allows one to infer that X is not normal: Otherwise, Reed-Zenor would imply that X is metrizable. .. . {A = {(O, O)r : r rational} 
Exphcltly, if ..' then A and B are disjoint closed subsets of X that fail to 

B = {(O, O)r : r IrratIOnal} 
have disjoint neighborhoods. Since A is countable, this means that X cannot be countably paracompact. 

However, X is Moore, thus is subparacompact. Still, X is not metacompact. For X is locally separable 

(being locally euclidean) and locally separable + metacompact =? paracompact. Apart from all this, X is 

contractible and so is simply connected. 

[Note: There are two other nonmetrizable, nonnormal, connected 2-manifolds associated with this 

construction. 
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(1) Take two disjoint copies of H U U 8Lr and identify the corresponding points on the various 
'1' 

8Lr • The result is Moore and separable but has an uncountable fundamental group. 

(2) Take H U U 8Lr and V r identify (a, 0)'1' and (-a, 0)'1" The result is Moore and separable 
'1' 

but has a trivial fundamental group.] 

According to Reed-Zenor, every normal topological Moore manifold is metrizable. What happens if 

we drop "Moore" but retain perfection? In other words: Is every perfectly normal topological manifold 

metrizable? It turns out that this question is undecidable in ZFC. 

(1) Under MA +..., CH, every perfectly normal topological manifold is metrizable. 

[Lanet proved that under MA +..., CH, every perfectly normal, locally connected LCH space X is 

paracompact. This leads at once to the result.] 

(2) Under CH, there exist perfectly normal topological manifolds that are not metrizable. 

[Let D = {(z, II) E a 2 : -1 < Z < 1 &; 0 < II < 1 }-then the idea here is to coherently paste 0 copies 

of [0, I[ to D via a modification of the Kunen technique (cf. p. 1-16). So let {Ia : a < O} be a collection 

of copies of [O,I[ that are unrelated to D or to each other. Let {za : a < O} be an enumeration of D - D. 

Put X a = D U ( U I p) and X = U X a. Let {Ca : a < O} be an enumeration of the countable subsets 
p<a a<O 

of X such that Va: Ca C Xa. Define a function 4> : X -+ D : 4>ID = idD &; 4>lla = Za. We shall now 

construct by induction on a < 0 a topology ra on Xa subject to: 

(a) Va: (Xa, ra) is homeomorphic to D and 4>a = 4>IXa is continuous. 

(b) V P < a: (Xp,rp) is an open dense subspace of (Xa,ra ). 

(c) V "( ~ P <a: If zp is a limit point of 4>(C..,) in D, then every element of Ip is a limit point 

ofC.., in (Xa,ra). 

Assign to D = Xo the usual topology. If a is a limit ordinal, take for ra the topology on Xa generated 

by U rp. Only condition (a) of the induction hypothesis requires verification. This can be dealt with 
p<a 

by appealing to a generality: Any topological space expressible as the union of an increasing sequence of 

open subsets, each of which is homeomorphic to a"', is itself homeomorphic to a'" (Brownt). If a is a 

successor ordinal, say a = P + 1, then XOt = Xp U Ip and the problem is to define rOt knowing rp. 
00 

Write N = 11 Nit; : V k, #(NIt;) = WI and fix a bijection 'It; : Nit; -+ Qn] - 1,1[. 
1 

Claim: Let {U"'} be a sequence of connected open subsets of D and let {P"'} be a sequence of distinct 

points of D : V n, 

U'" :::>U",+l &;D n nU",=., P'" E U"" 
'" 

t Proc. Amer. Math. Soc. 80 (1980), 693-696; see also Balogh-Bennett, Houston J. Math. 15 (1989), 

153-162. 

t Proc. Amer. Math. Soc. 12 (1961), 812-814. 
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Then there exists an embedding IJ ; D - D such that D - IJ(D) is homeomorphic to [0, 1[ and 

(i) V k: Each point of D - IJ(D) is a limit point of {1J(Pn) : n E N,.}; 

(ii) V n : D -IJ(D) is contained in the interior of the closure. of IJ(Un ). 

[To begin with, there exists a homeomorphism h : D - D such that V n : h(Un ) :J Dn & h(pn) E 

Dn. - Dn+1' where Dn = {(z,y) ED: 0 < y < 1/2n}. Choose next a homeomorphism 9 : D - D for 

which the second coordinate of g( z, y) is again y but for which the first coordinate of g( h(pn» is t,. (n) 

(n EN,., k = 1,2, ... ). Each point of {(z, 0) : -1 < z < I} is therefore a limit point of{g(h(pn» : n ENd. 

Finally, if F is the map with domain D U {( z, 0) : -1 < z < I} defined by , then the { 
FID= idD 

F(z,O) = (lzl,O) 
image D U {(z, 0) : ° ~ z < I}, when given the quotient topology, is homeomorphic to D via I, say. The 

embedding IJ = log 0 h satisfies all the assertions of the claim.] 

To apply the claim, we must specify the Un and the pn in terms of Xf3. Start by letting Un = 

4»ii1 (On(Zf3», where On (zf3) is the intersection of D with the open disk of radius lin centered at zf3. Fix 

a bijection t : [0,13] - N and choose the Pn E Un so that if '"Y ~ 13 and if z f3 is a limit point of 4»( C-y) in 

D, then Pn E C-y n Un for all n E N,(-y). By assumption, there is a homeomorphism flf3 : Xf3 - D. Use 

this to transfer the data from X f3 to D and determine an embedding IJ : D - D. Put 1Jf3 = IJ 0 flf3' write 

D as 1Jf3(Xf3) U (D - 1Jf3(Xf3» and let vf3 : If3 - D - 1Jf3(Xf3) be a homeomorphism. The pair (1Jf3, v(3) 

defines a bijection XOI = Xf3 U If3 - D. Take then for TOI the topology on XOI that renders this bijection 

a homeomorphism and thereby complete the induction. 

Give X = U XOI the topology generated by U TOI-then X is a connected 2-manifold. It is clear 
01<0 01<0 

that X is not Lindelof. Because X is separable (in fact is hereditarily separable), it follows that X is 

not paracompact, thus is not metrizable. There remains the verification of perfect normality. Let A be 

a closed subset of X. Fix an a < n : COl = A. Choose a sequence {On} of open subsets of D such 

that 4»(COI ) = nOn = nOn. Obviously, A C 4>>-l(4)>(COI )) = n4»-l(On) = n4»-l(On). But thanks to 
n n n n 

. condition (c) of the induction hypothesis, 4»-1 (4)>(COI ))-A is contained in X OI ' So write XOI-A = U Kn. Kn 
n 

compact, and let Pn be a relatively compact open subset of X : Kn C Pn C P n C X-A. To finish, 

simply note that A = n"'n = n -:-:-:-n' "'n being 4»-1 (On) - P n . Corollary: X is not submetacompact.] 
n n 

The preceding construction is due to Rudin-Zenorf . Rudin! employed similar methods to produce 

within ZFC an example of a topological manifold that is both normal and separable, yet is not metrizable. 

Is every normal topological manifold collection wise normal? Recall that this question was asked of 

an arbitrary LCH space X on p. 1-15. Using the combinatorial principle <>+, Rudin (ibid.) established 

the existence of a normal topological manifold that is not collectionwise normal. On the other hand, since 

t Houston J. Math. 2 (1976), 129-134. 

Topology Appl. 35 (1990), 137-152. 
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the cardinality of a connected topological manifold is 2"', there are axioms that imply a positive answer 

but I shall not discuss them here. 

Let X be a topological space. A collection {/q : i E I} of continuous functions 

K.i : X -+ [0,1] is said to be a partition of unity on X if the supports of the K.i form a 

neighborhood finite closed covering of X and for every x EX, E K.i(X) = 1. IfU --.: {Ui : i E 
i 

I} is a covering of X, then a partition of unity {K.i : i E I} on X is said to be subordinate 

to U if Vi: spt K.i C Ui. 

[Note: Given a map I : X -+ R, the support of I, written spt I, is the closure of 

{x: I(x) =I- O}.] 
A numerable covering of X is a covering that has a subordinated partition of unity. 

Examples: Suppose that X is Hausdorff-then (1) Every neighborhood finite open cov

ering of a normal X is numerable; (2) Every u-neighborhood finite open covering of a 

countably paracompact normal X is numerable; (3) Every point finite open covering of 

a collectionwise normal X is numerable; (4) Every open covering of a paracompact X is 

numerable. 

[Note: Numerable coverings and their associated partitions of unity allow one to pass 

from the "local" to the "global" without the necessity of imposing a paracompactness 

assumption, a point of some importance in, e.g., fibration theory.] 

The requirement on the functions determining a numeration can be substantially 

weakened. 

(NU) Suppose given a collection {Ui : i E I} of continuous functions Ui : X -+ 

[0,1] such that E Ui(X) = 1 (V x E X)-then there exists a collection {Pi: i E I} of 
i 

continuous functions Pi : X -+ [0,1] such that ViE I: cl(pil(]O, 1])) C uil(]O, 1]) and (a) 

{pil(]O, I]) : i E I} is neighborhood finite and (b) 2;: Pi(X) = 1 (V x EX). 
I 

[Of course, at any particular x E X, the cardinality of the set of i E I such that 

Ui(X) =I- ° is :s; w. Put JL = supui-then JL is strictly positive. Claim: JL is continuous. In 
i 

fact, Ve > 0, every x E X has a neighborhood U : uilU < e for all but a finite number of i, 

thus JL agrees locally with the maximum of finitely many of the Ui and so JL is continuous. 

Let U = 2;:max{O,ui - JL/2} and take for Pi the normalization max{O,ui - JL/2}/u.] 
I 

Suppose that H is a Hilbert space with orthonormal basis {ei : i E I}. ~et X be the unit sphere in, 

H and set tTi(Z) = I{z,ei)l2(z E X)-then the tTj satisfy the above assumptions. 

PROPOSITION 12 Every numerable open covering U = {Ui : i E I} of X has a 

numerable open refinement that is both neighborhood finite and u-discrete. 
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[Let {~i : i E I} be a partition of unity on X subordinate to U. Denote by F 

the collection of all nonempty finite subsets of I. Assign to each F E F the functions 

{ 
m p = min ~. C i E F) . .. . . . 
M 

I C' d F) and put p = max(mp - Mp), whIch IS stnctly posltlve. Wnte 
p = max ~i z 'F P 

pp inplaceofmp-Mp-p/2, O"p in placeofmax{O,pp} and set Vp = {x: O"p(x) > O}-

then V p C {x : mp(x) > Mp(x)} n Uj. The collection V = {Vp ; F E F} is a 
iEP 

neighborhood finite open refinement of U which is in fact O"-discrete as may be seen by 

defining Vn = {Vp : #(F) = n}. In this connection, note that F' #- F" & #CF') = 
#(F") :::} {x : mpl(x) > Mp,(x)} n {x : mplI(x) > MPII(x)} = 0. The numerability of V 

follows upon considering the O"p/O" (0" = 2:O"p),] 
F 

Implicit in the proof of Proposition 12 is the fact that if U is a numerable open covering of X, then 

there exists a countable numerable open covering 0 = {On} of X such that V n,On is the disjoint union 

of open sets each of which is contained in some member of U. 

FACT (Domino Principle) Let U be a numerable open covering of X. Assume: 

(Dl) Every open subset of a member of U is a member of U. 

(D2) The union of each disjoint collection of members of U is a member of U. 

(D3) The union of each finite collection of members of U is a member of U. 

Conclusion: X is a member of U. 

[Work with the On introduced above, noting that there is no loss of generality in assuming that 

On C On+1. Choose a precise open refinement 'P = {Pn } of 0 : V n, P n C Pn+1. Put Qn = 

{
Pn (n=1,2) . 00 00 00 

- and wrIte X = UQn = (UQ2n-1) U (UQ2n) = Xl U X2.] 
Pn - P n -2 (n ~ 3) 1 1 1 

Let X be a topological space-then by { g~~:[O, 1]) we shall understand the set of 

all continuous functions { ; ~ ~ :~, 1]' Bear in mind that C(X) can consist of constants 

alone, even if X is regular Hausdorff. 

A zero set in X is a set of the form Z(/) = {x : I(x) = O}, where I E C(X). 

The complement of a zero set is a cozero set. Since Z(n = Z(min{l, III}), C(X) and 

C(X,[O,l]) determine the same collection of zero sets. All sets of the form {i:: ~~:j ~ ~i 
(I E C(X» are zero sets and all sets of the form { i: ~ ;~:j ~ ~i (I E C(X» arecozero 

sets. The collection of zero sets in X is closed under the formation of finite unions and 

countable intersections and the collection of cozero sets in X is closed under the formation 

of countable unions and finite intersections. The union of a neighborhood finite collection 
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of cozero sets is a cozero set. On the other hand, the union of a neighborhood finite 

collection of zero sets need not be a zero set. But this will be the case if each zero set in 

the collection is contained in a cozero set, the totality of which is neighborhood finite. 

[Note: Suppose that X is Hausdorff-then X is completely regular iff the collec

tion of cozero sets in X is a basis for X. Every compact G6 in a CRH space is a 

If X . al h { closed G6 = zero set 'f X' . £ I 1 h zero set. IS norm ,t en I:'I t' so 1 IS per ect y norma, t en 
open J:' (T = cozero se 

{
closed set = zero set .] 
open set = cozero set 

A {
zero set . fX' . . t' f { zero sets Th bl 

t 
covermg 0 IS a covermg conS1S mg 0 t' e numera e 

cozero se cozero se s 
coverings of X are those coverings that have a neighborhood finite cozero set refinement. 

Example: Every countable cozero set covering U = { Un} of X is numerable. Proof: Choose 

In E C(X, [0, 1]): Un = 1;1 (]O, 1]), put ifJn = 1/2n• In/1 + In & ifJ = L: ifJn, let Un = ifJn/ ifJ, 
n 

and apply NU. 

[Note: Every countable cozero set covering U = {Un} of X has a countable star 

finite cozero set refinement. Proof: Choose In .E C(X, [0, 1]) : Un = 1;1 (]O, 1]), put 

1 = E2-nln and define 
n 

1;1(]o,l])n(J-1(] 11,1])-1-1([ 1
1

,1])) (lsnsm), 
m+ m-

with the obvious understanding if m = I-then the collection {Vm,n} has the properties 

in question.] 

LEMMA Let U = {Ui : i E I} be a neighborhood finite cozero set covering of X-then 

there exists a zero set covering Z = {Zi : i E I} and a cozero set covering V = {'Vi: i E I} 

such that 'V i : Zi C Vi C Vi CUi. 

[Choose a partition of unity {Ki : i E I} on X subordinate to U. Put Vi = Ki1(]O, 1]) 

and take for Zi the zero set of the function m~ Ki - Ki.] 
I 

Let U = {Ui : i E I} be a neighborhood finite cozero set covering of Xi let Z = 
{Zi : i E I} and V = {Vi : i E I} be as in the lemma. Denote by :F the collection of all 

nonempty finite subsets of I. Assign to each F E :F : WF = n Vi n (X - U Zi). The 
iEF irtF 

collection W = {WF : F E :F} is a neighborhood finite cozero set covering of X such that 

'V i : st(Zi, W) C Vi. Therefore {st(x, W) : x E X} refines V, hence U. Now repeat the 

entire procedure with W playing the role of U. The upshot is the following conclusion. 
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PROPOSITION 13 Every numerable open covering of X has a. numerable open star 

refinement that is neighborhood finite. 

FACT Let U = {U; : i E I} be an open covering of X -then U is numerable iff there exists a metric 

space Y, an open covering V of Y, and a continuous function I : X --10 Y such that 1-1 (V) refines U. 

[The condition is clearly sufficient. As for the necessity, let {It; : i E I} be a partition of unity on 

X subordinate to U. Let Y be the subset of [0,1]1 comprised of those y = {y; : i E I} : L: y; = 1. The 
; 

prescription d(y' , y") = L: Iy! - y~'1 is a metric on Y. Define a continuous function I : X --10 Y by sending 

• a: to {It; (a:) : i E I}. Consider the collection V = {Vi : i E I}, where Vi = {y : Y' > O}.J 

Applica.tion: Let U = {U, : i E I} be an open covering of X-then U is numerable iff there exists a 

numerable open covering 0 = {OJ: i E I} of crX such that 'r/ i : cr-1 (Od C Us. 

EXAMPLE Let G be a topological group; let U be a neighborhood of the identity in G-then the 

open covering {a:U : a: E G} is numerable. 

Suppose given a set X and a. collection {Xi: i E I} of topological spaces Xi-

(FT) Let {Ii : i E I} be a collection of functions Ii : Xi --+ X-then the 

final topology on X determined by the Ii is the largest topology for which each Ii is 

continuous. The final topology is characterized by the property that if Y is a topological 

space and if I : X --+ Y is a function, then I is continuous iff 'i i the composition 

I 0 Ii : Xi --+ Y is continuous. 

(IT) Let {Ii : i E I} be a collection of functions Ii : X --+ Xi-then the 

initial topology on X determined by the Ii is the smallest topology for which each Ii is 

continuous. The initial topology is characterized by the property that if Y is a topological 

space and if I : Y --+ X is a function, then I is continuous iff 'i i the composition 

Ii 0 I : Y --+ Xi is continuous. 

For example, in the category of topological spaces, coproducts carry the final topology 

and products carry the initial topology. The discrete topology on a set X is the final 

topology determined by the function 0 --+ X and the indiscrete topology on a set X is 

the initial topology determined by the function X --+ *. If X is a topological space and if 

I : X --+ Y is a surjection, then the final topology on Y determined by I is the quotient 

topology, while if Y is a topological space and if I : X --+ Y is an injection, then the initial 

topology on X determined by I is the induced topology. 

EXAMPLE Let E be a vector space over R-then the finite topology on E is the final topology 

determined by the inclusions F --10 E, where F is a finite dimensional linear subspace of E endowea with 
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its natural euclidean topology. E, in the finite topology, is a perfectly normal paracompact Hausdorff 

space. Scalar multiplication R x E -+ E is jointly continuous; vector addition E x E -+ E is separately 
00 

continuous but jointly continuous iff dim E ::; w. For a concrete illustration, put Roo = URn, where 

° {OJ = R O C Rl C .... The elements of Roo are therefore the real valued sequences having a finite number 

of nonzero values. Besides the finite topology, one can also give Roo the inherited product topology Tp 

or any of the topologies Tl'(1 ::; P ::; 00) derived from the usualll' norm. It is clear that Tp C Tl" C TI'll 

(1 ::; p" < p' ::; 00), each inclusion being proper. Moreover, TJ is strictly smaller than the finite topology. 

To see this, let U = {z E ROO : Vi, IZil < 2- i}-then U is a neighborhood of the origin in the finite 

topology but U is not open in TJ. These considerations exhibit uncountably many distinct topologies on 

ROO. Nevertheless, under each of them, Roo is contractible, so they all lead to the same homotopy type. 

[Note: The finite topology on Roo is not first countable, thus is not metrizable.] 

PROPOSITION 14 Suppose that X is Hausdorff-then X is completely regular iff X 

has the initial topology determined by the elements of C(X) (or, equivalently, C(X, [0, 1]). 

[Note: Therefore, if T' and T" are two completely regular topologies on X, then TI = Til 

iff, in obvious notation, C'(X) = CII(X).) 

When constructing the initial topology, it is not necessary to work with functions whose domain is 

all of X. 

Suppose given a set X, a collection {Ui : i E I} of subsets Ui C X, and a collection {Xi: i E I} of 

topological spaces Xi. Let {Ii : i E I} be a collection of functions Ii : Ui -+ Xi-then the initial topology 

on X determined by the Ii is the smallest topology for which each Ui is open and each Ii is continuous. 

The initial topology is characterized by the property that if Y is a topological space and if I : Y -+ X is 

a function, then I is continuous iff V i the composition 1-1 (Ud.L Ui!!. Xi is continuous. 

EXAMPLE Let X and Y be nonempty topological spaces-then the join X * Y is the quotient 

of X x Y x [0, 1] with respect to the relations . Conventionally , so * { 
(z,y',O) f'V (Z,yll,O) {X * 0 = X 

(z',y,I),...,(z",y,l) 0*Y=Y 

is a functor TOP x TOP -+ TOP. The projection p : sends X x Y x {OJ 
{

Xx Y x [0,1] -+ X * Y 

. (z,y,t) -+ [z,y,t] 
(or X x Y x {I}) onto a closed subspace homeomorphic to X (or Y). Consider now X * Y as merely 

{ 
z : t- 1 ([0, 1[) -+ X 

a set. Let t : X * Y -+ [0,1] be the function [z, y, t] -+ t; let be the functions 
y : t- 1 (]O, 1]) -+ Y 

{ 
[z, y, t] -+ Z th h .. X Y' X Y . d . h h ... I I d . ed b - en t e coarse Jom *c IS * eqUlppe Wit t e Imtla topo ogy etermm y 
[z,y,t]-+y 

t, z, and y. The identity map X * Y -+ X *c Y is continuous; it is a homeomorphism if X and Yare 

compact Hausdorff but not in general. The coarse join X *c Y of Hausdorff X and Y is Hausdorff, thus so 

is X * Y. The join X * Y of path connected X and Y is path connected, thus so is X *c Y. Examples: (1) 
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The ~ r x of X is the join of X and a single point; (2) The suspension EX of X is the join of X and a 

pair of points. There are also coarse versions of both the cone and the suspension, say { r c
X 

. Complete 
. EcX 

the picture by setting . 
{ 

X*c 0 = X 

0*c y = y 
[Note: Analogous definitions can be made in the pointed category TOP •. ] 

FACT Let X and Y be topological spaces-then the identity map X * Y - X *c Y is a homotopy 

equivalence. 

{ 

[z,1/,O] (0 ~ t ~ 1/3) 

[A homotopy inverse X *c Y - X * Y is given by [z, 1/, t] - [z, 1/, 3t - 1] (1/3 ~ t ~ 2/3). Since 

[z,1/,1] (2/3 ~ t ~ 1) 
the homotopy type of X * Y depends only on the homotopy types of X and Y and since the coarse join is 

associative, it follows that the join is associative up to homotopy equivalence.] 

EXAMPLE (Star Construction) The cone r X of a topological space X is contractible and there 

is an embedding X - rx. However, one drawback to the functor r : TOP - TOP is that it does not 

preserve embeddings or finite products. Another drawback is that while r does preserve HAUS, within 

HAUS it need not preserve complete regularity (consider rx, where X is the Tychonoff plank). The star 

construction eliminates these difficulties. Thus put 0* = 0 and for X ¢ 0, denote by X* the set of all 

right continuous step functions f : [0,1[- X. So, f E X* iff there is a partition ao = 0 < al < ... < a .. < 
1 = a .. +l of [0, 1[ such that f is constant on [ai, ai+l [ (i = 0,1, ... , n). There is an injection i : X - X* 

that sends z E X to i( z) E X*, the constant step function with value z. Given a, b : 0 ~ a < b < 1, U an 

open subset of X, and E > 0, let O(a, b, U, E) be the set of f E X* such that f is constant on [a, b[, U is a 

neighborhood of f(a), and the Lebesgue measure of {t E [a, b[: f(t) tI. U} is < f. Topologize X* by taking 

the O( a, b, U, f) as a subbasis-then i : X - X* is an embedding, which is closed if X is Hausdorff. The 

assignment X - X* defines a functor TOP - TOP that preserves embeddings and finite products. It 

restricts to a functor HAUS - HAUS that respects complete regularity. 

Claim: Suppose that X is not empty-then X* is contractible and has a basis of contractible open 

sets. . {kW [Flx fo E X* and define H : X* X [0,1] - X* by HU, T)(t) = 
f(t) 

(0 ~ t < T) 

(T ~ t < 1)'] 

An expanding sequence of topological spaces is a system consisting of a sequence 

of topological spaces X" linked by embeddings I",n+l: X" -+ X"+l, Denote by XOO 

the colimit in TOP associated with this data-then for every n there is an arrow 1",00: 

X" -+ Xoo and the topology on Xoo is the final topology determined by the 1",00, Each 

1",00 is an embedding and XOO = U 1"'oo(X"). One can therefore identify X" with 

" 1"'oo(X") and regard the 1","+1 as inclusions. 
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[Note: If all the /n,n+l are open (closed) embeddings, then the same holds for all the 
/n,ClCl. ] 

If all the xn are TI, then XClCl is Tl. If all the xn are Hausdorff, then XClCl need not 

be Hausdorff but there are conditions that lead to this conclusion. 

(A) If all the xn are LCH spaces, then XClCl is a Hausdorff space. 

[Let x, y E XClCl : x 1: y. Fix an index no such that x, y E Xno. Choose open relatively 

compact subsets Uno, Vno C Xno : X E Uno & y E Vno , with Uno n V no = 0. Since Uno and 
V no are compact disjoint subsets of xno+l, there exist open relatively compact subsets 

Uno+1! Vno+1 C X n0+l : Uno C Uno+l & Vno C Vno+1 , with U no+l n V no+l = 0. Iterate 

the procedure to build disjoint neighborhoods U = U Un and V = U Vn of X and y 
n~no n~no 

in XClCl.J 

(B) Suppose that all the xn are Hausdorff. Assume: V n,Xn is a neighborhood 

retract of Xn+l-then XClCl is Hausdorff. 

(C) If all the xn are normal (normal and count ably paracompact, perfectly 

normal, collectionwise normal, paracompact) Hausdorff spaces and if V n, xn is a closed 

subspace of X n+1 , then XClCl is a normal (normal and count ably paracompact, perfectly 

normal, collectionwise normal, paracompact) Hausdorff space. 

[The closure preserving closed covering {xn} is absolute, so the generalities on p. 5-4 

can be applied. J 

LEMMA Given an expanding sequence of T 1 spaces, let </J : K -+ XClCl be a continuous 

function such that </J( K) is a compact subset of XClCl-then there exists an index n and a 

continuous function </In : K -+ xn such that </J = /n,ClCl 0 </In • 

EXAMPLE Working in the plane, fix a countable dense subset S = is,,} of {(z, y) : z = o}. Put 

X" = {(z, y) : z > O}u{so, ... ,s,,} and let ,,,,,,+1 : X" ~ X,,+1 be the inclusion-thenXOO is Hausdorff 

but not regular. 

EXAMPLE (Marciszewski Space) Topologize the set [0,2] by isolating the poi~ts in ]0,2[, basic 

neighborhoods of 0 or 2 being the usual ones. Call the resulting space Xo. Given n > 0, topologize the 

set ]0, 2[x[O, 1] by isolating the points of ]0, 2[x]O,1] along with the point (1,0), basic neighborhoods of 

(t,O) (0 < t < 1 or 1 < t < 2) being the subsets of L" that contain (t,O) and have a finite complement, 

where L" is the line segment joining (t,O) and (t + 1 - lin, 1) (0 < t < 1) or (t,O) and (t - 1 + lin, 1) 

(1 < t < 2). Call the resulting space X". Form Xo II Xl II··· II X" and let X" be the quotient obtained 

by identifying points in ]0,2[. Each X" is Hausdorff and there is an embedding 1",,,+1 : X" ~ X"+1. 

But Xoo is not Hausdorff. 
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{ 
XO C Xl C··· 

FACT Suppose that are expanding sequences of LCH spaces-then XOO x yoo = 
yo C yl c ... 

colim (xn x yn). 

Let X be a topological space-then a filtration on X is a sequence XO, Xl , ... of 

subspaces of X such that \I n : xn C xn+l. Here, one does not require that U xn = X. 
n 

A filtered space X is a topological space X equipped with a filtration {xn}. A filtered map 

f: X -+ Y of filtered spaces is a continuous function f : X -+ Y such that \I n : f( xn) c 
yn. Notation: f E C(X, Y). FILSP is the category whose objects are the filtered spaces 

and whose morphisms are the filtered maps. FILSP is a symmetric monoidal category: 

Take X ® Y to be X x Y supplied with the filtration n -+ U XP X yq, let e be the one 
p+q=n 

point space filtered by specifying that the initial term is =f:. 0, and make the obvious choice 

for T. There is a notion of homotopy in FILSP. Write I for [ = [0,1] endowed with its 

skeletal filtration, i.e., [0 = {O, I}, [n = [0,1] (n ~ I)-then filtered maps f,g : X -+ Y 

are said to be filter homotopic if there exists a filtered map H : X ® I -+ Y such that 

{ 
H(x,O) = I(x) ( X) 
H(x, 1) = g(x) x E . 

Geometric realization may be viewed as a functor I?I : SISET - FILSP via consideration of 

skeletons. To go the other way, equip An with its skeletal filtration and let 4 n be the associated filtered 

space. Given a filtered space X, write sinX for the simplicial set defined by sinX«(n]) = sinnX = 
C(4 n ,X)-then the assignment X - sin X is a functor FILSP - SISET and (I?I, sin) is an adjoint 

pair. 

If C is a full subcategory of TOP (HAUS) and if X is a topological space (Hausdorff 

topological space), then X is an object in the monocoreflective hull of C in TOP (HAUS) 

iff there exists a set {Xi} c Ob C and an extremal epimorphism I : II Xi -+ X (cf. p. 0-21 
i 

ff.). Example: The monocoreflective hull in TOP of the full subcategory of TOP whose 

objects are the locally connected, connected spaces is the category of locally connected 

spaces. 

[Note: The categorical opposite of "epireflective" is "monocoreflective".] 

EXAMPLE (A Spaces) The monocoreflective hull in TOP of (0,1]/(0, 1( is the category of A 

spaces. 

EXAMPLE (Sequential Spaces) A topological space X is said to be sequential provided that a 

subset U of X is open iff every sequence converging to a point of U is eventually in U. Every first 
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countable space is sequential. On the other hand, a compact Hausdorff space need not be sequential 

(consider [0, OJ). Example: The one point compactification of the Isbell-Mrowka space weN) is sequential 

but there is no sequence in N converging to 00 E N. If SEQ is the full, isomorphism closed subcategory 

of TOP whose objects are the sequential spaces, then SEQ is closed under the formation in TOP of 

coproducts and quotients. Therefore SEQ is a monocoreflective subcategory of TOP (cf. p. 0-21), hence 

is complete and cocomplete. The coreflector sends X to its sequential modification sX. Topologically, 

sX is X equipped with the final topology determined by the </> E C(N 00, X), where N 00 is the one 

point compactification of N (discrete topology). The monocoreflective hull in TOP of Noo is SEQ, so 

a topological space is sequential iff it is a quotient of a first countable space. SEQ is cartesian closed: 

C(s(X x Y), Z) ~ C(X, ZY). Here, s(X x Y) is the product in SEQ (calculate the product in TOP and 

apply 8). As for the exponential object ZY, given any open subset P C Z and any continuous function 

</> ; Noo --+ Y, put 0(</>, P) = {g E C(Y, Z) : g(</>(N 00» C P} and call C .. (Y, Z) the result of topologizing 

C(Y, Z) by letting the 0(</>, P) be a subbasis-then ZY = sCs(Y, Z). 

[N ote: Every CW complex is sequential.] 

A Hausdorff space X is said to be compactly generated provided that a subset U of 

X is open iff U n K is open in K for every compact subset K of X. Examples: (1) Every 

LCH space is compactly generated; (2) Every first countable Hausdorff space is compactly 

generated; (3) The product R K
, /'\, > w, is not compactly generated. A Hausdorff space 

is compactly ,!;l;enerated iff it can be represented as the quotient of a LCH space. Open 

subspaces and closed subspaces of a compactly generated Hausdorff space are compactly 

generated, although this is not the case for arbitrary subspaces (consider N U {p} C j3N, 

where p E j3N - N). However, Arhangel'skii t has shown that if X is a Hausdorff space, then 

X and all its subspaces are compactly generated iff for every A C X and each x E A there 

exists a sequence {xn} C A : limxn = x. The product X X Y of two compactly generated 

Hausdorff spaces may fail to be compactly generated (consider X = R - {1/2, 1/3, ... } 

and Y = R/N) but this will be true if one of the factors is a LCH space or if both factors 

are first countable. 

EXAMPLE (Sequential Spaces) A Hausdorff sequential space is compactly generated. In fact, a 

Hausdorff space is sequential provided that a subset U of X is open iff Un J( is open in J( for every second 

countable compact subset K of X. 

EXAMPLE Equip Roo with the finite topology and let H(R 00) be its homeomorphism group. 

t Czech. Math. J. 18 (1968), 392-395. 
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Give H(R 00) the compact open topology-then H(ROO
) is a perfectly normal paracompact Hausdorff 

.~ space. But H(ROO ) is not compactly generated. 

[The set of all linear homeomorphisms R= -- R= is a closed subspace or H(R=). Show that it is 

not compactly generated.' Incidentally, H (R 00) is contractible.] 

For certain purposes of algebraic topology, it is desirable to single out a full, isomor

phism closed subcategory of TOP, small enough to be "convenient" but large enough to 

be stable for the "standard" constructions. A popular candidate is the category CGH of 

compactly generated Hausdorff spaces (Steenrod t ). Since CGH is closed under the for

mation in HAUS of coproducts and quotients, CGH is a monocoreflective subcategory of 

HAUS (cf. p. 0-21). As such, it is complete and cocomplete. The coreflector sends X to 

its compactly generated modification kX. Topologically, kX is X equipped with the final 

topology determined by the inclusions K ~ X, K running through the compact subsets of 

X. The identity map kX ~ X is continuous and induces isomorphisms of homotopy and 

singular homology and cohomology groups. If X and Yare compactly generated, then their 

productinCGHisXxkY = k(XxY). Each of the functors XkY: CGH ~ CGHhas 

a right adjoint Z ~ ZY, the exponential object ZY being kC(Y, Z), where C(Y, Z) carries 

the compact open topology. So one of the advantages of CGH is that it is cartesian closed. 

Another advantage is that if {~':" are in CGH and if {: :: : :':" are quotient, then 

f x kg: X x k Y ~ X' X k yl is quotient. But there are shortcomings as well. Item: The 

forgetful functor CGH ~ TOP does not preserve colimits. For let A be a compactly 

A -- * 
generated subspace of X and consider the pushout square 1 1 in CGH-then 

X -- P 
P = heX 1 A), the maximal Hausdorff quotient of the ordinary quotient computed in TOP. 

To appreciate the point, let X = [0,1], A = [0, 1 [-then [0,1]/[0, 1[ is not Hausdorff and 

herO, 1]/[0, 1[) is a singleton. Finally, it is clear that CGH is the monocoreflective hull in 

HAUS of the category of compact Hausdorff spaces. 

CGH., the category of pointed compactly generated Hausdorff spaces, is a closed category; Take 

X (6) Y to be the smash product X#k Y (cf. p. 3-28) and let e be Sa. Here, the internal hom functor sends 

(X, Y) to the closed subspace of kC(X, Y) consisting of the base point preserving continuous functions. 

FACT Let X be a CRH space. Suppose that there exists a sequence {Un} of open coverings of X 

such that 'if or EX; /{x nst(x,Un) is compact and {st(x,Un )} is a neighborhood basis at [(x (i.e., any 
n 

t Michigan Math. J. 14 (1967), 133-152. 
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open U containing KIJIJ contaill8 some st(.2:,U,,»-then X is compactly generated. Example: Every Moore 

space is compactly generated. 

[Note: Jiangt has shown that any CRH space X realizing this assumption is necessarily submeta

compact.] 

In practice, it can be troublesome to prove that a given space is Hausdorff and 

while this is something which is nice to know, there are situations when it is irrele

vant. We shaJ.l therefore enlarge CGH to its counterpart in TOP, the category CG 

of compactly generated spaces (Vogt*), by passing to the monocoreflective hull in TOP of 
the category of compact Hausdorff spaces. It is thus immediate that a topological space 

is compactly generated iff it can be represented as the quotient of a LCH space. Con

sequently, if X is a topological space, then X is compactly generated provided that a 

subset U of X is open iff ¢-l(U) is open in K for every ¢ E C(K, X), K any compact 

Hausdorff space. What has been said above in the Hausdorff case is now applicable in 

general, the main difference being that the forgetful functor CG -+ TOP preserves co

limits. Also, like CGH, CG is cartesian closed: C(X Xk Y, Z) ~ C(X, ZY). Of course, 

X Xk Y = k(X x Y) and the exponential object ZY is defined as follows. Given any open 

subset P C Z and any continuous function ¢ : K -+ Y, where K is a compact Hausdorff 

space, put O(¢,P) = {g E C(Y,Z): g(¢(K» C P} and ca.ll Ck(Y,Z) the result of to polo

gizing C(Y, Z) by letting the O( ¢, P) be a subbasis-then ZY = kCk(Y, Z). Example: A 

sequential space is compactly generated. 

[Note: If X and Yare compactly generated and if I: X -+ Y is a continuous injection, 

then I is an extremal monomorphism iff the arrow X -+ k I( X) is a homeomorphism, where 

I(X) hi;lS the induced topology. Therefore an extremal monomorphism in CG need not be 

an embedding (= extremal monomorphism in TOP). Extremal monomorphisms in CG 
are regular. Call them CG embeddings.] 

EXAMPLE Partition [-1,1] by writing [-1,1] = {-I} U U {.2:, -.2:} U {I}. Let X be the 
OSIJlJ<l 

associated quotient space-then X is compactly generated (in fact, first countable). Moreover, X is 

compact and Tl but not Hausdorff; X is also path connected. 

{

XXk Y _ X 
FACT Let X and Y be compactly generated-then the projections are open maps. 

X Xk Y-Y 

t Topology Proc. 11 (1986), 309-316. 

* Arch. Math. 22 (1971), 545-555; see also Wyler, General Topology Appl. 3 (1973), 225-242. 
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Given any class K of compact spaces containing at least one nonempty space, denote 

Ly M the llwllowrdl.edive hull of }C ill TOP I:I.lHllct R : TOP ~ M Le the aooociateJ 

coreflector. If X is a topological space, then a subset U of RX is open provided that 

¢-l(U) is open in J< for every ¢ E C(J<,X), J< any element of K. Write A-K for the full, 

isomorphism closed subcategory of TOP whose objects are those X which are ~-separated 

by K, i.e., such that ~x == {(x, x) : x E X} is closed in R(X x X)-then ~-K is 

closed under the formation in TOP of products and embeddings. Therefore ~-K is an 

epireflective subcategory of TOP (cf. p. 0-21). Examples: (1) Take for K the class of all 

finite indiscrete spaces-then an X in TOP is ~-separated by K iff it is To; (2) Take for 

K the class of all finite spaces-then an X in TOP is ~-separated by K iff it is T1 • 

[Note: Recall that a topological space X is Hausdorff iff its diagonal is closed in X x X 

(product topology).] 

EXAMPLE (Sequential Spaces) Let X be a topological space-then every sequence in X has at 

most one limit iff Ll.x is sequentially closed in X x X, i.e., iff X is Ll.-separated by}( = {Nco}. When this 

is so, X must be Tl and if X is first countable, then X must be Hausdorff. 

[Note: Recall that a topological space X is Hausdorff iff every net in X has at most one limit.] 

If K is a compact space, then for any ¢ E C(K,X), ¢(K) is a compact subset of X. 

In general, ¢( J<) is neither closed nor Hausdorff. 

(K 1 ) A topological space X is said to be Kl provided that V ¢ E C(J<,X) 

(J< E K), ¢(J<) is a closed subspace of X. 

(K2 ) A topological space X is said to be K2 provided that V ¢ E C (J<, X) 

(J< E K), ¢(K) is a Hausdorff subspace of X. 

A topological space X which is simultaneously Kl and K2 is necessarily ~-separated 

by K. 

Specialize the setup and take for K the class of compact Hausdorff spaces (McCord t ), 

so M' CG. Suppose that X is Kl (hence T 1 )-then X is K2 • Proof: Let {; E ¢( K) 

(¢ E C(K,X» : x =1= y, choose disjoint open sets {~ C J< : {:=:~~~ ~ ~ and consider 

{ 
¢(K) - ¢(K - U) . 
</>(K) _ </>(I{ _ V)' D('not(' by ~~CG th(' full subcategory of CG whoR(, objects are 

~-separated by K. There are strict inclusions COB C A-CO C CG. Example: Every 

first countable X in ~-CG is Hausdorff. 

t Trans. Amer. Math. Soc. 146 (1969), 273-298; see also Hoffmann, Arch. Math. 32 (1979), 487-504. 
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LEMMA Let X be a D.-separated compactly generated space-then X is 1::,1' 

[Let K, L E 1::,; let 4> E C(K, X), t/J E C(L,X). Since 4> x t/J : K x L -+ X Xi X is 

continuous, (4)x t/J )-I(D.X) is closed in KxL. Therefore t/J-l( 4>(K» = prL « 4>x t/J )-1 (D.X» 
is closed in L.] 

It follows from the lemma that every D.-separated compactly generated space X is T 1. 

More is true: Every compact subspace A of X is closed in X. Proof: For any 4> E C(K, X) 
(K E 1::,), An 4>(K) is a closed subspace of A, thus is 'compact, so An 4>(K) is a closed 

subspace of 4>(K), implying that 4>-I(A) = 4>-I(A n 4>(K» is closed in K. Corollary: The 

intersection of two compact subsets of X is compact. 

Equalizers in CGH and a-CG are closed (e.g., retracts) but a-CG is better behaved 

than CGH when it comes to quotients. Indeed, if X is in a-CG and if E is an equivalence 

relation on X, then XI E is in a-CG iff E C X X i X is closed. To see this, let p : X -+ XI E 
be the projection. Because p x. p: X x. X -+ XIE x. XIE is quotient, D.X/E is closed 

in XI E Xi XI E iff (p Xi p)-l(D.X/E) = E is closed in X Xi X. Consequently, if A eX 

is closed, then X I A is in' a-CG. 

[Note: Recall that if X is a topological space, then for any equivalence relation E on 

X, XIE Hausdorff => E c X X X closed and E c X X X closed plus p: X -+ XIE open 

=> XI E Hausdorff.] 

a-CG, like CG and CGH, is cartesian closed. For a-CG has finite products and if 

X is in CG and if Y is in a-CG, then kCi(X, Y) is in a-CG. 

[Note: Suppose that B is D.-separated-then CG I B is cartesian closed (Booth

Brownt ).] 

CG. and A-CG. are the pointed versions of CG and A-CG. Both are closed categories. 

[Note: The pointed exponential object ZY is homeY, Z).] 

EXAMPLE Let X be a nonnormal LCH space. Fix nonempty disjoint closed subsets A and B of X 

that do not have disjoint neighborhoods-then XIA and XIB are compactly generated Hausdorffspaces 

but neither XI A nor XI B is regular. Put E = A X AU B X B u Ax. The quotient XI E is a A-separated 

compactly generated space which is not Hausdorff. Moreover, XI E is not the continuous image of any 

compact Hausdorff space. 

[Note: Take for X the Tychonoff plank. Let A = HO, n) : 0 s: n < WoI} and B = Ha, WoI) : 0 s: 
a < O}-then XI E is compact and all its compact subspaces are closed. By comparison, the product 

XI E X XI E, while compact, has compact subspaces that are not closed.] 

t General Topolo9' Appl. 8 (1978), 181-195. 
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EXAMPLE (k-Spaces) ThE' monocoreflective hull in TOP of the category of compact spaces is 

the category of k-spaces. In other words, a topological space X is a provided that a subset U of 
--'---

X if' oppn iff (r n If is opt'n in f( for t'vt'ry compact subf't't f( of X. F:Vt'fy compact Jy gt'nt'ratt'd spacE' if' a 

k-space. The converse is false: Let X be the subspace of [0, 0] obtained by deleting all limit ordinals except 

O-then X is not discrete. Still, the only compact subsets of X are the finite sets, thus kX is discrete. 

The one point compactification Xoo of X is compact and contains X as an open subspace. Therefore Xoo 

is not compactly generated but is a k-space (being compact). The category of k-spaces is similar in many 

respects to the category of compactly generated spaces. However, there is one major difference: It is not 

cartesian closed (Cincura t). 

[Note: If K is the class of compact spaces, then HAUS C a-K and the inclusion is strict. Reason: 

A topological space X is in a-K iff every compact subspace of X is Hausdorff.] 

FACT Let XO C Xl C ... be an expanding sequence of topological spaces. Assume: V n, xn IS In 

a-CG and is a dosed subspace of Xn+l-then XOO is in a-CG. 

[That XOO is in CG is automatic. Let I< be a compact Hausdorff space; let 4> E C(I<, Xoo)-then, 

from the lemma on p. 1-29. 4>(I<) c xn (3 n) => 4>(K) is closed in xn => 4>(I<) is closed in xoo.] 

EXAMPLE Let (Xo,xo), (XI,XI),'" be a sequence of pointed spaces in 

a-CG •. Put xn ::;: Xa Xk' .. x kXn·-then xn is in a-CG. with base point (xa, ... , Xn). The pointed map 
00 

xn _ X n+1 is a dosed embedding. One writes (w) IT Xn in place of XOO and calls it the weak product 
I 

00 

of the X n . By the above, (w) IT Xn is in a-CG. (the base point is the infinite string made up of the xn). 
1 

[Note: The same construction can be carried out in TOP, the only difference being that xn is the 

ordinary product of X o, ... ,Xn.] 

Every Hausdorff topological group is completely regular. In particular, every Haus

dorff topological vector space is completely regular. Every Hausdorff locally compact 

topological group is paracompact. 

[Note: Every topological group which satisfies the To separation axiom is necessarily 

a CRH space.] 

EXAMPLE Take G = RI«/t > w)-then G is a Hausdorff topological group but G is not compactly 

generated. Consider kG: Inversion kG ........ kG is continuous, as is multiplication kG Xk kG ........ kG. But 

kG is not a topological group, i.e., multiplication kG x kG -;. kG is not continuous. In fact, kG, while 

Hausdorff, is not regular. 

t Topology Appl. 41 (1991),205-212. 
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Let E be a normed linear space; let E· be its dual, i.e., the space of continuous linear functionals on 

E-then E· is also a normed linear space. The elements of E can be regarded as scalar valued functions 

on E·. The initial topology on E· determined by them is called the weak· topology. It is the topology 

of pointwise convergence. In the weak· topology, E· is a Hausdorff topological vector space, thus is 

completely regular. If dimE ~ w, then every nonempty weak· open set in E· is unbounded in norm. By 

contrast, Alaoglu's theorem says that the closed unit ball in E· is compact in the weak· topology (and 

second countable if E is separable). However, the weak· topology is metrizable iff dimE ~ w. 

[Note: Let E be a vector space over R-then. Kruset has shown that E admits a complete norm (so 

that E is a Banach space) iff dim E < w or (dim E)W = dim E. Therefore, the weak· topology on the dual 

of an infinite dimensional Banach space is not metrizable.] 

The forgetful functor from the category of topological groups to the category of 

topological spaces (pointed topological spaces) has a left adjoint X -+ FgrX « X, xo) -+ 

Fgr(X, xo», where FgrX (Fgr(X, xo» is the free topological group on X«X, xo». Alge

braica.lly, FgrX (Fgr(X,xo» is the free group on X (X - {xo}). Topologically, FgrX 
(Fgr(X, xo» carries the finest topology compatible with the group structure for which the 

canonical injection X -+ FgrX «X,xo) -+ Fgr(X,xo» is continuous. There is a commu-
X ~ FgrX 

tative triangle ~ 1 and Fgr(X,xo) ~ FgrX/(xo) «(xo) the normal subgroup 

Fgr(X, xo) 
generated by the word xo). On the other hand, FgrX ~ Fgr(X, xo) II Z (II the coproduct 

in the category of topological groups) and, of course, FgrX ~ Fgr( X II *, * ). 
[Note: The arrow of adjunction X -+ FgrX «X, xo) -+ Fgr(X, xo» is an embedding iff 

X is completely regular and is a closed embedding iff X is completely regular + Hausdorff 

(Thomas1).] 

LEMMA If X is a compact Hausdorff space, then Fgr(X) (Fgr(X, xo» is a Hausdorff 

topological group. 

Application: If X is a CRH space, then Fgr(X) (Fgr(X, xo» is a Hausdorff topological 

group. 

[Consider X -+ Fgr({JX) «X,xo) -+ Fgr({JX,{Jxo».] 

t Math. Zeit. 83 (1964), 314-320. 

t General Topology Appl. 4: (1914), 51-12; see also Quaestiones Math. 2 (1977), 355-377. 
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EXAMPLE It is easy to construct nonnormru Hausdorff topological groups. Thus, given a topo

logical space X, let FgrX be the free topological group on X -then, for X a CRH space, the arrow 

X - FgrX is a closed embedding and FgrX is a Hausdorff topological group, so X not normal => FgrX 

not normal. 

FACT Given a topological space X, Fgr(X, :z:~) ~ Fgr(X, :z:~) V :z:~,:z:~ E X. 

[Let JJ' : (X,:z:ri) - Fgr(X,:z:ri),JJ" : (X,z~) - Fgr(X,z~) be the arrows of adjunction and consider 

the pointed continuous functions I' : (X,z~) - Fgr(X,z~), I" : (X,z~) - Fgr(X,zri) defined by I'(z) = 

JJ"(z)JJ"(z~)-l, I"(z) = JJ'(:Z:)JJ'(:z:~)-l.] 

The forgetful functor from the category of abelian topological groups to the category 

of topological spaces (pointed topological spaces) has a left adjoint X -+ FabX (( X, xo) -+ 

Fab(X, xo)) and when given the quotient topology, FgrX/[FgrX, FgrX] ~ FabX (Fgr(X,xo)/ 

[Fgr(X,xo),Fgr(X,xo)] ~ Fa.b(X,XO))' 
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§2. CONTINUOUS FUNCTIONS 

Apart from an important preliminary, namely a characterization of the exponential 

objects in TOP, the emphasis in this § is on the properties possessed by C(X), where X 

is a CRH space. 

A topological space Y is said to be cartesian if the functor x Y : TOP ~ TOP 
has a right adjoint Z ~ ZY. Example: A LCH space is cartesian. 

PROPOSITION 1 A topological space Y is cartesian iff - x Y preserves colimits 

(cf. p. 0-33) or, equivalently, iff - x Y preserves coproducts and coequalizers. 

[Note: The preservation of coproducts is automatic and the preservation of coequal

izers reduces to whether - x Y takes quotient maps to quotient maps.] 

Notation: Given topological spaces X, Y, Z, A: F(X x Y, Z) ~ F(X, F(Y, Z» is the 

bijection defined by the rule A(f)(x)(y) = I(x, y). 
Let T be a topology on C(Y, Z)-then T is said to be splitting if 'V X, I E C(X x 

Y, Z) ::} A(f) E C(X, C(Y, Z» and T is said to be cosplitting if 'V X, g E C(X, C(Y, Z» ::} 
A-l(g) E C(X x y,.Z). 

LEMMA If T' is a splitting topology on C(Y, Z) and T" is a cosplitting topology on 

C(Y, Z), then T' C T". 

Application: C(Y, Z) admits at most one topology which is simultaneously splitting 

and cosplitting, the exponential topology. 

EXAMPLE Y Y &; Y Z, the compact open topology on C(Y, Z) is splitting. 

EXAMPLE If Y is locally compact, then Y Z the exponential topology on C(Y, Z) exists and is 

the compact open topology. 

[Note: A topological space Y is said to be locally compact if Y open set P and Y yEP, there exists 

a compact set K C P with y E int K. Example: The one point compactification Qoo of Q is compact but 

not locally compact.] 

FACT Let Y be a locally compact space--then for all X and Z, the operation of compOsition 

C(X, Y) x C(Y, Z) -+ C(X, Z) is continuous if the function spaces carry the compact open topology. 

PROPOSITION 2 A topological space Y is cartesian iff the exponential topology on 

C(Y, Z) exists for all Z. 
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EXAMPLE A locally compact space is cartesian. 

FACT Suppose that Y is cartesian. Assume: V Z, the exponential topology on C(Y, Z) is the 

compact open topology-thenY is locally compact. 

Let Y be a topological space, Ty its topology-then the open sets in the continuous 

topology on Ty are those collections V c Ty such that (1) V E V, V' E Ty => V' E V if 

V c V' and (2) Yi E Ty (i E I), U Yi E V=>3 i l , ... , in : Yi l U ... U Yin E V. 
i 

LEMMA Let f E F(X, Ty), where X is a topological space and Ty has the continuous 

topology-then f is continuous if {(x, y) : y E f( x)} is open in X x Y. 

Let T = {(PJ y) : YEP} C ry X Y-then a topology on ry is said to have property T if T is open 

in ry x Y. Example: The discrete topology on ry has property T. 

FACT The continuous topology on ry is the largest topology in the collection of all topologies on 

ry that are smaller than every topology on ry which has property T. 

[If ry(T) is ry in a topology having property T, then by the lemma, the identity function ry (T) - ry 

is continuous if ry has the continuous topology.] 

Let Y be a topological space-then Y is said to be core compact if V open set P and 

V yEP, there exists an open set V C P with y E V such that every open covering of P 

contains a finite covering of V. Example: A locally compact space is core compact. 

There exists a core compact space with the property that every compact subset has an empty interior 

(Hofman-Lawson f ). 

FACT Equip ry with the continuous topology-then Y is core compact iff V open set P and 

Vy E P, there exists an open Very such that P E V and y E int n V. 

EXAMPLE A topological space Y is core compact iff the continuous topology on ry has property 

T. 

Let Y, Z be topological spaces-then the Isbell topology on C(Y, Z) is the initial 

. { C(Y. Z) -+ Ty 
topology on C(Y,Z) determmed by the eQ: f -+'f-l(Q) (Q E TZ), where Ty has the 

f '.lrans. Amer. Math. Soc. 246 (1978), 285-310 (cf. 304-306). 
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continuous topology. Notation: isC(Y, Z). Examples: (1) isC(Y, [0, 1]/[0, 1[) ~ Ty; (2) 
isC( *, Z) ~ Z. 

LEMMA The compact open topology on C(Y, Z) is smaller than the Isbell topology. 

EXAMPLE V Y I.e V Z, the Isbell topology on C(Y, Z) is splitting. 

[Fix an f E C(X x Y, Z) and let 9 = A(f)-then the claim is that 9 E C(X, isC(Y, Z». From 

the definitions, this amounts to showing that V Q E TZ, eQ 0 9 is continuous. Write f-l(Q) as a union 

of rectangles Ri = Ui x Vi C X x Y. Take an z E X and consider any V : eQ(g(z» E V. Since 
n n 

eQ(g(:I:» = U{y : (:I:,y) E Ri}, 3 ik (k = 1, ... ,n): U {y : (:1:,11) E RiA) E V, so VuE n U'k' 
i k=1 k=1 

eQ(g(u» E V.] 

FACT Let Y be a core compact space-then for all X and Z, the operation of composition 

C(X, Y) x C(Y, Z) -+ C(X, Z) is continuous if the function spaces carry the Isbell topology. 

PROPOSITION 3 Let Y be a topological space---then Y is cartesian iff Y is core 

compact. 

[Necessity: Let Ti run through the topologies on Ty which have property T and put 

Xi = (Ty,Ti). Form the coproduct X = IlXi and let I: X -+ Ty be the function whose 
i 

restriction to each Xi is the identity, where Ty carries the continuous topology-then I 
is a quotient map (d. p. 2-2). Since Y is cartesian, it follows from Proposition 1 that 

I x idy : X x Y -+ Ty x Y is also quotient. But X x Y ~ II Xi X Y and, by hypothesis, 
i 

T is open in Xi X Y 'V i. Therefore T must be open in Ty x Y as well, Le., the continuous 

topology on Ty has property T, thus Y is core compact (d. p. 2-2). 

Sufficiency: As has been noted above, the Isbell topology on C(Y, Z) is splitting, so to 

prove that Y is cartesian it suffices to prove that the Isbell topology on C(Y, Z) is cosplitting 

when Y is core compact (d. Proposition 2). Fix 9 E C(X,isC(Y,Z» and put 1= A-I(g). 
Given a point (x, Y) E X x Y, let Q be an open subset of Z such that I( x, Y) E Q. Choose 

an open P C Y : yEP & I( {x} x P) C Q. Because Y is core compact, there exists an 

open V C Ty : P E V and y E int n V. But eQ(g(x» J P => eQ(g(x» E V and, from the 

continuity of eQ 0 g, 3 a neighborhood 0 of x : ep(g(O» C V, hence 1(0 x int n V) c Q.] 

Remark: Suppose that Y is core compact-then 'V Z, "the" exponential object ZY is 

isC(Y, Z), the exponential topology on C(Y, Z) being the Isbell topology. 

[Note: The Isbell topology and the compact open topology on C(Y, Z) are one and 

the same if Y is locally compact.1 
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FACT Let I, 9 E C(Y, Z). Assume: I, 9 are homotopic-then I, 9 belong to the same path com

ponent of isC(Y, Z). 

FACT Let I, 9 E C(Y, Z) . . Assume: I, 9 belong to the same path component of isC(Y, Z)-then 

I. 9 are homotopic if Y is core compact. 

What follows is a review of the elementary properties possessed by C(X, Y) when 

equipped with the compact open topology (omitted proofs can be found in Engelkingt). 

Notation: Given Hausdorff spaces X and Y, let coC(X, Y) stand for C(X, Y) in the 

compact open topology. 

[Note: The point open topology on C(X, Y) is smaller than the compact open topol

ogy. Therefore coC(X, Y) is necessarily Hausdorff. Of course, if X is discrete, then "point 

open" = "compact open".] 

PROPOSITION 4 Suppose that Y is regular-then coC(X, Y) is regular. 

PROPOSITION 5 Suppose that Y is completely regular-then coC(X, Y) is com

pletely regular. 

EXAMPLE It is false that Y normal => coC(X, Y) normal. Thus take X = {O,l} (discrete 

topology )-then coC( {O, I}, Y) ::::-: Y X Y and there exists a normal Hausdorff space Y whose square is not 

normal (e.g., the Sorgenfrey line (cf. p. 5-11». 

O'Mearat has shown that if X is a second countable metrizable space and Y is a metrizable space, 

then coC(X, Y) is perfectly normal and hereditarily paracompact. 

EXAMPLE The loop space SlY of a pointed metrizable space (Y, Yo) is paracompact. 

A Hausdorff space X is said to be countable at infinity if there is a sequence {Kn} of 

compact subsets of X such that if K is any compact subset of X, then K C Kn for some 

n. Example: A LCH space is countable at infinity iff it is O'-compact. 

[Note: X countable at infinity => X O'-compact. Example: P is not O'-coIilpact, hence 

is not countable at infinity.] 

FACT Suppose that X is countable at infinity. Assume: X is first countable--then X is locally 

compact. 

t General Topology, Heldermann Verlag (1989). 

Proc. Amer. Math. Soc. 29 (1971), 183-189. 
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EXAMPLE Q is IT-compact but Q is not countable at infinity. 

EXAMPLE Fix a point z E fiN - N -then X = N u {z }, viewed as a subspace of fiN, is countable 

at infinity but it is not first countable. 

[Note: The compact subsets of X are finite. However X is not compactly generated.] 

EXAMPLE Let E be an infinite dimensional Banach space-then E- in the weak- topology is 

countable at infinity. 

PROPOSITION 6 Suppose that X is countable at infinity-then for every metrizable 

Y, coC(X, Y) is metrizable. 

PROPOSITION 7 Suppose that X is countable at infinity and compactly generated

then for every completely metrizable Y, coC(X, Y) is completely metrizable. 

Notation: Given a topological space X, write H(X) for its set of homeomorphisms

then H(X) is a group under composition. 

Let us assume that X is a LCH space. Endow H(X) with the compact open topology. 

Question: Is H(X) thus topologized a topological group? In general, the answer is "no" 

(cf. infra) but there are situations in which the answer is "yes". 

[Note: The composition { ~:~) ...: :~~) -+ H(X) is continuous, so the problem is 

whether the inversion I -+ 1-1 is continuous.] 

R k Th val . { H(X) x X . . 
emar: e e uatlOn (I, x) -+ I( x ) IS contmuous. 

Given subsets A and B of X, put (A, B) = {I E H(X) : I(A) C B}-then by 

definition, the collection {(K, U)} (K compact and U open) is a subbasis for the compact 

open topology on H( X). 

PROPOSITION 8 If X is a compact Hausdorff' space, then H(X) is a topological 

group in the compact open topology. 

[For I E (K,U) <=> 1-1 E (X - U,X -K).] 

FACT If X is a compact metric space, then H(X) is completely metrizable. 

LEMMA Let X be a locally connected LCH space-then the collection {(L, V)}, 
where L is compact & connected with int L #- 0 and V is open, constitute a subbasis for 

the compact open topology on H(X). 
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PROPOSITION 9 If X is a locally connected LCH space, then H(X) is a topological 

group in the compact open topology. 

[Fix an f E H(X) and choose (L, V) per the lemma: f- 1 E (L, V). Determine 

relatively compact open 0 & P : f-l(L) C 0 C (5 c P C P C V (::;. f«X - 0) n 
P) c (X - L) n feY»~. Let x be any point such that f(x) E intL-then ({x}, int L) n 
(X - 0) n P, (X - L) n fey») is a neighborhood of f in H(X), ca.ll it HI' Claim: 

9 E HI ::;. g-1 E (L, V). To check this, note that g«X - 0) n P) c (X - L) n fey) ::;. 
L U (X - fey»~ C g(O) U g(X - P). But g(O), g(X - P) are nonempty disjoint open sets, 

so L is contained in either g(O) or g(X ....:.. P) (L being connected). Since the containment 

L C g(X - P) is impossible (g(x) E intL and x ¢ X - P), it follows that L C g(O) or 

still, g-I(L) C 0 C V, i.e., g-1 E (L, V). Therefore inversion is a, continuous function.] 

Application: The homeomorphism group of a topological manifold is a topological 

group in the compact open topology. 

EXAMPLE Let X = {0,2n(n E Z)}-then in the induced topology from R, X is a LCH space 

but H(X) in the compact open topology is not a topological group. 

Suppose that X is a LCH space, Xoo its one point compactification-then H(X) can 

be identified with the subgroup of H(Xoo) consisting ofthose homeomorphisms Xoo -+ Xoo 

which leave 00 fixed. In the compact open topology, H(Xoo) is a topological group (d. 
Proposition 8). Therefore H(X) is a topological group in the induced topology. As such, 

H(X) is a closed subgroup of H(Xoo). 

[Note: This topology on H(X) is the complemented compact open topology. It has 

for a subbasis all sets of the form (K, U), where K is compact and U is open, as well as 

all sets of the form (X - V, X - L), where V is open and L is compact.] 

An isotopy of a topological space X is a collection {ht : 0 $ t $ I} of homeomorphisms of X such 

{ 
h : X X [0,1] -+ X . . 

that IS contmuous. 
h(:lJ,t) = ht(:lJ) 

[Note: When X is a LCH space, isotopies correspond to paths in H(X) (compact open topology).] 

EXAMPLE A homeomorphismh: Rn -+ Rn is said to bestableif3 homeomorphismshlo ... ,hit: : 

R n -+ Rn such that h = hI o· . . ohlt:, where each hi has the property that for some'nonempty open Ui eRn, 

hi lUi = iduj' Every stable homeomorphism of R n is isotopic to the identity. 

[Take k = 1 and consider a homeomorphism h : R n -+ R n for which hlU = idu. Define an isotopy 

{ 
h(:lJ +2tu) - 2tu (0 < t < 1/2) 

{h, : 0 < t < I} ofRn as follows. Fix u E U and put ht(:lJ) = 1 - - & 
- - 2_2thI/2«2-2t):lJ) (1/2$t<1) 

hl(:lJ) = :lJ.] , 
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FACT Equip H(Rn) with the compact open topology and write HST(Rn ) for the subspace of 

H(Rn) consisting of the stable homeomorphisms-then HST(Rn) is an open subgroup of H(Rn). 

[Note: Therefore HST(Rft) is also a closed. subgroup of H(Rft) (since H(Rft) is a topological group 

in the compact open topology).] 

Application: The path component of idaft in H(Rft) is HST(Rft). 

[In view of the example, there is a path from every element of HST(Rn ) to idan. On the other hand, 

if T : [0,1] - H(Rn) is a path with T(l) = idan but T(O) rJ HST(Rn), then T-1 (HsT(Rn» would be a 

nontrivial elopen subset of [0, 1].] 

[Note: It can be shown that H(Rn) is locally path connected (indeed, locally contractible (cf. p. 

6-17».] 

An isotopy {h. : 0 =5 t 5 I} is said to be invertible if the collection {h;-l : 05 t 5 I} is an isotopy. 

LEMMA An isotopy {h. :0 5 t 5 I} is invertible iff the function H : X X [0,1] - X X [0,1] 

defined by the rule (z, t) - (h.(z), t) is a homeomorphism. 

[Note: H is necessarily one-to-one, onto, and continuous.] 

FACT Let X be a LCB space-then every isotopy {h. : 0 =5 t 5 I} of X is invertible. 

[Show first that \f z EX, h;-l (z) is a continuous function of t.] 

FACT Let X be a LCB space-then every isotopy {h. : 05 t 5 I} of X extends to an isotopy of 

[Define Ii, : Xoo - Xoo by 1i.IX = h. & ht(oo) = 00. To verify that Ii is continuous, extend H 

to Xoo X [0,1] via the prescription H(oo, t) = (Ii, (00), t), so Ii = 7roo 0 H, where 7roo is the projection of 

Xoo X [0,1] onto Xoo. Establish the continuity of H by utilizing the continuity of H-1 (the substance of 

the previous result).] 

EXAMPLE Every isotopy {h, : 05 t 5 I} of R n extends to an isotopy of Sft. 

Let X be a CRH space, (Y, d) a metric space. Given f E C(X, Y) and tP E C(X, R>o), 

put Nt/J(f) = {g: d(f(x),g(x» < tP(x) V x}. 

Observations: (1) If tPl, tP2 E C(X, R>o), then Nt/J(f) c Nt/Jl (f) n Nt/J2(f), where 

tP(x) = min{tPl(x),tP2(X)}j (2) If 9 E Nt/J(f), then N",(g) C Nt/J(f), where t/J(x) = tP(x)
d(f(x),g(x». 

Therefore the collection {N ,,(f)} is a basic system of neighborhoods at f. Accordingly, 

varying f leads to a topology on C(X, Y), the majorant topology. 
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[Note: Each 4> E C(X, R>o) determines a metric dr/> on C(X, Y), viz. dr/>(J, g) = 
min{l, sup d(J(;~,)(x»}, and their totality defines the major ant topology on C(X, Y), 

zEX x 
which is thus completely regular. However, in general, the majorant topology on C(X, Y) 
need not be normal (WegenkittIf).] 

Here is a proof that C(X, Y) (majorant topology) is completely regular. Fix a closed subset A C 

C(X, Y) and an I E C(X, Y) - A. Choose q, E C(X, R>o) : N",(I) C C(X, Y) - A. Define a function 

41 : C(X, Y) ~ [0,1] by 4I(g) = sup d(l(z~, r(Z» if 9 E N",(I) and let it be 1 otherw~then 41 is 
"'EX q, z 

continuous and 41(1) = 0, 4IIA = 1.] 

[Note: The verification of the continuity of 41 hinges on the observation that 9 E N",(f) => d(f(z), 

g(z» :5 q,(z) V z, hence V 9 E N",(f) - N",(f), sup d(f(;~, r(z» = 1.] 
"'EX z 

Example: Suppose that the sequence {!k} converges to f in C(Rn, Rn) (majorant 

topology)-then 3 a compact KeRn and an index ko such that !k(x) = f(x) V k > ko 
&Vx ERn-K. 

EXAMPLE Suppose that I : R n ~ R n is a homeomorphism-then I has a neighborhood of 

surjective maps in C(Rn, Rn) (majorant topology). 

EXAMPLE Equip H(Rn) with the majorant topology-then the path component of idan in 

H(Rn) consists of those homeomorphisms that are the identity outside some compact set. 

FACT The majorant topology on C(R n, R n) is not first countable. 

LEMMA The compact open topology on C(X, Y) is smaller than the major ant topol

ogy. 

[Fix a compact K eX, an open V C Y, and a continuous f : X --j. Y such that 

f(K) C V. Choose E > 0 such that Vy E f(K),d(y,y') < E:::} y' E V. Let 4> E C(X,R>o) 
be the constant function x --j. E-then V 9 E Nr/>(f), g(K) c V.] 

Remark: The uniform topology on C(X, Y) is the topology induced by the metric 

d(J,g) = min{l, sup d(J(x),g(x»}. The proof of the lemma shows that the compact open 
zEX 

topology on C(X, Y) is smaller than the uniform topology (which in tum is smaller than 

the majorant topology). 

t Ann. Global Anal. Geom. "T (1989), 171-178; see also van Douwen, Topology Appl. 39 (1991), 3-32. 
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FACT The compact open topology on O(X, Y) equals the uniform topology if X is compact. 

FACT The uniform topology on O(X, Y) equals the majorant topology if X is pseudocompact. 

Let M(Y) be the set of all metrics on Y which are compatible with the topology of 

Y-. then the limitation topology on C(X, Y) has for a neighborhood basis at f the Nm(f) 
(m E M(Y»), where Nm(j) = {g: sup m(f(x),g(x» < I}. 

:c€X 
[Note: If ml,m2 E M(Y), then Nm1 +m2(!) C Nm1 (!) n Nm2 (f) and if 9 E Nm(f), 

then N('l)m (g) c Nm(f), where m(f(x),g(x» :S 1 - E V x.] 
E 

The limitation topology is defined by the metrics (I, g) -+ min{l, sup m(f(:r:) , g(:r:»} (m E M(Y», 
a;ex 

thus the uniform topology on O(X, Y) is smaller than the limitation topology. 

LEMMA Suppose that X is paracompact-then the limitation topology on C(X, Y) 

is smaller than the major ant topology. 

(Fix m E M(Y) and let f E C(X, Y). By compatibility, V x E X, 3 €(x) > 0 : 
1 E(X) 

d(f(x),y) < E(X) ~ m(f(x),y) < 4' Put Oz = {x' : d(f(x),f(X'» < -2-}-then {O:c} 
is an open covering of X. Let {U:l;} be a precise neighborhood finite open refinement and 

choose a subordinated partition of unity {~z}. Definition: </> = E E;) ~z' Consider now 
z 

any Xo E X and assume that d(f(xo),y) < </>(xo). Let ~Zl"" '~Zn be an enumeration 

of those ~z whose support contains Xo and fix i between 1 and n : E(;i) :S €(;d (j = 

E(Xi)' E(Xi) 
1, ... ,n) to get </>(xo) < -2-' But Xo E Uz, C Oz" Therefore d(f(Xi),f(xo» < -2-(~ 

1 ' 1 1 
m(f(xi),f(xo» < 4) ~ d(f(xd,y) < E(Xi) ~ m(f(xi),y) < 4 ~ m(f(xo),y) < 2' And 

this shows that NI/I(f) C Nm(f).] 
[Note: In general, the limitation topology is strictly smaller than the majorant topol

ogy. To see this, observe that C(R, R) is a topological group under addition in the majorant 

topology. On the other hand, there is a countable basis at a given f E C(R, R) (limitation 

topology) iff f is bounded, thus C(R, R) is not a topological group under addition in the 

limitation topology.] 

FACT Take X = Y -then in the limitation topology, H(X) is a topological group. 

REFINEMENT PRINCIPLE Let '(Y,d) be a metric space-then for any open cover

ing V = {V} of Y, 3 m E M(Y) such that the collection {VlI } is a refinement of V, where 

VlI = {y' : m(y, y') < I}. 
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[A proof can be found in Dugundji t .] 

LEMMA Let (Y, d) be a metric space-then for any ° E C(Y, R>o), 3 m E M(Y) : 
dey, y') < o(y) whenever m(y, y') < 1. 

[Choose an open covering V = {V} of Y such that the diameter of a given V is 

::; ~ inf O(V). Using the refinement principle, fix an m E M(Y) such that the collection 

{Vy} refines V. If (y, y') is a pair with m(y, y') < 1, then Vy C V for some V, hence 
1 

y, y' E V => dey, y') ::; 2'0(y) < o(y).] 

PROPOSITION 10 Take X = Y-then the limitation topology on H(X) is equal to 

the majorant topology. 

[Fix I E H(X) and 4> E C(X, R>o). Thanks to the lemma, 3 m E M(X) : d(x, x'} < 
4> 0 I-I(x) whenever m(x, x') < 1. If 9 E H(X) and sup m(J(x),g(x)) < 1, then 

xEX 
d(/(x),g(x)) < 4> 0 1-1(/(x)) = 4>(x) Y x, i.e., Nq,(J) n H(X) is open in H(X) (limi-

tation topology).] 

Application: The homeomorphism group of a metric space is a topological group in 

the majorant topology. 

EXAMPLE Let X be a second countable topological manifold of euclidean dimension n-then 

in the majorant topology, H(X) is a topological group. Moreover, Cemavskirt has shown that H(X) is 

iocally contractible. 

[Note: X is metrizable (c!. §1, Proposition 11), so 3 d : (X, d) is a metric space.] 

Notation: Y I E C(X, Y), gr, C X x Y is its graph. 

Given an open subset 0 c X x Y, let ro = {I: gr, C O}-then the collection {ro} 
is a basis for a topology on C(X, Y), the graph topology. 

[N ote: In this connection, observe that ron r P = r onp.] 

LEMMA The majorant topology on C(X, Y) is sma.ller than the graph topology. 

[The function (x,y) -+ 4>(x) - d(J(x),y) from X x Y to R is continuous, thus 0 = 

{(x, y) : d(J(x) , y) < 4>(x)} is an open subset of X X Y. But ro = Nq,(/).] 

t Topology, Allyn and Bacon (1966), 196; see also Bessaga-Pelczyfiski, Selected Topics in Infinite 

Dimensional Topology, PWN (1975), 63. 

t Math. Sbomik 8 (1969), 287-333. 
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Rappel: A function f : X -4 R is lower semicontinuous (upper semicontinuous) if for 

each real number c, {x : f(x) > c} ({x: f(x) < c}) is open. Example: The characteristic 

function of a subset S of X is lower semi continuous (upper semicontinuous) iff S is open 

(closed). 

HAHN'S EINSCHIEBUNGSATZ Suppose that X is para.compa.ct. Let 9 : X -4 R be 

lower semicontinuous and G: X -4 R upper semicontinuous. Assume: G(x) < g(x) \;f x E 

X-then 3 a continuous function /: X ~ R such that G(x) < /(x) < g(x) V x E X. 

[Put Ur = {x : G(x) < r }n{x : g(x) > r} (r rational). Each Ur is open and X = U Ur. 
r 

Let {~r} be a partition of unity subordinate to {Ur} and take f = L:r~r.] 
r 

The following result characterizes the class of X satisfying the conditions of Hahn's einschiebungsatz. 

FACT Let X be a CRH space-then X is normal and countably paracompact iff for every lower 

semicontinuous 9 : X -+ R and upper semicontinuous G : X -+ R such that G(z) < g(z) V z E X, 

3 IE C(X, R) : G(z) < I(z) < g(z) V z E X. 

[Necessity: With r running through the rationals, there exists a neighborhood finite open covering 

{Or} of X : Or e {z : G(z) < r < g(z)} V r and a neighborhood finite open covering {PI"} of X : 
_ {-oo (z ~Or) 
PI" e Or V r. Fix a continuous function Ir : X -+ [-oo,r] such that Ir(z) = r Put 

(ZEPI")' 
I(z) = sup II" (z)-then I has the required properties. 

r 

Sufficiency: There are two parts. 

X is normal. Thus let A, B be disjoint closed subsets of X. With G the characteristic function 

of A, let 9 be defined by : 9 is lower semicontinuous, G is upper semicontinuous, 
{ 

g(z) = 1 (z E B) 

g(z)=2 (z~B) . 
and G(z) < g(z) V z E X. Choose I E C(X, R) per the assumption and let U = {z : I(z) > I}, 

V = {z : I(z) < I}-then {U are disjoint open subsets of X and {A e U , hence X is normal. 
V BeV 

. X is countably paracompact. Thus consider any decreasing sequence {An} of closed sets such 

that nAn = 0. Put g(z) = _1_ (z E An - An+l' n = 0,1, ... ) (Aa = X): 9 is lower semicontinuous. 
n n+ 1 

Take IE C(X, R) : 0 < I(z) < g(z) and let Un = {z : I(z) < _I_}-then {Un} is a decreasing sequence 
n+I 

of open sets with An e Un for every nand nUn = 0. Since X is normal, this guarantees that X is also 
n 

countably paracompact (via CP (d. p. 1-13».] 

LEMMA Assume that X is paracompact and suppose given a neighborhood finite 

closed covering {Ai: j E J} of X and \;f j, a positive real number aj-then 3 a continuous 

function ¢ : X -4 R>o such that ¢(x) < ai if x E Aj. 
[The function from X to R defined by the rule x -4 min{aj : x E Ai} is lower 

""-, semi continuous and strictly positive.] 
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PROPOSITION 11 The majorant topology on C(X, Y) is independent of the choice 

of d provided that X is paracompact. 

[It suffices to show that the graph topology on C(X, Y) is smaller than the majorant 

topology (cf. p. 2-10). So fix an J E ro and consider any Xo EX. Choose a neighborhood 

Uo of Xo and a positive real number ao such that x E Uo & d(f(xo), y) < 2ao => (x, y) E O. 

Choose further a neighborhood Yo of Xo such that Yo c Uo & d(f(xo),J(x)) < ao \:I x E 

Yo-then {(x, y) : x E Yo & d(J(x), y) < ao} C O. From this, it follows that one can find 

a neighborhood finite closed covering {Aj : j E J} of X and a set {aj : j E J} of positive 

real numbers for which ((x,y) : x E Aj & d(f(x),y) < aj} C O. In view of the lemma, 3 

a continuous function <p: X -+ R>o with <p(x) < aj whenever x E Aj, hence Nt/J(f) C ro, 
i.e., every point of ro is an interior point in the majorant topology.] 

To reiterate: If X is paracompact, then the majorant topology on C(X, Y) equals the 

graph topology. 

[Note: The assumption of paracompactness can be relaxed (see below).] 

Let X be a CRn space, (Y, d) a metric space. Given 1 e C(X, Y) and a lower semicontinuous 

tT: X -+ R>o, put Nu(f) = {g: d(f(~),g(~» < tT(~) V~}. 
Observations: (1) If tTl, tT2 : X -+ R>o are lower semicontinuous, then N u (I) C NUl (I) n N U2 (I), 

where tT(~) = min {tTl (~), tT2 (~)}; (2) If 9 e Nu(l), then Nr(g) C Nu(l), where T(~) = tT(~)-d(l(~), g(~». 

[Note: The minimum of two lower semicontinuous functions is lower semicontinuous, so tT is lower 

semicontinuous. On the other hand, the sum of two lower semicontinuous functions is lower semicontinuous. 

But ~ -+ d(l(~),g(~» is continuous, thus ~ -+ -d(f(~),g(~» is lower semicontinuous, so T is lower 

semicontinuous. ] 

Therefore the collection {N u (I)} is a basic system of neighborhoods at I. Accordingly, varying 1 
leads to a topology on C(X, Y), the semimajorant topology. 

LEMMA The semimajorant topology on C(X, Y) is smaller than the graph topology. 

[Let 0 = {(~, ,,) : d(l(~), ,,) < tT(~ )}-then r 0 is open in C(X, Y). Proof: Fix (~o, YO) e 0, 

put e = i(tT(~o) - d(l(~o),Yo», and note that the subset of 0 consisting of those (~,y) such that 

tT(~) > tT(~o) - E, d(f(~), I(~o» < e, and dey, YO) < E is open. And: Nu(f) = ro.] 

LEMMA The graph topology on C(X, Y) is smaller than the semimajorant topology. 

[Fix an 1 e r o. Define a strictly positive function tT : X -+ R by letting tT( ~o) be the supremum of 

those ao e]O,I] for which ~o has a neighborhood Uo such that ~ e Uo & d(f(~o), y) < ao => (~, y) e O. 

Since Nu(f) C ro, the point is to prove that tT is lower semicontinuous, Le., that Vee R, {~ : c < tT(~)} is 

open. This is trivial if c:S 0 or c ~ 1, so take c e]O, 1[ and fix ~o : c < tT(~o). Put E = (tT(~o) - c)/3-then 
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c + 2E < c:r(zo), thus 3 a neighborhood Uo of Zo such that z E Uo &; d(f(zo), 1/) < C + 2E =* (z,1/) E O. 

Supposing further that z E Uo =* d(f(zo),/(z» < E, one has z E Uo &; d(f(z), 1/) < c+ E =* (z,1/) E 0 =* 

c < C+ E ~ c:r(z).] 

FACT The semimajorant topology on C(X, Y) equals the graph topology. 

A CRH space X is said to be a CB space if for every strictly positive lower semicontinuous (1' : X -+ R 

there exists a strictly positive continuous q, : X -+ R such that 0 < q,(z) :s (1'(z) V z E X. 

Example: If X is normal and countably paracompact, then X is a CB space (cf. p. 2-11). 

Examples (Mackt ): (1) Every countably compact space is a CB space; (2) Every CB space is count

ably paracompact. 

EXAMPLE The Isbell-Mr6wka space 'if(N) is a pseudo compact LCH space which is not countably 

paracompact (cf. p. 1-12), hence is not a CB space. 

FACT The majorant topology on C(X, Y) equals the graph topology V pair (Y, d) iff X is a CB 

space. 

[Necessity; Fix a strictly positive lower semi continuous (1' : X -+ R. Specialized to the case Y = R, 

the assumption is that the majorant topology on C(X) equals the semimajorant topology, so working with 

N(7(O), 3 q, : Nt/>(O) C N(7(O) =* (1 - E)q, E N.;(O) C N(7(O) (0 < E < 1) =* 0 < q,(z) ~ (1'(z) V z E X, thus 

X is a CB space. 

Sufficiency: Since N.;(f) C N(7(f), the semimajorant topology on C(X, Y) is smaller than the majo

rant topology.] 

If (Y, d) is a complete metric space, then coC(X, Y) need not be Baire. Examples: 

(1) coC([O,O[,R) is not Bairej (2) coC(Q,R) is not Baire. 

[Note: Recall, however, that if X is countable at infinity and compactly generated, 

then coC(X, Y) is completely metrizable (cf. Proposition 7), hence is Baire.] 

PROPOSITION 12 Assume: (Y,d) is a complete metric space-then C(X, Y) (ma

jorant topology) is Baire. 

[Let {On} be a sequence of dense open subsets of C(X, Y). Let U be a nonempty open 

subset of C(X, Y). Since U n 0 1 is nonempty and open and since C(X, Y) is completely 

regular (cf. p. 2-8), 3 II e un 0 1 & ¢>1 E C(X,R>o) : {g: d(1I (x), g(x)) ::; ¢>1(X) V x} c 
UnOl, where¢>l < 1. Next, 3 hE N tP1 (II)n02 &¢>2 E C(X,R>o): {g: d(h(x),g(x»::; 

t Proc. Amer. Math. Soc. 16 (1965), 467-472. 
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<P2(X) v x} c Nt/Jl(fd n O2, where <P2 < <Pl/2. Proceeding, 3 fn+l E Nt/Jn(fn) n On+l 

& <Pn+l E C(X,R>o) : {g : d(fn+l(X),g(x» ::5 <Pn+l(X) V x} C Nt/Jn(fn) n On+l, where 

<Pn+l < <Pn/2. So, V x, d(fn+l(X),fn(x» ::5 2n1_1' thus {fn(x)} is a Cauchy sequence 
in Y., Definition: f(x) = limfn(x). Because the convergence is uniform, f E C(X, Y). 

Moreover, d(fn(x), f(x» ::5 <Pn(x) V n & V x, which implies that fEU n (n On).] 
n 

FACT Assume: (Y, d) is a complete metric space-then C(X, Y) (limitation topology) is Baire. 

Convention: Maintaining the assumption that X is a CRH space, C(X) henceforth 

carries the compact open topology. 

Let K be a compact subset of X. Put PK(f) = sup Ifl(f E C(X»-then PK : C(X)-+ 
K 

Ris aseminormon C(X), i.e., PK(f) ~ 0, PK(f+9)::5 PK(f)+PK(9), PK(Cf) = IclpK(f). 
[Note: More is true, viz. PK is multiplicative in the sense that PK(f9) ::5 PK(f)PK(g).] 
Remark: The initial topology on C(X) determined by the PK as K runs through the 

compact subsets of X is the compact open topology. 

[Note: In the compact open topology, C(X) is a Hausdorff locally convex topological 

vector space.] 

Observation: If K C X is compact and if IE C(K), then 3 FE BC(X) : FIK = I. Proof: Apply 

the Tietze extension theorem to K regarded as a compact subset of {JX. 

A CRH space X is said to be a leR-space provided that a real valued function f : 
X -+ R is continuous whenever its restriction to each compact subset of X is continuous. 

Example: A compactly generated X is a leR-space (but not conversely (d. infra». 

EXAMPLE Let X be a ka -space. Assume: X is countable at infinity-then X is compactly 

generated. 

[Fix a "defining" sequence {Kn} of compact subsets of X with Kn C K n+1 V n. Claim: A subset 

A of X is closed if A n Kn is closed in Kn for each n. For if not, then A has an accumulation point 

ao : ao f/. A, which can be taken in Kl (adjust the notation). Choose a continuous function h : Kl -t R 

such that IdA n Kd = {OJ and h (ao) = 1. Extend h to a continuous function fa : K2 -t R such that 

fa (A n K2) = {OJ. Repeat the process to get a function I : X -t R such that I(z) = In(z) (z E Kn). 

Since X is a ka-space, I is continuous. This, however, is a contradiction: I(A) = {OJ, I(ao) = 1.] 

FACT A ka-space X is compactly generated iff kX is completely regular. 

[[f X is a ka -space, then C(X) = C(kX). So, the supposition that kX is completely regular forces 

X = kX (cf. §l, Proposition 14).] 
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[Note: Recall that in general, X completely regular ~ leX completely regular (cf. p. 1-36).] 

PROPOSITION 13 C(X) is complete as a topological vector space iff X is a kR-

space. 

[Necessity: Suppose that I : X -+ R is a real valued function such that 11K is 

continuous V compact K c X. Let IK E C(X) be an extension of 11K-then {/K} is a 

Cauchy net in C(X), thus is convergent, say lim/K = F. But 1= F. 
Sufficiency: Let {/d be a Cauchy net in C(X)-then V compact K C X, the net 

{/iIK} is Cauchy in C(K), hence has a limit, call it IK. If Kl C K2 , then IK21Kl = IKl' 
so the prescription I(x) = IK(X) (x E K) defines a function I : X -+ R. Since X is a 

kR-space, I is continuous. And: lim/i = I.] 

6). 

EXAMPLE Let" be a cardinal> w-then N" is a lea-space but N" is not compactly generated. 

[Note: N"" is homeomorphic to P, thus is compactly generated.] 

FACT Suppose that the closed bounded subsets of C(X) are complete-then X is a lea-space. 

PROPOSITION 14 C(X) is metrizable iff X is countable at infinity (cf. Proposition 

[Let d be a compatible metric on C(X). Put Un = {I : d(f,O) < lin}. Choose a 

compact Kn C X and a positive fn : I(Kn) C]- fn,fn[=> I E Un-then for any compact 

subset K of X, 3 n : K C Kn. Therefore X is countable at infinity.] 

PROPOSITION 15 C(X) is completely metrizable iff X is countable at infinity and 

compactly generated (cf. Proposition 7). 

[If C(X) is completely metrizable, then C(X) is complete as a topological vector space, 

so X is a kR-space (cf. Proposition 13), thus X, being countable at infinity, is compactly 

generated (cf. p. 2-14).] 

A CRH space X is said to be topologically complete if X is a G6 in {3X or still, if X is a G6 in any 

Hausdorff space containing it as a dense subspace. Example: P is topologically complete but Q is not. 

Examples: (1) Every completely metrizable space is topologically complete and every topologically 

complete metrizable space is completely metrizablej (2) Every LCH space is topologically complete. 

[Note: A topologically complete space is necessarily compactly generated and Baire (Engelkingt).] 

t General Topology, Heldermann Verlag (1989), 197-198. 
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Remark: It can be shown that Proposition 15 goes through if the hypothesis "completely metrizable" 

is weakened to "topologically complete" (McCoy-Ntantut ). 

EXAMPLE Let X be a LCB space. Assume: X is paracompact-then C(X) is Baire. 

[Using LCBs (d. p. 1-2), write X = I1 Xi, where the Xi are pairwise disjoint nonempty open (T

i 

. compact subspacesof X. Each Xi is countable at infinity and there is a homeomorphismC(X) :::; n C(Xi). 
i 

But the C(Xi) are completely metrizable (d. Proposition 15), hence are topologically complete, and it is 

a fact that a product of topologically complete spaces is Baire (Oxtoby*).] 

[Note: The paracompactness assumption on X cannot be dropped. Example: Take X = [O,O[-then 

C(X) is not Baire. Proof: Since X is pseudocompact, On = U{f : n < fez) < n + I} is a dense open 

subset of C(X) and nOn = 0.] 
n 

FACT Suppose that X is first countable and C(X) is Baire-then X is locally compact. 

STONE-WEIERSTRASS THEOREM Let X be a compact Hausdorff space. Suppose 

that A is a subalgebra of C(X) which contains the constants and separates the pOints of 

X-then A is uniformly dense in C(X). 

EXAMPLE Let 0 < a < b < I-then every / E CHa, b]) can be uniformly approximated by 
d 

polynomials E nkzk , nk integral. 
1 

[It is enough to show that / = i can be so approximated. Given an odd prime p, put <pp(z) = 
.!.(1 - zp - (1 - z)p) : <Pp is a polynomial with integral coefficients, no constant term, and p<pp -+ 1 
P 

uniformly on [a, b] as p -+ 00. Now write p = 2q + 1, note that I.!. - 2.\ < .!., and consider q<pp.] 
2 p p 

PROPOSITION 16 Suppose that X is a compact Hausdorff space-then C(X) is 

separable iff X is metrizable. 

[Necessity: If {fn} is a uniformly dense sequence in C(X), then the {x : Ifn(x)1 > ~} 
constitute a basis for the topology on X, therefore X is second countable, hence metrizable. 

Sufficiency: Let d be a compatible metric on X. Choose a countable basis {Un} for 

its topology and put fn(x) = d(x,X - Un) (x E X)-then the fn separate the points of 

X, thus the subalgebra of C(X) generated by 1 and the fn is uniformly dense in C(X), so 

8LN 1315 (1988), 75. 

Fu.nd. Math. 49 (1961), 157-166. 
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the same is true of the rational subalgebra of C(X) generated by 1 and the In. But the 

latter is a countable set.] 

EXAMPLE Assume that X is not compact and consider BC(X), viewed as a Banach space in 

the supremum norm: 11/11 = sup/II-then BC(X) can be identified with C(PX) (f -+ PI : 11/11 = IIP/II)· 
x 

Since PX is not metrizable, it follows that BC(X) is not separable. 

[Note: To see that PX is not metrizable, fix a point :1:0 E PX - X and, arguing by contradiction, 

choose a sequence {:l:n} C X of distinct:l:n having Zo for their limit. Put A = {Z2n}, B = {z2n+d-then 

A and B are disjoint closed subsets of X, so, by Urysohn, 3 t/> E BC(X) such that 0 =::; t/> =::; 1 with t/> = 1 

on A and t/> = 0 on B. Therefore 1 = t/>(:l:2n) -+ Pt/>(:l:o) Be 0 = t/>(z2n+d -+ Pt/>(:l:o), an absurdity.] 

PROPOSITION 17 C(X) is separable iff X admits a smaller separable metrizable 

topology. 

[Necessity: Fix a countable dense set {In} in C(X)-then {In} separates the points of 

X and the initial topology on X determined by the In is a separable metrizable topology. 

Reason: The arrow X -+ R"" defined by the rule x -+ {/n(x)} is an embedding. 

Sufficiency: Let Xo stand for X equipped with a smaller separable metrizable topology. 

Embed Xo in [0,1]"". Fix a countable dense set {cPn} in C([O, 1]"") (cf. Proposition 16) 

and put In = cPnlXo-then the sequence {In} is dense in C(Xo), thus C(Xo) is separable. 

Indeed, given a compact subset Ko of Xo and 10 E C(Xo), 3 cPo E C([O, 1]"") : cPolKo = 
10iKo & V E > 0, 3 cPn : PKo(cPn - cPo) < E :::;. PKo(fn - 10) < E. Finally, the separability 

of C(Xo) forces the separability of C(X). This is because a compact subset K of X is a 

compact subset of Xo and the two topologies induce the same topology on K.] 

Example: Take X = R (discrete topology)-then C(X) is separable. 

EXAMPLE If X = U Kn, where each Kn is compact and metrizable, then C(X) is separable. 
n 

[There is no loss of generality in supposing that Kn C Kn+l V n. Choose a countable dense subset 

{/n,m} in C(Kn) (cr. Proposition 16) and let Fn,m be a continuous extension of In,m to X-then the 

initial topology on X determined by the Fn,m is a separable metrizable topology which is smaller than 

the given topology on X, so C(X) is separable (cr. Proposition 17).] 

FACT Let X be a LCB space-then C(X) is separable and metrizable iff X is separable and 

metrizable. 

FACT Let X be a LCB space-then C(X) is separable and completely metrizable iff X is separable 

and completely metrizable. 
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PROPOSITION 18 C(X) is first countable iff X is countable at infinity. 

PROPOSITION 19 C(X) is second countable iff X is countable at infinity and all 

the compact subsets of X are metrizable. 

[Necessity: C(X) second countable => C(X) first countable => X countable at infinity· 

(d. Proposition 18). In addition, C(X) second countable => C(X) separable. So, by 

Proposition 17, X admits a smaller separable metrizable topology which, however, induces 

the same topology on each compact subset of X. 

Sufficiency: The hypotheses on X guarantee that C(X) is separable (via the example 

above) and metrizable (cf. Proposition 14).] 

EXAMPLE Let E be an infinite dimensional locally convex topological vector space. Assume: 

E is second countable and completely metrizable-then the Anaerson-Kadec theorem says that E is 

homeomorphic to R W (for a proof, see Bessa.ga-Pelczynskit). Consequently, if X is countable at infinity 

and compactly generated and if all the compact subsets of X are metrizable, then C(X) is homeomorphic 

to R"'. 

FACT Suppose that X is second countable-then C(X) is Lindelof. 

Up until this point, the playoff between X and C(X) has been primarily "topological", 

little use having been made of the fact that C(X) is also a locally convex topological 

vector space. It is thus only natural to ask: Can one characterize those X for which C(X) 
has a certain additional property (e.g., barrelled or bornological)? While this theme has 

generated an extensive literature, I shall present just two results, namely Propositions 20 

and 21, these being due independently to Nachbin* and Shirotall . 

FACT C(X) is reflexive iff X is discrete. 

[Assuming that C(X) is reflexive, its bounded weakly closed subsets are weakly compact. Therefore 

the compact subsets of X are finite which means that C(X) is a dense subspace of R X (product topology). 

But the reflexiveness of C(X) also implies that its closed bounded subsets are complete, hence X is a ka

space (cf. p. 2-15). Thus C(X) is complete (cf. Proposition 13), so C(X) = RX and X is discrete.] 

A subset A of X is said to be bounding if every f E C(X) is bounded on A. Example: 

X is pseudocompact iff X is bounding. 

Selected Topics in Infinite Dimensional Topology, PWN (1915), 189. 

* Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 411-414. 

" Proc. Japan Acad. Sci. 30 (1954), 294-298. 



2-19 

Given a subset W of C(X), let K(W) be the subset of X consisting of those x with the 

property that for every neighborhood Oz of x there exists an IE C(X): I(X - Oz) = {O} 

& I rt w. 

BOUNDING LEMMA If W is a barrel in C(X), then K(W) is bounding. 

[Suppose that K(W) is not bounding and fix an infinite discrete collection 0 = {O} 

of open subsets of X such that 0 n K(W) "# 0 V 0 E O. Choose an element 0 1 E O. 

Since 0 1 n K(W) "# 0, 3 h E C(X) : h(X - 0 1 ) = {O} & h ¢ W. On the other hand, 

W, being a barrel, is closed, so 3 a compact Kl C X and a positive el : {g : PK1 (11 - g) < 
ed n W = 0. Choose next an element O2 EO: O2 n Kl = 0 and continue. The upshot 

is that there exist sequences {On}, {In}, {Kn}, {en} with the following properties: (1) 
n 

On+l n( U Ki) = 0; (2) In (X -On) = {O} & In rt Wj (3) {g : PKn (fn - g) < en}nW = 0. 
i=1 

Take Cl = 1 and detennine Cn+l : 0 < Cn+l < ~1' subject to the requirement that 
n+ 

n 1 ~ 1 
Cn+lPKn+l CE -Ii) < en+! V n. Put I = E -Ii-then by (2) and the discreteness of 

i=l Cj i=l Ci 

{On}, I is continuous, and (1)-(3) combine to imply that cn+l1 rt W V n, thus W does 

not absorb the function I, a contradiction.] 

LEMMA OF DETERMINATION If W is a barrel in C(X) and if I is an element of 

C(X) such that I(x) = 0 V x E U, where U is an open set containing K(W), then lEW. 

[Suppose false. Choose a compact K C X and a positive e : {g: PK(f -g) < e}nW = 
0, and for each x E K - U, choose a neighborhood Oz of x : g(X - Oz) = {O} ::} 9 E W. 

Fix Iz E C(X, [0, 1]) : Iz(x) = 1 & IzlX - Oz = 0, and let Uz = {Y : Iz(Y) > 1/2}. 

The Uz comprise an open covering of K - U, thus one can extract a finite sub covering 

Uzp ." ,UZn ' Put K. z , = {1/2 liz. ... I } (i = 1, ... ,n)- then t K.z,IK -U = 
max 'Zl + + Zn .=1 

1. Since K.zi(X - Oz') = {O}, CK.zJ E W(c E R), therefore F = K.zli + ... + K.znl = 
~(nK.zll + ... + nK.znJ) E W. But by its very construction, FIK = 11K::} .F rt W.] 
n 

PROPOSITION 20 C(X) is barrelled iff every bounding subset of X is relatively 

compact. 

[Necessity: Rephrased, the assertion is that for any closed noncompact subset S of 

X, 3 I E C(X) : I is unbounded on S. Thus let Bs = {I : sup III ~ 1}-then Bs is 
s 

balanced and convex. Since B s is also closed and since the requirement that there be some 

IE C(X) which is unbounded on S amounts to the failure of Bs to be absorbing, it need 

only be shown that B s does not contain a neighborhood of O. Assuming the opposite, 

choose a compact K and a positive e : {I : PK(f) < e} CBs. Claim: S C K. Proof: 
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If xES - K, 3 I E C(X) : I(K) = {OJ & I(x) = 2, an impossibility. Therefore S is 

compact (being closed), contrary to hypothesis. 

Sufficiency: Fix a barrel W in C(X)-then the contention is that W contains a neigh

borhood of O. Owing to the bounding lemma, K(W) is compact (inspect the definitions to 

see that K(W) is closed). Accordingly, it suffices to produce a positive f : {I : PK(W) (f) < 
f} C W. To this end, consider BC(X) viewed as a Banach space in the supremum norm. 
Because BC(X) is barrelled and W n BC(X) is a barrel in BC(X), 3 f > 0 : 114>11 ~ 
2f ::} 4> E W (4) E BC(X». Assuming that PK(W) (I) < f, fix an open set U containing 

K(W) such that I/(x)1 < f V x E U. Let F(x) = max{f,/(x)} + min{-f,/(x)}-then 
2F(x) = 0 (x E U), thus the lemma of determination implies that 2F E W. But V x E X, 

1 1 
12(f(x) - F(x))1 < 2f::} 112(f - F) II ~ 2f::} 2(f - F) E w, so 2(2F) + 2(2(f - F)) E W, 
i.e., lEW.] 

Example: C([O, On is not barrelled. 

EXAMPLE If X is a paracompact LCH space, then C(X) is Baire (cf. p. 2-16). Since Baire => 
barrelled, it follows from Proposition 20 that the bounding subsets of X are relatively compact. 

Notation: Every I E C(X) can be regarded as an element of C(X, Roo), hence admits 

a unique continuous extension 100 : {3X -+- Roo. 

[Note: Put v/X = {x E {3X : loo(x) E R}-then the intersection n v/X is vX.] 
/EC(X) 

FACT The elements of f3X - vX are those z with the property that there exists a G6 in f3X 

containing :z: which does not meet X. 

Let W be a balanced, convex subset of C(X)-then W is said to contain a ball if 

3 r > 0 : {I : sup II/ ~ r} C W. 
X 

Example: Every balanced, convex bornivore W in C(X) contains a ball. 

[Given I,g E C(X) with I ~ g, let [/,g] = {4>: I ~ 4> ~ g}. Since V compact K C X, 

PK(4)) ~ max{PK(f),PK(9)}, [/,g] is bounded, thus is absorbable by W. In particular: 

3 r > 0 such that [-rI, rl] C W.] 

FACT Suppose that W contains a ball. Let K be a compact subset of X. Assume: f(K) = {OJ => 

feW-then 3 f > 0 : {f : PK (I) < f} C W. 

Let W be a balanced, convex subset of C(X)-then a compact subset K of {3X is said 

to be a hold of W if lEW whenever loo(K) = {OJ. Example: {3X is a hold of W. 
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LEMMA Suppose that W contains a ball-then a compact subset K of f3X is a hold 

of W provided that lEW whenever 100 vanishes on some open subset 0 of f3X containing 

K. 

Application: Under the assumption that W contains a ball, if K and L are holds of 

W, then so is K n L. 
[Consider any I : 100(0) = {OJ, where 0 is some open subset of f3X containing KnL. 

Choose disjoint open subsets U, V of f3X : K c U, L-O c V and let U', V' be open subsets 
-=:I -=:I =' 

of j3X : K C U' cUe U, L - 0 C V' eVe V. Fix 4> E C(X, [0, 1]) : j34>(U ) = {1}, 

j34>(V) = {O}. Note that 214> vanishes on (0 U V') n X. But 0 U V' C (0 U V') n X => 
(214))00(0 U V') = {OJ. On the other hand, LeO U V', thus by the lemma, 214> E W. 

Similarly, 21(1 - 4» E W. Therefore I = ~(214)) + ~(21(1 - 4») E W.] 

Let W be a balanced, convex subset of C(X)-then the support of W, written spt W, 

is the intersection of all the holds of W. 

LEMMA Suppose that W contains a ball-then spt W is a hold of W. 

[Since j3X is a compact Hausdorff space, for any open 0 C j3X containing spt W, 3 
n 

holds Kt, . .. ,Kn of W such that n Ki CO.] 
i=l 

PROPOSITION 21 C(X) is bornological iff X is R-compact. 

[Necessity: Assuming that X is not R-compact, fix a point Xo E vX - X-then the 

assignment I -+ loo(xo) defines a nontrivial homomorphism Xo : C(X) -+ R, which is 

necessarily discontinuous (cf. p~ 2-24). So, to conclude that C(X) is not bornological, it 

suffices to show that Xo takes bounded sets to bounded sets. IT this were untrue, then there 

would be a bounded subset B C C(X) and a sequence {In} C B suCh that xo(fn) -+ 00. 

The intersection n{x E j3X : (fn)oo(x) > (fn)oo(XO) - 1} is a G6 in j3X containing Xo, 
n 

thus it must meet X (cf. p. 2-20), say at Xoo hence In(xoo) -+ 00. But then, as B is 

bounded, f (n ) -+ 0 in C(X), which is nonsense. 
n Xoo 

Sufficiency: It is a question of proving that every balanced, convex bornivore W in 

C(X) contains a neighborhood of O. Because W contains a ball, the lemma implies that 

spt W is a hold of W, thus the key is to establish the containment spt W C X since this 

will allow one to say that 3 f > 0 : {I : Pspt w(f) < f} C W (d. p. 2-20). So take a 

point Xo E j3X - X and choose closed subsets Al :::> A2 :::> ••• of j3X : V n, Xo E int An 
& (n An) n X = 0 (possible, X being R-compact (d. p. 2-20)). Claim: At least one 

n 
of the j3X - int An is a hold of W (=> Xo 1. spt W => spt W C X). IT not, then V n, 
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3 In : (fn)oc>(fJX - int An) = 0 & In ¢ W. The sequence {X - An} is an increasing 

sequence of open subsets of X whose union is X. Therefore I = supnl/nl is in C(X). Fix 
n 

d> 0: [-I, I] C dW-then nln E dW V n => In E W V n ~ d, a contradiction.] 

LEMMA A subset A of X is bounding iff its closure in (JX is contained in vX. 

FACT If C(X) is bornological, then C(X) is barrelled. 

[Note: Recall that in general, bornological ;4> barrelled and barrelled ;4> bornologica.l.] 

Remark: There are completely regular Hausdorff spaces X whose bounding subsets are relatively 

compact but that are not R-compact (Gillman-Henriksent ). For such X, C(X) is therefore barrelled but 

not bornological. 

Given a closed subset A of X, let IA = {I : IIA = O}-then IA is a closed ideal in 

C(X). Examples: (1) 10 = C(X); (2) Ix = {O}. 

SUB LEMMA Suppose that X is compact. Let I C C(X) be an ideal. Assume: 

V x EX, 3/:z; E I: I:z;(x) 1= O-then 1= C(X). 
[V x E X, 3 a neighborhood U:z; of x : 1:z;IU:z; 1= O. Choose points Xl! ... ,Xn : X = 

n n 1 
i~l U:Z;j and let I = i~ I;j : I E I=> 1 = 1'7 E I => 1= C(X).] 

LEMMA Suppose that X is compact. Let I C C(X) be an ideal and put A = 
n Z(f). Assume: A cUe Z(4)), where U is open and 4> E C(X)-then 4> E I. 
leI 

[The restriction IIX - U is an ideal in C(X - U) (Tietze), hence by the sublemma, 

equals C(X - U). Choose an I E I: IIX - U = 1 to get 4> = 14> E I.] 

PROPOSITION 22 Suppose that X is compact. Let I C C(X) be an ideal-then 

1 = lA, where A = n Z(f). 
leI 

[Since I C lA, it need only be shown that IA C 1. So let I be a nonzero element of 

IA and fix t: > O. Choose 4> E C(X, [0,1]) : {x : I/(x)1 ::5 t:/2} C Z(4)) & {x : I/(x)1 ~ 
3t:/4} C Z(1 - 4». Because A C {x : I/(x)1 < t:/4} C Z(f4», the lemma gives 14> E 1. 

And: III - 14>11 = sup II - 14>1 < t: => I E 1.] 
x 

PROPOSITION 23 The closed subsets of X are in a one-to-one correspondence with 

the closed ideals of C(X) via A -+ IA. 

t 1rans. Amer. Math. Soc. 77 (1954), 340-362 (cf. 360-362). 
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[Due to the complete regularity of X, the map A -+ IA is injective. To see that 

it is surjective, it suffices to prove that for any closed ideal I in C(X) : I = lA, where 

A = n Z(J). Obviously, lelA. On the other hand, V compact K C X, the restriction 
leI 

11K is an ideal in C(K) (d. p. 2-14), thus 11K = lAnK (cf. Proposition 22), and from 

this it follows that IA C 1 = I.] 

Application: The points of X are in a one-to-one correspondence with the closed 

maximal ideals of C(X) via x -+ I{z}' 

By comparison, recall that the points of !3X are in a one-to-one correspondence with the maximal 

ideals of C(X). 

[Note: Assign to each z E!3X the subset rna: ofC(X) consisting of those I such that z E clt:lx (Z(f»

then rna: is a maximal ideal and all such have this form. For the details, see Walkert .] 

A character of C(X) is a nonzero multiplicative linear functional on C(X), i.e., a 

homomorphism C(X) -+ R of algebras. 

LEMMA If X : R -+ R is a nonzero ring homomorphism, then X = idR. 

[In fact, X is order preserving and the identity on Q.] 

Application: Every ring homomorphism C(X) -+ R is R-linear, thus is a character. 

LEMMA If x: C(X) -+ R is a character of C(X), then V I, Ix(f)! = x(l/l). 

[For Ix(f)l2 = X(f)2 = X(P) = x(1/12) = x(1/1)2 and x(111) is ~ 0.] 

By way of a corollary, if X : C(X) -+ R is a character of C(X) and if x(f) = 0, then x(min{ 1,1/1}) = O. 

Proof: 2x(min{l, III}) = X(I) + x(f) - X(ll- II) = 1 -IX(I- 1)1 = 1- 1 = O. 

FACT Write vi for the unique extension of IE C(X) to C(vX)-then C(X) "is" C(vX) and the 

characters of C(X) are parameterized by the points of vX : I -+ vl(z) (z E vX). 

[If X is R-compact and if X : C(X) -+ R is a character, then in the terminology of p. 19-6 &; p. 

19-7, :Fx = {Z(f) : x(f) = O} is a zero set ultrafilter on X. Claim: :Fx has the countable intersection 
00 min{ 1 If I} 00 

property. Thus let {Z(fn)} C :Fx be a sequence and put I = 2: ~ 110 -then n Z(fn) = Z(f). 
121 

To prove that x(f) = 0, write I = t min{~; 1ft I} + Un, where 0 $ Un $ 2-110
, apply X to get x(f) = 

,=1 

t The Slone-Cech Oornpactijication, Springer Verlag (1974), 18. 
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x(gl'J ~ 2-n , and let n -t 00. It therefore follows that n:Fx is nonempty, say :c E n:F'x (c!. p. 19-7). And: 

xU - xU» = 0 => :c E ZU - xU» => xU) = f(:c)·] 

-Notation: C(X) is the set of continuous characters of C(X). -:From the above, there is a one-to-one correspondence X --+- C(X), viz. x --+- XZl where 

Xz(f) = f(x). 

If X is not R-compact, then the elements of vX - X correspond to the discontinuous characters of 

C(X). 

-Topologize C(X) by giving it the initial topology determined by the functions X --+--x(f) (f E C(X))-then the correspondence X --+- C(X) is a homeomorphism (cf. §1, 

Proposition 14). 

PROPOSITION 24 Let {: be CRH spaces. Assume: 

topological algebras-then {: are homeomorphic. 

X Y 

{ 
C(X) . h' 
C (Y) are Isomorp IC as 

[Schematically, II II and +---t is a homeomorphism.] - -C(X) +---t C(Y) 

FACT Let {Xy be CRH spaces. Assume: {C(X) are isomorphic as algebras-then {VX are 
C~) ~ 

homeomorphic. 
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§3. COFIBRATIONS 

The machinery assembled here is the indispensable technical prerequisite for the study 

of homotopy theory in TOP or TOP •. 

Let X and Y be topological spaces. Let A -+ X be a closed embedding and let 

f : A -+ Y be a continuous function-then the adjunction space X U f Y corresponding 

A ...!..... Y 
to the 2-source X +- A ~ Y is defined by the pushout square 1 1 ' f being 

X --+ XUfY 
the attaching map. Agreeing to identify A .with its image in X, the restriction of the 

projection p : X II Y -+ X Uf Y to {: - A is a homeomorphism of {: - A onto an 

{~:::d subset of X Uf Y and the images {~:)- A) partition X Uf Y. 

[Note: The adjunction space X Uf Y is unique only up to isomorphism. For example, 

if t/> : X -+ X is a homeomorphism such that t/>IA = idA, then there arises another pushout 

square equivalent to the original one.] 

(ADd If A is not empty and if X and Y are connected (path connected), then 

X Uf Y is connected (path connected). 

(AD2) If X and Y are T 1, then X U f Y is T 1 but if X and Y are Hausdorff, 

then X U f Y need not be Hausdorff. 

(AD3) If X and Y are Hausdorff and if A is compact, then X Uf Y is Hausdorff. 

(AD.) If X and Y are Hausdorff and if A is a neighborhood retract of X such 

that each x EX - A has a neighborhood U with An U = 0, then X uf Y is Hausdorff. 

(ADs) If X and Y are normal (normal and count ably paracompact, perfectly 

normal, collectionwise normal, paracompact) Hausdorff spaces, then X U f Y is a normal 

(normal and count ably paracompact, perfectly normal, collectionwise normal, paracom

pact) Hausdorff space. 

(AD6) If X and Y are in CG (a-CG), then X Uf Y is in CG (a-CG). 

EXAMPLE Working with the Isbell-Mrowka space ~(N) = SuN, consider the pushout square 

S ~ (3S 

1 1 . Due to the maximality of S, every open covering of \Ii'(N) U, {3S has a finite 

~(N) ---+ ~(N) U, (3S 

subcovering. Still, \Ii'(N) U, {3S is not Hausdorff. 



3-2 

{ 
TOP~TOP 

The cylinder functor I is the functor I : [ ]' where X x [0,1] carries 
X ~X x 0,1 

{ X~IX the product topology. There are embeddings it : () (0 5 t 5 1) and a projection 
x ~ x,t 

{ 
IX ~ X { TOP ~ TOP 

P : () . The path space functor P is the functor P : X C([ ] ) , where 
x,t ~x ~ O,l,X 

{ X~PX C([O, 1], X) carries the compact open topology. There is an embedding j : .( ) , 
x ~J x 

{
PX~X 

with j(x)(t) = x, and projections Pt : ( ) (0 :5 t 5 1), with Pt(O') = O'(t). 
0' ~ Pt 0' 

(I, P) is an adjoint pair: C(IX, Y) ~ C(X, PY). Accordingly, two continuous functions 

{ I: X ~ Y determine the same morphism in HTOP, i.e. are homotopic (I ~ g), iff 
g:X~Y 

{ 
H oio = 1 

3 H E C(IX, Y) such that H' or, equivalently, iff 3 G E C(X, PY) such that ° Zl = 9 

{
po oG 1 
PloG=g' 

Let A and X be topological spaces-then a continuous function i : A ~ X is said 

to be a cofibration if it has the following property: Given any topological space Y and 

{ F:X~Y any pair (F, h) of continuous functions such that F ° i = h ° io, there is a 
h: IA ~ Y 

continuous function H : IX ~ Y such that F = H ° io and H ° Ii = h. Thus H is a filler 

for the diagram 

A ____ z....;:o:....-. __ -;.. I A 

/ 
Y Ii 

/ 
X ----:-----;.. IX 

Zo 

[Note: One can also formulate the definition in terms of the path space functor, viz. 

A >PY 

i1 // 1po .] 
X .Y 

A continuous function z A ~ X IS a cofibration iff the commutative diagram 
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A ~ X 

io! 
IA --+ 

Ii 

is a weak pushout square. Homeomorphisms are cofibrations. Maps 

with an empty domain are cofibrations. The· composite of two cofibrations is a cofibration. 

EXAMPLE Let p : X - B be If. surjective continuous function. Consider e, = IX II B/,..." 

where (Z/, 0) ,..., (Z", 0) &; (z,1) "'" p(z) (no topology). Let t : e, _ [0,1] be the function [z, t] - t; 

let z : t-1ao, 1D - X be the function [Z, t] - Z; let p : t-1ao, 1]) - B be the function [z, t] _ p(z). 

Definition: The coordinate topology on C, is the initial topology determined by t, Z,P. There is a closed 

embedding j : B _ e, which is a cofibration. For suppose that {F : e, - Y are continuous functions 
h :IB-Y 

such that F 0 j = h 0 io-then the formulas H(j(b), T) = h(b, T), 

{ 

F[z,t + ~] (t 2: 1/2,T:S 2 - 2t) 

H([z, t], T) = h(p(z), 2t + T - 2) (t 2: 1/2, T 2: 2 - 2t) 

F[z, t + tTl (t:S 1/2) 

specify a continuous function H : Ie, - Y such that F = H 0 io and H 0 Ij = h. 

[Note: e, also carries another (finer) topology (cf. p. 3-22). When X = B &; p = idx, e, is rex, 
and when B = * &; p(X) = *, C, is EeX, i.e., the coordinate topology is the coarse topology (cf. p. 1-27 

fr.).] 

LEMMA Suppose that i : A ..... X is a cofibration-then i is an embedding. 

[Form the pushout square 

A 

io! 
IA 

i 
--+ 

--+ 
Ia 

X 

! F corresponding to the 2-source I A i2- A 

Y 

~ X. The definitions imply that there is a continuous function G : Y ..... I X such that 

{
Go F = io d . fun' H IX Y ch h { H 0 io = F B G 0 h = Ii an a contInUOUS ctlon : ..... su t at HoI i = h' ecause 

HoG = idy, G is an embedding. On the other hand, h 0 i l : A ..... Y is an embedding, 

hence Go h 0 i 1 : A ..... i(A) x {I} is a homeomorphism.] 

For a subspace A of X, the cofibration condition is local in the sense that if there exists a numerable 

covering U = {U} of X such that VUE U, the inclusion An U - U is a cofibration, then the inclusion 

A - X is a cofibration (d. p. 4-5). 

When A is a subspace of X and the inclusion A ..... X is a cofibration, the commutative 
ioA --+ IA 

diagram ! ! is a pushout square and there is a retraction r : IX ..... 

ioX --+ ioX U IA 
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ioX U IA. If p : ioX U IA - IX is the inclusion and if { : ~ i =: ii are defined by 

{ u = i 1 ., then A is the equalizer of (u, v). Therefore the inclusion A _ X is a 
v = po r 0 Zl 

closed cofibration provided that X is Hausdorff or in a-eG. 

PROPOSITION 1 Let A be a subspace of X-then the inclusion A - X is a cofi

bration iff ioX U IA is a retract of IX. 

Why should the inclusion A - X be a cofibration if ioX U I A is a retract of IX? Here 

is the problem. Suppose that 4> : ioX U IA - Y is a function such that 4>lioX & 4>IIA are 

continuous. Is 4> continuous? That the answer is "yes" is a consequence of a generality 

(which is obvious if A is closed). 

LEMMA H ioX U IA is a retract of IX, then a subset 0 of ioX U IA is open in 

. X IA'ff .. t' . h {ioX . . { ioX 
Zo U 1 Its mtersec Ion WIt IA IS open m IA' 

[Let r be the retraction in question and assume that 0 has the stated property. Put 

Xo = {x: (x,O) EO}. Write Un for the union of all open U eX: An U x [0, 1/n[c O. 
00 00 00 

Note that An Xo = An U Un and X - U Un C A. Claim: Xo C UUn. Turn it 
III 

00 _ 

around and take an x E X - U Un-then for any t E ]0,1], rCA x {t}) = A x {t}, so 
1 

00 

rex, t) E (A - U Un) X [0,1] = (A - Xo) x [0,1] C (X - Xo) x [0,1] => (x,O) = r(x,O) E 
1 

(X - XO) X [0,1] => x E X - Xo, from which the claim. Thus 0 = 0' U 0", where 
00 

0' = 0 n (Ax]O, 1]) and 0" = (ioX U IA) n U(Xo n Un X [0, linD are open in ioX U IA.] 
1 

EXAMPLE Not every closed embedding is a cofibration: Take X = {OJ U {lin: n 2: I} and let 

A = {OJ. Not every cofibration is a closed embedding: Take X = [0,1]/[0,1[= {[OJ, [In and let A = {[On. 

EXAMPLE Given nonempty topological spaces { : ' form their coarse join X *c Y -then the 

closed embeddings {: - X *c Yare cofibrations. 

[It suffices to exhibit a retraction r : [(X*c Y) - io(X*c Y)UIY. To this end, consider r([x, y, 1], T) = 
([x,y,I],T), 

{ 

([x,y, 2 ~ T]'O) 
r([z, y, t], T) = T + 2t _ 2 

([x,y,l], ---
t 

(0 < t < 2 - T) 
- - 2 

2 - T < t < 1) .] 
2 - -



FACT Let XO C Xl C ... be an expanding sequence of topological spaces. Assume: V n, the 

inclusion xn _ Xn+l is a cofibration-then V n, the inclusion Xn _ X OO is a cofibration. 

[Fix retractions rIo : IX"+1 _ iOX,.+l U IX". Noting that IXOO = colimIXn I work with the rio to 

exhibit io XOO U I xn as a retract of I XOO .] 

Application: Let X and Y be topological spaces; let A C X and BeY be subspaces. 

Suppose that the inclusions { ~ =: ~ are cofibrations-then the inclusion A x B -4 X X Y 

is a cofibration. 

[Consider the inclusions figuring in the factorization A x B -4 X x B -4 X X Y.] 

Given t : 0::; t ::; 1, the inclusion {t} -4 [0,1] is a closed cofibration and therefore, for 

any topological space X, the embedding it : X -4 IX is a closed cofibration. Analogously, 

the inclusion {O, I} -4 [0, 1] is a closed cofibration and it too can be multiplied. 

Z 

PROPOSITION 2 Let f 1 
Y 

1" be a pushout square and assume that f is a 
X ---t P 

e 
cofibration-then 7J is a cofibration. 

[The cylinder functor preserves pushouts.] 

Application: Let A -4 X be a closed cofibration and let f : A -4 Y be a continuous 

function-then the embedding Y -4 X U f Y is a closed cofibration. 

The inclusion Sn-l -4 nn is a closed cofibration. Proof: Define a retraction r : 

Inn -4 ionn UISn
-

I by letting rex, t) be the point where the line joining (0,2) E R n x R 

and (x, t) meets ionn U ISn-I. Consequently, if f : sn-I -4 A is a continuous function, 

then the embedding A -4 nn Uf A is a closed cofibration. Examples: (1) The embedding 

nn -4 Sn of nn as the northern or southern hemisphere of Sn is a closed cofibrationj 

(2) The embedding sn-l -4 sn of sn-l as the equator of sn is a closed cofibration, so 

V m ::; n, the embedding Sm -4 Sn is a closed cofibration. 

FACT Let f : sn-l - A be a continuous function. Suppose that A is path connected-then 

nn UJ A is path connected and the homomorphism 1I'q(A) - 1I'q(nn UJ A) is an isomorphism if q < n-1 

and an epimorphism if q = n - 1. 

VAN KAMPEN THEOREM Suppose that the inclusion A - X is a closed cofibration. Let 



3-6 

ITA 

/ : A --+ Y be a continuous function-then the commutative diagram 1 
ITJ 

---+ ITY 

1 
ITX ---+ IT(X UJ Y) 

pushout square in GRD. 

is a 

[Note: If in addition, A, X and Yare path connected, then for every z e A, the commutative 
J. 

1!'1(A,z) ---+ 1!'1(Y,/(Z» 

diagram 1 1 is a pushout square in GR.] 

Let A be a subspace of X, i : A -T X the inclusion. 

(DR) A is said to be a deformation retract of X if there is a continuous function 

r : X -T A such that r 0 i = idA and i 0 r ~ idx. 

(SDR) A is said to be a strong deformation retract of X if there is a continuous 

function r : X -T A such that r 0 i = idA and i 0 r ~ idx reI A. 

If ioX U I A is a retract of IX, then ioX U I A is a strong deformation retract of IX. 

Proof: Fix a retraction r : IX -T ioX U lA, say rex, t) = (p(x, t), q(x, t)), and consider the 

homotopy H : 12 X -T IX defined by H((x, t), T) = (p(x, tT), (1 - T)t + Tq(x, t)). 

PROPOSITION 3 Let A be a closed subspace of X and let f : A -T Y be a continuous 

function. Suppose that A is a strong deformation retract of X-then the image of Y in 

X U f Y is a strong deformation retract of X U f Y. 

EXAMPLE The house with two rooms is a strong deformation retract of 

LEMMA Suppose that the inclusion A -T X is a cofibration-then the inclusion 

ioX U IA U i1X -T IX is a cofibration. 

[Fix a homeomorphism <P : 1[0,1] -T 1[0,1] that sends I {O} Uio[O, 1] UI{l} to io[O, 1]

then the homeomorphism idx x <P : I2X -T I 2X sends ioIX U I(ioX U IA U ilX) to 

io IX U 12 A. Since the inclusion I A -T I X is a cofibration, io IX U 12 A is a retract of 12 X 

and Proposition 1 is applicable.] 

[Note: A similar but simpler argument proves that the inclusion ioX U IA -T IX is a 

cofibration. ] 
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PROPOSITION 4 If A is a deformation retract of X and if i : A --+ X is a cofibration, 

then A is a strong deformation retract of X. 

[Choose a homotopy H : IX --+ X such that H 0 io = idx and H 0 i 1 = i 0 r, where 

r : X --+ A is a retraction. Define a function h : I(ioX U IA U iIX) --+ X by 

{ 

h((x,O),T) = x(x EX) 
h((a, t), T) = H(a, (1 - T)t) (a E A) . 
h((x, 1), T) = H(r(x), 1 - T) (x EX) 

Observing that ioX U IA U i1X can be written as the union of ioX U A x (0,1/2] and 

Ax [1/2, l]Ui I X, the lemma used in the proof of Proposition 1 implies that h is continuous. 

But the restriction of H to ioX U fA U ilX is h 0 i o, so there exists a continuous function 

G: IX --+ X which extends h 0 i l . Obviously, Go io = idx, Go i l = i 0 r, and V a E A, 
V t E [0,1] : G(a, t) = a. Therefore A is a strong deformation retract of X.] 

PROPOSITION 5 If i : A --+ X is both a homotopy equivalence and a cofibration, 

then A is a strong deformation retract of X. 

[To say that i : A --+ X is a homotopy equivalence means that there exists a continuous 

function r : X --+ A such that r 0 i ~ idA and i 0 r ~ idx . However, due to the cofibration 

assumption, the homotopy class of r contains an honest retraction, thus A is a deformation 

retract of X or still, a strong deformation retract of X (cf. Proposition 4).] 

EXAMPLE (The Comb) Consider the subspace X of R2 consisting of the union ([0,1] x to}) U 

({O} x [0,1]) and the line segments joining (lin, 0) and (lin, 1) (n = 1,2, ... )-then X is contractible. 

Moreover, to} x [0,1] is a deformation retract of X. But it is not a strong deformation retract. Therefore 

the inclusion {O} x [0,1] - X, while a homotopy equivalence, is not a cofibration. 

Let A be a subspace of X-then a Strj3m structure on (X, A) consists of a continuous 

function ¢> : X --+ [0,1] such that A C ¢>-I(O) and a homotopy <P : IX --+ X of idx reI A 

such that <p(x, t) E A whenever t > ¢>(x). 

[Note: If the pair (X, A) admits a Strj3m structure (¢>, <p) and if A is closed in X, then 

A = ¢>-1(0). Proof: ¢>(x) = o::} x = <p(x, 0) = lim <p(x, l/n) EA.] 
If the pair (X,A) admits a Strj3m structure (¢>o,<Po) for which ¢>o < 1 throughout X, 

then A is a strong deformation retract of X. Conversely, if A is a strong deformation retract 

of X and if the pair (X, A) admits a Strj3m structure (¢>, <p), then the pair (X, A) admits 

a Strj3m structure (¢>o, <Po) for which ¢>o < 1 throughout X. Proof: Choose a homotopy 

H : IX --+ X of idx reI A such that H 0 iI(X} C A and put ¢>o(x) = min{ ¢>(x), 1/2}, 

<Po (x, t} = H( <p(x, t), min{2t, 1}}. 
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COFIBRATION CHARACTERIZATION THEOREM The inclusion A ~ X 1S a 

cofibration iff the pair (X, A) admits a Str¢m structure (4), cI». 

[Necessity: Fix a retraction r : IX ~ ioX U IA and let X t-IX ..!.[O, 1] be the 

projections. Consider 4>(x) = sup It - qr(x, t)l, ~(x, t) = pr(x, t). 
099 

Sufficiency: Given a StrjiSm structure (4), ~) on (X, A), define a retraction r : IX ~ 

ioXUIA by 
_ { (cI>(x, t), 0) (t ~ 4>(x» 

r(x,t) - (cI>(x,t),t _ 4>(x» (t ~ 4>(x» .J 

One application of this criterion is the fact that if the inclusion A ~ X is a cofibration, 

then the inclusion A ~ X is a closed cofibration. For let (4), ~) be a StrjiSm structure on 

(X,A)-then (4),~), where ~(x,t) = ~(x,min{t,4>(x))), is a StrjiSm structure on (X, A). 
Another application is that if the inclusion A ~ X is a closed cofibration, then the inclusion 

kA ~ kX is a closed cofibration. Indeed, a StrjiSm structure on (X, A) is also a StrjiSm 

structure on (kX, kA). 

EXAMPLE Let A C [0,1]" be a compact neighborhood retract of R"-then the inclusion A ~ 

[0,1]" is a cofibration. 

EXAMPLE Take X = [0,1]"(11: > w) and let A = {O,,}, 0" the "origin" in X-then A is a strong 

deformation retract of X but the inclusion A ~ X is not a cofibration (A is not a zero set in X). 

FACT Let A be a nonempty closed subspace of X. Suppose that the inclusion A ~ X is a co

fibration-then V q, the projection (X, A) ~ (X/A, * A) induces an isomorphism Hq(X, A) ~ Hq(X/ A, * A), 

*A the image of A in X/A. 

[With U running over the neighborhoods of A in X, show that Hq(X, A) ::::i lim Hq(X, U) and then 

use excision.] 

LEMMA Let X and Y be Hausdorff topological spaces. Let A be a closed subspace of X and let 

f : A ~ Y be a continuous function. Assume: The inclusion A ~ X is a cofibration-then X U f Y is 

Hausdorff. 

As we shall now see, the deeper results in cofibration theory are best approached by 

implementation of the cofibration characterization theorem. 

PROPOSITION 6 Let K be a compact Hausdorff space. Suppose that the inclusion 

A ~ X is a cofibration-then the inclusion C(K,A) ~ C(K,X) is a cofibration (compact 

open topology). 
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[Let (<p,~) be a Str~m structure on (X, A). Define <PK: C(K, X) -+ [0,1] by <PK(J) = 
sup<p0J and ~K: IC(K,X) -+ C(K,X) by ~K(J,t)(k) = ~(J(k),t)-then (<PK'~K) is 

K 
a Str~m structure on (C(K,X),C(K,A».] 

EXAMPLE If A is a subspace of X, then the inclusion PA - PX is a cofibration provided that 

the inclusion A - X is a cofibration. 

EXAMPLE Take A = {0,1}, X = [0,1]-then the inclusion A - X is a cofibration but the 

inclusion C(N,A) - C(N, X) is not a cofibration (compact open topology). 

[The Hilbert cube is an AR but the Cantor set is not an ANR.) 

PROPOSITION 7 Let {~ ~ ; , with A closed, and assume that the corresponding 

inclusions are cofibrations-then the inclusion A x Y u X x B -+ X x Y is a cofibration. 

[Let (<p, ~) and ("p, \II) be Str~m structures on (X, A) and (Y, B). Define w : X x Y -+ 

[0,1] by w(x, y) = min{ <p(x), "p(y)} and define 0 : I(X x Y) -+ X x Y by 

O( (x, y), t) = (~( x, min {t, "p(y)} ), \II(y, min { t, <p( x)} ». 
Since A is closed in X, <p(x) < 1 => ~(x, <p(x» E A, so (w,O) is a Str~m structure on 

(X x Y,A x YuX x B).] 
[Note: If in addition, A (B) is a strong deformation retract of X (Y), then A x YUX xB 

is a strong deformation retract of X x Y. Reason: <p < 1 ("p < 1) throughout X (Y) => 
w < 1 throughout X x Y.] 

EXAMPLE If the inclusion A - X is a cofibration, then the inclusion A >< X U X >< A - X >< X 

need not be a cofibration. To see this, let X = [0,1]/[0,1[= {[O], [In, A = {[On and, to get a contradiction, 

assume that the pair (X >< X, A >< X U X >< A) admits a StrjiSm structure (q" Ill). Obviously, q,-1([0, I[) :::> 

A >< X u::x-x:A = X >< X (since A = X), so there exists a retraction r : X >< X - A >< X u X >< A, But 

([l], [1]) E {([OJ, [I])} ~ r([I]' [1]) E {r([O), [ID} = {([OJ, [I])} = ([On >< {[I]} ~ r([I], [1]) = ([0], [1]) and 

([1], [1]) E {([I], [O])} ~ '" ~ r([I], [1]) = ([1], [0]), 

LEMMA Let A be a subspace of X and assume that the inclusion A -+ X is a 

cofibration. Suppose that K, L : IX -+ Y are continuous functions that agree on ioX U 

lA-then K ~ LrelioX U IA. 

[The inclusion ioXUlAUi1X -+ IX is a cofibration (cf. the lemma preceding the proof 

of Proposition 4). With this in mind, define a continuous function F : IX -+ Y by F( x, t) = 
K( 0) d . f' h l(' X IA 'X) Y b {h«x,O),T) = K(x,T) x, an a contInUOUS unctIOn : Zo U U Zl -+ Y h«x, 1), T) = L(x, T) 
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& h((a,t),T) = K(a,T) = L(a,T). Since the restriction of F to ioX U IA U i1X is 

equal to h 0 io,· there exists a continuous function H : 12 X ~ Y such that F = H 0 io 

and HII(ioX U IA U ilX) = h. Let (, : [0,1] x [0, 1] ~ [D,I] x [0,1] be the involution 

(t, T) ~ (T, t)-then H o(idx x (,) : [2 X ~ Y is a homotopy between K and L reI ioXUI A.] 

PROPOSITION 8 Let A and B be closed subspaces of X. Suppose that the inclusions 

{ ~ : :i ' A n B ~ X are cofibrations-then the inclusion A U B ~ X is a cofibration. 

[In IX, write (x,t) '" (x,D) (x E A n B), call X the quotient IXI "', and let 

p : IX ~ X be the projection. Choose continuous functions <p,1jJ : X ~ [0,1] such that 

A = <p-1(D), B = 1jJ-I(D). Define.\ : X ~ X by .\(x) = [x, ¢(xj~~(x)] if x ¢ An B, 

.\(x) = [x,O] if x E An B-then .\ is continuous and {~~:~ ~:: ~~ :: ~ . Consider now 

a pair (F, h) of continuous functions {r::~A:~) ~ Y for which FI(A U B) = h 0 i o• 

F· h . { HA : IX ~ Y h h { HA II A = hilA & F H . . H . 
IX omotoples HB: IX ~ Y suc t at HBIIB = hlIB = A 0 '0 = B 0 '0 

and, using the lemma, fix a homotopy H : 12 X ~ Y between HA and HB rel ioX U 

I(A n B). With t as in the proof above, the composite H 0 (idx x t) factors through 

12 X P xi1 IX, thus there is a continuous function ii : I X ~ Y that renders the diagram 

[2X 

IX 

idx Xt 
~ 

H 

12X 

lH commutative. An extension of (F, h) is then given by the composite 

Y 

ii 0 (.\ x id) : IX ~ IX ~ Y.] 

FACT Let A and B be closed subspaces of a mebizable space X. Suppose that the inclusions 

An B - A, An B - B, B - X, A - B - X - Bare cofibrations-then the inclusion A - X is a 

cofibration. 

Let A be a subspace of X. Suppose given a continuous function 1jJ : X ~ [0,00] such 

that A C 1jJ-l(O) and a homotopy W : 11jJ-l([0, 1]) ~ X of the inclusion 1jJ-l([O, 1]) ~ 

X reI A such that W(x, t) E A whenever t > 1jJ(x)-then the inclusion A ~ X is a cofibra

tion. Proof: Define a Str~m structure (¢,~) on (X, A) by ¢(x) = min{21jJ(x),I}, 

{ 

W(x, t) (21jJ(x) < 1) 
~(x,t) = W(x,t(2 - 21jJ(x))) (1:5 21jJ(x):5 2) . 

x (1jJ(x)~I) 
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LEMMA Let A be a subspace of X and assume that the inclusion A ~ X is a 

cofibration. Suppose that U is a subspace of X with the property that there exists a 

continuous function 11" : X ~ [0,1] for which An U c 11"-1 (]O, 1]) C U-then the inclusion 

A n U ~ U is a cofibration. 

[Fix a Str~m structure (¢, q» on (X, A). Set 11"o(x) = inf 11"(q>(x, t)) (x E X). Define 
O<t<l 

a continuous function 1j; : U ~ [0,00] by 1j;(x) = ¢(x)/;o(x). This makes sense since 

¢(x) = ° =} 11"o(x) > ° (x E U). Next, 1j;(x) ~ 1 =} 11"o(x) > ° =} 11"(q>(x,t)) > ° =} 

q>(x,t) E U (V t). One can therefore let 'l1 : 11j;-1([0, 1]) ~ U be the restriction of q> and 

apply the foregoing remark to the pair (U, An U).] 

Let A, U be subspaces of a topological space X-then U is said to be a halo of A 

in X if there exists a continuous function 11" : X ~ [0,1] (the haloing function) such 

that A C 11"-1(1) and 11"-1 (]O, 1]) C U. For example, if X is normal (but not necessarily 

Hausdorff), then every neighborhood of a closed subspace A of X is a halo of A in X but 

in a nonnormal X, a closed subspace A of X may have neighborhoods that are not halos. 

(HAd If U is a halo of A in X, then U is a halo of A in X. 

(HA2 ) If U is a halo of A in X, then there exists a closed subspace B of X : A 

B eX, such that B is a halo of A in X and U is a halo of B in X. 

[A haloing function for 11"-1([1/2,'1]) is max{211"(x) -1,0}.] 

Observation: If the inclusion A ~ X is a cofibration and if U is a halo of A in X, 

then the inclusion A ~ U is a cofibration. 

[This is a special case of the lemma.] 

PROPOSITION 9 If j : B ~ A and i : A ~ X are continuous functions such that i 

and i 0 j are cofibrations, then j is a cofibration. 

[Take i and j to be inclusions. Using the cofibration characterization theorem, fix a 

halo U of A in X and a retraction r : U ~ A. Since U is also a halo of B in X" the 

B ~ PY 

inclusion B ~ U is a cofibration. Consider a commutative diagram il 

B 

To construct a filler for this, pass to its counterpart 1 
U ----T 

For 

PY 

A ----T 
F 

1 Po over U, which thus 

Y 

admits a filler G: U ~ PY. The restriction GIA : A ~ PY will then do the trick.] 

EXAMPLE (Telescope Construction) Let XO C Xl C ... be a.n expa.nding seq~ence of topo-



logical spaces. Assume: V n, the inclusion xn -+ xn+1 is a closed cofibration-then V n, the inclusion 
00 

xn -+ XOO is a closed cofibration (cf. p. 3-5). Write tel XOO for the quotient I1 xn x [n, n + 1]/ ..... Here, 
o 

.... means that the pair (:c, n+ 1) E xn X {n+l} is identified with the pair (:c, n+l) E xn+1 x {n+l}. One 

calls tel XOO the telescope of XOO. It can be viewed as a closed subspace of Xoo x [0,00[. The inclusion 
n 

telnXoo == U X" x [k, k + 1] -+ XOO x [0, oo[ is a closed cofibration (cf. Proposition 8), so the same is 
h=O 

true of the inclusion telnXoo -+ teln+1Xoo (cf. Proposition 9) and telXOO = colimtelnXoo, Denote by 

poo the composite tel XOO -+ Xoo x [0,00[-+ XOO. 

Claim: poo is a homotopy equivalence. 

[It suffices to establish that tel XOO is a strong deformation retract of XOO x [0,00[. One approach is 

to piece together strong deformation retractions xn+1 x [0, n + 1] - xn+l x {n + I} U xn x [0, n + 1].] 

{ 

XO C Xl C , .. 
Let be expanding sequences of topological spaces. Assume: V n, the inclusions 

yO C yl c ... 

{

X n _xn+1 
are closed cofibrations. Suppose given a sequence of continuous functions ~n : xn -+ yn 

yn -+ yn+l 

such that V n, the diagram ",n 1 1 </;n+1 commutes. Associated with the ~n is a continuous 

yn ---+ yn+1 

function ~oo : XOO -+ yoo and a continuous function tel ~ : telXoo -+ tel yoo, the latter being defined by 

) { 
(~n(:c),n+2t) E yn x [n,n+ 1] 

tel~(:c,n+t = 
(~n(:c), n + 1) E yn+1 x {n + I} 

tel X OO ---+ Xoo 

(0 :5: t :5: 1/2) 

(1/2 :5: t :5: 1) 

There is then a commutative diagram tel", 1 1 ",00. The horizontal arrows are homotopy 

tel yoo ---+ yoo 

equivalences. Moreover, tel ~ is a homotopy equivalence if this is the case of the ~n, thus, under these 

circumstances, ~oo : XOO -+ yoo itself is a homotopy equivalence. 

[Note: One can also make the deduction from first principles (cf. Proposition 15).] 

PROPOSITION 10 Let A be a closed subspace of a topological space X. Suppose 

that A admits a halo U with A = 11"-1(1) for which there exists a homotopy IT : IU -t X 
of the inclusion U -t X reI A such that IT 0 i1(U) C A-then the inclusion A -t X is a 

closed cofibration. 

[Define a retraction r : IX -t ioX U IA as follows: (i) rex, t) = (x, 0) (1I"(x) = 0); (ii) 

r(x,t) = (IT(x,211"(x)t),0) (0 < 1I"(x):5 1/2); (iii) r(x,t) = (IT(x,t/2(1-1I"(x»),0) (1/2:5 

1I"(x) < 1 & ° :5 t :5 2(1 - 1I"(x») and rex, t) = (IT(x, 1), t - 2(1 - 1I"(x») (1/2 :5 1I"(x) < 1 
& 2(1 -1I"(x» :5 t:5 1); (iv) r(x,t) = (x,t) (1I"(x) = 1).] 
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EXAMPLE If A is a irubcomplex of a CW complex X, then the inclusion A - X is a closed 

cofibration. 

A topological space X is said to be locally contractible provided that for any x E 

X and any neighborhood U of x there exists a neighborhood V C U of x such that 

the inclusion V -+- U is inessential. If X is locally contractible, then X is locally path 

connected. Example: V X, X* is locally contractible (d. p. 1-28). 
[Note: The empty set is locally contractible but not contractible.] 

A topological space X is said to be numerably contractible if it has a numerable covering {U} for 

which each inclusion U - X is inessential. Example: Every locally contractible paracompact Hausdorff 

sp8.ce is numerably contractible. 

[Note: The product of two numerably contractible spaces is numerably contractible.] 

FACT Numerable contractibility is a homotopy type invariant. Proof: If X is dominated in ho

motopy by Y and if Y is numerably contractible, then X is numerably contractible. 

Examples: (1) Every topological space having the homotopy type of a CW complex is numerably 

contractiblej (2) If the X" of the telescope construction are numerably contractible, then xoo is numerably 

contractible (consider teIXOO). 

A topological space X is said to be uniformly locally contractible provided that there 

exists a neighborhood U of the diagonal dx C X x X and a homotopy H : IU -+- X 

between PI I U and P2IU reI dx, where PI and P2 are the projections onto the first and 

second factors. Examples: (1) RR, DR, and SR-I are uniformly locally contractible; (2) 

The long ray L + is not uniformly locally contractible. 

EXAMPLE (Stratifiable Spaces) Suppose that X is stratifiable and in NES(stratifiable)-then 

X is uniformly locally contractible. Thus put A = X x ioX u (I Il.x ) u X X iIX, a closed subspace of the 

{ 
(z,1/,O) - z 

stratifiable space I(X x X). Define a continuous function r/J: A - X by &: (z, z,t) - z-
(.2:,1/,1) - 'II 

then r/J extends to a continuous function C. : 0 - X I where 0 is a neighborhood of A in I(X x X). Fix a 

neighborhood U of Il.x in X x X: IU C 0 and consider H = c.IIU. 

[Note: Every OW complex is stratifiable (d. p. 6-30) and in NES(stratifiable) (d. p. 6-43). Every 

metrizable topological manifold is stratifiable (d. p. 6-29 tr.: metrizable => stratifiable) and, being an 

ANR (d. p. 6-28), is in NES(stratifiable) (cf. p. 6-44: stratifiable => perfectly normal + paracompact).] 

FACT Let K be a compact Hausdorff space. Suppose that X is uniformly locally contractible

then C(K, X) is uniformly locally contractible (compact open topology). 
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LEMMA A uniformly locally contractible topological space X is locally contractible. 

[Take a point Xo E X and let Uo be a neighborhood of xo-then I {( Xo, xo)} c 
H-1(Uo). Since H-1(UO) is open in lU, hence open in l(X x X), there exists a neigh

borhood Vo C Uo of Xo : l(Vo x Vo) c H-1(UO). To see that the inclusion Vo -t Uo is 

inessential, define Ho : lVo -t Uo by Ho(x, t) = H«x, xo), t).] 
[Note: The homotopy Ho keeps Xo fixed throughout the entire deformation. In addi

tion, the argument shows that an open subspace of a uniformly locally contractible space 

is uniformly locally contractible.] 

EXAMPLE (A Spaces) Every A space is locally contractible. In fact, if X is a nonempty A 

space, then Y:Jl EX, U:& is contractible, thus X has a basis of contractible open sets, so X is locally 

contrac{ti~l~ aBut{a:<Ab space need not be uniformly locally contractible. 

where -, -. 
d$a d5,b 

Consider, e.g., X = {a, b, c, d}, 

FACT Let X be a perfectly normal paracompact Hausdorff space. Suppose that X admits a 

covering by open sets U, each of which is uniformly locally contractible--then X is uniformly locally 

contractible. 

[Use the domino principle.] 

When is X uniformly locally contractible? A sufficient condition is that the inclusion 

~x -t X xX be a cofibration. Proof: Fix a Str~m structure (</>, ~) on the pair (X xX, ~x), 

put U = </>-1([0, 1[) and define H : lU -t X by 

H«x y) t) = {P1(<}«x,y),2t» 
" P2(<}«x,y),2-2t» 

(05 t 5 1/2) 
(1/25t51) 

FACT Suppose that X is a perfectly normal Hausdorff space with a perfectly normal square--then 

X is uniformly locally contractible iff the diagonal embedding X -+ X x X is a. cofibration. 

[Use Proposition 10, noting that t:.x is a zero set.] 

Application: If X is a CW complex or a metrizable topological manifold, then the diagonal embedding 

X -+ X x X is a cofibration. 

FACT Let A be a closed subspace of a metrizable space X such that the inclusion A -+ X is a 

cofibration. Suppose that A and X - A are uniformly locally contractible--then X is uniformly locally 

contractible. 

[Show that the inclusion t:.x -+ X x X is a cofibration by applying the result on p. 3-10 to the triple 

(X x X,t:.x , A x A).] 
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PROPOSITION 11 Suppose that A C X admits a halo U such that the inclusion 

l:J.u -+ U x U is a cofibration. Assume that the inclusion A -+ X is a cofibration-then 

the inclusion l:J.A -+ A x A is a cofibration. 

A ~ AxA 

[Consider the commutative diagram ! !. The vertical arrows are 

U --+ UxU 
.6,u 

cofibrations, as is l:J.u. That l:J.A is a cofibration is therefore implied by Proposition 9.] 

PROPOSITION 12 Let X be a Hausdorff space and suppose that the inclusion l:J.x -+ 

X x X is a cofibration. Let I : X -+ [0,1] be a continuous function such that A = 1-1(0) 

is a retract of 1-1([0, 1[ )-then the inclusion A -+ X is a closed cofibration. 

[Write r for the retraction 1-1 ([0, 1[) -+ A, fix a Str¢m structure (4), <p) on the pair 

(X x X,l:J.x), and let H : IU -+ X be as above. Define 4>, : X -+ [0,1] by 4>,(x) = 
max{l(x),4>(x,r(x»} (I(x) < 1) & 4>,(x) = 1 (I(x) = I)-then 4>/1(0) = A. Put 

H,(x,t) = H((x,r(x»,t) to obtain a homotopy H, : 14>/1([0,1[) -+ X of the inclusion 

4>/1([0, 1[) -+ X rei A such that H, oi1(4)/I([0, 1[» C A. Finish by citing Proposition 10.] 

Application: Let X be a Hausdorff space and suppose that the inclusion l:J.x -+ X x X 

is a cofibration. Let e E C(X, X) be idempotent: eo e = e-then the inclusion e(X) -+ X 
is a closed cofibration. 

[Define I: X -+ [O,lJ by I(x) = 4>(x,e(x».] 

So, if X is a Hausdorff space and if the inclusion l:J.x -+ X x X is a cofibration, then for 

any retract A of X, the inclusion A -+ X is a closed cofibration. In particular: V Xo EX, 

the inclusion {xo} .-+ X is a closed cofibration, which, as seen above, is a condition realized 

by every CW complex or metrizable topological manifold. 

[Note: Let X be the Cantor set-then V Xo EX, the inclusion {xo} -+ X is closed 

but not a cofibration.] 

FACT Let X be in 4-CG and suppose that the inclusion tJ.x - X x'" X is a cofibration-then 

for any retract A of X, the inclusion A - X is a closed cofibration. 

[Rework Proposition 12, noting that for any continuous function I : X - X, the function X -

X x'" X defined by z - (z, I(z» is continuous.] 

LEM MA Suppose that the inclusions { A - X are closed cofibrations and that X is a closed 
A'-X' 

subspace of X, with A = X n A'. Let be continuous functions. Assume that the dia.-{
/:A-Y 

I': A' - Y' 



3-16 

X+-A~y 

gram 1 1 1 commutes and that the vertical arrows are cofibrations-then the in-

X, ~ A' ---+ yl 
I' 

duced map X UI Y -+ X, U I' yl is a cofibration and (X U, Y) nY' = Y. 

XU/Y ~ PZ 

[Consider a commutative diagram 1 1 po. To construct a filler H' for this, 

Y --+ 

X, U
/

, yl 

~ PZ 

Z 

work first with 1 1 lpO to get an arrow G : yl -+ PZ. Next, look at 

yl --+ X, U I' yl ---+ Z 
F' 

{
A,L yl .!!.... P Z 

9 • Since equality obtains on A = X n A', 3 G' E C(X U A', PZ) : G'iA' = Go/,. 
X--XU/Y--PZ 

But the inclusion X U A' -+ X' is a cofibration (cf. Proposition 8), so the commutative diagram 

Xu A' G' • PZ 

1 admits a filler H X, -+ P Z which agrees with GO/' on A' 

X' ----+. X' U,' yl ---:----jo» Z 
F' 

and therefore determines H' : X, U/ ' yl -+ PZ.] 

FACT Let A -+ X be a closed cofibration and let / : A -+ Y be a continuous function. Suppose 

that are in 4-CG and that the inclusions are cofibrations-then the inclusion {
X {..a.X-+XXIeX 

y ..a.y -+ y Xle Y 
..a.z -+ Z x Ie Z is a cofibration, Z the adjunction space X U I y. 

{
AXIeA-+XXIeAUAXIeX 

[There are closed cofibrations . Precompose these arrows with the 
y Xle Y -+ Z xle Y U Y Xle Z 

diagonal embeddings, form the commutative diagram 

X +( ------ A -----=./-----+-I Y 

1 1 1 

and apply the lemma.] 

[Note: Proposition 7 remains in force if the product in TOP is replaced by the product in 4-CG. 

Take U = X in Proposition 11 to see that the inclusion ..a.A -+ A x Ie A is a cofibration.] 

Application: Let X and Y be CW complexes. Let A be a subcomplex of X and let / : A -+ Y be a 

continuous function-then the inclusion ..a.z -+ Z Xle Z is a cofibration, Z the adjunction space X U, Y. 
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{
ax -x xX 

[The inclusions are cofibrations (cf. p. 3-14), thus the same is true of the inclu-
ay _y xy . 

{
ax -X x" X 

sions (cf. p. 3-8). Z itself need not be a CW complex but, in view of the skeletal 
ay -y x" Y 

approximation theorem, Z at least has the homotopy type of a CW complex.] 

FACT Let A - X be a closed cofibration and let f : A - Y be a continuous function. Suppose 

that {X are uniformly locally contractible perfectly normal Hausdorff spaces with perfectly normal 
. Y 

squares-then X U, Y is uniformly locally contractible provided that its square is perfectly normal. 

[Note: A priori, XU, Y is a perfectly normal Hausdorff space (cf. AD6).] 

A pointed space (X, xo) is said to be wellpointed if the inclusion {xo} ---.. X is a 

cofibration. IIX is the full subgroupoid of IIX whose objects are the Xo E X such that 

(X, xo) is wellpointed. Example: Let X be a OW complex or a metrizable topological 

manifold-then 'V Xo E X,,(X,xo) is wellpointed (cf. p. 3-15). 

[Note: Take X = [0,11], Xo = 11-then (X, xo) is not wellpointed.] 

The full subcategory of HTOP. whose objects are the wellpointed spaces is not isomorphism closed, 

i.e., if (X, :1:0) ~ (Y, YO) in HTOP., then it can happen that the inclusion {:l:o} - X is a cofibration but 

the inclusion {yo} - Y is not a cofibration (d. p. 3-8). 

EXAMPLE Let X be a topological manifold-then V:l:O ex, (X,:l:o) is wellpointed. 

FA CT Let K be a compact Hausdorff space. Suppose that (X, :1:0) is well pointed-then V ko e K, 

C(K, ko; X, :1:0) is wellpointed (compact open topology). 

[Note: The base point in C(K, kOjX,:l:o) is the constant map K - :1:0.] 

Given topological spaces {: ' the base point functor IIX x IIY ---.. SET sends 

an object (xo,Yo) to the set [X,xoiY,Yo]. To describe its behavior on morphisms, let 

{ XO,Xl EyX and suppose that both (X,xo) and (X,xt) are wellpointed. Let 0' E PX : 
Yo, Yl E 

{ ~~~~ :: & let 7 E PY : {~~~~ ~: -then the pair (0',7) determines a bijection 

[0',7]# : [X,xojY,Yo] ---.. [X,XIiY,Yl] that depends only on the path classes of {; in 

{ ~:. Here is the procedure. Fix a homotopy H : IX ---.. X such that H 0 io = idx, 

H(x!, t) = 0'(1 - t), and put e = H 0 i l . Take an J E C(X, Xo; Y, Yo) and define a 

continuous function F : i Xu I{x } ---.. X x Y by {(x,O) ---.. (e(x),J(e(x») -then the 
o 1 (x!,t)---..(0'(t),7(t» 
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ioX U I{xI} ~ XxY 

diagram 1 lp commutes, where G(x, t) = H(x,1 - t). To con':' 

IX --+ X 
G 

struct a filler H fIX - X x Y, let q : X x Y - Y be the projection, choose 

a retraction r : IX - ioX U I{xI} and set Hf(x,t) = (G(x,t),qF(r(x,t))). Write 

1# = q 0 H f 0 i l E C(X, Xl; Y, Yl)' Definition: [0', r]#[J] = [1#]. The fundamen

tal group 7I"l(Y,yO) thus operates to the left on [X,xo;Y,yo] : ([r],[JD - [O'o,r]#[I]' 

0'0 the constant path in X at Xo. If I, 9 E C(X, Xo; Y, yo), then 1 ~ 9 in TOP iff 

:3 [r] E 71"1 (Y, yo) : [0'0, r]#[f] = [g]. Therefore the forgetful function [X, Xo; Y, Yo] - [X, Y] 

passes to the quotient to define an injection 7I"l(Y,YO)\[X,xo;Y,Yo]- [X,Y] which, when 

Y is path connected, is a bijection. The forgetful function [X, Xo; Y, yo] - [X, Y] is one-to

one iff the action of 71"1 (Y, Yo) on [X, xo; Y, yo] is trivial. Changing Y to Z by a homotopy 

equivalence in TOP: {Y - Z leads to an arrow [X, Xo; Y, yo] - [X, Xo; Z, zo]. It is a 
Yo - Zo 

bijection. 

FACT Suppose that X and Yare path connected. Let f E C(X, Y) and assume that V x E X, f. : 

1rdX,x) -+ 1rl(Y,f(x)) is surjective-then V x EX, f. : 1rn(X,x) -+ 1rn(Y,J(X)) is injective (surjective) 

iff f. : [sn, Xl -+ [sn, Yl is injective (surjective). 

LEMMA Suppose that the inclusion i : A - X is a cofibration. Let 1 E C(X, X) : 

10 i = i & 1 ~ idx-then :3 9 E C(X, X) : go i = i & go 1 ~ idx reI A. 

[Let H: IX - X be a homotopy with H 0 io = 1 and H 0 i 1 = idx; let G: IX - X 

be a homotopy with Go io = idx and Go Ii = H 0 Ii. Define F : IX - X by F(x, t) = 

{ 
G(f(x), 1 - 2t) (0 ~ t ~. 1/2) d t 
H(x,2t -1) (1/2 ~ t ~ 1) an pu 

_ { G(a, 1 - 2t(1 - T)) 
k((a, t), T) - H(a,1 _ 2(1 - t)(1 - T)) 

(0 ~ t ~ 1/2) 
(1/2 ~ t ~ 1) 

to get a homotopy k : 12 A - X with FoIi = koio. Choose a homotopy K : 12 X - X such 

that F = K 0 io and K 0 I 2 i = k. Write K(t,T) : X - X for the function X - K((x, t), T). 
Obviously, K(o,o) ~ K(O,l) ~ K(l,l) ~ K(l,O), all homotopies being reI A. Set 9 = Go i l -

then 9 0 1 = F 0 io = K(o,o) is homotopic reI A to K(l,O) = Foil = idx.] 

PROPOSITION 13 Suppose that {~ :: ~ : ~ are cofibrations. Let if> E C(X, Y) : 

if> 0 i = j. Assume that if> is a homotopy equivalence-then if> is a homotopy equivalence in 

A\TOP. 
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[Since j is a cofibration, there exists a homotopy inverse 'I/; : Y ~ X for ¢ with 

'I/; 0 j = i, thus, from the lemma, 3 '1/;' E C(X, X) : '1/;' 0 i = i & '1/;' 0'1/; 0 ¢ !::: idx reI i(A). 

This says that ¢' = '1/;' 0 'I/; is a homotopy left inverse for ¢ under A. Repeat the argument 

with ¢ replaced by ¢' to conclude that ¢' has a homotopy left inverse ¢" under A, hence 

that ¢' is a homotopy equivalence in A \ TOP or still, that ¢ is a homotopy equivalence in 

A\TOP.] 

Application: Suppose that {?:,,:oo/ are wellpointed. Let f E C(X, Xo; Y, Yo )-then 

f is a homotopy equivalence in TOP iff f is a homotopy equivalence in TOP"" 

FACT Suppose that (X, %0) is wellpointed. Let / E C(X, Y) be inessential-then / is homotopic 

in TOP. to the function % -+ /(%0). 

A 

LEMMA Suppose given a commutative diagram tP 1 
X 

1'" 
B ---t Y 

j 

in which {~ are 

cofibrations and {~ a,re homotopy equivalences. Fix a homotopy inverse ¢' for ¢ and a 

homotopy hA : IA ~ A between ¢' 0 ¢ and idA-then there exists a homotopy inverse '1/;' 

for 'I/; with i 0 ¢' = '1/;' 0 j and a homotopy Hx : IX ~ X between '1/;' 0'1/; and idx such that 

H ( .( ) t) _ {i(hA (a,2t» (0 ~t ~ 1/2) 
X z a, - i(a) (1/2 ~ t :5 1) . 

[Fix some '1/;' with i 0 ¢' = '1/;' 0 j (possible, j being a cofibration). Put h = i 0 hA : 

h 0 io = i 0 hA 0 io = i 0 ¢' 0 ¢ = '1/;' 0 j 0 ¢ = '1/;' 0 'I/; 0 i => 3 H : IX ~ X such 

that '1/;' 0'1/; = H 0 io and H 0 Ii = h. Put f = H 0 i l : f 0 i = i 0 hA 0 i l = i & 

f !::: H 0 io = '1/;' 0 'I/; !::: idx => 3 9 E C(X,X) : go i = i & go f !::: idxreli(A). Let 

G : IX ~ X be a homotopy between go f and idx reli(A). Define Hx : IX ~ X by 

{ 
g(H(x, 2t» (0 ~ t ~ 1/2), . ,. 

Hx(x, t) = G(x,2t _ 1) (1/2 ~ t ~ 1) . Hx IS a homotopy between 9 0'1/; 0'1/; and Idx 

and Hx 0 Ii = i 0 h'.A, where h'.A (a, t) = hA(a, min{2t, 1}) is a homotopy between ¢' 0 ¢ and 

idA. Make the substitution '1/;' ~ go '1/;' to complete the proof.] 

A ~ 

PROPOSITION 14 Suppose given a commutative diagram t/J 1 
X 

1'" in which 
B ---t Y 

j 

{~ are cofibrations and {: are homotopy equivalences-then (¢, '1/;) is a homotopy equiv

alence in TOP( ~ ). 
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[The lemma implies that (4/, '1//) is a homotopy left inverse for (</J, ¢) in TOP( ~ ).1 

{
/:X-Y . 

EXAMPLE Let be objects in TOP( -). Write [I, I'] for the set of homotopy 
I' : X, - Y' 

classes of maps in TOP( -) from I to I'. Question: Is it true that if { I ~ 9 (in TOP), then [/,I'J = 
I' ~ g' 

[g, g']1 The answer is "no". Let 1= 9 be the constant map Sl - (1,0); let I' : Sl - n2 be the inclusion 

and let g' : Sl - n2 be the constant map at (l,O)-then [I, I'] =F [g, g']. 

PROPOSITION 15 Let 1 1 be a commutative ladder con-
yo --+ yl --+ 

necting two expanding sequences of topological spaces. Assume: 'V n, the inclusions 

{
xn ~xn+l 
yn ~ yn+l are cofibrations and the vertical arrows </In : xn ~ yn are homotopy 

equivalences-then the induced map </Joo : XOO ~ yoo is a homotopy equivalence. 

[Using the lemma, inductively construct a homotopy left inverse for </Joo.] 

FACT Let XO C Xl C ... be an expanding sequence of topological spaces. Assume: V n, the 

inclusion xn _ Xn+l is a cofibration and that xn is a strong deformation retract of Xn+l-then XO is 

a strong deformation retract of XOO. 

[Bearing in mind Proposition 5, recall first that the inclusion XO _ XOO is a cofibration (cf. p. 3-5). 

X O --+ X O --+ ... 

Consider the commutative ladder 1 1 to see that the inclusion XO - XOO is also 

a homotopy equivalence.] 

FACT Let XO C Xl C ... be an expanding sequence of topological spaces. Assume: V n, the 

inclusion xn _ xn+l is a cofibration and inessential-then XOO is contractible. 

EXAMPLE Take xn = Sn-then XOO = SOO is contractible. 

Let f : X ~ Y be a continuous function-then the mapping cylinder Mf of f is 

f X --+ Y 
defined by the pushout square io 1 1 Special case: The mapping cylinder of 

IX --+ Mf 

X ~ * is rx, the cone of X (in particular, rsn- 1 = nn, so r0 = *). There is a 

closed embedding j : Y ~ M f' a homotopy H : I X ~ M f' and a unique continuous 

function r : Mf ~ Y such that r 0 j = idy and r 0 H = fop (p : IX ~ X). One has 
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j 0 r ~ idMJrelj(Y). The composition H 0 i 1 is a closed embedding i : X -+ Mj and 

f = r 0 i. 

Suppose that X is a subspace of Y and that / : X - Y is the inclusion-then there is a continuous 

bijection M/ - ioYUIX. In general, this bijection is not a homeomorphism (consider X =]0,1], Y = [0,1]) 

but will be if X is closed or / is a cofibration. 

LEMMA j is a closed cofibration and j (Y) is a strong deformation retract of M f. 

LEMMA i is a closed cofibration. 

[Define F : X II X -+ Y II X by F = f II idx and form the pushout square 

XlIX ~ YIIX 

1 -then IX UF (Y II X) can be identified with Mit i be-

IX ---jo IX UF (Y II X) 
coming the composite of the closed cofibrations X -+ Y II X -+ IX UF (Y II X).] 

It is a corollary that the embedding i of X into its cone r X is a closed cofibration. 

EXAMPLE The mapping telescope is the functor tel: FIL(TOP) - FILSP defined on an object 

(X,f) by tel(X,f) = IlIXn/"'" where (zn,l) "'" (fn(Zn),O), and on a morphism tP: (X,f) - (Y,g) by 
n 

teltP([Zn, tD = [tPn(Zn), t]. Let teln(X,f) be the image of ( Il IXJ:) Il ioXn, so teln(X,f) is obtained 
J:<n-l 

from X';' via iterated application of the mapping cylinder ~onstruction. The embedding te1n(X,f) -

te1n+l(X,f) is a closed cofibration and tel(X,f) = colimteln(X,f). There is a homotopy equivalence 

teln(X,f) - X n, viz. the assignment [zJ:,t] - (fn-l 0 ",o/J:)(zJ:) (0 ~ Ie ~ n -1), [Zn, 0] - Zn and the 
te1n (X, f) ---jo teln+ 1 (X, f) 

diagram 1 1 commutes. Consequently, if all the /n are cofibrations, then it 

Xn ---jo X n+l 
follows from Proposition 15 that the induced map tel(X,f) - colimXn is a homotopy equivalence. 

[Note: Up to homeomorphism, the telescope construction is an instance of the above procedure.] 

PROPOSITION 18 Every morphism in TOP can be written as the composite of a 

closed cofibration and a homotopy equivalence. 

PROPOSITION IT Let f : X -+ Y be a continuous function-then f is a homotopy 

equivalence iff i( X) is a strong deformation retract of M ,. 

[Note that f is a homotopy equivalence iff i is a homotopy equivalence and quote 

""-~ Proposition 5.] 
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Let f : X --+ Y be a continuous function-then the mapping cone C, of f is defined 

X ~ Y 
by the pushout square ill . Special case: The mapping cone of X --+ * is EX, 

r X ----j. C, 

the suspension of X (in particular, ESn- 1 = Sn, so E0 = So). There is a closed cofibration 

j : Y --+ C, and an arrow C, --+ EX. By construction, j 0 f is inessential and for any 

9 : Y --+ Z with 9 0 f inessential, there exists a 4> : C, --+ Z such that 9 = 4> 0 j. 

[Note: The mapping cone sequence associated with f is given by X .L Y --+ C, --+ 

EX --+ EY --+ EC, --+ E2 X --+ ••• . Taking into account the suspension isomorphism 

iiq(X) ~ iiq+1(EX), there is an exact sequence 

The mapping cylinder and the mapping cone can be viewed as functors TOP(-) - TOP. With 

this interpretation, i, j, and r are natural transformations. 

[Note: Owing to AD4 , these functors restrict to functors HAUS(-) - HAUS. Consequently, if X 

and Yare in CGH, then for any continuous function f : X - Y, both MJ and CJ remain in CGH. On 

the other hand, stability relative to CG or a-CG is automatic.] 

FACT Suppose that are homotopic-then in HTOP2 , (MJ,i(X» ~ (Mg,i(X», {
f: X - Y 

g:X-Y , 
and in HTOP, CJ ~ Cg. 

FACT Let f E C(X, Y). Suppose that ¢ : Xl - X (t/J : Y - yl) is a homotopy equivalence

then the arrow (MJQ.p, i(XI» - (MJ' i(X» «MJ' i(X)) - (M.pQJ' i(X») is a homotopy equivalence (in 

TOP2) and the arrow CJQ.p - CJ (CJ - C.pQJ) is a homotopy equivalence (in TOP). 

EXAMPLE The suspension EX of X is the union of two closed subspaces r- X and r+ X, each 

homeomorphic to the cone r X of X, with r-X n r+ X = X (identify the section il/2 X with X). Therefore 

X ----j. r+ X 

EX is numerably contractible. The commutative diagram 1 1 is a pushout square and 

r- X ----j. EX 

{
r-X-EX 

the inclusions are closed cofibrations. 
r+X-EX 

FACT Let f : X - Y be a continuous function. Suppose that Y is numerably contractible-then 

CJ is numerably contractible. 
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[The image of X X [0, 1[ in Cf is contractible. On the other hand, the image of X x]O, 1] U Y in Cf 

has the same homotopy type u Y, hence is numerably contractible (d. p. 3-13).] 

[Note: Y and MJ have the same homotopy type, 80 Y numerably contractible => Mf numerably 

contractible (d. p. 3-13).] 

Let X I- Z J4 Y be a 2-80urce-'-then the double mapping cylinder M I"~ of I, 9 is de

ZllZ ~ XllY 
fined by the pushout square io 1 il 1. The homotopy type of M I"~ de-

IZ --+ M/" 
pends only on the homotopy classes of I and 9 and M/" is homeomorphic to M,,/_ 

There are closed cofibrations {~ :: ~ =: z:~:: and an arrow M/" -+ EZ. The diagram 

Z.....!... Y Z.....!...Y 

/1 1 j is homotopy commutative and if the diagram /1 1 'I is ho-

X 7 M/" X 7 w 

motopy commutative, then there exists a t/J : M I"~ -+ W such that {~ ~ : ~ . Example: 

The double mapping cylinder of X +- X x Y -+ Y is X * Y, the join of X and Y. 

[Note: The mapping cylinder and the mapping cone are instances of the double map

ping cylinder (homeomorphic models arise from the parameter reversal t -+ 1 - t). Con
Z --+ M, 

sideration of { ~ ~ ~~i~:~~ leads to a pushout square 1 1 .] 
M/ --+ M/" 

EXAMPLE (The Mapping Telescope) tel(X, f) can be identified with the double mapping cylin

der of the 2-80urce 11 X2. +- 11 X" -+ 11 X2.+1. Here, the left hand arrow is defined by 1I:2n -+ 1I:2n 
.>0 .>0 n>O 

&: 11:2,,+1 -+ 12,,+1(11:2:+1) and the right h';d arrow is defined by 1I:2n+l -+ 1I:2n+l &: 1I:2n -+ 12n(1I:2n). 

Every 2-80urce X I- Z J4 Y determines a pushout square 

Z 

/1 
X --+ 

~ 

Y 

1 'I and there 

P 

is an arrow <p : M I"~ -+ P characterized by the conditions { ~ ~ : ~ & IZ -+ M/,,~P = 

{

{%P 
II 

f/ogop 

PROPOSITION 18 If / is a cofibration, then <p : M /,g -+ P is a homotopy equivalence 

in Y\TOP. 



3-24 

[The arrow Mf --. IX admits a left inverse IX --. Mf.] 

Application: Suppose that I : X --. Y is a cofibration-then the projection C f --. 

Y/ J(X) is a homotopy equivalence. 

[Note: If in addition X is contractible, then the embedding Y --. C f is a homotopy 

equivalence. Therefore in this case the projection Y --. Y / J(X) is a homotopy equivalence.] 

EXAMPLE Let A be a nonempty finite subset of S .... (n ;;:: I}-then Stl /A has the homotopy type 

ofthe wedge of Stl with (#(A) - 1) circles. 

[The inclusion A - Stl is a cofibration (cf. Proposition 8).] 

Consider the 2-sources { i ::: ~ * ~ , where the arrow A -> X is a closed cofibration. 

Assume that I !.:::: g-then Proposition 18 implies that X U f Y and X Ug Y have the same 

homotopy type reI Y. Corollary: If I' : A --. Y' is a continuous function and if 4> : Y --. Y' 
is a homotopy equivalence such that 4> 0 I !.:::: I', then there is a homotopy equivalence 

q, : X U f Y --. X U f' Y' with q, I Y = 4>. 

FACT Suppose that A - X is a closed cofibration. Let I : A - Y be a homotopy equivalence

then the arrow X - X UI Y is a homotopy equivalence. 

Denote by 1.6., idlTOP the comma category corresponding to the diagonal functor .6. : TOP -

TOP x TOP and the identity functor id on TOP x TOP. So, an object in 1.6.,idIToP is a 2-source 

X z ~ Y 

X I- z.!.. Y and a morphism of 2-sources is a commutative diagram 1 1 1 . The 

X, +-- Zl ---+ yl 
I' gl 

double mapping cylinder is a functor 1.6., idlToP - TOP. It has a right adjoint TOP - 1.6., idlToP, viz. 

the functor that sends X to the 2-source X l.!!. p X !l x. 

X Z 
9 

Y ---+ 

FACT Let 1 1 1 be a commutative diagram in which the vertical arrows 

X, +-- Zl ---+ yl 

I' gl 

are homotopy equivalences-then the arrow MI,g - MI',g' is a homotopy equivalence. 

{
A_X {/:A-Y 

Application: Suppose that are closed cofibrations. Let 
A' - X, I' : A' - Y' 

be continuous 
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X A ~ Y +-- -------r 

functions. Assume that the diagram 1 1 1 commutes and that the vertical arrows 

X, +-- A' --+ yl 
I' 

are homotopy equivalences-then the induced map X UI Y - X, U/, yl is a homotopy equivalence. 

{
A {AnB_A EXAMPLE Suppose that X = AU B, where are closed and the inclusions 
B AnB-B 

are cofibrations. Assume: A and Bare contractible--then the arrow E(A n B) - X is a homotopy 

equivalence. 

SEGAL-STASHEFF CONSTRUCTION Let X be a topological space. Fix a covering U = 
{Ui : i E I} of X. Equip I with a well ordering < and put I[n] = {[i] == (io , ... , in) : io < ... < in}. 

Every strictly increasing a E Mor([m], [nD defines a map I[n] - I[m]. Set U[i] = Uio n··· n Uin and form 

U([nD = II U[i], a coproduct in TOP. Give U([nD x An the product topology and call BU the quotient 
I[n] 

II U([nD x An 1-, the equivalence relation being generated by writing «x, liD, ACXt) - «x, a[iD, t). Let 
n 

Bu(n) be the image of II U([m]) x Am in BU, so BU = colim Bu(n). The commutative diagram 
m~n 

II U[;] x .&n 
I[n] 1 
II U[i] X An 
I[n] 

--+ 

1 
--+ 

is a pushout square in TOP and the vertical arrows are closed cofibrations. There is a projection Pu : 

BU - X induced by the arrows U[i] X An - U[i], i.e., «x, liD, t) - x. Moreover, Pu is a homotopy 

equivalence provided that U is numerable. Indeed, any partition of unity {It; : i E I} on X subordinate 

to U determines a continuous function BU : X - BU (since V x,#{i E I: x E sptlt;} < w). Obviously, 

PU 0 BU = idx and BU 0 Pu can be connected to the identity on BU via a linear homotopy. 

FACT Let {: be topological spaces and let I: X - Y be a continuous function. Suppose that 

• are numerable coverings of such that Vi: I(Ui) C V;. Assume: V [i], the induced { 
U = {U' : i E I} {X 
V = {V; : i E I} Y 

map I[i] : U[i] - Y[i] is a homotopy equivalence-then 1 is a homotopy equivalence. 
F 

BU --+ BV 

[There is an arrow F : BU - BV and a commutative diagram Pu 1 lpv . Due to the 

X --+ Y 
I 

numerability of U and V, PU and pv are homotopy equivalences. Claim: V n, the restriction F(n) : 

___ Bu(n) _ Bv(n) is a homotopy equivalence. This is clear if n = O. For n > 0, consider the commutative 
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diagram -
! -

By induction, F(,,-l) is a homotopy equivalence, thus F<") is too. Proposition 15 then implies that 

F : BU - BV is a homotopy equivalence, 80 the same is true of /.] 

Let u, V : X -+ Y be a pair of continuous functions-then the mapping torus Tu,'II of 

xnx Y 

u, v is defined by the pushout square . l' 
10 11 

'II 

1 . There is a closed cofibration 

IX --+ Tu,'II 
j : Y -+ T.,'II' From the definitions, j 0 u ~ j 0 v and for any 9 : Y -+ Z with go u ~ 9 0 v, 

there exists a tP : Tu,'II -+ Z such that 9 = tP 0 j. 

[Note: If u = v = idx, then 1'.,'11 is the product X X SI.] 

EXAMPLE (The Scorpion) Let 11' : S" _ Dn be the restriction of the canonical map R n+1 _ 

Rn; let p : D n _ D n /S"-1 = sn be the projection. Put / = p o1r--then / : sn _ sn is inessential. 

The scorpion S"+1 is the quotient of IS" with respect to the relations (z, 0) - (f(z), 1), i.e., sn+1 is the 

mapping torus of z - fez) " z - z (z E sn). One may also describe sn+1 as the quotient D n+1/_, 

where z "" p(2z) (z E (1/2)Dn). Fix a point Zo E (1/2)sn-l, let Lo be the line segment from Zo to 

p(2zo), and let Co be the circle Lo/--then the inclusion Co - sn+1 is a homotopy equivalence, thus 

sn+1 is a homotopy circle. The dunce hat 1),,+1 is the quotient sn+1/co. It is contractible. 

The formalities in TOP. run parallel to those in TOP, thus a detailed account of the 

pointed theory is unnecessary. Of course, there is an important difference between TOP 

and TOP.: TOP. has a zero object but TOP does not. Consequently, if {~:,:oo/ are 

in TOP., then [X,xo; Y,Yo] is a pointed set with distinguished element [0], the pointed 

homotopy class of the zero morphism, i.e., of the constant map X -+ Yo. FUnctions f E [0] 

are said to be nullhomotopic: f ~ O. 

[Note: The forgetful functor TOP. -+ TOP has a left adjoint TOP -+ TOP. that 

sends the space X to the pointed space X+ = X n *.] 
The computation of pushouts in TOP. is expedited by noting that a pushout in 

TOP of a 2-source in TOP. is a pushout in TOP.. Examples: (1) The pushout 

* --+ (Y,Yo) 
square 1 1 defines the wedge X V Y; (2) The pushout square 

(X,xo) --+ X V Y 
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XvY ---t * 
1 1 defines the smash product X #Y. 

X X Y ---t X#Y 
[Note: Base points are suppressed if there is no need to display them.] 

The wedge is the coproduct in TOP •. If both of the inclusions {{:l:
o

} -> X are cofibrations and if 
{Yo} -> Y 

at least one is closed, then the embedding X V Y -> X x Y is a cofibration (cf. Proposition 7) and X V Y 

is well pointed (cf. Proposition 9). 

FACT Suppose that 
{ 

(X,:l:o) 

(Y, Yo) 
are in TOP.-then V n > 1, there is a split short exact sequence 

o -> 1I'n+1 (X X Y, X V Y) -> 1I'n (X V Y) -> 1I'n (X X Y) -> O. 

Griffithst proved that if (X, :1:0) is a path connected pointed Hausdorff space which is both first 

countable and locally simply connected at :1:0, then for any path connected pointed Hausdorff space (Y, Yo), 

the arrow 11'1 (X, :1:0) * 11'1 (Y, Yo) -> 11'1 ({X, :1:0) V (Y, YO» is an isomorphism. 

[Note: X is locally simply connected at :1:0 provided that for any neighborhood U of iIIo there exists 

a neighborhood V C U of iIIo such that the induced homomorphism 11'1 (V, :1:0) -> 11'1 (U,:l:o) is trivial.] 

Edat has constructed an example of a path connected CRH space X which is locally simply connected 

at iIIo with the property that 11'1 (X, :1:0) = 1 but 11'1 «X, :1:0) V (X, :1:0» "# 1. Moral: The hypothesis of first 

count ability cannot be dropped. 

EXAMPLE (The Hawaiian Earring) Let X be the subspace of R2 consisting of the union of 

the circles X n , where Xn has center (l/n, 0) and radius l/n (n ;::: 1). Take:l:o = (O,O)-then X is first 

countable at :1:0, X is not locally simply connected at :1:0, the inclusion {illo} -> X is not a cofibration, 

and the arrow 11'1 (X, iIIo) * 11'1 (X, :1:0) -> 11'1 «X, :1:0) V (X,:l:o» is injective but not surjective. Denote now 

by Xo the result of assigning to X the final topology determined by the inclusions Xn -> X. Xo is It. CW 

complex. Take:l:o = (0, O)-then Xo is not first countable at :1:0, Xo is locally simply connected at :1:0, the 

inclusion {:l:o} -> Xo is a cofibration, and the arrow 1I'1(XO,:l:0) * 1I't{XO,:l:o) -> 11'1 ({XO,:l:o) V (XO,:l:o» is 

an isomorphism (Van Kampen). 

FACT Given a well pointed space (X, iIIo), suppose that X = AU B, where iIIo E An B and An B 

{
An B -> A { A -> X { ao = iIIo 

is contractible. Assume: The inclusions & are cofibrations. Take 
An B -> B B -> X bo = iIIo 

then the arrow A V B -> X is a pointed homotopy equivalence. 

Quart. J. Math. 5 (1954), 175-190. 

Proc. Amer. Math. Soc. 109 (1990), 237-241; see also Morgan-Morrison, Proc. London Math. Soc. 

53 (1986), 562-576. 
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The smash product # is a functor TOP .. x TOP .. -+ TOP ... It respects homotopies, thus the 

pointed homotopy type of X #Y depends only on the pointed homotopy types of X and Y. If both of the 

inclusions { {zo} -+ X are cofibrations and if at least one is closed, then X#Y is wellpointed. 
{yo} -+ Y 

[Note: Suppose that Y is a pointed LCH space-then it is clear that the functor -#Y : TOP .. -+ 

TOP .. has a right adjoint Z -+ ZY which passes to HTOP .. : [X#Y, Z] ~ [X, ZY], ZY the set of pointed 

continuous functions from Y to Z equipped with the compact open topology. One can say more: In fact, 

Cagliari t has shown that for any pointed Y, the functor -#Y has a right adjoint in TOP .. iff the functor 

- xY has a right adjoint in TOP, i.e., iff Y is core compact (cf. p. 2-2).] 

(#d X#Y is homeomorphic to Y#X. 

(#2) (X#Y)#Z is homeomorphic to X#(Y#Z) if both X and Z are LCH spaces or if two of 

X, Y, Z are compact Hausdorff. 

[Note: The smash product need not be associative (consider (Q#Q)#Z and Q#(Q#Z».] 

(#3) (X V Y)#Z is homeomorphic to (X#Z) V (Y#Z). 

(#4) E(X * Y) is homeomorphic to EX#EY if X and Yare compact Hausdorff. 

[Note: The suspension can be viewed as a functor TOP -+ TOP ... This is because the suspension 

is the result of collapsing to a point the embedded image of a space in its cone. Example: sm-l * sn-l = 
sm+n-l =* Sm#sn = sm+n.] 

All the homeomorphisms figuring in the foregoing are natural and preserve the base points. 

LEMMA The smash product of two pointed Hausdorff spaces is Hausdorff. 

XvY --+ * 
The pushout square 1 1 defines the smash product X#kY in CG, 4-CG, or 

X Xk Y --+ X#kY 
CGH. It is associative and distributes over the wedge. 

[Note: With #k as the multiplication and SO as the unit, CG., 4-CG., and CGH .. are closed 

categories.] 

The pointed cylinder functor I : TOP", -+ TOP", is the functor that sends (X,xo) 

to the quotient X x [O,l]/{xo} x [0,1], i.e., I(X, xo) = IXI I {xo}. Variant: Let I+ = 

[0,1] II *-then I(X,xo) is the smash product X#I+. The pointed path space functor 

P : TOP. -+ TOP. is the functor that sends (X,xo) to C([O, 1], X) (compact open 

topology), the base point for the latter being the constant path [0,1] -+ Xo. As in the 

unpointed situation, (I, P) is an adjoint pair. 

t Proc. Amer. Math. Soc. 124 (1996), 1265-1269. 
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. Using I and P, one can define the notion of pointed cofibration. Since all maps and 

homotopies must respect the base points, an arrow A -+ X in TOP. may be a pointed 

cofibration without being a cofibration. For example, V Xo EX, the arrow ({ xo}, xo) -+ 

(X,xo) is a pointed cofibration but in general the inclusion {xo} -+ X is not a cofibration. 

On the other hand, an arrow A -+ X in TOP. which is a cofibration, when considered as an 

arrow in TOP, is necessarily a pointed cofibration. Pointed cofibrations are embeddings. 

If Xo E A C X and if {xo} is closed in X, then the inclusion A -+ X is a pointed cofibration 

iff ioX U IA/I{xo} is a retract of I(X,xo). Observe that for this it is not necessary that 

A itself be closed. 

Let (X, A, xo) be a pointed pair-then a Str~m structure on (X, A, xo) consists of 

a continuous function 4> : X -+ [0,1] such that A C 4>-1(0), a continuous function 1/J : 
X -+ [0,1] such that {xo} = 1/J-l(O), and a homotopy <l> : IX -+ X of idx rei A such that 

<l>(x, t) E A whenever min{t,1/J(x)} > 4>(x). 

[Note: <l> is therefore a pointed homotopy.] 

POINTED COFIBRATION CHARACTERIZATION THEOREM Let Xo E A C X 

and suppose that {xo} is a zero set in X-. then the inclusion A -+ X is a pointed cofibration 

iff the pointed pair (X, A, xo) admits a Str~m structure. 

[Necessity: Fix 1/J E C(X, [0, 1]) : {xo} = 1/J-1(0) and let X l-IX ~[O, 1] be the 

projections. Put Y = {(x, t) E ioX U IA : t ~ 1/J(x)}. Define a continuous function 

I: ioX U IA -+ Y by I(x, t) = (x, min{t, 1/J(x)}) and let F: IX -+ Y be some continuous 

extension of I. Consider 4>(x) = sup Imin{t,1/J(x)} -qF(x,t)l, <l>(x,t) =pF(x,t). 
O<t<1 

Sufficiency: Given a Str~m str~cture (4), 1/J, <l» on (X, A, xo), define a retraction r : 

I(X,xo) -+ ioX U IA/I{xo} by 

{
(<l>(x,t),O) (t1/J(x)~4>(x)) ] 

rex, t) = (<l>(x, t), t - 4>(x)/1/J(x)) (t1/J(x) > 4>(x)) . 

LEMMA Let (X,A,xo) be a pointed pair. Suppose that the inclusions { ~:~~ =: ~ 
are closed cofibrations and that the inclusion A -+ X is a pointed cofibration-then the 

pair (X, xo) has a Str~m structure (f, F) for which F(IA) CA. 

[Fix a Str¢m structure (fx, Fx) on (X, xo). Choose a Str~m structure (4), 1/J, <l» on 

(X,A,xo) such that 4> ~ 1/J = Ix. Fix a Str~m structure (IA,FA) on (A,xo). Extend 

the pointed homotopy i 0 FA : I A -+ A ~ X to a pointed homotopy F : IX -+ X with 

F 0 io = idx. Put 

-/( ) _ {(I - 4>(x)/1/J(x))IA(<l>(x, 1)) + 4>(x) (4)(x) < 1/J(x)) 
x - 1/J(x) (4)(x) = 1/J(x)) . 
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Then] E C(X,[O,I]),/IA = lA, and 1-\0) = {xo}. Consider I(x) = min{I,/(x) + 
Ix(F(x, I))}, 

( ) { 
F(x, t/](x)) 

Fx,t = Fx(F(x,l),t-l(x» 
(t < l(x)) ] 
(t > I(x)) . 

PROPOSITION 19 Let (X,A,xo) be a pointed pair. Suppose that the inclusions 

{ ~:: ~ =: ~ are closed cofibrations-then the inclusion A -+ X is a cofibration iff it is a 

pointed cofibration. 

[To establish the nontrivial assertion, take (I, F) as in the lemma and choose a Str~m 

structure (~,¢,ifI) on (X,A,xo) with ~ :s; ¢ = I. Define a Str~m structure (4)>,ifI) on 

(X, A) by 4»(x) = 4»(x) - ¢(x) + sup ¢(ifI(x,t», 
°StSl 

+(x,t) = F(+(x,t),min{t,4»(x)/¢(x)}) (x #= xo) 

and ifI(xo, t) = xo.] 

So, under conditions commonly occurring in practice, the pointed and unpointed 

notions of cofibration are equivalent. 

Let X t. z ~ Y be a pointed 2-source-then there is an embedding M.,. -+ M I" and 

the quotient M",/M.,. is the pointed double mapping cylinder of I,g. Here, M.,. is the 

double mapping cylinder of the 2-source * +- * -+ *, which, being * x [0,1], is contractible. 

Thus if X, Y, and Z are wellpointed, then M",/M.,. is wellpointed and the projection 

M", -+ M",/M.,. is a homotopy equivalence (cf. p. 3-24). 

[Note: The pointed mapping torus of a pair u, v : X -+ Y of pointed continuous 

functions is T.,v/T.,., where T.,. is * X Sl, which is not contractible.] 

lzo +-- Zo II Zo ~ :1:0 II YO 

The commutative diagram ! ! ! leads to an induced map of pushouts 
iO 

lZ +-- Z II Z ----+ X II Y 
it lUg 

1 Zo -+ M I ,g which we claim is a cofibration. Thus, since {: are wellpointed, the arrow :1:0 II Yo -+ X II Y 

is a cofibration. On the other hand, the pushout of the 2-80urce 1 Zo - Zo II Zo -+ Z II Z can be identified 

with ioZu1zo Ui1Z (even though Zo is not assumed to be closed) and the inclusion ioZUlzo uitZ -+ lZ 

is a cofibration (cf. p. 3-6). The claim is then seen to be a consequence of the proof of Proposition 4 in §12 

{which depends only on the fact that cofibrations are pushout stable (cf. Proposition 2». Consideration of 
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* Izo 

the pushout square 1 1 now implies that M/,g/M.,. is wellpointed. Finally, one can 

view M/,g itself as a wellpointedspace (take [zo, 1/2] as the basepoint). The projection M/,g --+ M/,g/M.,. 

is therefore a homotopy equivalence between well pointed spaces, hence is actually a pointed homotopy 

equivalence (cf. p. 3-19). 

In particular: There are pointed versions r X and EX of the cone and suspension of 

a pointed space X. Each is a quotient of its unpointed counterpart (and has the same 

homotopy type if X is wellpointed). EX is a cogroup object in HTOP •. In terms of the 

smash product, r X = X #[0,1] (0 the base point of [0,1]) and EX = X #SI «1,0) the 

base point of SI). Example: r(X V Y) = rx V ry and E(X V Y) = EX V EY. The 

mapping space functor e : TOP. -+ TOP. is the functor that sends (X, xo) to the sub

space of C([O, 1], X) consisting of those u such that u(O) = Xo and the loop space functor 

n : TOP. -+ TOP. is the functor that sends (X,xo) to the subspace of C([O,I],X) 
consisting of those u such that u(O) = Xo = u(I), the base point in either case being the 

constant path [0,1] -+ Xo. nx is a group object in HTOP •. (r, e) and (E, n) are adjoint 

pairs. Both drop to HTOP.: [rX,Y] ~ [X,eY] and [EX,Y] ~ [X,nY]. 

[Note: If X is wellpointed, then so are ex and nx.] 
ox ---+ ex 

The mapping space ex is contractible and there is a pullback square 1 1"1 in TOP, 

{zo} ---+ X 

hence in TOP •. 

EXAMPLE (The Moore Loop Space) Given a pointed space X, let 0MX be the set of all pairs 

(O',r.,): 0' E C([O,r.,],X) (0 $ r., < (0) and 0'(0) = Zo = O'(r.,). Attach to each (O',r.,) E 0MX the func

tion O'(t) = O'(min{t, r.,}) on R~o-then the assignment (0', r.,) --+ (O',r.,) injects {lMX into C(R~o,X) x 

R~o. Equip 0MX with the induced topology from the product (compact open topology on C(R~o,X)). 

D fi .. I' I" n X b .. ( )(t) { O'(t) (0 $ t $ r.,) h e ne an assocIatIve mu tIP IcatlOn on UM y wrItIng T+O' = ,were 
T(t - r.,) (r., $ t $ r T+.,) 

r T+., = rT + r." the unit thus being (0,0) (0 --+ zo). Since "+" is continuous, OMX is a monoid in TOP, 

the Moore loop space of X, and OM is a functor TOP. --+ MONTOP. The inclusion OX --+ 0MX is an 

embedding (but it is not a pointed map). 

Claim: OX is a deformation retract of 0MX. 

[Consider the homotopy H : IOMX --+ 0MX defined as follows. The domain of H«O', r.,), t) is the 

interval [0, (1 - t)r., + t] and there 
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( 
Tr(J' ) H«O', r(J'), t)(T) = 0' ( ) 

1 - t r(J' +t 

if r(J' > 0, otherwise H«O, 0), t)(T) = zo.] 

One can also introduce eM X, the Moore mapping space of X. Like ex, eM X is contractible and 

evaluation at the free end defines a Hurewicz fibration eM X -+ X whose fiber over the base point is 

Let I : X -t Y be a pointed continuous function, C I its pointed mapping cone. 

LEMMA If I is a pointed cofibration, then the projection C I -t Y / I( X) is a pointed 

homotopy equivalence. 

In general, there is a pointed cofibration j : Y -t C I and an arrow C I -t EX. Iterate 

CI --+C; 

to get a pointed cofibration j' : C I -t Cj-then the triangle ~! commutes and 
EX 

by the lemma, the vertical arrow is a pointed homotopy equivalence. Iterate again to get 
Cj ---+ Cp 

a pointed cofibration j" : C; -t Cp-then the triangle ~! commutes and by the 
EY 

lemma, the vertical arrow is a pointed homotopy equivalence. Example: Given pointed 

spaces { ~ ,let X #Y be the pointed mapping cone of the inclusion I : X V Y -t X X Y

then in HTOP., Cj ~ E(X V Y) and Cjl ~ E(X x Y). 

Let I : X -t Y be a pointed continuous function-then the pointed mapping cone 

sequence associated with I is given by X 1. Y -t C I -t EX -t EY -t EC I -t E2 X -t •.•• 

Example: When I = 0, this sequence becomes X ~ Y -t Y V EX -t EX -t EY -t 

EY V E2 X -t E2 X -t .••• 

X 

[Note: IT the diagram 1 
J..... Y 

1 commutes in HTOP. and if the vertical arrows 
X' -+ Y' 

I' 
are pointed homotopy equivalences, then the pointed mapping cone sequences of I and 

f' are connected by a commutative ladder in HTOP., all of whose vertical arrows are 

pointed homotopy equivalences.] 
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REPLICATION THEOREM Let f : X -+ Y be a pointed continuous function-then 

for any pointed space Z, there is an exact sequence 

... -+ [EY, Z1-+ [EX, Z1 -+ [0" Z1-+ [Y, Z] -+ [X, Z1 

in SET •. 

[Note: A sequence of pointed sets and pointed functions (X,xo) ~(Y,Yo) .t(Z,zo) is 

said to be exact in SET. if the range of 4> is equal to the kernel of tP.] 

EXAMPLE Let!: X -+- Y be a pointed continuous function, Z a pointed space. Given pointed 

{ 
Q(z, 2t) (0 < t < 1/2) 

continuous functions Q : EX -+- Z, tP : C, -+- Z, write (Q. tP)[z, t] = - - (z E X) 
tP(z,2t - 1) (1/2 $ t $ 1) 

& (Q . tP )(1/) = tP(y) (y E Y)-then this prescription defines a left action of [EX, Z] on [C ,. Z] and the 

orbits are the fibers of the arrow [C" Z] -+- [Y, Z]. 

FACT Given a pointed continuous function! : X-+- Y and a pointed space Z, put!z = !#idz

then there is a commutative ladder 

----+ E(X#Z) ----+ E(Y #Z) ----+ ... 

1 1 

in HTOP., all of whose vertical arrows are pointed homotopy equivalences. 

{ 

tP:C,#Z-C'z 
[Show that there are mutually inverse pointed homotopy equivalences for which 

tP : C'z - C,#Z 
the triangles 

commute.] 

Given a pointed space (X, xo), let X be the mapping cylinder of the inclusion {xo} -+ 

X and denote by ~o the image of Xo under the embedding i : {xo} -+ X-then (X, ~o) 
is wellpointed and {:to} is closed in X (cf. p. 3-21). The embedding j : X -+ X is a 

closed co:6.bration (cf. p. 3-21). It is not a pointed map but the retraction r : X -+ X is 

both a pointed map and a homotopy equivalence. We shall term (X, xo) nondegenerate if 

r : X -+ X is .a pointed homotopy equivalence. 

[Note: Consider X V [0,1], where Xo = O-then X is homeomorphic to X V [0, 1] with 

~o H 1.] 
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{ 
(X,zo) {X 

FACT Suppose that are nondegenerate. Assume: yare numerably contractible--
(Y, yo) 

then X V Y and X # Yare numerably contractible. 

{
(X,zo) {{zo}CX 

[To discuss X#Y, take weUpointed with closed. The mapping cone of 
(Y, Yo) {yo} C Y 

the inclusion X V Y - X x Y is numerably contractible (d. p. 3-22) and has the homotopy type of 

X x Y I X V Y = X #Y, which is therefore numerably contractible.] 

{
. (X, zo) 

FACT Suppose that are nondegenerate. Let f E C(X, zo; Y, Yo )-then the pointed 
. (Y, yo) 

mapping cone Cf is numerably contractible provided that Y is numerably contractible. 
fVid 

X V [0,1] --+ Y V [0,1] 

[Consider the commutative diagram 1 1 . By hypothesis, the vertical 

X --+ Y 
f 

arrows are pointed homotopy equivalences, so CfVid and Cf have the same pointed homotopy type. Look 

at the unpointed mapping cone of f V id.] 

Application: The pointed suspension of any nondegenerate space is numerably contractible. 

A pointed space (X, xo) is said to satisfy Puppe's condition provided that there exists 

a halo U of {xo} in X and a homotopy q, : IU -+ X of the inclusion U -+ X reI { xo} such 

that q, 0 il(U) = {xo}. Every wellpointed space satisfies Puppe's condition. 

LEMMA Let (X, A, xo) be a pointed pair. Suppose that there exists a pointed 

homotopy H: IX -+ X ofidx such that Hoi1(A) = {xo} and Hoit(A) C A (0::; t:5 1)
then the projection X -+ X/A is a pointed homotopy equivalence. 

PROPOSITION 20 Let (X, xo) be a pointed space-then (X, xo) is nondegenerate 

iff it satisfies Puppe's condition. 

[Necessity: Let p : X -+ X be a pointed homotopy inverse for r. Fix a homotopy 

H : IX -+ X of idx rei {xo} such that H 0 i 1 = r 0 p. Put U = p-l({xo}XJO, IJ)-then 

U is a halo of {xo} in X with haloing function 7r the composite X -4X -+ X/X = [O,IJ. 

Consider q, = HIIU. 
Sufficiency: One can assume that U is closed (cf. p. 3-11). Set 

q,'(x t) = {~(x,2t) (E Xc 1) 
, 2t - 1 (E [0,1J c 1) 

Define a pointed homotopy H : IX -+ X by 

(0 ::; t ::; 1/2) (x E U). 
(1/2 ::; t ::; 1) 

(H 0 itIX)(x) = { ~I(X' t7r(x)) 
(x ¢ U) 
(x E U) 



and 

(H 0 it 1[0, 1])(T) = { i _ (1 _ T)(2 _ 2t) 
(0 < t :5 1/2) 
(1/2 :5 t :5 1) . 

The lemma implies that r : 1'-+ 1'1[0,1] = X is a pointed homotopy equivalence.] 

EXAMPLE Take X = [0,1]"(11: > I.IJ) and let :1:0 = 0", the "origin" in X-then (X, :1:0) is not 

wellpointed (cf. p. 3-8) but is nondegenerate. 

FACT A pointed space (X, :1:0) is nondegenerate iff it has the same pointed homotopy type as 
v v 

(X,:l:o), 

Application: Nondegeneracy is a pointed homotopy type invariant. 

[Note: Compare this with the remark on p. 3-17.] 

{
(X, :1:0) 

FACT Suppose that are nondegenerate. Let f E C(X,:l:o j Y, Yo )-then f is a homotopy 
(Y, Yo) 

equivalence in TOP iff f is a homotopy equivalence in TOP •. 

EXAMPLE (The Moore Loop Space) Suppose that the pointed space X is nondegenerate-then 

OX and OM X are nondegenerate. Since the retraction of OM X onto OX is not only a homotopy equiv3r 

lence in TOP but a pointed map as well, it follows that OX and 0MX have the same pointed homotopy 

type. 

PROPOSITION 21 Let (X, xo) be a pointed space-then (X, xo) is wellpointed and 

{xo} is closed in X iff (X, xo) is nondegenerate and {xo} is a zero set in X. 

[This is a consequence of Propositions 10 and 20.] 

As noted above, nondegeneracy is a pointed homotopy type invariant. It is also a 

relatively stable property: X nondegenerate => rx, EX, ex, OX nondegenerate and X, Y 

nondegenerate => X x Y,X V Y,X#Y nondegenerate. 

v v {{~o} - X To illustrate, consider X#Y. In HTOP., X#Y ~ X#Y, and since v v are closed cofi-
{yo} - Y 

V v 
brations, X#Y is wellpointed (d. p. 3-28), hence a fortiori, nondegenerate. Thus the same is true of 

X#Y. 

Given pointed spaces (Xl,Xl), ... ,(Xn,Xn), write Xl~' "~Xn for the subspace 
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of Xl X ••• X Xn and let XI#",#Xn be the quotient Xl X ••• X Xn/XIA···AXn. 

PROPOSITION 22 Let X, Y, Z be non degenerate-then (X #Y)#Z and X #(Y #Z) 
have the same pointed homotopy type. 

[There is a pointed 2-source (X#Y)#Z +- X#Y#Z -'t X#(Y#Z) arising from 

the identity. Both arrows are continuous bijections and it will be enough to show that 
they are pointed homotopy equivalences. For this purpose, consider instead the pointed 

2-source (X#Y)#Z +- X#Y#Z -'t X#(Y#Z) and, to be .s}ecifij. work on the left, call-

ing the arrow tP. Define pointed continuous functions {:; Y: Y by {~:I:l(~l-: & 

(uI[O, 1])(t) = max{0,2t -1} h 'd . d . t df t' 4/. (..x..#Y)V IX. 
(vI[O, 1J)(t) = max{0,2t _ 1} -t en u xv Xl Z III uces a POIll e unc lon'Y: A· ZI -'t 

X#Y#Z. To check that "p is continuous, introduce closed subspaces {~ of X#Y: Points 

of A are represented by pairs (x, y), where x > 1/2 (y E Y) or y ~ 1/2 (x EX), and points 
. {x EX {x < 1/2 (y E Y) 

of B are represented by prors (x,y), where y E Y or y ~ 1/2 (x E X) or x :5 1/2 

& y :5 1/2. Since the projection (X#Y) X Z -'t (X#Y)#Z is closed, the images {~~ 

of {~ : i in (X#Y)#Z are closed and their union fills out (X#Y)#Z. The continu

ity of "p is a consequence of the continuity of "pIAz and "pIBz (Bz is homeomorphic 

to B X Z/B X {zo} and B X Z is closed in both (X#Y) X Z and X X Y X Z). To see 

that {~ are mutually inverse pointed homotopy equivalences, define pointed homotopies 

{ 
H: IX -'t X b {(H 0 itIX)(x) = x & {(H 0 itl[O, 1J)(T) _ {o 2T - t} H d 
G : IT -'t Y y (G 0 it IY)(y) = y (G 0 it 1[0, 1])(T) - max '2 _ t . an 

G combine with idz to define a pointed homotopy on X X Y X Z which (i) induces a pointed 

homotopy on X#Y#Z between the identity and"p 0 tP and (ii) induces a pointed homotopy 

on (X#Y)#Z between the identity and tP 0 "p.] 

Application: If X and Yare nondegenerate, then in HTOP., E(X#Y) ~ EX#Y ~ 

X#EY. 

[Note: Nondegeneracy is not actually necessary for the truth of this conclusion (cf. p. 

3-33).] 

Within the class of nondegenerate spaces, associativity of the smash product is natural, i.e., if / : 
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x - XI, 9 : y - yl, h : Z - Zl are pointed continuous functions, then the diagram 

commutes in HTOP •. 

(X#Y)#Z 

(1#,)#41 

(X'#y/)#ZI 

---t X #(y #Z) 

1/#(,#4) 

---t XI#(yl#Z/) 

[Note: The horizontal arrows are the pointed homotopy equivalences figuring in the proof of Propo

sition 22.] 

PROPOSITION 23 Suppose that X and Y are nondegenerate--then the projection 

X#Y --+ X#Y is a pointed homotopy equivalence. 

X#Y -+ 

[Consider the commutative diagram 1 . The upper horizontal ar-

X#Y -+ X#Y 
row and the two vertical arrows are pointed homotopy equivalences, thus so is the lower 

horizontal arrow.] 

Given pointed spaces { ~ , the pointed mapping cone sequence associated with the 

inclusion f: XVY --+ X x Y reads: XVY Lx ~ Y --+ X#Y --+ l:(XVY) --+ E(X x Y)--+ 

LEMMA The arrow F: X#Y --+ l:(X V Y) is nullhomotopic. 

[There is a pointed injection X #Y --+ rex x Y). It is continuous (but not necessarily 

beddi ) W · 't"'(X Y) 't"'X 't"'y ali F {F[X,YO,t] = [x,t] E EX & 
an em ng. rIte.l.J V =.l.J V.l.J to re ze : F[xo,y,t] = [y,t] E l:Y 

. { l:X = l:X/{[x, t] : x E X, t $ 1/2} 
F[x, y, 1] = *, the base pomt. Put /{[ ] / } -then the arrows 

l:Y = l:Y y, t : y E Y, t ~ 1 2 

{ 
l:X --+ l:X.. . 
l:Y --+ l:Y are pomted homotopy eqwvalences, hence the same holds for theIr wedge: 

- _ { [x,t] (t > 1/2) 
l:X V EY --+ EX V EY. The assignment [x, y, t] --+ [ ] ( - / ) defines a pointed 

y,t t<12 
continuous function r( X x Y) --+ l:X V l:Y. The composite X #Y --+ r( X x Y) --+ l:X V l:Y 

is equal to the composite X #Y ~ l:X V l:Y --+ l:X V l:Y. But the first composite is 

nullhomotopic. Therefore the second composite is nullhomotopic and this implies that 

F~O.] 

PUPPE FORMULA Suppose that X and Y are nondegenerate--then in HTOP ... , 

l:(X x Y) ~ l:X V l:Y V l:(X #Y). 
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[The third term of the pointed mapping cone sequence of 0 X #Y -+ ~(X V Y) 

is ~(X V Y) V ~(X #Y), so from the lemma, CF ~ ~(X V Y) V ~(X #Y). Using now 
., 

X#Y _J_-j.~ Cj 
the notation of p. 3-32, there is a commutative triangle ~ ! in which the 

~(X VY) 
vertical arrow is a pointed homotopy equivalence, thus Cj' ~ CF or still, ~(X x Y) ~ 

~(X V Y) V ~(X#Y) ~ ~X V ~Y V ~(X#Y) (cf. Proposition 23).] 

Thanks to Proposition 22, this result can be iterated. Let Xl, ... ,Xn be nondegener

ate-then ~(XI x··· X Xn) has the same pointed homotopy type as V ~( # Xi), where N 
N iEN 

runs over the nonempty subsets of {I, ... ,n}. Example: ~(Skl x ... X skn) ~ VSN,SN 
N 

a sphere of dimension 1 + E ki. 
iEN 

EXAMPLE (Whitehead Products) Let {~ be nondegenerate-then for any pointed space E, 

there is a short exact sequence of groups 

0-+ [E(X#Y), E] -+ [E(X X Y), E] -+ [E(X V Y), E] -+ O. 

Here, composition is written additively even though the groups involved may not be abelian. This data 

{
a E [EX,E] 

generates a pairing [EX,E] x [EY,E] -+ [E(X#Y),E]. Take and use the embeddings 
(3 E [EY,E] 

{ [EX, E] -+ [E(X x Y), E] to form the commutator a + (3 - a - (3 in [E(X x Y), E]. Because it lies in the 
[EY,E] 

kernel of the homomorphism [E(X X Y), E] -+ [E(X V Y), E], by exactness there exists a unique element 

[a, (3] E [E(X#Y), E] with image a + (3 - a - (3. [a, (3] is called the Whitehead product of a, (3. [a, (3] and 

[(3,a] are connected by the relation [a, (3] + [(3,a] 0 ET = 0, where T: X#Y -+ Y#X is the interchange. 

Of course, [a,O] = [0, (3] = O. In general, [a, (3] = 0 if E is an H space (since then [E(X x Y), E] is abelian), 

hence, always E[a, (3] = 0 (look at the arrow E -+ nEE). There are left actions 

{ 
[EX,E] X [E(X#Y), E] -+ [E(X#Y), E] {(a,{) -+ a· {= a +{ - a . 

: (abuse of notation). 
[EY,E] X [E(X#Y),E] -+ [E(X#Y),E] «(3,{) -+ (3.{ = (3 +{ - (3 

{
[a + a', (3] = a . [a', (3] + [a, (3] { EX 

One has . These relations simplify if the cogroup objects are 
[a, (3 + (3'] = [a, (3] + (3 . [a, (3'] EY 

commutative (as would be the case, e.g., when {X = EX' for nondegenerate {X' ). Indeed, under this 
Y=EY' Y' 

assumption, [E(X #Y), E] is abelian. Therefore the { a . [a', (3] - [a', (3] must vanish ("being commuta
(3. [a, (3'] - [a, (3'] 

{
[a + a', (3] = [a, (3] + [a', (3] 

tors"), implying that . The Whitehead product also satisfies a form of the 
[a, (3 + (3'] = [a, (3] + [a, (3'] 
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Jacobi identity. Precisely: Suppose given nondegenerate X, Y, Z whose associated cogroup objects EX, 

EY, EZ are commutative--then 

[[a,,8], "y] + [[,8, "y], a] 0 Ecr + [h, a],,8] 0 ET = 0 

{ 
cr: X#Y#Z -+ Y#Z#X 

in the group [E(X#Y#Z), El, where 
T : X#Y#Z -+ Z#X#Y 

is a matter of manipulating commutator identities.] 

(cr. Proposition 22). The verification 

A graded Lie algebra over a commutative ring R with unit is a graded R-module L = E9 L .. together 
.. ~o 

with bilinear pairings [ , ] : L .. x Lm -+ L .. +m such that [z, y] = (_1)1a-1I ,1+1 [y, z] and 

L is said to be connected if Lo = O. Example: Let A = $ A .. be a graded R-algebra. For z E An, 
. n~O. 

y E Am, put [z, y] = zy - (_I)Ia-II,1 yz-then with this definition of the bracket, A is a graded Lie algebra 

over R. 

[Note: As usual, an absolute value sign stands for the degree of a homogenous element in a graded 

R-module.] 

{
a E 1I"n(X) 

EXAMPLE Let X be a path connected topological space. Given , the Whitehead 
,8 E 1I"m(X) 

product [a,,8] E 1I"n+m-1(X). One has [a,,8] = (_I)nm+n+m[,8,a]. Moreover, if"Y E 1I"r(X), then 

Assume now that X is simply connected. Consider the graded Z-module 1I".(OX) = E9 1I"n(OX). Since 
. ..>0 

1I"n+1 (X) = 11" .. (OX), the Whitehead product determines a bilinear pairing [ , ] : 11" .. (OX) X 1I"m (OX) -+ 
, 

1I"n+m(OX) with respect to which 1I".(OX) acquires the structure of a connected graded Lie algebra over 

Z. 

FACT Suppose that X is simply connected-then the Hurewicz homomorphism 11". (OX) -+ H. (OX) 

is a morphism of graded Lie algebras, i.e., preserves the brackets. 

[Note: Recall that H.(OX) is a graded Z-algebra (Pontryagin product), hence can be regarded as a 

graded Lie algebra over Z.] 

A pair (X, A) is said to be n-connected (n ;::: 1) if each path component of X meets A 

and 1i'q(X, A, xo) = 0 (1 ~ q ~ n) for all Xo E A or, equivalently, if every map (nq
, Sq-l) -+ 

(X, A) is homotopic reI Sq-l to a map n q -+ A (0 ~ q ~ n). If A is path connected, 
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then V x~, x~ E A, 7rn(X, A, x~) ~ 7rn(X, A, x~) (n 2: 1). Examples: (1) (Dn+l , Sn) is 
n-connected; (2) (Bn+l, B n+l - {O}) is n-connected. 

[Note: Take A = {xo}-then 7rq(X, {xo}, xo) = 7rq(X, xo), so X is n-connected (n 2: 1) 
provided that X is path connected and 7rq(X) = 0 (1 $; q $; n). Example: Sn+l is n
connected. ] 

EXAMPLE If X is n-connected and Y is m-connected, then X.Y is «n+I)+(m+I»-connected. 

[Note: If X is path connected and Y is nonempty but arbitrary, then X • Y is I-connected.] 

EXAMPLE Suppose that {: are nondegenerate and X is n-connected and Y is m-connected

then X#Y is (n + m + I)-connected. 

FACT Let f : S .. -+ A be a continuous function. Put X = D .. +1 U J A-then (X, A) is n-connected. 

EXAMPLE The pair (S" x Sm, S .. V sm) is n + m - 1 connected. 

HOMOTOPY EXCISION THEOREM Suppose that {:i~ are subspaces of X with 

{ 
(XbXI n X 2 ) • {n-connected h h 

X = intXl U intX2·. Assume: (X X nX) IS t d -t en t e arrow 2, 2 I m-connec e 
7rq(Xll X 1 nX2) -+ 7rq (XI UX2,X2) induced by the inclusion (Xt,Xl nX2) -+ (XIUX2,X2) 

is bijective for 1 $; q < n + m and surjective for q = n + m. 

[This is dealt with at the end of the §.] 

LEMMA Let X be a strong deformation retract of Y and let A C X be a strong 

deformation retract of BeY-then V n 2: 1, 7rn(X, A) ~ 7rn(Y, B). 

[Use the exact sequence for a pair and the five lemma.] 

PROPOSITION 24 Let {~ be closed subspaces of X with X = AuB. Put C = An 

B A Th . I' {C -+ A fib' d {(A, C) . {n-connected 
, ssume: e mc USlons C -+ B are co ratIOns an (B, C) IS m-connected -

then the arrow 7rq(A, C) -+ 7rq(X, B) is bijective for 1 $; q < n + m and surjective for 

q=n+m, 

[ -. ,{Xl = ioAUIC - - {intXI ~ X - i1B 
SetX=~oAUICU'IB, X 2 =ICUiIB :X l nX2 =ICand intX2~X-ioA => 

- . X . - h {7rq(A,C) ~ 7rq(Xt,IC) {(XbIC) 
X = mt I U mtX2, From t e lemma, 7rq(B,C) ~ 7rq(X2,IC) => (X2,IC) IS 

{ 
n-connected h h h .. h . I' bl h 'I (X X X) 

t d 
,t us t e omotopy eXClS10n t eorem IS app lca e to t e tnp e , I, 2. 

m-connec e 

Because the inclusions { g =: ~ are cofibrations, ioAUIC is a strong deformation retract 
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of IA and IC U i1B is a strong deformation retract of IB (cf. p. 3-6). Therefore X is a 

strong deformation retract of IAU IB = IX, so 7rq(X,X2) ~ 7rq(IX,IB) ~ 7rq(X, B).] 

LEMMA Let / : (X, A) --t (Y, B) be a homotopy equivalence in TOp2-then V Xo E 

A and any q ~ 1, the induced map /. : 7rq(X,A,xo) --t 7rq(Y,B,/(xo» is bijective. 

PROPOSITION 25 Let A be a. nonempty closed subspace of X. Assume: The inclu

sion A --t X is a cofibration and A is n-connected, (X, A) is m-connected-then the arrow 

7rq(X, A) --t 7rq(X/A, *) is bijective for 1 ~ q ~ n + m and surjective for q = n + m + 1. . 

[Denote by Ci the unpointed mapping cone of the inclusion i : A --t X. There are 

closed cofibrations { r ~ : ~i and Ci = rAUX, with r Anx = A. Since the pair (r A, A) 

is (n + I)-connected, it follows from Proposition 24 that the arrow 7rq(X, A) --t 7rq(Cj, r A) 

is bijective for 1 < q ~ n+m and surjective for q = n+m+ 1. But r A is contractible, hence 

the projection (Ci,r A) --t (Ci/r A, *) is a homotopy equivalence in TOp2 (cf. Proposition 

14). Taking into account the lemma, it remains only to observe that X/A can be identified 

with Ci/r A.] 

FREUDENTHAL SUSPENSION THEOREM Suppose that X is non degenerate and 

n-connnected-then the suspension homomorphism 7rq(X) --t 7rq+l(EX) is bijective for 

o ~ q ~ 2n and surjective for q = 2n + 1. 

[Take X wellpointed with a. closed base point and, for the moment, work with its 

unpointed suspension EX. Using the notation of p. 3-22, write EX = r-X U r+ X

then V q,7rq(X) ~ 7rq(r-X n r+X) ~ 7rq+l(r-X,r-x n r+X). On the other hand, 

Proposition 25 implies that the arrow 7r q+l (r-X, r-X n r+ X) --t 7r q+l (EX) is a bijection 

for 1 ~ q + 1 ~ 2n + 1 and a surjection for q + 1 = 2n + 2. Moreover, X is wellpointed, 

therefore its pointed and unpointed suspensions have the same homotopy type.] 

[Note: This result is true if X is merely path connected, i.e., n = 0 is admissible 

(inspect the proof of Proposition 25).] 

Application: Suppose that n ~ I-then (i) 7rq(Sn) = 0 (0 5 q < n); (ii) 7rq(Sn) ~ 

7rq+l(Sn+l) (0 ~ q ~ 2n - 2); (iii) 7rn(sn) ~ Z. 

[As regards the last point, note that in the sequence 7rl (SI) --t 7r2(S2) --t 7r3(S3) --t "', 

the first homomorphism is an epimorphism, the others are isomorphisms, and 7rl(Sl) ~ Z, 

7r2(S2) ~ Z (a piece of the exact sequence associated with the Hopf map S3 --t S2 is 

7r2(S3) --t 7r2(S2) --t 7rl (SI) --t 7rl (S3».] 



3-42 

The infinite cyclic group 7I"n(sn) is generated by [tn ], tn the identity Sn ~ Sn. Form 

the Whitehead product [tn, t n ] E7I"2n-1 (Sn)-then the kernel of the suspension homomor

phism 7I"2n_1(sn) ~ 7I"2n(Sn+1) is generated by [tn' t n ] (Whiteheadt ). 

The proof of the homotopy excision theorem is elementary but complicated. This is the downside. 

The upside is that the highpowered approaches are cluttered with unnecessary assumptions, hence do not 

go as far. 

OPEN HOMOTOPY EXCISION THEOREM {
Xl 

Suppose that are open subspaces of X 
X2 

{ 
( Xl, X I n X 2) { n-connected 

with X = Xl U X2. Assume: is -then the arrow 1rq(Xl,XI n X2) -+ 
(X2, X2 n Xl) m-connected 

1rq(XI U X2, X2) induced by the inclusion (Xl, Xl n X2) -+ (Xl U X2, X2) is bijective for 1 ~ q < n + m 

and surjective for q = n + m. 

[Note: Goodwillief has extended the open homotopy excision theorem to "(N + I)-ads".] 

Admit the open homotopy excision theorem. 

{ 
KI 

Suppose that are subcomplexes of a CW 
K2 

CW HOMOTOPY EXCISION THEOREM 

complex K with K = KI UK2. Assume: is -then the arrow 1rq(KI , KI n 
{ 

(KI, KI n K2) { n-connected 

(K2, K2 n KI) m-connected 
K2) -+ 1rq.(KI U K2, K2) induced by the inclusion (KI, KI n K2) -+ (KI U K2, K2) is bijective for 1 ~ q < 

n + m and surjective for q = n + m. 

[Fix a neighborhood {U of KI n K2 in {KI such that KI n K2 is a strong deformation retract 
V K2 

{ 
U { Kf = KI U V { U = an KI { a { Kf = Pu of and put . Write , where are open in K-then 
V K~ = K2 U U V = P n K2 P K~ = au 

(K - K2) { Kf {KI & V { Kf , hence are open in K and K = Kf U K~. Since are closed in , the 
(K - Kt) K~ K2 & U K~ 

{V {K' {K homotopy deforming into KIn K 2 can be extended to all of I in the obvious way, so I is 

U {K' K~ {U K2 
a strong deformation retract of I . On the other hand, Kf n K~ = U U V and is closed in U U V, 

K~ V 
thus the union of the deforming homotopies is continuous and KI n K2 is a strong deformation retract 

{ 
(Kf, Kf n K~) {n-connected 

of Kf n K~. Therefore is and the open homotopy excision theorem is 
(K~, K~ n Kn m-connected 

applicable to the triple (K, Kf, K~). Consider the commutative triangle 

t Elements of Homotopy Theory, Springer Verlag (1978), 549. 

Memoirs Amer. Math. Soc. 431 (1990), 1-317. 
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The CW homotopy excision theorem implies the homotopy excision theorem. For choose a CW 

resolution L -+ Xl nX2' There exist: (1) A CW complex KI :::> L and It. CW resolution It : KI -+ Xl such 

Kl ---+ Xl 

that the square T T commutesj (2) A CW complex K2 :::> L and a CW resolution 12 : 

L ---+ Xl nX2 

K2 ---+ X2 

K.., -+ X.., such that the square T T commutes. Note that IS • { 
(K 1. L) . {n-connected. 

(K 2, L) m-connected. 

L ---+ X2 nXl 

L ---+ K2 

Define a CW complex K by the pushout square 1 1 
Kl ---+ K 

there is an arrow I: K -+ X determined. by , viz. {
It { IIKl = It . 
12 11K.., = 12 

LEMMA I is a weak homotopy equivalence. 

- { Ul = K - il K2 { Ul [Set K = ioKl U IL U il K2 : _ -then are open in K and K = Ul U U2. 
U2 = K - ioKl U2 

Let Ii : K -+ K be the restriction of the projection p : I K -+ K and denote by f the composite I 0 Ii : 

{ 
/(Ul) C Xl {flUl -
_ and _ &. IlUl n U2 are weak homotopy equivalences. But by assumption X = 
I(U2 ) C X 2 11U2 

intXl U intX2 • Therefore f is a weak homotopy equivalence (cf. p. 4-52). The inclusions {Kl -+ K 
K2 -+K 

are closed cofibrations (d. p. 3-13), hence K is a strong deformation retract of IK. Consequently, Ii is a 

homotopy equivalence, so I is a weak homotopy equivalence.] 

The CW homotopy excision theorem is applicable to the triple (K, KlJ K2). Examination of the 

commutative square 

1 1 

thus justifies the claim. Accordingly, it is the open homotopy excision theorem which is the heart of the 

matter. 
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Given a p-dimensional cube C in R9 (q ;:: 1, ° ~ p ~ q), denote by ska C its d-dimensional skeleton, 

i.e., the set of its d-dimensional faces. Put G = USkp_l C-then the inclusion b - Cis a closed cofibration. 

Analytically, C is specified by a point (C} , ... , eq) E R9, a positive number 6, and a subset P of {I, ... , q} 

of cardinality p : C is the set of z E Rq such that Cj ~ Zj ~ Ci +6 (i E P) &: Zi = Ci (i "" Pl. Here, if P = 0, 

{ 

Kd(C) = {z E C: Z. < Ci + ~ for at least d indices i E P} . 
thenC.={(clt""c9)}·For1~d~q,let 6 . 

La(C) = {z E C: Z. > Ci + '2 for at least d indices i E P} 

{ 
Kd(C) = 0 

When d > p, it is understood that . 
, La(C) = 0 

COMPRESSION LEMMA Fix a p-dimensional cube C in R9 (q ;:: 1, 1 ~ p ~ q), a positive 

integer d ~ p, and a pair (X, A). Suppose that I : C - X is a continuous function such that Y DE skp_ 1 c, 

1-1 (A) n DC Kd(D) (Ld(D»-then there exists a continuous function g: C - X with I ~ greIG and 

g-I(A) C Kd(C) (Ld(C». 

[Take p = q, C = [0,1]9, and put Zo = (1/4, ... ,1/4). Given an Z E [0,1]9, let l(zo, z) be the ray that 

starts at Zo and passes through z. Denote by P(z) the intersection of l(zo, z) with the frontier of [0, 1/2J9, 

Q(z) the intersection of l(zo, z) with the frontier of [0, 1J9. Let tP : [0,1]9 - [0,1]9 be the continuous 

function that sends the line segment joining P(z) and Q(z) to the point Q(z) and maps the line segment 

joining Zo and P(z) linearly onto the line segment joining Zo and Q(z). Note that tP ::! id[o,119 reI fr [0,119. 

Now set 9 = 10 tP. Assume: z E g-l (A). Case 1: Zi < 1/2 (Y i) =? z E K 9([0,1]9) C Kd([0,1]9). 

Case 2: Zi ;:: 1/2 (3 i) =? tP(z) E fr[O, 1]9 =? tP(z) E D (3 D E skq _ l [0,1]9) =? </J(z) E Kd(D) =? 1/2 > 
</J(z). = 1/4 + t(Zi - 1/4) for at least d indices i =? 1/2 > tP(z). ;:: Zi (t ;:: 1) for at least d indices 

i =? z E Kd ([0 , 1]9).] 

[Note: The parenthetical assertion is analogous.] 

Notation: Put 19 = [0,1]9, i9 = fr [0, 1]9, Ir l = 19- 1 X to} (q > 1) &: Ig = to} (q ::: 1), 

J9- 1 = i9- l X lu/9-1 X {I} (q > 1) &: JO = {I} (q = 1), so i9 ::: I~-l UJq-1 and ir l 
::: Ir l nJ9-1 -

then for any pointed pair (X,A,zo), 1I'9(X,A,zo) = [/9,i9,J9- l jX,A,zo] .. 

[Note: A continuous function I : (/9 , i 9 , J9- l ) - (X, A, zo) represents 0 in 11'9 (X, A, zo) iff there 

exists a continuous function 9 : 19 - A such that I ::! 9 reI i9 .] 

There are two steps in the proof of the open homotopy excision theorem: (1) Surjectivity in the range 

1 ~ q ~ n + mj (2) Injectivity in the range 1 ~ q < n + m. The argument in either situation is founded 

on the same iterative principle. 

Starting with surjectivity, let 01 E 1I'9(X1 U X2,X2,ZO), Zo E Xl n X2 the ambient base point. 

Represent 01 by an I: (/9,i'l,J'l-I) - (Xl UX2,X2,ZO). It will be shown below that 3 FE 01: 

pr(F-l(X -Xt»npr(F-l(X ':"'X2» ::: 0, pr : 19 - 19-1 the projection. Granted this, choose a continuous 

function tP : 19- 1 - [0,1] which is 1 on pr(F-l(X - Xl» and 0 on i9-l U pr(F-l(X - X 2». Define 
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• ; I' - I' by .(X1, . .. , X,) = (Xl, . .. ) X,-l, t+(I-t)x'.I)' where t = q,(X1, . .. , X,-l), and put 9 = Fo.

then 9 ; (/'.I,i'.l, J,-l) - (Xl. Xl n X2,XO) is a continuous function whose class (j E 'Ir'.l(XloXl n X2,XO) 

is sent to 0' under the inclusion. 

There remains the task of producing F. Since {f-1(Xl),1- 1(X2)} is an open covering of 1'.1, one 

can subdivide I' into a collection C of q-dimensional cubes 0 such that either 1(0) C Xl or 1(0) C X2. 

Enumerate the elements in Skd 0(0 E C, d = 0,1, ... , q) : 1) = {D}. In 1), distinguish two sub collections 

{
{Dk:k=I, ... ,r}:/(Dk)C X 2 I(Dk)rt.X1 . .. . . 

but , arrangmg the mdexmg so that dlmDj S dIm Dj+1. 
{D/ : I = 1, ... ,8} : I(D,) C Xl I(Dj) rt. X2 

(I') There exist continuous functions PO = I, pk : 1'.1 - X (k = 1, ... , r) such that'" k : Pk ::::: 

{
pO(D) C Xl 

PO (as a map of triples), p;1(X2 - Xl nX2) nDj C Kn+l(Dj) (j S k), and'" DE 1) : => 
po(D) C X2 

{ 
pk(D) C Xl or po(D) C Xl n X2 => pk(D) C Xl n X2. This is seen via induction on k, Po = I being 
pk(D) C X2 

the initial step. Assume that Pk-l has been constructed. 

Claim: 3 a homotopy hk : IDk - X2 relDk such that hk oio = pk-1lDk and (hk Oil)-1(X2 - Xl n 

X 2) C Kn+l(Di,). 

[Case 1: dimDk = O. Here, K n+1(Dk) = 0 and the point pk-1(Dk) E X2 can be joined by a 

path in X2 to some point of Xl n X2. Case 2: 0 < dimDk < n + 1. Here, K n+1(Dk) = 0 and the 

induction hypothesis forces the containment Pk -1 (D k) C Xl n X 2, hence Pk -11 D k represents an element 

of 'lrdk (X2' Xl n X2) = 0 (dk = dim Dk). Case 3: dim Dk ~ n + 1. Apply the compression lemma.] 

r 

k-l 

Extend hk to a homotopy Hk : 1'.1 X I - X of Pk-l rei U {D : I(D) C Xt} U U Dj such that 
j=l 

U Hk(IDj) C X2. Complete the induction by taking Pk = Hk 0 i1. 
j:;;k+l 

(v) There exist continuous functions Vo = Pr, VI : I' - X (I = 1, ... ,8) such that'" I: VI ::::: 

1 {VO(D) C Xl 
Vo rei U{D : I(D) C X2}, V/- (Xl-XlnX2)nDj C Lm+1(Dj) (j S I), and'" DE 1): => 

vo(D) C X2 

{ 
VI (D) C Xl or vo(D) C Xl nX2 => vieD) C Xl nX2. As above, this is seen via induction on I, Vo = Pr 
vieD) C X2 

being the initial step. Observe that U{D : I(D) C X2} :::> i'.l :::> J'.I- 1. 

Definition: F = v. (=> FE 0'). If pr(F-1(X - Xl» n pr(F-1(X - X2» were nonempty, then there 

would exist an x E /,-1 and a cube D C /'.1- 1 : {X E Kn(D) , an impossibility since q - 1 < n + m. 
x E Lm(D) 

Turning to injectivity, let I, 9 : (/',i'.l, Jq-1) - (Xt, Xl n X2, xo) be continuous functions such 

that U 0 I::::: U 0 9 as maps of triples, u : (X1 ,Xl n X 2,xo) - (Xl U X2,X2,XO) the inclusion. Fix a 

homotopy h : (I' , 1'.1, Jq-1) X I - (Xl U X 2, X2, Xo) : . Using the techniques employed in 
. {h 0 io = u 0 I 

h 0 i1 = u 0 9 
the proof of surjectivity, one can replace h by another homotopy H such that pr x idl(H-l(X - Xl» n 

pr x idl(H-1 (X - X2» = 0. It is this extra dimension that accounts for the restriction q < n + m. 

Choose a continuous function q, : /'.1- 1 X I _ [0,1] which is 1 on pr X idl(H-1(X - Xl» and 0 on 

(iq- 1 X I) U (Jll-1 x i) U pr x idl(H-l(X - X2». Define 4J : I' x 1_1'.1 X I by .(X1. ... ,Xq,x'.I+1) = 
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(:1:1"'" :l:q-1, t+(I-t}:l:q, :l:q+1), wheret = 4>(:1:1. ... , :l:q-1, :l:q+1}-then the composite Ho.W is a homotopy 

between I and 9 : H ° w(iq xl) C Xl n X2 & H 0 W(Jq-1 xl) = {:l:0}, 

Given a pair (X, A), let 11"0 (X, A) be the quotient 11"0 (X)/-, where -- means that the path components 

of X which meet A are identified. With this agreement, 11"0 (X, A) is a pointed set. If I: (X, A) - (Y, B) 

is a map of pairs, then I. : 11"0 (X, A) - 1I"0(Y, B) is Ii. morphism of pointed sets and the sequence * -
11"0 (X, A) - 1I"0(Y, B) is exact in SET. iff (1.)-1 im(1I"0(B) - 1I"0(Y» = im(1I"0(A) - 11"0 (X». 

LEMMA Let I : (X, A) - (Y, B) be a continuous function. Fix q ~ O-then V :':0 E A, I. : 

1I"q(X, A, :1:0) - 1I"q(Y, B, 1(:':0» is injective and I. : 1I"q+1 (X, A, :1:0) - 1I"q+1 (Y, B,/(:.:o» is surjective iff in 

(X, A) ~ (Y,B) 

any diagram 4>T T"', where 1 0 4> !::: tP on Jq by h : (Jq, in x I - (Y, B), there 

(Jq,ig) -+ (lq+1,lg) 

exists a w: (lq+1,/n - (X,A) such that wl(Jq,ig) = 4> and an H: (lq+1,/g) x I - (Y,B) such that 

HI(Jq ,ig) x 1= h and I ° ~!::: tP on 1q+1 by H. 

[Note: When q = 0, replace injectivity by the statement "* - 11"0 (X, A) - 1I"0(Y, B)" is exact. 

Observe that 104> = tP on Jq is permissible (h = constant homotopy) and implies by specialization the 

direct assertion. In addition, if W & H exist in this case, then ~ & H exist in general. Thus the point is 

to show that the direct assertion entails the existence of W & H under the assumption that I ° 4> = tP on 

Jq.] 

FACT ~uppose that {Xl & {Y1 are open subspaces of {X with {X = Xl U X2 . Let I : 
X2 Y2 Y Y = Y1 U Y2 

X - Y be a continuous function such that . Fix n ~ 1. Assume: The sequence 
{

Xl = 1-1 (Y1) 

X2 = l-l (y2 ) 

* - 11"0 (X. , Xl n X2) - 1I"0(Yi, Y1 nY2) is exact (i = 1,2) and that I. : 1I"q(X., Xl n X2) - 1I"q(Yt , Y1 n Y2) 

is bijective for 1 ~ q < n and surjective for q = n (i = I, 2)-then the sequence * - 11"0 (X , Xi) - 11"0 (Y, Yi) 

is exact (i = 1,2) and I. : 1I"q(X, Xi) - 1I"q(Y, Yi) is bijective for 1 ~ q < n and surjective for q = n 

(i = 1,2). 

[Fix io E {I,2}, 0 ~ q < n, and maps 4>: (Jq,ig) - (X,Xto )' tP: (lq+1,/g) - (Y,Yio) satisfying 

104> = tP on Jq. In view of the lemma, it suffices to exhibit an extension ~ : (lq+1, I~) - (X, Xio) 

of 4> and a homotopy H : (lq+l,/~) x 1- (Y, Yio) such that HI(Jq ,i~) x 1 is the constant homotopy 

at 104> and I ° ~ !::: tP on Iq+1 by H. Subdivide Iq+! into a collection C of (q + I)-dimensional cubes 

{ 
4>-1 (X - Xl) U tP- 1 (y - Yt} 

0: V 0 E C, 3 ic E {I, 2} : 4>(OnJq) C Xic and tP(O) C Yic (possible, 
. 4>-1(X-X2)UtP-1(Y-Y2) 

being disjoint and closed). Regard 19+1 as Iq x I-then C restricts to a subdivision of 19 and induces a 

partition of I into subintervals II< = [al<_l, al<] : 0 = ao < a1 < ... < ar = 1. Break the subdivision of 

19 into its skeletal constituents D. Construct W on D x II< & H on I(D x II<) via downward induction 

on k and for fixed k, via upward induction on dimD. Arrange matters so that: (1) tP(D x lie) C Yi ~ 
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"b(D x lie) C Xi & H(I(D X lie» C ¥Sj (2) ",(D X {ale-d) C Y" n Y2 => "b(D X {ale-d) C Xl n X 2 

& H(I(D X {ale-d» C YI n Y 2 • The first condition plus the second when Ie = 1 yield "b(Ig) C Xio 

& H(Ig X I) C ¥So' At each stage, the induction hypothesis secures "b on V X lie U D X {ale} & H on 

I(V X lie U D x {ale}). Case 1: If either ",(D X {ale-I}) is not contained in YI n Y2 or ",(D x lie) is 

contained in YI n Y:2J use the fact that V x lie U D x {ale} is a strong deformation retract of D x lie to 

specify "b on D x lie & H on I(D x lie). Case 2: If "'(D x {ale-d) is contained in Yl n Y2 and ",(D x lie) 

is contained in just one of the Yi, realize"b : (V x lie U D x {ad,V x {ale-d) - (X.,Xl n X2) & 

H : (V x lie U D x {ad, V X {ale-d) X I - (¥S, Yl n Y2). Apply the lemma to produce the required 

extension of"b to D X lie & H to I(D x lie). Here, of course, the assumption on I comes in.] 



§ 3 

BOOKS 

[1] Brown, R., Topology, Ellis Horwood (1988). 

[2] tom Dieck, T., Kamps, K., and Puppe, D., Homotopietheorie, Springer Verlag (1970). 

[3] James, I., General Topology and Homotopy Theory, Springer Verlag (1984). 

[4] James, I., Fibrewise Topology, Cambridge University Press (1989). 

[5] Piccinini, R., Lectures on Homotopy Theory, North Holland (1992). 

[6] llOCTBHKOB, M., JIell:1fuu no AAae6pau"&eclI:ooil TonoAoauu [OCHOBN Teopuu rOMomonuoil], 

HaYKa (1984). 

ARTICLES 

[1] Cockcroft, W. and Jarvis, T., An Introduction to Homotopy TheOry and Duality, Bull. Soc. 

Math. Belgique 16 (1964),407-427, and 11 (1965), 3-26. 

[2] Nomura, Y., An Application ofthe Path Space Technique to the Theory of Triads, Nagoya Math. 

J. 22 (1963), 169-188. 

[3] Puppe, D., Homotopiemengen und ihre Induzierten Abbildungen I, Math. Zeit. 69 (1958), 

299-344. 

[4] Spanier, E., The Homotopy Excision Theorem, Michigan Math. J. 14 (1967), 245-255. 

[5] StrjlSm, A., Note on Cofibrations, Math. Scand. 19 (1966), 11-14. 

[6] StrjlSm, A., Note on Cofibrations II, Math. Scand. 22 (1968), 130-142. 



4-1 

§4. FIBRATIONS 

The technology developed below, like that in the preceding §, underlies the foundations 

of homotopy theory in TOP or TOP •. 

Let B be a topological space. An object in TOP I B is a topological space X together 

with a continuous function p : X -+- B called the projection. For 0 C B, put Xo = p-l (0), 

which is therefore an object in TOPIO (with projection po = pIXo). The notation XIO 
is also used. In particular: Xb = p-l (b) is the fiber over bE B. A morphism in TOP I B 

is a continuous function J : X -+- Y over B, i.e., an J E G(X, Y) such that the triangle 

X f ~Y 
~ ~ commutes. Notation: J E GB(X,Y),Jo = JIXo (0 C B). The base space 

B 

B is an object in TOP I B, where p = idB. An element s E GB(B, X) is called a section 

of X, written s E secB(X). 

[N ote: The product of { ~.~ : :; in TOP IBis the fiber product: X x BY. If 

B' is a topological space and if 4>' E G(B', B), then 4>' determines a functor TOP I B -+

TOPIB' that sends X to X' = B' XB X. Obviously, (X XB Y)' = X' XB' Y'.] 

EXAMPLE Let X be in TOP/B-then the assignment 0 - seco(Xo), 0 open in B, defines a 

sheaf of sets on B, the sheaf of sections r x of X. 

[Note: Recall that for any sheaf of sets :F on B, there exists an X in TOP / B with p : X - B a 

local homeomorphism such that :F is isomorphic to rx. In fact, the category of sheaves of sets on B is 

equivalent to the full subcategory of TOP / B whose objects are those X for which p : X - B is a local 

homeomorphism .] 

FACT Let X be in TOP / B-then the projection p : X - B is a local homeomorphism iff both it 

and the diagonal embedding X - X X B X are open maps. 

FACT Let X be in TOP/B. Assume: X k B are path connected Hausdorff spaces and the 

projection p : X - B is a local homeomorphism-then p is a homeomorphism iff p is proper and p. : 

11'1 (X) - 11'1 (B) is surjective. 

There is a functor TOP -+- TOP I B that sends a topological space T to B x T 

(product topology) with projection B x T -+- B. An X in TOP IBis said to be trivial if 

there exists a T in TOP such that X is homeomorphic over B to B X T, locally trivial if 

there exists an open covering {O} of B such that \I 0, Xo is trivial over O. 



4-2 

[Note: Spelled out, local triviality means that V 0 there exists a topological space To 
and a homeomorphism Xo ~ 0 x To over O. If the To can be chosen independent of 0, 

so V 0, To = T, then X is said to be locally trivial with fiber T. When B is connected, 

this can always be arranged.] 

FACT Let X be in TOP/lB. Suppose that XI(B x [0,1/2]) and XI(B x [1/2,1]) are trivial-then 

X is trivial. 

EXAMPLE Let X be in TOP/[O, l]n (n ~ 1). Suppose that X is locally trivial-then X is trivial. 

A fiber homotopy is a homotopy over B : 1 ':::!.g (1,g E GB(X, Y». Isomorphisms in 
B 

the associated homotopy category are the fiber homotopy equivalences and any two { :. 

in TOP I B for which there exists a fiber homotopy equivalence X ~ Y have the same fiber 

homotopy type. The fiber homotopy type of X x B Y depends only on the fiber homotopy 

types of X and Y. The objects in TOP I B that have the fiber homotopy type of B itself 

are said to be fiberwise contractible. Example: The path space P B with projection po is 

in TOPIB and is fiberwise contractible (consider the fiber homotopy H : IPB ~ PB 

defined by H(u, t)(T) = u(tT». 

[Note: A fiber homotopy with domain IB is called a vertical homotopy.] 

LEMMA Let X be in TOP I B. Assume: X is fiberwise contractible-then for any 

~, E G(B', B), X' is fiberwise contractible. 

Let f : X - Y be a continuous function. View its mapping cylinder MJ as an object in TOP /Y 

with projection r : MJ - Y -then j E secy(MJ) and MJ is fiberwise contractible. 

Let X, Y be in TOP I B-then a fiber preserving function 1 : X ~ Y is said to be 

fiberwise constant if 1 = top for some section t : B ~ Y. Elements of GB(X, Y) that are 

fiber homotopic to a fiberwise constant function are fiberwise inessential. 

Suppose that B is not in CG-then the identity map kB - B is continuous and constant on fibers 

but not fiberwise constant. 

LEMMA Let X be in TOP I B-then X is fiberwise contractible iff idx is fiberwise 

inessential. 

EXAMPLE Take X = ([0,1] x {O, I}) U ({O} x [0,1]), B [0,1]' and let p be the vertical 

projection-then X is contractible but not fiberwise contractible. 
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EXAMPLE Let X be a subspace of B x R" and suppose that there exists an 8 E seeB(X), say 

6 - (6,8(6», such that '16 e B, Va: e XI" {(b, (1 - t)8(b) + tz) : 0 S t S I} C XI/-then X is fiberwise 

contractible. 

FACT Let X be in TOP/B; let I,g E GB(X, X). Suppose that {O,P} is a numerable covering 

of B for which {/o are fiberwise inessential-then 9 0 I is fiberwise inessential. 
gp 

{ 
K: 1Xo - Xo {/o &: kopo {k E seeo(Xo) [Fix fiber homotopies between , where . Through 
L : lXp - Xp gp &: 10 pp I e seep (Xp) 

reparametrization, it can be assumed that {K 0 it are independent of t when 0 S t S 1/4, 3/4 S 
L oit 

t S 1. Choose e G(B, [0, 1]) : &: p + I' = 1. Let 4 be the triangle in R2 with 
{

p {sptp CO. . . 

I' sptl' C P 
vertexes (0,0), (1,0), (0,1). Note that the transformation (~,'7) - (~,(1 - ~)'7) takes 1[0,1] - 1{1} 

homeomorphic ally onto 4 - {(I, On. The continuous fiber preserving function if; : 12 Xonp - Xonp 

defined by 4>(z, (~, '7» = L(K(z, '1),~) is independent of '1 when ~ = 1, thus it induces a continuous fiber 

preserving function 4>4 : Xonp x 4 - XonP. On Xonp x fr,6., one has 4>4(Z, (t,l- t» = L(k(P(z», t), 

{ 

L(k(b),I'(b» (b eOn P) 

4>4(Z, (0, t» = g(K(z, t», if;4(z, (t, 0» = L(I(z), t). Write 8(b) = g(k(b» (b E 0- P) -then 

8 e seeB (X) and 9 0 I is fiber homotopic to 8 0 P via 

{ 

4>4(z,t(l'(b),p(b») 

H(z, t) = g(K(z, t» 

L(I(z), t) 

I(b) (b e P - 0) 

(b E Onp) 

(b E 0 - P) (z EX.).] 

(b E P- 0) 

Consequently, if It, ... ,I" E GB(X,X) and ifOt, ... ,On is a numerable covering of B such that Vi, 

10' is fiberwise inessential, then It 0'" 0 In is fiberwise inessential. Example: Xo. fiberwise contractible , , 
(i = 1, ... , n) =? X fiberwise contractible (cf. p. 4-26). 

Let X be in TOP / B-then X is said to have the section extension property (SEP) 

provided that for each A C B, every section SA of XA which admits an extension So to a 

halo 0 of A in B can be extended to a section s of X: slA = SA. 

[Note: If X has the SEP, then secB(X) is nonempty (take A = 0 = 0).] 

Let X be in TOP/B and suppose that X has the SEP. Let 8 be a section of XI~-laO, 1]), where 

~ e G(B, [0, 1])-then V E, 0 < E < 1, 81~-1([E, 1]) can be extended to a section 8e of X but it is false in 

general that 8 can be so extended. 

EXAMPLE Suppose that B is a CW complex of combinatorial dimension S "+ 1 and T is 

"-connected-then B x T has the SEP. 
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PROPOSITION 1 Let X, Y be in TOP / B and suppose that Y has the SEP. Assume: 

3 {
IE GB(X, Y) . 
9 E GB(Y, X) : 9 0 I ;; Idx-then X has the SEP. 

[Fix a fiber homotopy H : IX -+ X between idx and go I. Given A C B, let SA be 

a section of XA which admits an extension SO to a halo 0 of A in B. Choose a closed 

halo P of A in B : A C Pea and a a halo of P in B (cf. HA2 , p. 3-11). Since Y 
has the SEP, there exists a section t of Y : tiP = 10 solP. With 1f a haloing function of 

{
go t(b) (b E 1f-1(0)) 

P, define S : B -+ X by s(b) = H(so(b), 1 _ 1f(b)) (b E P) to get a section S of 

X: slA = SA.] 

Application: Fiberwise contractible spaces have the SEP. 

LEMMA Let X be in TOP / B and suppose that X has the SEP. Let a be a cozero 

set in B-then Xo has the SEP. 

[There is no loss of generality in assuming that A = l-l(]O, 1]), where IE G(O, [0, 1]). 
Accordingly, given a section SA of X A , it will be enough to construct a section s of 

Xo which agrees with SA on 1-1(1). Fix <P E G(B, [0,1]) : a = <p-l(]O, 11). Claim: 

There exist sections S2,S3,'" of X such that sn+l(b) = sn(b) (<p(b) >.!:.) and sn(b) = 
n 

sA(b) (/(b) > 1 - .!:. & <p(b) > _1_). Granted the claim, we are done. Put F(b) = 
n n+ 1 

{ 
I(b)<p(b) (b E 0) . . ° (b E B _ 0) : F E G(B, [0, 1]). Smce X has the SEP and SA IS defined 

on F-l(]O, 1]), a halo of F-l([I/6,1]) in B, there exists a section of X that agrees 

with SA on 1-1 (]:I./2, 1]) n <p- l (]I/3, 1]). Call it S2, thus setting the stage for induction. 

Choose continuous functions f.Ln, lin: [0,1] -+ [0,1] subject to ~3 < lIn(X) < f.Ln(x) :$ .!:. 
n+ n 

. 1 1 1 1 
wlthf.Ln(x):$n+2 (x~l-n+l)andlln(x)~n+l (x:$I-;;) (n=2,3, ... ). Let 

An = {b EO: <p(b) > f.Ln(/(b))}, On = {b EO: <p(b) > lIn(/(b))}-then On is a halo of 

An in B, a haloing function being 1 on {b EO: f.Ln(f(b)) :$ <p(b)}, 

<p(b) - lIn(/(b)) 
f.Ln(/(b)) _ lIn(f(b)) on {b EO: lIn(/(b)) :$ <p(b) :$ f.Ln(/(b))}, 

and ° on {b EO: <p(b) :$ lIn(/(b))} U B - O. To pass from n to n + 1, note that the 

, {sn(b) (<p(b) > 1 
prescription b -+ n + f defines a section of XOn ' Its restriction to An 

sA(b) (f(b) > 1 - -) 
n 

can therefore be extended to a section Sn+l of X with the required properties.] 

SECTION EXTENSION THEOREM Let X be in TOP / B. Suppose that 0 = {a, : 
i E I} is a numerable covering of B such that V i, Xo, has the SEP-then X has the SEP. 
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[Given A C B, let SA be a section of X A which admits an extension So to a halo 

o of A in B. Fix a haloing function 11'" for 0 and let {1I'"i : i E I} be a partition of 

unity on B subordinate to O. Put TIs = 2:(1- 1I'")1I'"i + 11'" (S C I). Consider the set 
iES 

S of all pairs (S, s) : s is a section of XlnSl(]O, 1]) & slA = SA : S is nonempty (take 

S = 0, s = SOI1l'"-1(]O, 1]). Order S by stipulating that (S',s') ~ (S",s") iff s' c S" and 

s'(b) = slt(b) when TIs' (b) = TIstI(b) > 0. One can check that every chain in S has an upper 

bound, so by Zorn, S has a maximal element (So, so). Since TIl = 1, to finish it need only 

be shown that So = I. Suppose not. Select an io E I - So, set TIo = TIso & 11'"0 = (1- 11'" )1I'"io' 

and define a continuous function 4>0 : 1I'"ol(]O, 1]) - [0,1] by 4>o(b) = min{l, TIo(b)/1I'"0(b)}. 

Owing to the lemma, X 111'"01 (]O, 1]) has the SEP (11'"0 1 (]O, 1]) c 0'0)' On the other hand, 

4>ol(]O, 1]) is a halo of 4>01 (1) in 11'"0 1 (]O, 1]) and So 14>01 (1) admits an extension: to 4>01 (]O, 1]), 

viz. sol4>ol(]O, 1]). Therefore sol4>ol(l) can be extended to a section Sio of XI1I'"Ol(]O, 1]). 

_ S {'} . (b) - {so(b) (1I'"0(b) ~ TIo(b)) ( (b) () LetT- oU Zo andwntet - sio(b) (1I'"0(b);::: TIo(b)) TIT >O-then T,t ES 

and (So,so) < (T,t), contradicting the maximality of (So,so).] 

FACT Let A be a subspace of X. Suppose that there exists a numerable covering U = {U. : i E I} 

of X such that V i, the inclusion An Ui -+ Ui is a cofibration-then the inclusion A -+ X is a cofibration. 

[Let {lI:i : i E I} be a partition of unity on X subordinate to U. The lemma on p. 3-11 implies 

that V i, the inclusion An 11:;1 (]O, 1]) -+ 11:;1 (]a, 1]) is a cofibration. Therefore one can assume that U is 

{
F:X-+Y 

numerable and open. Fix a topological space Y and a pair (F, h) of continuous functions 
h:/A-+Y 

such that FIA = h 0 i o. Define a sheaf of sets :F on X by assigning to each open set U the set of all 

continuous functions H : IU -+ Y such that FlU = H 0 io and HI/(A n U) = hl/(A n U). Choose a 

topological space E and a local homeomorphismp : E -+ X for which :F(U) = secu(Eu) at each U. Show 

that Vi, Eu; has the SEP. The section extension theorem then says that 3 HE :F(X).] 

Let X be in TOP / B. Let E be in TOP; let 4> E C (E, B)-then a continuous function 

.p : E - X is a lifting of 4> provided that po .p = 4>. Example: Every S E secB(X) is a 

lifting of idB. 

FACT Suppose that X is fiberwise contractible. Let ~ E C(E, B)-then for any halo U of any A 

in E and all 1/1 E C(U, X) : p 0 1/1 = ~IU, there exists a lifting W of ~ : wlA = 1/1IA. 

[Note: The condition is also characteristic, First take E = B, A = 0 = U, and 4> = idB to see that 

3 s E secB(X), Next let E = IX, A = ioXUi1X, U = X X [0, 1/2[ U X X ]1/2,1]' and define ~ : IX -+ B 

by 4>(z, t) = p(z), 1/1 : U -+ X by 1/1(z, t) = . Since U is a halo of A in IX, every 
{

z (t < 1/2) . 

so p(z) (t> 1/2) 
lifting W of ~ with wlA = 1/1IA is a fiber homotopy between idx and sop, i.e., X is fiberwise contractible.] 
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(HLP) Let Y be a topological space-then the projection p: X -+ B is said to 

have the homotopy lifting property with respect to Y (HLP w.r.t. Y) if given continuous 

functions { f::;;" -: ~ such that poF = hoio, there is a continuous function H : IY -+ X 

such that F = H 0 io and p 0 H = h. 

{ 
f e C(Y, B) 

If p : X - B has the HLP w.r.t. Y and if are homotopic, then f has a lifting 
9 e C(Y, B) 

Fe C(Y, X) iff 9 has a lifting G e C(Y, X). 

EXAMPLE Take X = [0,1] U *, B = [0,1] and define p : X - B by p(t) = t, p(*) = o . . 
Fix a nonempty Y and let f be the constant map Y - o-then the constant map Y - * is a lifting 

F e C(Y, X) of f. Put h(J/, t) = t, 80 h : IY - B. Obviously, po F = h 0 io but there does not exist 

He C(IY, X) : F = H 0 io and po H = h. 

Let X be in TOP/B. Given a topological space Y and continuous functions 

{ f:: ;;,. -: ~ such that p 0 F = h 0 io, let W be the subspace of Y x P X consisting 

of the pairs (y,O') : F(y) = 0'(0) & h(y,t) = p(O'(t» (0:5 t:5 1). View W as an object in 

TOP/Y with projection (y,O') -+ y. 

Y ~ X 

LEMMA The commutative diagram io 1 1 p admits a filler H : IY -+ X iff 

B 

secy(W) =F 0. 
IY --+ 

h 

PROPOSITION 2 Suppose that p : X -+ B has the HLP w.r.t. Y-then V pair 

(F, h), W has the SEP. 

[Fix A c Y and let V be a halo of A in Y for which there exists a homotopy H v : 
IV -+ X such that FIV = Hv 0 io and po Hv = hIIV. To construct a homotopy 

H : IY -+ X such that F = H 0 io and po H = h, with HilA = HvIIA, take V closed 

(cf. HA2 , p. 3-11) and using a haloing function 7r, put h(y, t) = h(y, min{1, 7r(y) + t}), so 

-. eft H .' IV b {Hv(y,O) = F(y) d d fi F· Y X h. IY -+ B. D ne v· lOYU -+ X y Hv(y,t) = Hv(y,t) an e ne . -+ 
- - - - ~.-

by F(y) = H v(y, 7r(Y». Since po F = h 0 io, there is a continuous function H : IY -+ X 

such that F = H 0 io and p 0 H = h. The rule 

H( t) = {H v(y, t) (0 :5 t :5 7r(y» 
y, H(y, t - 7r(Y» (7r(y):5 t :5 1) 

then specifies a homotopy H : IY -+ X having the properties in question.] 
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Let y be a class of topological spaces-then p : X ........ B is said to be a Y fibration if 

V Y E y, p : X ........ B has the HLP w.r.t. Y. 

(H) Take for Y the class of topological spaces~then a Y fibration p : X ........ B is 

called a Hurewicz fibration. 

(S) Take for Y the class of CW complexes-then a Y fibration p X ........ B is 

called a Serre fibration. 

Every Hurewicz fibration is a Serre fibration. The converse is false (cf. p. 4-8). 

Observation: Let Y E Y and suppose that p : X ........ B is a Y fibration-then any 

inessential f E C(Y, B) admits a lifting F E C(Y, X). 

[Note: It is thus a corollary that if BEY is contractible, then secB(X) is nonempty.] 

Other possibilities suggest themselves. For example, one could consider p : X - B, where both X 

and B are in CG, and work with the class Y of compactly generated spaces. This leads to the notion of 

CG fibration. Any CG fibration is a Serre fibration. In general, if p : X - B is a Hurewicz fibration, 

then kp : kX - kB is a CG fibration. Another variant would be to consider pointed spaces and pointed 

homotopies. Via the artifice of adding a disjoint base point (cf. p. 3-26), one sees that every pointed 

Hurewicz fibration is a Hurewicz fibration. In the opposite direction, an f E CB (X, Y) is said to be a 

fiberwise Hurewicz fibration if it has the fiber homotopy lifting property with respect to all E in TOP/B. 

Of course, if f is a Hurewicz fibration, then f is a fiberwise Hurewicz fibration. On the other hand, for 

any X in TOP/B, the projection p: X - B is always a fiberwise Hurewicz fibration. 

FACT Suppose that p : X _ B is a Hurewicz fibration. Let E be a topological space with the 

homotopy type of a compactly generated space-then a <f; E C(E, B) has a lifting E - X iff k<f; E 

C(kE, kB) has a lifting kE - kX. 

[The identity map kE - E is a homotopy equivalence.] 

EXAMPLE For any topological space T, the projection B x T - B is a Hurewicz fibration. Take, 

e.g., T = D", let Xo C B X S,,-1 , and put X = B x D" - Xo-then the restriction to X of the projection 

B x D" - B is a Hurewicz fibration. 

EXAMPLE (Covering Spaces) A continuous function p : X - B is said to be a covering projection 

if each b E B has a neighborhood 0 such that Xo is trivial with discrete fiber. Every covering projection 

is a Hurewicz fibration. 

[Note: A sheaf of sets :F on B is locally constant provided that each b E B has a basis B of neigh

borhoods such that whenever U, V E B with U C V, the restriction map :F(V) - :F(U) is a bijection. 

If p : X - B is a covering projection, then its sheaf of sections fx is locally constant. Moreover, every 

locally constant sheaf of sets :F on B can be so realized.] 
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EXAMPLE Let X be the triangle in R2 with vertexes (0,0), (1,0), (0, I)-then the vertical 

projection p : X - [0,1] is a Hurewicz fibration but X is not locally trivial. 

[Note: Ferryt has constructed an example of a Hurewicz fibration p : X - [0,1] whose fibers are 

connected n-manifolds but such that X is not locally trivial.] 

LEMMA Let X be in TOP / B-then P : X --+ B is a Serre fibration iff it has the 

HLP w.r.t. the [0,1]11 (n ~ 0). 

OQ 

EXAMPLE Take X = {(z, -z) : ° ~ z ~ I} u U([O, 1] x {lin}), B = [0,1], and let p be the 
1 

vertical projection-then p is a Serre fibration but not a Hurewicz fibration. 

[Note: p-l(O) and p-l(I) do not have the same homotopy type.] 

EXAMPLE Let B be a topological space which is not compactly generated-then r B is not 

compactly generated and the identity map kr B -+ r B is a Serre fibration but not a Hurewicz fibration. 

[For any compact Hausdorff' space K, the arrow C(K, kr B) -+ C(K, r B) is a bijection.] 

EXAMPLE Let B = [0, 1]"", the Hilbert cube. Put X = B x B - t:J..B and let p be the vertical 

projection, q the horizontal projection-then p : X -+ B is a Serre fibration. Moreover, B is an AR as are 

the Xb (each being homeomorphic to B x [0,1[) but p : X -+ B is not a Hurewicz fibration. 

[If so, then there would exist an s E secB (X). Consider q 0 s: It is a continuous function B -+ B 

without a fixed point, contradicting Brouwer.] 

Ungart has shown that if X and B are compact ANRs of finite topological dimension, then a Serre 

fibration p : X -+ B is necessarily a Hurewicz fibration. 

The projection P : X --+ B is a Hurewicz fibration iff the commutative diagram 

PX 

-Po 

is a weak pullback square. Homeomorphisms are Hurewicz fibrations. 

Maps with an empty domain are Hurewicz fibrations. The composite of two Hurewicz 

fibrations is a Hurewicz fibration. 

PROPOSITION 3 Let {PI: Xl --+ Bl be Hurewicz fibrations-then PI x P2 : Xl x 
P2 : X 2 --+ B2 

X 2 --+ Bl X B2 is a Hurewicz fibration. 

Trans. Amer. Math. Soc. 327 (1991), 201-219; see also Husch, Proc. Amer. Math. Soc. 61 (1976), 

155-156. 

Pacific J. Math. 30 (1969), 549-553. 
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X' --+ X 
PROPOSITION 4 Let pi 1 lp be a pullback square. Suppose that p is a 

B' --+ B 
Hurewicz fibration-then p' is a Hurewicz fibration. 

Application: Let p : X -+ B be a Hurewicz fibration-then V 0 c B, Po : Xo -+ 0 

is a Hurewicz fibration. 

PROPOSITION 5 Let p: X -+ B be a Hurewicz fibration-then for any LCH space 

Y, the postcomposition arrow P* : C(Y,X) -+ C(Y,B) is a Hurewicz fibration (compact 

open topology). 

[Convert 

E ---+ C(Y, X) 
1 //'~ 1 to 

Ex Y---+-X 
1 ,/,/f 1.] 

IE ---+ C(Y, B) I(E x Y) ---+ B 

Application: Let p : X -+ B be a Hurewicz fibration-then Pp : P X -+ P B is a 

Hurewicz fibration. 

PROPOSITION 6 Let i : A -+ X be a closed cofibration, where X is a LCH space

then for any topological space Y, the precomposition arrow i* : C(X, Y) -+ C(A, Y) is a 

Hurewicz fibration (compact open topology). 

[Convert 

E ---+ C(X, Y) 
1 /~/~ 1 

IE ---+ C(A, Y) 

to 

ExX IY 
1 _/-/,-~ T . ] 

I(E x X) +- I(E x A) 

Application: Let X be a topological space-then Pf PX -+ X (0 < t :$ 1) is a 

Hurewicz fibration. 

EXAMPLE Let i : A -+ X be a dosed cofibration, where X is a LCH space. Fix ao E A and put 

:1:0 = i(ao )-then for any pointed topological space (Y, Yo), the precomposition arrow i· : G(X, zo; Y, Yo) -+ 

C(A, ao; Y, Yo) is a Hurewicz fibration (compact open topology). 
G(X,:l:o;Y,yo) --+ G(X,Y) 

[The commutative diagram 1 1 is a pullback square.] 

G(A,ao;Y,Yo) --+ C(A, Y) 
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{
PX-+XXX 

FA CT Let X be a. topological space-then IT : 
u -+ (u(O), u(l» 

over, X is locally path connected iff IT is open. 

is a Hurewicz fibration. More-

[Note: Fix :1:0 E X-then the fiber of IT over (zo, zo) is OX, the loop space of (X, :1:0)'] 

STACKING LEMMA Given a topological space Y, let {Pi : i E I} be a numerable 

covering of IY-then there exists a numerable covering {Yj : j E J} of Y and positive 

real numbers €j (j E J) such that V tt, tit E [0,1] with t' $ til & tit t' < €j, ::3 i E I : 

Yj X [tt, tit] C Pi. 

[Let {Pi: i E I} be a partition of unity on IY subordinate to {Pi : Z E I}. Put 
00 

J = UIr. Take j E J, say j = (i I , ... ,ir) E Ir, define 1rj E C(Y, [0, 1]) by 
I 

rrr • { [k-1 k+1]} 1rj(Y) = mm pi,,(y,t):t'E r+1'r+1 
k=l 

and set Yj = 1rjl(]O,l]), €j = 1/2r. Since Yj C n {Y: {V} X [k -1\ k + 11] C Pile}' 
k=l r + r + 

the €j will work. Moreover, due to the compactness of [0,1], for each y E Y there is: (1) 

An index j E r such that {V} x [~+~, ~!n C pi: I (]O,l]) (k = 1, ... ,r) and (2) A 

neighborhood V of y such that IV meets but a finite number of the pil(]O, 1]). Therefore 
00 

{Yj : j E J} U{Yj: j E Ir} is a a-neighborhood finite cozero set covering of Y, hence is 
I 

numerable.] 

LOCAL-GLOBAL PRINCIPLE Let X be in TOP/B. Suppose that 0 = {Oi : i E I} 

is a numerable covering of B such that V i, POi: Xo. ---? Oi is a Hurewicz fibration-then 

p: X ---? B is a Hurewicz fibration. 

[Fix a topological space Y and a pair (F, h) of continuous functions {f == ~ : ~ 
such that P 0 F = h 0 i o. To establish the existence of an H : IY ---? X such that 

F = H 0 io and po H = h is equivalent to proving that secy(W) 1= 0 (cf. p. 4-6). For 

this, we shall use the section extension theorem and show that W has the SEP, which 

suffices. Set Pi = h-l(Oi) : {Pi: i E I} is a numerable covering of IY and the stacking 

lemma is applicable. Given j, put Wj = WIYj, choose tk : ° = to < tl < ... < tn = 1, 

tk - tA;-1 < €j, and select i accordingly: h(Yj x [tk-I, tA;]) c Oi. The claim is that Wj 
has the SEP. So let A C Yj, let V be a halo of A in Yj, and let Hv : IV ---? X be a 

homotopy such that FIV = Hv 0 io and po Hv = hIIV. With 1r a haloing function of 

V, put Ak = 1r-l ([tk, 1]) (k = 1, ... , n) : Ak is a halo of Ak+l in Yj and V is a halo 
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of Al in Yj. Owing to Proposition 2, there exist homotopies Hk : Yj x [tk-l,tk] --+ X 

having the following properties: po Hk = hlYj x [tk-I, tk]' Hk(Y, tk-d = Hk-I(Y, tk-l) 
(k > 1), HI(Y,O) = F(y),HkIAk x [tk-btk] = HvlAk x [tk-I,tk]. The Hk thus combine 

to determine a homotopy H : IT; --+ X such that FlY; = H 0 i o, po H = hllY;, and 

HilA = HvllA.] 

Application: Suppose that B is a paracompact Hausdorff space. Let X be in TOP/B. 
Assume: X is locally trivial-then p : X --+ B is a Hurewicz fibration. 

EXAMPLE Let B = L+, the long ray. Put X = {(z,y) E L+ x L+ : z < y} and let P be the 

vertical projection-then X is locally trivial but P : X - B is not a Hurewicz fibration. 

FACT Let X be in TOP/B. Suppose that 0 = {Oi : i E I} is an open covering of B such that 

V i, POi: XO i - Oi is a Hurewicz fibration-then the projection P : X - B is a Y fibration, where Y is 

the class of paracompact Hausdorff spaces. 

{
F:Y-X 

[Given Y E Y and continuous functions 
h :IY-B 

such that po F = h 0 io, consider the pullback 

IY XB X ---+ X 

square 1 11', observing that IY E y.] 

IY ---+ B 
h. 

[Note: It follows that P : X - B is a Serre fibration.] 

Let f : X --+ Y be a continuous function-then the mapping track W, of f is defined 

W, ---+ PY 

by the pullback square 1 
X ---+ 

1 Po. Special case: V Yo E Y, the mapping track 

Y , 
of the inclusion {yo} --+ Y is the mapping space ey of (Y,yo). There is a projection 

p: W, --+ X, a homotopy G : W, --+ PY, and a unique continuous function s : X --+ W, 
such that po s = idx and Go s = j 0 f (j : Y --+ PY). One has s 0 p~idwl' The 

X 
composition PI 0 G is a projection q : W, --+ Y and f = q 0 s. 

[Note: The mapping track is a functor TOP( --+) --+ TOP.] 

LEMMA P is a Hurewicz fibration and W, is fiberwise contractible over X. 

LEMMA q is a Hurewicz fibration. 
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E w, 
[To construct a filler for io 1 

IE 

lq , write q,(e) -

---+ Y 
h 

l(xe) = Te(D), and define H : IE ~ W, by H(e, t) = (xe, h(e, t)), where 

h( t)(T) = { Te(2T(2 - t)-l) 
e, h( e, 2T + t - 2) 

(T < 1 - t/2) 
(T? 1 - t/2) .] 

{ 
Xe EX & 
Te E PY 

PROPOSITION., Every morphism in TOP can be written as the composite of a 

homotopy equivalence and a Hurewicz fibration. 

{

Wok 
FACT Let,: X - Y be a continuous function-then, can be factored as , = , where 

'lro/ 

{: is a Hurewicz fibration, {; is a closed cofibration, and {: is a homotopy equivalence. 

[Per Proposition 7, write' = q 0 s, form S = [s(X) U W, x]O, 1] C [W" and let w : [W, - [0,1] 

be the projection. The restriction to S of the Hurewicz fibration [W, - W, is a Hurewicz fibration, call 

it p. Proof: Given continuous functions such that po F = h 0 io. consider H : IY - S, {
F:Y-S 

h :IY-W, 
where H(y, t) = (h(y, t), t + (1 - t)w(F(y))). Next, if k : X - S is defined by k(z) = (8(Z), 0), then k(X) 

is both a strong deformation retract of S and a zero set in S (being (wIS)-l (0». Therefore k is a closed 

cofibration (cf. §3, Proposition 10). And: , = q op 0 k. To derive the other factorization, write' = r 0 i 

(cf. §3, Proposition 16) and decompose r as above.] 

Let X be in TOP/B. Define'\ : PX ~ W, by 0' ~ (O'(D),p 0 0'). 

PROPOSITION 8 The projection p : X ~ B is a Hurewicz fibration iff ,\ has a right 

inverse A. 

[N ote: A is called a lifting function.] 

FACT Let p : X - B be a Hurewicz fibration. Suppose that A is a subspace of X for which 

there exists a fiber preserving retraction r : X - A-then the restriction of p to A is a Hurewicz fibration 

A-B. 

EXAMPLE Let X be a nonempty compact subspace of R n. Realize r X in R n+l by writing 

rx = U{(t,tz): 0 S t S I}, so r2x is U{(s,st,stz): 0 S s S 1 &; 0 S t S I}, a subspace of Rn+2. 
:z: :z: 

Claim: The projection p : {r2 X - [0,1] is a Hurewicz fibration. To see this, consider [0,1] x rx = 
(s,st,stz) - s 

U{(s, t, tz) : 0 S s S 1 &; 0 S t S I} with projection (s, t, tz) - s and define a fiber preserving retraction 
:z: 
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r: [0,1] x rx -+ r 2x by r(a,t,tz) = {(a,a,aZ) 
(a,t,tx) 

(t> a) 
- . The fibers of p over the points in ]0,1] can be 

(t :5 a) 
identified with r X, while p-l (0) = *. 

[Note: If X is the Cantor set, then r X is not an ANR.] 

X "Y ~Wp 

Let X be in TOP / B-then there is a morphism ~ ~ . Here, in a change 
B 

of notation, , sends x to (x, j (p( x ))), j : B ---j. P B the embedding. 

PROPOSITION 9 Suppose that p : X ---j. B is a Hurewicz fibration-then, : X ---j. 

Wp is a fiber homotopy equivalence. 

[Choose a lifting function A : Wp ---j. PX. Define a fiber homotopy H : IX ---j. X by 

H(x,t) = A(,(x))(t) and a fiber homotopy G : IWp ---j. Wp by G«X,1'),t) = (A(X,1')(t), 

1't) (1't(T) = 1'(t + T - tT))-then it is clear that the assignment (x, 1') ---j. A(X,1')(l) is a 

fiber homotopy inverse for,.] 

Application: The fibers of a Hurewicz fibration over a path connected base have the 

same homotopy type. 

[Note: This need not be true if "Hurewicz" is replaced by "Serre" (cf. p. 4-8). It can 

also fail if "path connected" is weakened to "connected". Indeed, for a connected B whose 

path components are singletons, every p : X ---j. B is a Hurewicz fibration.] 

A Hurewicz fibration p : X -+ B is said to be regular if the morphism 

inverse r in TOP/B. 

-r 
X ~ Wp 

~ ~ has a left 

B 

FA CT The Hurewicz fibration p : X -+ B is regular iff there exists a lifting function Ao : W, -+ P X 

with the property that Ao(z, 'T) E j(X) whenever'T E j(B). 

[Given a left inverse r for " consider the lifting function Ao : W, -+ PX defined by Ao(z,'T)(t) = 

r(x, 'Tt), where 'Tt(T) = 'T(tT).] 

Y X 

FACT The Hurewicz fibration p: X -+ B is regular iff every commutative diagram iol l' 
IY ---+ B 

11. 
admits a filler H: IY -+ X such that His stationa.ry with h, i.e., hII{yo} constant => HII{yo} constant. 

[Note: The local-global principle is valid in the regular situa.tion (work with a suitable subspace of 

W to factor in the stationary condition).] 
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A sufficient condition for the regularity of the Hurewicz fibration P : X - B is that j(B) be a 

zero set in PB. Thus let ¢ E C(PB, [0,1]) : j(B) = ¢-1(0). Define tJ! E C(PB,PB) by tJ!(r)(t) = 

{ 
r(t/¢(r» t < ¢(r» 

r(l) (¢(r) :5 t :5 1) 
. Take any lifting function A and put Ao(z, r)(t) = A(z, (I(r»(¢(r)t) to get 

a lifting function Ao : Wp - PX with the property that Ao(z, r) E j(X) whenever r E j(B). Example: 

j(B) is a zero set in PB if 1l.B is a zero set in B x B, e.g., if the inclusion 1l.B - B x B is a closed 

cofibration, a. condition satisfied by .. CW complex or a. metrizable topological manifold (d. p. 3-14). 

EXAMPLE Let B = [0,1]/[0, l[-then the Hurewicz fibration Po : PB - B is not regular. 

FACT Suppose that P : X - B is a regular Hurewicz fibration-then V Zo E X, P : (X, zo) -

(B,bo) is a pointed Hurewicz fibration (bo = p(zo». 

Let X be in TOP / B-then the projection P : X - B is said to have the slicing structure property 

if there exists an open covering" = {OJ: i E I} of B and continuous functions Bj : OJ x XO j - XOj 

(i E I) such that Bj(p(Z), z) = z and po Bj(b, z) = b. Note that p is necessarily open. Example: X locally 

trivial => p : X - B has the slicing structure property (but not conversely). 

Observation: Suppose that p : X - B has the slicing structure property-then V i, POi : XOi - OJ 

is a regular Hurewicz fibration. 

[Consider the lifting function Ai defined by Ai(Z, r)(t) = Bi(r(t), z).] 

So, if p : X - B has the slicing structure property, then p : X - B must be a Serre fibration and is 

even a. regular Hurewicz fibration provided that B is a paracompact Hausdorff space. 

FACT Let X be in TOP/B, where B is uniformly locally contractible. Assume: The projection 

p : X - B is a regular Hurewicz fibration-then p has the slicing structure property. 

Application: Suppose that B is a uniformly locally contractible paracompact Hausdorff space. Let 

X be in TOP / B-then the projection p : X - B is a regular Hurewicz fibration iff p has the slicing 

structure property. 

[Note: It therefore follows that if B is a CW complex or a metrizable topological manifold, then the 

Hurewicz fibrations with base B are precisely the p : X _ B which have the slicing structure property.] 

FACT Let p : X - B be a Serre fibration, where X and Bare CW complexes-then p is a CG 

fibration. 

[An open subset of a CW complex is homeomorphic to a retract of a CW complex (cf. p. 5-12).] 

[Note: If X x B is compactly generated, then p is a Hurewicz fibration.] 

Cofibrations are embeddings (cf. p. 3-3). By analogy, one might expect that surjective 

Hurewicz fibrations are quotient maps. However, this is not true in general. Example: 
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Take X = Q (discrete topology), B = Q (usual topology), p = idQ-then p: X -io B is a 

surjective Hurewicz fibration but not a quotient map. 

PROPOSITION 10 Let p: X -io B be a Hurewicz fibration. Assume: p is surjective 

and B is locally path connected-then p is a quotient map. 
A 

PX ~ Wp 
[Consider the commutative diagram P11 lq . Since ). and PI have right 

X ~ B 
P 

inverses, they are quotient, so p is quotient iff q is quotient. Take a nonempty subset 

o C B : Wo is open in Wp. Fix b E 0, x E Xb, and choose a neighborhood Ob of 

b: ({x} x POb) n Wp CWo. The path component 0 0 of Ob containing b is open. Given 

bo E 00, 3 T E POb connecting b and boo But (X,T) E Wo => bo = q(X,T) EO=> 0 0 cO. 
Therefore 0 is open in B, hence q is quotient.] 

Application: Every connected locally path connected nonempty space B is the quo

tient of a contractible space. 

[Fix bo E B and consider the mapping space 8B of (B, bo) with projection T -io T(l).] 

Let p : X -io B be a Hurewicz fibration-then for any path component A of X, peA) 

is a path component of B and A -io peA) is a Hurewicz fibration. Therefore p(X) is a 

union of path components of B. So, if B is path connected and X is nonempty, then p is 

surjective. 

FACT Let p : X - B be a Hurewicz fibration. Assume: B is path connected and Xb is path 

connected for some b E B-then X is path connected. 

[Note: The fibers of a Hurewicz fibration p : X - B need not be path connected but if X is path 

connected, then any two path components of a given fiber have the same homotopy type.] 

FACT Suppose that B is path connected-then B is locally path connected iff every Hurewicz 

fibration p : X - B is open. 

PROPOSITION 11 Let p : X -io B be a Hurewicz fibration. Suppose that the 

inclusion 0 -io B is a closed cofibration-then the inclusion Xo -io X is a closed cofibration. 

[Fix a Strf'im structure (<p,If?) on (B,O). Let H : IX -io X be a filler for the com-

X idx
l X 

mutative diagramiol lp, where h = If? 0 Ip. Define a Str¢m structure (,p, 'lI') on 

IX ~ B 
h . 

v (X,Xo) by,p = <pop, 'lI'(x,t) = H(x,min{t,,p(x)}).] 



4-16 

Application: Let p : X -+ B be a Hurewicz fibration. Let A be a subspace of X and 

suppose that the inclusion A -+ X is a closed cofibration. View A as an object in TOP / B 

with projection PA = pIA-then the inclusion W'A -+ W, is a closed cofibration. 

EXAMPLE Let (X,zo) be a pointed space. Assume: The inclusion {zo} - X is a closed 

cofibration-then Proposition 11 implies that the inclusion j : OX - ex is a closed cofibration. Call 

(J the continuous function rox - ex that sends [(7',t] to (7'" where (7',(T) = (7'(tT). The arrow i : 
i ox ---+ rox 

{
Ox_rOX 

is a closed cofibration and (Joi = j. Consider the commutative diagram II 
(7' - [(7',1] 

OX ---+ ex 
j 

Because rox and ex are contractible, it follows from §3, Proposition 14 that the arrow (idox , (J) is a 

homotopy equivalence in TOP( -). 

LEMMA Let <fJ E C(Y, [0, 1]) : A = <fJ-1(0) is a strong deformation retract of 

Y. Suppose that P : X -+ B is a Hurewicz fibration-then every commutative dia-

A 

gram i1 
Y ---+ 

I 

X 

l' has a filler F : Y -+ X. 
B 

[Fix a retraction r : Y -+ A and a homotopy ~ : IY -+ Y between i 0 r and idy reI A. 

Define a homotopy h . IY -+ Y by hey t) = {~(y, t / <fJ(y » (t < <fJ(y» Since P is a 
. '~(y,l) (t ~ <fJ(y»' 

Hurewicz fibration, there exists a homotopy H : IY -+ X such that 9 0 r = H 0 io and 

po H = f 0 h. Take for F : Y -+ X the continuous function y -+ H(y, <fJ(y».] 

[Note: The hypotheses on A are realized when the inclusion i : A -+ Y is both a 

homotopy equivalence and a closed cofibration (cf. §3, Proposition 5).] 

FACT Let i : A - Y be a continuous function with a closed image-then i is both a homotopy 
A ---+ X 

equivalence and a closed cofibration iff every commutative diagram i1 1p , where P is a Hurewicz 

Y ---+ B 
fibration, has a filler Y - X. 

[First take X = PB, P = Po to see that i is a closed cofibration. Next, identify A with i(A) and 

A~A A...!.......PY 

produce a retraction r : Y - A from a filler for i 1 1 Finally, consider i 1 1" , 
Y ---+ * 

where p(y) = (y, r(y)) (II as on p. 4-10).] 

Y ---+ YxY 
p 
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FACT Let p : X -+ B be a continuous function-then p is a Hurewicz fibration iff every commuta

A ~ X 

tive diagram i1 1p , where i is both a homotopy equivalence and a closed cofibration, has a filler 

Y ~ B 
Y-+X. 

Xo ~ Xl ~ 

FACT Let 1 1 be a commutative ladder of topological spaces. Assume: 

YO~YI~ 

V n, the horizontal arrows are Hurewicz fibrations and the vertical arrows cPn : Xn -+ Yn {
Xn - X n+l 

Yn - Yn +l 
are homotopy equivalences-then the induced map cP : lim X n -+ lim Yn is a homotopy equivalence. 

[The mapping cylinder is a functor TOP( -+) -+ TOP, so there is an arrow ?rn : M</>n+1 -+ M</>n' 

Xo Xo 

D,e 13, Propoo';on 17 to ~ns'ruct a co=utative 'dangle i 1 / . The I=ma then p,ovid .. 

M</>o 

Xl 
id 
~ Xl 

a filler rl M</>l -+ Xl for .1 1 ,hence, by induction, a filler rn+l M</>n+l -+ Xn+l 

~ Xo 

id 
~ X n +l 

rooll'O 

1 . Give the composite Yn L M</>n ~Xn a name, say tPn, and take limits to get 

M</>n+l ---t Xn 
rnoll'n 

a left homotopy inverse tP for cP.] 

PROPOSITION 12 Let A be a closed subspace of Y and assume that the inclusion 

A -+- Y is a cofibration. Suppose that p : X -+- B is a Hurewicz fibration-then every 

ioYUIA ~ X 
commutative diagram 1 1p has a filler H : IY -+- X. 

IY ~ B 
h 

[Quote the lemma: ioY U IA is a strong deformation retract of IY (cf. p. 3-6) and 

ioY U IA is a zero set in IY.] 

Application: Let p : X -+- B be a Hurewicz fibration, where B is a LCH space. 

Suppose that the inclusion 0 -+- B is a closed cofibration-then the arrow of restriction 

secB(X) -+- seco(Xo) is a Hurewicz fibration. 
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EXAMPLE (Vertical Homotopies) Let p : X - B be a Hurewicz fibration. Suppose that a', 
." E sees (X) are homotopic-then .', ." are vertically homotopic. 

[Take any homotopy H : I B - X between .' and .". Define G : I B - X by G(b, t) = 

{ 
H(b, 2t) (0 < t < 1/2) 

- - . Since p 0 G(b, t) = po G(b, 1- t), it follows that po G is homotopic 
a" 0 po H(b, 2 - 2t) (1/2 ~ t ~ 1) 

relB X {O, 1} to the projection B x [0,1] - B.] 

LEMMA Let A be a closed subspace of Y and assume that the inclusion A -+ Y is 

a cofibration. Suppose that P : X -+ B is a Hurewicz fibration. Let F : io Y U I A -+ X 

be a continuous function such that 'r/ a E A : P 0 F( a, t) = P 0 F( a, 0) (0 ~ t ~ 1 )-then 

there exists a continuous function H : IY -+ X which extends F such that 'r/ y E Y : 

po H(y, t) = po H(y, 0) (0 ~ t ~ 1). 
[Choose ¢ E C(Y, [0, 1]) : A = ¢-I(O) and fix,a retraction r : IY -+ ioY U IA. Put 

1= poFor. Define G E C(IY,PB) as follows: G(y,t)(T) = (i) I(y, (t¢(y) -T(2-

¢(y»)/¢(y» (0 < T ~ t¢(Y)/2 & ¢(y) i:- 0); (ii) I(y, t) (0 ~ T < t¢(y)/2 & ¢(y) = 0); 
(iii) I(y, t¢(y) - T) (t¢(y)/2 ~ T < t¢(y»; (iv) l(y,O) (t¢(y) < T < 1). Take a. lifting 

function A : W, -+ PX and set H(y, t) = A(F 0 r(y, t), G(y, t»(t¢(y».] 

LIFTING PRINCIPLE Let p : X -+ B be a. Hurewicz fibration. Let A be a subspace 

of X and suppose that the inclusion A -+ X is a closed cofibration. View A as an 

object in TOP/B with projection PA = piA and assume that PA : A -+ B is a. Hurewicz 

fibration. Let AA : WPA -+ PA be a lifting function-then there exists a lifting function 

Ax: W, -+ PX such that AxlW'A = AA. 

[The inclusion W'A -+ W, is a closed cofibration (cf. p. 4-16). Therefore the inclusion 

io W, U IW'A -+ IW, is a closed cofibration (cf. p. 3-6 or §3, Proposition 7). Fix a lifting 

function A : W, -+ P X. Define a continuous function F : ioIW, U I( io Wp U IW'A) -+ X 

by F«x,r),t,T) = (i) A(x,r)(t) (T = 0 & (x,r) E Wp)j (ii) x (t = 0 & (x,r) E Wp); 

(iii) AA(a, r)(t) (0 ~ t ~ T & (a, r) E WpA ); (iv) A(AA(a, r)(T), r * T)(t - T) (T ~ t ~ 1 

{ 
r( t + T) (t ~ 1 - T) 

& (a, r) E WpA )· Here, r * T(t) = r(l) (t ~ 1 _ T)' Apply the lemma to get a 

continuous function H : PWp -+ X which extends F such that 'r/ «x,r),t) E IWp : po 

H«x,r),t,T) = poH«x,r),t,O). Put Ax(x,r)(t) = H«x,r),t, I)-then Ax: Wp -+ PX 

is a lifting function that restricts to AA.] 

PROPOSITION 13 Let X be in TOP/B. Suppose that X = Al U A2 , where 

{1~ are closed and the inclusions Ao = Al n A2 -+ {1~ are cofibrations. Assume: 

{ PI _ PAl: AAI -+ BB & po = PAo : Ao -+ B are Hurewicz fibrations-then P : X -+ B is 
P2 - PAll' 2-+ 
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a Hurewicz fibration. 

[Choose a lifting function Ao : Wpo -t P Ao. Use the lifting principle to secure 

l·f . f . {AI: WP1 -t PAl h h { AIIWpo = Ao D fi l·ft· f t· I tmg unctIons A. W. PA suc t at A IW. _ A· e ne a ling unc Ion 
2· P2 -t 2 2 Po - 0 

A w. ' PXb A( ) {Al(x,r) ((x,r)EWpJ d· P ·t· 8] 
: p -t Y X, r = A ( ) (( ) W.) an cite roposl Ion . 

2 x, r x, r E P2 

FACT (Mayer-Vietoris Condition) Suppose that B = BI U B2, where {BI are closed and the 
B2 

inclusions Bo = BI n B2 -+ {BI are cofibrations. Let {Xl - BI be Hurewicz fibrations. Assume: 
B2 X2 - B2 

have the same fiber homotopy type--then there eXists a Hurewlcz fibration X - B such that 
{

XIIBO . . . 

X21 Bo ' 

{
Xl &. XIBI 

X2 &. XIB2 

have the same fiber homotopy type. 

Po qo 
--+ Bo +-- Yo Xo 

FACT Let 1 1 1 be a commutative diagram in which the vertical arrows 

X --+ B +--Y 
P q 

are inclusions and closed cofibrations. Assume that the projections {:o are Hurewicz fibrations-then 

the induced map Xo X Bo Yo - X X B Y is a closed cofibration. 

[The inclusion p-I(Bo) - X is a closed cofibration (cf. Proposition 11). Since Xo is contained in 

p-I(Bo) and since the inclusion Xo - X is a closed cofibration, the inclusion Xo - p-I(Bo) is a closed 

cofibration (d. §3, Proposition 9). Proposition 13 then implies that the arrow iOp-I(Bo) U IXo - Bo IS 

a Hurewicz fibration. Consequently (d. Proposition 12), the commutative diagram 

1 1 
Bo 

has a filler r : Ip-I(Bo) - iOp-I(Bo) U IXo. Therefore the inclusion Xo XBo Yo - p-I(Bo) XB Yo is a 

closed cofibration. On the other hand, the projection X XB Y - Y is a Hurewicz fibration (cr. Proposition 

4) and the inclusion Yo - Y is a closed cofibration, so the inclusion p-l (Bo) XB Yo - X XB Y is a closed 

cofibration (cf. Proposition 11).] 

Application: Consider the 2-sink X.!. B:l- Y" where p : X - B is a Hurewicz fibration. Assume: 

The inclusions D.x - X x X, D.B - B x B, D.y - Y X Yare closed cofibrations-then the diagonal 

,- embedding X xB Y - (X XB Y) X (X XB Y) is a closed cofibration. 
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Let X ~ B /!.... Y be a 2-sink-then the fiber join X * B Y is the double mappingcylin

der of the 2-source X L X X B Y ~ Y. The fiber homotopy type of X * B Y depends only 

on the fiber homotopy types of X and Y. There is a projection X *B Y ---+ B and the 

fiber over b is Xb * Yb. Examples: (1) The fiber join of X ~ B +- B x {O} is rBX, the 

fiber cone of X; (2) The fiber join of X ~ B +- B x {0,1} is EBX, the fiber suspension 

of Xi (3) The fiber join of B x Tl ---+ B +- B X T2 is B X (Tl * T2); (4) The fiber join of 

{bo} ---+ B l-x is the mapping cone Cbo of the inclusion Xb o ---+ X. 

Let X be in TOP I B-then rBx can be identified with the mapping cylinder Mp and EBX can be 

identified with the double mapping cylinder Mp,p' 

{
P'X---+B 

LEMMA Let f E CB(X, Y). Suppose that q ; Y ---+ Bare Hurewicz fibrations-

then the projection 1(' : M f ---+ B is a Hurewicz fibration. 

[Fix lifting functions { ~: ; ~: =: ;: . Define a lifting function A : W7I' ---+ P Mf as 

follows: Given ((x,t),r) E IX XB PB, put 

{ 

(Ax(x, r)(T), (t - 1/2)(1 + T) + (1 - T)/2) 
A((x,t),r)(T) = (Ax(x,r)(T),t -T/2) 

Ay(f(Ax(x, r)(2t», r2t)(T - 2t) 

(1/2 -::; t -::; 1) 
(0 -::; t -::; 1/2 & T -::; 2t) 
(0 -::; t -::; 1/2 & T? 2t), 

where r2t(T) = r(min{2t + T, 1}), and given (y, r) E Y XB P B, put A(y, r) = Ay(y, r).] 

{
P'X---+B 

PROPOSITION 14 Suppose that q ; Y ---+ B 

projection X * B Y ---+ B is a Hurewicz fibration. 

XxBY ---+ 

[Consider the pushout square 1 

are Hurewicz fibrations-then the 

Mfl 
1 (cf. p. 3-23). Here, 

X*BY 

the arrows X XB Y ---+ {~; ---+ X *B Yare closed cofibrations and the projections 

X XB Y ---+ B, {~; ---+ Bare Hurewicz fibrations. That the projection X *B Y ---+ B is 

a Hurewicz fibration is therefore a consequence of Proposition 13.] 

Application: Let P : X ---+ B be a Hurewicz fibration-then the projections { ~:~ :.~ 
are Hurewicz fibrations. 

Let X.!. B.!.. Y be a 2-sink, where p is a Hurewicz fibration. There is a commutative diagram 
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X B ~ Y 

II II 1 'Y and -y is a homotopy equivalence, thus the induced map X x BY - X X B Wq 

X t-- X XB Y --+ Y 

is a homotopy equivalence (cf. p. 4-25). Consideration of II 1 II then leads 

X t-- X xB W'l --+ Y 

to a homotopy equivalence X *B Y - X *B Wq (cf. p. 3-24). Example: V 60 E B, X *B eB and 0,'0 

have the same homotopy type. 

XXBY Y 

Assume in addition ,that q is a closed oofibration and define P by the pushout square e1 1 
X --+P 

-then Proposition 11 implies that e is a closed cofibration. Therefore the arrow X *B Y - P of §3, 

Proposition 18 is a homotopy equivalence. Example: V bo E B such that the inclusion {bo} - B is a 

closed cofibration, eB *B eB and eB/OB have the same homotopy type. 

PROPOSITION 15 Suppose that {~~ -; :: are Hurewicz fibrations. Let ¢ E 

CB(X, Y). Assume that ¢ is a homotopy equivalence-then ¢ is a homotopy equivalence 

in TOP/B. 

[This is the analog of §3, Proposition 13. It is a special case of Proposition 16 below.] 

Application: Let p : X -+ B be a homotopy equivalence-then Wp is fiberwise con

tractible. 

[Write p = q 0, : p and, are homotopy equivalences, thus so is q.] 

[Note: Similar reasoning leads to another proof of Proposition 9.] 

EXAMPLE Let p : X - B be a Hurewicz fibration. View P X as an object in TOP /Wp with 

projection A : P X - Wp-then P X is fiberwise contractible. 

FACT Let p : X - B be a continuous function-then p is both a homotopy equivalence and a 
A --+ X 

Hurewicz fibration iff every commutative diagram i 1 1 p, where i is a closed cofibration, has a 

Y --+ B 
filler Y - X. 

[To discuss the necessity, use Proposition 12, noting that X is fiberwise contractible, hence 3 8 E 

secB(X) : 80 P ::::ddx.J 
B 
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X, ---+ X 

Application: Let pi 1 1p be a pullback square. Suppose that p is a Hurewicz fibration and 

B' ---+ B 
a homotopy equivalence--then pi is a Hurewicz fibration and a homotopy equivalence. 

FACT Let i : A -+ Y be a continuous function-then i is a closed cofibration iff every commutative 
A ---+ X 

diagram i1 1p, where p is both a homotopy equivalence and a Hurewicz fibration, has a filler 

Y ---+ B 
Y-+X. 

A ---+ PX 

[To establish the sufficiency, first consider i 1 1 Po to see that i is a cofibration. Taking i 

Y ---+ X 
to be an inclusion, put X = IA u YX]O, 1]-then the restriction to X of the Hurewicz fibration IY -+ Y 

is a Hurewicz fibration (cf. p. 4-12), call it p. Since p is also a homotopy equivalence, the commutative 

A ---+ X 

diagram i1 1p has a filler f : Y -+ X (a -+ (a, 0) (a E A», therefore A is a zero set in Y, thus 

Y Y 
is closed.] 

FACT Let X.!. B.!- Y be a 2-sink, where p : X -+ B is a Hurewicz fibration. Denote by W. the 

mapping track of the projection X * BY -+ B-then X * B Wq and W. have the same fiber homotopy type. 

LEMMA Suppose that e E CB(X, E) is a fiberwise Hurewicz fibration. Let f E 

C(X,X): eo f = e & f ~idx-then 3 9 E C(X,X): eo 9 = e & fog ~idx. 
B E 

[Let H : IX --+ X be a fiber homotopy with H 0 io = f and H 0 i1 = idx; let 

G : IX --+ X be a fiber homotopy with Go io = idx and eo G = eo H. Define F : IX --+ X 
_ { f 0 G(x, 1 - 2t) (0 ~ t ~ 1/2) 

by F(x, t) - H(x,2t _ 1) (1/2 ~ t ~ 1) and put 

_ {e 0 G(x, 1 - 2t(1 - T)) 
k((x, t), T) - eo H(x, 1 - 2(1 - t)(1 - T)) 

(0 ~ t ~ 1/2) 
(1/2 ~ t ~ 1) 

to get a fiber homotopy k : 12 X --+ E with eo F = k 0 io. Choose a fiber homotopy 

K : 12 X --+ X such that F = K 0 io and eo K = k. Write K(t,T) : X --+ X for the function 

x --+ K((x, t), T). Obviously, K(o,o) ~ K(O,l) ~ K(1,I) ~ K(1,o) , all fiber homotopies being 

over E. Set 9 = Go iI-then fog = F 0 io = K(o,o);; K(l,O) = Foil = idx.] 

[Note: Take B = *, E = B, e = p, so p : X --+ B is a Hurewicz fibration-then the 

lemma asserts that V f E CB(X,X), with f ~ idx, 3 9 E CB(X,X) : fog ~idx.] 
B 
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PROPOSITION 16 Suppose that {e E CB(X, E) are fiberwise Hurewicz fibrations. 
TJ E CB(Y,E) 

Let 4> E C(X, Y) : TJ 0 4> = e. Assume that 4> is a homotopy equivalence in TOP / B-then 

4> is a homotopy equivalence in TOP/E. 

[Since e is a fiberwise Hurewicz fibration, there exists a fiber homotopy inverse .p : 
Y -+ X for 4> with e 0 t/J = TJ, thus, from the lemma, 3 .p' E C(Y, Y) : TJ 0 t/J' = TJ & 
4> 0 t/J 0 t/J' !:: idy • This says that 4>' = .p 0 .p' is a homotopy right inverse for 4> over E. 

E 
Repeat the argument with 4> replaced by 4>' to conclude that 4>' has a homotopy right 

inverse 4>" over E, hence that 4>' is a homotopy equivalence in TOP / E or still, that 4> is 

a homotopy equivalence in TOP / E.] 
[Note: To recover Proposition 15, take B = *, E = B, e = p, and TJ = q.] 

X 

PROPOSITION 17 Suppose given a commutative diagram tP1 
Y 

~ B 

1'" in which 
---+ A 

II 

{~ are Hurewicz fibrations and {: are homotopy equivalences-then (4), t/J) is a homo

topy equivalence in TOP( -+ ). 

[This is the analog of §3, Proposition 14.] 

Let X -4 Z /!- Y be a 2-sink-then the double mapping track W"g of j, 9 is defined by 

W',g ---+ PZ 

the pullback square 1 ,,01,,1 . The homotopy type of W"g depends only on 
XxY ---+ ZxZ 

,xg 

the homotopy classes of j and 9 and W"g is homeomorphic to Wg". There are Hurewicz 

W"g ~ Y 
fibrations {P: W"g -+ X . The diagram P 1 19 is homotopy commutative and 

q : W"g -+ Y X ---+ Z , 
Y W~ 

if the diagram e 1 
X ---+ , 

19 is homotopy commutative, then there exists a 4> : W -+ W',g 
Z 

such that {e = p 0 4> • 
TJ=qo4> 

W',g 

[N ote: The commutative diagram 1 
W, 

---+ Y 

19 is a pullback square (f = q 0 8).] 
---+ Z 

II 
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FACT Let xL z t-Y be a 2-sink-then the assignment (z, y, 1'") - 1'"(1/2) defines a Hurewicz 

fibration W'tg - Z. 

{ 
W,+ = {(z, 1'") : fez) = 1'"(0),1'" E C([O, 1/2]' Z)} .. { wt - Z { Wi 

[Let . The projectIOns , 
W,,- = {(v, 1'") : g(y) = 1'"(1),1'" E C([1/2, 1], Z)} (z, 1'") - 1'"(1/2) (y,1'") 

-Z 
- 1'"(1/2) 

are Hurewicz fibrations and the commutative diagram 1 
W+ , 

p 

Every 2-sink X ~ z !- Y determines a pullback square e 1 
X 

W-
9 

1 
Z 

---+ 
/ 

is a pullback square.] 

Y 

19 

Z 

and there is an 

arrow ~ : P -+ W /,g characterized by the conditions { ~ ~ : ~ & P ~ W ttg -+ P Z = 

{
jo!oe 

II 
jogoTJ 

PROPOSITION 18 If! is a Hurewicz fibration, then ~ : P -+ W/,g is a homotopy 

equivalence in TOP/Y. 

[Use Proposition 9 and the fact that the pullback of a fiber homotopy equivalence is 

a fiber homotopy equivalence.] 

Application: Let p : X -+ B be a Hurewicz fibration. Suppose that {:~ E GCB', B) 

{
X' 

are homotopic-then X~ have the same homotopy type over B'. 

For example, under the assumption that p : X -+ B is a Hurewicz fibration, if iR' : 
B' -+ B is homotopic to the constant map B' -+ bo, then X' is fiber homotopy equivalent 

to B' x X60' 

FACT Suppose that p : X - B is a Hurewicz fibration. Let <P' B' - B be a homotopy 

equivalence-then the arrow X, - X is a homotopy equivalence. 

Denote by lid, LlIToP the comma category corresponding to the identity functor id on TOP X TOP 

and the diagonal functor Ll : TOP - TOP X TOP. So, an object in lid, LlITOP is a 2-sink xL Z /!- Y 

X ~ Z ~ Y 

and a morphism of 2-sinks is a commutative diagram 1 1 1 . The double mapping 

X' ----+ Z' +-- Y' 
" g' 
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track is a functor lid,AITOP - TOP. It has a left adjoint TOP - lid,AITOP, viz. the Junctor that 

. '0 '1 sends X to the 2-smk X -IX -X. 

X ~ z Y 

FACT Let 1 1 1 be a commutative diagram in which the vertical arrows are 

X, ---+ Zl f-- Y' 
I' gl 

homotopy equivalences-then the arrow Wl,g - WI',gl is a homotopy equivalence. 

Application: Suppose that 
{

P:X_B 

pi: X, _ B' {
9:Y-B 

are Hurewicz fibrations. Let 
g' : Y' - B' 

be con-

X 

tinuous functions. Assume that the diagram 1 1 1 commutes and that the vertical 

X' ---+ B' f-- yl 
pI g' 

arrows are homotopy equivalences-then the induced map X X B Y - X, X B' Y' is a homotopy equivalence. 

EXAMPLE 

fibrations and { : 

equivalence. 

X 

Suppose given a commutative diagram </;> 1 
Y ---+ 

q 

B 

1.p in which {: are Hurewicz 

A 

are homotopy equivalences-then Vb E E, the induced map Xb - Y.p(b) is a homotopy 

[Note: Let / : X - Y be a homotopy equivalence, fix :1:0 E X and put Yo = /(:1:0), form the com-

ex X +-- {:l:o} 

mutative diagram 1 1 1 , and conclude that the arrow OX - OY is a homotopy 

ey ---+ Y +-- {yo} 
equivalence.] 

P1 

Given a 2-sink X 1:. B :L Y, let X []a Y be the double mapping cylinder of the 2-source X - Wp,q -

Y. It is an object in TOP / B with projection {:I: - p(:I:) , «:1:, y, T), t) _ T(t). 
Y - q(y) 

FACT There is a homotopy equivalence X []a Y.!.. Wp *B Wq. 

{ 
4>(:1:) = 1'(:1:) 

[Define 4> by & 4>«:1:, y, T), t) = «:1:, Tt), (y, Tt), t), where n(T) = T(tT) and Tt(T) = 
4>(y) = 'Y(y) . 

T(tT + 1 - T).] 

[Note: More is true if p : X - B is a Hurewicz fibration: X []a Y and X *B Y have the same 

homotopy type. Indeed, Wp * B Wq has the same fiber homotopy type as X * B Wq which in turn has the 

same homotopy type as X *B Y (cf. p. 4-20 ff.).] 

Application: V bo E B, EOB and eB *B eB have the same homotopy type. 



4-26 

[Note: The suspension is taken in TOP, not TOP •. ] 

Given I E CB(X, Y), let W be the subspace of X x PY consisting of the pairs 

(x,7") : I(x) = 7"(0) and p(x) q(7"(t)) (0 S t S I)-then W is in TOP/Y with projec

tion (x, 7") -+ 7"(1) and is fiberwise contractible if 1 is a fiber homotopy equivalence (cf. 

Proposition 16). 

[Note: W is an object in TOP/B with projection (x, 7") -+ p(x). Viewed as an object 

in TOPIY, its projection (x,7") -+ 7"(1) is therefore a morphism in TOPIR and as such, 

is a fiberwise Hurewicz fibration.] 

LEMMA 1 admits a right fiber homotopy inverse iff secy(W) =f. 0. 

PROPOSITION 19 Let I E CB(X, Y). Suppose that there exists a numerable cov

ering 0 = {Oi : i E I} of B such that V i, 10. : Xo. -+ Yo, is a fiber homotopy 

equivalence-then 1 is a fiber homotopy equivalence. 

[It need only be shown that secy(W) =f. 0. For then, by the lemma, I has a right fiber 

homotopy inverse 9 and, repeating the argument, 9 has a right fiber homotopy inverse h, 

which means that 9 is a fiber homotopy equivalence, thus so is 1. This said, work with 

10. E Co. (Xo" Yo.) and, as above, form Woo C Xo. X PYo •. Obviously, WIYo. = Wo •. 
The assumption that 10. is a fiber homotopy equivalence implies that Woo is fiberwise 

contractible, hence has the SEP. But {Yo. : i E I} is a numerable covering of Y. Therefore, 

on the basis of the section extension theorem, W has the SEP. In particular: secy(W) =f. 0.] 

Application: Let X be in TOP/B. Suppose that there exists a numerable covering 

o = {OJ : i E I} of B such that V i, Xo, is fiberwise contractible-then X is fiberwise 

contractible. 

PROPOSITION 20 Let { ~ ; : =:; be Hurewicz fibrations, where B is numerably 

contractible. Suppose that IE CB(X, Y) has the property that /b : Xb -+ Yb is a homotopy 

equivalence at one point b in each path component of B-then 1 : X -+ Y is a fiber 

homotopy equivalence. 

[Fix a numerable covering 0 = {Oi : i E I} of B for which the inclusions 0. -+ B are 

inessential, say homotopic to OJ -+ bi, where lb. : Xb. -+ Yb. is a homotopy equivalence

then V i, 10. : Xo. -+ Yo. is a fiber homotopy equivalence (cf. 'p. 4-24), so Proposition 

19 is applicable.] 

EXAMPLE Take B = {O} U {lin: n = 1,2, ... }, T = B U {n : n = 1,2, ... }, and put X = 

B X T. Observe that B is not numerably contractible. Let k = 1,2, ... ,00, I = 0,1,2, ... , and define 
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f E CB(X, X) as follows: (i) f(l/k, I) = (11k, I) (I < k), (11k, 11k) (I = k #; 1), (11k, 1- 1) (I > k)j (ii) 

f(l/k, III) = (11k, III) (0 < I < k), (11k, 1/(1+1» (I ~ k)-then f is bijective and V bE B, fb : Xb - Xb 

is a homeomorphism (Xb = {b} x T). Nevertheless, f is not a fiber homotopy equivalence. For if it were, 

then f would have to be a homeomorphism, an impossibility (I-I is not continuous at (0,0». 

{
X . 

EXAMPLE (Delooping Homotopy Equivalences) Suppose that yare path connected and nu-

merably contractible. Let f : X - Y be a continuous function. Fix zo E X and put Yo = f(zo)-then 

f : X - Y is a homotopy equivalence iff Of: ox - OY is a homotopy equivalence. In fact, the necessity 

is true without any restriction on X or Y (cf. p. 4-25). Turning to the sufficiency, write f = q 0 8, 

where q : W f - Y. Since 8 is a homotopy equivalence, one need only deal with q. Form the pullback 

X Xy 8Y ---+8Y 

1 1 { 
8X - X x y 8Y 

PI. The map is a morphism in TOP I X which, when 
X ----+ Y u - (u(I), f 0 u) 

square 

f 
restricted to the fibers over zo, is Of, thus is a fiber homotopy equivalence (cf. Proposition 20). In 

Wf IPY 

particular: X Xy 8Y is contractible. Consider now the commutative triangle ~ A The 

Y 

fiber of PI over Yo is contractiblej on the other hand, the fiber of q over Yo is homeomorphic to X x y 8Y 

(parameter reversal). The arrow Wf - PY is therefore a homotopy equivalence (cf. Proposition 20). But 

Pl is a homotopy equivalence, hence so is·q. 

EXAMPLE (H Groups) In any H group (= cogroup object in HTOP.), the operations of 

left and right translation are homotopy equivalences (so all path components have the same homo

topy type). Conversely, let (X, zo) be a nondegenerate homotopy associative H space with the property 

that the operations of left and right translation are homotopy equivalences. Assume: X is numerably 

contractible--then X admits a homotopy inverse, thus is an H group. To see this, consider the shearing 

{
XxX - XxX 

map sh : . Agreeing to view X x X as an object in TOP I X via the first pro-
(z,y) - (z,zy) 

jection, Proposition 20 implies that sh is a homotopy equivalence over X. Therefore sh is a homotopy 

equivalence or still, sh is a pointed homotopy equivalence, (X x X,(zo,zo» being nondegenerate (cf. p. 

3-35). Consequently, X is an H group. 

[Note: If (X, zo) is a homotopy associative H space and if 7ro(X) is a group, then the operations of 

left and right translation are homotopy equivalences.] 

Example: Let K be a compact ANR. Denote by HE(K) the subspace of C(K, K) (compact open 

topology) consisting of the homotopy equivalences-then H E(K) is open in C(K, K), hence is an ANR (cf. 

§6, Proposition 6). In particular: (H E(K), idK ) is well pointed (cf. p. 6-14) and numerably contractible 
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(cf. p. 3-13). Because HE(K) is a topological semigroup with unit under composition and 1ro(HE(K» 

is a group, it follows that H E(K) is an H group. 

EXAMPLE (Small Skeletons) In algebraic topology, it is often necessary to determine whether 

a given category has a small skeleton. For instance, if B is a connected, locally path connected, locally 

simply connected space, then the full subcategory of TOP / B whose objects are the covering projections 

X -+ B has a small skeleton. Here is a less apparent example. Fix a non empty topological space F. Given 

a numerably contractible topological space B, let FIBB,F be the category whose objects are the Hurewicz 

fibrations X -+ B such that Vb E B, Xb has the homotopy type of F, and whose morphisms X -+ Yare 

the fiber homotopy classes [I] : X -+ Y. The functor FIBB,F -+ FIBB',F determined by a homotopy 

equivalence ~, : B' -+ B induces a bijection Ob FIB B ,F -+ Ob FIB B' ,F, hence FIB B ,F has a small 

skeleton iff this is the case of FIB B' ,F. 

Claim: Consider a 2-source B1 !! Bo !l B2, where Bo I {B1 are numerably contractible. Suppose 
B2 

that FIB Bo F, 1, have small skeletons-then FIB M.I. .I. F has a small skeleton. { 
FIBB F 

, FIB "'1,"'2 ' 

B2,F {tP - r 0 i 
[Observing that the double mapping cylinder M<P1 '<P2 is numerably contractible, write 1 - 1 .1, 

tP2 = r2 012 

where {r1 are homotopy equivalences and {~1 are closed cofibrations (cf. §3, Proposition 16). There is 
r2 12 

Mil 

a commutative diagram r11 II 

i2 
--+ Mi2 

1 r2 and the arrow Mil ,i2 -+ M<P1 ,<P2 is a homotopy 

B1 ~ Bo --+ B2 
<PI <P2 

equivalence (cf. p. 3-24). Thus one can assume that {tP1 are closed cofibrations. But then if B is defined 

<P2 tP2 
Bo --+ B2 

by the pushout square <pIll, the arrow M<P1 ,<P2 -+ B is a homotopy equivalence (cf. §3, Propo-

B1 ~ B 

. . . {B1 C B. { Xl = XIB1 
sltion 18). So, With Bo = B1 nB21 ,take an X 10 FIBB,F and put Xo = XIBo, 

B2 C B X 2 = XIB2 

"I "2 Xl ~ Xo --+ 

to get a commutative diagram 1 1 
X2 

1 in which {,pI are closed cofibrations (cf. 
B2 ,p2 B1 ~ Bo --+ 

<PI <P2 

Proposition 11). In the skeletons of FIBBo,F, {FIBB1'F ,choose objects Yo, {Y1 and fiber homotopy 
FIBB2,F Y2 

{ 
h : Y1 -+ Xl { PI 0 II = q1 . {91 : Xl -+ Y1 

equivalences fo : Yo -+ X o, : (obvious notation). Let be 
h : Y2 -+ X 2 P2 0 h = q2 g2 : X 2 -+ Y2 

fib h t · ~ { II S t { F1 = gl O,p1 0 fo { II 0 F1 ~ ,pI 0 fo w. {F1 = WI 0 h a er omo opy Inverse lOr . e : . rite , 
h F2 = g2 O,p2 0 fo h 0 F2 ~ ,p2 0 fo F2 = W2 0/2 
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where {W
1 

are Hurewicz fibrations and homotopy equivalences and {'1 are dosed cofibrations (cf. 
'112 12 

p. 4-12), say _ _. Here: _ is an object in with projec-{
It: Yo -+ Y 1 &:. '111 : Y1 -+ Y1 {Y1 {TOP/B1 

12 : Yo -+ Y 2 &:. '112: Y2 -+ Y2 Y2 TOP/B2 

{ 
q1 0 WI {It 0 '111 : Y1 -+ Xl 

tion a.nd _ is a fiber homotopy equivalence (cf. Proposition 15). Change 
q2 0 '112 h 0 '112 : Y 2 -+ X 2 

{
Ito WI { Bl { Gl { G1 011 = ""1 0/0 by a. homotopy over into a map such that . Form the pushout 
h 0 '112 B2 G2 G2 012 = ""2 0 /0 

'2 -
Yo -- Y2 

square 'Ill-then Y is in TOP/B and there is a fiber homotopy equivalence 1 : Y -+ X, 

Y 1 ----. Y 
i.e., this process picks up all the isomorphism classes in FIBB,F'] 

Example: Let B be a CW complex-then B is numerably contractible (cf. p. 3-13) and FIBB,F 

has a small skeleton. In fact, B = colim B(n), so by induction, FmB(n) ,F has a small skeleton V n. On 

the other hand, B and tel B have the same homotopy type (cf. p. 3-12) and tel B is a double mapping 

cylinder calculated on the B(n) (cf. p. 3-23). 

FACT Let X be in TOP / B. Suppose that U = {U; : i E I} is a numerable covering of X such 

that for every nonempty finite subset F C I, the restriction of p to n Ui is a Hurewicz fibration-then 
iEF 

p : X -+ B is a Hurewicz fibration. 

[Equip I with a well ordering < and use the Segal-Stasheff construction to produce a lifting function 

A: Wp -+ PX. Compare this result with Proposition 13 when I = {1,2}.] 

The property of being a Hurewicz fibration is not a fiber homotopy type invariant, i.e., 

if X and Yhave the same fiber homotopy type and if p: X -i- B is a Hurewicz fibration, 

then q : Y -i- B need not be a Hurewicz fibration. Example: Take X = [0,1] x [0,1], 

Y = ([0,1] x {O}) U ({O} x [0,1]), B = [0,1], and let p, q be the vertical projections-then 

X and Yare fiberwise contractible and p : X -i- B is a Hurewicz fibration but q : Y -i- B is 

not a Hurewicz fibration. This difficulty can be circumvented by introducing still another 

notion of "fibration". 

Let X be in TOP/B. Let Y be in TOP-then the projection p : X -i- B is said to 

have the HLP w.r.t. Y up to homotopy if given continuous functions { [:: [y : ~ such 

that po F = h 0 io, there is a continuous function H : IY -i- X such that F ~ H 0 io and 
B 

poH = h. 

[Note: To interpret the condition F~H 0 io, view Y as an object in TOP/B with 
B 

projection po F.] 

LEMMA The projection p: X -i- B has the HLP w.r.t. Y up to homotopy iff given 

--_ ............. _-
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t · f t' { F : Y -+ X h h F h . (0 < t < 1/2) h . con muous unc Ions h : IY -+ B suc t at p 0 = 0 tt _ _ , t ere IS a 

continuous function H : IY -+ X such that F = H 0 io and p 0 H = h. 

Let X be in TOP / B-then p : X -+ B is said to be a Dold fibration if it has the 

HLP w.r.t. Y up to homotopy for every Y in TOP. Obviously, Hurewicz => Dold, but 

Dold =fo Serre and Serre =fo Dold. The pullback of a Dold fibration is a Dold fibration and 

the local-global principle remains valid. 

PROPOSITION 21 Let X, Y be in TOP / B and suppose that q : Y -+ B is a Dold 

fibration. Assume: 3 {~ ! g:f;,J] : go f ;;idx-then p: X -+ B is a Dold fibration. 

[Fix a topological space E and continuous functions { : ~ :E --:",XB such that p 0 ~ = 

"p 0 i o. Since q 0 f = p, 3 G : IE -+ Y with f 0 ~ '::!. G 0 io and q 0 G ="p. Put 
B 

'Ill = goG : ~ '::!. 9 0 f 0 ~ '::!. 'Ill 0 io & pow = p 0 goG = q 0 G = "p.] 
B B 

The property of being a Dold fibration is therefore a fiber homotopy type invariant. 

Example: Take X = ([0,1] x {O}) U ({O} x [0,1]), B = [0,1]' and let p be the vertical 

projection-then p : X -+ B is a Dold fibration but not a Hurewicz fibration (nor is p an 

open map (cf. p. 4-15)). 

EXAMPLE Define 1 : [-1,1] --+ [-1,1] by 1(:1:) = 21:1:1- 1. Put X = 1[-1,1]/ ..... , where (:1:,0) ..... 

(1(:1:),1), and let p : X --+ Sl be the projection-then p is an open map and a Dold fibration but not a 

Hurewicz fibration. 

FACT Suppose tha.t B is numerably contractible, so B admits a numerable covering {O} for which 

each inclusion 0 --+ B is inessential. Let X be in TOP / B-then the projection p : X --+ B is a. Dold 

fibration iff V 0 there exists a topological space To and a. fiber homotopy equivalence Xo --+ 0 X To over 

O. 

The homotopy theory of Hurewicz fibrations carries over to Dold fibrations. The 

proofs are only slightly more complicated. Specifically: Propositions 15, 17, 18, and 20 are 

true if "H urewicz" is replaced by "Dold". 

PROPOSITION 22 Let X be in TOP / B-then X is fiberwise contractible iff p : 

X -+ B is a Dold fibration and a homotopy equivalence. 

[The necessity is a consequence of Proposition 21 and the sufficiency is a consequence 

of Proposition 15.] 
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PROPOSITION 23 Let X be in TOP / B-then p : X -l> B is a Dold fibration iff 

r : X -l> Wp is a fiber homotopy equivalence. 

[Bearing in mind that q : Wp -l> B is a Hurewicz fibration, the reasoning is the same 

as that used in the proof of Proposition 22.] 

Application: The fibers of a Dold fibration over a path connected base have the same 

homotopy type. 

[Note: Take X = ([0,1] x {O, I}) U ({O} x [0,1]), B = [0,1], and let p be the vertical 

projection-then p : X -l> B is not a Dold fibration.] 

{
P:X-B 

EXAMPLE Let be Hurewicz fibrations-then the projection X DB Y -
q:Y-B 

B is a 

Dold fibration, hence X * B Y and X DB Y have the same fiber homotopy type. 

EXAMPLE Let X be a topological space. Fix a numerable covering U = {U. : i E I} of X -then, 

in the notation of p. 3-25, the projection Pu : BU - X is a Dold fibration (for BU, as an object in 

TOP/X, is fiberwise contractible). 

Notation: Given bo E B, put Bo = B - {bo} and for X,Y in TOP/B, write Xo,Yo in place of 

Xbo' Ybo' 

FACT (Expansion Principle) Let X be in TOP/B. Suppose that PBo : XBo - Bo is a Dold 

fibration and bo has a halo 0 C B contractible to bo, with 0 - {bo} numerably contractible. Assume: 

r : Xo - Xo is a homotopy equivalence which V b E 0 induces a homotopy equivalence rb : Xb - Xo

then there exists a Y in TO P / B and an embedding X - Y over B such that q : Y - B is a Dold fibration 

and {X is a strong deformation retract of {Y . 
Xo Yo 

X~ ~ Xo 

[The commutative diagram 1 1 (X~ = 0 X Xo) is a pullback square. Since 0 - bo is a 

o ---+ bo 
homotopy equivalence, X~ - Xo is a homotopy equivalence (cf. p. 4-24), thus the arrow r' : Xo - X~ 

defined by ;c - (p(;c) , r(;c)) is a homotopy equivalence. Let Y be the double mapping cylinder of the 
I 

2-source X <- Xo::'" X~ : Y is in TOP/Band there is an embedding X - Y over B. It is a closed 

cofibration. Yo is the mapping cylinder of r', so Xo is a strong deformation retract of Yo (d. §3, 

Proposition 17). Therefore X is a strong deformation retract of Y (d. §3, Proposition 3). Similar remarks 

apply to Xo and Yo. Finally, to see that q is a Dold fibration, note that {O, Bo} is a numerable covering 

of B. Accordingly, taking into account the local-global principle, it is enough to verify that qo : Yo - 0 

and qBo : YBo - Bo are Dold fibrations. Consider, e.g., the latter. The hypotheses on r, in conjunction 
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with Proposition 20, imply that the embedding XBo - YBo is a fiber homotopy equivalence. But PBo is 

a Dold fibration, hence the same holds for qBo'] 

Let f : X -+ Y be a pointed continuous function-then the mapping fiber E I of f is 

EI ~ WI 

defined by the pullback square 1 lq ,i.e., EI is the double mapping track of 
{xo} ~ Y 

I 

the 2-sink X Ly +- {Yo}. Example: The mapping fiber Eo of 0: X -+ Y is X x ny. 

EXAMPLE Let f : X -+ Y be a pointed continuous function. Assume: f is a Hurewicz fibration. 

Denote by CyO the mapping cone of the inclusion XyO - X-then the mapping fiber of CyO - Y has the 

same homotopy type as XyO * OY (cf. p. 4-20 ff.). 

FACT Let X.!. B:!- Y be a 2-sink. Denote by Wo the mapping track of the projection XOB Y -

B-then WI' *B Wq and Wo have the same fiber homotopy type. 

Application: The mapping fiber of the projection X DB Y - B has the same homotopy type as 

Ep * Eq. 

Let f : X -+ Y be a pointed continuous function-then WI and E I are pointed spaces, 

the base point in either case being (xo,j(yo)). The pointed homotopy type of WI or EI 

depends only on the pointed homotopy class of f. The projection q : WI -+ Y is a pointed 

Hurewicz fibration and the restriction 1r of the projection p: WI -+ X to EI is a pointed 

Hurewicz fibration with 1r-1 (xo) = ny. By construction, f 0 1r is nullhomotopic and for 

any 9 : Z -+ X with fog nullhomotopic, there is a </J : Z -+ E I such that 9 = 1r 0 </J. 

When is a pointed continuous function which is a Hurewicz fibration actually a pointed Hurewicz 

fibration? Regularity, suitably localized, is what is relevant. Thus let P : X _ B be a Hurewicz fibration 

taking :Co to boo Assume: 3 a lifting function A such that A{:co,j(bo)) = j{:co)-then p is a pointed 

Hurewicz fibration. 

[Note: For this, it is sufficient that {bo} be a zero set in B, any Hurewicz fibration p : X -+ B 

automatically becoming a pointed Hurewicz fibration V :Co E Xbo (argue as on p. 4-14). The condition is 

satisfied if the inclusion {bo} - B is a closed cofibration.] 

LEMMA Let X, Y, Z be pointed spaces; let be pointed continuous functions-then {
f: X - Z 

g:Y-Z 

the projections { W"g - X & W"g _ X x Y are pointed Hurewicz fibrations, the base point of W"g 
W"g _y 

being the triple (:co,yo,i(zo)). 
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[To deal with p : WI"~ - X, define a lifting function A : Wp - PW", by A«z, 11. r), O')(t) = 
(O'(t), 11, rt), where 

{ 
/ OO'(t - 2T) (0 S T S t/2) 

rt(T) = r(2:_-,') (t/2 S T S 1) . 

Obviously, A«zo, 110 ,j(zo»,j(zo» = j(zo, 1I0,i(zo», so P : W',9 - X is a pointed. Hurewicz fibration.] 

X' -+ X 

. PROPOSITION 24 Consider the pullback square ! 
B' -+ 

!p, wherepis a Hurewicz 
B 

4>' 

fibration. Suppose that {i & B' are wellpointed, that the inclusions { y~: ~ =: ~ & 

{b~} --+ B' are closed, and that p( xo) = bo = 4>' (b~). Put x~ = (b~, Xo )-then the inclusion 

{x~} --+ X' is a closed cofibration. 

[The arrow Xbo --+ X is a closed cofibration (cf. Proposition 11). Therefore the 

composite X~~ --+ X' --+ X is a closed cofibration. On the other h~d, the composite 

{x~} --+ X~/ --+ X' --+ X is a closed cofibration. Therefore the inclusion {x~} --+ X~, is a 
o 0 

closed cofibration (cf. §3, Proposition 9). But the arrow X~/ --+ X' is a closed cofibration 
o 

(cf. Proposition 11), thus the inclusion {x~} --+ X' is a closed cofibration.l 

Application: Let / : X --+ Y be a pointed continuous function. Assume: {~ are 

wellpointed with closed base points-then Wf and Ef are wellpointed with closed base 

points. 

[PY is wellpointed with a closed base point (cf. §3, Proposition 6).] 

FACT Let / : X - Y be a pointed continuous function. Suppose that ~ : X' - X (tP : Y - y/) 

is a pointed homotopy equivalenc~then the arrow E,ot/> - E, (E, - E""o,) is a pointed homotopy 

equivalence. 

Application: Let X be wellpointed with {zo} e X closed-then the mapping fiber of the diagonal 

embedding X - X X X has the same pointed homotopy type as OX. 

{
PX-XXX 

[The embedding j : X - P X is a pointed homotopy equivalence and IT : 
0' - (0'(0),0'(1» 

pointed Hurewicz fibration.] 

EXAMPLE Let {X be wellpointed with {{zo} e X closed. 
Y {Yo}eY 

isa 

(1) The mapping fiber of the inclusion X V Y - X X Y has the same pointed. homotopy type 

as OX.OY. 
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(2) The mapping fiber of the projection X V Y --+ Y has the same pointed homotopy type as 

X x OY/{zo} x ~y, 

[In both situations, replace e by ro as on p. 4-16.] 

FACT Let {I : X --+ Y be pointed continuous functions-then there is a homotopy equivalence 
g:Y--+Z 

Ego! --+ W, where W is the double ma.pping track of the 2-sink X Ly ~Eg. 
Ego! ---+ Eg ---+ ... 

(Consider the diagram ! ! ! ,] 
X ---+ Y ---+ Z 

Let f : X -+ Y be a pointed continuous function, E f its mapping fiber. 

LEMMA H f is a pointed Hurewicz fibration, then the embedding X'o -+ Ef is a 

pointed homotopy equivalence. 

In general, there is a pointed Hurewicz fibration 1(' : E f -+ X and an embedding 

ny -+ Ef. Iterate to get a pointed Hurewicz fibration 1(" : Ew -+ Ef-then the trian-

Ew~Ef 
gle r / commutes and by the lemma, the vertical arrow is a pointed homotopy 

ny 
equivalence. Iterate again to get a pointed Hurewicz fibration 1(''' : Er -+ Ew-then the 

Er ---+Ew 
triangle r / commutes and by the lemma, the vertical arrow is a pointed homotopy 

nx 
equivalence. Example: Given pointed spaces { ;. , let X~ Y be the mapping fiber of the 

inclusion f: X V Y -+ X x Y-then in HTOP ... , Ew R:: neX x Y) and EW1 R:: neX V Y). 

LEMMA Let be wellpointed with closed. Denote by S the subspace of X ... Y {
X {{zo} ex 

. Y {~}cY 

consisting of the { (:II,yO, t] -then X ... Y/S = E(X#Y) and the projection X ... Y --+ X ... Y/S is a pointed 
[:110, y, t] 

homotopy equivalence. 

[Note: The base point of X ... Y is [zo, Yo, 1/2] and E is the pointed suspension.] 

A I, . Le {X be 11 .... _..1 • h { {:IIo} eX pp lcatlon: t we polnloeU wlt 
Y {yo} c Y 

closed-then XlJ Y has the same pointed 

homotopy type as E(OX#OY). 

EXAMPLE Suppose that X and Yare nondegenerate--then the Puppe formula says that in 

HTOP., E(OX x OY) ~ EOX V EOY V E(OX#OY), and by the above, E(OX#OY) ~ XlJY. 
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EXAMPLE (The Flat Product) In contra.st to the smash product # (or its modification #), 

the flat product p does not possess the properties that one might expect to hold by analogy. Specifically, 

for nondegenerate spaces, it is generally false that in HTOP.: (1) (XPY)pZ =:I Xp(YpZ); (2) (X X 

y)pZ =:I (XpZ) x (ypZ); (3) O(Xpy), =:I OXPY. Counterexamples: (1) Take X = Y = POO(C), Z = 

POO(H); (2) Take X = Y = Z = POO(C); (3) Take X = Y = POO(C). Look, e.g., at (1). Using 

the fact that OPOO(C) =:I S1, OPOO(H) =:I S3, compute: POO(C)pPOO(C) =:I OPOO(C) * OPOO(C) =:I 

S1 * S1 =:I S3 & S3pPOO(H) =:I OS3 * S3 =:I E(OS3#S3) =:I EOS3#S3 =:I EOS3#E3S0 =:I E4 0S3#SO =:I 

E40S3 => (POO(C)pPOO(C»pPOO(H) =:I E40S3. Similarly, POO(C)p(POO(C)pPOO(H» =:I E 20S5. The 

singular homology functor Hs(-; Z) distinguishes these spaces: Hs(E4 0S3; Z) =:I Z, Hs(E2 0S5 j Z) = O. 

Let I : X -+ Y be a pointed continuous function-then the mapping fiber sequence 

associated with I is given by··· -+ n2y -+ OE, -+ nx -+ ny -+ E, -+ X J... Y. Example: 

When I = 0, this sequence becomes· .. -+ 02y -+ OX x 02y -+ nx -+ ny -+ X x ny -+ 
o 

X-+Y. 

X 

[Note: If the diagram 1 
~ Y 

1 commutes in HTOP. and if the vertical arrows 

X' --+ Y' 

" are pointed homotopy equivalences, then the mapping fiber sequences of I and I' are 

connected by a commutative ladder in HTOP., all of whose vertical arrows are pointed 

homotopy equivalences.] 

FACT Let f : X - Y be a pointed Hurewicz fibration. Assume: The inclusion X'D - X is 

nullhomotopic-then OY ha.s the same pointed homotopy type a.s X'D x OX. 

[For 'If' : Ef - X is nullhomotopic, thus in HTOP.: E ... =:I Ef X OX => OY =:I X'D X OX.] 

REPLICATION THEOREM Let I : X -+ Y be a pointed continuous function-then 

for any pointed space Z, there is an exact sequence 

... -+ [Z,nX] -+ [Z,OY] -+ [Z,E,] -+ [Z,X] -+ [Z,Y] 

in SET •. 

If I : X -+ Y is a pointed Dold fibration or if I : X -+ Y is a Dold fibration and Z is 

nondegenerate, then in the replication theorem one can replace E, by XYO (cf. p. 3-18). 

This replacement can also be made if I : X -+ Y is a Serre fibration provided that Z is 

a CW complex (d. infra). In particular, when I : X -+ Y is either a Dold fibration or a 

Serre fibration, there is an exact sequence 
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LEMMA Let!: X - Y be a pointed continuous function. Assume: ! is a Serre fibration-then 

for every pointed CW complex Z, the arrow [Z,XYO ] - [Z, EJ] is a pointed bijection. 

[Proposition 12 is true for Serre fibrations if the "cofibration data" is restricted to CW complexes.] 

Examples: Suppose that I : X -+ Y is either a Dold fibration or a Serre fibration, 

where {: ~: . (1) If XyO is simply connected, then V Xo E X yO ' 7I"l(X,XO) ~ 7I"l(Y, Yo); 

(2) If X is simply connected, then Vyo E I(X), there is a bijection 7I"l(Y,YO) -+ 7I"o(Xyo ); 

(3) If X is path connected and if Y is simply connected, then V Yo E Y, 7I"o(Xyo ) = *; (4) 

If Y is path connected and XYO is path connected, then X is path connected. 

LEMMA Let!: X - Y be a Hurewicz fibration. Fix Yo E !(X) & Zo E X lIO and let (Z, zo) be 

wellpointed with {zo} C Z closed-then there is a left action 1rl (X, zo) x [Z, Zo; X YO ' zo] - [Z, Zo; X YO ' :1:0]. 

[Represent 0: E 1rl (X, zo) by a loop IT E n(X, zo). Given ¢ : (Z, zo) - (XyO ' zo), consider the 

ioZ U I{zo} X 

1 1J ,where F(z, t) =.{ (i 0 ¢)(z) 

IZ ---+ Y IT(t) 

(t = 0) 
(i the inclusion 

(z = zo) 
commutative diagram 

h 
X lIO - X) and h(z, t) = (f 0 IT)(t). Proposition 12 says that this diagram has a filler H : IZ - X. Put 

tP{z) = H(z, 1) to get a pointed continuous function tP : (Z, zo) - (XYO' zo). Definition: 0: • [¢] = [tP].] 

[Note: There is a left action 1rl (X, zo) x [Z, Zo; X, zo] - [Z, zo; X, zo] and a left action 1rl (XyO ' zo) x 

[Z,zo;XyO'zo] - [Z,zo;XyO'zo] (cf. p. 3-18). The arrow [Z,ZOjXyO'zo] - [Z,ZOjX,zo] induced by the 

inclusion XYO - X is a morphism of 1rl (X, zo}-sets and the operation of 1rl (XyO ' zo) on [Z, Zo; X YO ' zo] 

coincides with that defined via the homomorphism 1rl (XlIO ' zo) - 1rl (X, zo).] 

EXAMPLE Let!: X - Y be a Hurewicz fibration. Fix Yo E !(X) & :1:0 E X lIO and n ~ I-then 

there is a left action 1rl(X,ZO) x 1rn(X,Zo) - 1rn(X,Zo), a left action 1rl(X,ZO) X 1rn(Y,yo) - 1rn(Y,yo), 

and a left action 1rl (X, zo) x 1rn(Xyo, zo) - 1rn(XyO' :1:0). All the homomorphisms in the exact sequence 

are 1rl (X, zo)-homomorphisms. 

[Note: Suppose that X lIO is path connected-then there is a left action 1rl (Y, YO) x 1r: (XlIO ' zo) -

1r:(XlIO ' zo), where 1r:(XyO ' :1:0) is 1rn(XlIO ' zo) modulo the (normal) subgroup generated by the 0:' e - e 
(0: E 1rl (XYO' zo), e E 1rn(Xyo ' zo».] 

EXAMPLE Let!: X - Y be a Hurewicz fibration. Fix Yo E !(X) & Zo E X lIO -then 1rl (Y, YO) 

operates to the left on 1ro(XlIo) and the orbits are the fibers of the arrow 1ro(XlIo) -1ro(X). 

FACT Let!: X - Y be a Hurewicz fibration. Fix yO E !(X) & Zo E XYO-then V n ~ 1, 

1rl(XyO'Zo) operates trivially on ker(1rn (XlIo 'zo) -1rn (X,zo». 
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{
f: X - Z 

EXAMPLE (Mayer-Vietoris Sequence) Let X, Y, Z be pointed spaces; let be point-
g:Y-Z 

ed continuous functions-then the projection WJ,g - X x Y is a pointed Hurewicz fibration (d. p. 4-32) 

and there is a long exact sequence··· - lr,,+l(Z) - lr,,(WJ,g) - lr,,(X) x lr,,(Y) - lr,,(Z) - ... 

-1r2(Z) - lrt(WJ,g) - 1r1(X) x lrt(Y) -1r1(Z) - lro(WJ,g) - lro(X x Y). 

[Note: It follows that if X and Y are path connected and if every 'Y E 11'1 (Z) has the form 'Y = 

f.(Ot)· g.({3) (Ot E lrl(X),{3 E 11'1 (Y», then WJ,g is path connected.] 

IT f : X -+ Y is either a Dold fibration or a Serre fibration, then the homotopy 

groups of X and Y are related to those of the fibers by a long exact sequence. As for the 

homology groups, there is still a connection but it is intricate and best expressed in terms 

of a spectral sequence. 

[Note: In the simplest case, viz. that of & projection Y x T -+ Y, the Kiinneth formula 

computes the homology of Y x T in terms of the homology of Y and the homology of T.] 

EXAMPLE Let f : X - Y be a Hurewicz fibration, where X is nonempty and Y is path 

connected. Fix 1/0 E Y-then V q ~ 1, the projection (X,X¥o) - (Y, YO) induces a bijection lrq(X,X¥o)

lrq (Y, yo). The analog of this in homology is false. Consider, e.g., the Hopf map 8 2,,+1 - P" (C) with fiber 

81 : Hq(8 2"H,81 ) = 0 (2 < q $ 2n) '" H2q(P"(C» ~ Z (1 < q $ n). However, a partial result holds 

in that if X¥O is n-connected and Y is m-connected, then the arrow Hq(X,X¥o) - Hq(Y,1/o) induced by 

the projection (X,X¥o) - (Y,1/o) is bijective for I $ q < n + m + 2 and surjective for q = n + m + 2. 

Consequently, under these conditions, there is an exact sequence 

H,,+mH(X¥o) - H,,+mH(X) - H,,+mH(Y) - H,,+m(X¥o) -'" 

- H2(Y) - HI (X¥o) - HI (X) - H1(Y)' 

[One can assume that the inclusion {yo} - Y is a closed cofibration (pass to a CW resolution 

K - Y), hence that the inclusion X¥o - X is a closed cofibration (cf. Proposition 11). The mapping 

cone of the latter is path connected and the mapping fiber of C¥o - Y has the same homotopy type as 

X¥o * OY (d. p. 4--32), which is (n + m + I)-connected (d. p. 3-40). Thus the arrow C¥o - Y is an 

(n + m + 2)-equivalence, so the Whitehead theorem implies that the induced map Hq(C¥o) - Hq(Y) is 

bijective for 0 $ q < n + m + 2 and surjective for q = n + m + 2. But the projection C¥o - XI X¥O is a 

homotopy equivalence (d. p. 3-24) and Hq(X,X¥o) ~ H,(XIX¥o'*) (d. p.3-8).] 

Application: Suppose that X is (n + l)-connected-then Hq(X) ~ H,_I(OX) (2 $ q $ 2n + 2). 

[Note: It is a corollary that if X is nondegenerate and n-connected, then the arrow of adjunction 

e : X - 'lEX induces an isomorphism H,(X) - H,('lEX) for 0 $ q $ 2n + 1. Therefore, by the 

Whitehead theorem, the suspension homomorphism 1r,(X) - 11',+1 (EX) is bijective for 0 $ q $ 2n and 

surjective for q = 2n + 1 (Freudenthal).] 
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Let X be a topological space, sinX its singular set-then sinX can be regarded 

as a category: (0; E Mor ([m], [nJ)). The objects of [(sinX)OP, AB] 

are called coefficient systems on X. Given a coefficient system 9, the singular homology 

H.(Xj 9) of X with coefficients in 9 is by definition the homology of the chain complex 

0"0 Esino X 

n 

where a = 2:) _1)i ED 9dj. 
o .00nEsinnX 

[Note: To interpret 9di, recall that there are arrows di : sinn X -t sinn-l X cor-

responding to the face operators 6i : [n - 1] -t [n] (0 ~ i ~ n). So, VuE sinn X, 
9dj: 9(~n~x) -t 9(~n-l ~ X).] 

Example: Fix an abelian group G and define 9a by { g~~ 0' G ida -then H. (X; 9a) 

H.(X; G), the singular homology of X with coefficients in G. 

A coefficient system 9 is said to be locally constant provided that V 0;, 9~0' is in

vertible. LCCSx is the full subcategory of [(sinX)OP, AB] whose objects are the locally 

constant coefficient systems on X. 

[Note: A coefficient system 9 is said to be constant if for some abelian group G, 9 is 

isomorphic to 9a.] 

Suppose that X is locally path connected and locally simply connected-then the category of locally 

constant coefficient systems on X is equivalent to the category of locally constant sheaves of abelian groups 

onX. 

PROPOSITION 25 LCCSX is equivalent to [(IIX)OP, AB]. 

[We shall define a functor 9 -t 9n from LCCSx to [(IIX)OP ,AB] and a functor 

9 -t 9sin from [(IIX)OP, AB] to LCCSx such that { ~g:~)~ : g . 
Definition of 9n: Given x E X, put 9nx = 9ux, where Ux E sino X with ux(~O) = x. 

Given a morphism [u] : x -t y, put 9n[u] = (9dI) 0 (9do)-I, where u E sini X with 

{ d
dlU = x. In other words, 9n[u] is the composite 9y -t 9u -t 9x. Note that 9n[u] is 

oU = y 

{ 
u' {d u' - x - d u" 

welldefined. Indeed, if "E sini X with d I
, - - d l 

" and [u'] = [u"], then there 
u OU = Y = OU . . 

exists aTE sin2 X such that {dd l T u:, and sodou' = dOT = sodou". 
2T = u 
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Definition of Qsin: Given u E sinn X, put QsinU = Q(enU(~O)), where en : sinn X ~ 

sino X is the arrow associated with the vertex operator En : [0] ~ [n] that sends 0 to n. 
~m ~a ) ~n 

Given a morphism ~ ~ ,put Qsin~a = Q(u 0 ~8), where fJ : [1] ~ [n] is 
X 

d fi d b {
fJ(O) = a( m) 

e ne y fJ(l)=n 
enu(LiO).] 

: u 0 ~8 is a path in X which begins at emT(~O) and ends at 

Because of this result, one can always pass back and forth between locally constant 

coefficient systems on X and cofunctors IIX ~ AB. The advantage of dealing with the 

latter is that in practice a direct description is sometimes available. For example, fix 

n ~ 2 and assign to each x E X the homotopy group 1I'"n(X,x)-then every morphism 

[u] : x ~ y determines an isomorphism 11'" n (X, y) ~ 11'" n (X, x) and there is a cofunctor 

1I'"nX: IIX ~ AB. 

[Note: Suppose that Q is in [(IIX)oP, AB]-then V Xo EX, the fundamental group 

1I'"1(X,XO) operates to the right on Qxo : Qxo x 1I'"1(X,XO) ~ Qxo. Conversely, if X is path 

connected and if Go is an abelian group on which 11'"1 (X, xo) operates to the right, then 

there exists a Q in [(IIX)OP, AB], unique up to isomorphism, with Qxo = Go and inducing 

the given operation of 11'"1 (X, x 0) on Go.J 

Application: On a simply connected space, every locally constant coefficient system 

is isomorphic to a constant coefficient system. 

EXAMPLE Let f : X - Y be a Hurewicz fibration-then V q ;::: 0, there is a cofundor 'Hq(l) : 

IIY - AB that assigns to each Y E Y the singular homology group Hq(Xy) of the fiber X y ' Thus let 

[1"] : Yo - YI be a morphism. Case 1: {YO rt f(X). In this situation, XyO & XY1 are empty, hence 
YI 

Hq(Xyo) = 0 = Hq(XYI)' Definition: 'Hq(f)[r] is the zero morphism. Case 2: {YO E f(X). Fix a 
YI 

{ 
f 0 A(:I:, t) = r(t) {XYO - X Y1 homotopy A : IXyO - X such that -then the arrow is a homotopy 
A(:I:,O) =:1: .:1: - A(:I:, 1) 

equivalence, Definition: 1tq(f)[r] is the inverse of the induced isomorphism Hq(Xyo) - Hq(Xy1 ) (it is 

independent of the choices). 

LEMMA Suppose that X is path connected. Given a locally constant coefficient 

system Q, fix Xo E X, put Go = Qxo, and let Ho be the subgroup of Go generated by the 

9 - g. a (g E Go,a E 1I'"1(X,xo))-then Ho(XjQ) ~ Go/Ho. 
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Let I : X -+ Y and /' : X' -+ Y' be a pair of continuous functions. Call 'Hom(/', I) 

the simplicial set specified by taking for 'Hom (I' , I)" the set of all {: ~ gi~:: :",';1 
~nxx' ~ X 

such that the diagram idX/1 11 commutes and define {d; in the obvious 
Si 

~n X Y' ~ Y 
v way. 

Now specialize, putting Y' = ~ 0 , so I' : X' -+ ~ 0 is the constant map, and write 

'Hom(X',f) in place of 'Hom(/', I). In succession, let X' = ~O,~l, ... to obtain a se

quence of simplicial sets and simplicial maps: 

Here, the arrows come from the face operators [0] ~ [1], [1] =t [2],···. This data generates 

a double chain complex K •• = {Kn,m : n ~ 0, m ~ O} of abelian groups if we write 

Kn•m = F&b('Hom(~n,f)m) and define {88[ : .KKn,m -+ KKn-1,m as follows. 
I [. n,m -+ n,m-l 

-+ -+ 
(8[)Thearrows'Hom(~n,f)m: 'Hom(~n-t,/)mleadtoarrowsKn,m: Kn-l,m' 

-+ -+ 
Take for 8[ their alternating sum multiplied by (_l)m. 

-+ -+ 
~..- (81I)Thearrows'Hom(~n,f)m: 'Hom(~n,f)m_lleadtoarrowsKn,m: Kn,m-l. 

-+ -+ 
Take for 8[[ their alternating sum. 

One can check that 8[ 0 8[ = 0 = 8[[ 0 8[[ and 8[ 0 8[[ + 8[[ 0 8[ = O. Form the total 

chain complex K. = {Kp} : Kp = E9 Kn,m, where 8 = 8[ + 81I-then there are first 
n+m=p 

quadrant spectral sequences 

{ 
[E;,q = [Hp(IIHq(K •• » => Hp+q(K.) 

IIE;,q = IIHp([Hq(K •• » => Hp+q(K.) . 

LEMMA E2 ~ {Hq(X) (p = 0) 
[p,q 0 (p > 0) . 

[From the definitions, sin X = 'Hom ( ~ 0 , f). On the other hand, each projection 

~ n -+ ~ 0 is a homotopy equivalence and induces an arrow sin X -+ 'Hom ( ~ n ,f). Since 
sin X ~ sinX 

there are n + 1 commutative diagrams 1 1, passing to 

homology per 8Il gives 

Hq(X) 
(p= 0) 

'Hom(~n,f) ~ 'Hom(~n-l,f) 

~ Hq(X) ~ 
(p =2) 

. .. .] 
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Thus the first spectral sequence IE collapses and H.(K.) ~ H.(X). To explicate the 

second spectral sequence uE, given T e sin" Y, let Xr be the fiber over T of the induced 

map sin" X ......., sin" Y, i.e., Xr = {IT : JOlT = T}. View Xr as a subspace of sin" X (compact 

open topology). Put 1lq(J)T = Hq(Xr) and V Q, let 1lq(J)f1Ot be the homomorphism on 

homology defined by the arrow X r ......., Xro~ .. -then 1lq(J) is in [(siny)OP,AB] or still, is 

a coefficient system on Y. 
[Note: V y e Y, 1lq(J)T, = Hq(X,), where T, e sino Y with T,(f10 ) = y.] 

LEMMA UE;,q ~ Hp(Y; 1lq(J)). 
[1 H q (K •• ) can be identified with the chain complex on which the homology of 1lq (I) 

is computed.] 

PROPOSITION 26 Suppose that J : X ......., Y is a Hurewicz fibration-then 1lq(J) is 

locally constant. 

[F' M ([ ] []) h d t' {C(f1",X)......., C(f1
m

,X) d 
IX Q e or m, n -t en Q e ermmes arrows C(f1", Y) ......., C(f1m, Y) an 

C(f1",X) ~ C(f1",Y) 

there is a commutative diagram 1 1 According to Proposition 

C(f1m,X) ~ C(f1m, Y) 
f. 

5, the horizontal arrows are Hurewicz fibrations. But the vertical arrows are homotopy 

equivalences, thus V T e C(f1", Y) the induced map Xr ......., Xro~" is a homotopy equiva

lence (cf. p. 4-25), so 1lq(J)f1Ot : Hq(Xr )......., Hq(Xro~") is an isomorphism.] 

[Note: Retaining the assumption that J : X ......., Y is a Hurewicz fibration, one may 

apply the procedure figuring in the proof of Proposition 25 to the locally constant coefficient 

system 1lq(J). The result is the cofunctor 1lq(J) : IIY ......., AB defined in the example on 

p. 4-39.] 

Proposition 26 is also true if J : X ......., Y is either a Dold fibration or a Serre fibration. 

Consider first the case when J is Dold-then Proposition 5 still holds and the validity of the relevant 

homotopy theory has already been mentioned (d. p.4-30). As for the case when J is Serre, note that the 

arrow c(~n, X) _ c(~n, Y) is a.gain Serre (as can be seen from the proof of Proposition 5). Therefore, 

thanks to the Whitehead theorem, the lemma. below suffices to complete the argument. 

X ~ B 

LEMMA Suppose given a commutative diagram "'1 1 '" in which {p are Serre fibrations 

Y --+ A q 
q 

and { : are weak homotopy equivalences-then V bE B, the induced map Xb - Y",(b) is a weak homotopy 
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equivalence. 

[If X6 is empty, then so is Y"(") and the assertion is trivial. Otherwise, let a = .p(b) and apply the 

five lemma to the commutative diagram 

--+ 1rq+l (B) --+ 1rq(X6) --+ 1rq(X) --+ 1rq(B) --+ ... 

1 1 1 1 
--+ 1rq+l (A) --+ 1rq(YtJ) --+ 1rq(Y) --+ 1rq(A) --+ ... 

with the usual cavea.t at the 1ro and 1rl level.] 

The coefficient system ?iq(!) is defined in termS of the integral singular homology of 

the fibers. Embelish the notation and denote it by ?iq(f; Z). One may then replace Z by 

any abelian group G : ?iq(fj G), a coefficient system which is locally constant if f : X -+ Y 
is either a Dold fibration or a Serre fibration. 

FIBRATION SPECTRAL SEQUENCE Let f : X -+ Y be either a Dold fibration or 

a Serre fibration-then for any abelian group G, there is a first quadrant spectral sequence 

E = {E;,q, dr} such that E;,q ~ Hp(Y; ?iq(fj G)) ~ Hp+q(Xj G) and V n, Hn(X; G) 
admits an increasing filtration 

X -L Y 
[Note: The fibration spectral sequence is natural, i.e., if the diagram 1 1 

x' --+ Y' 
I' 

commutes, then there is a morphism J.I. : E -+ E' of spectral sequences such that J.I.;,q 

coincides with the homomorphism Hp(Y; ?iq(f; G)) -+ Hp(Y'j ?iq(f'; G)) induced by the 

arrow ?iq(fj G) -+ ?iq(!,j G).] 

WANG HOMOLOGY SEQUENCE Take Y :; Sn+l (n ~ 1) and let f : X - Y be a Hurewicz 

fibration with path connected fibers X,-then there is an exact sequence 

EXAMPLE Suppose that n ~ I-then Hkn(osn+t) R:I Z (k = 0,1, ... ), while Hq(OSn+t) = 0 

otherwise. Moreover, the Pontryagin ring H.(OSn+t) is isomorphic to Z[t] , where t generates 

Hn(osn+l). 
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As formulated, the fibration spectral sequence applies to singular homology. There is also a companion 

result in singular cohomology (with additional multiplicative structure when the coefficient group G is a 

commutative ring). 

WANG COHOMOLOGY SEQUENCE Take Y = S .. +1 (n ~ 1) and let I : X - Y be a 

Hurewicz fibration with path connected fibers Xy-then there is an exact sequence 

[Note: In the graded ring H·(X,I ), 8(a· (3) = 8(a)· f3 + (_1)n1a1a . 8(f3).] 

EXAMPLE Suppose that n ~ I-then 8 : Hh(osn+l) - H(k-l)n(osn+1) (k ~ 1) is an 

isomorphism and Ho(osn+1) is the infinite cyclic group generated by, 1. Put ao = 1 and define ak (k ~ 1) 

inductively through the relation 8(ak) = ak-l' Case 1: n even. One has k!ak = a~, therefore H·(osn+l) 

is the divided polynomial algebra generated by al, a2. . . .. Case 2: n odd. One has a~ = 0, al a2k = 
a2k+lJala2k+l = 0, and a~ = k!a2k. thus al generates an exterior algebra isomorphic to H·(sn) and 

a2, a4, ... generate a divided polynomial algebra isomorphic to H·(os2n+l), so H·(osn+l) ~ H·(sn)® 

H·(os2n+l ). 

In what follows, we shall assume that X is nonempty and Y is path connected. 

[Note: H f is Dold, then the X, have the same homotopy type (cf. p. 4-31), while if 

f is Serre, then the X, have the same weak homotopy type (cf. Proposition 31).] 

(EDH) Let en : E~o ..... E;,o be the edge homomorphism on the horizontal 

axis. The arrow of augmentation Ho(X,; G) ..... G is independent of y, so there is a ho-

momorphismHp(Y;'Ho(fiG)) ..... Hp(Y;G). The composite Hp(XjG) ..... Hp,o/Hp-1,1 ~ 
E~o ~ E;,o ~ Hp(Yj 'Ho(fj G)) ..... Hp(Yj G) is the homomorphism on homology induced 
byf:X ..... Y. 

(EDv) Let ev : E~,q ..... Er:q be the edge homomorphism on the vertical axis. 

Fix y E Y-then there is an arrow Hq(X,;G) ..... Ho(Yj'Hq(fjG». The composite 

Hq(X,;G) ..... Ho(Y;'Hq(f;G» ~ E~,q~Er:q ..... Hq(X;G) is the homomorphism on 

homology induced by the inclusion X, ..... X. 

Keeping to the preceding hypotheses, f : X ..... Y is said to be G-orientable provided 

that the X, are path connected and 'V q, 'Hq(fj G) is constant, so 'V y the right action 

Hq(X,j G) x 1I"1(Y, y) ..... Hq(X,j G) is trivial. 

[Note: H f : X ..... Y is G-orientable, then by the universal coefficient theorem, 

E;,q ~ Hp(Yj Hq(X,j G» ~ Hp(Y) 0 Hq(X,;G) ffi Tor(Hp_t(Y),Hq(X,;G».] 
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EXAMPLE Let f : X -+ Y be G-orientable. Assume: H.(XlIoiG) = 0 (0 < i ~ n) and 

Hj(Y; Z) = 0 (0 < j ~ m)-then there is an exact sequence 

H .. +m+l(XlIOiG) -+ H .. +m+1(Xi G ) -+ H .. +m+l(Yi G ) -+ H .. +m(XlIo jG) -+ •.. 

-+ H2(Y;G) -+ Hl(XlIo ;G) -+ Hl(X;G) -+ Hl(Y;G). 

[For 2 ~ ,. < n + m + 2, combine the exact sequence 

o -+ E~ -+ E;,o .E:...Eo,r_l -+ E:f:r-l -+ 0 

with the exact sequence 

0-+ Eti:r -+ Hr(X;G) -+ E~ -+ 0, 

observing that Hr(Y;G) ~ E;.,o ~ E;,o and Hr-l(XlIo ;G) ~ E~,r_l ~ EO,r-l' the arrow Hr(Y;G) -+ 

Hr-l(XlIo jG) being the transgression.] 

[Note: The above assumptions are less stringent than those imposed earlier in the case G = Z (cf. 

p.4-37).] 

EXAMPLE Let f : X -+ Y be A-orientable, where A is a principal ideal domain-then the arrow 

H.(XjA) -+ H.(Y;A) is an isomorphism iff V q > 0, Hq(XlIo;A) = 0 and the arrow H.(XlIo jA) -+ 

H.(Xj A) is an isomorphism iff V q > 0, Hq(Y; A) = O. 

[Note: The formulation is necessarily asymmetric (take Y simply connected and consider 9Y -+ Y).] 

FACT Suppose that f : X -+ Y is z..orientable--then any two of the following conditions imply 

the third: (1) V p, Hp(Y) is finitely generatedj (2) V q, Hq(XlIo) is finitely generated; (3) V n, H .. (X) is 

finitely generated. 

FACT Suppose that f : X -+ Y is z..orientable--then any two of the following conditions imply 

the third: (1) V p > 0, Hp(Y) is finite; (2) V q > 0, Hq(XlIo) is finite; (3) V n > 0, H .. (X) is finite. 

Given pointed spaces { : ' the mapping fiber sequence associated with the inclusion 

f : X V Y -+ X x Y reads: ... -+ !l( X V Y) -+ !l(X x Y) -+ XPY -+ X V Y -+ X x Y. 

[Note: The homology of !l(X V Y) can be calculated in terms of the homology of!lX 

and flY (Aguade-Castellett ).] 

LEMMA The arrow F: !l(X x Y) -+ XPY is nullhomotopic. 

,,/ t Collect. Math. 29 (1978), 3-6; see also Dula.-Katz, Pacific J. Math. 88 (1980), 451-461. 
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{ 
flX = {O' : 0'([1/2,1]) = xo} .. {flX ~ flX 

[Put flY = {r : r([O, 1/2]) = Yo} -then the mclusIOns flY ~ flY are pointed 

homotopy equivalences, hence the same holds for their product: flX x flY ~ flX x flY = 

fl(X x V). Use two parameter reversals to see that the composite OX x flY ~ 8(XVY) ~ 

XI1Y is equal to the composite OX x flY ~ O(X x Y)~XI1Y, from which F ~ 0.] 

GANEA-NOMURA FORMULA Suppose that X and Y are nondegenerate-then in 

HTOP., fl(X V Y) ~ OX x OY x flECflX#flY). 

[The mapping fiber of 0 : fl(X x Y) ~ XI1Y is fl(X x Y) x fl(XI1Y) and by the lemma, 

EF ~ fl(X x Y) x fl(XI1Y). Employing the notation of p. 4-34, there is a commutative 

Err rr' ~XI1Y 
triangle i /F . The vertical arrow is a pointed homotopy equivalence, thus 

fl(X x Y) 
Err' ~ EF or still, fl(X V Y) ~ fl(X x Y) x fl(XI1Y) ~ flX x flY x flE(flX#flY) (cf. p. 

4-34).] 

Given pointed spaces {~ , the mapping fiber sequence associated with the projection 

f:XVY~Yreads: ··.~fl(XVY)~flY~E/~XVY~Y. 

LEMMA The arrow F : flY ~ E I is nullhomotopic. 

[Define 9 : Y ~ XVY by g(y) = (xo,Y), so fog = idy . Let Z be any pointed space

then in view of the replication theorem, there is an exact sequence [Z, fl(X V V)] ~ 

[Z, flY] ~ [Z, EI]' Since flf has a right inverse, the arrow [Z, fl(X V V)] ~ [Z, flY] is 

surjective. This means that the arrow [Z,flY] ~ [Z,EI] is the zero map, therefore F is 

nullhomotopic. ] 

GRAY-NOMURA FORMULA Suppose that X and Y are non degenerate-then in 

HTOP., fl(X V Y) ~ flY x fl(X x flY/{xo} x flY). 

[Argue as in the proof of the Ganea-Nomura formula (EI is determined on p. 4-34).] 

PROPOSITION 27 Let X, Y be pointed spaces-then EX x Y/{xo} x Y has the 

same pointed homotopy type as EX V (EX #Y). 

[EX x Y/{xo} x Y ~ EX#Y+ ~ EX#(So V Y) ~ X#E(SO V Y) ~ X#(SI V EY) ~ 

(X#Sl) V (X#EY) ~ EX V (EX#Y).] 

[Note: Recall that in HTOP., E(X#Y) ~ EX#Y ~ X#EY for arbitrary pointed 

....... / X and Y (cf. p. 3-33)~] 
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So, if X is the pointed suspension of a nondegenerate space, then the Gray-Nomura 

formula can be simplified: n(X V Y) ~ ny x n(X V (X #nY)). Consequently, for all 

nondegenerate X and Y, 
n~(X V Y) "" { n~x x n~(Y V (Y #n~X)) 

"" n~Y x n~(X V (X#n~Y)) . 

{
X {{:ro} c X 

Suppose that , Z are well pointed with , {%o} C Z closed. Let f : X -- Y be a 
Y {Yo} C Y 

pointed continuous function, CJ its pointed mapping cone. Let p : Z -- CJ be a pointed continuous 

function, Zo its fiber over the base point. Assume: p is a Hurewicz fibration-then p is a pointed Hurewicz 

P ---+ Z 

fibration. Form the pullback square 1 lp. Since j 0 f ~ 0, there is a commutative triangle 

Y --+ CJ 
j 

and an induced map e : X -- P. 

FACT The pointed mapping cone of the arrow Ce -- Z has the pointed homotopy type of X * Zo. 

EXAMPLE Let X be wellpointed with {:ro} C X closed. The pointed mapping cone of X -- * 
n~x ---+ a~x 

is ~X, the pointed suspension of X. Consider the pullback square 1 1 PI . Here, e : X --

* ---+ ~X 

n~x is the arrow of adjunction and the pointed mapping cone of C e -- a~x has the same pointed 

homotopy type as Ce -- *, thus in HTOP., ~Ce :::::: X * n~x. 

Given a pointed space X, the pointed mapping cone sequence associated with the 

arrow of adjunction e : X --+ n~x reads: X ~ n~x --+ Ce --+ ~X --+ ~n~x --+ •••• 

PROPOSITION 28 Let X be nondege~erate-then ~n~x has the same pointed 

homotopy type as ~X V ~(X#n~X). 

[Because the evaluation map r : ~n~x --+ ~X exhibits ~X as a retract of ~n~x, 

the replication theorem of §3 implies that the arrow F : Ce --+ ~X is nullhomotopic, hence 

CF ~ ~X V ~Ce. Reverting to the notation of p. 3-32, there is a commutative triangle 
./ 

Ce~Cj 
~ 1 in which the vertical arrow is a pointed homotopy equivalence. Accordingly, 

~X 
Cj' ~ CF => ~n~x ~ ~X V ~Ce ~ ~X V ~(X #n~X), the last step by the preceding 

"-,,. example.] 
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Assume: X and Y are nondegenerate. Put X[Ol = So, x[n] = X # ... #X (n factors). 

Starting from the formula OE(XVY) ~ OEX x OE(YV(Y #nEX)), successive application 
of Proposition 28 gives: 

N 

nE(X V Y) ~ nEX x OE(V y#x[n] V (Y#X[N]#OEX)). 
o 

FACT Let {~ be nondegenerate and path connected-then V q > 0, 1I'q(EX V EY) ~ 1I'q(EX) ED 

00 

1I'q(E(V y#x[n)). 
o 

[By the above, 1I'q(EX V EY) is isomorphic to 

N 

1I'q(EX) ED 1I'q(E(V Y#X[n j V (Y#X[N)#OEX»). 
o 

Since E(Y#X[N)#OEX) is (N + 2)-connected (cf. p. 3-40), it follows that V q $ N + 2: 1I'q(EX V EY) =::I 
N 

1I'q(EX) ED 1I'q(E(V y#x[nl». But E( V y#x[n]) is also (N + 2)-connected. Therefore, V q > 0 : 
o n>N 

00 

1I'q(EX V EY) =::I1I'q (EX) ED 1I'q(E(V y#x[n1».] 
o 

A continuous function 1 : X -+ Y is said to be an n-equivalence (n ~ 1) provided . {X that 1 induces a one-to-one correspondence between the path components of Y and 

V Xo E X, I. : 1rq(X,xo) -+ 1rq(Y,/(xo)) is bijective for 1 <q < n and surjective for q = n. 

Example: A pair (X, A) is n-connected iff the inclusion A -+ X is an n-equivalence. 

[Note: 1 is an n-equivalence iff the pair (M" i(X)) is n-connected.] 

p q { P is an n-equivalence 
FACT Let X - B +- Y be a 2-sink. Suppose that -then the projection 

q is an m-equivalence 
X DB Y - B is an (n + m + 1)-equivalence. 

[There is an arrow X DB y.t Wp *B Wq that commutes with the projections and is a homotopy 

equivalence (cf. p. 4-25), thus one can assume that {: are Hurewicz fibrations and work instead with 

X *B Y (the connectivity of the join is given on p. 3-40).] 

A continuous function 1 : X -+ Y is said to be a weak homotopy equivalence if 1 is 

an n-equivalence V n ~ 1. Example: Consider the coreflector k : TOP -+ CG-then for 

every topological space X, the identity map kX -+ X is a weak homotopy equivalence. 

[Note: When X and Y are path connected, 1 is a weak homotopy equivalence provided 

that at some Xo E X, I. : 1rq(X, xo) -+ 1rq(Y, I(xo)) is bijective V q > 1.] 
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~ y X 

Example: Let 1 
~ z 

1 1 be a commutative diagram in which the ver-
X' -+ Z' +-- y' 

I' g' 
tical arrows are weak homotopy equivalences-then the arrow WI" -. WI' ,,' is a weak 

homotopy equivalence. 

[Compare Mayer-Vietoris sequences (use an ad hoc argument to establish that 

1ro(WI,,) ~ 1ro(W/",' ».] 

{
XO CXl C·.· 

Example: Let yO C yl C ... be expanding sequences of topological spaces. As-

{
X" -. X,,+l 

sume: V n, the inclusions Y" -. y,,+l are closed cofibrations. Suppose given a sequence ' 

X" -+ X,,+l 

of continuous functions <1>" : X" -. Y" such that V n, the diagram t/I" 1 It/l"+l 
Y" -+ y,,+l 

commutes-then <1>00 : Xoo -. yoo is a weak homotopy equivalence if this is the case 

of the <1>". 
telXoo 

[Consider the commutative diagram telt/l! 

-+ XOO 

!t/lco (cf. p. 3-12). Since the 
tel yoo -+ yoo 

horizontal arrows are homotopy equivalences, it suffices to prove that tel <I> is a weak her-

motopyequivalence. To see this, recall that there are projections { :~:= : 1~::1 ' thus 

{
tel XOO . . {tel Xoo 

a compact subset of tel yoo must lie m tel: yoo (3 n > > 0). But V n, the arrow 

tel" XOO -. tel" yoo is a weak homotopy equivalence.] 

[Note: Here is a variant. Let {Xy: c Xy: c . .. be expanding sequences of topological 
C C· .. 

spaces. Assume: V n, {:= is T l . Suppose given a sequence of continuous functions 

X" -+ X,,+l 

<1>" : X" -. Y" such that V n, the diagram t/I"! ! t/I,.+l commutes-then <1>00 : 
Y" -+ y,,+l 

XOO -. yoo is a weak homotopy equivalence if this is the case of the <1>".] 

EXAMPLE Given pointed spaces X and Y, let Xt><3Y be the double mapping track of the 2-sink 

X - X V Y - Y. The projection Xt><3Y - X X Y is a pointed Hurewicz fibration. Its fiber over (zo, YO) 

is O(X V Y) and the composite O(XPY) - O(X V Y) - Xt><3Y defines a weak homotopy equivalence 

O(XPY) - Xt><3Y. 

Assume: X and Yare nondegenerate--then the argument used to establish that 
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N 

OE(X v Y) ~ OEX x OE(V y#x[n] v (Y#X[N]#OEX» 

does not explicitly produce a pointed homotopy ~uivalence between either side but such precision is 

{
'EX {EX_EXVEY 

possible. Let be the inclusions . . With Wo = I.EY, inductively define WJ. = 
'EY EY - EXv EY 

[wo, "EX]"'" wn = [Wn_1, 'EX], the bracket being the Whitehead product, so w1 : E(Y#X) - EX V 
N 

EY, ... , wn : E(y#x[n]) - EX V EY. Write O(I.EX) + O(V wn V [WN' 'EX 0 r]) for the composite 
N 0 

OEX x OE(V Y#X[n] V (Y#X[N]#OEX» _ OE(X V Y) x OE(X V y)..:t OE(X V Y). 

o N 

Then Spencert has shown that O('EX) + O(V Wn V [WN' 'EX 0 r]) is a pointed homotopy equivalence. 
o 

EXAMPLE Let {X be nondegenerate and path connected-then the map 
Y 00 00 

O('EX) + O(V Wn) : OEX x OE(V y#x(n]) - OE(X V Y) 

is a weak homotopy equivalence. 0 0 

Let L be the free Lie algebra over Z on two generators tl, tl' The basic commutators of weight one 

are tl and t2' Put e(tt} = 0, e(t2) = O. Proceeding inductively, suppose that the basic commutators of 

weight less than n have been defined and ordered as tlo'" ,tp and that a function e from {I, ... ,p} to the 

nonnegative integers has been defined: Vi, e( i) < i. Take for the basic commutators of weight n the [ta, tj], 

where weight ti+ weight ti = n and e(i) :5 j < i. Order these commutators in any way and label them 

tpH, ... , tp+t. Complete the construction by setting e([ti, ti]) = j. Let B be the set of basic commutators 

thus obtained-then B is an additive basis for L, the Han basis. 

EXAMPLE (Hilton-Milnor Formula.) Let {; be nondegenerate and path connected. Put 

{ 
Z(h) = X {Cl : EZ(tt} - EX V EY 

and let be the inclusions. For t E B of weight n > I, write 
Z(t2) = Y C2 : EZ(tl) - EX V EY 

uniquely t = [ti, til. where weight ti+ weight ti = n. Via recursion on the weight, put Z(t) = Z(ta)#Z(ti) 

and let C~ : EZ(t) - EX V EY be the Whitehead product [Ci,Ci], where . The { 
Ci : EZ(ti) - EX V EY 

Ci : EZ(tj) - EX V EY 
C~ combine to define a continuous function C = E OC~ from (w) n OEZ(t) (d. p. 1-36) to OE(X V Y). 

tEB tEB 
Claim: C is a weak homotopy equivalence. To see this, attach to each N = 1,2, ... , a ((remainder" 

map 

V Z(ti)' Applying the preceding example to OE(Z(tN) V 
i>N 

lI(i)<N 

N N 

V Z(ti», it follows that the 
i>N 

e(a)<N 

LOCi + O( V Ca): II OEZ(ti) x OE(RNH ) - OE(X V Y) 
i=1 i>N 

e(i)~N 
i:;;:1 

t J. London Math.. Soc. " (1971), 291-303. 
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is a weak homotopy equivalence. To finish, let N - 00 (justified, since the connectivity of RN+l tends to 

00 with N). 

[Note: The isomorphism C.: ED 11' .. (OEZ(t» - 11' .. (OE(X V Y» depends on the choice of the Hall 
tEB 

basis B. Consult Goerss t for an intrinsic description.] 

A non empty path connected topological space X is said to be homotopically trivial if 

X is n-connected for all n, i.e., provided that V q > 0, 1l"q(X) = O. Example: A contractible 

space is homotopically trivial. 

Example: Let X -L z /!- Y be a 2-sink. Assume: X & Z are homotopically trivial

then the arrow W", -+ Y is a. weak homotopy equivalence. 

EXAMPLE A homotopy equivalence is a weak homotopy equivalence but the converse is false. 

(1) (The Wedge of the Broom) Consider the subspace X of R2 consisting of the line seg

ments joining (0,1) to (0,0) & (l/n,O) (n = 1,2, ... )-then X is contractible, thus it and its base point 

(0,0) have the same homotopy type. But in the pointed homotopy category, (X, (0, 0» and ({(O, O)}, (0, 0» 

are not equivalent. Consider X V X, the subspace of R2 consisting of the line segments joining 

{ 
(0,1) to (0,0) & (lin, 0) 

(n = 1,2, ... )-then X V X is path connected and homotopic ally triv
(0, -1) to (0,0) & (-lin, 0) 

ial. However, X V X is not contractible, so the map that sends X V X to (0,0) is a weak homotopy 

equivalence but not a homotopy equivalence. 

(2) (The Warsaw Circle) Consider the subspace X of R2 consisting of the union of {(z, y) : 

{ 

z = 0, -2 5 y 5 1 

o 5 z 5 1, Y = -2 and {(z, y) : 0 < z 5 1, y = sin(211'/z)}-then X is path connected and homo-

z = 1, -25 y 50 
topically trivial. However, X is not contractible, so the map that sends X to (0,0) is a weak homotopy 

equivalence but not a homotopy equivalence. 

FACT Let p : X - B be a Hurewicz fibration, where X and B are path connected and X is 

nonempty. Suppose that [P] is both a monomorphism and an epimorphism in HTOP-then p is a weak 

homotopy equivalence. 

A continuous function f : (X,A) -+ (Y,B) is said to be a relative n-equivalence 

(n ~ 1) provided that the sequence * -+ 1l"o(X,A) -+ 1l"o(Y,B) is exact and V Xo E A, 
f.: 1l"q(X,A,xo) -+ 1l"q(Y,B,f(xo)) is bijective for 1::; q < n and surjective for q = n. 

PROPOSITION 29 Suppose that {i~ & {~ are open subspaces of {~ with 

t Quart. J. Math. 44 (1993), 43-85. 
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{
X =Xl UX2 • {Xl = l-ll(YI). 
Y = Y

l 
U Y

2 
Let I : X -+ Y be a continuous function such that X

2 
= 1- (Y

2
) 

Fix n 2: 1. Assume: I : (Xi , Xl n X 2) -+ (li, Yl n Y2 ) is a relative n-equivalence (i = 1, 2)

then I : (X, Xi) -+ (Y,}Ii) is a relative n-equivalence (i = 1,2). 

[This is the content of the result on p. 3-46.] 

A continuous function I : (X, A) -+ (Y, B) is said to be a relative weak homotopy 

equivalence if f is a relative n-equivalence V n 2: 1. Example: Let p : X -+ B be a 

Serre fibration, where B is path connected and X is nonempty-then V b E B, the arrow 

(X,Xb) -+ (B, b) is a relative weak homotopy equivalence. 

LEMMA Let I : (X, A) -+ (Y, B) be a continuous function. Assume: I : A -+ B 

and I : X -+ Y are weak homotopy equivalences-then I : (X, A) -+ (Y, B) is a relative 

weak homotopy equivalence. 

PROPOSITION 30 Suppose that {~~ & {~ are open subspaces of {;. with 

{
X =Xl UX2 ., {Xl = I-l(yl ) 
Y = Y

l 
U Y

2 
. Let I : X -+ Y be a contmuous functIOn such that X

2 
= 1-1 (1'2) . 

Assume: {~~ ~~ : ~ & I : Xl n X2 -+ Yl n 1'2 are weak homotopy equivalences-then 

I: X -+ Y is a weak homotopy equivalence. 

[The lemma implies that I : (Xi, Xl nX2 ) -+ (}Ii, Yl n 1'2) is a relative weak homotopy 

equivalence (i = 1,2). Therefore, on the basis of Proposition 29, I : (X, Xi) -+ (Y, li) is 

a relative weak homotopy equivalence (i = 1,2). Since a given x E X belongs to at least 

one of the Xi, this suffices (modulo low dimensional details).] 

X 

Application: Let 1 
I 

t--- Z 

1 
9 

---+ Y 

1 be a commutative diagram in which the 

X' t--- Z' ---+ Y' 
I' gl 

vertical arrows 'are weak homotopy equivalences-then the arrow MI,g -+ MI',g' is a weak 

, homotopy equivalence. 

[Note: If in addition {f, are closed cofibrations, then the arrow X Ug Y -+ X' Ugl Y' 

is a weak homotopy equivalence (cf. §3, Proposition 18).] 

FACT Let {~ be topological spaces and let I : X -+ Y be a continuous function. Assume: V = 

{V} is an open covering of Y which is closed under finite intersections such that V V E V, I : 1-1 (V) -+ V 

is a weak homotopy equivalence-then I : X -+ Y is a weak homotopy equivalence. 
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[Use Zorn on the collection of subspaces B of Y that have the following properties: B is a union of 

elements of V, I : 1-1 (B) - B is a weak homotopy equivalence, and V V E V, I : 1-1 (B n V) - B n V 

is a weak homotopy equivalence. Order this collection by inclusion and fix a maximal element Bo. Claim: 

Bo = Y. If not, choose V E V : V rt. Bo and consider Bo U V.] 

{ 

q,: sn-l _ X 
SUBLEMMA Let IE C(X,Y) and suppose given continuous functions with 10 

1/J: nn - Y 

q, = 1/JISn-l-then there exists a neighborhood U of sn-l in nn and continuous functions {~: U - X 
1/J : nn - Y 

such that ~Isn-l = q, and I 0 ~ = ~IU, where 1/J =::: ~ rei sn-l. 

[Let U = {x : 1/2 < IIxll :5 1} and put ~(x) = q,(x/llxID (x E U). Write vex) = {x 
x/llxll 

Define H : Inn _ Y by H(x, t) = 1/J(v«1 + t)x» and take ~ = H 0 i l .] 

(lIxll :5 1) 

(lIxll ~ 1) 

LEMMA Suppose that & are subspaces of with . Let 
{

Xl {YI {X {X=intXluintX2 

X 2 Y2 Y Y=intYIUintY2 

I: X - Y be a continuous function such that . Assume: & I: Xl nX2 -{ 
I(XI) C YI { I : Xl - YI 

I(X2 ) C Y2 I: X2 - Y2 
YI n Y2 are weak homotopy equivalences-then I : X - Y is a weak homotopy equivalence. 

{ 
q,: jq - X 

[In the notation employed at the end of §3, given continuous functions such that 
,p: Iq - Y 

10 q, = ,pliq, it is enough to find a continuous function <f? : Iq - X such that <f? liq = q, and I 0 <f? =::: ,p rei jq . 

{ 

q,-l (X - intXl ) U ,p-I(Y - Yt} 
This can be done by a subdivision argument. The trick is to consider -1 . • 

q, (X - mtX2) U ,p-l(Y - Y2 ) 

These sets are closed. However, they need not be disjoint and the point of the sublemma is to provide an 

escape for this difficulty.] 

EXAMPLE In the usual topology, take Y = R, Yl = Q, Y2 = Pj in the discrete topology, take 

X = R, Xl = Q, X 2 = P-then the identity map X - Y is not a weak homotopy equivalence, yet the 

{
Xl - Yl 

restrictions , Xl n X 2 - Yl n Y2 are weak homotopy equivalences. 
X2- Y2 

FACT Let {; be topological spaces and let I: X - Y be a continuous function. Suppose that 

are open coverings of such that Vi: I(Ui) C Vi. Assume: For every nonempty { 
U = {Ui : i E I} {X 
V = {Vi : i E I} Y 

finite subset F C I, the induced map n Ui - n Vi is a weak homotopy equivalence-then I is a weak 
iEF iEF 

homotopy equivalence. 

Topological spaces {: are said to have the same weak homotopy type if there exists 

a topological space Z and weak homotopy equivalences {~~ ~ : :. The relation of 

having the same weak homotopy type is an equivalence relation. 
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[Note: One can always replace Z by a CW resolution K -+ Z, hence {;. have the 

same weak homotopy type iff they admit CW resolutions {~:;. by the same CW 

complex K.] 

Transitivity is the only issue. For this, let Xl,X2,X3 be topological spaces, let K,L be CW com-

plexes, and consider the diagram 'Y K ~ Y L ~ , where {it , {92 are weak homo-
Xl X2 X3 12 93 

topyequivalences. Since (K, h) and (L, 92) are both CW resolutions of X2. there is a homotopy equivalence 

4>: K - L such that 12 ~ 92 0 4> (cf. p. 5-18). Thus 9304> : K - X3 is a weak homotopy equivalence, so 

Xl and,Xa have the same weak homotopy type. 

EXAMPLE Two aspherical spaces having isomorphic fundamental groups have the same weak 

homotopy type. 

[Note: A path connected topological space X is said to be aspherical provided that V q > 1, 1I"q(X) = 

O. Example: If X is path connected and metrizable with dimX = 1, then X is aspherical.] 

Let X be in TOP/B. Assume that the projection p : X -+ B is surjective-then p 

is said to be a quasifibration if 'V b E B, the arrow (X,Xb) -+ (B, b) is a relative weak 

homotopy equivalence. If p : X -+ B is a quasifibration, then 'V 110 E B, 'V Xo E Xbo, there 

is an exact sequence 

LEMMA Let p : X -+ B be a Serre fibration. Suppose that Bis path connected and 

X is nonempty-then p is a quasifibration. 

EXAMPLE Take X = ([-1,0] X {I}) U ({O} X [0,1]) U ([0, 1] X {O}),.B = [-1,1], and let p be the 

vertical projection-then p is a quasifibration (X and B are contractible, as are all the fibers) but p is 

neither a Serre fibration nor a Dold fibration. 

[Note: The pullback of a Serre fibration is a Serre fibration, i.e., Proposition 4 is valid with "Hurewicz" 

replaced by "Serre". This fails for quasifibrations. Let B' = [0,1] and define <P' : B' - B by <p{t) = 

{ 
t sin(l/t) (t > 0) , 

-then the projection p' : X, - B' is not a quasifibration (consider 11"0)'] 
o (t = 0) 

PROPOSITION 31 Let p : X -+ B be a quasifibration, where B is path connected-

" .. / then the fibers of p have the same weak homotopy type. 
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[Using the mapping track Wp , factor P as q 0, and note that V b E B, , induces a 

weak homotopy equivalence X" -+ q-I(b). But q : Wp -+ B is a Hurewicz fibration and 

since B is path connected, the fibers of q have the same homotopy type (cf. p.4-13).] 

EXAMPLE Let B = [0,1]" (n ~ 1). Put X = B x B - D..B and let P be the vertical projection

then P is not a quasifibration (cf. p. 4-8). 

LEMMA Let P : X -+ B be a continuous function. Suppose that ° c B and 

Po : Xo -+ ° is a quasifibration-then the arrow (X,Xo ) -+ (B,O) is a relative weak 

homotopy equivalence iff Vb E 0, the arrow (X, X,,) -+ (B, b) is a relative weak homotopy 

equivalence. 

PROPOSITION 32 Let X be in TOP/B. Suppose that {g: are open subspaces 

f B ·th B ° U ° A {POl : XOl -+ 0 1 & X ° n ° o WI = I 2· ssume: . X ° POln02: 01n02 -+ I 2 are 
P02 • 02 -+ 2 

quasifibrations-then p: X -+ B is a quasifibration. 

[From the lemma, the arrows (XoOXoln02) -+ (Oi,OI n O2 ) are relative weak ho

motopyequivalences (i = 1,2). Therefore the arrow (X,XoJ -+ (B,Oi) is a relative weak 

homotopy equivalence (i = 1,2) (cf. Proposition 29). Since P is clearly surjective, another 

appeal to the lemma completes the proof.] 

Application: Let X be in TOP/B. Suppose that 0 = {Oi : i E I} is an open 

covering of B which is closed under finite intersections. Assume: V i, POi: XOi -+ Oi is a 

quasifibration-then P : X -+ B is a quasifibration. 

[The argument is the same as that indicated on p. 4-52 for weak homotopy equiva

lences.] 

[Note: This is the local-global principle for quasifibrations. Here, numerability is 

irrelevant. ] 

EXAMPLE Let X be R2 equipped with the following topology: Basic neighborhoods of (z,y), 

{
z<O {O<Z<I&Y>O 

where - & -00 < y < 00 or , are the usual neighborhoods but the basic neigh-
z~1 O<z<l&y<O. 

borhoodsof(z, 0), where 0 < z < 1, are the open semicircles centered at (z, 0) of radius < min{z, l-z} that 

lie in the closed upper half plane. Take B = R2 (usual topology)-then the identity map P : X -+ B is not a 

quasifibration (since WI (B) = 0, WI (X) ::! 0 and the fibers are points). Put : {01 = Hz,y): z > O} {01 
02 = Hz, y) : z < I} 02 

are open subspaces of B with B = 01 U 02. Moreover, 1 are contractible, thus 1 1 
{ 

Xo { Po : Xo -+ 01 

X02 P02 : X02 -+ 02 

are quasifibrations. However, POI n02 : X01 n02 -+ 01 n 02 is not a quasifibration. 
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FA.CT Let p : X - B be It. surjective continuous function, where B = colimB" is Tl. Assume: 

V n, p-l (B") _ B" is a quasifibration-then p is It. quasifibration. 

Let A be a subspace of X, i : A --+ X the inclusion. 

(WDR) A is said to be a weak deformation retract of X if there is a homotopy 

H : IX --+ X such that H 0 io = idx, H 0 ii(A) C A (0 ~ t ~ 1), and H 0 i1(X) CA. 

[Note: Denne r : X --+ A by i 0 r = H 0 iI-then i 0 r ~ idx and r 0 i ~ idA.] 

A strong deformation retract is a weak deformation retract. The comb is a weak 

deformation retract of [0,1]2 (consider the homotopy H«(x,y),t) = (x,(l-t)y» but the 

comb is not a retract of [0,1]2. 

[Note: A pointed space (X,xo) is contractible to Xo in TOP. iff {xo} is a weak (or 

strong) deformation retract of X. The broom with base point (0,0) is an example of a 

pointed space which is contractible in TOP but not in TOP •. Therefore a deformation 

retract need not be a weak deformation retract.] 

On It. subspace A of X such that the inclusion A - X is It. cofibration, "strong" = "weak" . 

PROPOSITION 33 Let P : X --+ B be a surjective continuous function. Suppose 

that 0 is a subspace of B for which PO : Xo --+ 0 is a quasinbration and {~o is a weak 

deformation retract of {~ , say { ~ ~ ~ : ~o . Assume: po r = pop and \:I bE B, rlXb 

is a weak homotopy equivalence Xb --+ Xp(b}-then p: X --+ B is a quasinbration. 

[Given bE B, r : (X,Xb) --+ (XO,Xp(b»' as a map of pairs, is a relative weak homotopy 

(X,Xb) ~ (XO,Xp(b» 
equivalence and, by assumption, the diagram 1 1 commutes.] 

X 

Application: Let 1 
.-!- Z ~y 

1 1 
X' +-- z' ~ y' 

f' gl 

(B,b) ~ (O,p(b» 

be a commutative diagram in which the 

vertical arrows are quasifibrations. Assume: 'V z' E Z', {~I~;: is a weak homotopy 

'val {ZZI --+ Xf'(ZI} h h MM' ·.c.b· eqUl ence Z 1': -t en t e arrow f,g --+ f' ,gl IS a qUasHl ratIon. 
Zl --+ gl (Zl) 
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X 

PROPOSITION 34 Let 1 
J- Z 

1 
~ Y 

1 be a commutative diagram m 

X' +-- Z' --t Y' 
I' g' 

which the left vertical arrow is a surjective Hurewicz fibration and the right vertical arrow 

X J- Z 
is a quasifibration. Assume: 1 1 

X, +-- Z' 
I' 

is a pullback square, {j, are closed cofi-

brations, and V z' E Z', glZzl is a weak homotopy equivalence ZZI 

induced map X Ug Y --+ X' Ugl Y' is a quasifibration. 

MI,g 

[Consider the commutative diagram t/> 1 
XUgY 

M/"g' 

1t/>' 
x' Ugl Y' 

--+ Ygl(zl)-then the 

. Since {j, are cofi-

brations, {~, are homotopy equivalences (cf. §3, Proposition 18) and, by the above, J.L is 

a quasifibration. Thus it need only be shown that V m' E M/"g" the arrow J.L-l(m') --+ 

v-1(4)'(m')) is a weak homotopy equivalence, which can be done by examining cases.] 

The conclusion of Proposition 34 cannot be strengthened to "Hurewicz fibration". 

To see this, take X = [-1,0] X [0,1], Y = [0,2] X [0,2], Z = {O} X [0,1], X' = [-1,0], 

Y ' [0 2] Z' {O} I { I : Z --+ X {I': Z' --+ X' b h . I' d I X X' = " = ,et g: Z --+ Y' g': Z' --+ Y' e t e Inc USlOns, an et --+ , 

Z --+ Z', Y --+ Y' be the vertical projections-then X Ug Y = X U Y, X' Ugl Y' = X' U Y', 

and the induced map XU Y --+ X' U Y' is the vertical projection. But it is not a Hurewicz 

fibration since it fails to have the slicing structure property (cf. p.4-14). 

EXAMPLE (Cone Construction) Fix nonempty topological spaces X, Y and let ,p : X X Y --+ Y 

XxY ~ Y 

be a continuous function. Define E by the pushout square 1 1 
rxxY --t E 

Assume: 'V x EX, ,p", : {x} X Y --+ Y is a weak homotopy equivalence. Consider the commutative 

rXxY +-- XxY ~ Y 

diagram -1 1 1 . Since the arrows X --+ r X, X X Y --+ r X X Yare closed 

rx X --t * 
cofibrations, all the hypotheses of Proposition 34 are met. Therefore the induced map E --+ EX is a 

quasifibration. 

[Note: The same constructio~ can be made in the pointed category provided that (X, xo) is well-
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pointed with {xo} C X closed.] 

EXAMPLE (Dold-Lashof Construction) Let G be a topological semigroup with unit in which 

the operations of left and right translation are homotopy equivalences. Let p : X - B be a quasifibration. 

Assume: There is a right action { X X G - X such that p(x _ g) = p(x) and the arrow { G - Xp(x) is a 
(x,g)-x-g g_x·g 

XxG ---+ X 

weak homotopy equivalence. Define X by the pushout square 1 1 and put B = Cp • Since 

rx xG ---+ X 
rXxG +-- XxG ---+ X 

the diagram 1 1 1 commutes, Proposition 34 implies that p : X - B is a 

rx +-- X ---+ B 
quasifibration. Represent a generic point of X (B) by the symbol [x, t, g] ([x, tn (with the obvious under-

standing at t = 0 or t = 1), so p[x, t, g] = [x, t]. The assignment is unambiguous 
{

XXG_X 

([x, t, g], h) - [x, t, gh] 
and satisfies the algebraic conditions for a right action of G on X but it is not necessarily continuous. 

The resolution is to place a smaller topology on X. Let t : X - [0,1] be the function [x, t, g] - tj let 

x : (]0,1[) - X be the function [x, t, g] - x; let 9 : t-1 ([0, 1[) - G be the function [x, t, g] - g; let 

x . 9 : t-I(]O, 1]) - X be the function [x, t, g] - x . g. Definition: The coordinate on X is the 

initial topology determined by t, x, g, x . g. The injection { X - X is an embedding, as is the injection 
x - [x, 1, e] 

{ 
G - X . _ { G - X p("i') 

(t '# 0,1). Moreover, G acts continuously and V x E X, the arrow is a weak 
g-[x,t,g] g-x·g 

homotopy equivalence. Now equip B with its coordinate topology (cf. p. 3-3)-then p: X - B is contin-

{ 
01 = {[x, t] : 0 < t < 1} 

uous and remains a quasifibration (apply Propositions 32 and 33 to - ). In other 
02 = {[x, t] : 0 :5 t < 1} 

X ---+ X 

words, (X, B) satisfies the same conditions as (X, B) and there is a commutative diagram 1 1 ' 
B ---+ B 

where X - X is inessential (consider H : ). 
_ {IX-X 

(x, t) - [z, t, e] 
Example: Let G be a topological group-then G (coordinate topology) is homeomorphic to G *c G 

(coarse join). 

Let G be a topological group, X a topological space. Suppose that X is a right 

G-space: {eX x)G ~ X -then the projection X ~ X/G is an open map and X/G is 
x,g ~X'g 

Hausdorff iff X Xx /G X is closed in X x X. The continuous function (j : X x G ~ X X X/G X 
defined by (x, g) ~ ex, X· g) is surjective. It is injective iff the action is free, i.e., iff V x EX, 

the stabilizer G x = {g : x . 9 = x} of x in G is trivial. A, free right G-space X is said 
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to be principal provided that (} is a homeomorphism or still, that the division function 

d {
X X x/G X -+ G. t' : IS con Inuous. 
(x,x'g)-+g 

Let X be in TOP / B-then X is said to be a principal G-space over B if X is a 

principal G-space, B is a trivial G-space, the projection p : X -+ B is open, surjective, and 

equivariant, and G operates transitively on the fibers. There is a commutative triangle 
X 

/"'! and the arrow X/G -+ B is a homeomorphism. PRINB,G is the category 
X/G ---+B 
whose objects are the principal G-spaces over B and whose morphisms are the equiv-

ariant continuous functions over B. If q,1 E C(B', B), then for every X in PRINB,G 
!' X' ---+ X 

there is a pullback square 1 1 with X' = B' X B X in PRIN B',G and f' equiv-

B' ---+ B 
4.)' 

ariant. 

LEMMA Every morphism in PRINB,G is an isomorphism. 

[Note: The objects in PRINB,G which are isomorphic to B x G (product topology) 

are said to be trivial. It follows from the lemma that the trivial objects are precisely those 

"'-'"" that admit a section.] 

Application: Let {r' be in {~~~B/'G; let l' E C(XI,X),q,' E C(B',B). As
B,G 

X' 
sume: f' is equivariant and po f' = q,1 0 pi-then the commutative diagram 1 

B' 

is a pullback square. 

[Compare this diagram with the pullback square defining the fiber product.] 

!' ---+ X 

1 
---+ B 

4.)' 

Let X be in TO P / B-then X is said to be a G-bundle over B if X is a free right G

space, B is a trivial G-space, the projection p : X -+ B is open, surjective, and equivariant, 

and there exists an open covering 0 = {Oi : i E I} of B such that Vi, Xo, is equivariantly 

homeomorphic to OJ x G over OJ. Since the division function is necessarily continuous 

and G operates transitively on the fibers, X is a principal G-space over B. If 0 can be 

chosen numerable, then X is said to be a numerable G-bundle over B (a condition that is 

automatic when B is a paracompact Hausdorff space, e.g., a CW complex). BUNB,G is the 

full subcategory of PRIN B,G whose objects are the numerable G-bundles over B. Each X 

in BUNB,G is numerably locally trivial with fiber G and the local-global principle implies 
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that the projection X --+ B is a Hurewicz fibration. There is a functor I : BUNB,G --+ 

BUNIB,G that sends p: X --+ B to Ip: IX --+ IB, where (x, t) . 9 = (x· g, t). 

EXAMPLE A G-bundle over B need not be numerable. For instance, take G = R-then every 

object in BUNB,R admits a section (R being contractible), hence is trivial. Let now X be the subset of R3 

defined by the equation :I:IX3+X~ = 1 and let R act on X via (Xl, X2, X3)·t = (Xl, X2+tX1, X3-2tX2 -t2 xI). 

X is an R-bundle over X/R but it is not numerable. For if it were, then there would exist a section 

X/R --+ X, an impossibility since X/R is not Hausdorff. 

FACT Suppose that X is a G-bundle over B-then the projection p : X --+ B is a Serre fibration 

(d. p. 4-11) which is Z-orientable if Band G are path connected. 

Let {~' be in {:~~B"G . Write X' XG X for the orbit space (X' x X)/G-then 
B,G 

X' x X ----+ X' 

there is a commutative diagram 1 1 which is a pullback square. As an 
X' XG X ----+ B' 

object in TOP / B', X' X G X is numerably locally trivial with fiber X so, e.g., has the SEP 

if X is contractible. The s' E secB'(X' XG X) correspond bijectively to the equivariant 

i' E C(X', X). As an object in TOP / B' x B, X' XG X is numerably locally trivial 

with fiber G. Given 4)' E C(B',B), there exists an equivariant i' E C(X',X) rendering 

X' 
the diagram 1 

B' 

X' xGX 
/" 1 

B' ----+ B' x B 

" ----+ X 

1 . ·ff h { B' --+ B' x B d·t l·ft·-commutatIve 1 t e arrow b' --+ (b', 4)'(b')) a ml sal mg 
----+ B 

41' 

COVERING HOMOTOPY THEOREM {
X' . {BUNB'G Let X be m BUN' . Suppose that 

B,G 
f' : X' --+ X is an equivariant continuous function and h : I B' --+ B is a homotopy with 

poi' = h 0 io 0 p'-then there exists an equivariant homotopy H : IX' --+ X such that 

IX' ~ X 

H 0 io = f' and for which the diagram 1 1 commutes. 

IB' ----+ B 
h 

X' xGX 
[Take 4)' - h 0 io to get a lifting ,/" 1 and a commutative diagram 

B' ----+ B' x B 
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IX' XG X 

1 The projection IX' XG X -. lB' x B is a Hurewicz fibration, 
lB' xB 

thus the diagram has a filler lB' -. IX' XG X and this guarantees the existence of H.] 

Application: Let X be in BUNB,G. Suppose that {:~ E G(B', B) are homotopic

then {ii are isomorphic in BUNB',G. 

FACT The functor I: BUNB,G - BUN/B,G has a representative image. 

The relation "isomorphic to" is an equivalence relation on Ob BUNB,G'. Call kGB the 

"class" of equivalence classes arising therefrom-then kGB is a "set" (see below). Since for 

any~' E G(B',B) and each X in BUNB,G, the isomorphism class [X'] of X' in BUNB',G 

depends only on the homotopy class [~'] of ~', kG is a cofunctor HTOP -. SET. A 

topological space BG is said to be a classifying space for G if BG represents kG, Le., if there 

exists a natural isomorphism:=:: [-,BG] -. kG, an XG in :=:BG(idBG) being a universal 

numerable G-bundle over BG. From the definitions, V ~ E G(B,BG), :=:i3[~] = [X], where 

X ---+ XG 

X is defined by the pullback square 1 
B ---+ 

~ 

1 and ~ is the classifying map. 
BG 

{ 
-:;:'. [- B' ] -. k 

(UN) Assume that :;" '. [_' Bft] kG are natural isomorphisms-then there 
~. ,G-'G 

{ 
~' . B' -. B" '{ kG[~']([X/I]) = 

exist mutually inverse homotopy equivalences ~" ': B& -. B~ such that kG[~/I]([X~]) = 
[Xh] 
[X;}] . 

Recall that the members of a class are sets, therefore kGB is not a class but rather a conglomerate. 

Still, BUNB,G has a small skeleton BUNB,G. Indeed, any X in BUNB,G is isomorphic to B x G. Here, 

the topology on B x G depends on X and is in general not the product topology but the action is the 

same «b,g) . h = (b,gh». Thus one can modify the definition of kG and instead take for kGB the set 

ObBUNB,G. 

PROPOSITION 35 Suppose that there exists a BG in TOP and an XG in BUNBG,G 

such that XG is contractible--then kG is representable. 

[Define a natural transformation:=:: [-, BG] -. kG by assigning to a given homotopy 

class [~] (~ E G( B, BG» the isomorphism class [X] of the numerable G-bundle X over B 
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x ----+ Xa 

defined by the pullback square 1 1 . The claim is that VB, 3B : [B, Ba] -+ kaB 
B ----+ Ba 

I) 

is bijective. 

Surjectivity: Take any X in BUNB,a and form X Xa Xa. Since Xa is contractible, 

X Xa Xa has the SEP, thus secB(X Xa Xa) is nonempty, so there exists an equivariant 

X L Xa 

f E G(X,Xa). Determine~ E G(B,Ba) from the commutative diagram 1 
B 

1-
Ba 

then 3B[~] = [X]. 

Injectivity: Let ~', ~" E G(B, Ba) and assume that 3B[~']= 3B[~"]' say [X'] -

~ X' 
X'~X" 

/' 
----+ Xa 

[X"], where \ I , with ¢> equivariant. There are pullback squares 1 1 ' 

X" /" 
----+ Xa 

B B ----+ Ba 
I)' 

1 1 . Put Bo - B X ([0, 1/2[U]I/2, 1]) and define Ho IX'IBo -+ Xa by 

B ----+ Ba 
I)" 

u ( , t) {f'(X') (t < 1/2) H' .. t h d t t' no X, = f" 0 ¢>(x') (t > 1/2): 0 IS eqmvarlan, ence correspon s 0 a sec Ion So 

of (IX' Xa Xa)IBo. Since Bo is a halo of ioB U i1B in IB and since IX' Xa Xa has the 

SEP, :I s E seC]B(IX' Xa Xa) : siB X ({O} U {I}) = solB X ({O} U {I}). Translated, this 

means that there exists an equivariant homotopy H : IX' -+ Xa. Determine h : IB -+ Ba 

IX' ~ Xa 

from the commutative diagram 1 1 h {
h 0 io = ~' [n..,] [n.."] ] 

-t en h 0 i
1 
=~" ~ 'j.' = 'j.' • 

IB ----+ 
h 

Ba 

The converse of Proposition 35 is also true: In order that kG be representable, it is necessary that XG 

be contractible. Thus let XG be the numerable G-bundle over BG produced by the Milnor construction

then XG is contractible, so :=:00 is a natural isomorphism. As the same holds for:=: by assumption, there 
J Joo 

X G ------t XG XG ------t X G 

are pullback squares 1 
BG 

1 ' 1 
BOO 

G 

1 and 4>00 0 4> ~ idBG . Owing to the covering 

------t BG 1)00 
.p 

XG -"'---+) XG 
homotopy theorem, /00 0 / is equivariantly homotopic to an isomorphism \ I But .q, is 

BG 
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necessarily inessential, X::; being contractible. 

EXAMPLE Let E be an infinite dimensional Hilbert space-then its general linear group GL(E) 

is contractible (cf. p.6-10). Any compact Lie group G can be embedded as a closed subgroup of GL(E). 

So, if XG = GL(E), BG = GL(E)/G, then BG is a classifying space for G and XG is universal. 

[BG is a. paracompact Hausdorff space. Local triviality of XG is a consequence of a generality due 

to Gleason, viz: Suppose that G is a. compact Lie group and X is a. Hausdorff principal G-space which is 

completely regular-then X, as an object in TOP / B (B = X/G), is a G-bundle.] 

EXAMPLE Let G be a noncompact connected semisimple Lie group with finite center, KeG a 

maximal compact subgroup. The coset space K\G is contractible, being diffeomorphic to some R". Let 

r be a discrete subgroup of G. Assume: r is cocompact and torsion free-then r operates on K\G by 

right translation and K\G is a numerable r-bundle over K\G/r. So, if Xr = K\G, Br = K\G/r, then 

Br is a classifying space for rand Xr is universaL 

[Note: Br is a compact riemannian manifold. Its universal covering space is Xr. thus Br is aspherical 

and of homotopy type (r, 1).] 

MILNOR CONSTRUCTION Let G be a topological group. Consider the subset of 

([0,1] x G)"" made up of the strings {(ti,9i)} for which Eti = 1 & #{i: ti #- O} < W. 
i 

Write {(tL g~)} ,...., {(ti', gi')} iff V i, ti = ti' and at those i such that ti = ti' is positive, 

gi = gi'· Call X(f the resulting set of equivalence classes. Define coordinate functions 

{
XIX) -+ [0 1] {t:-l(]O 1]) -+ G 

ti and gi by ti: x ~ ti(X)' and gi: ; -+ g~(x) , where x = [(ti(X),gi(X))]. 

The Milnor topology on X(f is the initial topology determined by the ti and gi. Thus 

topologized, X(f is a right G-space: {X( (f)X G -+ X(f. Here, ti(X . g) = t;(x) and 
x,g -+ X· 9 

9i(X' g) = 9i(X)9' Let B(f be the orbit spaceX(f JG. 
[Note: Put xg = G, XC; = G *c'" *c G, the (n + I)-fold coarse join of G with itself. 

One can identify XC; with {x : V i ~ n + 1, ti(X) = O}. Each XC; is a zero set in XG and 

there is an equivariant embedding XC; -+ X:;+l. So, xg c xb c ... is an expanding 

sequence of topological spaces and the colimit in TOP associated with this data is X(f 
equipped with the final topology determined by the inclusions XC; -+ X(f. The colimit 

topology is finer than the Milnor topology and in general, there is no guarantee that the 

G-action (x, g) -+ x . 9 remains continuous.] 

(M) XG is a numerable G-bundle over B'G. 
[It is clear that X(f is a principal G-space. Write Oi for the image of t;l(]O, 1]) under 

the projection X(f -+ B(f-then {Od is a countable cozero set covering of B'G, hence is 

numerable (d. p. 1-25). On the other hand, V i,seco,(XGIOi) is nonempty. To see this, 
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define a continuous fiber preserving function Ii : XG'IOi -+ XG'IOi by Ij(x) = X· gi(X)-1 : 
V 9 E G, h(x· g) = hex). Consequently, Ii drops to a section Sj : OJ -+ XG'IOi, therefore 

XG'IOi is trivial.] 

(D) XG' is contractible. 

[Let 6if be the subset of XG' consisting of those x such that gi(X) = e if ti(X) > 0-
then 6if is contractible, so one need only construct a homotopy H : I XG' -+ XG' such 

that H 0 io = idxG" and H 0 il(XG') C 6if. Put Uk = T;I(]O, 1]) and Ak = T;I(l), where 

Tk = E ti. Define H~ : IUk -+ Uk by 
i:$k 

{ 

t + (1 - t)Tk(X) () 
--'----:-~-'--'-t· x (i :5 k) 

ti(HHx,t)) = Tk(X) I 

(l-t)tj(x) (i>k) 

and gi(H1(x,t)) = gi(X) when ti(H1(x,t)) > O. Note that Hkex,O) = x, H1(x,l) E Ak, 

and x E 6if =} Hkex , t) E 6if (0:5 t :5 1). Define H~ : lAk -+ Ak+1 by 

{

(I - t)ti(X) (i:5 k) 
ti(Hr(x, t)) = t (i = k + 1) ° (i>k+1) 

and gi(H~(x, t)) = {~i(X) ~~:5 ~)+ 1) when ti(H~(x, t)) > 0. Note that H~(x, 0) = x, 

H~(x, 1) E 6if, and x E 6if =} H~(x, t) E 6if (0 :5 t :5 1). Combine {~~ and 

obtain a homotopy Hk : lUk -+ Uk+1 such that Hk(X,O) = x, Hk(X,l) E 6 0 , and 

x E So =} Hk(X, t) E 6 0 (0 :5 t :5 1). Proceeding recursively, write GI = HI and 

{ 

Gk(X, t) (2/3 :5 Tk(X) :5 1) 
G (x t) _ Hk+I(Gk(X,t),2t(2 - 3Tk(X))) (1/2:5 Tk(X):5 2/3) 

k+1 , - Hk+I(Gk(X,2t(3Tk(X) -l)),t) (1/3:5 Tk(X) :51/2) 
Hk+I(X, t) (0 :5 Tk(X) :5 1/3) 

to get a sequence of homotopies Gk : lUk -+ Uk+1 such that Gk+IIIT;I(]2/3, 1]) 

GkllTk"I(]2/3,1]) and Gk(x,O) = x, Gk(X, 1) E 6if. Take for H the homotopy IXG' -+ 

XG' that agrees on lTk"I(]2/3, 1]) with Gk.] 
[Note: The argument shows that 6 0 is a weak deformation retract of XG'.] 

x ~ XOO 
G 

FACT (Borel Construction) Let X be in BUNB,G' There is a pullback square 1 1 
B 

and since / is equivariant, the continuous function G induces a map B - X XG X~, {
X -x X XOO 

:I: - (:1:,/(:1:» 
which is a homotopy equivalence (cf. p.3-25). 
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FACT Let a: a -I> K be a continuous homomorphism-then a determines a continuous function 

XG' ~ XK' 

fa : XG' -I> XK' such that fet(z, g) = fa(z)· a(g). There is a. commutative diagram 1 
BG' 

and Wet is a homotopy equivalence iff a is a homotopy equivalence. 

1 
BOO 

K 

CLASSIFICATION THEOREM For any topological group G, the functor kG is rep

resentable. 

[This follows from Proposition 35 and the Milnor construction.] 

The isomorphism classes of numerable G-bundles over B are therefore in a one-to

one correspondence with the elements of [B, Ba]. By comparison, recall that on general 

grounds the isomorphism classes of G-bundles over B are in a one-to-one correspondence 

with the elements of the cohomology set BI(B; G) (G the sheaf of G-valued continuous 

functions on B). 

LEMMA Suppose that a is metrizable--then the Milnor topology on XG' is metrizable. 

[Fix a metric dG on a : dG $ 1. Define a metric d on XG' by 

" ..... / d(x, y) = L:min{ti(x), ti(y)}dG (9i(Z), 9i(y» + (1-L:min{ti(z), ii(Y)}). 
i i 

To check the triangle inequality, consider.! Iti('X) -ti(y)l+min{ti(x), ti(y)}dG (9i(X), 9i(y» and distinguish 
2 

two cases: ti(Z) ~ min{ti(x), ti(Y)} &; ti(Z) < min{t,(x), ti(Y)}. In the metric topology, the coordinate 

functions are continuous, thus the metric topology is finer than the Milnor topology. To go the other 

way, let {Xn} be a net in X;; such that Xn -I> x in the Milnor topology. Claim: Xn -I> x in the metric 
N 

topology. Fix e > O. Since L:ti(X) = 1, 3 N : L:t.(x) > 1 - -4
e

. Choose no : V n ~ no & 1 $ i $ N, 
• 1 

Iti(Xn) - ti(x)1 < 4~ and ti(X) > 0 :::} ti(Xn) > 0 with dG(gi(Xn),gi(X» < 4~' from which 

N N € € 
d(xn, x) $L:min{ti(xn), ti(z)}dG(gi(Xn), 9i(X» + (1-L:min{ti(xn), t.(x)}) $ 4" + 1- (1 - 2) < e.] 

1 1 
(Note: BG' is also metrizable. For this, it need only be shown that BG' is locally metrizable and 

paracompact (c!. p. 1-19). Local metrizability follows from the fact that X;;IOi is homeomorphic to 

0. x a. Since a metrizable space is paracompact and since {Oil is numerable, B;; admits a neighborhood 

finite closed covering by paracompact subspaces, hence is a paracompact Hausdorff space (cf. p. 5-4).] 

EXAMPLE X;; in the colimit topology is contractible. This is because V n, the inclusion Xa -I> 

X~+l is a cofibration (c!. p. 3-4) .,.nd inessential, thus the result on p. 3-20 can be applied. Consequently, 

if the underlying topology on G is locally compact and Hausdorff (e.g., if a is Lie), then colim(Xa x a) = 

(colimXa) x a, so X;; in the colimit topology is a right a-space. As such, it is a numerable a-bundle 
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over B~, which is therefore a classifying space for G (d. Propoeition 35). While the topology on B~ 

arising in this fashion is finer than that produced. by the Milnor construction, it has the advantage of 

being "computable". For example, let G be So, SI, or Sa, the multiplicative group of elements of norm 

one in R, C, or H-then X~ = sn, s2n+1, or S",+a, hence X~ = SOO and factoring in the action, 

B~ = Poo(R}, Poo(C), or POOCH}. As a colimit of the S", soo is not first countable. However, the three 

topologies on its underlying set coming from the Milnor construction are metrizable, in particular first 

countable. 

[Note: Here is another model for Xo and Bo when G = SO J S1, or Sa. Take an infinite dimensional 

Banach space E over R, C, or H and let S be its unit sphere-then S is an AR (d. p. 6-13), hence 

contractible (d. p. 6-14), 80 Xo = S is universal and Bo = SIG is classifying.] 

Let G be a compact Lie group-then Notbohmt has shown that the homotopy type of B~ determines 

the Lie group isomorphism class of G. 

Consider G as a pointed space with base point e. Let x~ = [(1, e), (0, e), ... ] be the 

base point in X(f, b~ = x~. G the base point in B(f-then V q ~ 0, 1r,(G) R:j 1r,+l(B(f). 

Choose a homotopy H : IX(f -+ X(f such that {H(X,O) = x~ Taking adjoints and 
H(x,l) = x 

X(f • aBo 
projecting leads to a map X(f -+ aB~. The triangle ~ /Pt commutes, 

Bo 

thus there is an arrow G -+ nB(f. 

PROPOSITION 38 The arrow G -+ nB(f is a homotopy equivalence. 

[The map X(f -+ aBo is a homotopy equivalence (by contractibility). But the 

projections X(f -+ Ba, aBa ~ Ba are Hurewicz fibrations. Therefore the map X(f -+ 

aBa is a fiber homotopy equivalence (d. Proposition 15).] 

EXAMPLE Take B = S" (n ~ l}-then leo S" Q:$ [S",B~] ~ 1r1(B~,b~)\[S",8,,;B~,b~] ~ 

1rl(B~,b~)\1r,,(B~,b~) ~ 1r0(G,e)\1r,,_1(G,e), i.e., in brief: leo S" ~ 1r0(G)\1r,,_1(G). 

LEMMA Suppose that G is an ANR-then X~ and B~ are ANRs (cf. p. 6-45) and the arrow 

G - OB~ is a pointed. homotopy equivalence. 

[Being ANRs, (G, e) &; {(Xa, z~) are wellpointed. (d. p. 6-14). Therefore X~ is contractible 
(B~,b~) 

to z~ in TOP. and the arrow G - OB~ is a pointed. map. But (OB~,j(b~» is wellpointed. (cf. p. 

t J. London Jlath. Soc. 52 (1995), 185-198. 
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3-17) (actually OB2f is an ANR (d. §6, Proposition 7», so the arrow G - OB2f is a pointed homotopy 

equivalence (d. p. 3-19).] 

EXAMPLE Let GbeaLiegroup-thenGisanANR(d. p. 8-28). ConsiderkaEB,where(B,bo) 

is nondegenerate and EB is the pointed suspension. Thus kaEB ~ [EB,B2f] ~ "'l(B2f,b~)\[B,bo; 

OB~,j(b~)] ~ 1fo(G,e)\[B,bo;G,e], which, when G is path connected, simplifies to [B,bojG,e] or still, 

[B,G] (the action of 11'"1 (G, e) on [B, boi G, e] is trivial). 

[Note: Suppose that G is an arbitrary path connected topological group-then again kaEB ~ 

[B,bo; OB2f ,j(b~)]. However,OB2f is a path connected H group, hence [B, boi OB2f ,j(b~)] ~ [B, OB2f] 

and, by Proposition 36, [B,OBGl ~ [B,G].] 
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§5. VERTEX SCHEMES AND CW COMPLEXES 

Vertex schemes and CW complexes pervade algebraic topology. What follows is an 

account of their basic properties. All the relevant facts will be stated with precision but I 

sha.ll only provide proofs for those that are not readily available in the standard treatments. 

A vertex scheme K is a pair (V, E) consisting of a set V = {v} and a subset E = 
{u} C 2v subject to: (1) V 0' : 0' 1= 0 & #(0') < W; (2) V 0' : 0 1= T Co'=> TEE; 

(3) V v : {v} E E. The elements v of V are ca.lled the vertexes of K and the elements 

0' of E are ca.lled the simplexes of K, the nonempty T C 0' being termed the faces of u. 

A vertex map / : Kl = (Vb Ed --+ K2 = (V2, E2 ) is a function / : Vi --+ V2 such that 

V 0'1 E Eb /(0'1) E E2 • VSCH is the category whose objects are the vertex schemes and 

whose morphisms are the vertex maps. 

EXAMPLE Let X be a set; let S = {S} be a collection of subsets of X -then the ~ of S, 

written N(S), is the vertex scheme whose vertexes are the nonempty elements of S and whose simplexes 

are the nonempty finite subsets of S with nonempty intersection. 

Let K = (V, E) be a vertex scheme. If #(E) < W (:5 w), then K is said to be finite 

( countable). If V v, # {u : v EO'} < w, then K is said to be locally finite. A subscheme 

of K is a vertex scheme K' = (V', E') such that {~: ~ ~ . An n-simplex is a simplex of 

cardinality n + 1 (n > 0). The n-skeleton of K is the subscheme K(n) = (v(n), E(n» of K 

defined by putting v(n) = V and letting E(n) C E be the set of m-simplexes of K with 

m :5 n. The combinatorial dimension of K, written dim K, is -1 if K is empty, otherwise 

is n if K contains an n-simplex but no (n + 1 )-simplex and is 00 if K contains n-simplexes 

for all n ~ 0. If K is finite, then dim K is finite. The converse is trivia.lly false. 

EXAMPLE In the plane, take V = {(O,O)} U {(I, lIn) : n ~ I}. Let K = (V, E) be any vertex 

scheme having for its I-simplexes the sets (l'n = {(O, 0), (1, lIn)} (n ~ I)-then K is not locally finite. 

Given a vertex scheme K = (V, E), let IKI be the set of a.ll functions 4> : V --+ [0,1] such 

h ",-I(] ]) 'rI & "" "'( ) A' ach h {(u) = {4> E IKI : 4>-1(]0, 1]) 
t at Of' 0,1 E kI ~Of' V = 1. sSlgntoe ut esets lui = {4> E IKI: 4>-1 (]O, 1]) 

= u}}. So, V 0' : (0') C lui and IKI = U(u), a disjoint union. Traditionally, there are two 
Co' (I' 

ways to topologize IKI. 
(WT) If 0' is an n-simplex, then lui can be viewed as a compact Hausdorff space: 

lui +-+ 6. n. This said, the Whitehead topology on IKI is the final topology determined 
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by the inclusions 10'1 -+ IKI. IKI is a perfectly normal paracompact Hausdorff space. 
. {compact .. {finite 

Moreover, IKlls 1 11 t Iff K IS 1 all fi 't . oca y compac oc y m e 

{
V -+ [0 1]IKI 

(BT) There is a map v -+ b
v 

': b
v

( tP) = tP( v) . The bv are called the barycentric 

coordinates, the initial topology on IKI determined by them being the barycentric topology, 

a topology that is actually metrizable: d( tP, 'ljJ) = E I bv ( tP) - bv ( 'ljJ ) I· 
v 

To keep things straight, denote by IKlb the set IKI equipped with the barycentric 

topology-. then the identity map i : IKI-+ IKlb is continuous, thus the Whitehead topology 

is finer than the barycentric topology. The two agree iff K is locally finite. 

[Note: A vertex map f : Kl = (Vi,E l ) -+ K2 = (V2,E2) induces a map If I : 

{ ~1~ -: IK21 , where tP2(V2) = E tPl(VI). Topologically, If I is continuous in either 
0/1 0/2 f( vI)= V2 

the Whitehead topology or the barycentric topology. Consequently, there are two functors 

from VSCH to TOP, connected by the obvious natural transformation.] 

EXAMPLE Let E be a vector space over R. Let V be a ba.sis for Ej let E be the set of nonempty 

finite subsets of V. Call K(E} the associated vertex scheme. Equip E with the finite topology-then 

IK(E)I can be identified with the convex hull of V in E. But IK(E)I and IK(E)h. are homeomorphic iff 

E is finite dimensional. 

[Note: Let K = (V, E) be a vertex scheme. Take for E the free R-module on V, equipped with the 

finite topology-then IKI can be embedded in IK(E)I.] 

PROPOSITION 1 The identity map i : IKI -+ IKlb is a homotopy equivalence. 

[The collection {b;I(]O, 1])} is an open covering of IKlb, hence has a precise neighbor

hood finite open refinement {Uv}. Choose a partition of unity {Kv} on IKlb subordinate to 

{Uv }. Let j : IKlb -+ IKI be the map that sends 'ljJ to the function { ~ .: J~(~~ . Consider 

. { H : IIKI -+ IKI { H( tP, t) = ttP + (1 - t)j 0 i( tP) 
the homotoples G : IIKlb -+ IKlb defined by G('ljJ, t) = t'ljJ + (1 - t)i 0 j('ljJ) .] 

Let X be a topological space--then two continuous functions are said to be contiguous {
f :X-+ IKI 
g: X -+ IKI 

if 'v' z E X 30- E E: {f(z),g(z)} C 10-1· 

{
f: X -+ IKI 

FACT Suppose that are contiguous-then f :::::: g. 
g; X -+ IKI 

[Define a homotopy H : IX -+ II(lb between i 0 f and i 0 9 by writing b1J(H(x, t» = (1- t)b1J(f(x» + 
tb1J(g(x» a.nd apply Proposition 1.] 



5-3 

EXAMPLE Let X be a topological space; let U = {U} be a numerable open covering of X-then 

a U-map is a continuous function / : X - IN(U)I such that VUE U : (bu 0 f)-l(]O,I]) c U. E~ery. 

partition of unity on X subordinate to U defines a U-map and any two U-maps are contiguous, hence 

homotopic. 

{
/:X-IKI 

FACT Let X be a topological space. Suppose that 
g:X-IKI 

are two continuous functions 

such that V z E X 3 v E V: {/(z),g(z)} C b;l(]O, I])-then / ~ g. 

ADJUNCTION THEOREM Let K and L' be vertex schemes. Let K' be a subscheme 

of K and let I : K' -i< L' be a vertex map-then there exists a vertex scheme L containing 

L' as a subscheme and a homeomorphism IKI UI/I IL'I -i< ILl whose restriction to IL'I is 

the identity map. 

A topological space X is said to be a polyhedron if there exists a vertex scheme K and 

a homeomorphism I: IKI -i< X (IKI in the Whitehead topology). The ordered pair (K, f) 

is called a triangulation of X. Put Iv = bv 0 I-I-then the collection TK = {/;I(]O, I])} 
is a numerable open covering of X and Whitehead'st "Theorem 35" says: For any open 

covering U of X, there exists a triangulation (K,f) of X such that TK refines U. 

Every polyhedron is a perfectly normal paracompact Hausdorff space. A polyhedron 

is metrizable iff it is locally compact. Every open subset of a polyhedron is a polyhedron. 

Let X be a topological space-then a closure preserving closed covering .4 = {Aj : j E J} of X is 

said to be absolute if for every subset I C J, the subspace XI = U A, has the final topology with respect 
i 

to the inclusions Ai - XI' Example: Every neighborhood finite closed covering of X is absolute. 

[Note: Let K be a vertex scheme-then {Ierl} is an absolute closure preserving closed covering of IKI 

but, in general, is only a closure preserving closed covering of IKlb'] 

EXAMPLE Take X = [0,1], put Xl = [0,1], Xn = {OJ U [lin, 1] (n > I)-then {Xn} is a closure 

preserving closed covering of X but {Xn} is not absolute since X = U Xn does not have the final 
n>l 

topology with respect to the inclusions Xn - X (n > 1). 

LEMMA Let.4 = {Aj : j E J} be an absolute closure preserving closed covering of X-then for 

any compact Hausdorff space K, .4 x K = {Aj x K : j E J} is an absolute closure preserving closed 

covering of X x K. 

\,_ ... /' t Proc. London Math. Soc. 45 (1939), 243-327. 
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FACT If X is a topological space and if .A = {Ai : i E J} is an absolute closure preserving closed 

covering of X such that each Ai is a normal (normal and countably paracompact, perfectly normal, collec

tionwise normal, paracompact) Hausdorff space, then X is a normal (normal and count ably paracompact, 

perfectly normal, collectionwise normal, paracompact) Hausdorff space. 

[In every case, X is T 1 • And: Tl + normal ::? Hausdorff. 

(Normal) Let A be a closed subset of X, take an f E C(A, [0, 1]), and let :F be the set of 

continuous functions F that are extensions of f and have domains of the form A U X I, where X/ = U Ai 
i 

(I C J). Order:F by writing F' S F" iff F" is an extension of F'. Every chain in:F has an upper bound, 

so by Zorn, :F has a maximal element Fo. But the domain of Fo is necessarily all of X and FolA = I. 
(Normal and Countably Paracompact) First recall that a normal Hausdorff space is count

ably paracompact iff its product with [0,1] is normal. Since.A x [0,1] = {Aj x [0,1] : i E J} is an absolute 

closure preserving closed covering of X x [0,1], it follows that X X [0,1] is normal, thus X is count ably 

paracompact. 

(Perfectly Normal) Fix a closed subset A of X. To prove that A is a zero set in X, equip 

J with a well ordering <. Given i E J, put X(i) = U Ai. Inductively construct continuous functions 
i'5j 

f; : XU) - [0,1] such that Ij"IX(i') = Ii' if i' < i" and Z(fi) = A n XU)· 

(Collectionwise Normal) Let A be a closed subset of X, E any Banach space-then it suffices 

to show that every I E C(A, E) admits an extension F E C(X, E) (d. p. 6-37). This can be done by 

imitating the argument used to establish normality. 

(Paracompact) Tamano's theorem says that a normal Hausdorff space X is paracompact iff 

X x fJX is normal, which enables one to proceed as in the proof of countable paracompactness.] 

EXAMPLE The ordinal space [0, Or is not paracompact but HO, a] : a < O} is a covering of [0, O[ 

by compact Hausdorff spaces and [0, O[ has the final topology with respect to the inclusions [0, a] - [0,0[. 

FACT Let X be a topological spacej let.A = {Ai: j E J} be an absolute closure preserving closed 

covering of X. Suppose that each Ai can be embedded as a closed subspace of a polyhedron-then X can 

be embedded as a closed subspace of a polyhedron. 

[For every i there is a vertex scheme Ki, a vector space Ei over R, and a closed embedding f; : Ai -

IKi I (C Ei)' Write E for the direct sum of the Ej and give E the finite topology. Let EI stand for the 

direct sum of the Ei (i E I) and put KI = K(E/ )-then IK/I C IK(E)I. Here, as above, I is a subset of J. 

Consider the set 'P of all pairs (I, fr), where fr : XI - IKII is a closed embedding. Order'P by stipulating 

that (1',11,) S (1",1111) iff I' C I" and (1) II" IX/I = II' & (2) I/"(XI" -XI,)nIKI,1 = e. Every chain 

in 'P has an upper bound, so by Zorn, 'P has a maximal element (10, fro)' Verify that X/o = X.] 

Application: Let X be a paracompact Hausdorff space. Suppose that X admits a covering U by open 



sets U, each of which is homeomorphic to a closed. subspace of a polyhedron-then X is homeomorphic to 

a closed. subspace of a polyhedron. 

The embedding theorem of dimension theory implies that every second countable compact Hausdorff 

space of finite topological dimension can be embedded in some euclidean space (d. p. 19-28). It there

fore follows that if a topological space X has an absolute closure preserving closed. covering made up of 

metrizable compacta of finite topological dimension, then X can be embedded as a closed. subspace of a 

polyhedron. This setup is realized, e.g., by the CW complexes (d. p. 6-12). 

The product X x Y of polyhedrons X and Y need not be a polyhedron (cf. p. 5-14), 

although this will be the case if one of the factors is locally compact. 

FACT Let X and Y be polyhedrons-then X x Y has the homotopy type of a polyhedron. 

{ 
IKI" IKI. [Consider a product IKI x ILl. Since have the same homotopy type, it need only be 
ILl" ILl. 

shown that IKI. X ILl. has the homotopy type of a polyhedron. Let {~ be the cozero set covering of 

{ IKIII associated with the barycentric coordinates-then {K can be identified with the corresponding 
ILl. L 

nerve {N(U). Put U X V = {U X V : U e u, V e V}. Claim: There is a homotopy equivalence 
N(V) 

{ 
U X V - U (U X V - U) 

IN(U X V)I" - IN(U)I" X IN(V)I". Indeed, the projections define vertex 
U X V - V (U X V - V) 

maps • from which P : IN(U X V)I" - IN(U)I" X IN(V)I •• where P = lpul X Ipvl. {
PU : N(U X V) - N(U) 

Pv : N(U X V) - N(V) 
A homotopy inverse q : IN(U)I" X IN(V)I" - IN(U X V)I" to p is given in terms of barycentric coordinates 

by buxv(q(I/J,.p» = bu(I/J)bv(.p).] 

Let X be a topological spacej let A be a closed subspace of X-then X is said to 

be obtained from A by attaching n-cells if there exists an indexed collection of continuous 

functions fi : S,,-1 -to A such that X is homeomorphic to the adjunction space (II Dft) Uf 
i 

A (f = IIfi). When this is so, X - A is homeomorphic to II(D" - Sft-l) = liB", a 
iii 

. decomposition that displays its path components as a collection of n-cells. 

EXAMPLE Put B", = (1,0, ... ,0) e R"'+t (n ~ 1). Let I be a set indexing a collection of 

copies of the pointed space (S"', B,,)-then the wedge V S" is a pointed space with basepoint *. Since the 
I 

quotient D" /S,,-1 can be identified with S", V 8" is obtained from * by attaching n-cells. 
I 
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of cl::: ~u:::::(~)c~{sp;ce 9~~n~ CW ~:::::::tO~o~ is a sequence X(O) , X(l), ... 

. . x(n) C x(n+1) 

(CW d x(O) is discrete. 

(CW2 ) x(n) is obtained from x(n-I) by attaching n-cells (n > 0). 

(CWa) X has the final topology determined by the inclusions x(n) -+ X. 

A CW complex is a topological space X equipped with a CW structure. Just as a 

polyhedron may have more than one triangulation, a CW complex may have more than 

one CW structure. Every CW complex is a perfectly normal paracompact Hausdorff space. 

[Note: Let K be a vertex scheme. Consider IKI (Whitehead topology)-then IK(O)I 

is discrete and IK(n)1 is obtained from IK(n-I)1 by attaching n-cells (n > 0) : 1111- (11) -+ 

IK(n-I)I, 11 an n-simplex. Since IKI has the final topology determined by the inclusions 

IK(n)1 -+ IKI, it follows that the sequence {IK(n)l} is a CW structure on IKI.] 
CW is the full subcategory of TOP whose objects are the CW complexes and HCW 

is the associated homotopy category. 

00 

EXAMPLE Equip ROO with the finite topology. Let SOO = U SOl and give it the induced topology 
o 

or, what amounts to the same, the final topology determined by the inclusions SOl - SOO. The sequence 

{Sol} is a CW structure on SOO. Indeed, SOl is obtained from sn-1 by attaching two n-cells (n > 0) 

(seal the upper and lower hemispheres at the equator). On the other hand, Rn is not obtained from 

R n- 1 by attaching n-cells. Therefore the sequence {Rn} is not a CW structure on ROO. But ROO is 

obviously a polyhedron. A less apparent. aspect is this. Put 800 = (1,0, ... )-then it can be shown that 

SOO and SOO - {800} are homeomorphic. Since stereographic projection from 800 defines a homeomorphism 

SOO - {soo} _ Roo, the conclusion is that SOO and ROO are actually homeomorphic. 
00 

[Note: The sequence {nn} is not a CW structure for n°o = Unn. However, nn usn can be 
o 

obtained from nn-1 u sn-1 by attaching four n-cells (n > 0), so the sequence {nn Usn} is a CW 

structure for n°O.J 

Let X be a CW complex with CW structure {x(n)} : x(n) is the n-ske1eton of X. The 

inclusion x(n) -+ X is a closed cofibration (cf. p. 3-5) and \f n ;::: 1, the pair (X,x(n») is 

n-connected. Put Eo = x(O) and denote by En the set of path components of x(n) _x(n-I) 
00 

(n > 0). Let E = U En-then an element e of E is said to be a cell in X, e being termed 
o 

an n-cell if e E En. Set theoretically, X is the disjoint union of its cells. On the basis of 

the definitions, for every e E En, there exists a continuous function 4>e : D n -+ e U x(n-l), 

the characteristic map of e, such that 4>e IBn is an embedding and (i) 4>e(Bn) = ej (ii) 

4>e(sn-l) C x(n-l)j (iii) 4>e(Dn) = e. X has the final topology determined by the 4>e. 
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A subspace A C X is called a subcomplex if there exists a subset £'A C £' : A = UEA 
& "r/ e E EA n En, ~e(Dn) C A. A subcomplex A of X is itself a CW complex with 
CW structure {A(n) = An x(n)}. The inclusion A -+ X is a closed cofibration and for 

every open U :J A there exists an open V :J A with V c U such that A is a strong 

deformation retract of V. H E' c E, then uE' is a subcomplex iff UE' is closed. Arbitrary 

unions and intersections of subcomplexes are subcomplexes. In general, the e are not 

subcomplexes, although this will be the case if all the characteristic maps are embeddings. 

The combinatorial dimension of X, written dimX, is -1 if X is empty, otherwise is the 

smallest value of n such that X = x(n) (or 00 if there is no such n). It is a fact that dimX 

is equal to the topological dimension of X (d. p. 19-21), therefore is independent of the 

CW structure. 

Let X be a OW complex-then the collection e = {e : e e &} is .. closed covering of X and X has 

the final topology determined by the inclusions e - X but e need not be closure preserving. 

EXAMPLE (Simplicial Sets) Let X be a simplicial set-then its geometric realization IXI is a 

CW complex with CW structure {lx(n)l}. In fact, IX(O)I is discrete and, using the notation of p. 0-18, 

X! . ~[n] --+ x(n-l) 

the commutative diagram 1 1 is a pushout square in SISET. Since the geoniet-

X! ·a[n] -+ x(n) 

ric realization functor 111 is a left adjoint, it preserves colimit..s. Therefore the commutative diagram 

X! . .:in -+ Ix(n-l)1 

1 1 is a pushout square in TOP, which means that Ix(n)1 is obtained from 

X!. an -+ !X(n.) I 
!X(n.-l)! by attaching n-cells (n > 0). Moreover, X = colimX(n.) => IX! = colimIX(n)l, so IXI has 

the final topology determined by the inclusions IX(fl)I-!XI. Denoting now by G the identity component 

of the homeomorphism group of [0, 1], there is a left action G X IXI - IX! and the orbits of G are the cells 

of IX!. 

[Note: If Y is a simplicial subset of X, then IYI is .. subcomplex of lXI, thus the inclusion IYI- IXI 

is a dosed cofibration.] 

It is true but not obvious that if X is a simplicial set, then IXI is actually a polyhedron (cf. p. 13-11). 

A CW pair is a pair (X, A), where X is a CW complex and A c X is a sub complex. 

CW2 is the full subcategory of TOp2 whose objects are the CW pairs and HCW2 is the 

associated homotopy category. 
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A pointed CW complex is a pair (X, xo), where X is a CW complex and Xo E X(O). 

CW. is the full subcategory of TOP. whose objects are the pointed CW complexes and 

HeW. is the associated homotopy category. 

[Note: If (X,xo) is a pointed CW complex, then V q ~ 1, 1I'"q(X,xo) :::::: colim 

1I'"q(x(n),xo).] 

Let X be a CW complex-then V 2:0 EX, the inclusion {2:0} - X is a cofibration (cf. p. 3-17), 

thus (X, 2:0) is wellpointed. Of course, a given 2:0 need not be in X(O) but there always exists some CW 

structure on X having 2:0 as a O-cell. 

Let X be a topological space, A C X a closed subspace-then a relative CW structure 

on (X, A) is a sequence (X, A)(O), (X, A)(I),... of closed sub spaces (X, A)(n) 

{

X = U(X, A)(n) 
o and subject to: 

(X, A)(n) C (X, A)(n+I) 

(RCWI ) (X,A)(O) is obtained from A by attaching O-cells. 

(RCW2 ) (X, A)(n) is obtained from (X, A)(n-l) by attaching n-cells (n > 0). 

(RCW 3) X has the :final topology determined by the inclusions (X, A)(n) --7 X. 

[Note: (X, A)(O) is the coproduct of A and a discrete space, so when A = 0 the 

definition reduces to that of a CW structure.] 

A relative CW complex is a topological space X and a closed subspace A equipped 

with a relative CW structure. 

[Note: If (X, A) is a relative CW complex, then the inclusion A --7 X is a closed 

cofibration and X/A is a CW complex. On the other hand, if X is a CW complex and if 

A C X is a subcomplex, then (X, A) is a relative CW complex.] 

Example: Suppose that (X, A) is a relative CW complex-then (IX, IA) is a relative 

CW complex, where (IX,IA)(n) = io(X,A)(n) U (I(X,A)(n-l) U IA) U il(X,A)(n). 

Let (X, A) be a relative CW complex with relative CW structure {(X, A)(n)} : (X, A)(n) 

is the n-skeleton of X relative to A. The inclusion (X, A)(n) --7 X is a closed cofibration (cf. 

p. 3-5) and V n ~ 1, the pair (X, (X, A)(n») is n-connected. The relative combinatorial 

dimension of (X, A), written dim(X, A), is -1 if X is empty, otherwise is the smallest 

value of n such that X = (X, A)(n) (or 00 if there is no such n). Obviously, dim(X, A) = 
dim(X/A) provided that X is nonempty. 

LEMMA Let (X, A) be a relative CW complex-then for every compact subset K C 

X there exists an index n such that K C (X, A)(n). 

[Consider the image of K under the projection X --7 X/A, bearing in mind that X/A 

is a CW complex.] 
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Application: Let (X,A,xo) be a pointed pair. Assume: (X,A) is a relative CW 
complex-then Y q ~ 1, 1f'q(X,xo) ~ colim1f'q«X,A)(n),xo). 

HOPF EXTENSION THEOREM Let (X, A) be a relative CW complex with 

dim(X,A) < n + 1 (n > 1). Suppose that f E C(A,Sn)-then 3 FE C(X,Sn): FIA = f 
iff f*(Hn(Sn» C i*(Hn(x», i : A -+ X the inclusion. 

HOPF CLASSIFICATION THEOREM Let (X,A) be a relative CW complex with 

dim(X,A) < n (n ~ 1). Fix a generator, E Hn(sn,Sni Z)-then the assignment [f] -+ f*, 
defines a bijection [X, Ai sn, sn] -+ Hn(x, Ai Z). 

EXAMPLE The unit tangent bundle of s2n can be identified with the Stiefel manifold V 2n+1 ,2. 

It is (2n - 2)-connected with euclidean dimension 4n - 1. One has Hq (V2n+l,2) ~. Z (q = 0,4n -

1), H2n-l(V2n+l,2) ~ Z/2Z, and Hq (V2n+1,2) = 0 otherwise. By the Hopf classification theorem, 

[V2n+l,2, S4n-l] ~ H4n-l(V2n+1,2), so there is a map f : V2n+1,2 - s4n-l such that r induces an iso.

morphism H 4n - 1 (S4n-l) _ H4n-l (V 2n+1,2). Consequently, under f., H.(V 2n+l,2 i Q) ~ H.(s4n-l; Q), 

thus the mapping fiber E, of f is rationally acyclic, i.e., ii.(E,; Q) = 0 (cf. p. 4-44). 

Let {; be CW complexes with CW structures { i;i:;j -then a skeletal map is a 

continuous function f : X -+ Y such that Y n: f(x(n» C y(n). 

[Note: A CW complex is filtered by its skeletons, so the term "skeletal map" is just 

the name used for "filtered map" in the CW context.] 

EXAMPLE (Simplicial Sets) If f : X - Y is a simplicial map, then If I : IXI - IYI is a skeletal 

map and transforms cells of IXI onto cells of IYI. 

SKELETAL APPROXIMATION THEOREM Let X and Y be CW complexes. Sup

pose that A is a subcomplex of X-then for any continuous function f : X -+ Y such that 

flA is skeletal there exists a skeletal map 9 : X -+ Y such that flA = glA and f ~ 9 reI A. 

[Note: In particular, every continuous function f : X -+ Y is homotopic to a skeletal 

map 9 : X -+ Y.] 

Let {~~':? be relative CW complexes with relative CW structures { i~~':?(~;l 
then a relative skeletal map is a continuous function f : (X, A) -+ (Y, B) such that Y n : 
f«X, A)(n» C (Y, B)(n). 
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RELATIVE SKELETAL APPROXIMATION THEOREM Let (X,A) and (Y,B) be 

relative CW complexes-then every continuous function f : (X, A) --+ (Y, B) is homotopic 

reI A to a relative skeletal map 9 : (X, A) --+ (Y, B). 

Here is a summary of the main topological properties of CW complexes. 

(TCW 1) Every CW complex is compactly generated. 

(TCW2 ) Every CW complex is stratifiable, hence is hereditarily paracompact. 

(TCW 3) Every CW complex is uniformly locally contractible, therefore locally 

contractible. 

(TCW4 ) 

(TCW5 ) 

(TCW6 ) 

are sub complexes. 

Every CW complex is numerably contractible. 

Every CW complex is locally path connected. 

Every CW complex is the coproduct of its path components and these 

(TCW 7) Every connected CW complex is path connected. 

(TCW 8) Every connected CW complex has a universal covering space. 

[Note: If X is a connected CW complex with CW structure {x(n)} and if p: X --+ X 

is a covering projection, then the sequence {x(n) = p-l(x(n»} is a CW structure on X 
with respect to which p is skeletal.] 

If (X, A) is a relative CW complex, then certain topological properties of A are au

tomatically transmitted to X. For example, if A is in CG, a-CG, or CGH, then the 

same holds for X. Analogous remarks apply to a Hausdorff A which is normal, perfectly 

normal, paracompact, etc. 

(F) A CW complex X is said to be finite if #(£) < w. Every finite CW complex 

is compact and conversely. A compact subset of a CW complex is contained in a finite 

subcomplex. 

(C) A CW complex X is said to be countable if #(£) $ w. A CW complex is 

countable iff it does not contain an uncountable discrete set. Every countable CW complex 

is Lindelof and conversely. 

[Note: The homotopy groups of a countable connected CW complex are countable.] 

(LF) A CW complex X is said to be locally finite if each x E X has a neigh

borhood U such that U is contained in a finite sub complex of X. Every locally finite CW 

complex is locally compact and conversely. Every locally finite CW complex is metrizable 

and conversely. A locally finite connected CW complex is countable. 

What spaces carry a OW structure? There is no known characterization but the foregoing conditions 

impose a priori limitations. For example, a nonmetrizable LOH space cannot be equipped with a OW 
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structure. On the other hand, the Cantor set and the Hilbert cube are metrizable compact Hausdorff 

spaces but neither supports a CW structure. 

[Note: Every compact differentiable manifold can be triangulated but examples are known of compact 

topological manifolds that cannot be triangulated, Le., that are not polyhedrons (Davis-Januszkiewiczt ).] 

EXAMPLE (The Sorgenfrey Line) Topologize X = R by choosing for the basic neighborhoods 

of a given :I: all sets of the form [:1:, y[ (:I: < y). In this topology, the line is a. perfectly normal paracompact 

Hausdorff space but it is not locally compact. While not second countable, X is first countable (and 

separable), therefore is compactly generated. However, X is not locally connected, thus carries no CW 

structure. 

[Note: The square of the Sorgenfrey line is not normal (apply Jones' lemma).] 

EXAMPLE (The Niemytzki Pla.ne) Let X be the closed upper half plane in R2. Topologize 

X as follows: The basic neighborhoods of (:1:, y) (y > 0) are as usual but the basic neighborhoods of 

(:1:,0) are the {(:I:, On U B, where B is an open disk in the upper half plane with horizontal tangent 

at (:1:,0). X is a compactly generated CRH space. In addition, X is Moore, hence is perfect. And 

X is connected, locally path connected, and even contractible (consider the homotopy H«:I:, y), t) = 

{
(:I:,y)+t(0,1) (0~t~I/2) . . 

). However, X IS not normal, thus carrles no CW structure. 
t(O, 1) + 2(1 - t)(:I:, y) (1/2 ~ t ~ 1) . 

[Note: X is neither countably paracompact nor metacompact but is count ably metacompact.] 

EXAMPLE An open subset of a polyhedron is a polyhedron but an open subset of a CW complex 

need not be a CW complex. To see this, fix an enumeration {qn} of Q n]O, 1[. Consider the CW complex 

X defined as follows: X(O) = {O, I}, X(l) = [0,1] {O - 0 and at each point qn attach a 2-cell by taking 
1-1 . 

for In : S1 - X(l) the constant map In = qn. Choose a point :l:n E en (E e2) and put A = {:l:n}-then 

A is closed and U = X - A carries no CW structure. 

[Otherwise: (a) [0,1] C U(l); (b) V n, U(1) n en i- 0; (c) V n, qn E U(O).] 

PROPOSITION 2 Every CW complex has the homotopy type of a polyhedron. 

[Let X be a CW complex with CW structure {x(n)} : X = colimX(n). Taking 

into account §3, Proposition 15, it will be enough to construct a sequence of vertex 

schemes K(n) such that V n, K(n-l) is a subscheme of K(n) and a sequence of homo

topyequivalences ¢>n : x(n) -+ IK(n)1 such that V n, ¢>nlx(n-l) = ¢>n-l' Proceeding by 

induction, make the obvious choices when n = 0 and then assume that K(o), .. . ,K(n-l) 

and ¢>o, ... ,¢>n-l have been defined. At level n there is an index set In and a pushout 

t J. Differential Geom. 34 (1991), 347-388. 
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square 1 

&-12 

~ x(n-l) 

1 (I = Illi). Given i E In, use the simplicial approxima
i 

In' An --+ x(n) 
tion theorem to produce a vertex scheme Ki and a vertex map gi : Ki --+ K(n-l) with 

IKil = t:..n and Igil :::::: 4>n-1 0 Ii. Combine the Ki and put Igl = Iligil. The ad
i 

junction theorem implies that there exists a vertex scheme K(n) containing K(n-l) as 

a subscheme and a homeomorphism In . An Uigi IK(n-I)1 --+ IK(n)1 whose restriction to 

In' t:..n ---L..x(n-l) 

IK(n-I)1 is the identity map. The triangle I~ !,p,.-1 is homotopy commuta-

IK(n-l)I 
tive: Igl:::::: 4>n-1 0 I. Since 4>n-1 is a homotopy equivalence, one can find a homotopy 

equivalence 4>n: In .Anu,x(n-l) --+ In .AnUlgIIK(n_I)1 such that 4>nlx(n-l) = 4>n-1 (cf. 

p. 3-24), which completes the induction.] 

[Note: Similar methods lead to the expected analogs in CW2 or CW.. Consider, 

e.g., a CW pair (X, A) with relative CW structure {(X, A)(n)} : (X, A)(n) = x(n) U A. 

Choose a vertex scheme L and a homotopy equivalence 4> : A --+ ILl-then there is a 

vertex scheme K(o) containing L as a subscheme and a homotopy equivalence of pairs 

«X, A)(O) , A) --+ (IK(o) I, ILl) so, arguing as above, there is a vertex scheme K containing L 

as a sub scheme and a homotopy equivalence W : X --+ IKI such that wlA = 4>. Conclusion: 

In HTOp2,(X,A) ~ (IKI, ILl) (cf. §3, Proposition 14).] 

PROPOSITION 3 Let X be a CW complex. Assume: (i) X is finite (countable) or 

(ii) dim X ~ n-then there exists a vertex scheme K such that X has the homotopy type 

of IKI, where (i) K is finite (countable) or (ii) dimK :5 n. 

[This is implicit in the proof of the preceding proposition.] 

Let X be a CW complex; let A be the collection of finite subcomplexes of X-then A is an absolute 

closure preserving closed covering of X. Since every finite subcomplex of X is a second countable compact 

Hausdorff space of finite topological dimension, it follows that X can be embedded as a closed subspace 

of a polyhedron (cf. p. 5-5). 

FACT Every CW complex is the retract of a polyhedron, hence every open subset of a CW complex 

is the retract of a polyhedron. 

EXAMPLE Every polyhedron is a CW complex but there exist CW complexes that cannot be 

triangulated. Thus let /(t) = tsin(1I'/2t) (0 < t :S 1) and set /(0) = O. Denote by m the absolute 



&-13 

minimum of Ion [0,1] (so -1 < m < 0). Take for X the image of the square [0,1] X [0,1] under the map 

(u, v) - (u, uv,f(v». The followingsubspaces constitute a CW structure on X: 

X(O) = {(O, 0, 0), (1,0,0), (0,0,1), (1, 1, 1), (0,0, m)}, 

X(l) = ((u,O,O) : 0::;; u::;; l}U{(u,u, 1): 0::;; u::;; l}U{ {(O,O,v): m::;; v::;; O} U{(l,v,l(v» : 0::;; v::;; 11, 
{(O,O, v) : 0::;; v::;; I} 

and X(2) = X. Using the fact that I has a sequence {Mn} of relative maxima: Ml > M'J > ... (1 > Ml), 

look at the (0,0, Mn) and deduce that X is not a polyhedron. 

FACT Let X be a CW complex. Suppose that all the characteristic maps are embeddings-then 

X is a polyhedron. 

There are two other issues. 

(Products) Let {: . be CW complexes with CW structures { 1~~:;~. Put 

(X Xk y)(n) = U X(p) XA: y(q). Consider X XA: Y-then the sequence {(X XA: y)(n)} 
p+q=n 

satisfies CW 1, CW 2, and CW 3 above, meaning that it is a CW structure on X x A: Y. When 

can "XA:" be replaced by "x"? Useful sufficient conditions to ensure this are that one of 

the factors be locally finite or that both of the factors be countable (necessary conditions 

have been discussed by Tanakat ). 

EXAMPLE (Dowker'S Product) Suppose that X and Y are CW complexes-then the product 

X X Y need not be compactly generated, hence, when this happens, X X Y is not a CW complex. Here is 

an illustration. Definition of X: Put X(O) = NN U {O} (discrete topology), let III : {O, I} _ X(O) be the 

map {O - 0 (8 E NN), write X(l) for the space thereby obtained from X(O) by attaching I-cells, and 
1-8 

take X = X(O) U X(l). Definition of Y: Put yeO) = N U {O} (discrete topology), let In : {O, I} _ yeO) 

be the map { 0 - 0 (n EN), write y(l) for the space the~eby obtained from yeO) by attaching I-cells, 
1-n 

and take Y = yeO) U y(l). Let w. (wn ) be the characteristic map of the I-cell corresponding to 8 E NN 

(n EN). Consider the following subset of X x Y : K = ((W.(l/an), Wn(l/an» : (a, n) E NN X N}. 

Evidently K is a closed subset of X Xj: Y. But K is not a closed subset of X x Y. For if it were, 

X x Y - K would be open and since the point (0,0) E X x Y - K, there would be a basic neighborhood 

U x V : (0,0) E U x V C X x Y - K. Given 8 E NN, 3 a real number a. : 0 < a. ::;; 1 such that 

U:::> {W.(P) : p < a.} and given n EN, 3 a real number bn : ° < bn ::;; 1 such that V :::> {wn(q) : q < bn}. 

Define i E NN by in = 1 + [max{n,l/bn}] (so in > n &; in > l/bn ); define n EN by n = 1 + [l/ai'] (so 

t Proc. Amer. Math. Soc. 86 (1982), 503-507. 
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n> l/o.)-then the pair (<<I?(I/sn ), «I?;r(I/sn» is in both U x V and K. Contradiction. Incidentally, one 

{
xxtvy-+x 

can show that the projections are not Hurewicz fibrations (although, of course, they are 
X Xtv y -+ y 

CG fibrations). 

[Note: This construction has an obvious interpretation in terms of cones. Observe too that X and 

Yare polyhedrons. Corollary: The square of a polyhedron need not be a polyhedron.] 

FACT Every countable CW complex has the homotopy type of a locally finite countable CW 

complex. 

[Let X be a countable CW complex. Fix an enumeration {ek} ofits cells. Given ek, denote by X(etv) 

the intersection of all subcomplexes of X containing ek-then X(ek) is a finite subcomplex of X. Put 
n 

xn = U X(etv) : X O C Xl C ... is an expanding sequence of topological spaces with XOO = X. The 

° telescope tel XOO of XOO has the same homotopy type as xoo = X (cf. p. 3-12) and is a CW complex. 

In fact, telXoo is the subcomplex of XXk [0,00[= X X [(), oo[ made up of the cells e x {n}, ex]n, n + 1[, 

where e is a cell of xm (m :5 n), a description which makes it clear that telXoo is locally finite.] 

[Note: Suppose that X is a locally finite countable CW complex-then there exists a sequence of 

finite subcomplexes Xn such that Y n,Xn C intXn+1 , with X = UXn .] 
n 

{
X {{x(n)} 

(Adjunctions) Let y be CW complexes with CW structures {y(n)}' Sup-

pose that A is a subcomplex of X. Let f : A ~ Y he a skeletal map-then the adjunction 

space X UJ Y is a CW complex, the CW structure being {x(n) U J(n) y(n)Hf(n) = fIA(n»). 

Examples: (1) If X is a CW complex and if A c X is a sub complex , then the quotient 

X/A is a CW complex; (2) If X is a CW complex, then its cone r X and its suspension 

EX are CW complexes; (3) If X and Y are CW complexes and if f: X ~ Y is a skeletal 

map, then the mapping cylinder M J of f is a CW complex, containing both X and Y as 

embedded subcomplexesj (4) If X and Y are CW complexes and if f : X ~ Y is a skeletal 

map, then the mapping cone C J of f IS a CW complex containing Y as an embedded 

subcomplex. 

[Note: There are also pointed analogs of these results. For example, if {~~':O0/ are 

pointed CW complexes, then the smash product X #"Y is a pointed CW complex.] 

Let X and Y be CW complexes. Let A be a subcomplex of X and let / : A -+ Y be a continuous 

function-then X Uf Y has the homotopy type of a CW complex. Proof: By the skeletal approximation 

theorem, there exists a skeletal map 9 : A -+ Y such that / ~ g, so X Uf Y has the same homotopy type 

as X Ug Y (d. p. 3-24). 

FACT A CW complex is path connected iff its I-skeleton is path connected. 
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EXAMPLE (Trees) Let X be a nonempty connected CW complex-then a tree in X is a 

nonempty simply connected subcomplex T of X with dim T ::5 1. Every tree in X is contractible and 

contained in a maximal tree. A tree is maximal iff it contains X(O). If T is a maximal tree in X, then 

X/T is a connected CW complex with exactly one O-cell and the projection X -+ X/T is a homotopy 

equivalence (cf. p. 3-24). 

WHE CRITERION Let {-; be topological spaces, f : X --+ Y a continuous 

function-then f is a weak homotopy equivalence if for any finite CW pair (K, L) and 
tP 

---+ X L 

any diagram 1 11 ,where f 0 </> = 1/JIL, there exists a q, K --+ X such that 

K ---+ Y 
¢ 

q,IL = </> and f 0 q, ~ 1/J reI L. 
Sn ---+ X Sn ---+ X 

[Indeed, diagrams of the form 1 1/, 1 11 evidently suffice.] 

---+ Y sn ---+ Y D n+1 

LEMMA Suppose that f : X --+ Y is an n-equivalence-then in any diagram 

Sn-l ~ X 

1 
Dn 

---+ 
¢ 

1/, where f 0 </> ~ 1/J on Sn-l by h : ISn-l --+ Y, there exists a q, : D n 
--+ X 

Y 

such that q,ISn
-

1 = </> and an H : ID n 
--+ Y such that HIIS n

-
1 = hand f 0 q, ~ 1/J on D n 

byH. 

HOMOTOPY EXTENSION LIFTING PROPERTY Suppose that f : X --+ Y is a 

weak homotopy equivalence. Let (K I L) be a relative CW complex-then in any diagram 

L 

1 
K ---+ 

¢ 

X 

11, where f 0 </> ~ 1/J on L by h : IL --+ Y, there exists a q, : K --+ X such that 

Y 

q,IL = </> and an H : IK --+ Y such that HilL = h and f 0 q, ~ 1/J on K by H. 

Application: Let f : X --+ Y be a weak homotopy equivalence-then for any CW 

complex K, the arrow f. : [K, X] --+ [K, Y] is bijective. 

[To see that f. is surjective (injective), apply the homotopy extension lifting property 

to (K,0) ((IK, ioK U ilK».] 

[Note: The condition is also characteristic. Thus first take K = * and reduce to 
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when {-; are path connected. Next, take K = Y S1 (I a suitable index set) to get that 

V x EX, f* : 1r} (X, x) -+ 1r} (Y, f(x)) is surjective. Finish by taking K = S" (cf. p. 3-18).] 

{ 
(X,zo). . 

EXAMPLE Let be pomted connected CW complexes. Suppose that f E C(X, Zoj Y, YO) 
(Y, YO) 

has the property that V n > 1, f. : 1I"",(X,zo) --+ 1I"",(Y,yo) is bijective-then for any pointed simply 

connected CW complex (K,ko), the arrow f. : [K,kojX,zo] --+ [K,kojY,yo] is bijective. 

FACT Let p : X --+ B be a continuous function-then p is both a weak homotopy equivalence 

L X 

and a Serre fibration iff for any relative CW complex (K, L) and any diagram 1 11' ,where 

po ¢ = .pIL, there exists a q, : K --+ X such that q,IL = ¢ and po q, = .p. 
K ---+ B 

1/1 

[Note: The characterization can be simplified: A continuous function p : X --+ B is both a weak 
S",-1 ---+ X 

homotopy equivalence and a Serre fibration iff every commutative diagram 1 1 (n ~ 0) 

n'" ---+ B 
admits a filler n'" --+ X.] 

XI ---+ X 

Application: Let pl1 1 l' be a pullback square. Suppose that p is a Serre fibration and a 

BI ---+ B 
weak homotopy equivalence-then pi is a Serre fibration and a weak homotopy equivalence. 

A continuous function f: (X, A) -+ (Y, B) is said to be a weak homotopy equivalence 

of pairs provided that f: X -+ Y and f : A -+ B are weak homotopy equivalences. 

[Note: A weak homotopy equivalence of pairs is a relative weak homotopy equivalence 

(cf. p. 4-51) but not conversely.] 

Application: Let f : (X, A) -+ (Y, B) be a weak homotopy equivalence of pairs-then 

for any CW pair (K,L), the arrow f*: [K,LiX,A] -+ [K,L;Y,B] is bijective. 

[Note: The condition is also characteristic. For [K, 0; X, A] R:: [K, 0; Y, B] => [K, X] R:: 

[K, Y] and [IK, ioK; X, A] R:: [IK, ioK; Y, B] => [K, A] R:: [K, B].] 

REALIZATION THEOREM Suppose that X and Yare CW complexes. Let f : 
X -+ Y be a weak homotopy equivalence-then f is a homotopy equivalence. 

[Note: It is a corollary that the result remains true when X and Y have the homotopy 

type of CW complexes.] 
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Application: A connected CW complex is contractible iff it is homotopically trivial. 

EXAMPLE Let X and Y be CW complexes-then the identity map X x Ie Y -+ X x Y is a 

homotopy equivalence. 

[A priori, the identity map X x Ie Y -+ X x Y is a weak homotopy equivalence. However, X and Y 

each have the homotopy type of a polyhedron (cf. Proposition 2), thus the same holds for their product 

X x Y (cf. p. 5-5).] 

EXAMPLE (H Groups) Let (X, zo) be a nondegenerate homotopy associative H space. Assume: 

{
XxX -+ XxX 

X is path connected-then the shearing map sh : is a weak homotopy equivalence, 
(z, y) -+ (z, zy) 

thus X is an H group if X carries a CW structure (cf. p. 4-27). 

The pointed version of the realization theorem says that if {: are CW complexes and 

if I : X --+ Y is a weak homotopy equivalence, then I is a pointed homotopy equivalence 

for any choice of { Xo E yX with I( xo) = Yo. Proof: By the realization theorem, I is a 
Yo E 

homotopy equivalence, so I is actually a pointed homotopy e~uivalence, {~:,':ao/ being 

wellpointed (cf. p.3-19). 

RELATIVE REALIZATION THEOREM Suppose that (X,A) and (Y,B) are CW 

pairs. Let I : (X, A) --+ (Y, B) be a weak homotopy equivalence of pairs-then I is a 

homotopy equivalence of pairs. 

[Note: This result need not be true if one merely assumes that I is a relative weak 

homotopy equivalence. Example: Take X path connected, fix a point ao E A, and consider 

the projection (X x A, ao X A) --+ (X, ao). It is a relative weak homotopy equivalence but 

the induced map on relative singular homology is not necessarily an isomorphism.] 

The relative realization theorem is a consequence of the following assertion. Suppose that (X, A) and 

(Y, B) are relative CW complexes. Let I : (X, A) -+ (Y, B) be a weak homotopy equivalence of pairs with 

IIA : A -+ B a homotopy equivalence--then I is a homotopy equivalence of pairs. 

EXAMPLE Let (K, L) be a relative CW complex. Assume: The inclusion L -+ K is a weak 

homotopy equivalence--then the inclusion L -+ K is a homotopy equivalence. Proof: Consider the arrow 

(L, L) -+ (K, L). 

PROPOSITION 4 Let (Y, B) and (yl, BI) be pairs and let h : (Y, B) --+ (yl, BI) be 

a continuous function; let (X, A) and (X', AI) be CW pairs and let I : (X, A) --+ (Y, B) 
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& f' : (X',A') -+ (Y',B') be continuous functions. Assume: f' is a weak homotopy 

equivalence of pairs-then there exists a continuous function 9 : (X, A) -+ (X', A'), unique 

(X, A) ~ (X',A') 
up to homotopy of pairs, such that the diagram 11 1 I' commutes up to 

(Y, B) --t (Y', B') 
h 

homotopy of pairs. 

[The arrow I~ : [X, A; X' ,A'l -+ [X, Ai yl, B'l is bijective.] 

Given a topological space X, a CW resolution for X is an ordered pair (K, f), where 

K is a CW complex and I : K -+ X is a weak homotopy equivalence. The homotopy type 

of a CW resolution is unique. Proof: Let I : K -+ X & f' : K' -+ X be CW resolutions 

of X-then by Proposition 4, there exists a continuous function 9 : K -+ K' such that 

K 
the diagram 11 

X 

K' 
1/' is homotopy commutative: I ~ I' 0 g. Therefore 9 is a weak 

X 
homotopy equivalence, hence is a homotopy equivalence (via the realization theorem). 

RESOLUTION THEOREM Every topological space X admits a CW resolution I : 
K -+X. 

[Note: If X is path connected (n-connected), then one can choose K path connected 

with K(O) (K(n» a singleton.] 

Application: Suppose that X is homotopically trivial-then for any CW complex K, 

the elements of C(K, X) are inessential. 

Given a pair (X, A), a relative CW resolution for (X, A) is an ordered pair «K, L), f), 
where (K, L) is a CW pair and I : (K, L) -+ (X, A) is a weak homotopy equivalence of 

pairs. A relative CW resolution is unique up to homotopy of pairs (cf. Proposition 4). 

RELATIVE RESOLUTION THEOREM Every pair (X,A) admits a relative CW 

resolution I : (K, L) -+ (X, A). 

[Fix CW resolutions { S:: ~: ~ and let i : A -+ X be the inclusion. Using Propo

sition 4, choose a 9 : L -+ K such that ¢ 0 9 ~ i 0 4>. Owing to the skeletal approximation 

theorem, one can assume that 9 is skeletal, thus its mapping cylinder Mg is a CW complex 

containing L and K as embedded subcomplexes. If r : Mg -+ K is the usual retraction, 

then r is a homotopy equivalence and ¢ 0 rlL ~ i 0 4>. Since the inclusion L -+ Mg is a 
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cofibration, '¢ 0 r is homotopic to a map I : Mg -+ X such that IlL = i 0 <p. Change the 

notation to conclude the proof.] 

[Note: If (X, A) is n-connected, then one can choose K with K(n) C L.] 

It follows from the proof of the relative resolution theorem that given (X, A) and a CW resolution 

9 : L --+ A, there exists a relative CW resolution f : (K, L) --+ (X, A) extending g. 

Let X and Y be topological spaces-then X is said to be dominated in homotopy by 

Y if there exist continuous functions {~ : : : i such that 9 0 I ::! idx. Example: A 

topological space is contractible iff it is dominated in homotopy by a one point space. 

[Note: Let I : X -+ Y be a continuous function, MI its mapping cylinder-then I 
admits a left homotopy inverse 9 : Y -+ X iff i(X) is a retract of MI' By comparison, I is 

a homotopy equivalence iff i(X) is a strong deformation retract of MI (cf. §3, Proposition 

17).] 

. EXAMPLE Let X be a topological space which is dominated in homotopy by a compact connected 

n-'manifold Y. Assume: Hn (X j Z2) :/; o-then K wasik t has shown that X and Y have the same homotopy 

type. 

FACT If X is dominated in homotopy by a CW complex, then the path components of X are open. 

DOMINATION THEOREM Let X be a topological space--then X has the homotopy 

type of a CW complex iff X is dominated in homotopy by a CW complex. 

[Suppose that X is dominated in homotopy by a CW complex Y : {~::: i & 

go I ::! idx. Fix a CW resolution h : K -+ X. Using Proposition 4, choose continuous 

K 

functions {~;::: ~ such that the diagram h 1 
. X 

I' g' 
---+ Y ---+ 

---+ 
I 

II 
y ---+ X 

9 

is homotopy 

commutative. Claim: h is a homotopy equivalence with homotopy inverse g' 0 I. In fact: 

(g'o J) 0 h ::! go f' ::! h 0 (g' 0 I') & (g 0 J) 0 h ::! h 0 idK :::::;.. g' 0 f' ~ idK (cf. Proposition 

4), so (g' 0 J) 0 h ::! g' 0 I' ::! idK & h 0 (g' 0 J) ~ 9 0 I ~ idx.] 

Application: Every retract of a CW complex has the homotopy type of a CW complex. 

t Ganad. Math. Bull. 27 (1984), 448-451. 
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[Note: Consequently, every open subset of a CW complex has the homotopy type of 

a CW complex (cf. p. 5-12).] 

COUNTABLE DOMINATION THEOREM Let X be a topological space-then X 

has the homotopy type of a countable CW complex iff X is dominated in homotopy by a 

countable CW complex. 

[Suppose that X is dominated in homotopy by a countable CW complex Y : { ~ ': : .: 

Y 
X & 9 0 f ~ idx. Using the notation of the preceding proof, consider the image g'(Y) of 

Y in K. Claim: g'(Y) is contained in a countable sub complex Lo of K. Indeed, for any 

cell e of Y, g'(e) is compact, thus is contained in a finite sub complex of K and a countable 

union of finite subcomplexes is a countable subcomplex. Fix a homotopy H : lK -+ K 

between g' 0 f 0 h and idK. Since I Lo is a countable CW complex, there exists a countable 

sub complex Ll C K : H(ILo) eLl. Iteration then gives a sequence {Ln} of countable 

subcomplexes Ln of K : V n,H(ILn) C L n+l . The union L = ULn is a countable CW 
n 

complex whose homotopy type is that of X.] 

Application: Every Lindelof space having the homotopy type of a CW complex has 

the homotopy type of a countable CW complex. 

[The sub complex generated by a Lindelof subspace of a CW complex is necessarily 

countable.] 

Is it true that if X is dominated in homotopy by a finite CW complex, then X has the homotopy 

type of a finite CW complex? The answer is "no" in general but "yes" under certain assumptions. 

Notation: Given a group G, let Z[G] be its integral group ring and write Ko(G) for the reduced 

Grothendieck group attached to the category of finitely generated projective Z[G]-modules. 

The following results are due to WaUt . 

OBSTRUCTION THEOREM Suppose that X is path connected and dominated in homotopy 

by a finite CW complex-then there exists an element w(X) E KO(?rl (X» such that w(X) = 0 iff X has 

the homotopy type of a finite CW complex. l 
One calls w(X) Wall's obstruction to finiteness. Example: If X is simply connected and dominated 

in homotopy by a finite CW complex, then X has the homotopy type of a finite CW complex. 

t Ann. of Math. 81 (1965), 56-69. 
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FULFILLMENT LEMMA Let G be a finitely presented group-then given any 01 E Ko(G), 

there exists a connected CW complex Xa which is dominated in homotopy by a finite CW complex such 

that 11"1 (X Q) = G and w(X) = 01. 

Let A be a Dedekind domain, e.g., the ring of algebraic integers in an algebraic number field-then the 

reduced Grothendieck group of A is isomorphic to the ideal class group of A. This fact, in conjunction with 

the fulfillment lemma, can be used to generate examples. Thus fix a prime p, put wp = exp(211"v'=I/p), 

and consider Z[wp] , the ring of algebraic integers in Q(wp). It is known that Ko(Z/pZ) is isomorphic 

to the reduced Grothendieck group of Z[wp]. But the ideal class group of Z[wp] is nontrivial for p > 19 

(Montgomery). Moral: There exist connected CW complexes which are dominated in homotopy by a finite 

CW complex, yet do not have the homotopy type of a finite CW complex. 

EXAMPLE Every path connected compact Hausdorff space X which is dominated in homotopy 

by a CW complex is automatically dominated in homotopy by a finite CW complex. Is w(X) = 01 Every 

connected compact ANR (in particular, every connected compact topologicaLmanifold) has the homotopy 

type of a CW complex (cf. p. 6-19), thus is dominated in homotopy by a finite CW complex and one can 

prove that its Wall obstruction to finiteness must vanish, so such an X does have the homotopy type of 

a finite CW complex. Still, some restriction on X is necessary. This is because Ferryt has shown that 

any Hausdorff space which is dominated in homotopy by a second countable compact Hausdorff space 

"'-'"" must itself have the homotopy type of a second countable compact Hausdorff space and since there exist 

connected CW complexes with a nonzero Wall obstruction to finiteness, it follows that there exist path 

connected metrizable compacta which are dominated in homotopy by a finite CW complex, yet do not 

have the homotopy type of a finite CW complex. 

EXAMPLE Suppose that X is path connected and dominated in homotopy by a finite CW 

complex-then Gersten! has shown that for any connected CW complex K of zero Euler characteris

tic, the product X x K has the homotopy type of a finite CW complex, i.e., multiplication by K kills 

Wall's obstruction to finiteness. For example, one can take K s2n+1. In particular: X x SI is homotopy 

equivalent to a finite CW complex Y, say f : X X S1 -+ Y. Since X is homotopy equivalent to X x Rand 

X x R is the covering space of X x SI determined by '11'1 (X) C '11'1 (X X SI), it follows that X is homotopy 

equivalent to the covering space Y of Y determined by the subgroup f.('II'I(X» Of'll'I (Y). Conclusion: X 

has the homotopy type of a finite dimensional CW complex. 

A (pointed) topological space is said to be a (pointed) CW space if it has the (pointed) 

homotopy type of a (pointed) CW complex. CWSP (CWSP.) is the full subcategory 

t Topology 19 (1980), 101-110; see also SLN 870 (1981), 1-5 and 73-81. 

i Amer. J. Math.. 88 (1966), 337-346; see also Kwasik, Comment. Math.. Helv. 58 (1983), 503-508. 
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of TOP (TOP.) whose objects are the CW spaces (pointed CW spaces) and HCWSP 

(HCWSP.) is the associated homotopy category. Example: Suppose that (X,A) is a 

relative CW complex, where A is a CW space-then X is a CW space. 

[Note: If (X,xo) is a pointed CW space, then (X,xo) is nondegenerate (cf. p. 3-35).] 

Every CW space is numerably contractible (cf. p. 3-13). Every connected CW space 

is path connected. Every totally disconnected CW space is discrete. Every homotopically 

trivial CW space is contractible (cf. p. 5-17). 

[N ote: A CW space need not be locally path connected.] 

The product X x Y of CW spaces {~ is a CW space. Proof: There exist CW 

complexes {f such that in HTOP, { ; : f ~ X x Y ~ K x L ~ K x k L (cf. p. 5-17) 

and K x k L is a CW complex. 

A CW space need not be compactly generated. Example: Suppose that X is not in 

CG-then r X is not in CG but r X is a CW space. However, for any CW space X, the 

identity map kX ~ X is a homotopy equivalence. 

PROPOSITION 5 Let X be a connected CW space-then X has a simply connected 

covering space X which is universal. Moreover, every simply connected covering space of 

X is homeomorphic over X to X. 

[Fix a CW complex K and a homotopy equivalence 4>: X ~ K. Let K be a universal 
-

X ~ K 
covering space of K and define X by the pullback square 1 

X --+ _ tP 

1 . Since the covering 

K 

projection K ~ K is a Hurewicz fibration (cf. p. 4-7), 4> is a homotopy equivalence (cf. 

p. 4-24), so X is a simply connected covering space of X. To see that X is universal, let 

X' be some other connected covering space of X-then the claim is that there is an arrow - / -_ / _ X ----"--+. X' 
X ~ X' and a commutative triangle ~ / . For this, form the pullback square 

X 

1 -1 ,.,p a homotopy inverse for 4>. Due to the universality of K, there is an 

K --+ X 

'" - 9 -arrow K --+ K' and a commutative triangle 
K ----=9--+. K' 
~/ Consider the diagram 

K 
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'i 
..;, 

X K -4 K' ..!t. X' --+ 

pl 1 1 lp~ 

x --+ K - K --+ X 
9 '" 

From the definitions, p' 0 ¢ 0 9 0 ~ =.p 0 ¢> op ~ p, thus 3 f E Cx(X,X'): f ~ ¢ 0 9 o~. 
Finally, if X' is simply connected,. then K' is simply connected and one can assume that 
9 is a homeomorphism. Therefore f is a fiber homotopy equivalence (d. §4, Proposition 

15). Because the fibers are discrete, it follows that f is also an open bijection, hence is a 

homeomorphism. ] 

EXAMPLE The Ca.ntor set is not a CW space. The topologist's sine curve C = Au B, where 

{
A = {(O, y) : -1 < y < I} 

- - , is not a CW space. The wedge of the broom is not a CW space but 
B = {(z,sin(2'11"/z» : 0 < Z :'5 I} 

00 

the broom, being contractible, is a CW space, although it carries no CW structure. The product n sn is 
1 

not a CW space. 

FACT Suppose that X is a connected CW space. Assume: '11"1 (X) is finite a.nd V q > I, 'll"q(X) is 

finitely generated-then there exists a homotopy equivalence I : K - X, where K is a CW complex such 

that V n, K(n) is finite. 

Dydakt has shown that the full subcategory of HCWSP. whose objects are the pointed connected 

CW spaces is bala.nced. 

Every open subset of a CW complex is a CW space (d. p.5-20). Every open subset 

of a metrizable topological manifold is a CW space (d. p. 6-28). 

PROPOSITION 8 Let U be an open subset of a normed linear space E-then U is 

a CW space. 

[Fix a countable neighborhood basis at zero in E consisting of convex balanced sets U,. 

such that U,.+1 C U,.. Assuming that U is nonempty, for each it E U, there exists an index 

n(s) : x + 2U,.(s) C U. Since U is paracompact, the open covering {x + U,.(s) : x E U} .has 

a neighborhood finite open refinement 0 = to}. So, V 0 E 0 3 xo E U: 0 C Xo +U,.(o) 
(n(O) = n(xo)). Let {lt~ : 0 E O} be a partition of unity on U subordinate to O. 

Proc. Amer. Math.. Soc. 118 (1992), 1171-1173; see also Dyer-Roitberg, Topology Appl. 48 (1992), 

119-124. 
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Consider N( 0), the nerve of O. If {01 , ••• ,Ok} is a simplex of N( 0) and if n( 0 1 ) $ ... $ 

n(Ok), then the convex hull of {xot , ••• ,xo,,} is contained in XOt + 2Un (0t} C U. Define 

. . {/ : U -+ IN(O)I {/(X) = t= KO(X)XO 
.contmuous functIons g: IN( 0)1 -+ U by g( <p) = ~ <p( O)xo and put H( x, t) = tx + 

(1 - t) E KO(X)XO to get a homotopy H : IU -+ U between go/ and idu. This shows 
o 

that U is dominated in homotopy by IN(O)I, hence, by the domination theorem, has the 

homotopy type of a CW complex.] 

[Note: If E is second countable, then U has the homotopy type of a countable CW 

complex .. Reason: Every open covering of a second countable metrizable space has a 

countable star finite refinement (cf. p. 1-25).] 

FACT Let E be a normed linear space. Suppose that Eo is a dense linear subspace of E. Equip 

Eo with the finite topology-then for every open subset U of E, the inclusion Un Eo -> U is a weak 

homotopy equivalence. 

FACT Let E be a normed linear space. Suppose that Ff! c El C ... is an increasing sequence 

of finite dimensional linear subspaces of E whose union is dense in E. Given an open subset U of E, put 

un = Un En-then UO C Ul C ... is an expanding sequence of topological spaces and the inclusion 

UOO -> U is a homotopy equivalence. 

PROPOSITION 7 Let A -+ X be a closed cofibration and let / : A -+ Y be a 

continuous function. Assume: A, X, and Y are CW spaces-then X U f Y is a CW space. 

K 

[There is a CW pair (K, L) and a commutative diagram 1 
X 

+- L ~ Y 

1 II , 
+- A ---+ Y 

f 
where the vertical arrows are homotopy equivalences and 9 is the composite. Accordingly, 

K Ug Y R:I X Uf Yin HTOP (cf. p. 3-24 ff.) and K Ug Y is a CW space (cf. p. 5-14).] 

Application: Let X !- z ..!4 Y be a 2-source. Assume: X, Y, and Z are CW spaces

then Mf,g is a CW space. 

[Note: One can establish an analogous result for the double mapping track of a 2-sink 

in CWSP (cf. §6, Proposition 8). For example, given a nonempty CW space X, V Xo EX, 
f2(X,xo) is a CW space (consider the 2-sink * -+ X +- *).] 

EXAMPLE Suppose that X and Yare CW spaces-then their join X * Y is a CW space. 
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[Note: The double mapping cylinder of X +- X X Y -+ Y defines the join. If X and Yare CW 

complexes, then X * Y is a CW complex provided that X X Y = X Xk Y. Otherwise, consider X *k Y, 

the double mapping cylinder of X +- X Xl: Y -+ Y.] 

LEMMA Let XO C Xl C ... be an expanding sequence of topological spaces. As

sume: V n, xn is a CW complex containing X n- l as a sub complex-then X OO is a CW 

complex containing xn as a subcomplex. 

EXAMPLE (The Mapping Telescope) Let {(X, f) be objects in FIL(TOP). Suppose that 
(1f,g) fn 

Xn --+ X n +1 

~ : (X, f) -+ (1f, g) is a homotopy morphism, i.e., V n, the diagram 4>nl 14>n+l is homo-

Yn --+ Yn+l 
9n 

topy commutative-then there is an arrow tel ~ : tel(X, f) -+ tel(1f, g) such that V n, the diagram 
Xn +-- teln(X,f) ---+ tel(X, f) 

1 1 1 is homotopy commutative and tel ~ is a homotopy equivalence 

Yf1. +-- teln (1f, g) ---+ tel(1f, g) 
if each ~n is a homotopy equivalence .. Thanks to the skeletal approximation theorem and the lemma, it 

then follows that for any object (X, f) in FIL(CW), there exists another object (X, g) in FIL(CW) such 

that tel(X, f) and tel(X, g) have the same homotopy type and tel(X, g) is a CW complex. 

[The mapping telescope is a double mapping cylinder (cf. p. 3-23). Use the fact that a homotopy 

X?-Z~Y 
morphism of 2-sources, i.e., a homotopy commutative diagram 1 1 1 , gives rise to 

X, +--- Zl --+ yl 
fl 9' 

an arrow Mf,9 -+ Mfl,9' which is a homotopy equivalence if this is the case of the vertical arrows (cf. 

p.3-24).] 

PROPOSITION 8 Let XO C Xl C ... be an expanding sequence of topological 

spaces. Assume: V n, xn is a CW space and the inclusion xn -+ X n+l is a cofibration

then X OO is a CW space. 

[There is a commutative ladder 1 1 , where the vertical ar-

XO ---+ Xl ---+ 

rows Kn -+ xn are homotopy equivalences and KO C KI C ... is an expanding sequence 

of CW complexes such that V n, (Kn,Kn- l ) is a CW pair. The induced map K oo -+ X OO 

is a homotopy equivalence (cf. §3, Proposition 15) and, by the lemma, Koo is a CW 

complex.] 
'f .. 

I 
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Application: Let (X, f) be an object in FIL(TOP). Assume: V n, Xn IS a CW 
space-then tel(X, f) is a CW space. 

FACT Let X be a topological space. Suppose that U {Ui: i E I} is a numerable covering of X 

with the property that for every nonempty finite subset F C I, n Ui is a CW space-then X is a CW 
. iEF 

space. 

[In the notation of the Segal-Stasheff construction, show that BU is a CW space.] 

Application: Let X be a topological space. Suppose that U = {Ui : i E I} is a numerable covering of 

X with the property that for every nonempty finite subset F C I, n Us is either empty or contractible
iEF 

then X is a CW space. 

[Note: One can be more precise: X and I N(U) I have the same homotopy type. Example: Every 

paracompact open subset of a locally convex topological vector space is a CW space (cf. Proposition 6).] 

EXAMPLE Let X be the Cantor set. In EX, let Ul be the image of X X [0,2/3[ and let U2 

be the image of XX]I/3, I]-then {Ul, U2} is a numerable open covering of EX. Both Ul and U2 are 

contractible, hence are CW spaces. But EX is not a CW space. In this connection, observe that U1 n U2 

has the same homotopy type as X, thus is not a CW space. 

A sequence of groups 7r n (n ~ 1) is said to be a homotopy system if V n > 1 : 7r n IS 

abelian and there is a left action 7rl X 7rn -+ 7rn • 

HOMOTOPY SYSTEM THEOREM Let {7rn : n ~ I} be a homotopy system

then there exists a pointed connected CW complex (X, xo) and V n ~ 1, an isomorphism 

7rn (X,xo) -+ 7rn such that the action of 7rl(X,XO) on 7rn (X,xo) corresponds to the action 

of 7rl on 7rn • 

[Note: One can take X locally finite if all the 7rn are countable.] 

Let 7r be a group and let n be an integer ~ 1, where 7r is abelian if n > I-then a 

pointed path connected space (X,xo) is said to have homotopy type (7r,n) if 7rn (X,xo) is 

isomorphic to 7r and 7rq(X,xo) = 0 (q i= n). An Eilenberg-MacLane space of type (7r,n) 
is a pointed connected CW space (X,xo) of homotopy type (7r,n). Notation: (X,xo) = 
(K( 7r, n), k7r,n)' Two spaces of homotopy type (7r, n) have the same weak homotopy type 

and two Eilenberg-MacLane spaces.of type (7r, n) have the same pointed homotopy type. 

Every Eilenberg-MacLane space is nondegenerate, therefore the same is true of its loop· 

space which, moreover, is a pointed CW space (cf. p.6-24). Example: nK(7r,n + 1) = 

K(7r, n), 7r abelian. 
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EXAMPLE A model for K(G,I), G a discrete topological group, is Be; (d. p. 6-25). 

Upon specializing the homotopy system theorem, it follows that for every 7r, (K( 7r, n), 
k .. ,n) exists as a pointed CW complex. IT in addition 7r is abelian, then (K(7r,n),k .. ,n) 
carries the structure of a homotopy commutative H group, unique up to homotopy, and 

the assignment (X, A) -+ [X, A; K(7r, n), k .. ,n] defines a cofunctor TOP2 -+ AB. 

EXAMPLE A model for K(Z" , 1) is T". 

[Note: Suppose that X is a homotopy commutative H space with the pointed homotopy type of a 

finite connected CW complex-then Hubbuckt has shown that in HTOP., X ~ T" for some n ~ 0.] 

EXAMPLE A model for K(Z/nZ,I) is the orbit space Soo /I', where I' is the subgroup of S1 

generated by a primitive nth root of unity. 

[Note: Recall that SOO is contractible (d. p. 3-20).] 

EXAMPLE A model for K(Q, 1) is the pointed mapping telescope of the sequence S1 -+ S1 -+ "', 

the kth map having degree k. 

[Note: Shelaht has shown that if X is a compact metrizable space which is path connected and locally 

path connected, then 11'1 (X) cannot be isomorphic to Q.] 

N N 
The homotopy type of II K(Z,2q) or II K(Z/nZ,2q) admits an interpretation in terms of the 

9=1 9=1 

theory of algebraic cycles (Lawsonll ). 

( 7r , 1) Suppose that (X, xo) has homotopy type (7r, 1 )-then for any pointed 

connected CW complex (K, ko), the assignment [J] -+ f. defines a bijection [K, ko; X,xo] -+ 

Hom(7rl(K,ko),7rl(X,XO». Since (K,ko) is wellpointed, the orbit space 7rl(X,XO)\ 
[K, ko;X,xo] can be identified with [K,X] (c!. p. 3-18), thus there is a bijection [K,X] -+ 

7rl(X,xo)\Hom(7rl(K,ko),7rl(X,XO», the set of conjugacy classes of homomorphisms 

7rl (K, ko) -+ 7rl (X, xo). IT 7r is abelian, then Hom( 7rl (K, ko), 7rl (X, xo» R:: Hom(H1 (K, ko), 
7rl (X, xo» R:: Hl(K, ko; 7rl (X, xo» and the forgetful function [K, ko; X, xo] -+ [K, X] is bi

jective. 

Example: Fix a pointed connected CW complex (K, ko)-then the functor GR -+ 

SET that sends 7r to [K, ko; K(7r, 1), k .. ,I] is represented by 7rl(K, ko). 

Topology 8 (1969), 119-126. 

Proc. Amer. Math. Soc. 103 (1988), 627-632. 

II Ann. of Math. 129 (1989), 253-291. 
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EXAMPLE Take X = K(rr, 1), Zo = left." and realize (X, zo) as a pointed CW complex. Assume: 

X is locally finite and finite dimensional. Write HE(X,zo) (HE(X» for the space of homotopy equiv

alences of (X, zo) (X) equipped with the compact open topology-then 'lfo(H E(X, zo» ('lfo(H E(X))) 

is the isomorphism group of (X, zo) (X) viewed as an object in HTOP. (HTOP). By the above, 

{
HE(X)-X 

'lfo(HE(X,zo» ~ Aut'lf ('lfo(HE(X» ~ Out'lf). The evaluation is a. Hurewicz fibra-
1 - I(zo) 

tion (cf. §4, Proposition 6) and its fiber over Zo is H E(X, zo). With idx as the base point, one has 

'lfq(HE(X,zo),idx ) = 0 (q > 0), 'lfq(HE(X),idx ) = 0 (q > 1), and 'lfl(HE(X),idx) ~ Cen'lf, the center 

of 'If. The homotopy sequence of the evaluation thus reduces to 1 - 'lfl (H E(X), idx) - 'lf1 (X, zo) -

'lfo(HE(X,zo),idx) - 'lfo(HE(X),idx) -1, i.e., to 1- Cen'lf - 'If - Aut 'If - Out 'If -1. 

EXAMPLE Let p : X - B be a Hurewicz fibration, where B = K(G, 1). Suppose that Vb E B, 

X" is a K('If, 1) ('If abelian)-then the only nontrivial part of the homotopy sequence for p is the short exact 

sequence 1 - 'If - 'lf1(X) - G - 1. Therefore 'lf1(X) is an extension of 'If by G and X is a K('lfI(X), 1) 

(cf. §6, Proposition 11). Algebraically, there is a left action G x 'If - 'If and geometrically, there is a left 

action G x 'If - 'If. These two actions are identical. 

EXAMPLE Consider a 2-source 'If" - G - 'Ir" in GR, where the arrows are monomorphisms. 
G --+ 'Ir" 

Define 'If by the pushout square 1 1 ' i.e., 'If = 'If" *0 'If''1-then there exists a pointed CW 

wi --+ 'If 

complex X = K('If, 1) and pointed subcomplexes , Y = K(G, 1) such that X = X, uX" {
X' = K(wI, 1) 

X" = K('If", 1) 
and Y = X, nx". 

EXAMPLE Let X and Y be connected CW complexes. Suppose that 1 : X - Y is a contin

uous function such that for every finite connected CW complex K, the induced map [K,X] - [K, Y] is 

bijective-then 1 is a homotopy equivalence iff V z E X, I. : 'lf1(X,Z) - 'lf1(Y,/(z» is surjective (cf. 

p. 3-18) but this condition is not automatic. To construct an example, let Soo be the subgroup of the 

symmetric group of N consisting of those permutations that have finite support. Each injection, : N - N 

. . { 'oo(O')I(N - ,(N» = id 
determmes a homomorphlSm '00 : Soo - Soo, viz. , and on any finite product, 

'oo(O')I,(N) = , 0 0' 0 ,-1 
II '00 : Soo \ II Soo - Soo \ II Soo is bijective. Here the action of Soo on II Soo is by conjugation. Choose 

tP : K(Soo, 1) - K(Soo, 1) such that tP. = '00 on Soo-then for every finite connected CW complex K, the 

induced map [K, K(Soo,l)] - [K, K(Soo, 1)] is bijective (consider first a finite wedge of circles). However, 

tP is not a homotopy equivalence unless, is surjective. 

[Note: There are various conditions on 'lfl (X) (or 'lfl (Y» which guarantee that I. is surjective (under 

the given assumptions). For example, any of the following will do: (1) 'lfl(X) (or 'lfl(Y» nilpotent; (2) 

'lfl(X) (or 'lfl(Y» finitely generated; (3) 'lfl(X) (or 'lfl(Y» free.] 
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EXAMPLE Let '" be a group-then K("', 1) can be realized by a path connected metrizable 

topological manifold (d. p. 6-28) iff '" is countable and has finite cohomological dimension (Johnsont). 

[Note: Under these circUllUltances, the cohomological dimension of '" cannot exceed the euclidean 

dimension of K("" 1), there being equality iff K("" 1) is compact.] 

EXAMPLE The homotopy type of an aspherical compact topological manifold is completely de

termined by its fundamental group. Question: If X and Y are aspherical compact topological manifolds 

and if "'I (X) ~ "'1(Y), is it then true that X and Y are homeomorphic? Borel has conjectured that the 

answer is "yes". To get an idea of the difficulty of this problem, a positive resolution easily leads. to a 

proof of the Poincare conjecture (modulo a result of Milnor). Additional information and references can 

be found in Farrell-Jones*. 

(7I',n) Suppose that (X,zo) has homotopy type (7I',n), where 71' is abelian. Let 

t E Hn(x, Zo; 71'n(X, zo» be the fundamental class-then for any pointed connected CW 

complex (K,ko), the assignment [fl -+ f*t defines a bijection [K, kOiX, zo] -+ Hn(K,ko; 

71'n(X, zo». 
Assuming that 71" and 71''' are abelian, [K( 71", n), k.., ,n; K( 71''', n), k"" ,n] ~ [K( 71", n), 

K(7I'",n)] ~ Hom(7I", 71'''). Example: Suppose that 0 -+ 71" -+ 71' -+ 71''' -+ 0 is a short exact 

sequence of abelian groups-then (1) The mapping fiber of the arrow K( 71', n) -+ K( 71''' , n) 

is a K(7I", n); (2) The mapping fiber of the arrow K(7I", n+ 1) -+ K(7I', n+ 1) is a K(7I''', n)j 

(3) The mapping fiber of the arrow K( 71''', n) -+ K( 71", n + 1) is a K( 71', n). 
[Note: CWSP * is closed under the formation of mapping fibers (d. §6, Proposition 

8).] 

EXAMPLE A model for K(Z,2) is POO(c). Fix n > 1 and choose a map POO(C) - K(Z,2n) 

representing a generator of H2n(poo(c); Z) ~ Z. Put Y = POO(C) and define X by the pullback square 
X ---+ 6K(Z,2n) 

1 1· The fiber x,o is a K(Z,2n - 1). Since 2n - 1 ~ 3, there is an isomorphism 

Y ---+ K(Z,2n) 
"'2n-l(X,o) ~ "'2n-dX) but the corresponding arrow in homology H2n-l(X,o) - H2n-l(X) is not 

even one-to-one. 

Let (X, A) be a relative CW complex-then for any abelian group 71', there is a bijection 

[X,AjK(7I',n),k""n] -+ Hn(x, Ai 71') which, in fact, is an isomorphism of abelian groups, 

t Proc. Cam". Phil. Soc. '10 (1971), 387-393. 

t CBMS Regional Conference '15 (1990), 1-54; see also Conner-Raymond, Bull. Amer. Math. Soc. 

83 (1977), 36-85. 
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natural in (X, A). This applies in particular when A = 0, thus there is an isomorphism 

[X,K(1r,n)] --+ HfI(Xj1r) of abelian groups, natural in X. So, on HeW the cofunctor 

HfI(_j?r) is representable by K(1I",n). But on HTC)P itself, this is no longer true in that 

the relation [X, K(?r, n)] ~ HfI(X;1I") can fail if X is not a CW complex. 

EXAMPLE Let. X be the W8.I'8awcircleand take 1r = Z-t.hen Hl(X, Z) = 0, while [X,K(Z, 1)] ~ 

Z or still, [X,K(Z, 1)] ~ JIl(X; Z). 

In general, for an arbitrary abelian group 11" and an arbitrary pair (X,A), there is a 

natural isomorphism [X,A;K(1I",n),k,..,fI] --+ H(X, A; 11") (d. p. 20--1). Moral: It is Gech 

cohomology rather than singular cohomology that is the representable theory. 

Suppose that (X,:':o) is a pointed connected CW complex. Equip C(X,K(1r,n» with the compact 

open topology-then [X, K( 1r, n)] = 1ro( C(X, K( 1r, n»), X being a compactly generated Hausdorff space. 

Because the forgetful function [X, :':0; K(1r, n), kl!',,,] - [X, K(1rl n)] is surjective, every path component of 

C(X, K(1r, n» contains a pointed map 10 : 10(:':0) = kl!',,,. 

EXAMPLE Let (X, :':0) be a pointed connected CW complex. Assume: X is locally finite-then 

{ 
H"-II(X; 1r) (1 < q < n) 

for any abelian group 1r, 1r,(C(X, K(1r, n», 10) ~ - - . 
o (q > n) 

[Since K(1r, n) is an H group, all the path components of C(X, K(1r, n» have the same homo-

topy type. Let 10 be the constant map X - kl!',,, ,Co(X, K(1r, n» its path component. To compute 

1r,(Co(X, K(1r, n», 10), consider the HurewiclII fibration Co (X, K(1r, n» - K(1r, n) which sends I to I(zo) 

(cf. §4, Proposition 6), bearing in mind that 1rl(Co(X,K(1r, n», 10) is abelian.] 

[Note: Suppose in addition that X is finite-then C(X, K(1r, n» (compact open topology) is a CW 
" space (cf. p. 6-23) and there is a decomposition H"(C(X,K(1r,n» x Xj1r) ~ EB HII(C(X, K(1r, n»; 

11=0 
H"-II(X;1r». Let ev : C(X,K(1r,n» x X - K(1r,n) be the evaluation. Take the fundamental class 

" 
£ E H"(K(1r,n)j1r) and write ev·£ = EB PII, where PII E HII(C(X,K(1r,n»j H"-II(X;1r». Let [Ill] E 

11=0 
[C(X, K(1r, n», K(H"-II(Xj 1r), q)] correspond to PII (conventionally, K(H" (X; 1r), 0) is H"(X; 1r) (discrete 

" topology». The III determine an arrow C(X, K(1r, n» - I1 K(H"-II(Xj 1r), q). It is a weak homotopy 
11=0 

equivalence, hence, by the realization theorem, a homotopy equivalence.] 

EXAMPLE Let (X, :':0) be a pointed connected CW complex. Assume: X is locally finite and fi-

{ 
Cen(1r, 10) (q = 1) 

nite dimensional-then for any group 1r, 1r1l(C(X, K(1r, 1», 10) ~ . Here, Cen(1r, 10) 
o (q > 1) 

is the centralizer of (fO).(1rl(X,:.:O» in 1rl(K(1r, 1),kl!',t} ~ 1r. Special case: Suppose that (X,:.:o) is a-

spherical, let 1r = 1rl(X,:.:O), take 10 = idx, and conclude that the path component of the identity in. 
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C(X, X) has homotopy type (Cen 1r, 1), Cen 1r the center of 1r. Example: Cen 1r is trivial if X is a compact 

connected riemannian manifold whose sectional curvatures are < o. 
[Reduce to when X(O) = {zo} (cf. p. 5-15), observe that 1rq(C(X, K(1r, 1», fa) :::::: 1rq(C(X(l) , K(1r, 1», 

fa IX(1», and use the fact that X(1) is a wedge of circles.] 

[Note: It can happen that 1r is finitely generated but Cen(1r, fa) is infinitely generated even if X = S1 

(Hansent).] 

A compactly generated group is a group G equipped with a compactly generated 

topology in which inversion G --+ G is continuous and multiplication G x k G --+ G is 

continuous. Since multiplication is not required to be continuous on G x G (product 

topology), a compactly generated group is not necessarily a topological group, although 

this will be the case if G is a LCH space or if G is first countable. Example: Let G be a 

simplicial group-then its geometric realization IGI is a compactly generated group (cf. p. 

13-2). 

[Note: If G is a topological group, then kG is a compactly generated group but kG 

need not be a topological group (cf. p. 1-36). A compactly generated group is To iff 

it is .6.-separated. Therefore any .6.-separated compactly generated group which is not 

Hausdorff cannot be a topological group.] 

Suppose that 7r is abelian-then it is always possible to realize K( 7r, n) as a pointed 

CW complex carrying the structure of an abelian compactly generated group on which 

Aut 7r operates to the right by base point preserving skeletal homeomorphisms such that 
7rn (K(7r, n» ~ 7r 

V ¢ E Aut 7r, there is a commutative square 4>.1 14> (Adem-Milgram*) 

7rn (K(7r, n» ~ 7r 
(0 = k7l',n). With this understanding, let G be a group, assume that 7r is a right G-module, 

and denote by X: G --+ Aut 7r the associated homomorphism. Calling K(G, 1) the universal 

covering space of K(G, 1), form the product K(G, 1) x K(7r, n), and write K(7r, n; X) for the 

orbit space (K(G, 1) x K(7r,n»/G. As an object in TOP/K(G,1),K(7r,n;x) is locally 

trivial with fiber K(7r,n), thus the projection Px : K(7r,n;x) --+ K(G, 1) is a Hurewicz 

fibration (local-global principle) and K(7r, n; X) is a CW space (cf. §6, Proposition 11). The 

inclusion K(G, 1) x {OJ --+ K(G, 1) x K(7r,n) defines a section.!lx : K(G, 1) --+ K(7r,n;x), 
so K(7r, n; X) is an object in TOP(K(G, 1» (cf. p. 0-3). Example: Take G = Aut 7r : 

{ 
7r x Aut 7r --+ 7r h h . d h h· A A· ·d (a,¢) --+ ¢-l(a) -t en t e assOCIate omomorp Ism ut7r --+ ut7r IS 1 Aut 71' = X7I'. 

Compositio Math. 28 (1974), 33-36. 

Cohomology 0/ Finite Groups, Springer Verlag (1994), 51. 
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[N t G· G 'd th "al' G h { G --+ Aut 1r I o e: Iven ,conSl er e tnVl actIon 1r x --+ 1r, were X : 'd' n 
g--+11l" 

this case, K(1r, nj X) reduces to the product K(G, 1) x K(1r, n).] 
Example: Take 1r = Z, G = Z/2Z and let X : G --+ Aut 1r be the nontrivial 

homomorphism-then K(Z, 2j X) "is" BO(2)' 

EXAMPLE The homotopy sequence for Px breaks up into a collection of split short exact se

quences 0 -+ 'll'q(K('II',n» -+ 'll'q(K('II',njX» -+ 'll'q(K(G, I» -+ O. Case 1: n ~ 2. Here, 'll'q(K('II',njX» ~ 

{
'II' (q = n) and 'll'q(K('II', n;x» = 0 otherwise. The algebraic right action 'II' x G -+ 'II' corresponds to 
G (q = 1) 

an algebraic left action G x 'II' -+ 'II' and this is the same as the geometric left action G x 'II' -+ '11'. Case 2: 

n = 1. In this situation, '11'1 (K(1I", nj X» is a split extension of 11" by G and the higher homotopy groups are 

trivial. If e.,pK('II', niX) is the subspace of PK('II', niX) made up of those (1' such that (1'(0) e 8x(K(G, 1» 

and Px«(1'(t» = Px«(1'(O» (0:;; t :;; 1), then the projection e"pK(1I",n;x) -+ K(1I",n;x) sending (1' to (1'(1) 

is a Hurewicz fibratio~ whose fiber over the base point is OK('II',n). Specialize and take G = Aut'll' (so 

X :::; X 11' ). Let B be a connected CW complex. The "class" of fiber homotopy classes of H urewicz fibrations 

X -+ B with fiber K('II', n)·is a "set" (cf. p. 4-28 If.). As such, it is in a one-to-one correspondence with the 

set of homotopy classes [B, K('II', n+l;xlI')] : [X] +-+ [~], ~ : B -+ K('II', n+l;Xlf) the classifying map, where 

X --+ e"pK('II', n + liX'II') 

X is defined by the pullback square 1 1. For example, if X is a connected 

B --+ K('II',n+l;x'II') 
CW space with two nonzero homotopy groups 11"1 (X) = G and 'll'n(X) = 'II' (n > 1), then the geometry 

furnishes a right action 'II' x G -+ 'II' and an associated homomorphism X : G -+ Aut '11'. To construct X up 

to homotopy, fiJI; a map I : X -+ K (G, 1) which induces the identity on G, pass to the mapping track W" 

and consider the Hurewicz fibration W, -+ K(G, 1). There is an arrow ~ : K(G, 1) -+ K('II', n + 1; Xlf) 

such that X :::; ~. : G -+ Aut 'II' and [W,] +-+ [~]. 

[Note: Suppose that B is a pointed simply connected CW complex-then the set of fiber homo

topy classes of Hurewicz fibrations X -+ B with fiber K('II', n) is in a one-to-one correspondence with 

Aut'll'\Hn+1 (Bi '11'). Proof: The set of homotopy classes [B, K('II', n+l; X ... )] can be identified with the set of 

pointed homotopy classes [B, K('II'; n+ 1; X ... )] mod '11'1 (K('II', n+ 1; X ... », i.e., with the set of pointed homo

topy classes [B, K('II', n+ Ii X 'II' )] mod Aut '11', i.e., with the set of pointed homotopy classes [B, K('II', n+ 1)] 

mod Aut 'II' (cf. p. 5-16), i.e., with Aut 'II'\Hn+1 (B; '11'). Translated, this means that in the simply connected 
eK('II',n+ 1) 

case, one can use 1 to carry out the classification but then it is also necessary to build in the 

K('II',n+l) 
action of Aut '11'.] 

{
X' : G -+ Aut '11" { '11" 

EXAMPLE Let G be a grouPi let be homomorphisms, where are 
X" : G -+ Aut '11''' '11''' 

abelian-then [K('II",n + I;X'), K(1I"",n + I;X")]G ~ HomG('II" ,11""), [ , ]G standing for homotopy in 
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TOP(K(G,I». 

Notation: Given X in TOP/B and 4> E O(E, B), let lif~(E,X) be the set ofliftings 
~ : E -+ X of 4>. Relative to a choice of base points ho E B, Xo E Xbo , and eo E E, 
where 4>(eo) = ho, let lif~(E,eo;X,xo) be the subset of lif~(E,X) consisti~g of those ~ 

such that ~(eo) = Xo. Write [E,X]~ for the set of fiber homotopy classes in lif~(E,X) 

and [E, eo; X, xo]~ for the set of pointed fiber homotopy classes in lif~(E, eo; X, xo). 

LEMMA If (B,bo), (E,eo) are wellpointed with {bo} C B, {eo} c E closed, then 

the fundamentai group 11'"1 (Xbo, xo) operates to the left on fE, eo; X, xo]~ and the for

getful function [E, eo; X, xo]~ -+ [E, X]~ passes to the quotient to define an injection 

1I'"1(Xbo,Xo)\[E,eo;X,xo]~ -+ [E,X]~ which, when Xb o is path connected, is a bijection. 

Let G and 1r be groups. Given X E Hom(G, Aut 1r), denote by Hom,,(G,1r) the set of crossed homo

morphisms per X, so f : G - 1r is in Hom,,(G, 1r) iff f(g' gil) = f(g')(X(gl)f(g"». There is a left action 

1r x Hom,,(G, 1r) - Hom,,(G, 1r), viz. (0' I)(g) = of(g)(X(g)o-l). 

[Note: The elements of Hom,,(G,1r) correspond bijectively to the sections 8 : G - 1r>4"G, where 

1r>4"G is the semidirect product (d. p. 5-56).] 

EXAMPLE Suppose that B is a connected CW complex. Fix a group 1r and a Hurewicz fibration 

p : X - B with fiber K(1r, 1). Assume: secB(X) ¥: 0, say 8 E secB(X), Choose bo E B and put:l:O = 8(bo). 

Let (E,eo) be a pointed connected CW complex, tP : E - B a pointed continuous function. There is a 

split shod exact sequence 1 - 1rl(Xbo,:l:O) - 1rt(X,zo) - 1rl(B,bo) - 1, from which a left action of 

G = 1rl (E, eo) on 1r = 1rt (Xbo' :1:0) or still, a homomorphism X : G - Aut 1r, X(g) thus being conjugation 

by (8 otP).(g). Attach to 4> E lif~(E,eo;X,:l:o) an element f. E Hom,,(G,1r) via the prescription f.(g) = 
4>.(g)(8 otP).(g)-l-then the assignment 4> - f. induces a bijection [E,eojX,:l:o]~ - Hom,,(G,1r), so 

[E, X]~ ~ 1r\[E, eo i X, zo]~ ~ 1r\Hom,,(G, 1r). 

[Note: The considerations on p. 5-27 are recovered by taking B = * and X = K(1r, 1).] 

(Locally Constant Coefficients) Let (X, xo) be a pointed connected CW com

plex. Assume given a homomorphism Xa : 1I'"1(X,XO) -+ G and a homomorphism x: G -+ 

Aut 11'", where 11'" is abelian. Let Q : nx -+ AB be the cofunctor determined by ~he composite 

X 0 Xa (cf. p. 4-39). Choose a pointed continuous function fa : X -+ K(G, 1) correspond

ing to Xa and put k1r,n;x = sx(ka,t}-then [X,xo;K(1I'",n;x),k7r,n;x]/o ~ Hn(X,xoiQ). 
So, if n = 1, Hl(X, Xo; Q) ~ HomxoXQ (11'"1 (X, xo), 11'") (see the preceding example) :::} 

Hl(XjQ) ~ 1I'"\Hl(X,XOjQ) ~ 1I'"\HomxoxO (1I'"1(X, xo), 11'") ~ [X,K(1I'",1;X)]/o but ifn > 1, 

Hn(x, Xo; Q) ~ Hn(x; Q) ~ [X, K(1I'", n; X)]/o. 
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[Note: The cohomology of any cofunctor g : IIX -+ AB fits into this scheme. Simply 

take 7r = 9xo, G = Aut 7r, X = X"" and let X" : 7rl(X,XO) -+ Aut 7r be the homomorphism 

derived from the right action 7r x 7rl(X, xo) -+ 7r (of course, HO(Xj 9) is fixxa (7r), the 

subgroup of 7r whose elements are fixed by x,,). When X" is trivial, one can choose f" as the 

map to the base point of K(Aut 7r, 1) and recover the fact that [X, K( 7r, n)] ::::: Hn(x; 7r).] 

LEMMA Fix a set of representatives Ii for [X,xo;K(G,l),kG ,l]-then [X,xo; 
K(7r,n;x),k.,..,n;x] is in a one-to-one correspondence with the union U[X,xo;K(7r,n;x), 

i 
k""niX]', (which is necessarily disjoint). 

Application: There is a one-to-one correspondence between the set of pointed homo

topy classes of pointed continuous functions f : X -+ K ( 7r, nj X) such that 7rl (I) = x" and 

the elements of Hn(x;g) (n > 1). 

{
(X, :1:0) 

FACT Let be pointed connected CW complexes; let! E C(X, :1:0; Y,1/o). Assume given 
(Y,1/o) 

a homomorphism XQ : 'lrl (Y, 1/0) --> G and a homomorphism X : G --> Aut 'Ir. Put X!'*Q = XQ 0 'lrd!) 

and suppose that j"' : [y,1/o; K('Ir, n; X), k".,n;x] --> [X, :1:0; K('Ir, n; X), k".,n;x] is bijective--then Hn(y;g) ~ 

Hn(Xij"'g). 

The singular homology and cohomology groups of an Eilenberg-MacLane space of type 

(7r, n) with coefficients in G depend only on (7r, n) and G. Notation: Hq(7r, n; G), Hq(7r, n; G) 

(or Hq(7r, n), Hq( 7r, n) if G = Z). Example: Hn( 7r, n) ::::: 7r /[7r, 7r]. 

[Note: There are isomorphisms H*7r ::::: H.(7r, 1) (H*7r ~ H*(7r, 1)), where H*7r (H*7r) 
is the homology (cohomology) of 7r. In general, if G is a right 7r-module and if g is the 

locally constant coefficient system on K(7r, 1) associated with G, then H*(7rj G) (H*(7rj G)) 

is isomorphic to H*(K(7r, 1); 9) (H*(K(7r, 1); 9)).] 

EXAMPLE If 'Ir is abelian, then V n ~ 2, Hn+1('Ir, n) = 0 but this can fail if n = 1 since, e.g., 

H2(Z/2ZfI)Z/2Z, 1) ~ H 1 (Z/2Z, 1)®H1 (Z/2Z,l) ~ Z/2Z. When does H2('Ir, 1) vanish? To formulate the 

answer, let 0 --> 'lrtor --> 'Ir --> n --> 0 be the short exact sequence in which 'lrtor is the torsion subgroup of 'Ir 

and denote by 'lrtor(P) the p-primary component of 'lrtor-then Varadarajan t has shown that H2 ('Ir, 1) = 0 

iff rank n ~ 1 plus V P : (Pt) 'lrtor (p) ® n = 0 & (P2) 'lrtor (p) is the direct sum of a divisible group and a 

cyclic group. Example: Assume that 'Ir is finite--then H2('Ir, 1) = 0 iff 'Ir is cyclic. Other examples include 

'Ir = Z, 'Ir = Q, and 'Ir = Z/pooZ (the p-primary component of Q/Z). 

t Ann. of Math. 84 (1966), 368-371. 
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EXAMPLE Let (X, :1:0) be a pointed path connected space. Denote by hur .. (X) the image in 

H .. (X) of 1r .. (X) under the Hurewicz homomorphism. 

(1r,I) Set 1r = 1rl (X) and assume that 1rq(X) = 0 for 1 < q < n-then Hq(X) ::::: Hq(1r, I) 

(q < n) and H .. (X)/hur .. (X) ::::: H .. (1r, 1). 

[Note: In particular, there is an exact. sequence 1r2(X) - H2(X) - H2(1r, 1) - 0.] 

(1r, n) Set 1r = 1r .. (X) (n > 1) and assume that 1rq(X) = 0 for 1 ~ q < n & 1rq(X) = 0 for 

n < q < N-then Hq(X) ::::: Hq(1r, n) (q < N) and HN(X)/hurN(X) ::::: HN(1r, n). 

[Note: Take N = n + 1 to see that under the stated conditions the Hurewicz homomorphism 

1r .. +l(X) - H .. +l(X) is surjective.] 

EXAMPLE Let 1r be a finitely generated (finite) abelian group-then V q ~ 1, Hq(1r, n) is finitely 

{ 
Z (q = 1) 

generated (finite). The Hq(1r, 1) are handled by computation. Simply note that Hq(Z, 1) = 
o (q > 1) 

{ 
Z/kZ (q odd) 

& Hq(Z/kZ, 1) = and use the Kiinneth formula. To pass inductively from n to n + 1, 
o (q even) 

apply the generalities on p. 4-44 to the Z-orientable Hurewicz fibration 9K(1I", n+ 1) - K(1I", n+ 1). One 

can, of course, say much more. Indeed, Cartan t has explicitly calculated the Hq(1r, nj G), Hq(1I", n; G) for 

any finitely generated abelian G. However, there are occasions when a qualitative description suffices. To 

illustrate, recall that H·(Z, n; Q) is an exterior algebra on one generator of degree n if n is odd and a 

polynomial algebra on one generator of degree n if n is even. Therefore, if n is odd, then Hq(Z, nj Q) = Q 

for q = 0 & q = n with Hq(Z, n; Q) = 0 otherwise and if n il:' even, then Hq(Z, n; Q) = Q for q = kn 

(k = 0,1, ... ) with Hq (Z, nj Q) = 0 otherwise. So, by the above, if n is odd, then Hq(Z, n) is finite for 

q ¥- 0 & q ¥- n and if n is even, then Hq(Z,n) is finite unless q = kn (k = 0,1, ... ), Hkn(Z,n) being the 

direct sum of a finite group and an infinite cyclic group. 

EXAMPLE If 11"' and 11"" are finitely generated abelian groups and if F is a field, then the al

gebra H· (11"' EB 11"", n; F) is isomorphic to the tensor product over F of the algebras H· (11"' , nj F) and 

H·(1r",n;F). Specialize and take F = F 2-then for 1r a finitely generated abelian group, the determi

nation of H·(1r,njF2) red~ces to the determination of H·(1I",njF2) when 1r = Z/2k Z, 11" = Z/pIZ (p = 

odd prime), or 11" = Z. The second possibility is easily dispensed with: H9(Z/p' Z,n;F2) = 0 V q > 0, 

so H·(Z/p'Z, nj F2) = F2. The outcome in the other cases involves the Steenrod squares Sq' and their 

iterates Sql. To review the definitions, a sequence I = (il , ... ,ir ) of positive integers is termed admissible 

provided that il ~ 2i2, ..• ,ir - l ~ 2ir , its excess eel) being the difference (il - 2i2)+' . ·+(ir- l -2ir )+ir . 

Sql is the composite Sqil 0 .•• 0 Sqir (Sql = id if eel) = 0). 

Collected Works, vol. III, Springer Verlag (1979), 1300-1394; see also Moore, Asterisque 32-33 

(1976), 173-212. 
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(11" = Z/2RZ) Let Un be the unique nonzero element of Hn(Z/2RZ, nj F 2). 

(k=l) H-(Z/2Z, 1; F2) = F2[Ul], the polynomial algebra with generator Ul. For n > 1, H-CZ/2Z, nj 

F2) = F2[CSqI Un)], the polynomial algebra with generators the SqI Un, where I runst'lrough all admissible 

sequences of excess eCI) < n. 

Ck>l) H-CZ/2RZ, Ij F2) = /\Cul)®F2[V2], the tensor product of the exterior algebra with generator 

Ul and the polynomial algebra with generator V2. Here, V2 is the image of the fundamental class under 

the Bockstein operator H 1CZ/2 lc Z, Ij F 2) - H 2 CZ/2 lc Z, IjF2) corresponding to the exact sequence 0 -

Z/2Z - Z/2 lc+1 Z - Z/2 lc Z _ O. Using this, extend the definition and let Vn be the image of the 

fundamental class under the Bockstein operator HnCZ/2RZ, n; Z/2RZ) _ H n+1 CZ/2RZ, nj F2)' Write 

S/"j,n = Sqlun ifir > 1 and S/ Un = Sq'l Q ••• oSq'r-l Vn ifir = l,-then for n > 1, H-(Z/2RZ,njF2) = 
F2[(S/ un)], the polynomial algebra with generators the S/ Un, where I runs through all admissible 

sequences of excess eCI) < n. 

(11" = Z) Let Un be the unique nonzero element of Hn(z, nj F2)-then H-CZ, 1; F 2) = /\CUI), 

the exterior algebra with generator Ul, and for n > 1, H-CZ, nj F2) = F2[(SqI un)], the polynomial algebra 

with generators the SqI Un, where I runs through all admissible sequences of excess e(I) < nand ir > 1. 

Let 11" be a finitely generated abelian group--then, as vector spaces over F 2, the HQ(1I", nj F 2) are finite 

dimensional, so it makes sense to consider the associated Poincare series: P(1I",n;t) = 
00 

Ldim(H<l(1I",njF2»· t<l. Obviously, P(1I"1 6) 1I"1/,njt) = P(1I"',n;t). P(1I"",njt). Examples: (1) 
q=o 

00 

P(Z/2Z, 1; t) = L t<l; (2) P(Z, 1; t) = 1 + t. 
o 

(PSd P(1I", nj t) converges in the interval 0 $ t < 1. 

[It suffices to treat the cases 11" = Z/2RZ, 11" = Z/plZ (p = odd prime), 11" = Z. The second case is 

trivial: p(Z/pl Z, nj t) = 1. 

(11" = Z/2RZ) In view of what has been said above, H-(Z/2RZ,n;F2) and H-(Z/2Z,n;F2) 

are isomorphic as vector spaces over F 2, thus one need only examine the situation when k = 1 and 

n > 1. Given an admissible I, let III = il + ... + ir (=> e(I) = 2il - lID-then P(Z/2Z, n; t) = 
n . 1 Ill' Since the number of admissible I with eCI) < n such that n + III = N is equal to the 

e(I)<n 1 - t n + 
number of decompositions of N of the form N 1 + 2"1 + ... + 2"n-l , where 0 $ hI $ ... $ hn - 1 , it 

follows that 

The associated series 

P(Z/2Z, nit) = II ,,1 " . 
1 _ t 1+2 1 + .. +2 n-l 

0$"1 $ ... $ "n-l 

0$"1 $"'$"n-l 
(11" = Z) Assuming that n > 1, the extra condition ir > 1 is incorporated by the requirement 

hn- 1 = hn- 2. Consequently, P(Z, nj t) = P(Z/2Z, n - 1; t)/ P(Z, n - Ij t) or still, 

P(Z ) 
P(Z/2Z, n - 1; t) . P(Z/2Z, n - 3; t) ... 

,nit = ! 

P(Z/2Z, n - 2; t) . P(Z/2Z, n - 4j t)· .. 
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via iteration of the data.] 

Put 1II(1I",n;x) = log2 P(1I", n;l- 2-X
) (0:$ x < 00). 

(PS2) Suppose that 11" is the direct sum of p cyclic groups of order a power of 2, a finite group 

of odd order, and v cyclic groups of infinite order-then: (i) p' ~ 1 =? III ( 11", n; z) ,.... pz; ; (ii) p = 0 & 
n. 

'11.-1 

II ~ 1 =? 111(11", n;z) ""' <"x ); (iii) p = 0 & II = 0 =? 111(11", nix) = O. 
n-l ! 

'II. 

[The essential point is the asymptotic relation III(Z/2Z, n; z) '" =-, everything else being a corollary. 
n! 

Observe first that P(Z/2Z, 1; t) = _1_ =? III(Z/2Z, 1; z) = x. Proceeding by induction on n, introduce 
I-t 

the abbreviations Pn(t) = P(Z/2Z,n;t), IIIn(z) = III(Z/2Z,n;z), and the auxiliary functions Qn(t) = 
n ,,1 " ' Wn(x) = log2 Qn(1 - 2- X )-then Qn(t)/Pn-1(t) :$ Pn(t) :$ Qn(t) 

0::::;"1 ::::;"'::::;"n-1 1 - t 2 1 +···+2 n-1 . 
x n - 1 

(0:$ t < 1) =? Wn(x) - IIIn-l(Z) :$ IIIn(x) :$ Wn(z) (0 :$ X < 00). Because IIIn-l(Z) '" (n -I)! (induction 

hypothesis), one need only show that wn(z) '" zn. But from the definitions, Qn(t)/p .. _ 1 (t) = Qn(t2 ), 
n! 

hence wn(z) = IIIn-l(Z) + wn(z -1 -log2(1- 2-:&-1». So, V E > 0,3 x. > 0: V x> x" 

(1 - e) 'II. 1 (1 + e) n 1 
Wn(Z - 1) + (n _ 1)'Z - :$ Wn(Z) :$ Wn(Z - 1 + e) + (n _ I)! Z - . 

Claim: Given A and n ~ 1, there exists a polynomial Fn(z) of degree n with leading term AZ,n such 
n. 

Axn- 1 

that Fn(z) = Fn(z - 1) + ( ) 
n -1 ! 

. Azn 'II. (_I)k 
[Use induction on n: Put F1(Z) = Ax and consider Fn(z) = -,- + E --,-Fn-k+1 (z),) 

n. k=2 k. 

A n-1 ( A n-1 ) 
Claim: LetfEC([O,ooD. Assume: f (x):$f(z-I)+( x ) f(z)~f(z-I)+( Z ) -then 

n-l! n-l! 

there exists a constant C' (C") such that fez) :$ Fn(z) + C' (I(x) ~ Fn(x) + C"). 

[Let C ' = max{J(z) - Fn(z) : 0 :$ Z :$ I} : fez) :$ Fn(x) + C' (0 :$ Z :$ 1) and by induction on 
Azn-l Azn-l . 

N : N :$ Z :$ N + 1 =? f(x) :$ f(z - 1) + (n _ I)! :$ Fn(z - 1) + c' + (n _ I)! == Fn(z) + C ' .] 

These generalities allow one to say that V E > 0, there exist polynomials R~ and R~f of degree 

< n: V Z» 0, 

Since e is arbitrary, this means that wn(x) '" x: .] 
. n. 

LEMMA Suppose that A is path connected-then V n ~ 1 there exists a path 

connected space X ::> A which is obtained from A by attaching (n + 1 )-cells such that 

7rn (X) = 0 and, under the inclusion A ---t X, 7rq(A)::::::: 7rq(X) (q < n). 

[Let {a} be a set of generators for 7r n (A). Represent a by fa: S n ---t A and put 

X = (li Dn+l) Uf A (J = 1I fa)'] 
a a 
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Let X be a pointed path connected space. Fix n ;:::: O-then an nth Postnikovapproxi

mate to X is a pointed path connected space X[n] :::> X, where (X[n],X) is a relative CW 

complex whose cells in X[n] - X have dimension> n + 1, such that 1i"q(X[n]) = 0 (q > n) 

and, under the inclusion X -t X[n], 1i"q(X) :::::: 1i"q(X[n]) (q n). 

[Note: X[O] is homotopically trivial and X[I] has homotopy type (1i"I(X), 1).] 

PROPOSITION 9 Every pointed path connected space X admits an nth Postnikov 

approximate X [n]. 

[Using the lemma, construct a sequence X = Xo C Xl C ... of pointed path connected 

spaces X k such that V k > 0, Xk is obtained from Xk-l by attaching (n + k + I)-cells, 

1i"n+k(Xk) = 0, and, under the inclusion Xk-l -t Xk, 1i"q(Xk-l) :::::: 1i"q(Xk) (q < n + k). 
Consider X[n] = colimXk.] 

[Note: If X is a pointed connected CW space, then the X[n] are pointed connected 

CW spaces.] 

EXAMPLE Let 11' be a group and let n be an integer ~ 1, where 11' is abelian if n > I-then 

a pointed connected CW space X is said to be a Moore space of type (11', n) provided that 7rn(X) is 

isomorphic to 11' and . Notation: X = M(7r, n). If n = 1, then M(7r, n) exists 
{ 

11' q (X) = 0 (q < n) 

Hq(X) = 0 (q > n)· . 
iff H2(7r, 1) = 0 but if n > 1, then M(7r, n) always exists. If n = 1 and H2(7r, 1) = 0, then the pointed 

hom~topy type of M(7r, 1) is not necessarily unique (e.g., when 11' = Z) but if n > 1, then the pointed 

homotopy type of M(7r, n) is unique. In any event, M(7r, n)[n] = K(7r, n). 

FACT Suppose that X is a pointed path connected space. Fix n ~ I-then there exists a pointed 
- -n-connected space Xn in TOP j X such that the projection Xn -+ X is a pointed Hurewicz fibration and 

induces an isomorphism 7rq(Xn) -+ 7rq(X) V q > n. 

[Consider the mapping fiber of the inclusion X -+ X[n].] 

~·t 

·EXAMPLE Take X = Sa-then the fibers of the projection Xa -+ X have homotopy type (Z, 2) 

and V q ~ 1, Hq(Xa) = .' - {O (q odd) 

Zj(qj2)Z (q even) 
[Use the Wang cohomology sequence and the fact that H·(Z,2) is the polynomial algebra over Z 

generated by an element of degree 2.] 

[Note: Given a prime p, let C be the class of finite abelian groups with order prime to p-then from 

the above, Hn(Xa) E C (0 < n < 2p), so by the mod C Hurewicz theorem, 7rn (Xa) E C (0 < n < 2p) and 

the Hurewicz homomorphism 7r2P(Xa) -+ H2P(Xa) is C-bijedive. Therefore the p-primary component of 

7rn(Sa) is 0 if n < 2p and is ZjpZ if n = 2p.] 
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Put WI = Xl. Let W2 be the mapping fiber ofthe inclusion Xl - Xl [2]-then the ~apping fiber 

of the projection Wli - WI has homotopy type (7I'lI(X), 1). Iterate: The result is a sequence of pointed 

Hurewicz fibrations W" - W,,-l, where the mapping fiber has homotopy type (7I',,(X),n - 1) and W" 

is n-connected with 7I'q(W,,) ~ 7I'q(X) (V q > n). The diagram X = Wo +- WI +- ... is called "the" 

Whitehead tower of X. 

[Note: If X is a pointed connected CW space, then the W" are pointed connected CW spaces and 

the mapping fiber of the projection W" - W,,-l is a K(7I'" (X), n - I}.] 

EXAMPLE Let X be a pointed simply connected CW complex which is finite and noncontractible. 

~ume: 3 i > 0 such that H.(XjF2) ¢ o-then 7I'q(X) contains a subgroup isomorphic to Z or Z/2Z for 

infinitely many q. 

[Because the Hq(X) are finitely generated V q, the same is true of the 7I'q(X) (d. p. 5-44). The set 

of positive integers n such that 7I',,(X) ® Z/2Z ¢ 0 is nonempty. To get a contradiction, suppose that 
00 

there is a largest such N. Working with the Whitehead tower of X, let P,,(t) = E dim(Hq(W,,;F2» ·tq, 
q=O 

the mod 2 Poincare series of H*(W"i F lI ) (meaningful, the Hq(W"i F2) being finite dimensional over FlI)' 

In particular: PN(t) = 1, PN-l(t) = P(7I'N(X), Njt), Pt(t) = Px(t), the Poincare series of H*(XjFlI)' 

On general grounds, there is a majorization P,,(t) ...: P"-l(t) . P(7I',,(X),n - 1jt), where the symbol 

...: means that each coefficient of the formal power series on the left is ~ the corresponding coefficient 

of the formal power series on the right. So, starting with n = N - 1 and multiplying out, one finds 

that P(7I'N(X), N;t) ...: Px(t)· n P(7I'.(X),i -lit). Since Px(t) is a polynomial, hence is bounded 
l<a<N 

on [0,1],3 C > 0 : P(7I'N(X), Nj t) ~ C· n P(7I'.(X), i-I; t) or still, in the notation of p. 5-37, 
l<i<N 

~(7I'N(X), Nj z) ~ logll C + E ~(7I'.(X), i-I; z) (0 ~ z < (0). Comparing the asymptotics of either 
l<i<N 

side leads to an immediate contradiction (cf. p.5-37).] 

[Note: This analysis is due to Serret . It has been extended to all odd primes by Umedat . Accordingly, 

if X is a pointed simply connected CW complex which is finite and noncontractible, then 7I'/l(X) is nonzero 

for infinitely many q. Proof: If V p E D & Vi> 0, H,(Xj Fp) = 0, then the arrow X - * is a homology 

equivalence (cf. p. 8-8), thus by the Whitehead theorem, X is contractible.] 

LEMMA Let (X, A, ~o) be a pointed pair. Assume: (X, A) is a relative CW complex 

whose cells in X - A have dimension > n + 1. Suppose that (Y, Yo) is a pointed space 

such that 11' q(Y, Yo) = 0 \I q > n-then every pointed continuous function f : A --+ Y has a 

pointed continuous extension F : X --+ Y. 

t Comment. Math. He Iv. 27 (1953), 198-232. 

t Proc. Japan Acad. 35 (1959), 563-566; see also McGibbon-Neisendorfer, Comment. Math. Hel". 

59 (1984), 253-257. 
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It follows from the lemma that if X and Y are pointed path connected spaces and if I : 
X -+ Y is a pointed continuous function, then for m ::; n there exists a pointed continuous 

X ~ Y 
function In,m : X[n] -+ Y[m] rendering the diagram 1 1 commutative, any 

X[n] --+ Y[m] 
fn,m 

two such being homotopic reI X. Proof: Let F : X -+ Y[m] be the composite X ~ Y -+ 

Y[m]. To establish the existence of In,m, consider any filler for 

X[nL 

r 
........ 

........ ....... 
.... ..L 

X --:F=---+-. Y [m] 

and 

to establish the uniqueness of In,m relX, take two extensions I~,m & I::,m, define ~ 

ioX[n] U IX U i1X[n] -+ Y[m] by { :~:: ~~ ~~::~:~, ~(x, t) = F(x), and consider any 

filler for 

IX [nL ... 

r "'-... -
... -... -... -'-~ 

ioX[n] U IX U i1X[n] 9 • Y[m] 

Application: Let X'[n] and X"[n] be nth Postnikov approximates to X-then in 

HTOp2, (X'[n],X) ~ (X" [n], X). 

EXAMPLE Let X and Y be pointed connected CW spaces-then it can happen that X[n] and 

Y[n] have the same pointed homotopy type for all n, yet X and Y are not homotopy equivalent .. To 

construct an example, let K be a pointed simply connected CW complex. Assume: K is finite and 
00 

noncontractible. Put X = (w) fI K[n], Y = X x K-then V n, X[n] ~ Y[n] in HTOP •. However, it 
o 

is not true that X ~ Y in HTOP. For if so, K would be dominated in homotopy by X or still, by 

K[O] x ... x K[n] (3 n), thus V q, 'II'q(K) would be a direct summand of 'II'q(K[O] x ... x K[nD. But this is 

impossible: The 'II'q(K) are nonzero for infinitely many q (cf. p. 5-39). 

[Note: This subject has its theoretical aspects as well (McGibbon-MlIlllert).] 

Let X be a pointed path connected space. Given a sequence X[O], X[l], ... of Post

nikov approximates to X, V n ~ 1 there is a pointed continuous function In : X[n] -+ 

X 

X[n - 1] such that the triangle / ~ commutes. Put PoX ~ X[O], let 

X[n] --,----+. X[n - 1] 
In 

Topology 31 (1992), 177-201; see also Dror-Dwyer-Kan, Proc. Amer. Math. Soc. 14 (1979), 183-

186. 
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X[I] ~ X[O] 

80 be the identity map, and denote by PIX the mapping track of II: '1! !'O, 
PIX --+ PoX 

Recall that 81 is a pointed homotopy equivalence, while PI is the usual pointed
1

Hurewicz 

fibration associated with this setup. Repeat the procedure, taking for P2X the map-

X[2] .J:... X[I] 
ping track of 81 0 h: '2! ! '1. The upshot is that the In can be converted 

P2X --+ PIX 
P2 

to pointed Hurewicz fibrations Pn, where at each stage there is a commutative triangle 
X 

/ ~ . The diagram PoX +- PIX +- ' .. of pointed Hurewicz fibrations 

PnX P,. lPn-IX 

is called "the" Postnikov tower of X. Obviously, 1I"q(PnX) = 0 (q > n), 1I"q(X) Rl1l"q(PnX) 
(q ~ n), and 1I"q(PnX) Rl 1I"q(Pn- 1X) (q :F n). Therefore the mapping fiber of Pn has 

homotopy type (1I"n(X), n). 

[Note: If X is a pointed connected CW space, then the PnX are pointed connected 

CW spaces, so the mapping fiber of Pn is a K(1I"n(X),n).J 

EXAMPLE Let X be a pointed path connected space. Fix n > I-then 7rn(X) defines a locally 

constant coefficient system on Pn-1X and there is an exact sequence 

[Work with the fibration spectral sequence of pn : PnX - Pn-l X I noting that E;,q = 0 if 0 < q < n 

orq=n+L] 

A nonempty path connected topological space X is said to be abelian if 1I"1(X) is 

abelian and if V n > 1, 1I"1(X) operates trivially on 1I"n(X). Every simply connected space 

is abelian as is every path connected H space or every path connected compactly generated 

semigroup with unit (obvious definition). 

[Note: If X is abelian, then V Xo E X, the forgetful function [Sn,8n;X,Xo] -4 [sn,x] 
is bijective (cf. p.3-18).] 

EXAMPLE pn(R) is abelian iff n is odd. 
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Let ~ be a pointed connected CW space. Assume: X is abelian. There is a commu
X 

tative triangle / ~ and an embedding IX -t M'n+l. Define X[n] by 

X[n + 1] -'-=-n+-l-+. X[n] 

IX ~ X 
the pushout square 1 1 -then X[n] contains X[n] as a strong deformation 

M'nH -+ X[n] 
retract, hence lI'f(X[n]) ~ lI'f(X[nD (q ~ 1). Using the exact sequence 

one finds that lI'f(X[n],X[n+l]) = 0 (q i: n+2) and lI'n+2(X[n],X[n+l]) ~ lI'n+l(X[n + 1]) 

~ lI'n+l(X). Thus the relative Hurewicz homomorphism hur : 1I"n+2(X[n],X[n + 1]) 

-t Hn+2(X[n], X[n + 1]) is bijective, so the composite Itn+2 : Hn+2(X[n], X[n + 1]) 

h~l lI'n+2(X[n],X[n+lD -t lI'n+l(X) is an isomorphism. Since Hn+1(X[n],X[n+l]) = 0, 

the universal coefficient theorem implies that Hn+2(X[n], X[n + 1]; lI'n+l(X» can be 

identified with Hom(Hn+2(X [n] , X[n + 1]); lI'n+l(X», therefore Itn+2 corresponds to a 

cohomology class in Hn+2(X[n],X[n + 1]; lI'n+l(X» whose image k n+2(= kn+2(X» in 

Hn+2(X[nJ; lI'n+l(X» is the Postnikov invariant of X in dimension n + 2. Put Kn+2 = 
K(lI'n+l(X),n+2), let kn+2 : X[n] -t Kn+2 be the arrow associa.ted with kn+2, and define 

W[n + 1] -+ 9Kn+2 

W[n + 1] by the pullback square 1 1 -then W[n + 1] is a CW space 
X[n] -+ Kn+2 

k .. +2 

W[n + 1] 

(cr. §6, Proposition 9) and there is a lifting Anj/ 1 of fn+l which is a 

X[n + 1] I .. +t. X[n] 
weak homotopy equivalence or still, a homotopy equivalence (realization theorem). The 

restriction of An+1 to X is an embedding and An+l : (X[n + 1], X) -t (W[n + 1], X) is a 
homotopy equivalence of pairs. 

[Note: An +1 is constructed by considering a specific factorization of kn+2 as a com

posite X[n] -t X[n]/X[n + 1] -t Kn+2 (kn+2 is determined only up to homotopy).] 

INVARIANCE THEOREM Let {: be pointed CW spaces. Assume: {: are 

abelian. Suppose that tP : X -t Y is a pointed continuous function. Fix pointed tPn : 



X 

X[n] ~ Y[n] such that the diagram 1 
X[n] 

<pcokn+2(x) in Hn+2(X[n]; 1I"n+I(Y))' 
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~ Y 

1 commutes-then 'V n, <p:kn+2(y) = 

---t Y[n] 
</In 

[Note: Here, <Pco is the coefficient group homomorphism Hn+2(X[n]; 1I"n+I(X)) ~ 

Hn+2(X[nl; 1I"n+l(Y))'] 

NULLITY THEOREM Let X be a pointed CW space. Assume: X is abelian-then 

k n +1 = 0 iff the Hurewicz homomorphism 1I"n(X) ~ Hn(X) is split injective. 

EXAMPLE Suppose that k n +1 = O-then W[n] ·is fiber homotopy equivalent to X[n - 1] X 

K(1l"n(X), n) (cf. p. 4-24), hence X[n] ~ X[n - 1] X K(1l"n(X), n). Therefore X has the same pointed 
00 

homotopy type as the weak product (w) II K(1l"n(X), n) provided that the Hurewicz homomorphism 
1 

1l"n{X) -+ Hn{X) is split injective for all n. This condition can be realized. In fact, Puppet has shown 

that if G is a path connected abelian compactly generated semi group with unit, then V n, the Hurewicz 
00 

homomorphism 1l"n{G) -+ Hn(G) is split injective,thus G ~ (w) llK(1l"n(G),n) when G is in addition a 
1 

CW space. 

[Note: Analogous remarks apply if G is a path connected abelian topological semigroup with unit. 

Reason: The identity map kG -+ G is a weak homotopy equivalence.] 

ABELIAN OBSTRUCTION THEOREM Let (X, A) be a relative CW complexi let Y be a 

pointed abelian CW space. Suppose that V n > 0, Hn+l(x,A;1l"n{Y» = O--then every f E C{A,Y) 

admits an extension F E C(X, Y), any two such being homotopic reI A provided that V n > 0, Hn{x, Aj 

1l"n(Y» = o. 

EXAMPLE Let (X, zo) be a pointed CW complex; let (Y, YO) be a pointed simply connected CW 

complex. Assume: V n >0, Hn(X;1l"n(Y» = O-then [X,zoiY,YO] = *. 
[In fact, H n(X,ZOi1l"n{Y,YO» ~ Hn(Xi1l"n(Y» = 0 => [X,ZOiY,Yo] = *{=> [X,Y] = * (cf. p. 

3-18».] 

PROPOSITION 10 Let X be a pointed abelian CW space. Assume: The Hq(X) are 

finitely generated 'V q-then 'V n, the Hq(X[n]) are finitely generated 'V. q. 

[The assertion is trivial if n = O. Next, Xl!] is a K( 11"1 (X), 1), hence 11"1 (X) ~ HI (X), 
which is finitely generated. For q > 1, Hq(X[1]) ~ Hq(1I"I(X),1) and these too are 

t Math. Zeit. 68 (1958), 367-421. 
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finitely generated (cf. p. 5-35). Proceeding by induction, suppose that the Hq(X[n)) 

are finitely generated V q-then the Hq(X[n], X) are finitely generated V q. In particu

lar, Hn+2(X[n],X) is finitely generated. Since 1rn+l(X[n)) = 1rn+2(X[n)) = 0, the arrow 

1rn+2(X[n],X) -+ 1rn+l(X) is an isomorphism. But X is abelian, so from the relative 

Hurewicz theorem, 1rn+2(X[n],X) Rj Hn+2(X[n],X). Therefore 1rn+l(X) is finitely gener

ated. Consider now the mapping track Wn+2 ofkn+2 : X[n] -+ K n+2. The fiber of the 

Z-orientable Hurewicz fibration Wn+2 -+ Kn+2 over the base point is homeomorphic to 

W[n+ 1] (parameter reversal). The Hq(Kn+2) = Hq(1rn+l(X), n+2) are finitely generated 

V q (cf. p. 5-35), as are the Hq(Wn+2) (induction hypothesis), thus the Hq(W[n + 1)) are 

finitely generated V q (cf. p.4-44). Because X[n+ 1] and W[n+ 1] have the same homotopy 

type, this completes the passage from n to n + 1.] 

Application: Let X be a pointed abelian CW space. Assume: The Hq(X) are finitely 

generated V q-then the 1rq(X) are finitely generated V q. 

[Note: This result need not be true for a nonabelian X. Example: Take X = 8 1 V 8 2
_ 

then the Hq(X) are finitely generated V q and 1rl(X) Rj Z. On the other hand, 1r2(X) Rj 

H2(X), X the universal covering space of X, i.e., the real line with a copy of 8 2 attached 

at each integral point. Therefore 1r2(X) is free abelian on count ably many generators.] 

PROPOSITION 11 Let X be a pointed abelian CW space. Assume: The Hq(X) are 

finite V q > O-then V n, the Hq(X[n)) are finite V q > o. 

Application: Let X be a pointed abelian CW space. Assume: The Hq(X) are finite 

V q > O-then the 1rq(X) are finite V q > o. 

EXAMPLE (Homotopy Groups of Spheres) The 1I"q(s2n+l) of the odd dimensional sphere are 

finite for q > 2n + 1 and the 1I"q(s2n) of the even dimensional sphere are finite for q > 2n except that 

1I"4n_l(s2n) is the direct sum of Z and a finite group. Here are the details. 

(2n+ 1) Fix a map f : s2n+l -+ K(Z, 2n+ 1) classifying a generator of H2n+l (s2n+l )-then 

f. induces an isomorphism H.(s2n+l; Q) -+ H.(K(Z, 2n+ 1); Q) (d. p. 5-35), so V q > 0, Hq(EJ; Q) = 0 

(d. p.4-44). Accordingly, V q > 0, Hq(EJ) is finite (being finitely generated). Therefore all the homotopy 

groups of EJ are finite. But 1I"q(EJ) ~ 1I"q(s2n+l) if q > 2n + L 

(2n) The even dimensional case requires a double application of the odd dimensional case. 

Fir-st, consider the Stiefel manifold V 2n+l,2 and the map f : V 2n+l,2 -+ s4n-l defined on p. 5-9. As 

noted there, V q > 0, Hq(EJjQ) = 0, hence the 1I"q(EJ) are finite and this means that the 1I"q(V2n+1,2) 

are finite save for 1I"4n-l(V2n+ 1,2) which is the direct sum of Z and a finite group. Second, examine the 

homotopy sequence of the Hurewicz fibration V2n+l,2 -+ s2n, noting that its fiber is s2n-l. 
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Given a category C, the tower category TOW(C) of C is the functor category 

[[N]OP, C]. Example: The Postnikov tower of a pointed path connected space is an object 

in TOW(TOP.). 

Take C = AB-then an object (G, f) in TOW(AB) is a sequence {Gn, In : Gn +l -+ 

Gn}, where Gn is an abelian group and In : Gn+1 -+ Gn is a homomorphism, ~ morphism 

¢> : (G', f/) -+ (G", fIt) in TOW(AB) being a sequence {¢>n}, where ¢>n : G~ -+ G~ is a 

homomorphism and ¢>n 0 I~ = I:: 0 ¢>n+1' TOW(AB) is an abelian category. As such, it 

has enough injectives. 

[Note: Equip [N] with the topology determined by ~, i.e., regard [N] as an A space

then TOW(AB) is equivalent to the category of sheaves of abelian groups on [N].] 
The functor lim : TOW(AB) -+ AB that sends G to lim G is left exact (being a 

right adjoint) but it need not be exact. The right derived functors limi of lim live only 

in dimensions 0 and 1, i.e., the limi (i > 1) necessarily vanish. To compute lim! G, form 

G = n Gn and define d: G -+ G by d(xo,xI, ... ) = (xo - fo(xd, Xl - h(X2), ... )-then 
n 

kerd = limG and cokerd = liml G.Example: Suppose that V n, Gn is finite-then 

liml G = O. 

[Note: 'Translated to sheaves, limi corresponds to the ith right derived functor of the 

global section functor.] 

The fact that the lim; (i > 1) vanish is peculiar to the case at hand. Indeed, if (1,5) is a directed set 

and if I is the associated filtered category, then for a suitable choice of I, one can exhibit a G in [lop, AB] 

such that limi G ::f: 0 Vi> 0 (Jensent). 

EXAMPLE Let p ::f: v be relatively prime natural numbers> 1. Define G(p) in TOW(AB) 

{ 
G(P)n+l - G(P)n 

by G(P)n = Z V n & and cP E Mor(G(p), G(p» by cPn(l) = v-then the cokernel 
1-p 

of cP is isomorphic to the constant tower on [N] with value Z/vZ. Applying lim to the exact sequence 

0- G(p)-tG(p) - cokercP - 0 and noting that limG(p) = 0, one obtains a sequence 0 - 0 - 0-

Z/vZ _ 0 which is not exact. On the other hand, the sequence 0 _ Z/vZ _ liml G(p) Ii~ '" G(p) - 0 

is exact, so liml G(II) contains a copy of Z/vZ V v; (II, v) = 1. 

To extend the applicability of the preceding considerations, replace AB by GR. 

Again, there is a functor lim: TOW(GR) -+ GR that sends G to limG. As for lim! G, 

it is the quotient n Gn /,....." where {X:, - {{x~}} are equivalent iff 3 x = {xn } such that 
n x - Xn 

t SLN 254 (1972), 51-52. 
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V n :X~ = XnX~!n(X;;~l)' While not necessarily a group, liml G is a pointed set with base 

point the equivalence class of {en} and it is clear that liml : TOW(GR) -+ SET. IS a 

functor. 

[Note: Put X = n Gn-then the assignment «go, gl,"')' (Xo, Xl, ... )) -+ (goxo 
n 

!O(g-;-l),glxl!I(g:;l), ... ) defines a left action of the group n Gn on the pointed set X. 
n 

The stabilizer of the base point is lim G and the orbit space n Gn \X is liml G. For the 
n 

definition and properties of liml "in general", consult Bousfield-Kant.] 

LEMMA Let * -+ G' -+ G -+ G" -+ * be an exact sequence in TOW(GR)-then 

there is a natural exact sequence of groups and pointed sets 

* -+ lim G' -+ lim G -+ lim G" -+ liml G' -+ lim1 G -+ liml G" -+ *. 

[Note: Specifically, the assumption is that V n, the sequence * -+ G~ -+ Gn -+ G~ -+ * 
is exact in GR.] 

EXAMPLE Suppose that {Gn } is a tower of finitely generated abelian groups-then limi Gn 

is isomorphic to a group of the form Ext(G, Z), where G is countable and torsion free. To see this, 

write G~ for the torsion subgroup of Gn and call G~ the quotient Gn/G~. Since each G~ is finite, 

limi G~ = * =? limi Gn ~ limi G~. Assume, therefore, that the Gn are torsion free. Let Kn = 

EB G. = G n $ Kn-I and define Kn --jo Kn-I by Gn --jo G n- I --jo Kn-I on the first factor and 
i~n 

by the identity on the second factor. So, V n, Kn --jo K n- I is surjective, thus the sequence 0 --jo 

limGn --jo limKn --jo limKn/Gn --jo Iimi G n --jo 0 is exact. Because Gn,Kn , and Kn/Gn are free 

abelian, the sequence 0 --jo Hom(Kn/Gn,Z) --jo Hom(Kn,Z) --jo Hom(Gn,Z) --jo 0 is exact =? the sequence 

o --jo colim Hom(Kn/Gn,Z) --jo colim Hom(Kn,Z) --jo coHm Hom(Gn,Z) --jo 0 is exact =? the sequence 

o --jo Hom(colim Hom(Gn,Z),Z) --jo Hom(colim Hom(Kn,Z),Z) --jo Hom(colim Hom(Kn/Gn,Z),Z) --jo 

Ext(colim Hom(Gn,Z),Z) --jo Ext(colim Hom (Kn,Z),Z) is exact =?thesequenceO --jo IimGn --jo IimKn--jo 

IimKn/Gn --jo Ext(colim Hom(Gn,Z),Z) --jo 0 is exact (for colim Hom(Kn,Z) ~ EBHom(Gn,Z), which 
n 

is free). Consequently, limi G n ~ Ext{colim Hom(Gn , Z), Z), where coHm Hom{Gn , Z) is countable and 

torsion free. 

[Note: It follows that limi G n is divisible, hence if liml G n i= *, then on general grounds, there exist 

cardinals a and -yep) (p E U) : liml G n ~ a . Q $ EB -yep) . (Z/pOOZ). But here one can say more, viz. 
p 

a = 2'"' and V p, -y(p) is finite or 2'"' .] 

t SLN 304 (1972), 305-308. 
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Huber-Warfieldt have shown that an abelian G is isomorphic to a lim1 G for some G in TOW(AB) 

iff Ext(Q, G) = o. 

When is liml G = *? An obvious sufficient condition is that the In : Gn+1 -+ Gn 

be surjective for every n. More generally, G is said to be Mittag-LefHer if V n 3 n' ~ n : 

V nil ~ n', im(Gn, -+ Gn) = im(Gnli -+ Gn). 

MITTAG-LEFFLER CRITERION Suppose that G is Mittag-LefHer-then liml G = *. 
[Note: There is a partial converse, viz. if liml G = * and if the Gn are countable, 

then G is Mittag-LefHer (Dydak-Segalt ).] 

EXAMPLE Fix a sequence /JO < /Jl ••• of natural numbers (/Jo > 1). Put an. = n Z/ /J1e Z and 
Ie;:::n 

let Gn +1 -+ Gn be the inclusion-then G is not Mittag-Lerner, yet liml G = *. 

FACT Assume: lim1 G "# * and the Gn are countable-then liml G is uncountable. 

EXAMPLE Let X be a OW complex. Suppose that Xo C Xl C ... is an expanding sequence 

of subcomplexes of X such that X = UXn . Fix a cofunctor V : IIX -+ AB and put Vn = vlXn-
n 

then V q ~ 1, there is an exact sequence 0 -+ liml Hq-l(XniVn) -+ Hq(X;v) -+ lim Hq(Xn;vn) -+ 0 

of abelian groups (Whitehead"). To illustrate, take X = K(Q,I) (realized as on p. 5-27) and let 

V : IIX -+ AB be the cofunctor corresponding to the usual action of Q on Q[Q] (cf. p. 4-39). This data 

generates a short exact sequence 0 -+ lim1 HI (Z; Q[Q]) -+ H2(Q; Q[Q]) -+ lim H2(Zi Q[Q]) -+ O. The 

tower HI (Z; Q[Q]) - HI (Zi Q[Q]) - ... is not Mittag-Lerner but Hl(Z; Q[Q]) is countable, therefore 

lim l Hl(Zi Q[Q]) is uncountable. In particular: H2(Q; Q[Q]) "# O. 

FACT Let {Gn } be a tower of nilpotent groups. Assume: V n, #(Gn ) ~ w--then liml G.,. = * iff 
lim1 Gn/[G.,., G n ] = *. 

[For as noted above, in the presence of count ability, liml Gn/[Gn , Gn] = * =? {Gn /[Gn , GnU is 

Mittag-Lerner.] 

PROPOSITION 12 Let {l:nnl be two sequences of pointed spaces. Suppose given 

pointed continuous functions {~.n ~ Xy'n 
-+ Xy'n+l . Assume: The ¢n are closed cofibrations 

'f/n· n+l -+ n 
and the .,pn are pointed Hurewicz fibrations-then there is an exact sequence 

t Arch. Math. 33 (1979), 430-436. 

SLN 688 (1978), 78-80. 

II Elements of Homotopy Theory, Springer Verlag (1978), 273-274. 
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* -+ lim1[Xn, OYn] ..!+[colimXn' lim Yn] -+ lim[Xn' Yn] -+ * 
in SET ... and t is an injection. 

[WriteXoo = colimXn & Yoo = limYn. Embedded in the data are arrows {!n ~ Xy;n -+ 
'Mn· 00-+ 

Xy;oo with {~n+1'T~ ~n _ ~.n and V n, an arrow [Xn+h Yn+1] -+ [Xn' Yn], viz. [/]-+ 
n 'f'n 0 'Mn+1 - 'Mn 

[tPn 0 I 0 ~n]' 
Define en : [Xoo, Y 00] -+ [Xn' Yn] by en([/]) = ['lin 0 I 0 q)n]. Because the collec

tion {en: [Xoo, Yoo ] -+ [Xn, Yn]} is a natural source, there exists a unique pointed map 
[Xoo, Y 00] ~ lim[Xn' Yn ] 

eoo : [Xoo, Yoo] -+ lim[Xn, Yn] such that V n, the triangle ~! com-

[Xn,Yn] 
mutes. To prove that eoo is surjective, take {[In]} E lim[Xn, Yn]-then V n, tPn O /n+1 o~n !::::: 

In. Set 10 = 10 and, proceeding inductively, assume'that 11 E [11],'" ,In E [In] have 

been found with tPk-1 0 I k 0 ~k-1 = I k-1 (1 :$ k :$ n). Choose a pointed homotopy 

h IX y; {
hn 0 io = tPn 0 In+1 0 ~n S' .1.' • d H . fib . n: n -+ n: h '-I . mce 'f'n IS a pomte urewICZ ratIon, 

nO '1 = n 
/n+l0"'n 

Xn --+ Yn+1 

the commutative diagram i01 1 "'n admits a pointed filler Hn : IXn -+ Yn+1. 
IXn --+ Yn 

Ian 
Fix a retraction rn : IXn+1 -+ iOXnH U I~n{Xn) (d. §3, Proposition 1) and specify 

a pointed continuous function Fn+l : iOXn+1 U I~n{Xn) -+ YnH by the prescription 

{ 
Fn+1{Xn+l,0) = In+1{Xn+l) . Put hn = tPn 0 Fn+1 0 rn to get a commutative diagram 
Fn+1{ ~n{xn), t) = Hn{xn, t) 

iOXn+1 U I~n{Xn) ~ Yn+1 

1 1 "'n, Bearing in mind that ~n is a closed cofibration, this 
IXn+1 --+ Yn 

In 
diagram has a pointed filler H n+l : IXn+1 -+ Yn+1 (d. §4, Proposition 12). Finally, to 

push the induction forward, let I n+1 = H n+l 0 il . ,Conclusion: There exists a pointed 

continuous function 100 : Xoo -+ Y 00 such that eoo([/oo]) = {[In]}, i.e., eoo is surjective. 
As for the kernel of eoo, it consists of those [I] : V n, 'II nO 10 q) n is nullhomotopic. Thus 

there are pointed homotopies En : IXn -+ Yn such that En oio = On & En Oil = 'lin 0 I oq)n 

with tPn 0 En+1 0 I ~n 0 io = On & tPn 0 En+1 0 I ~n 0 i1 = 'II n 0 10 q)n, where On is the zero 

morphism Xn -+ Yn' To define "100 : kereoo -+ lim 1 [Xn, OYn] , let (Tn,/ : Xn -+ OYn be the 
pointed continuous function given by 

( t) {En(xn, 2t) (O :$ t < 1/2) 
(Tn,/ Xn, = tPn 0 En+1{~n{Xn)' 2 - 2t) (1/2:$ t :$ 1) . 



5-49 

The O'n,f determine a string in n[Xn,OYn] or still, an element of lim1 [Xn,OYn ], call 
n 

it [O'f]. Definition: '100([J]) = [O'f]. One can check that '100 does not depend on the 

choice of the 3 n and is independent of the choice of f E [fl. Claim: '100 is bijective. 

To verify, e.g., injectivity, suppose that '1oo([f']) = '1oo([f"])-then there exists a string 

{[O'n]} E n[Xn, OYn] : V n, 
n 

represents O'n,/". In addition, the formulas 

{ 

3~(xn, 1 - 3t) 
O'n(xn, 2 - 3t) 
3~(xn, 3t - 2) 

(0 ~ t < 1/3) 
(1/3 ~ t ~ 2/3) 
(2/3 ~t ~ 1) 

(0 < t ~ 1/3) 
(1/3 < t ~ 2/3) 
(2/3 < t ~ 1) 

define a pointed homotopy H n : IX n - Yn having the property that H n 0 io = W n 0 f' 0 CP n 

& Hnoil = wnof"own. Arguing as before, construct pointedhomotopiesHn : 1Xn - Yn 
such that Hn 0 io = Wn 0 f' 0 wn & Hn Oil = Wn 0 f" 0 wn with 'I/ln 0 H n+l ol</>n = Hn. 

The H n combine and induce a pointed homotopy H 00 : IX 00 - Y 00 between f' and f", 
i.e., '100 is injective.] 

Application: Let {Xn} be a sequence of pointed spaces. Suppose given pointed con

tinuous functions </>n : Xn - X n+l such that V n, </>n is a closed cofibration-then for any 

pointed space Y, there is an exact sequence 

in SET * and t is an injection. 

EXAMPLE Fix an abelian group 1r. Let (X,a:o) be a pointed CW complex. Suppose that :1'10 E 

Xo C Xl C ... is an expanding sequence of subcomplexes of X such that X = U Xn-then V q 2: 1, 
n 

there is an exact sequence 0 _liml Hq-l(Xn j1r) - Hq(Xj1r) -limHQ(Xnj1r) - 0 of abelian groups. 

Example: V q 2: 1, Hq(Z/pooZ, n) ~ lim HQ(Z/pkZ, n). 

[In the above, substitute Y = K(1r, q).] 

LEMMA Let X be a pointed finite CW complex. Let K be a pointed connected CW complex. 

Assume: The homotopy groups of K are finite--then the pointed set [X, K] is finite. 

[This result is contained in obstruction theory but one can also give a direct inductive proof.] 
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EXAMPLE Let (X, :to) be a pointed CW complex. Suppose that :to E Xo C Xl C ... is an 

expanding sequence of finite subcomplexes of X such that X = U X ... Let K be a pointed connected CW .. 
complex. Assume: The homotopy groups of K are finite-then the natural map 1rx : [X, K] -+ lim [X .. , K] 

is bijective. In fact, surjectivity is automatic, so injectivity is what's at issue. For this, consider the natural 

map 1rIX : [IX,K] -+ Iim[ioX uIX .. Ui1X,K] and the obvious arrows io,i1 : lim[ioXuIX .. Ui1X,K]-+ 

[X,K]. Since io 01rIX = i1 01rIX and since 1rIX is surjective, io = i1. That 1rX is injective is thus a 

consequence of the following claim. 

Claim: If1rx([/oJ) = 1rx([I1D, then there exists [F] E lim[ioXUIX .. U itX,K]: {[/o] = io([F]}. 
[11] = it ([F]) 

[Let io' ii : [ioX U IX .. U it X, K] -+ [X, K] be the obvious arrows. For each n, there is at least 

{
[to] = io ([F .. ]) 

one [F .. ] E [ioX U IX .. U i1X,K] : ... . Denote by I .. the subset of [ioX U IX .. U i1X, K] 
. [h] = 21 ([F .. ]) 

consisting of all such [F .. ]-then, from the lemma, I .. is finite, hence lim I .. #: 0.] 

[Note: The EX .. are finite CW complexes, therefore the [EX .. , K] are finite groups, so lim1 [EX .. ,K] = 
•. But this only means that the kernel of 1rX is [0].] 

Application: Let {Yn } be a sequence of pointed spaces. Suppose given pointed con

tinuous functions 1/ln : Yn +1 -+ Yn such that V n, 1/ln is a pointed Hurewicz fibration-then 

for any pointed space X, there is an exact sequence 

in SET... and t is an injection. 

[Note: The exact sequence * -+ liml7rq+l(Yn)~7rq(limYn) ~ lim7rq(Yn) -+ * of 

pointed sets is a special case (take X = sq).] 

{ 

S1 -+ S1 
EXAMPLE For each n, put Y .. = Sl and let l/J .. : Y .. +l -+ Y .. be the squaring map 

8 -+ 8 2 

then lim 1r1(Y .. ) = 0 but liml1rl(Y .. ) ~ Z2/Z, the 2-adic integers mod Z. 

EXAMPLE Let 1f = {1r .. } be a tower of abelian groups. Assume: 1f is Mittag-Leffler-then 

V q ~ 1, K(lim1f,q) = IimK(1r .. ,q), so for any pointed CW complex (X,:to), there is an exact sequence 

0-+ lim1 HQ-l(X;1r .. ) -+ HQ(X;lim1f) -+ limHQ(X;1r .. ) -+ 0 of abelian groups. 

Given a pointed path connected space X, let PooX = limPnX-then V q > 0, 

7rq(PooX) ~ lim 7rq (PnX) ~ 7rq (PqX). Proof: The relevant lim!' term vanishes. 

PROPOSITION 13 The canonical arrow X -+ PooX is a weak homotopy equivalence. 
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[For each n, there is an inclusion X -+ X[n], a projection PCXjX -+ PnX, and a 

pointed homotopy equivalence X[n] -+ PnX. Consider the associated commutative dia
X --+ PCXjX 

gram 1 1 ,recalling that 7rn(X) ~ 7rn(X[nD·] 
X[nJ --+ PnX 

FACT Let {Xn,/n : X .. +l - X .. } be a tower in TOP. Assume: The X .. are CW spaces and the 

I .. are Hurewicz fibrations-then lim X .. is It. CW space iff all but finitely many of the In are homotopy 

equivalences. 

[Necessity: If infinitely many of the f", are not homotopy equivalences, then lim X'" is not numerably 

contractible. 

Sufficiency: If all of the fn are homotopy equivalences, then Xo and lim Xn have the same homotopy 

type (d. p.4-17).] 

Application: Suppose that X is a pointed connected CW space-then the canonical arrow X - PocX 

is a homotopy equivalence iff X has finitely many nontrivial homotopy groups. 

WHITEHEAD THEOREM Suppose that X and Y are path connected topological 

spaces. 

(1) Let f : X -+ Y be an n-equivalence-then f. : Hq(X) -+ Hq(Y) is bijective 

for 1 < q < n and surjective for q = n. 

(2) Suppose in addition that X and Y are simply connected. Let f : X -+ Y 

be a continuous function such that f. : Hq(X) -+ Hq(Y) is bijective for 1 q < n and 

surjective for q = n-then f is an n-equivalence. 

[The condition on f. amounts to requiring that Hq(Mf, i(X» = 0 for q :::; n, thus the 

result follows from the relative Hurewicz theorem.] 

EXAMPLE Let X be a pointed connected CW space-then the inclusion X - X[n] is an (n + 

I)-equivalence, hence there are bijections Hq(X) ~ Hq(X[n)) (q ~ n) and a surjection H n+1(X) -

H .. +l(X[n]). So, if X is abelian and if the ?rq(X) are finitely generated V q, then the Hq(X) are finitely 

generated V q (cf. p. 5-44). 

EXAMPLE (Suspension Theorem) Suppose that X is nondegenerate and n-connected. Let K 

be a pointed CW complex-then the suspension map [K,X] _ [EK,EX] is bijective if dimK ~ 2n and 

surjective if dim K ~ 2n + 1. In fact the arrow of adjunction e. : X - OEX induces an isomorphism 

Hq(X) - Hq(OEX) for 0 ~ q ~ 2n + 1 (d. p. 4-37), therefore by the Whitehead theorem e. is a 

(2n + I)-equivalence. So, if dimK is finite and ifn ~ 2 +dimK, then [EnK,Enx) ~ [En+1K,En+lx). 
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A continuous function f : X -+ Y is said to be a homology equivalence if V n > 
0, f. : Hn(X) -+ Hn(Y) is an isomorphism. Example: Consider the coreflector k : 

TOP -+ CG-then for every topological space X, the identity map kX -+ X is a homology 

equivalence. 

EXAMPLE A homology equivalence f : X -+ Y need not be a weak homotopy equivalence. One 

can take, e.g., X to be Poincare's homology 3-sphere S3/SL(2, 5) and Y = S3. There is a homology 

equivalence f : X -+ Y obtained by collapsing the 2-skeleton of X to a point which, though, is not a weak 

homotopy equivalence, the fundamenta.I group of X being SL(2, 5). Eight different descriptions of X have 

been examined by Kirby-Scharlemann t. 

WHITEHEAD THEOREM (bis) Suppose that X and Y are path connected topo

logical spaces. 

(1) Let f : X -+ Y be a weak homotopy equivalence-then f is a homology 

equivalence. 

[Note: It is a corollary that in general a weak homotopy equivalence is a homology 

equivalence. ] 

(2) Suppose in addition that X and Y are simply connected. Let f : X -+ Y 

be a homology equivalence-then f is a weak homotopy equivalence. 

Consequently, if X and Y are simply connected topological spaces that are dominated 

in homotopy by CW complexes, then a continuous function f : X -+ Y is a homotopy 

equivalence iff it is a homology equivalence. 

The following familiar remarks serve to place this result in perspective. 

(1) There exist path connected topological spaces X and Y such that V 0: ", .. (X) is isomor

phic to ", .. (Y) but 3 0: H .. (X) is not isomorphic to H .. (Y). 

(2) There exist simply connected topological spaces X and Y such that V 0 H .. (X) is 

isomorphic to H .. (Y) but 3 0: ", .. (X) is not isomorphic to ", .. (Y). 

(3) There exist path connected topological spaces X and Y admitting a homology equivalence 

f : X -+ Y with the property that f. : "'1 (X) -+ "'1 (Y) is an isomorphism, yet f is not a weak homotopy 

equivalence. 

[Note: Recall too that there exist topological spaces X and Y such that V 0 : H .. (X) is isomorphic 

to H .. (Y) and V 0: ", .. (X,:l:o) is isomorphic to ", .. (Y,yo) (V:l:O E X,V Yo E Y), yet X and Y do not have 

the same homotopy type. Example: - .J {
X = {OJ U {I/o: 0 > I} 

. Y={O}U{o:o2:: I} 

t In: Geometric Topology, J. Cantrell (ed.), Academic Press (1979), 113-146. 
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EXAMPLE There exists a sequence X1,X2,'" of simply connected CW complexes X,. having 

........... isomorphic integral singular cohomology rings such that V n ' ':1: nil, the homotopy types of X,.I &z; X,.II 

are distinct (Body-Douglast ). 

EXAMPLE Let X be a pointed connected CW space-then EX is contractible iff H1 (11",1) = 0 = 
H2(1I",1) (11" = 1I"1(X» and'Hq(X) = 0 (q;::: 2). 

EXAMPLE (Stable Splitting) Let G be a finite abelian group-then there exist positive integers 

T and t such that 1::'1' K(G, 1) has the pointed homotopy type of a wedge Xl V··· V Xc, where the Xi are 

pointed simply connected CW spaces. For let G = G(Pl) $ ... $ G(p,.) be the primary decomposition of 

G. Since the arrow K(G(pl), 1) V ... V K(G(p,.), 1) - K(G(PI), 1) X ••• X K(G(p,.),1) = K(G,1) is a 

homology equivalence, its suspension is a pointed homotopy equivalence, thus one can assume that G is 
r 

p-primary, say G ::= Z/p·1 Z $ ... $ Z/p·rz, 80 K(G,1) = n K(Z/p·'Z, 1). Accordingly, thanks to the 
1 

Puppe formula and the fact that E(X#Y) ~ EX#Y ~ X#EY, it suffices to consider K(Z/p·Z, 1). 

Claim: There exist pointed simply connected CW spaces Xl, ... ,Xp-1 and a pointed homotopy 

equivalence EK(Z/p·Z, 1) - Xl V·· . V Xp - l ' 

[A generator of the multiplica.tive group of units in Z/pZ defines a. pointed homotopy equivalence 

K(Z/p·Z, 1) - K(Z/p·Z, 1).] 

The rather restrictive assumption that { :~ ~:? g is not necessary in order to guar

antee that a homology equivalence / : X ~ Y is a weak homotopy equivalence. For 

example, {: abelian will do and in fact one can get away with considerably less. 

Notation: Given a group G, let Z[G] be its integral group ring and I[G] C Z[G] the 

augmentation ideal. Given a G-module M, let Ma be its group of coinvariants, i.e., the 

quotient M/I[G]· M or still, Ho(G;M). 
[Note: In this context, "G-module" means left G-module. If K is a normal subgroup 

of G, then the action of G on M induces an action of G/K on MK and Ma ~ (MK)a/K.] 

FUNDAMENTAL EXACT SEQUENCE Fix a G-module M. Let K be a normal 

subgroup of G-then there is an exact sequence 

H2 (G;M) ~ H2 (G/K;MK) ~ H1(KiM)a/K ~ Hl(G;M) ~ HI(G/K;MK) ~ O. 

[The LHS spectral sequence reads: E;,q ~ Hp(G/ K; Hq(K; M» ~ Hp+q(Gj M). Ex

plicate the associated five term exact sequence H2 ( Gj M) ~ Ei 0 ~ E~ I ~ HI (Gj M) ~ , , 
E~o ~ 0.] , 

t Topology 13 (1974), 209-214. 
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Application: Let K be a normal subgroup of G-then there is an exact sequence 

H2(G) -+ H2(G/K) -+ K/[G,K] -+ Hl(G) -+ Hl(G/K) -+ O. 

[Specialize the fundamental exact sequence and take M = Z (trivial G-action). Ob-

serve that the arrows {~~~gj =: ~~~g~~~ are induced by the projection G -+ G/K.] 

Using a superscript to denote the "invariants" functor, the fundamental exact sequence in cohomology 

is 0 -+ Hl(G/K;MK) -+ Hl(G;M) -+ Hl(K;M)G/K -+ H2(G/K;MK) -+ H2(G;M). 

Notation: Given a group G, let I'°(G) ::> I'l(G) ::> ••• be its descending central series, 

so ri+l(G) = [G,I'i(G)]. In particular: rO(G) = G, rl(G) = [G,G] and Gis nilpotent if 

there exists ad: I'd(G) = {I}, the smallest such d being its degree of nilpotency: nil G. 

FACT Let G be a nilpotent grou~then G is finitely generated iff G/[G, G] is finitely generated. 

EXAMPLE Let G be a nilpotent grou~then G is finitely generated iff V q :::: 1, Hq(G) is finitely 

generated. For suppose that G is finitely generated. Case 1: nil G ::; 1. In this situation, G is abelian 

and the assertion is true (d. p. 5-35). Case 2: nilG > 1. Argue by induction, using the LHS spectral 

sequence E;,9 ~ Hp(G/ri(G); Hq(ri(G)/ri+l (G») =? Hp+q(G/ri+l(G». To discuss the converse, note 

that Hl(G) ~ G/[G, G] and quote the preceding result. 

It is false in general that a subgroup of a finitely generated group is finitely generated. Example: Let 

G be the free group on two symbols and consider [G, G]. 

FACT Suppose that G is a finitely generated nilpotent grou~then every subgroup of G is finitely 

generated. 

FACT Suppose that G is a finitely generated nilpotent grou~then G is finitely presented. 

[The class of finitely presented groups is closed with respect to the formation of extensions.] 

Notation: Given a group G, Gtor is its subset of elements of finite order. 

[Note: Gtor need not be a subgroup of G (consider G = Z/2Z * Z/2Z) but will be if G is nilpotent 

(since nilG ::; d and 11m = e =? (z1l)m
d = zm'\] 

FACT Suppose that G is a finitely generated nilpotent group. Assume: G is torsion-then G is 

finite. 

Application: If G is a finitely generated nilpotent group, then Gtor is a finite nilpotent normal 

subgroup. 
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PROPOSITION 14 Let f : G -+ K be a homomorphism of groups. Assume: (i) 

f. : Hl(G) -+ H1(K) is bijective and (ii) f. : H2(G) -+ H2(K) is surjective-then Vi;? 0, 

the induced map G/ri(G) -+ K/ri(K) is an isomorphism. 

[The assertion is trivial if i = 0 and holds by assumption if i = 1. Fix i > 1 and 

proceed by induction. There is a commutative diagram 

H2(G) ---t H2(Gjr'(G» ---t r'(G)jri+l(G) ---t Hl(G) ---t Hl(Gjr'(G» ---t 0 

1 1 1 1 1 1 

with exact rows, hence, by the five lemma, ri(G)/ri+l(G) ~ ri(K)/ri+l(K). But then 

from 

1 ---t ri(G)/ri+l(G) ---t G/ri+l(G) ---t G/ri(G) ---t 1 

1 1 1 
1 ---t ri(K)/ri+l(K) ---t K/ri+l(K) ---t K/ri(K) ---t 1 

one concludes that G/ri+l(G) ~ K/ri+l(K).] 

Application: Let f : G -+ K be a homomorphism of nilpotent groups. Assume: (i) 

f.: Hl(G) -+ H1(K) is bijective and (ii) f.: H2(G) -+ H2(K) is surjective-then f is an 

isomorphism. 

Let G and 7r be groups. Suppose that G operates on 7r, i.e., suppose given a homomor

phism X : G -+ Aut 7r. Put r~ ( 7r) = 7r and, via recursion, write r~+ 1 ( 7r) for the subgroup 

of 7r generated by the a(x(g)ai)a-1a;l(a E 7r,ai E r~(7r)), where 9 E G-then r~(7r) 

is a G-stable normal subgroup of 7r containing r~+l(7r). The quotient r~(7r)/r~+l(7r) is 

abelian and the induced action of G is trivial. One says that G operates nilpotently on 

7r or that 7r is x-nilpotent if there exists ad: r~( 7r) = {1}, the smallest such d being 

its degree of nilpotency: nilx7r. Example: Take G = 7r and let X : 7r -+ Aut 7r be the 

representation of 7r by inner automorphisms-then 7r is x-nilpotent iff 7r is nilpotent. 

[Note: From the definitions, for any X, riC 7r) C r~( 7r), thus if 7r is x-nilpotent, then 
7r must be nilpotent.] . . 

.~ 

Let IT and 7r be groups, where IT C Aut 7r. Suppose that 7r = 7ro :::>1-1 :::> ... :::> 7rd = {1} 

is a finite filtration of 7r by IT-stable normal subgroups such that IT operates trivially on the 

7r;/7ri+l-then there is a lemma in group theory that says IT must be nilpotent (Suzukit). 

So, given X : G -+ Aut 11'", im X is nilpotent provided that 7r is x-nilpotent. 

t Group Theory, voL II, Springer Verlag (1986), 19-20. 



5-56 

FACT. Given a homomorphism x: G - Aut 7r, consider the semidirect product 7r)iJxG, i.e., the set 

of all ordered pairs (a,g) E 7r X G with law of composition (a',g')(all,g") = (a'(x(g')a"),g'g")-then 

7r)iJxG is nilpotent iff 7r is x-nilpotent and G is nilpotent. 

EXAMPLE Every finite p-group is nilpotent. Since the semidirect product of two finite p-groups 

is a finite p-group, it follows that if G and 7r are finite p-groups and if G operates on 7r, then G actually 

operates nilpotentIy on 7r. 

FACT Suppose that G operates on 7r-then G operates nil potently on 7r iff 7r is nilpotent and G 

operates nilpotently on 7r/[7r, 7r]. 

EX{A;PLE Let 1 - G' - G - Gil - 1 be a short exact sequence of groups. Obviously: G nilp.o-

tent => nilpotent. The converse is false (consider A3 C 83)' However, there is a characterization: 
Gil 

{

G' 
G is nilpotent iff are nilpotent and the action of Gil on G' /[G' , G'l is nilpotent. 

Gil 

Example: Suppose that 7r = M is a G-module. Since M is abelian, it is nilpotent 

but it needn't be x-nilpotent. In fact, r~(M) = (J[G])i . M, therefore M is X-nilpotent iff 

(J[G])d . M = 0 for some d. When this is so, M is referred to as a nilpotent G-module. 

EXAMPLE Let 7r be a nilpotent G-module. Fix n ~ I-then V q ~ 0, Hq(7r, n) is a nilpotent 

G-module. 

[G operates nilpotently on the r~(7r) and V i, there is a short exact sequence 0 _ r~+l (7r) - r~(7r) -

r~(7r)/r~+l (7r) _ 0 of G-modules, the action of G on r~(7r)/r~+1 (7r) being trivial. The mapping fiber 

of the arrow K(r~(7r), n) - K(r~( 7r)/r~+l (7r), n) is a K(r~+l (7r), n). Consider the associated fibr'ation 

spectral sequence, noting that by induction, G operates nilpotently on E;,q.l 

FACT Suppose that G is a finitely generated nilpotent group. Let M be a nilpotent G-module. 

(1) If M is finitely generated, then V q ~ 0, Hq(G; M) is finitely generated. 

(2) If M is not finitely generated, then Ho(G; M) is not finitely gerw-ated. 

A nonempty path connected topological space X is said to be nilpotent if 7rl (X) is 

nilpotent and if V n > 1, 7rl(X) operates nilpotently on 7rn (X). Examples: (1) Every 

abelian topological space is nilpotent; (2) Every path connected topological space whose 

homotopy groups are finite p-groups is nilpotent (cf. supra); (3) Take for X the Klein 

bottle-then 7rl (X) is not a nilpotent group; (4) Take for X the real projective plane

then 7rl(X) :::::l Z/2Z, 7r2(X) ~ Z and the action of 7rl (X) on 7r2(X) is the inversion n --+ -n, 
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thus 11"1 (X) does not operate nilpotently on 1I"2(X)j (5) Take for X the torus SI x SI-then 

X is nilpotent but its I-skeleton X(I) = SI V SI is not nilpotent. 

EXAMPLE Let G be a topological group with base point e and denote by Go the path component 

of e-then 7I"o(G) = G/Go can be identified with 7I"l(Bif) and 7I"n(G) = 7I"n(GO) can be identified with 

7I"n+l(Bif) (cf. p.4-65). These identifications are compatible in that the homomorphism Xn : 7I"o(G) -+ 

Aut 7I"n (Go) arising from the operation of G on itself by inner automorphisms corresponds to the action of 

71"1 (Bif) on 7I"n+l (Bif). Accordingly, Bif is a nilpotent topological space iff 71"0 (G) is a nilpotent group and 

V n ~ I, 7I"n(Go) is xn-nilpotent or still, V n ~ I, the semidirect product 7I"n(GO)>Gxn 71"0 (G) is nilpotent 

(cf. p.5-56). The forgetful function [sn,8njGo,e] -+ [sn,Go] is bijective, hence [sn,Go] ::::::: 7I"n(GO)' 

In addition, [sn,G] is isomorphic to 7I"n(Go)>Oxn 7l"0(G). To see this, let I : sn -+ G be a continuous 

function. Choose 9/ E G: I(sn) c G09/, put 10 = 1'9"t and consider the assignment [n -+ ([/o],9/Go). 

It therefore follows that Bif is a nilpotent topological space iff V n ~ 1, [sn, G] is a nilpotent group. 

Example: BO(2n+1) is nilpotent but BO(2n) is not nilpotent. 

[Note: Here is another illustration. The higher homotopy groups of a connected nilpotent Lie group 

are trivial. So, if G is an arbitrary nilpotent Lie group, then Bif is a nilpotent topological space.] 

FACT Let G be a topological group. Assume: V n ~ 1, [sn ,G] is a nilpotent group-then for any 

finite CW complex K, [K, G] is a nilpotent group. 

[Take K connected and argue by induction on the number of cells.] 

EXAMPLE Let X be a nilpotent CW space-then Mislin t has shown that X is dominated in 

homotopy by a. finite CW complex iff the Hq(X) are finitely generated V q and there exists qo : V q > qQ, 

Hq(X) = O. Moreover, under these conditions, Wall's obstruction to finiteness is zero provided tha.t 71"1 (X) 

is infinite but this can fail if 71"1 (X) is finite (Mislint ). 

DROR'S WHITEHEAD THEOREM Suppose that X and Y are nilpotent topological 

spaces. Let f : X -+ Y be a homology equivalence--then f is a weak homotopy equivalence. 

[To prove that f is a weak homotopy equivalence amounts to proving that for every 

n, the pair (M" i(X)) is n-connected, where, a priori, H.(M" i(X)) = O. Consider the 

X ~ Y 
commutative diagram 1 1 Since the vertical arrows are 2-equivalences, It ,1 

X[I] -+ Y[l] 
ft,t 

t Ann. of Math. 103 (1976), 547-556. 

Topology 14 (1975), 311-317. 
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induces a bijection H1(X[1]) -+ H1(Y[1]) and a surjection H2(X[1]) -+ H2(Y[1]). But 

{
X[l] h h {(1r1 (X),1) {1r1(X)'1 h I Y[l] as omotopy type (1rl(Y),l) and 1rl(Y) are m potent groups, t us J. : 

1rl(X) -+ 1rl(Y) is an isomorphism (cf. p. 5-55) and so (M"i(X» is I-connected. Noting 

that here 1r2(M" i(X» is abelian, fix n > 1 and assume inductively that 1r'l(M" i(X» = 
o for q < n-then, from the relative Hurewicz theorem, 1rn(Mj ,i(X»lfl(X) = 0, i.e., 
1rn(M" i(X» = I[1rl(X)] . 1rn(Mj , i(X». On the other hand, there is an exact sequence 
1rn(Mj) -+ 1rn(M" i(X» -+ 1rn-l(i(X» of 1rl(X)-modules. Because the flanking terms 
are, by hypothesis, nilpotent 1rl(X)-modules, the same must be true of 1rn(M" i(X». 

Conclusion: 1rn(M" i(X» = 0.] 

PROPOSITION 15 Let!: X -+ Y be a Hurewicz fibration, where X and Y are 

path connected. Assume: X is nilpotent-then 'V Yo E Y, the path components of XyO are 

nilpotent. 

[Fix Xo E XYO and take XyO path connected. The homomorphisms in the homotopy 

sequence 

of ! are 1rl (X, Xo )-homomorphisms (cf. p. 4-36). Of course, 1rl (X, xo) operates on 

1rn(Y,yo) through !. and if i : XYO -+ X is the inclusion, then a· e = (i.a) . e (a E 

1rl(XYO,Xo),e E 1rn(XI/O,xo». Since the base points will play no further role, drop them 

from the notation. 

(n = 1) To see that 1rl(Xyo) is nilpotent, consider the short exact sequence as

sociated with the exact sequence 1r2(Y) ~ 1rl(Xyo) ~ 1rl(X), noting that im8 is contained 

in the center of 1rl (Xyo)' 
(n > 1) There is an exact sequence 1rn+l(Y)~1rn(XYo)~1rn(X) and by as

sumption, 3 d: (I[1rl (X)])d '1rn(X) = O. Claim: (I[1rl(Xyo)])d+l '1rn(Xyo ) = O. For let 

a E (I[1rl(Xyo)])d, e E 1rn(Xyo): i.(a·e) = i.a·i.e = 0 => a·e = 8", ('" E 1rn +l(Y»' And: 

'V P E 1rl(Xyo), (i.P -1)· '" = (!.i.P -1)· '1 = 0, so 0 = 8«(i.P -1)· "') = (i.P -1)·8", = 
«P - l)a) . e. Hence the claim.] 

Application: Let X and Y be pointed path connected spaces. Assume: X is nilpotent

then for every pointed continuous function! : X -+ Y, the path components of the map

ping fiber E, of ! are nilpotent. 

EXAMPLE Let (K, ko) be a pointed connected OW complex. Assume: K is finite-then for 

any pointed path connected space (X,zo), the path components of C(K,koiX,ZO) are nilpotent. In 
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particular, the fundamental group of the path component of the constant map K - Zo is nilpotent, thus 

[K,ko;OX,j(zo)] is a nilpotent group. Observe that the base points playa role here: [Sl,Op2(R)] is a 

group but it is not nilpotent. 

FACT Let f : X - B be a Hurewicz fibration. Given 41' E C(B', B), define X, by the pullback 
X, --+ X 

square 1 
B' 

1f. Assume: {~ "B' are nilpotent-then the path components of X, are nilpotent. 

---+ B 
~, 

[Work with the Mayer-Vietoris sequence (cf. p.4-37).] 

EXAMPLE The preceding result implies that nilpotency behaves well with respect to pullbacks 

but the situation for pushouts is not as satisfactory since nilpotency is not ordinarily inherited (consider 

Sl V S2). For example, suppose that f : X - Y is a continuous function, where X and Yare nonempty 

path connected CW spaces. Assume: Y is nilpotent-then Raot has shown that the mapping cone Cf 

of f is nilpotent iff one of the following conditions is satisfied: (i) f. : 1rl (X) - 1rl (Y) is surjective; (ii) 

V q > 0, Hq(X) = 0; (iii) 3 a prime p such that 1rl (Cf) is a finite p-group and V q > 0, Hq(X) is a p-group 

of finite exponent. Example: If f : X - Y is a closed cofibration, then under (i), (ii), or (iii), Y / f(X) is 

nilpotent (cf. p.3-24). Moreover, under (ii), the projection Y - Y/f(X) is a homology equivalence (cf. 

p. 3-8), hence by Dror's Whitehead theorem is a homotopy equivalence. 

Let {-; be pointed connected CW spaces. Suppose that I : X -. Y is a pointed 

continuous function-then I is said to admit a principal refinement of order n if I can be 

written as a composite X ~ WN ~ WN-l -. ... -. WI ~ Wo = Y, where A is a pointed 

homotopy equivalence and each qi : Wi -. Wi-l is a pointed Hurewicz fibration for which 

there is an abelian group 7ri and a pointed continuous function 4)i-l : Wi-l -. K(7ri' n+ 1) 
Wi --+ eK(7ri,n + 1) 

such that the diagram qi 1 1 is a pullback square. 
Wi-l --+ K(7ri,n + 1) 

4)i-1 

[Note: Wi is a pointed connected CW space homeomorphic to E4)i_1 (parameter 

reversal). ] 

Example: If X is a pointed abelian CW space, then V n, the arrow In : X[n] -. X[n-1] 
W[n] 

admits a principal refinement of order n: ~L (cf. p. 5-42), with N = l. 
X[n] ----7 X[n - 1] 

t Proc. Amer. Math. Soc. 87 (1983), 335-341. 
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EXAMPLE (Central Extensions) Let 1r and G be groups, where 1r is abelian-then the isomor

phism classes of central extensions 1 - 1r - n - G - 1 of 1r by G are in a one-to-one correspondence 

with the elements of H2(G, 1; 1r) or still, with the elements of [K(G, 1), K(1r, 2)1. Therefore G is nilpotent 

iff the constant map K(G, 1) - * admits a principal refinement of order 1. 

[Any nilpotent G generates a finite sequence of central extensions 1 - ri(G)/ri+l (G) - G/r,+l (G) 

- G/r'(G)-1.] 

Let X be a pointed connected CW space-then, in view of the preceding example, 

the arrow II : X[I] -+ X[O] admits a principal refinement of order 1 iff 71'1 (X) is nilpotent. 

PROPOSITION 16 Let X be a pointed connected CW space. Fix n > I-then the 

arrow In : X[n] -+ X[n - 1] admits a principal refinement of order n iff 71'l(X) operates 

nilpotently on 71'n(X), 

[Necessity: Suppose that In factors as a composite X[n] A WN ~ WN-l -+ ... -+ 

WI ~ Wo = X[n - 1], where A and the qi are as in the definition. Obviously, 71'1 (X) R$ 

71'1 (Wi) for all i. Since 71'n(WO) = 71'n(X[n -1]) = 0, 71'1 (X) operates nilpotently on 71'n(WO)' 
Claim: 71'l(X) operates nilpotently on 71'n(W1), Thus let Wo be the mapping track of 4lo 

WI -+ eK(7I'1,n+l) 

and define WI by the pullback square 1 1 -then there is a pointed 

Wo -+ K(7I'1,n + 1) 
homotopy equivalence WI -+ WI and, from the proof of the "n > I" part of Proposition 15, 
71'1 (X) operates nilpotently on 71'n(W1), Iterate to conclude that 71'1 (X) operates nilpotently 

on 71'n(WN) R$ 71'n(X). 

SUfficiency: One can copy the argument employed in the abelian case to construct 

the Postnikov invariant (d. p. 5-42). At the first stage, the only difference is that after 

replacing n by n -1, the coefficient group for cohomology is not 71'n(X) but 71'n(X) 1r1(X) = 

WI 
HO(7I'1(X)j 71'n(X». Because the initial lifting ~ 191 of In is a pointed homo-

X[n] ~ X[n - 1] 
topy equivalence iff 1[71'1 (X)] '7I'n(X) = 0, it is in general necessary to repeat the procedure, 

which will then terminate after finitely many steps.] 

Application: Let X be a pointed connected CW space-then X is nilpotent iff V n, 

the arrow In : X[n] -+ X[n -1] admits a principal refinement of order n. 

[Note: If X is nilpotent and if Xn : 71'l(X) -+Aut 71'n(X) is the homomorphism corre

sponding to the action of 71'1 (X) on 71'n(X), then a choice for the abelian groups figuring in 

the principal refinement of the arrow X[n] -+ X[n -1] are the r~n (7I'n(X»/r~~1(7I'n(X».] 
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EXAMPLE Let K be a finite CW complex-then for any pointed nilpotent CW space X, the 

path components of C( K, X) are nilpotent. 

[Bearing in mind §4, Proposition 5, use Proposition 15 and induction to show that V n, the path 

components of C(K, X[n]) are nilpotent.] 

EXAMPLE Let (K, ko) be a pointed CW complex. Assume: K is finite-then for anY pointed 

nilpotent CW space (X, :1:0), the path componentsofC(K, ko;X, :1:0) are nilpotent. Indeed, C(K, ko; X,:l:o) 

= C(Ko,koiX,zo) x C(Kt,X) x '" x C(K .. ,X), where Ko,K1. ... ,K .. are the path components of K 

and ko E Ko. 

NILPOTENT OBSTRUCTION THEOREM Let (X, A) be a. relative CW complexj let Y be 

a pointed nilpotent CW space. Suppose that V n > 0 & Vi;?: 0, H .. +l(X, Aj r~n (1rn(Y»/r~t.l(1r .. (Y))) = 

O-then every / E C(A, Y) admits an extension F E C(X, Y), any two such being homotopic rei A provided 

tha.t V n > 0 & Vi;?: 0, Hn(x, Aj r~n (1rn(Y»/r~t.l (1rn(Y))) = O. 

PROPOSITION 11 Let X be a pointed connected CW space, X its universal covering 

space. Assume: 1rl(X) is nilpotent-then X is nilpotent iff V n ~ 1, 1rl(X) operates 

nilpotently on H n (X). 

[X exists and is a pointed connected CW space (cf. Proposition 5). 

Necessity: Consider the Postnikov tower of X, so Pn : PnX -+' Pn-1X. Suppose 

inductively that 1rl(X) operates nilpotently on the homology of Pn-1X. Since X is nilpo

tent, the Hq(1rn(X),n) are nilpotent 1rl(X)-modules (cf. p. 5-56), i.e., 1rl(X) operates 

nilpotently on the homology of the mapping fiber of Pn. Therefore, by the universal co

efficient theorem, the E;,q R: Hp(Pn-1X; Hq(1rn(X), n)) in the fibration spectral sequence 

of Pn are nilpotent 1rl(X)-modules, thus the same is true of the Hi(PnX). But the arrow 

X-+' PnX induces an isomorphism of 1rl(X)-modules Hi(X) -+' Hi(PnX) for i $ n. 

Sufficiency: Introduce the Whitehead tower of X and argue as above.] 

PROPOSITION 18 Let X be a pointed connected CW space. Assume: X is nilpotent

then the 1rq(X) are finitely generated V' q iff the Hq(X) are finitely generated V q. 

[Suppose that the 1r q{X) are finitely generated V q-then, X being simply connected, 

hence abelian, the Hq(X) are finitely generated V q (cf. p. 5-51). On the other hand, 

according to Proposition 17, 1rl(X) operates nilpotently on the Hq(X). Consequently, the 

Hp(1rl(X); Hq(X)) are finitely generated (cf. p.5-56). However, these terms are precisely 

the E;,q in the spectral sequence of t~e covering projection X -+' X (see below), so V i, 

Hi(X) is finitely generated. 
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Suppose that the Hq(X) are finitely generated V q-then, since Trl (X)/[Tr1 (X), Tr1 (X)] 
~ HI (X), the nilpotent group Trl(X) is finitely generated (d. p.5-54). As for the Trq(X) 
(q > 1), their finite generation will follow if it can be shown that the Hq(X) are finitely 

generated (cf. p. 5-44). Proceeding by contradiction, fix an io such that H;.o(X) is not 

finitely generated and take io minimal. The E;,q ~ Hp(Tr1(X); Hq(X» are finitely gener

ated if q < io but E~,io ~ HO(Trl(X);Hio(X» is not finitely generated (cf. p. 5-56), thus 

E~o is not finitely generated. Therefore Hio (X) contains a subgroup which is not finitely 
generated. ] 

[Note: A finitely generated nilpotent group is finitely presented and its integral group 

ring is (left and right) noetherian. This said, it then follows that under the equivalent 

conditions of the proposition, X necessarily has the pointed homotopy type of a pointed 

OW complex with a finite n-skeleton V n (Wallt ).] 

~he spectral sequence E;,q ~ Hp( Tr1 (X); Hq(X» => Hp+q(X) of the covering projec

tion X -+ X is an instance of a fibration spectral sequence. In fact, consider the inclusion i : 

X -+ X[I] = K(Trl(X), 1) and pass to its mapping track W, -+ K(Trl(X), I)-then E;. has 

the same pointed homotopy type as X. Moreover, Hp(Trl(X)j Hq(X» ~ Hp(K(Tr1(X), l)j 

1-£q(X», where 1-£q(X) is the locally constant coefficient system on K(7r1(X), 1) determined 

by Hq(X) (cf. p.5-34). 

FACT Suppose that {: are pointed connected CW spaces. Let 1 : X -+ Y be a pointed Hurewicz 

fibration with 11'0 (XYo ) = "'-then 11'1 (X) operates nilpotently on the 11'1] (Xyo) V q iff XyO is nilpotent and 

1I'1(Y) operates nilpotently on the HI](Xyo) V q. 

EXAMPLE Suppose that {: are pointed connected CW spaces. Let 1 : X -+ Y be a pointed 

Hurewicz fibration with 1I'0(Xyo ) = "'-then any two of the following conditions imply the third and the 

third implies that XyO is nilpotent: (i) X is nilpotent; (ii) Y is nilpotent; (iii) 11'1 (X) operates nilpotently on 

the 11'1] (XyO ) V q. Assume now that 11'1 (Y) operates nilpotently on the HI] (XyO ) V q. Claim: X is nilpotent 

iff both Y and XyO are nilpotent. For X nilpotent::? XyO nilpotent (cf. Proposition 15) ::? 11'1 (X) operates 

nilpotently on the 11'1] (X YO) V q ::? Y nilpotent, and conversely. 

HILTON-ROITBERG* COMPARISON THEOREM Suppose that &:. are pointed {
X {XI 
Y yl 

connected CW spaces. Let 1 : X -+ Y and /' : X' -+ yl be pointed Hurewicz fibrations such that E J 

t Ann. 01 Math. 81 (1965), 56-69. 

Quart. J. Math. 21 (1976), 433-444; see also Schon, Quart. J. Math. 32 (1981), 235-237. 
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and E J' are path connected and { 
1I'1(y) 

11'1 (y/) { 
HfJ(EI) 

operates nilpotently on the Y q. Suppose there is 
H'l(EI,) 

X -.L. y 

a commutative diagram 1 1 , where 11'1 (Y) ~ 11'1 (y/) or 11'1 (Y) &; 11'1 (y/) are nilpotent-then, 
X, ~ yl 

I' 
assuming that all isomorphisms are induced, any two of the following conditions imply the third: (1) 

Y p, Hp(Y) ~ Hp(y/); (2) Y q, HfJ(EI) ~ HfJ(EI,); (3) Y n, H .. (X) ~ H .. (X/). 

A nonempty path connected topological space X is said to be acyclic provided that 

V q > 0, Hq(X) = O. So: X acyclic * 1r = [1r,1r] and H1 (1r, 1) = 0 = H2 (1r, 1) (cf. p.5-35), 

where 1r = 1rl (X). Example: Every nilpotent acyclic space is homotopically trivial (quote 

Dror's Whitehead theorem). 

EXAMPLE (Acyclic Groups) A group G is said to be acyclic if Y n > 0, H .. (G). = 0 or, equiv

alently, if K(G, 1) is an acyclic space. Nontrivial finite groups are never acyclic (Swant ). However, there 

are plenty of concretely defined infinite acyclic groups. A list of examples has been compiled by Harpe

McDuW. They include: (1) The symmetric group on an infinite set; (2) The group of invertible linear 

transformations of an infinite dimensional vector space; (3) The group of invertible bounded linear trans

formations of an infinite dimensional Hilbert space; (4) The automorphism group of the measure algebra 

of the unit interval; (5) The group of compactly supported homeomorphisms of a". 

FACT Let G be a group which is the colimit of subgroups G .. (n E N) with the property that Y n, 

there exists a nontrivial g .. E G .. +l and a homomorphism 4> .. : G .. - Cena"+1 (G .. ) such that Y 9 E G .. , 

9 = [u .. , 4> .. (g)]-then G is acyclic. 

[It suffices to work with coefficients in an arbitrary field k. Since H.(Gj k) ~ colim H.(G .. ; k), one 

need only show that Y n ~ 1 &; Y N ~ 1, the morphism H'l(G .. jk) - HfJ(G .. +N;k) induced by the 

inclusion G .. - G .. +N is trivial when 1 S q < 2N. For this, fix n and use induction on N. Recall that 

conjugation induces the identity on homology and apply the Kiinneth formula.] 

[Note: It is clear that 4> .. is injective (~ g .. E G"+l - G .. ). Observe too that it is not necessary to 

assume that 4> .. (G .. ) is contained in the centralizer of G .. in G"+l as this is implied by the other condition. 

Proof: Y g, h E G .. : [u .. , 4> .. (gh)] = [u .. , 4> .. (g)] . [4> .. (g), [g .. , 4> .. (h)]] . [g .. , 4> .. (h)] ~ gh = 9[4> .. (g), h]h ~ e = 
[4> .. (g), h].] 

t Proc. Amer. Math. Soc. 11 (1960), 885-887. 

f Comment. Math. Helv. 58 (1983). 48-71; see also Berrick, In: Group Theory. K. Cheng and Y. 

Leong (ed.), Walter de Gruyter (1989), 253-266. 
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EXAMPLE Let Hc(Q) be the set of bijections of Q that are the identity outside some finite 

interval. Given a group G, let Fc(Q, G) be the set offunctions Q -- G that send all elements outside some 

finite interval to the identity. Both Hc(Q) and Fc(Q, G) are groups and there is a homomorphism X : 

Hc(Q) -- Aut Fc(Q, G), viz. x(.8)a(q) = a(fJ-l(q». The ~ of G is the associated semidirect product: 
, { G -- rG {g (q = 0) 

rG = Fc(Q,G)>OxHc(Q). The assignment : a,(q) = is a monomorphism of 
9 -- a, e (q ¢ 0) 

groups and rG is acyclic. 

[Let rG" = {(a, (3) : apt a U spt f3 C [-n, n]} and construct .. homomorphism q,,, : rG" -

CenI"Gn+l (rGn) in terms of a bijectionf3n E Hc(Q) : spt f3n C [-n-1,n+1] &. V k : f3![-n, n]n[-n, n] = 
0.] 

FACT Every group can be embedded in an acyclic simple group. 

[By the above, every group can be embedded in an acyclic group. On the other hand, every group 

can be embedded in a simple group (Robinsont ). So given G, there is a sequence G C Gl C G2 C ... I 

where Gn is acyclic if n is odd and simple if n is even. Consider U Gn .] 
n 

Recall that a group G is said to be perfect if G = [G, G]. Examples: (1) Every acyclic 

group is perfect; (2) Every nonabelian simple group is perfect. 

[Note: The fundamental group of an acyclic space is perfect.] 

The homomorphic image of a perfect group is perfect. Therefore, if G is perfect and 

1r is nilpotent, then G operates nilpotently on 1r iff G operates trivially on 1r (ct. p. 5-55). 

Proof: A perfect nilpotent group is trivial. 

Every group G has a unique maximal perfect subgroup Gper , the perfect radical of G. 

The automorphisms of G stabilize Gper, thus Gper is normal. 

(Pt) Let I: G --+ K be a homomorphism of groups-then I(Gper) c Kper. 

(P2 ) Let I : G --+ K be a homomorphism of groups, where Kper = {l}-then 

Gper C ker I.' 

FACT A locally free group is acyclic iff it is perfect. 

[Note: A group is said to be locally free if its finitely generated subgroups are free.] 

LEMMA Lei I : G --+ K be an epimorphism of groups. Put N = ker I-then 

I( Gper ) = Kper provided that 3 n : N(n) C Gper. 

[Note: N(n) is the nth derived group of N : N(O) = N, N(i+1) = [NU) , NU)]. Obvi

ously, N(O) C Gper if N is perfect and N(l) C Gper if N is central.] 

t Finiteness Oonditions and Generalized Soluble Groups, vol. I, Springer Verlag (1972), 144. 
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Application: Let N be a perfect normal subgroup of G-then the perfect radical of 

GIN is the quotient Gper IN, hence the perfect radical of GIN is trivial iff N = Gper • 

EXAMPLE Let A be a ring with unit. Agreeing to employ the usual notation of algebraic K

theory, denote by GL(A) the infinite geperallinear group of A and write E(A) for the subgroup of GL(A) 

consisting of the elementary matrices-then, according to the Whitehead lemma, E(A) = [E(A), E(A)] = 
[GL(A), GL(A)], thus E(A) is the perfect radical of GL(A). Let now ST(A) be the Steinberg group of 

A: ST(A) is perfect and there is a.n epimorphism ST(A) -+ E(A) of groups whose kernel is the center of 

ST(A). 

[Note: On occasion, it is necessary to consider rings which may not have a. unit (pseudorings). Given 

a pseudoring A, let A be the set of all functions X : N X N -+ A such that #{(i,j) : Xi.i i- o} < w-then 

A is again a pseudoring (matrix operations). The law of composition X * Y = X + y + X x Y equips A 

with the structure of a semigroup with unit. Definition: GL(A) is the group of units of (A, *). Therefore, 

using obvious notation, E(A) = [E(A), E(A)] = [GL(A), GL(A)]. Every bijection <p : N -+ N X N defines 

an isomorphism of pseudorings: A ~ A, hence GL(A) ~ GL(A). In the event that A has a unit, the 

assignment is an isomorphism of groups (::::} GL(A) ~ GL(A».] 
{ 

GL(A) -+ GL(A) __ 

X -+ X +1 

EXAMPLE (Universal Central Extensions) Let G be a group--then a central extension 1 -+ 

N -+ U -+ G -+ 1 is said to be universal if for any other central extension 1 -+ 11' -+ II -+ G -+ 1 there 

U )II 
is a unique homomorphism "x / over G. A central extension 1 -+ N -+ U -+ G -+ 1 is universal 

G 
iff Hl(U) = 0 = H2(U), On the other hand, a universal central extension 1 -+ N -+ U -+ G -+ 1 

exists iff G is perfect. To identify N in terms of G, use a portion of the fundamental exact sequence: 

H2(U) -+ H2(G) -+ N/[U,N] -+ Hl(U) or still, 0 -+ H2(G) -+ N/[U,N] -+ o::::} H2(G) ~ N. Example: 

Take G = E(A)-then H1(ST(A» = 0 = H2(ST(A» and there is a universal central extension 1 -+ 

H2(E(A)) -+ ST(A) -+ E(A) -+ 1. 

EXAMPLE Let ACYGR be the full subcategory of GR whose objects. the acyclic groups

then Berrickt has defined a functor a : AB -+ ACYGR such that V G, the center of aG is naturally 

isomorphic to G. The quotient fjG = aG/CenG is a perfect group and the central extension 1 -+ G -+ 

aG -+ fjG -+ 1 is universal, so G ~ H2(fjG). 

[Note: By contrast, the cone construction defines a functor r : GR -+ ACYGR.] 

FACT Let {G
1 

be groups-then the perfect radical of Gl X G2 is (Gdper X (G2 )per. 
G2 . . 

t J. Pure Appl. Algebra 44 (1987), 35-43. 
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FACT Let {Gl be groups with trivial perfect radicals-then the perfect radical of their free 
G2 

product Gl * G2 is trivial. 

[A theorem of Kurosch says that any subgroup G of G1 * G2 has the form F * (*G.), where F is a. 
• free group a.nd V i, Gi is isomorphic to a subgroup of either G 1 or G2. Put X = K(F, 1) V V K(Gj, 1) : 

j 

?rl(X) ~ G. If G is perfect, then 0 = Hl{X) ~ Hl{F) $ Ee Hl(Gd, and it follows that F and the G. are 
i 

perfect, hence trivial.] 

Let {; be pointed connected CW spaces. Suppose that f : X ~ Y is a pointed 

continuous function-then f is said to be acyclic if its mapping fiber Ej is acyclic. For 

this, it is therefore necessary that 7ro(Ej) = *. 
[Note: Using the mapping cylinder Mj, write f = roi (cf. p. 3-21)-then (Mj, i(xo» 

is nondegenerate, thus r : Mj ~ Y is a pointed homotopy equivalence (cf. p. 3-35) which 

implies that the arrow Ei ~ E roi = E j is a pointed homotopy equivalence (cf. p. 4-33). 

Conclusion: f : X ~ Y is acyclic iff i : X ~ M j is acyclic.] 

Observation: Suppose that f : X ~ Y is acyclic-then f. : 7rl(X) ~ 7rl(Y) is sur

jective and its kernel is a perfect normal subgroup of 7rl(X), 

[Inspect the exact sequence 7r2(Y) ~ 7rl(Ej) ~ 7rl(X) ~ 7rl(Y) ~ 7ro(Ej ).] 

PROPOSITION 19 Let { ; be pointed connected CW spaces, f: X ~ Y a pointed 

continuous function-then f is a pointed homotopy equivalence iff f is acyclic and f. : 
7rl (X) ~ 7rl (Y) is an isomorphism. 

[The necessity is clear. As for the sufficiency, the arrow 7r2(Y) ~ 7rl(Ej) is surjective, 

hence 7rl (Ej) is both abelian and perfect. But this means that 7rl (Ej) must be trivial, so, 

being a pointed connected CW space, E j is contractible.] 

Let P be a set of primes. Fix an abelian group G---then G is said to be P-primary if V 9 E G, 

3 F C P (#{F) < w) & n EN: ( IT p)ng = 0 (IT = 1) and G is said to be uniquely P-divisible if 
fiEF ~ 

V 9 E G, V pEP, 3! h E G : ph = g. 

[Note: If P is empty, then the only P-primary abelian group is the trivial group and every abelian 

group is uniquely P-divisible.] 

LEMMA Let C be a class of abelian groups containing O. Assume: C is closed under the formation 

of direct sums and five term exact sequences, i.e., for any exact sequence Gl -+ G2 -+ G3 -+ G4 -+ Gs of 

abelian groups: {Gl' G2 E C =} G3 E C-then there exists a set of primes P such that C is either the 
G 4 ,Gs 

class of P-primary abelian groups or the class of uniquely P-divisible abelian groups. 
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[The hypotheses imply that Cis colimit closed. Given a set P of primes, it follows that if Z/pZ E 

C V pEP, then every P-primary abelian group is in C or if Q E C and Z/pZ E C V p ~ P, then 

every uniquely P-divisible abelian group is in C. On the other hand, if some GEe is not uniquely 

P-divisible, then Z/pZ E C (consider G.!.. G) and if some GEe is not torsion, then Q E C (consider 

Q ® G = colim(··· --. G ~ G --. ... ». To summarize: (1) If Q ~ C and if Z/pZ E C exactly for pEP, 

then C consists of the P-primary abelian groups; (2) If Q E C and if Z/pZ E C exactly for p ~ P, then C 

consists of the uniquely P-divisible abelian groups.] 

Application: Fix abelian groups { A -then A® B = 0 = Tor(A, B) iff there exists a set P of primes 
B . 

such that one of the groups is P-primary and the other is uniquely P-divisible. 

[Supposing that A ® B = 0 = Tor(A, B), the class of abelian groups G for which G ® B = 0 = 
Tor(G, B) satisfies the assumptions of the lemma.] 

EXAMPLE Given a 2-sink X.!.. B .!. Y, where {: & B are pointed connected CW spaces, form 

XDBY (cf. p.4-25). Let r : XDBY --. B be the projection-then the following conditions are equivalent: 

(i) r is a pointed homotopy equivalence; (ii) Er is acyclic; (iii) 3 P such that one of _ i _ 
{ 

ii.(Ep) = E9 iii(Ep) 

. H.(Eq) = E9 Hj(Eq) 
j 

is P-primary and the other is uniquely P-divisible. To see this, recall that Er ~ Ep * Eq (cf. p. 4-32) 

and, on general grounds, iilc+l(Ep * Eq) ~ E9 iii(Ep) ® iij(Eq) e E9 Tor (Hi(Ep), Hj(Eq». In 
i+j=/; i+j=/;-l - - -particular: Er acyclic =? 0 = Hl(Er ) = Ho(Ep)®Ho(Eq), so at least one of Ep and Eq is path connected, 

thus Ep * Eq is simply connected (cf. p. 3-40) or still, Er is contractible and r is a pointed homotopy 

equivalence. Therefore (i) and (ii) are equivalent. To check (ii) ¢> (iii), use the algebra developed above. 

EXAMPLE Let {: be pointed connected CW spaces, I : X --. Y a pointed continuous function. 

Denote by C 1r the mapping cone of the pointed Hurewicz fibration 1r : EJ --. X-then, specializing the 

pre~ding exampl~ the projection C 1r --. Y is a pointed homotopy equivalence iff 3 P such that one of 

{ 

H.(EJ) = E9 Hi(EJ) 
_ i . _ is P-primary and the other is uniquely P-divisible. To illustrate the situation 
H.(OY) = E9 Hj(OY) 

when P is the j set of all primes, consider the short exact sequence 0 --. Z --. Q --. Q/Z --. O-then 

the mapping fiber of the arrow K(Z, n + 1) --. K(Q, n + 1) is a K(Q/Z, n) (cf. p. 5-29). Furthermore, 

OK(Q, n + 1) = K(Q, n) and ii.(Q, n) is a uniquely divisible abelian group (being a vector space over 

Q), while ii.(Q/z, n) is a torsion abelian group (cf. p. 7-9). When P = 0, there are two possibilities: 

(1) ii.(EJ) = 0; (2) ii.(OY) = O. In the first case, I is acyclic and in the second case, Y is contractible 

and 1r : E J --. X is a pointed homotopy equivalence. Consequently, if 1rl (Y) :F 0, then I is acyclic iff the 

projection C 1r --. Y is a pointed homotopy equivalence. 
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[Note: A priori, C", is calculated in TOP but is viewed as an object in TOP •. As such, it has the 

same pointed homotopy type as the pointed mapping cone of 'If'.] 

FACT Suppose that I : X - Y is acyclic. Let Z be any pointed space-then the arrow [y, Z] -

[X, Z] is injective. 

[The orbits of the action of (EE/> Z] on [C"" Z] are the fibers of the arrow [C'II" Z] - [X, Z] (d. 

p.3-33). But EE, is contractible in TOP., hence [EE/>Z] is the trivial group and, as noted above, one 

can replace C'II' by Y.] 

PROPOSITION 2Q Let {~ be pointed connected CW spaces. Suppose that f : 
X --t Y is a pointed continuous function with 1ro(EI) = *-then f is acyclic iff f is a 

homology equivalence and 1r} (Y) operates nilpotently on the H 9 (E I) Y q. 
WI --+ Y 

[Consider the commutative diagram ! II and apply the Hilton-Roitberg 

Y Y 
comparison theorem.] 

EXAMPLE Take X = S3/SL(2, 5), Y = S3-then the arrow X _ Y is an acyclic map (d. 

p.5-52). 

FACT Let {: be pointed connected CW spaces, I : X - Y a pointed continuous function. 

Denote by C, its mapping cone-then I acyclic => C, contractible and C, contractible => I acyclic 

provided that 'If'l (Y) = O. 

[If C, is contractible and Y is simply connected, then I is a homology equivalence (d. p. 3-22) and 

'If'l{Y) operates trivially on the Hq(E,) V q, so Proposition 20 can be cited.] 

FACT Let {: be pointed connected CW spaces, I : X - Y a pointed continuous function. 

Assume: X is acyclic and I. : 'If'l (X) - 'If'l (Y) is trivial-then I is nullhomotopic. 

[Take X to be a pointed connected CW complex, consider a lifting] : X - Y of I, and show that 

Y - 0; is an acyclic map.] 

[Note: It is a corollary that if X is acyclic and Hom('If'l (X, :1:0), 'If'l (Y, Yo» = *, then C(X, :1:0; Y, Yo) 

is homotopically trivial.] 

Application: Let X&;{ Y be pointed connected CW spaces. Suppose that I : X - Y &; I' : 
yl 

X - y' are pointed continuous functions with I acyclic-then there exists a pointed continuous function 

g: Y - yl such that go/ ~ /' iff ker'lf'l(f) C ker'lf'l(f/). 

[Note: Up to pointed homotopy, 9 is unique.] 
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PROPOSITION 21 Let {: be pointed connected CW spaces. Suppose that f : 
X -t Y is a pointed continuous function with 1f'o(EJ) = *-then f is a pointed homo

topy equivalence iff f is a homology equivalence and 1f'1 (X) operates nilpotently on the 

1f'q(EJ) V q. 

[The stated condition on 1f'1 (X) implies that 1f'1(Y) operates nilpotently on the Hq(EJ) 
V q (cf. p. 5-62), thus, by Proposition 20, E J is acyclic. But E J is also nilpotent. Therefore 

EJ is contractible and f : X -t Y is a pointed homotopy equivalence.] 

It will be convenient to insert here a technical addendum to the fibration spectral 

sequence. 

Notation: A continuous function f : X -t Y induces a functor f* : LCCSy -t 

LCCS X or still, a functor f* : [(IIY)OP, AB] -t [(IIX)OP, AB] (cf. §4, Proposition 25). 

If X is a subspace of Y and f is the inclusion, one writes glX instead of f*g. 

Let f : X -t Y be a Hurewicz fibration, where {: and the X, are path connected. 

Fix a cofunctor g : IIY -t AB-then Vy E Y, the projection X, -t Y is inessential, hence 

f*glX, is constant. So, V q > 0, there is a cofunctor 'Hq(fj g) : IIY -t AB that assigns 

to each y E Y the singular homology group Hq(X,j f*gIX,) and the fibration spectral 

sequence assumes the form E;,q ~ Hp(Yj'Hq(fjg» => Hp+q(Xjf*g). 
[Note: A morphism [r] : yo -t YI determines a homotopy equivalence X'o -t X Y1 

(cf. p .. 4->-39) and an isomorphismg[r] : gYI -t gyo, thus 'Hq(fj g)[r] is the composite 

Hq(Xy1jgYl) -t Hq(XyojgYd -t Hq(Xyojgyo).] 

PROPOSITION 22 Let {-; be pointed connected CW spaces, f : X -t Y a pointed 

continuous function-then f is acyclic iff for every locally constant coefficient system g on 

Y, the induced map f* : H*(Xj f*g) -t H*(Yj g) is an isomorphism. 

[Upon passing to the mapping track, one can assume that f is a. pointed Hurewicz 

fibration. 

Necessity: Vy E Y, Xy is acyclic, thus from the universal coefficient theorem, V q > 0, 

Hq(Xyj f*gIXy) = 0. Accordingly, the edge homomorphism eH : E~o -t E;,o is an 

isomorphism, so V p ~ 0, Hp(Xj f*g) ~ Hp(Yj g). 

Sufficiency: The integral group ring Z[1f'l(Y)] is a right 1f'l(Y)-module. Viewed as a 

locally constant coefficient system on Y, its homology is that of Y. Form the pullback 

X xyY L Y 
square 1 l-then H*(X Xy Y) ~ H*(Xif*(Z[1f'I(Y)}) and f~ : H*(X Xy 

X --+ Y 
J 



5-70 

- - - t Y) ~ H.(Y) is the composite H.(X Xy Y) ~ H.(X; I· (Z[1rl (Y)]) -4 H.(Yj Z[1rl(Y)]) ~ 
H.CY). By hypothesis, I. is an isomorphism, hence I~ is too. Since Y is simply con-

- I' -X Xy Y --+ Y 

nected, EI' is path connected. Consider the commutative diagram 1'1 lid. 

Y --+ Y 
id 

Owing to the Hilton-Roitberg comparison theorem, the projection E" ~ * is a homology 

equivalence. Therefore E, is acyclic.] 

Application: Let X, Y, Z be pointed connected CW spaces. Suppose that { : ; : : i 
are pointed continuous functions. Assume: I is acyclic-then 9 is acyclic iff 9 0 I is acyclic. 

FACT Let X I- Z.!!.. Y be a pointed 2-source, where {; lr; Z are pointed connected CW spaces. 

Z ~ Y 

Consider the pushout square 11 
X 

e) acyclic. 

1 'I. Assume: f is a cofibration-then f (or g) acyclic =? 11 (or 

- p e 

PLUS CONSTRUCTION Fix a pointed connected CW space X. Let N be a perfect 

normal subgroup of 1rl(X)-then there exists a pointed connected CW space xt and 

an acyclic map It : X ~ xt such that ker 1rl(lt) = N (~ 1rl(Xt) :::::I 1rl(X)/N). 
Moreover, the pointed homotopy type of xt is unique, i.e., if gt : X ~ Yit is acyclic and 

if ker 1r1(gt) = N, then there is a pointed homotopy equivalence <p : xt ~ Yit such that 

<p 0 It ~ gt· 
[Existence: We shall first deal with the case when N = 1r1(X), Thus let {a} be a 

set of generators for 1rl(X), Represent a by lOt : Sl ~ X and put Xl = (l1D2) Uf X 
Ot 

(f = 11 lOt) to obtain a relative CW complex (Xl,X) with 1rl(Xd = 0 (cf. p. 5-37). 

Consider the exact sequence H2(Xd ~ H2(X17 X) ~ HI(X): (a) 1r2(Xd :::::I H2(X1 ); 

(b) H2(X1,X) is free abelian on generators WOt , say; (c) H1(X) = O. Given a, choose a 

continuous function gOt : S2 ~ Xl such that the homotopy class [gOt] maps to WOt under the 

composite 1r2(XI) ~ H2(Xd. ~ H2(Xl, X). Put xt = (11 D 3
) Ug Xl (g = 11 gOt)-then 

Ot Ot 
the pair (xt,xd is a relative CW complex with 1r1(Xt) = O. The inclusion X ~ xt is 

a closed cofibration. In addition, it is a homology equivalence (for H.(Xt,X) = 0), hence 

is an acyclic map (c!. Proposition 20). Turning to the general case, let XN be the covering 

space of X corresponding to N (so 1r1(XN):::::I N). Apply the foregoing procedure to XN 
to get an acyclic closed cofibration It : XN ~ xt, where xt is simply connected. Define 
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-+ 
X N 

xt by the pushout square 1 
IN -+ 

--+ X N 

1 . Thanks to Proposition 7, xt is a pointed 

x --+ xt 
I~ 

. connected CW space. And: It is an acyclic closed cofibration (cf. p. 5-70). Finally, the 

Van Kampen theorem implies that 1rl(Xt) ~ 1rl(X)/N. 

Uniqueness: Since N = {.kker 1rl«/~)) , there exists a pointed continuous function 
er 1rl UN 

4> : xt -. Y; such that 4> 0 It ~ ut (cf. p. 5-68). But {/~ acyclic => 4> acyclic and 
UN 

4>* : 1rl(Xt) -. 1rl(Y;) is necessarily an isomorphism. Therefore 4> is a pointed homotopy 

equivalence (cf. Proposition 19). 

[Note: xt is called the plus construction with respect to N. Like an Eilenberg

MacLane space, xt is really a pointed homotopy type, thus, while a given representative 

may have a certain property, it need not be true that all representatives do. As for 4>, if 

It is an acyclic closed cofibration and if U t is another such, then matters can be arranged 

so that there is commutativity on the nose: ¢ 0 It = ut. This in turn means that 4> is a 

homotopy equivalence in X\TOP (cf. §3, Proposition 13).] 

One can interpret xt as a representing object of the functor on the homotopy category of pointed 

connected CW spaces which assigns to each Y the set of all [11 E [X, Y] : ker1fl (f) :::> N. 

Different notation is used when N = 1rl (X)per, the perfect radical of 1rl (X) : xt is 

replaced by X+ and It : X -. xt is replaced by i+ : X -. X+. Example: X acyclic 

=> X+ contractible. 

[Note: The perfect radical of 1rl(X+) is trivial (cf. p. 5-65).] 

Examples: Let {; be pointed connected CW spaces-then (1) X+ x y+ is a model 

for (X x Y)+j (2) X+ Vy+ is a model for (XVY)+j (3) X+#Y+ is a model for (X#Y)+. 

EXAMPLE (Homology Spheres) Fix n > 1. Suppose that X is a pointed connected CW space 

- '{ Z (q = n) such that Hq(X) = -then 1fdX) is perfect and X+ has the same pointed homotopy type as 
o (q ¢ n) 

S". 

FACT Let X be a. pointed connected CW space-then for any pointed acyclic CW space Z, the 

arrow [Z, E,+] -+ [Z, X] is bijective. 

[Note: The central extension 1 -+ im 1f2(X+) -+ 1ft (Ei+) -+ 1ft (X)per -+ 1 is universal.] 
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Convention: Henceforth it will be assumed that i+ : X -+ X+ is an acyclic closed 

cofi bration. 

LEMMA Let {-: be pointed connected CW spaces. Suppose that f : X -+ Y is 

a pointed continuous function-then there is a pointed continuous function f+ : X+ -+ 

X --L. Y 
y+ rendering the diagram 1 

x+ 
1 commutative, f+ being unique up to pointed 

y+ 

homotopy. 

Application: Let {-: be pointed connected CW spaces. Assume: X and Y have the 

same pointed homotopy type--then X+ and y+ have the same pointed homotopy type. 

PROPOSITION 23 Let X be a pointed connected CW space. Denote by XN the 

covering space of X corresponding to N, where N is a normal subgroup of 71"1 (X) containing 

71"1 (X)per-then xt has the same pointed homotopy type as the covering space of X+ 

corresponding to the normal subgroup N/7I"1 (X)per of 71"1 (X+) ~ 71"1 (X)/7I"1 (X)per' 

[The pointed homotopy type of X N can be calculated as the mapping fiber of the 

composite X -+ X[1] = K(7I"1 (X), 1) -+ K(7I"1 (X)/N, 1). This arrow factors through X+ 

and 71"1 (X)/N ~ (71"1 (X)/7I"1 (X)per )/(N /71"1 (X)per ).] 

Notation: Given a group G, put BG = K(G, 1). 

EXAMPLE BGper is the covering space of BG corresponding to G per . There is an arrow BGter -

BG+ and BGter "is" the universal covering space of BG+. 

EXAMPLE Let A be a ring with unit-then the fundamental group of the mapping fiber of 

BGL(A) - BGL(A)+ is isomorphic to ST(A). 

PROPOSITION 24 Let {-: be pointed connected CW spaces. Suppose that f :. 

X -+ Y is a pointed continuous function with 71"0 (E f) = *-then 71"0 (E f+) = * and the 

perfect radical of 71"1 (E f+ ) is trivial. 

Ef ---I>~ Et 
[Note: It follows that there is a commutative triangle 1 /' .] 

E f + 
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FACT Let {; be pointed connected CW spaces. Suppose that f : X - Y is a pointed continuous 

function with 1ro(EJ) = *-then the arrow EJ - EJ+ is a pointed homotopy equivalence if 1rl (Y)per is 

trivial or if Ej is nilpotent and 1rl (Y)per operates nilpotently on the Hq(EJ) V q. 

[Note: 1rl (Y)per operates nilpotently on the Hq(EJ) V q iff 1rl (Y)per operates trivially on the 

Hq(EJ) V q (cf. p. 5-64).] 

EXAMPLE (Central Extensions) Let 1r and G be groups, where 1r is abelian. Consider a central 

extension I - 1r - II - G - I-then B1r can be identified with the mapping fiber of the arrow 

BII+ - BG+. 

[Since 1r is abelian, B1r = B1r+ and G (= 1rl (BG» operates trivially on 1r, hence operates trivially 

on the Hq(B1r) V q.] 

EXAMPLE Let G be an abelian group--then there is a universal central extension 1 - G -

O/G - pG - 1 (cf. p. 5-65). Specializing the preceding example, the mapping fiber of the arrow 

K(O/G,I)+ - K(pG, 1)+ is a K(G, 1) and K(pG, 1)+ is a K(G,2). 

[Recall that O/G is acyclic, thus K(O/G, 1)+ is contractible.] 

PROPOSITION 25 Let {-; be pointed connected CW spaces. Suppose that f 

X -+ Y is a pointed continuous function for which the normal closure of f.( 7rl (X)per) is 

7rl (Y)per-then the adjunction space X+ U, Y represents Y+. 

[Since i+ : X -+ X+ is an acyclic closed cofibration, the same is true of the inclusion 

Y -+ X+ U, Y (cf. p. 5-70). On the other hand, by Van Kampen, the fundamental group 

of X+ u, Y is isomorphic to 7rl(Y) modulo the normal closure of f.(7rl(X)per), i.e., to 

7rl (Y)/7rl (Y)per.] 

EXAMPLE (Algebraic K-Theory) Let A be a ring with unit-then by definition, Ko(A) is the 

Grothendieck group attached to the category of finitely generated projective A-modules and for n ~ 1, 

Kn(A) is taken to be the homotopy group 1rn(BGL(A)+). While it is immediate that Ko is a functor 

from RG to AB, the plus construction requires some choices, so to guarantee that Kn is a functor one 

has to fix the data. Thus first construct BGL(Z)+. This done, define BGL(A)+ by the pushout square 
BGL(Z) -+ BGL(A) 

1 1 . Here, Proposition 25 comes in (the normal closure of im(E(Z) - E(A» 

BGL(Z)+ -+ BGL(A)+ 
is E(A». Observe that the Kn preserve products: Kn(A' X A") :::::: Kn(A') X Kn(A"). 

(n = 1) Kl (A) = 1rl (BGL(A)+) :::::: 1rl (BGL(A»/1rl (BGL(A»per :::::: GL(A)/[GL(A), GL(A)] 

= Hl (GL(A». 

(n = 2) K 2(A) = 1r2(BGL(A)+) :::::: 1r2(BE(A)+) :::::: H 2(BE(A)+) :::::: H2(BE(A» = H2(E(A». 
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[Note: The central extension 1 -+ K2{A) -+ ST{A) -+ E{A) -+ 1 is universal (d. p. 5-65) and 

BK2{A) can be identified with the mapping fiber of the arrow B ST{A)+ -+ BE{A)+.] 

(n = 3) K3{A) = 'll"3(BGL(A)+) I::::j 'll"s(BE(A)+) I::::j 'll"3(B ST(A)+) I::::j H3{B ST{A)+) I::::j 

H3(B ST(A» = H3(ST(A». 

There is no known homological interpretation of K4 and beyond. 

EXAMPLE (Relative Algebraic K-Theory) Let A be a ring with unit, I C A a two sided ideal. 

Write GL(A/I) for the image oC GL(A) in GL(A/I)-then GL(A/I) :J E{A/I), thus GL(A/I) is normal 

and GA,l = GL{A/I)/GL(A/I) is abelian. Since BGL(A/I)+ can be identified with the mapping 

fiber oC the arrow BGL(A/I)+ -+ BGtI{= BGA,I) (cC. p. 5-73), it Collows that 'll"n(BGL(A/I)+) I::::j 

'll"n(BGL(A/I)+) (n > 1) but 'll"l(BGL(A/I)+) I::::j im(Kl(A) -+ Kl(A/I» and there is a short exact 

sequence 0 -+ 'll"l(BGL(A/I)+) -+ Kl(A/I) -+ GA,I -+ O. If K(A, I) is the mapping fiber oC the arrow 

BGL(A)+ -+ BGL(A/I)+, then K(A, I) is path connected, so letting Kn(A, I) = 'll"n(K(A, I» (n ~ 1), 

one obtains a Cunctoriallong exact sequence .. · -+ Kn+l(A/I) -+ Kn(A,I) -+ Kn(A) -+ Kn(A/I) -+ 

... -+ K 1(A,I) -+ K1(A) -+ K1(A/I). 

PROPOSITION 26 Let X be a pointed connected CW space. Put tr = trl(X) and 

denote by Xper the mapping fiber of the composite X -+ K(tr, 1) -+ K(tr/trper , 1). Assume: 

tr/trper is nilpotent and tr/trper operates nilpotently on the Hq(Xper) V q-then X+ is 

nilpotent. 

[Since (tr / tr per )per is trivial (cf. p. 5-65), X:er can be identified with the mapping fiber 

of the composite X+ -+ K(tr, 1)+ -+ K(tr/trpen 1)+ (cf. p. 5-73). By construction, X:er is 

simply connected (cf. Proposition 23), hence nilpotent. But K(tr/trpe17 1)+ = K(tr/trper , 1) 

is also nilpotent. Therefore, bearing in mind that the inclusion Xper -+ X:er is a homology 

equivalence, it follows that X+ is nilpotent (cf. p.5-62).] 

FACT Let G be a group. Fix,p e Aut G. Assume: Given g1, ... ,gn e G, 3 9 e G : ,p(g,) = gg,g-1 

(1 ~ i ~ n)-then ,p. : H.(G) -+ H.(G) is the identity. 

Application: Let G be a group. Let K be a normal subgroup of G which is the colimit oC subgroups 

Kn (n e N) such that V n, G = K· CenG(Kn)-then G operates trivially on H.(K). 

EXAMPLE Let A be a ring with unit-then BGL(A)+ is nilpotent. To see this, consider the 

short exact sequence 1 -+ E(A) -+ GL(A) -+ GL(A)jE(A) -+ 1. Here, E(A) = GL(A)per and BE(A) is 

the mapping fiber of the arrow BGL(A) -+ K(GL(A)jE(A), 1). The quotient GL(A)/E(A) is abelian, 

hence nilpotent. On the other hand, if E(n, A) is the subgroup oC GL(n, A) consisting of the elementary 

matrices, then E(A) = colim E(n, A) and V n, GL(A) = E(A) . CenaL(A)(E(n, A», so GL(A) operates 

trivially on H .. (E(A». That BGL(A)+ is nilpotent is thereCore a consequence oC Proposition 26. 
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[Note: More is true. Thus define a homomorphism $ : GL(A) x GL(A) - GL(A) by (X, Y) _ 

{

X lei (i = 2k - 1, j = 21 - 1) 
X $ Y, where (X $ Y)ij = .. &: 0 otherwise-then Lodayt has shown that 

Ykl (I = 2k,J = 21) 
the composite BGL(A)+ x BGL(A)+ - B(GL(A) x GL(A»+ - BGL(A)+ serves to equip BGL(A)+ 

with the structure of a homotopy commutative H group. In particular: BGL(A)+ is abelian.] 

EXAMPLE Let A be a ring with unit. Write UT(A) for the ring of upper triangular 2-by-2 

matrices with entries in A-then the projection p: UT(A) _ A x A (p (a1 
a) = (al,(l2» induces an 

o a2 
epimorphism p : GL(UT(A» - GL(A x A). Its kernel is not perfect, therefore Bp : BGL(UT(A» -

BGL(A x A) is not acyclic. Nevertheless, Bp is a homology equivalence. Consider now the commutative di
BGL(UT(A» -- BGL(UT(A»+ 

agram . Since the horizontal arrows are homology equivalences, 

BGL{A x A) -- BGL(A x A)+ 
Bp+ is a pointed homotopy equivalence, so V n ?: 1, Kn(UT(A» ~ Kn(A) x Kn(A). 

[Note: Bp+ is acyclic (cf. Proposition 19), thus the composite BGL(UT(A»!!!; BGL(A x A) -

BGL(A x A)+ is acyclic even though Bp is not.] 

FACT Let G be a group. Assume: 

($) There is a homomorphism $ : G x G - G such that for any finite set {g1, ... ,gn} C G, 

{

'II. {U(g, $ e)u-1 = g, . 
3 EG: (t=I, ... ,n). 

v vee $ 9i)V-1 = gi 
(p) There is a homomorphism p : G - G such that for any finite set {gl,'" ,gn} C G, 

3 pEG: peg, $ P9i)p-1 = g; (i = 1, ... ,n). 

Then G is a.c::yclic. 

[Fix a field of coefficients k. Let .6. : G - G x G be the diagonal map-then p and $ 0 (id x p) 0 .6. 

operate in the same way on homology. Since HdGj k) = 0, one can take n > 1 and assume inductively 

that Hq(Gj k) = 0 (0 < q < n). Let x E Hn(Gj k) : p.(x) = ($o(id x p)o.6.). (x) = $,(x®I+I®p. (x» = 

x+P.(x)=>x=O.] 

EXAMPLE (Delooping Algebraic K-Theory) Let A be a ring with unit. Denote by r A the set 

of all functions X: N x N - A such that V i, #{j : Xij -:j:. o} < wand V j, #{i : Xij -:j:. o} < ev--then r A is 

a ring with unit containing A as a two sided ideal. r A is called the ~ of A and the quotient EA = r AI A 

is called the suspension of A. Define a homomorphism $ : rA x rA - rA by (X, Y) - X $ Y, where 

{

X101 (i = 2k -1,j = 2/-1) 
(X $ Y),j = .. &: 0 otherwise and define a homomorphism p : r A - r A 

Y101 (I = 2k,) = 2/) 

{ 
i = 2k(2m - 1) 

by P(X)ij = Xmn if . for some k, m, n&:O otherwise. Evidently, X $ pX = pX for all 
j=21o (2n-l) 

t Ann. Sci. Ecole Norm. Sup. 9 (1976), 309-377. 
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X ErA and {: induce homomorphisms Ef) : GL(r A) x GL(r A) - GL(r A) &:. p : GL(r A) - GL(r A) 

satisfying the preceding 8Bsumptions. Therefore GL(r A) is acyclic, so GL(r A) = E(r A). Taking into 

account the exact sequences 1 - GL(A) - GL(rA) - GL(EA),E(rA) - E(EA) - 1, it follows that 

there is an exact sequence 1 - GL(A) - GL(r A) - E(EA) - 1. The mapping fiber of the arrow 

BGL(r A)+ - BE(EA)+ is BGL(A)+. Since BGL(r A)+ is contractible, this means that in HTOP., 

BGL(A)+ ~ OBE(EA)+. Consequently, V n 2:: 1, K .. (A) = lI' .. (BGL(A)+) ~ lI' .. (OBE(EA)+) ~ 

lI' .. +t(BE(EA)+) ~ lI' .. +t(BGL(EA)+) = K .. +l(EA). It is also true that Ko(A) ~ Kl(EA) (Farrell

Wagonert). Let OoBGL(EA)+ be the path component of OBGL(EA)+ containing the constant loop

then in HTOP., OBE(EA)+ ~ OoBGL(EA)+ (d. p.5-72). But 11'1 (BGL(EA)+) = Kl(EA), hence 

Ko(A) x BGL(A)+ ~ OBGL(EA)+. 

[Note: Additional information can be found in Wagonert. There it is shown that by fixing the 

data, the pointed homotopy equivalence Ko(A) x BGL(A)+ ~ OBGL(EA)+ can be made natural, Le., 
Ko(A') x BGL{A')+ ~ OBGL(EA')+ 

if f : A' - A" is a morphism of rings, then the diagram 1 1 is 

Ko{A") x BGL(A")+ ~ OBGL(EA")+ 
pointed homotopy commutative.] 

EXAMPLE Let A be a ring with unit-then EUT(A) ~ UT(EA) => Ko(UT(A» ~ Kl (EUT(A» 

~ Kl(UT(EA» ~ K1(EA) x Kl(EA) ~ Ko(A) x Ko{A). 

KAN-THURSTON THEOREM Let X be a pointed connected CW space-then there 

exists a group G X and an acyclic map K X : K ( G x, 1) -l> X. 

[Because of Proposition 2, one can take for X a pointed connected CW complex 

with all characteristic maps embeddings. Moreover, it will be enough to deal with finite 

X, the transition to infinite X being straightforward (given the naturality built into the 

argument). Since dim X ::; 1 => X aspherical, we shall assume that dim X > 1 and proceed 

by induction on #(E), supposing that the construction has been carried out in such a way 

that if Xo is a connected subcomplex of X, then K(Gxo, 1) = KX1(XO) and Gxo -l> Gx is 
. sn-l ---+ X 

injective. To execute the inductive step, consider the pushout square 1 1 (n ~ 
on ---+ Y 

2), where the horizontal arrows are embeddings and {~o i:C~:-~ ;() are connected 

t Comment. Math. Helv. 47 (1972), 474-501. 

~ t Topology 11 (1972), 349-370. 
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Xo ---+ X 

sub complexes of { : ,so 1 1 is a pushout square. Recalling that there is a 

Yo ---+ Y 
monomorphism Gxo -+ rGxo of groups (cf. p. 5-64), define Gy by the pushout square 
Gxo ---+ Gx K(Gxo, 1) ---+ K(Gx, 1) 

1 1 and realize K ( Gy, 1) by the pushout square 1 1 
rGxo ---+ Gy K(rGxo, 1) ---+ K(Gy, 1) 
(cf. p. 5-28). Extend K.x : K(Gx,l) -+ X to K.y : K(Gy,l) -+ Y in the obvious 

K(Gx, 1) lex. X 

way (thus K.yK(rGxo , 1) C Yo and the diagram 1 
K(Gy,l) ---+ 

. ley 

1 commutes). The 
Y 

induction hypothesis implies that K.x and K.Xo are acyclic. In addition, K(rGxo, 1) is an 

acyclic space and Yo is contractible, hence K.y IK(rGxo, 1) is acyclic (cf. Proposition 20). 

Therefore, by comparing Mayer-Vietoris sequences and applying the five lemma, it follows 

that K.y is acyclic (cf. Proposition 22). Finally, the condition on connected sub complexes 

passes on to Y.] 
[Note: Put N = ker 1rl (K.x)-then X is a model for K(Gx, l)t.] 

Application: Every nonempty path connected topological space has the homology of 

a K(G, 1). 

EXAMPLE Suppose given two sequences 11"11, (n ~ 2) & Gq (q ~ 1) of abelian groups-then there 

exists a pointed connected CW space Z such that V n ~ 2 : 1I"n(Z) ::::; 11"11, & V q ~ 1 : Hq(Z) ::::; Gq. 
00 

Thus choose X : 1I"n+1(X) ::::; 1I"n (n ~ 2) (homotopy system theorem) and put Y = V M(Gq,q) (cf. 
1 

{
ICX :K(GX,l)-X 

p. 5-38): Hq(Y) ::::; Gq (q ~ 1). Using Kan-Thurston, form and consider Z = 
ICy : K(Gy, 1) - Y 

E"x X K(Gy, 1), the mappingfiberofthe arrow K(GX X Gy, 1) = K(GX. 1) X K(Gy, 1) - X. Example: 

If G q (q ~ 1) is any sequence of abelian groups, then there exists a group G such that V q ~ 1 : H q (G) ::::; G q. 

[Note: Z also has the property that 1I"1(Z) operates trivially on 1I"n(Z) V n ~ 2.] 

The homotopy categories of algebraic topology are not complete (or co complete ), 

a circumstance that precludes application of the representable functor theorem and the 

general adjoint functor theorem (or their duals). However, there is still a certain amount 

of structure. For instance, consider HTOP. It has products and the double mapping 

track furnishes weak pullbacks. Therefore HTOP is weakly complete, i.e., every diagram 

.a : I -+ HTOP has a weak limit (meaning: "existence without uniqueness"). HTOP is 

also weakly cocomplete. In fact, HTOP has coproducts, while weak pushouts are furnished 
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also weakly cocomplete. In fact, HTOP has coproducts, while weak pushouts are furnished 

by the double mapping cylinder. Example: Let (X, f) be an object in FIL(HTOP)-then 

tel(X, f) is a weak colimit of (X, f). 
[Note: The discussion of HTOP * is analogous. Example: Let f : X ~ Y be a pointed 

continuous function, C f its pointed mapping cone-then C f is a weak cokernel of [f]·] 

EXAMPLE For each n, put Yn = S3 and let [.pn] : Yn+l - Yn be the homotopy class of maps 

of degree 2-then Y = lim Yn does not exist in HTOP. To see this, assume the contrary, thus V X, 

[X, Y] ::::::: lim [X, Yn ], so, in particular, Y must be 3-connected. Form the adjunction space 0 3 Uf S2, where 

I : S2 - S2 is skeletal of degree 3. Since dim(03 U f S2) $; 3, of necessity [D3 U f S2 ,Y] = >It. But according 

to the Hopfclassification theorem, [D3 Uf S2,S3]::::::: H3(03 Uf S2;Z), which is Z/3Z, and in the limit, 

[03 Uf S2, Y] ::::::: Z/3Z. 

EXAMPLE Working in HTOP., let I : X - Y be a pointed Hurewicz fibration, where X and 

Yare path connected. Suppose that K = ker[t] exists, say [n] : K - X. If 7r is the projection Ef - X, 

then 10 7r ~ 0, so there exists a pointed continuous function t/I : E f - K such that no t/I ~ 7r and, by 

construction, Ion ~ 0, so there exists a pointed continuous function .p : K - Ef such that n ~ "II' 0 .p. 

Thus no t/I 0 .p ~ n => t/I 0 .p ~ idK • [n] being a monomorphism in HTOP •. Take now X = SO(3), 

Y = SO(3)/SO(2), and let I : X - Y be the canonical map-then 7rl(Ef) ::::::: Z, 7rl(K) ::::::: Z/2Z and 

Z/2Z is not a direct summand of Z. 

[Note: Similar examples show that cokernels do not exist in HTOP •. ] 

Let C be a category with products and weak pullbacks-then every diagram in C 

has a weak limit. Any functor F : C ~ SET that preserves products and weak pullbacks 

necessarily preserves weak limits. 

PROPOSITION 27 Let C be a category with products and weak pullbacks. Assume: 

ObC contains a set U = {U} with the following properties. 

(U1 ) A morphism f : X ~ Y is an isomorphism provided that VUE U, the 

arrow Mor(Y,U) ~ Mor(X,U) is bijective. 

(U2 ) Each object (X, f) in TOW(C) has a weak limit Xoo such that VUE U, 

the arrow colimMor (Xn' U) ~ Mor (Xoo, U) is bijective. 

Then a functor F : C ~ SET is representable iff it preserves products and weak 

pullbacks. 

[The condition is certainly necessary. As for the sufficiency, introduce the comma 

category I*,FI. Recall that an object of I*,FI is a pair (x,X) (x E FX,X E ObC), 

while a morphism (x,X) ~ (y, Y) is an arrow f : X ~ Y such that (Ff)x = y. The 



5-79 

and F is representable iff 1*, FI has an initial object. Let UF be the subset of Obl*, FI 

consisting of the pairs (u, U) (u E FU, U E U). 

Claim: V (x, X) E Obl*, FI 3 (x, X) E Obl*, FI and a morphism (x, X) --. (x, X) such 

that V (u, U) E UF there is a unique morphism (x, X) --. (u, U). 

[Define an object (X,£) in TOW(I*,FI) by setting (xo,Xo) = (x,X) x II(u,U) and 

inductively choose (Xn+b Xn+d --. (xn' Xn) to equalize all pairs of morphisms (Xn, Xn)~ . 

(u, U) «u, U) E UF). Any weak limit of (X, f) created via U2 is a candidate for (x,X).] 

The existence of an initial object in 1*, FI is then a consequence of observing that 

for all (x,X) & (y, Y): (i) Every morphism (x,X) --. (y, Y) is an isomorphism (apply 

the claim and Ud; (ii) There is at least one morphism (x, X) --. (y, Y) (the composite 

(x,X) x (y, Y) --. (x,X) x (y, Y) --. (x,X) is an isomorphism); (iii) There is at most one 

morphism (x,X) --. (y,Y) (form the equalizer (z,Z) of (x,X)~(y,Y) and consider the 

composite (z, Z) --. (z, Z) --. (x, X».] 
[Note: Proposition 27 can also be formulated in terms of a category C that has 

coproducts and weak pushouts together with a set U = {U} of objects satisfying the 

following conditions. 

(Ud A morphism I : X --. Y is an isomorphism provided that VUE U, the 

arrow Mor(U,X) --. Mor(U, Y) is bijective. 

(U2 ) Each object (X,£) in FIL(C) has a weak colimit Xoo such that VUE U, 

the arrow coliniMor(U,Xn ) --. Mor(U,Xoo ) is bijective. 

Under these hypotheses, the conclusion is that a cofunctor F : C --. SET is repre

sentable iff it converts coproducts into products and weak pushouts into weak pullbacks.] 

EXAMPLE Let C be a category with coproducts and weak pushouts whose representable cofunc

tors are precisely those that convert coproducts into products and weak pushouts into weak pullbacks. 

Suppose that T = (T, m, 1") is an idempotent triple in C and let S C Mor C be the class consisting 

of those f such that Tf is an isomorphism-then (1) S admits a calculus of left fractions; (2) S is 

saturated; (3) S satisfies the solution set condition; (4) S is coproduct closed, i.e., 8, : Xi - Y; in 

S '" i E I => 118, : 11 X, - 11 Yi in S. Conversely, any class S C Mor C with properties (1 )-( 4) is 
• i i 

generated by an idempotent triple, thus Sl. is the object class of a reflective subcategory of C. 

[The functor Ls : C _ S-lC preserves coproducts and weak pushouts. So, for fixed Y E Ob S-lC, 

Mor (Ls-, Y) is a cofunctor C - SET which converts coproducts into products and weak pushouts into 

weak pullbacks, hence is representable: Mor(LsX, Y) :::::: Mor(X, Ys). Use the assignment Y -+ Ys to 

define a functor S-lC -+ C and take for T the composite C - S-lC - C. Let €X E Mor(X, TX) 

correspond to idLsx under the bijection Mor(LsX, LsX):::::: Mor(X, TX)-then f : ide - T is a natural 

"'-.,..<. transformation, €T = T€ is a natural isomorphism, and T f is an isomorphism iff f E S.] 
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Notation: CONCW ... is the full subcategory of CW ... whose objects are the pointed 

connected CW complexes and HCONCW ... is the associated homotopy category. 

LEMMA HCONCW ... has coproducts and weak pushouts. 

[If X t. z.!.. Y is a 2-source in CONCW ... , then using the skeletal approximation 

theorem, one can always arrange that MI,g remains in CONCW .... ] 

BROWN REPRESENTABILITY THEOREM A cofunctor F : HCONCW ... -. SET 
is representable iff it converts coproducts into products and weak pushouts into weak pull

backs. 

[Take for U the set {(Sn, sn) : n E N}-then U1 holds since in CONCW ... a pointed 

continuous function f : X -. Y is a pointed homotopy equivalence iff it is a weak homotopy 

equivalence (cf. p. 5-17) and U2 holds since one can take for a weak colimit of an object 

(X, f) in FIL(HCONCW ... ) the pointed mapping telescope constructed using pointed 

skeletal maps (cf. p. 5-25).] 

[Note: Since F converts coproducts into products, F takes an initial object to a 

terminal object: F* = * and X -. * => * = F* -. FX, thus FX has a natural base point.J 

Spelled out, here are the conditions on F figuring in the Brown represent ability the

orem. 

(Wedge Condition) For any collection {Xi :' i E I} in CONCW ... , F(V Xi) ~ 
i 

TIFXi. 
i 

Z 

(Mayer-Vietoris Condition) For any weak pushout square 11 
X 

FP ~ FY 

~Y 

1" In 

----toP 
e 

1 1 {XEFX 
HCONCW ... , Fe Fg is a weak pullback square in SET, so V y E FY 

FX ----to FZ 
FI 

{ 
(Fe)p = x 

(FJ)x = (Fg)y, 3 p E FP: (Fq)p = y . 

[Note: It is not necessary to make the verification for an arbitrary weak pushout 

square. In fact, it is sufficient to consider pointed double mapping cylinders calculated 

relative to skeletal maps, thus it is actually enough to consider diagrams of the form 
C ----to B 
1 1 , where X is a pointed connected CW complex and {~ & C are pointed 

A ----to X 
connected sub complexes such that X = A U B, C = A n B. J 
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---+ B 

1 ' where X is a pointed connected CW complex and {~ & C are pointed 

---+ X 
connected sub complexes such that X = AU B, C = A n B.] 

Examples: (1) Fix a pointed path connected space (X, xo)-then [-; X, xo] is a 

cofunctor on HCONCW. satisfying the wedge and Mayer-Vietoris conditions, hence 

there exists a pointed connected CW complex (K, ko) and a natural isomorphism :3 : 

[-; K, ko] -+ [-; X, xo], each f E :3K,ko([idKD being a weak homotopy equivalence K -+ 

X, thus the Brown representability theorem implies the resolution theorem; (2) Fix n E N 

and an abelian group 7r-then the cofunctor Hn(-; 7r) (singular cohomology) satisfies the 

wedge and Mayer-Vietoris conditions, hence there exists a pointed connected CW com

plex (K(7r,n),k7r,n) and a natural isomorphism:3 : [-;K(7r,n),k7r ,n] -+ Hn(-;7r), thus 

the Brown represent ability theorem implies the existence of Eilenberg-MacLane spaces of 

type (7r, n) (7r abelian); (3) Fix a group 7r-then the cofunctor that assigns to a pointed 

connected CW complex (K, ko) the set of homomorphisms 7rl (K, ko) -+ 7r satisfies the 

wedge and Mayer-Vietoris conditions, hence there exists a pointed connected CW complex 

(K(7r, 1), k7r,t) and a natural isomorphism:3 : [-; K(7r, 1), k7r,l] -+ Hom(7rl-; 7r), thus the 

Brown represent ability theorem implies the existence of Eilenberg-MacLane spaces of type 

(7r, 1) (7r arbitrary). 

[Note: Both HCW. and HCW have coproducts and weak pushouts but Brown 

represent ability can fail. Indeed, Matveevt has given an example of a nonrepresentable 

cofunctor F : HCW. -+ SET which converts coproducts into products and weak pushouts 

into weak pullbacks and Heller f has given an example of a nonrepresentable cofunctor 

F : HCW -+ SET which converts coproducts into products and weak pushouts into weak 

pullbacks. ] 

EXAMPLE Let U : GR - SET be the forgetful functor. 

(HCW.) Suppose that F : HCW. - GR is a cofunctor such that U of converts coproducts 

into products and weak pushouts into weak pullbacks-then U 0 F is representable. 

[Represent the composite HCONCW. - HCW. - GR - SET by K. Put G = FSo and equip 

it with the discrete topology. 

Claim: For any X in CONCW., U 0 F(X+) :::::: [X+, K x G]. 

[There is a split short exact sequence 1 - F X _ F X+ - FSo - 1, hence U 0 F(X+) :::::: U 0 F(X) x 

t Math. Notes 39 (1986), 471-474. 

1. London Math. Soc. 23 (1981), 551-562. 
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G::::: [X,KJ x G or, reinstating the base points: U 0 F(X+) ::::: [X,zo;K,ko] x G. And: [X,zo;K,koJ ::::: 

[X,K] => [X,zo;K,ko] x G::::: [X,K] x G::::: [X,K] x [X,G]::::: [X,K x G]::::: [X+,K x G].] 

Given (X, xo) in CW., let X'o' Xi (i E J) be its set of path components, where Zo E X'o-

then X = X'o V V X.+, so U 0 F(X) ::::: U 0 F(Xio) x TI U 0 F(Xi+) ::::: [Xio,K] x TII:Xi+, K x G] ::::: 
iii 

[X'o,K x G] x TI[Xi+,K x G]::::: [X,K x G].] 
• (HCW) Suppose that F : HCW --+ GR is a cofunctor such that U 0 F converts coproducts 

into products and weak pushouts into weak pullbacks-then U 0 F is representable. 

[Let F. be the ~omposite HCONCW. --+ HCONCW --+ HCW --+ GR --+ SET. 

Claim: If F* = *, then F. is representable. 

[The assumption on F implies that FA = * for any discrete topological space A. To check that 

F. satisfies the wedge condition, put X = II Xi and let A C X be the set made up of the base points 

• 
x. E Xi-then F(X/A)::::: FX. But X/A = V Xi => F.(V Xi)::::: U 0 F(X)::::: TI F.X •. As F. necessarily 

iii 
satisfies the Mayer-Vietoris condition, F. is representable: [-, K.] ::::: F •. ] 

Claim: If F* = *, then U 0 F is representable. 

[If X is in CW and if X = II Xi is its decomposition into path components, then U 0 F(X) ::::: 
i 

TI U 0 F(Xi) ~ TI F.Xi ::::: TI[Xi, K.] ::::: [II Xi, K.] ::::: [X, K.].] 
i 'i i i 

Given X in CW, view 1I'0(X) as a discrete topological space-then U 0 F 0 11'0 is represented by 

F* (discrete topology). On the other hand, F is the semidirect product of F 0 11'0 and the kernel Fo 

of F --+ F 011'0 induced by the embedding lI'o(X) --+ X. Moreover, U 0 F ::::: U 0 Fo xU 0 F 011'0 and 

Fo* = * => U 0 Fo is representable.] 

Given a small, full subcategory Co of HCW., denote by Co the full subcategory of HCW. whose 

objects are those Y such that 9 : Y --+ Z is an isomorphism (= pointed homotopy equivalence) if g. 

[Xo, Y] --+ [Xo, Z] is bijective for all Xo E Ob Co. 

FACT Suppose that F : HCW. --+ SET is a cofunctor which converts coproducts into products 

and weak pushouts into weak pullbacks-then there exists an object XF in HCW. and a natural trans

formation E : [-,XF] --+ F such that V Xo E Ob Co, Exo : [Xo, X F] -:-+ FXo is bijective. 

FACT Suppose that F : HCW. --+ SET is a cofunctor which converts coproducts into products 

and weak pushouts into weak pullbacks-then F is representable if for some Co, X F E Ob Co. 

[With E as above, put XF = EXF([idxFD, so that V X E Ob HCW., Ex([/]) = F[/]XF ([/] E 

[X,XF])' 

Surjectivity: Given X E OJ:) HCW., call C~ the full subcategory of HCW. obtained by adding X 

and XF to Co. DetermineX~ and E' : X~] --+ F accordingly. In particular, E~F : [XF'X~] --+ FXF 

is surjective, thus 3 [/] E [XF' X~] : XF = F[f]z~. From the definitions, V Xo E Ob Co, f. : [Xo, X F] --+ 
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3z : [Z, XF) - FZ is surjective, 3 9 : Z - XF such that 3z([g» = z, hence ZF = F[g 0 I)zF' From the 

definitions, V X o E Ob Co, (g 0 f). : [XO,XF] - [XO,XF] is bijective. Therefore 9 0 I is an isomorphism. 

Finally, lou ~ 1 0 v => go lou ~ 9 0 I 0 v => u ~ v.l 

Application: Let Co be the full subcategory of HCW. consisting of the (S", 8,,) (n ~ 0), so 

Co = HCONCW.-then a cofunctor F : HCW. - SET which converts coproducts into products and 

weak pushouts into weak pullbacks is representable provided that #(FSO) = 1. 

[In fact, 1I'0(XF) = [SO, XF] = FSo , thus XF is connected.] 

EXAMPLE Fix a nonempty topolosical space F. Given a CW complex B, let IcFB be the set 

ObFIBB,F. whereFIBB,F is the skeleton ofFIBB,F (cf. p.4-28)-thenIcF isacofundorHCW - SET 

which converts coproducts into products and weak pushouts into weak pullbacks (d. p. 4-19). However, 

ItF is not automatically representable since Brown represent ability can fail in HCW. To get around this 

difficulty, one employs a subterfuge. Thus given a pointed CW complex (B,6o), let FIBB,F;. be the 

category whose objects are the pairs (p, i), where l' : X - B is a Hurewicz fibration such that Vb E B, 

Xli has the homotopy type of F and i : F - p-l(bo) is a homotopy equivalence, and whose morphisms 

(p, i) - (q, j) are the fiber homotopy classes [I) : X - Y and the homotopy classes [¢) : F - F such 

that "'0 0 i ~ ; 0 ¢. As in the unpointed case, FIBB,F;. has a small skeleton and there is a cofunctor 

ItF;. : HCW. - SET which converts coproducts into products and weak pushouts into weak pullbacks. 

Since #(kF;.SO) = 1, itfollowsfrom the above that ItF;. is rep~esentable: [-;BF,bF] ~ ItF; •• (BF,bF) a 

pointed connected CW complex. If now B is a CW complex, then the functor FIBB,F - FIBB+.F;. that 

assigns to l' : X - B the pair (p II c, idF) (c: F - *) induces a bijection Ob FIBB,F - Ob FIBB+.F;., 

so kFB ~ ItF;.B+ ~ [B+,*;BF,bF) ~ [B,BF], i.e., BF represents kF . Example: Take F = K(lr,n) (11' 

abelian)-then BF has the same pointed homotopy type as K(lr, n + 1; X,..) (cf. p. 5-32) (K(lr, n + 1; X,..) 

is not necessarily a CW complex). 

Example: Consider the Hurewicz fibration 1'1 : as" - S" (n ~ 2). Let i : OS" - OS" be 

the identity and I, : OS" - OS" the inversion-then the pairs (Ph i) and (P1l 1,) are not isomorphic in 

FIBS",OS"j*' 

Let G be a topological group-then in the notation of p. 4-60, the restriction ItG IHCW is a cofunctor 

HCW _ SET which converts coproducts into products and weak pushouts into weak pullbacks. To ensure 

that it is representable, one can introduce the pointed analog of BUNB,G, say BUNB,Gj., and proceed 

as above. The upshot is that the classifying space BG is now a CW complex but this need not be true 
XG - X:f 

of the universal space XG. To clarify the situation, consider the pullback square 1 
BG -

1 . Since 

B:f 
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for any CW complex B, [B,BG] r:=IeGB r:= [B,Be], the arrow BG - Be is a weak homotopy equivalence 

(c!. p. 5--15 ft'.). Therefore the arrow XG - Xii' is a weak homotopy equivalence, so XG is homotopically 

trivial (Xe being contractible). 

LEMMA XG is contractible iff G is a CW space. 

[Necessity: For then XG is a CW space and because the fibers of the Hurewicz fibration XG - BG 

are homeomorphic to G, it follows that G is a CW space (c!. p. 6-25). 

Sufficiency: Due to §6, Proposition 11, XG is a CW space. But a homotopically trivial CW space is 

contractible.] 

Moral: When G is a CW space, leG can be represented by a CW complex (c!. 54, Proposition 35). 

[Note: Under these conditions, BG and Be have the same homotopy type (representing objects are 

isomorphic), thus Be is a CW space (see p. 6-25 for another argument).] 

Notation: FCONCW. is the full subcategory of CONCW. whose objects are the 

pointed finite connected CW complexes and HFCONCW. is the associated homotopy 

category. 

[Note: Any skeleton HFCONCW. of HFCONCW. is countable (cf. p. 6-28).} 

A cofunctor F : HFCONCW. -+ SET is said to be representable in the large if 

there exists a pointed connected CW complex X and a natural isomorphism [-, X] -+ F. 
[Note: In this context, [-, X] stands for the restriction to HFCONCW. of the 

representable cofunctor determined by X. Observe that in general it is meaningless to 

consider F X.) 
Example: The restriction to HFCONCW. of any cofunCtor HCONCW. -+ SET 

satisfying the wedge and Mayer-Vietoris conditions is representable in the large. 

Let F : HCONCW. -+ SET be a cofunctor. 
Z 

(Finite Mayer-Vietoris Condition) For any weak pushout square J I 
X 

in HCONCW., where Z is finite, 

FP 

Fel 
FX 

F"l FY 

IF. is a weak pullback square in SET, 
--+ FZ 
Ff 

{
X E F X { (Fe)p = x 

so V y E FY : (F f)x = (F g)y, 3 p E F P : (F'1 )p = Y . 

(Limit Condition) For any pointed connected CW complex X and for any 

collection {Xi: i E I} of pointed connected subcomplexes of X such that X = colimXi, 
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where I is directed and the Xi are ordered by inclusion, the arrow FX -+ limFXi is 

bijective. 

SUBLEMMA Let F : HCONCW ... -+ SET be a cofunctor satisfying the wedge and 

finite Mayer-Vietoris conditions. Fix an X in CONCW ... and choose x E FX. Suppose 

that X I- K ..!!..t X is a pointed 2-source, where K is in FCONCW ... and {t are skeletal 

with (Ff)x = (Fg)x-then there is a Y in CONCW ... containing X as an embedded 
pointed sub complex , say i : X -+ Y, such that i 0 f ~ i 0 9 and ayE FY such that 

(Fi)y = x. 

[Consider the weak pushout square 

fV~ X 

1 ,where Y is the pointed 

--+ Y 
double mapping cylinder of the folding map V K and the wedge f V g. By construction, 

Y is a pointed weak coequalizer of {t and the existence of Y E FY follows from the 

assumptions. ] 

LEMMA Let F : HCONCW ... -+ SET be a cofunctor satisfying the wedge, finite 

Mayer-Vietoris, and limit conditions. Fix an X in CONCW ... and choose x E FX
then there is a Y in CONCW ... containing X as an embedded pointed sub complex , say 

i : X -+ Y, such that i 0 f ~ i 0 9 for any pointed 2-source X I- K ..!!..t X, where K is 

in FCONCW ... and {~ are skeletal with (Ff)x = (Fg)x, and ayE FY such that 

(Fi)y = x. 
[Since it is enough to let K run over the objects in HFCONCW ... , one need only deal 

with a set {X /.!.. K, ~ X : S E S} of pointed 2-sources. Given any T C S, proceed as in 

V(Kt V K t ) --+ X 
t 

the proof of the sublemma and form the weak pushout square 

so for T' C Til there is a commutative triangle 
X 
/~ 

YTI --:----1>1 YTII 
j 

. Consider the set T 

of pairs (T, YT) (YT E FYT) : (FiT )YT = x. Order T by writing (T', YTI) ::; (Til, YTII) iff 

T' C Til and (Fj)YTII = YTI-then the limit condition implies that every chain in T has an 

upper bound, thus T has a maximal element (TO,YTo ) (Zorn). Thanks to the sublemma, 

To = S, therefore one can t~e Y = Ys, Y = Ys.] 

PROPOSITION 28 Let F : HCONCW... -+ SET be a cofunctor satisfying the 
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wedge, finite Mayer-Vietoris, and limit conditions-then the restriction of F to 

HFCONCW. is representable in the large. 

[Put Xo = V K, where K runs over the objects in HFCONCW. and for each K, 
K,II; 

k runs over F K. Using the wedge condition, choose xO E F XO such that the associated 

natural transformation SO : [-,XO] -+ F has the property that S~ : [K,XO] -+ FK 

is surjective for all K. Per the lemma, construct XO C Xl & xl E FXI and continue 

by induction to obtain an expanding sequence XO C Xl C ... of topological spaces 

and elements xO E F XO , xl E F Xl; . .. such that 'rI n, xn is a pointed connected CW 

complex containing xn-l as a pointed sub complex and xn -+ x n- l under xn-l -+ xn. 

Put X = XOO-then X is a pointed connected CW complex containing xn as a pointed 

sub complex (cf. p. 5-25). Let x E F X be the element corresponding to {xn} via the limit 

condition and let S : [-, X] -+ F be the associated natural transformation. That SK is 

surjective for all K is automatic. But SK is also injective for all K : SK([fD = SK([9J), i.e., 

(Ff)x = (Fg)x (f,g skeletal) =? (Ff)xn = (Fg)xn (3 n) =? iof ~ iog (i: xn -+ Xn+I).] 

Given a cofunctorF : HFCONCW. -+ SET, for X in CONCW., let FX -

lim FX", where X" runs over the pointed finite connected sub complexes of X ordered by 

inclusion-then F is the object function of a cofunctor HCONCW. -+ SET whose re

striction to HFCONCW. is (naturally isomorphic to) F. On the basis of the definitions, 

F satisfies the limit condition. Moreover, F satisfies the wedge condition provided that 

F converts finite coproducts into finite products so, in order to conclude that F is repre

sentable in the large, it need only be shown that F satisfies the finite Mayer-Vietoris con

dition (cf. Proposition 28). Assume, therefore, that F converts weak pushouts into weak 
C --+ B 

pullbacks. Consider a diagram 1 1 , where X is a pointed connected CW complex 

A --+ X 

and {~ & C are pointed connected sub complexes such that X = AU B, C = An B with 

FX --+ FB 

C finite. To prove that 1 1 is a weak pullback square, let {~~ run over the 

FA --+ FC· J 

pointed finite connected subcomplexes of {~ which contain C and using obvious notation, 

let {~~ :: : alC = blC-then the question is whether there exists x E FX : {~l~ ~. 
. {FA =limFKi For this, note first that FB = limFLj and FX = lim FXij (Xij = Ki ULj). Represent 
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{~ by {~:;j ~:; ~ ~~i? and let Sij be the set of Xij E FXij : {::~l~; ;;. Since 

Sij is nonempty and lim Sij is a subset of lim F Xij, it suffices to prove that lim Sij is 

nonempty as any x E lim Sij will work. However, this is a subtle point that has been 

resolved only by placing restrictions on the range of F. 

EXAMPLE Let U: CPTHAUS -SET be the forgetful functor. Suppose that F: HFCONCW. 

- CPTHA US is a cofunctor such that U 0 F converts finite coproducts into finite products and weak 

pushouts into weak pullbacks-then U 0 F is representable in the large. In fact, if Tii is the subspace of 

F Xij such that UTij = 5ij, then Tij is closed and lim Tii is calculated over a cofiltered category, hence 

lim Tii is a nonempty compact Hausdorff space. But U preserves limits, therefore lim 5 t j = U(lim Tij) is 

also nonempty. 

[Note: More is true: U 0 F satisfies the Mayer-Vietoris condition, hence is representable. Example: 

If Y is a pointed connected CW complex whose homotopy groups are finite, then for every pointed finite 

connected CW complex X, [X, Y] is finite (ct. p. 5-49), thus is a compact Hausdorff space (discrete 

topology) and so [ ,Y] is representable.] 

REPLICATION THEOREM Let f : K -t L be a pointed skeletal map, where { ~ 
are in FCONCW.-then for any cofunctor F : HFCONCW. -t SET which converts 

finite coproducts into finite products and weak pushouts into weak pullbacks, there is an 

exact sequence 

•.. -t FEL -t FEK -t FG, -t FL -t FK 

in SET •. 
[Note: F takes (abelian) cogroup objects to (abelian) group objects, so all the arrows 

to the left of FEK are homomorphisms of groups. In addition, FEK operates to the left 

on FG, and the orbits are the fibers of the arrow FG, -t FL (cf. p. 3-33).] 

Application: There is an exact sequence 

in SET •. 
[The pointed mapping cone of the artow Ki V Lj -t Xij has the same pointed homotopy 

type as EG.] 

Let (I, $) be a nonempty directed set, I the associated filtered category. Suppose that 

.6. : lOP -t SET is a diagram, where 'if i E Ob I, .6.i #- 0 and 'if 6 E Mor I, .6.6 is surjective. 
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In I, write i '" j iff there exists a bijective map / : ~i -+ ~j and a k with {~ :5 k such 

~k 

that the triangle /' ~ commutes. 

LEMMA If #(1/"'):5 w, then lim~ is nonempty. 

ADAMS REPRESENTABILITY THEOREM Let U: GR -+ SET be the forgetful 

functor. Suppose that F : HFCONCW ... -+ GR is a cofunctor such that U 0 F converts 

finite coproducts into finite products and weak pushouts into weak pullbacks-then U 0 F 
is representable in the large. 

[Th S S · "'f { Ki C Kil Th' . b F't"'C . e arrow i' jl -+ ij IS surJectIve 1 L L . IS IS ecause "-' acts transl-
j C j' 

tively to the left on {~:/' and Sjl j' -+ Sij is equivariant. Claim: #( {ij} / "') :5 w. For one 

can check that ij '" i'j' iff FEKi x FELj -+ FEC & FEKjl x FELjl -+ FEC have the 

same image, of which there are at most a countable number of possibilities. The lemma 

thus implies that lim Sij is nonempty.] 

Working in CONCW ... , two pointed continuous functions /,g : X -+ Y are said 

to be prehomotopic if for any pointed finite connected CW complex K and any pointed 

continuous function tP : K -+ X, / 0 tP ~ 9 0 tP. Homotopic maps are prehomotopic but 

the converse is false since, e.g., there are phantom maps that are not nullhomotopic (see 

below). 

Notation: PREHCONCW ... is the quotient category of CONCW ... defined by the 

congruence of prehomotopy, [X, Y]pre being the set of morphisms from X to Y. 

If F : HFCONCW ... -+ SET is a cofunctor, then F can be viewed as a cofunctor 

PREHCONCW ... -+ SET. Given X in CONCW ... , there is a bijection Nat([-,X]pre,F) 

-+ FX (Yoneda). On the other hand, there is a bijection Nat([-,X],F) -+ FX, viz. 

E -+ {EX.([ikJ)}, ik : Xk -+ X the inclusion. Example: Take F = [-,X), so [X,X] = 
lim[Xk,X], and put LX = ([ik]}-then id[-,x] +-t LX. 

PROPOSITION 29 Let Y be in CONCW.... Assume: [-, Y) satisfies the finite 

Mayer-Vietoris condition-then for all X in CONCW ... , the natural map [X, Y]pre -+ 

lim[Xk, Y] is bijective. 

[Injectivity is immediate. 'IUrning to surjectivity, note that by definition lim[Xk, Y] = 
-;":[X=,-=-Y=]. Fix Xo E [X, Y] and let Yo = Ly (E [Y, Y]). Put Zo = X V Y and write Zo = 
(xo, yo) E [Zo, Y] ~ [X, Y] x [Y, Y]. Imitating the argument used in the proof of Proposition 
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28, construct a Z in CONCW. containing Zo as an embedded pointed sub complex and 

an element % E [Z, Y] which restricts to %0 such that the associated natural transformation 

[K, Z] -+ [K, Y] is a bijection for all K. Specialize and take K = S" (n E N) to see that 

the inclusion j : Y -+ Z is a pointed homotopy equivalence (realization theorem) and then 

compose the inclusion i : X -+ Z with a homotopy inverse for j to get a pointed continuous 

function fo : X -+ Y whose prehomotopy class is sent to xo.] 

FACT IfY is a pointed connected CW complex whose homotopy groups are countable, then [ ,Y] 

satisfies the finite Mayer-Vietoris condition. 

[Note: Under this assumption on Y, it follows that for all X in CONCW., the natural map [X, Y] -+ 

lim[XIc, Y] is surjective (and even bijective provided that the homotopy groups of Yare finite (cf. p. 5-50 

&; p. 5-87».] 

PROPOSITION 30 Suppose that F : HFCONCW. -+ SET is a cofunctor which 

converts finite coproducts into finite products and weak pushouts into weak pullbacks. As

sume: F satisfies the finite Mayer-Vietoris condition-then the cofunctor F 

PREHCONCW. -+ SET is representable. 

[By Proposition 28, there is an X in CONCW * and a natural isomorphism 2 : 

[-, X] -+ F. Repeating the reasoning used in the proof of Proposition 29, one finds that 

the extension 2 : [-, X]pre -+ F is a natural isomorphism as well.] 

PROPOSITION 31 Suppose that F, F' : HFCONCW * -+ SET are cofunctors 

which convert finite coproducts into finite products and weak pushouts into weak pullbacks. 

Assume: F and F satisfy the finite Mayer-Vietoris condition. Fix natural isomorphisms 2 : 

[-, X] -+ F, 2' : [-, X'] -+ F', where X, X, are pointed connected CW complexes. Let T : 
F -+ F' be a natural transformation-then there is a pointed continuous function f : X -+ 

[K,X] ~ [K,X'] 
X', unique up to prehomotopy, such that the diagram SK 1 

FK 

for all K. 

1 s~ commutes 
F'K 

[Note: IT F = F' and T is the identity, then f : X -+ X' is a pointed homotopy 

equivalence.] 

PROPOSITION 32 Any representing object in the Adams represent ability theorem 

is a group object in PREHCONCW * and all such have the same pointed homotopy type. 

FACT Let F : HFCONCW. -+ SET be a cofunctor which converts finite coproducts into finite 
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FACT Let F : HFCONCW. - SET be a cofunctor which converts finite coproducts into finite 

products ~d weak pushouts into weak pullbacks. Assume: V K, #(FK) ~ w--then F is representable in 

the large. 

[Note: It is unknown whether the cardinality assumption can be dropped.] 

Given pointed connected CW complexes { ~ , a pointed continuous function f : X -+ 

Y is said to be a phantom map if it is prehomotopic to O. Let Ph(X, Y) be the set of pointed 

homotopy classes of phantom maps from X to Y-then there is an exact sequence 

* -+ Ph(X, Y) -+ [X, Y] -+ lim[XJ:, Y] 

in SET •. Of course, [0] E Ph(X, Y) but #(Ph(X, Y» > 1 is perfectly possible. Example: 

Take X = K(Q,3),Y = K(Z,4) (=> [X,Y] :::::: H4(Q,3):::::: Ext(Q,Z):::::: R), realize X as 

the pointed mapping telescope of the sequence S3 -+ S3 -+ ... , the kth map having degree 

k, and note that up to homotopy, every ¢> : K -+ X factors through S3(=> Ph(X, Y) = 

[X, YD. 

Is the arrow [X, Y] -lim[Xk, Y] always surjective? While the answer is "yes" under various assump

tions on X or Y, what happens in general has yet to be decided. 

[Note: By contrast, there is a bijection Ph(X, Y) _lim1[EXk' Y] of pointed sets (Gray-McGibbont).] 

EXAMPLE Meiert has shown that Ph(K(Z, n), sn+1) ~ Ext(Q, Z) for all positive even n. Special 

case: Ph(POO(C), S3) ~ Ext(Q, Z). 

[Note: Suppose that G is an abelian group which is countable and torsion free-then 3 X &. Y : 

Ph(X, Y) ~ Ext(G, Z) (Roitbergll).] 

EXAMPLE (Universal Phantom Maps) Let X be a pointed connected CW complex. Assume: 

X has a finite number of cells in each dimension-then it is clear that f : X - Y is a phantom map iff 

V n > 0, flx(n) is nullhomotopic. Denote by tel+ X the pointed telescope of X which starts at X(l) rather 

than X(O). Recall that the projection p : tel+ X - X is a pointed homotopy equivalence (cf. p. 3-12). 

Now collapse each integral joint of tel+ X to a point, i.e., mod out by V x(n). The resulting quotient can 
n>O 

be identified with V Ex(n) and the arrow e : tel+ X - V Ex(n) is a phantom map. It is universal 
n>O n>O 

t Topology 32 (1993), 371-394. 

t Quart. 1. Math. 29 (1978), 469-481. 

" Topology Appl. 59 (1994), 261-271. 
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in the sense that if f : X --> Y is a phantom map and if 7 = fop, then there is a pointed continuous 

function F: V Ex(n) --> Y such that 7 ~ F 0 9. This is because the inclusion i: V x(n) --> tel+ X 
n>O n>O 

is a closed cofibration, hence Cs R:: V Ex(n) (cr. p. 3-24). Corollary: All phantom maps out of X are 
n>O 

nullhomotopic iff 9 is nUllhomotopic. 

[Note: Here is an application. Suppose that {: are pointed connected CW complexes with a finite 

number of cells in each dimension. Claim: If f : X --> Y and 9 : Y --> Z are phantom maps, then go f : 
X -+- Z is nullhomotopic. To' see this, observe that the composite V EX( n) !: Y p::..,.1 tel+ Y.!. V EY( n) 

n>O n>O 
is a phantom map. Accordingly, its restriction to each Ex(n) is nullhomotopic, 80 actually 90p-l of ~ O. 

Therefore 9 0 f ~ (90 p-l) 0 a 0 p-l) ~ (G 0 9 0 p-l) 0 (F 090 p-l) ~ Go (9 0 p-l 0 F) 0 9 0 p-l ~ 0.] 
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§6. ABSOLUTE NEIGHBORHOOD RETRACTS 

From the point of view of homotopy theory, the central result of this § is the CW -ANR 

theorem which says that a topological space has the homotopy type of a CW complex iff 

it has the homotopy type of an ANR. But absolute neighborhood retracts also have a life 

of their own. For example, their theory is an essential component of infinite dimensional 

topology. 
Consider a pair (X, A), i.e., a topological space X and a subspace A eX. Let Y be 

a topological space. Suppose given a continuous function f : A -+ Y-then the extension 

question is: Does there exist a continuous function F : X -+ Y such that FIA = f? While 

this is a complex multifaceted issue, there is an evident connection with the theory of 

retracts. For if we take Y = A, then the existence of a continuous extension r : X -+ A 

of the identity map idA amounts to saying that A is a retract of X. Every retract of a 

Hausdorff space X is necessarily closed in X. On the other hand, if A is closed in X, then 

with no assumptions on X, a continuous function f : A -+ Y has a continuous extension 

F : X -+ Y iff Y is a retract of the adjunction space X U f Y. The opposite end of the 

spectrum is when A is dense in X. In this case, one can be quite specific and we shall start 

with it. 

Let (X,A) be a pair with A dense in X. Write TX and TA for the corresponding 

topologies. Define a map ex : TA -+ TX by ex (0) = X - A - 0, the bar denoting closure 

in X-then ex (0) n A = 0 and ex (0) = U{U : U E TX & UnA = OJ. Obviously, 

{::~~) 0
x 

and 'r/ O,P E TA : ex(O n P) = ex (0) nex(P). Put ex (0) = {ex (0) : 0 E 

O}(O eTA). 

PROPOSITION 1 Let A be a dense subspace of a topological space X; let Y be a regu

lar Hausdorff space-then a given f E C( A, Y) admits a continuous extension F E C( X, Y) 
iff X -:- Uex(f-l(V» for every open covering V ofY. 

[The condition is clearly necessary. As for the sufficiency, suppose that X t= 0 and 

#(Y) > 1. Call {~ the topologies on X and Y. 

(F*) Define a map F* : Ty -+ TX by 

F*(V) = U{ex(f-1(V'» : V' E Ty & V' c V}. 

Note that {~:~~) 0X and 'r/ VI, V2 E Ty : F*(VI n V2) = F*("Vi) n F*(V2)' Let 

{V;} C Ty-then F*(U V;) :::> U F*(V;) and in factequa.lity prevails. To see this, write 
j j 
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UVj = UV, where V is the set of all V E Ty : V C Vj (3 j). Take a V' E Ty : 
j 

V' C UVj. Since Y = (Y - V')U(UV), X = ex(f-l(y - V'»U(Uex(f-I(V»). But 
j 

o = ex (f-I(V'» n ex (f-l(y - V'» => ex(f-I(V'» C Uex(f-I(V» C UF"'(Vj), from 
j 

which it follows that F"'(U Vj) c U F"'(Vj). 
j j 

(F",) Define a map F", : TX -+ Ty by 

F",(U) = U{V : V E Ty & F*(V) C U}. 

Note that VUE TX and V V E Ty : V C F",(U) <* F"'(V) c U. Indeed, F'" respects 

arbitrary unions. We claim now that V x E X 3 Y E Y : F",(X - {x}) = Y - {V}. 
Let F",(X - {x}) = Y - B:r;. Case 1: B:r; = 0. Here, X = F"'(Y) c X - {x}, an 

impossibility. Case 2: #(B:r;) > 1. Choose Yt,Y2 E Bs.: YI :F Y2. Choose Vi, V2 E Ty : 

{
YIEVI' - -

VI n V2 = 0 & Y2 E v2-then Vi n V2 c F",(X - {x}) => F"'(Vi n V2) c X - {x}, i.e., 

F"'(VI) n F"'(V2) c X - {x }, thus either F"'(Vi) or F"'(V2) is contained in X - {x} and so 

ei ther Vi or V2 is contained in F", (X - {x} ) = Y - B s, a contradiction. 

(F) Define a map F : X -+ Y by stipulating that F( x) = Y iff F", (X - { x }) = Y -

{y}. The definitions imply that { ~=~ i~~ n :'" (~~l (V) (V E Ty), therefore F E C( X, Y) 

and FIA = f.] 

Retain the assumption that A is dense in X and Y is regular Hausdorff. Assign 

to each x E X the collection U(x) of all its neighborhoods-then a continuous function 

f : A -+ Y has a continuous extension F : X -+ Y iff V x the filter base f(U( x) n A) 
converges. The nontrivial part of this assertion is a simple consequence of the preceding 

result. For suppose that for some open covering V of Y : X :F Uex(f-l(V». Choose 

x EX: x £t. Uex(f-I(V», so VUE U(x) and V V E V : UnA ¢. f-I(V) or still, 

f(UnA) ¢. V. But f(U(x)nA) converges to Y E Y. Accordingly, there is (i) Yo E V : Y E Yo 
and (ii) Uo E U(x) : f(Uo n A) c Yo. Contradiction. 

Here are two other applications. 

(C) Suppose that Y is compact Hausdorff-then a continuous function f : A -+ 

Y has a continuous extension F : X -+ Y iff for every finite open covering V of Y there 

exists a finite open covering U of X such that UnA is a refinement of f- I (V). 

In this statement, one can replace "compact" by "LindelOf" if "finite" is replaced by 

"countable". More is true: It suffices to assume that Y is merely R-compact (recall that 

every Lindelof regular Hausdorff space is R-compact). 
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(R-C) Suppose that Y is R-compact-then a continuous function I : A --+ Y 
has a continuous extension F : X --+ Y iff for every countable open covering V of Y there 

exists a countable open covering U of X such that UnA is a refinement of l-l(V). 

[There is a closed embedding Y --+ n R. P08tcompose I with a generic projection 

n R --+ R and extend it to X. Form the associated diagonal map F : X --+ n R-then 

F is continuous and FIA = I (viewed as a map A --+ n R). Conclude by remarking that 

F(X) = F(A) C F(A) C Y = Y.] 

[Note: The R-compactness of Y is essential. Consider X = [0, Si], A = Y = [0,0[, 

and let I = idA (Y is not R-compact, being count ably compact but not compact).] 

EXAMPLE The proposition can fail if the assumption "Y regular Hausdorff" is weakened to "Y 

Hausdorff". Let X be the set of nonnegative real numbers. Put D = {lIn: n = 1,2, ... }-then the 

collection of all sets of the form U U (V - D), where U and V are open in the usual topology on X, is also 

a topology, call the resulting space Y. Observe that Y is Hausdorff but not regular. Let A = X - D and 

define I E C(A, Y) by 1(11:) = 11:. It is clear that there is no F E C(X, Y) : FIA = I, yet for every open 

covering V of Y, X = Uex (I-I (V». 

FACT Let A be a densesubspaceofa topological space X; let Y be a regular Hausdorffspace-then 

a given I E C(A, Y) admits a continuous extension F E C(X, Y) iff V II: E X - A 3 Iz E C(A U {II:} , Y):, 

IzIA=I. 

Let X and Y be topological spaces. 

(EP) A subspace A C X is said to have the extension property with respect to Y 

(EP w.r.t. Y) if V I E C(A, Y) 3 FE C(X, Y): FIA = I. 
(NEP) A subspace A C X is said to have the neighborhood extension property 

with respect to Y (NEP w.r.t. Y) if V IE C(A, Y) 3 {~~ g(U, Y) (U open): FIA = I. 
[Note: In this terminology, A is a retract (neighborhood retract) of X iff A has the 

EP (NEP) w.r.t. Y for every Y.] 

Two related special cases of importance are when Y = R or Y = [0,1]. If A has the EP 

w.r.t. R, then A has the EP w.r.t. [0,1]. Reason: If I E C(A, [0, 1]) and if FE C(X, R) 

is a continuous extension of I, then min{l, max{O, F}} is a continuous extension of I with 

range a subset of [0,1]. The converse is trivially false. Example: Let X be CRH space

then X, as a subspace of pX, has the EP w.r.t. [0,1] but X has the EP w.r.t. R iff X is 

pseudocompact (of course in general X, as a subspace of vX, has the EP w.r.t. R). Bear 

in mind that a CRH space is compact iff it is both R-compact and pseudocompact. 
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[Note: Suppose that X is Hausdorff-then X is normal iff every closed subspace has 

the EP w.r.t. R (or, equivalently, [0,1]).] 

Suppose that X is a eRH space. Let A be a subspace of X. 

(13) If A has the EP w.r.t. [0,1], then the closure of A in 13X is 13A and conversely. 

(v) If A has the EP w.r.t. R, then the closure of A in vX is vA and conversely provided that 

X is in addition normal. 

[Note: The Niemytzki plane is a nonnormal hereditarily R-compact space, so the unconditional 

converse is false.] 

Two subsets A and B of a topological space X are said to be completely separated in 

X if 3 <p E C(X, [0, 1]): {:I~ ~. For this to be the case, it is necessary and sufficient 

that A and B are contained in disjoint zero sets. Example: Suppose that X is a CRH 

space--then any two disjoint closed subsets of X, one of which is compact, are completely 

separated in X (no compactness assumption being necessary if X is in addition normal). 

[Note: It is enough to find a function I E C(X) : {~I~; ~. Reason: Take <p = 
min{l,max{O,/}}. Moreover, a and 1 can be replaced by any real numbers r and s with 

r < s.] 

PROPOSITION 2 Let A C X-then A has the EP w.r.t. [0,1] iff any two completely 

separated subsets of A are completely separated in X. 

[Assume that A has the stated property. Fix an I E C(A, [0,1]). To construct an 

extension F E C(X, [0, 1]) of I, we shall first define by recursion two sequences {In} 

and {gn} subject to: In E BC(A) & II In II ::; 3rn and gn E BC(X) & IIgnll ::; rn, where 

(1/2)(2/3)n (~ 1) S t fIG' fIt {S; = {x E A: In(x) < -rn} rn = so .t.J rn = . e 1 = . Iven n, e S+ - { A . f ( ) >- } . 
1 n - X E . n X _ rn 

Since {~~ are completely separated in A, they are, by hypothesis, completely separated 

in X. Choose gn E BC(X) : {gnllsSi _ -rn & IIgnll ::; rn. Push the recursion forward by 
gn n - rn 

00 

setting In+1 = In - gnlA. The series Egn is uniformly convergent on X, thus its sum G 
1 

is a continuous function on X: GIA = I. Take F = max{O,G}.] 

Application: Suppose that X is a CRH space--then any compact subset of,X has the 

EP w.r.t. [0,1] (cf. p. 2-14). 
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FACT Let A C Xj let I E BC(A)-then 3 FE BC(X) : FIA = I iff Va, bE R : a < b, the sets 

, are completely separated in X. { 
1-1 (] - ex> an 
1-1 ([b, +ex>[) 

PROPOSITION 3 Let A C X-then A has the EP w.r.t. R iff A has the EP w.r.t. 

[0,1] and is completely separated from any zero set in X disjoint from it. 

[Necessity: Let Z be a zero set in X disjoint from A : Z = Z(g), where 9 E C(X, [0, 1]). 

Put f = (l/g)IA. Choose h E C(X) : hlA = f. Consider gh. 

Sufficiency: Fix an f E C(A). Because arctan of E C(A, [-11'/2,11'/2]), it has an exten

sion G E C(X, [-11'/2,11'/2]). Let B = G-l(±11'/2)-then B is a zero set in X disjoint from 

A, so there exists 4> E C(X, [0, 1]) : {~I~ ~. Put F = tan(4)G): FE C(X) & FIA = f.] 

Consequently, every zero set in X that has the EP w.r.t. [0,1] actually has the EP 

w.r.t. R. On the other hand, a zero set in X need not have the EP w.r.t. [0,1]. Examples: 

(1) Take for X the Isbell-Mrowka space w(N)-then A = S is a zero set in X but S does not 

have the EP w.r.t. [0,1]; (2) Take for X the Niemytzki plane---then A = {(x, y) : y = O} 
is a zero set in X but A does not have the EP w.r.t. [0,1]. 

EXAMPLE (Katetov Space) As a subspace of R, N has the EP w.r.t. [0,1], so the closure of 

N in PR is pN. Let X = PR - (PN - N)-then PX = PR and X is a LCH space which is actually 

pseudocompact (an unbounded continuous function on X would be unbounded on a closed subset of R 

disjoint from N). However, X is not countably compact, thus is not normal (cf. §1, Proposition 5). As a 

subspace of X, N has the EP w.r.t. [0,1] but does not have the EP w.r.t. R. 

[Note: N is a closed Gd but is not a zero set in X.] 

A subspace A C X is said to be Z-embedded in X if every zero set in A is the intersection of A with 

a zero set in X. Example: Any cozero set in X is Z-embedded in X. If A has the EP w.r.t. [0,1], then 

A is Z-embedded in X (but not conversely), so, e.g., any retract of X is Z-embedded in X. Examples: 

Suppose that X is Hausdorff-then (1) Every subspace of a perfectly normal X is Z-embedded in Xi 

(2) Every Fer-subspace of a normal X is Z-embedded in Xj (3) Every Lindelof subspace of a completely 

regular X is Z-embedded in X. 

FACT Let A C X-then A has the EP w.r.t. R iff A is Z-embedded in X and is completely 

separated from any zero set in X disjoint from it. 

[Note: It is a corollary that if A is a zero set in X, then A has the EP w.r.t. R iff A is Z-embedded 

in X. Both the Isbell-Mrowka space and the Niemytzki plane contain zero sets that are not Z-embedded.] 
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Application: Suppose that X is a Hausdorff space-then X is normal iff' every closed subset of X is 

Z-embedded in X. 

PROPOSITION 4 Let A c X-then A has the EP w.r.t. [0,1] (R) iff for every finite 

(countable) numerable open covering 0 of A there exists a finite (countable) numerable 

open covering U of X such that UnA is a refinement of O. 
[The proof of necessity is similar to but simpler than the proof of sufficiency so we 

shall deal just with it, assuming only that there exists a numerable open covering U of X 

such that UnA is a refinement of 0, thereby omitting the cardinality assumption on U. 

{ s' { z' ([0, 1]) Let SIt be two completely separated subsets of Aj let Z" be two 

disjoint zero sets in A : {::, ~ ~:, . Let 0 = {A - Z', A - ZIt}. Take U per 0 and. choose 

a neighborhood finite cozero set covering V of X such that V is a star refinement of U (d. 
. . { W' = X - U{V E V : V n z' = 0} { W' ... 

§1, ProposltlOn 13). Put WIt = X _ U{V E V: V n z" = 0}-then W" are disJomt 

{ 
ZI C W' 

zero sets in X: Z" C W" . Therefore S' and S" are completely separated in X, thus, 

by Proposition 2, A has the EP w.r.t. [0,1]. 

(R) Let Z be a zero set in X: An Z = 0, say Z = Z(/), where IE C(X, [0, 1]). 

The collection 0 = {/-1 (]1/n, 1]) n A} is a countable cozero set covering of A, hence is 

numerable (cf. p. 1-25). Take U per 0 and choose a neighborhood finite cozero set covering 

V = {V; : j E J} of X and a zero set covering Z = {Zj : j E J} of X such that V is a 

refinement ofU with Zj C V; (V j) (cf. p.I-25). Givenj, 3 nj : ZjnA C I-I(]l/nj, l])nA. 
Put W = U Zj n 1-1 ([l/nj, l])-then W is a zero set in X containing A and disjoint from 

j 
Z, so A and Z are completely separated in X. Since the first part of the proof implies 

that A necessarily has the EP w.r.t. [0,1], it follows from Proposition 3 that A has the 

EP w.r.t. R.] 

FACT Let A C X-then A is Z-embedded in X iff' for every finite numerable open covering 0 of 

A there exists a cozero set U containing A and a finite numerable open covering U of U such that UnA 

is a refinement of O. 

LEMMA Let (X, d) be a. metric space; let A be a nonempty closed proper subspace 

of X-then there exists a subset {ai : i E I} of A and a neighborhood finite open covering 

{U, : i E I} of X - A such that Vi: x E Ui => d(x,ai) ~ 2d(x, A). 

[Assign to each x E X - A the open ball Bz of radius d(x, A)/4. The collection 

{B z : x E X - A} is an open covering of X - A, thus by paracompactness has a neighbor

hood finite open refinement {Ui : i E I}. Each Ui determines a point Xi E X -A : Ui C B;tj) 
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from which a point ai E A : d(Xi' ai) < (5/4)d(xi, A). Obviously, V x E U, : d(x, ai) :5 
(S/2)d(x, , A) and d(x"A):5 (4/S)d(x, A).] 

DUGUNDJI EXTENSION THEOREM Let (X, d) be a metric space; let A be a closed 

subspace of X. Let E be a locally convex topological vector space. Equip { g~:1',~ with 

the compact open topology-then there exists a linear embedding ext : C(A, E) -+ C(X, E) 

such that V IE C(A, E), ext(f)IA = I and the range of ext(f) is contained in the convex 
hull of the range of I. 

[Assume that A is nonempty, proper and, using the notation of the lemma, choose a 

partition of unity {Ki : i E I} on X - A subordinate to {Ui : i E I}. Given I E C(A, E), 

let 

{ 

I(x) (x E A) 
ext(f)(x) = ~ Ki(x)/(ai) (x E X - A). 

Then ext(f)IA = I and it is clear that ext(f)(X) is contained in the convex hull of 

I(A). The continuity of ext(/) is built in at the points of X-A. As for the points of 

A, fix ao E A and let N be a balanced convex neighborhood of zero in E. Choose a 

{
XEX-A 

o > a : d(a,ao) < 0 => I(a)- I(ao) E N(a E A). Suppose that d(x,ao) < o/S' H 

K,(X) > 0, then, from the lemma, d(x,ai) < 2d(x,A), hence d(ai,ao) :5 Sd(x,ao) < O. 

Consequently, 

ext(f)( x) - ext(f)( ao) = L K,( x )(f( ai) - I( ao» E L Ki( x)N C N. 
, i 

Therefore ext(/) E C(X, E). By construction, ext is linear and one-to-one, so the only 

remaining issue is its continuity. Take a nonempty compact subset K of X and let 

O(K,N) = {F E C(X, E) : F(K) eN}. Put KA = K n A U {a, E A: Kn U. '10}. Let 

O(KA' N) = {I E C(A, E) : I(KA) eN}. Plainly, I E O(KA' N) => ext(f) E O(K, N). 

Claim: KA is compact. To see this, let {xn} be a sequence in KA. Since K n A is compact, 

we can suppose that {x n } has no subsequence in K n A, thus without loss of generality, 

Xn = ai" for some in : K n U,,, '10. Pick Yn E K n Ui" and assume that Yn -+ Y E K. 

Case 1: Y E K n A. Here, d(xn, y) = d(ai .. , y) :5 Sd(Yn, y) -+ O. Case 2: Y E K n (X - A). 

There is a neighborhood of Y that meets finitely many of the Ui and once Yn is in this 

neighborhood, the index in is constrained to a certain finite subset of I, which means that 

{xn } has a constant subsequence.] 

[Note: Suppose that E is a normed linear space--then the image of extIBC(A, E) is 

contained in BC(X,E) and, per the uniform topology, ext : BC(A,E) -+ BC(X,E) is a 

linear isometric embedding: V IE BC(A, E), 11/11 = lIext(f)II. ] 
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In passing, observe that if the 0i are chosen from some given dense subset Ao c A, 

then the range of ext(/) is contained in the union of I(A) and the convex hull of I(Ao). 

The Dugundji extension theorem has many applications. To mention one, it is a key ingredient in 

the proof of a theorem of Milyutin to the effect that if X and Y are uncountable metrizable compact 

Hausdorff spaces, then C(X) and C(Y) are linearly homeomorphic (Pelczyilslcit ). Extensions to the case 

of noncompact X and Y have been given by Etcheberryt. 

[Note: The Banach-Stone theorem states that if X and Y are compact Hausdorff spaces, then X 

and Y are homeomorphic provided that the Banach spaces C(X) and C(Y) are isometrically isomorphic 

(Behrendsll ).] 

Is Dugundji's extension theorem true for an arbitrary topological vector space E? In 

other words, can the "locally convex" supposition on E be dropped? The answer is "no", 

even if E is a linear metric space (cf. p. 6-12). 

[Note: A topological vector space E is said to be a linear metric space if it is metriz

able. Every linear metric space E admits a translation invariant metric (Kakutani) but E 

need not be normable.] 

Let X be a CRH spacej let A be a nonempty closed subspace of X. Let E be a locally con

vex topological vector space (normed linear space)-then a linear operator T : C(A,E) -+ C(X,E) 

(T : BC(A, E) -+ BC(X, E» continuous for the compact open topology (uniform topology) is said to 

be a linear extension operator if for allIin C(A, E) (BC(A, E» : TIIA = I. Write LEO(X, AjE) 

(LEO,,(X, Aj E» for the set of linear extension operators associated with C(A, E) (BC(A, E». Assum

ing that X is metrizable, the Dugundji extension theorem asserts: V A, C(A, E) (BC(A, E» possesses a 

linear extension operator (and even more in that the "same" operator works for both). Question: What 

conditions on X or A serve to ensure that LEO (X, Aj E} (LEO,,(X, Ai E» is not empty? 

EXAMPLE (The Michael Line) Take the set R and topologize it by isolating the points of P, 

leaving the points of Q with their usual neighborhoods. The resulting space X is Hausdorff and hereditarily 

paracompact but not locally compact. And A = Q is a dosed subspace of X which, however, is not a 

Gs in X. Let E = C(P), P in its usual topology-then E is a locally convex topological vector space 

(compact open topology). Claim: LEO(X, Aj E) is empty. For this, it suffices to exhibit an 1 E C(A, E) 

t Dirl6eriationu Math. 58 (1968). 1-92j see also Semadeni, Banach. Space6 01 ContinuoUIJ FunctioRIJ, 

PWN (1971), 379. 

t Studio. Math. 53 (1975), 103-127j see also Hess, SLN 881 (1983), 103-110. 

II SLN 736 (1979), 138-140. 
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that cannot be extended to an F E C(X, E). If P has its usual topology, then the continuous function 

{

AXP_R 
has no continuous extension X x P - R (thus X x P is not normal). Defining 

(z, y) - l/(y - z) 
IE C(A, E) by I(z)(y) = l/(y - z), it follows that I has no extension FE C(X, E). 

A Hausdorft" space X is said to be submetrizable if its topology contains a metrizable topology. 

Examples: (1) The Michael line is submetrizable and normal but not perfect; (2) The Niemytzki plane is 

submetrizable and perfect but not normal. 

FACT Let X be a submetrizable CRB space. Suppose that A is a nonempty closed subspace of X 

with a compact frontier-then V E, LEO(X, Ai E) (LEO.(X, A; E» is not empty. 

[Note: In view of the preceding example, the hypothesis on A is not superfluous.] 

When E = R, denote by LEO(X, A) (LEO. (X, A» the set of linear extension operators for C(A) 

(BC(A». 

EXAMPLE LEO.(X, A) can be empty, even if X is a compact Hausdorft" space. For a case in 

point, take X = {IN " A = (IN - N. Claim: LEO(X,A) (= LEO.(X,A» is empty. Suppose not and 

let T : C(A) - C(X) be a linear extension operator. Fix an uncountable collection U = {U, : i E J} 

of nonempty pairwise disjoint open subsets of A. Pick an a, E U, and choose an Ii E C(A, [0, 1]): 

{ 
/t(a,) = 1 . Let 0, = {Z EX: TI,(z) > 1/2}. Since X is separable, there exists an uncountable 
lil(A - U,) = 0 

subset 10 of 1 and a point Zo EX: Zo E n Oi. Let n be some integer> IITII. Select distinct indices 
IElo 

2", 

i. (Ie = 1, ... ,2n) in 10. Put I = 2:/t., so 11/11 = 1. A contradiction then results by writing 
1 

2", 1 
n = nllill ~ IITIII ~ TI(zo) = 2: T li.(zo) > 2n· 2 = n. 

1 
[Note: Let X be a compact Hausdorft" space; let A be a nonempty closed subspace of X. Set 

p(X, A) = inf{IITIl : T E LEO(X, An (where p(X, A) = 00 if LEO(X, A) is empty). Of course, p(X, A) ~ 1 

and Benyaminit has shown that V r : 1 S r < 00, ther~ exists a pair (X, A) : p(X, A) = r.] 

The space X figuring in the preceding example is not perfect (no point of (IN - N is a G6 in (IN). 

Can one get a positive result if perfection is assumed? The answer is "no". Indeed, van Douwenl has 

constructed an example of a CRB space X that is simultaneously perfect and paracompact, yet contains 

a nonempty closed subspace A for which LEO.(X, A) = e. 

t J.rael J. Math. 16 (1973), 258-262. 

General Topology Appl. 5 (1975), 297-319. 
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The assumption that LEOb(X, A) is not empty V A has implications for the topology of X. To 

quantify the situation, given r : 1 S r < 00, let b" be the condition: V A, {T E LEOb(X, A): IITII S r} '# •. 

Claim: If b" is in force, then for any discrete collection..4. = {Ai: i E l} of nonempty dosed subsets of X 

there is a collection U = {Ui : i E I} of open subsets of X such that (1) Ai C U. II.: i '# j ~ Ui n Aj = • 
and (2) ord(U} S [r]. Thus put A = u..4., let Xi : A - [0,1] be the characteristic function of Ai, choose 

T E LEO,,(X, A} : IITII S r, and consider U = {Ui : i E I}, where U. = {z EX: TX'(z} > r/[r] + I}. 

Example: Suppose that X satisfies b" for some r < 2-then X is collectionwise normal. 

[Note: Let X be the Michael line-then one can show that X satisfies bl. yet LEO(X, A) = III if 

A=Q.] 

FACT Let X be a Moore space. Assume: X satisfies b" for some r-then X is normal and 

metacompact. 

Let X be a nonempty topological space--then an equiconnecting structure on X is a 

continuous function '\: IX2 -+ X such that V x,y E X and "'It E [0,1] : {,\'\((x,y,Ol)) _ x & 
x,y, - Y 

'\(x,x,t) = x. A subset A C X for which '\(IA2) C A is called '\-convex. In order that X 

have an equiconnecting structure, it is necessary that X be both contractible and locally 

contractible but these conditions are not sufficient as can be seen by considering Borsuk's 

cone (d. p. 6-15). Example: Suppose that X is a contractible topological group. Let 

H : IX -+ X be a homotopy contracting X to its unit element e-then the prescription 

'\(x, y, t) = H(e, t)-l H(xy-l, t)y defines an equiconnecting structure on X. In particular, 

if X is a topological vector space, then H(x, t) = (1 - t)x will do. 

[Note: Let E be an infinite dimensional Banach space. Consider GL(E), the group 

of invertible bounded linear transformations T : E -+ E. Equip GL(E) with the topology 

induced by the operator norm-then GL(E) is a topological group and, being an open 

subset of a Banach space, has the homotopy type of a CW complex (d. §5, Proposition 6). 

If E is actually a Hilbert space, then GL(E) is contractible (Kuipert) but this need not 

be true in general (even if E is reflexive), although it is the case of certain specific spaces, 

e.g., e([o, 1]) or V([O, 1]) (1 ~ p ~ (0). See Mityagint for proofs and other remarks.] 

FACT A nonempty topological space X has an equiconnecting structure iff the diagonaltlx is a 

strong deformation retract of X X X. 

[Necessity: Given A, consider the homotopy H: IX2 - X2 defined by H«Z,lI}, t} = (A(z, 11. t), 1I}. 

t Topology 3 (1965), 19-30. 

* Ru.r.ian Math. SUMley. 25 (1970), 59-103. 
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Sufficiency: Given H, consider the equiconnecting structure>. : IX2 - X defined by 

>'(11),1/, t) = , {
PI (H«II) , 1/), 2t» (0 $ t $ 1/2) 

P2(H«II), 1/), 2 - 2t» (1/2 $ t $ 1) 

where PI and P2 a.re the projections onto the first and second factors.] 

FACT Suppose that X is a nonempty topological space for which the inclusion 1:J.x - X x X is a 

cofibration-then X has an equiconnecting structure iff X is contractible. 

[Choose a homotopy H : IX - X contracting X to 11)0 : and then define A : I X2 -{ 

H(II),O) = II) 

H(II), 1) = 11)0 

X2 by A«II), 1/), t) = (H(II), t), H(1/, t» to see that 1:J.x is a weak deformation retract of X x X.] 

A nonempty topological space X is said to be locally convex if it admits an equiconnecting structure 

>. such that every II) E X has a neighborhood basis comprised of >.·convex sets. The convex subsets of a 

locally convex topological vector space are therefore locally convex, where >'(11),11, t) = (1 - t)1I) + tll. On 

the other hand, the long ray L + is not locally convex. 

EXAMPLE Let K = (V, E) be a vertex scheme. Suppose that K is full, i.e., if F C V is finite 

and nonempty, then FEE. Claim: IKI is locally convex. ThUB fix a point * E V. Let tP E IKI-then 

tP = E b,,(tPh:1I + (1 - E b,,(tP»X.· Here, X1l (X.) is the cha.racteristic function of {v} ({*}). Define 13 : 
11~. ,,~. 

IKI x IKI- IKI by 13(tP, '4-) = E 13(tP, '4-)" x" +(1- E 13(tP, '4-)" )x., where 13(tP, '4-)" = min{b" (tP), b1l ('4-)}. 
,,~. 11~. 

The assignment 
>. t _ {(I - 2t)tP + 2t13(tP, '4-) (0 $ t $ 1/2) 

(tP. '4-, ) - (2 _ 2t)13(tP, '4-) + (2t - 1)'4- (1/2 $ t $ 1) 

is an equiconnecting structure on jKI relative to which IKI is locally convex. 

FACT Let A C X, where X is metrizable and A is closed-then A has the EP w.r.t. any locally 

convex topological space. 

PLACEMENT LEMMA Every metric space (X,d) can be isometrically embedded as 

a closed subspace of a normed linear space E, where wt E = wwt X. 

[Denote by E the collection of all nonempty finite subsets of X. Give E the discrete 

topology. Fix a point Xo EX. Attach to each x E X a function fz : { E -+ d
R
( ) d( ) u -+ x,u - xo,u 

-then fz E BC(E) and the assignment" : {X -+fBC(E) is an isometric embedding. Note 
x -+ z . 

that fzo = O. Let E be the linear span of ,(X) in BC(E). To see that ,(X) is closed in 
n 

E, take a <I> E E - ,(X), say <I> = E ri/z; (n real), put u = {xo, ... , x n } and choose S 
o 
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positive and less than (1/2)~n II~ - /J:ill. Claim: No element of t(X) can be within 6 of 
I 

~. Suppose not, so 3 x EX: II~ - /J: II < D. Since t is an isometry, 

from which II~ - /J:II 2:1~(0') - /J:(O')I = d(x,O') 2: D, a contradiction. There remains 
the assertion on the weights. For this, let D be a dense subset of t(X) of cardinality 

~ K, : /J:o ED-then the linear span of D is dense in E and contains a dense subset of 

cardinality ~ wlt.1 
[Note: One can obviously arrange that E is complete provided this is the case of 

(X,d).] 

FACT Every CRB space X can be embedded as a dosed subspace of a locally convex topological 

vector space E. 

Let Y be a nonempty metrizable space. 

(AR) Y is said to be an absolute retract (AR) if under any closed .embedding 

Y -+ Z into a metrizable space Z, the image of Y is a retract of Z. 
(ANR) Y is said to be an absolute neighborhood retract (ANR) if under any 

closed embedding Y -+ Z into a metrizable space Z, the image of Y is a neighborhood 

retract of Z. 
[Note: There is no map from a nonempty set to the empty set, thus 0 cannot be 

an AR, but there is a map from the empty set to the empty set, so we shall extend the 

terminology and agree that 0 is an ANR.] 

PROPOSITION 5 Let Y be a nonempty metrizable space-then Y is an AR (ANR) 

iff for every pair (X, A), where X is metrizable and A C X is closed, A has the EP (NEP) 

w.r.t. Y. 
[The indirect assertion is obvious. Turning to the direct assertion, in view of the 

placement lemma, Y can be realized as a closed subspace of a normed linear space E. 
Assuming that Y is an AR, fix a retraction r : E -+ Y. If now / : A -+ Y is a continuous 

function, then by the Dugundji extension theorem, 3 F E C( X, E) : FIA = f. Consider 

r 0 F.] 

EXAMPLE Cautyt has given an example of a linear metric space E which is not an absolute 

retract. So, for this E, the Dugundji extension theorem must fail. 

t Fund. Mo.th.. 146 (1994), 85-99. 
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[Note: Therefore a metrizable space that has an equiconnecting structure need not be an AR.] 

A countable product of nonempty metrizable spaces is an AR iff all the factors are 

ARs. Example: [O,l]n,Rn,[O,l]"", and R"" are absolute retracts. A countable product of 

nonempty metrizable spaces is an ANR iff all the factors are ANRs and all but finitely 

many of the factors are ARs. Example: 8n and Tn are absolute neighborhood retracts 

{ 
8n x 8n x ... ( 

but Tn Tn W factors) are not absolute neighborhood retracts. x x ... 
Every retract (neighborhood retract) of an AR (ANR) is an AR (ANR). An open 

subspace of an ANR is an ANR. 

EXAMPLE Let E be a normed linear space-then every nonempty convex subset of E is an AR 

and every open subset of E is an ANR. Assume in addition that E is infinite dimensional. Let 5 be 

the unit sphere in E-then 5 is an AR. To establish this, it need only be shown that 5 is a retract of 

D, the closed unit ball in E. Fix a proper dense linear subspace Eo C E (the kernel of a discontinuous 

linear functional on E will do). In the notation of the Dugundji extension theorem, work with the pair 

(D,5), picking the points defining ext in S n Eo. and let I = ids-then there exists a continuous function 

ext(f) : D - E such that ext(f)15 = ids, with ext(f)(D) contained in 5 U (D n Eo), a proper subset of 

D. Choose a point p in the interior of D : p j ext(f)(D), let r : D - {p} - 5 be the corresponding radial 

retraction and consider r 0 ext(f). Corollary: Not every continuous function D - D has a fixed point. 

[Note: There is another way to argue. Kleet has shown that if E is an infinite dimensional normed 

linear space and if K C E is compact, then E and E - K are homeomorphic. In particular, E - {OJ is 

homeomorphic to E, thus is an AR, and 80 S, being a retract of E - {OJ, is an AR. Matters are trivial if 

E is an infinite dimensional Banach space, since then E is actually homeomorphic to 5.] 

EXAMPLE Let Y be any set lying between ]o,l[n and [O,l]n-then Y is an AR. Thus let I 

be a closed embedding Y - Z of Y into a metrizable space Z. Call; the inclusion Y - [0, l]n, 80 

; 0 1-1 e C(f(Y), [O,l]n). Choose age C(Z, [0, 1]") : gl/(Y) = ; 0 1-1. Fix a compatible metric don 

Z and define a continuous function h : Z - [O,l]n x [0,1] by sending z to (g(z), min{l, d(z, I(Y»}). The 

range of h is therefore a subset of ioY U [o,l]n x]O, 1]. Let r : ioY U [0, l]n x]O, 1] - ioY be the retraction 

determined by projecting from the point (1/2, ... ,1/2,-1) e R,,+1 and let p : ioY - Y be the canonical 

map. That I(Y) is a retract of Z is then seen by considering the composite lop 0 r 0 h. 

FACT Let Y be an ARj let B be a nonempty closed subspace of Y -then B is an AR iff B is a 

strong deformation retract of Y. 

t Proc. Amer. Mo.th. Soc. 7 (1956), 673-674. 
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[To He that the condition is nec_ary, fix a retraction r : Y - B and define a continuous function 

{ 

11 (fl E Y, t = 0) 

h : ioYuIB UilY - Y by hey, t) = y (y E B,O ~ t ~ 1). Since ioYuIB U1IY is a closed subspace of 

r(y) (y E Y, t = 1) 
IY and since B is an AR, it follows from Proposition I) that h has a continuous extension H : IY - Y.] 

Let Y be an AR-then Y is homeomorphic to its diagonal ~y which is therefore a strong deformation 

retract of Y X Y and this means that Y has an equiconnecting structure (d. p.6-10). 

[Note: A metrizable locally convex topological space is an AR (d. p. 6-11 and Proposition 5) but 

not every AR is locally convex.] 

FACT Let Y be an ANRj let B be a closed subspace of Y-then B is an ANR iff the inclusion 

B - Y is a cofibration. 

[If B is an ANR, then so is lOY u IB (d. p. 6-43 (NES.» , thus there exists a neighborhood 0 of 

10 Y u I B in IY and a retraction r : 0 - lOY U lB. Choose a neighborhood V of B in Y : IV C 0 and 

{ 
4>IB = 1 {IY - ioYu IB 

fix 4> E C(Y, [0, 1]) : . Consider the map .] 
4>IY - V = 0 (Y. t) - r(fI. 4>(fI)t) 

Let Y be an ANR-then Y is homeomorphic to its diagonal ~Y. hence the inclusion ~y - Y x Y 

is a cofibration. Consequently, Y is uniformly locally contractible (cf. p. 3-14) and V flo E Y, (Y,flo) is 

wellpointed (cf. p. 3-15). 

[Note: It is unknown whether every metrizable uniformly locally contractible space is an ANR. Any 

counterexample would nec_arily have infinite topological dimension (d. infra).] 

Thanks to the placement lemma and the fact that a retract of a contractible (locally 

contractible) space is contractible (locally contractible), every AR (ANR) is contractible 

(locally contractible). Both the broom and the cone over the Cantor set are contractible 

but, failing to be locally contractible, neither is an ANR. 

LEMMA Suppose that Y is a contractible ANR-then Y is an AR. 

A locally path connected topological space X is said to be locally n-connected (n ~ 1) 

provided that for any x E X and any neighborhood U of x there exists a neighborhood 

V C U of x such that the arrow 7rg(V, x) -+ 7rg(U,x) induced by the inclusion V -+ U 
is the trivial map (1 5 q 5 n). H X is locally n-connected for all R, then X is called 

locally homotopically trivial. Example: A locally contractible space is locally homotopi

cally trivial. 

EXAMPLE Working in l2, let PIc = (rk(2A: + 1),0, ... ), where rk = 1/2A:(A: + 1) (A: = 1,2, ... ), 

and put Po = limpk (= (0,0, ... ». Denote by Xk(n) the set consisting of those points % = {%i} : %i = 0 

" 
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00 

(i > n + 1) and whose distance from PII: is rll:. The union {Po} u U XII: ( n + 1) is locally n-connected but 
11:=1 

00 

not locally (n + I)-connected, while the union {Po} U U XII:(k) is locally homotopically trivial but not 

locally contractible. 
11:=1 

Let Y be a nonempty metrizable space. 

(LC") Y is locally n-connected ifF for every pair (X, A), where X is metrizable and A C X is 

closed with dim(X - A) !f n + 1, A has the NEP w.r.t. Y. 

(C" + LCft
) Y is n-connected and locally n-connected iff for every pair (X, A), where X is 

metrizable and A C X is closed with dim(X - A) !f n + 1, A h .. the EP w.r.t. Y. 

Let Y be a nonempty metrizable space of topological dimension !f n. 

(LC" + dim !f n) Y is locally n-connected iff Y is loca.lly contractible iff Y is an ANR. 

(C" + LC" + dim !f n) Y is n-connected and locally n-connected iff Y is contractible and 

locally contractible iff Y is an AR. 

The proofs of these results can be found in Dugundji t . 

[Note: It follows that a metrizable space of finite topological dimension is uniformly locally con

tractible iff it is an ANR and h .. an equiconnecting structure iff it is an AR.] 

EXAMPLE (Borsuk's Cone) There exists a contractible, locally contractible compact metrizable 
00 

space that is not an ANR. Choose a sequence: 0 = 10 < 11 < ... < I, lim I" = 1. Inside the product n[O, 1], 
o 

00 00 

for n = 1,2, ... , form Y" = [1,,-1, tIt] )( [0,1]" )( 0)(· ", put Y 00 = 1)( n[O, 1], and let Y = (U fr y,,)UY 00-

1 1 
then Y is a compact connected metrizable space which we claim is locally contractible yet has nontrivial 

singular homology in every dimension, thus is not an ANR (d. p.6-20). Local contractibility at the points 

of Y - Y 00 being obvious, let 900 = (1, 91 , ••• ) E Y 00 and fix a neighborhood U of 900' There is no loss of 

generality in assuming that U is the intersection of Y with a set [ao, 1] )( [aI, bl] )( .•• )( [all:, bll:] )( [0,1] )( .. '. 

Consider a neighborhood V of 900 that is the intersection of Y with a set [ao, 1] )( [aI, bl] )( ... )( [all:, bll:] )( 
. { 1 'I. [a 11:+1 , bll:+1 ] 

[all:+l, bll:+1] )( [0,1] )( ... , where 611:+1 - all:+1 < 1. There are two cases: . As both are 
0'1. [a II: +1 ,611:+1] 

handled in a similar manner, suppOse, e.g., that 1 'I. [all:+lIbll:+l] and define a homotopy H : IV __ U 

between the inclusion V -- U and the constant map V -- 900 by letting H( tI, I) be consecutively 

{ 

(tlo, til, •.. ,till:, (1 - 31)tllI:+l, tllI:+2, ••• ) 

(31 - 1 + (2 - 3t)tlo, til, ... ,till:, 0, till: +2 , ... ) 

(1,91 - 3(1 - t)(91 - til), 92 - 3(1 - t)(92 - tl2), ... ). 

t Compos;.t;.o Mtdh.. 13 (1958), 229-246; see also Kodama, Proc. JtJptJn ActJd. Sc;'. 33 (1957), 79-83. 
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. {0:5 t :5 1/3 
Here, v = (VO, Vb • •• ) E V and 1/3 :5 t :5 2/3. That Y is not an ANR is seen by remarking that fr Y" 

2/3:5 t :5 1 
is a retract of Y, hence H,,(frY,,) R:I Z is isomorphic to a direct summand of H,,(Y). The cone ry of Y 

is a contractible, locally contractible compact metrizable space. And Y, as a closed subspace of ry, is a 

neighborhood retract of ry. Therefore ry is not an ANR. Finally, Y is not uniformly locally contractible, 

so ry does not have an equiconnecting structure. 

[Note: Other, more subtle examples of this sort are known (Daverman-Walsht ).] 

FACT Let Y C R"-then Y is a neighborhood retract of R" iff Y is locally compact and locally 

contractible. 

Havert has shown that if a locally contractible metrizable space Y can be written as a countable 

union of compacta of finite topological dimension, then Y ia an ANR. Example: Every metrizable CW 

complex X is an ANR. Indeed, for this one can assume that X is connected (d. Proposition 12). But 

then X, being locally finite, is necessarily countable, hence can be written as a countable union of finite 

subcomplexes. 

Certain function spaces or automorphism groups that arise "in nature" turn out to 

be ARs or, equivalently, contractible ANRs. Example: Let E be an infinite dimensional 

Hilbert space-then GL(E) is contractible (cf. p. 6-10). However, GL(E) IS an open 

subset of a Banach space, thus is an ANR. Conclusion: GL(E) is an AR. 

EXAMPLE (Measurable Functions) Let Y be a nonempty metrizable space. Denote by My 

the set of equivalence classes of Borel measurable functions f : [0,1] - Y equipped with the topology 

of convergence in measure-then My is metrizable, a compatible metric being given by the assignment 

(I, g) - f01 d(l(:.:), g(:.:»d:.:, where d is a compatible metric on Y bounded by 1. Nhu ll has shown that 

My is an ANR. Claim: My is contractible. To see this, fix a point 110 E Y and consider the homotopy 

{
f(:':) (:.:>t) 

H(I, t)(:.:) = . Therefore My is an AR. 
110 (:.: :5 t) 

[Note: Take Y = R-then Ma is a linear metric space. But its dual Mit. ia trivial, hence Ma is not 

locally convex.] 

EXAMPLE (Measurable Transformations) Let r be the set of equivalence classes of measure 

preserving Borel measurable bijections "y : [0,1] - [0,1], i.e., let r be the automorphism group of the 

t Michigan Math. J. 30 (1983), 17-30. 

Proc. Amer. Math. Soc. 40 (1973), 280-284. 

II Fund. Math. 124 (1984), 243-254. 
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measure algebra A of the unit interval. Equip r with the topology of pointwise convergence on A-then a 

subbasis for the neighborhoods at a fixed 'Yo E r is the collection of all sets of the form {'Y : l'YA.o!l'YoAI < E} 

(A E A & E > 0), .£l being symmetric difference. With respect to this topology, r is a first countable 

Hausdorff topological group, so r is metrizable. Nhu t has shown that r is an ANR. Claim: r is contractible. 

To see this, let B be the complement of A in [0, 1] and assign to each pair (A, 'Y) its return partition, viz. the 

sequence {On}, where 00 = B, 01 = An'Y-1A, and for n 2: 2, On = An'Y-1Bn·· ·n'Y-(n-1)Bn'Y-"A. 

{
Axr-+r 

Define 'Y A E r by 'Y A (:e) = 'Y" (:e) (:e E On), check that the map is continuous, and consider 
(A, 'Y) -+ 'YA 

the homotopy H(t, 'Y) = 'Y[e,I]' Therefore r is an AR. 

[Note: Confining the discussion to the unit interval is not unduly restrictive since the Halmos-von 

Neumann theorem says that every separable, non atomic, normalized measure algebra is isomorphic to A.] 

Let X be a second countable topological manifold of euclidean dimension n. Denote by 

H(X) the set of all homeomorphisms X ~ X endowed with the compact open topology

then H(X) is a topological group (cf. p. 2-6). Moreover, H(X) is metrizable and one 

can ask: Is H(X) an ANR? If X is not compact, then the answer is "no" since there are 

examples where H(X) is not even locally contractible (Edwards-Kirby~). If X is compact, 

then H(X) is locally contractible (Cernavski'i'lI) and there is some evidence to support a 

conjecture that H(X) might be an ANR. 

[Note: If X is not compact but is homeomorphic to the interior of a compact topo

logical manifold with boundary, then H(X) is locally contractible (Cemavski'i'(ibid.)). Ex

ample: H(Rn) is locally contractible.] 

EXAMPLE Thke X = [O,I]-then H([O, I]) is homeomorphic to R""' x {O, I} (thus is an ANR). 

In other words, the claim is that the identity component H e ([O,I]) of HHO,I]) is homeomorphic to R""'. 
00 2n 

Form the product TI TI]O,I[",i and define a homeomorphism between it and H,,([O, 1]) by assigning to 
n=O ;=1 

a typical string (:en,.) an order preserving homeomorphism ¢ : [0,1] -+ [0,1] via the following procedure. 

Suppose that n is given and that there have been defined two sets of points 

{
An = {O = a(n,O) < a(n, 1) < ... < a(n,2n) = I} 

Bn = {O = b(n,O) < b(n, 1) < '" < b(n,2n) = I}, 

with ¢( a( n, i» = b( n, i). To extend the definition of ¢ to an order preserving bijection An+! -+ Bn+!, 

where and both have cardinality 2n+1 + 1, distinguish two cases. Case 1: n is odd. Let ai { 
An+1 ::> A" 

Bn+1 ::> Bn 

Proc. Amer. Math. Soc. 110 (1990), 515-522. 

Ann. of Math. 93 (1971), 63-88. 

II Math. Sbornik 8 (1969), 287-333; see also Rushing, Topological Embeddings, Academic Press (1973), 

270-293. 
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be the midpoint of [4(n, i-I), 4(n, i)] and !Jet fJ, = 4»(Oti) = z",,(b(n, i) - b(n, i-I» + b(n, i-I). Case 2: 

n is even. Let fJ;. be the midpoint of [ben, i-I), ben, I)] and set Ot;' = 4»-1 (fJ,) = Z""(4(n, i) - 4(n, i-I» 

{ 
A"+1 = A" U {Ot. : i = 1, ... , 2" } 

+4(n, i-I). Define .,80 that in obvious notation 
B,,+l = B" U {fJi : I = 1, ... ,2"} 

{ 
A"+1 = {O = 4(n + 1,0) < 4(n + 1,1) < ... < 4(n + 1,2"+1) = I} 

B,,+l = {O = b(n + 1,0) < ben + 1,1) < ... < b(n + 1,2"+1) = I}, 

00 

with 4»(4(n+l, i» = b(n+l, i). Hnow { A = ~ A" ,then {; are dense in [0, 1] and 4» : A _ B is an order 

B= UB" 
1 

preserving bijection, hence admits an extension to an order preserving homeomorphism 4» : [0,1] - [0,1]' 

[Note: H([O, 1]) and HOO, 10 are homeomorphic. In fact, the arrow of restriction H([O, 1]) - HOO,10 

is continuous and has for its inverse the arrow of extension HOO, 10 - H([O, 1]). which is also continuous. 

Corollary: HOO,I[) is an ANR. Corollary: H(R) is an ANR.] 

EXAMPLE Take X = Sl-then H(Sl) is homeomorphic to R'" X Sl X {O, I} (thus is an ANR). To 

see this, it suffices to observe that H(Sl) is homeomorphic to G X Sl , where G is the subgroup of H(Sl) 

consisting of those 4» which fix (1,0). 

Therefore, if X is a compact I-manifold, then H(X) is an ANR. The same conclusion obtains if X is 

a compact 2-manifold (Luke-Masont ) but if n > 2, then it is unknown whether H(X) is an ANR. 

EXAMPLE Take X = [0,1]"', the Hilbert cube-then H(X) (compact open topology) is metriz

able and Ferry* has shown that H(X) is an ANR. 

LEMMA Let K = (V, E) be a vertex scheme-then IKI. is an ANR. 
[There are three steps to the proof. 

(1) Fix a point * rt V and put V. = V U { * }. Let E. be the set of all nonempty 

finite subsets of V •. Call K. the associated vertex scheme. Claim: IK.I. is an AR. Indeed, 

the inclusion IK.I. -+ il(V.) is an isometric embedding with a convex range. 

(II) Let r. be the subspace of IK .1. consisting of X., the characteristic function 

of {*}, and those 4> -:F X. : 4>-l(]O, 1]) n VEE. Claim: r. is an AR. To establish this, it 

suffices to exhibit a retraction r : IK.I. -+ r •. Take a 4> E IK.I •. Case 1: 4> = X •• There is 

no choice here: r(x.) = X •• Case 2: 4> -:F X •• Suppose that 4>-1 (]O, 1]) - {*} = {vo, . .. ,vn }. 

t 7Nn&. Amer. M4th. Soc. 164 (1972), 275-285. 

t Ann. of M4th. 106 (1977), 101-119. 
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Order the vertexes Vi so that </>( Vo) > ... > </>( vn ). Denote by k the maximal index: 

{ Vo, ... , VA:} E E and define r( </» by the following formulas: 

{ 
r( </> )( *) = 1 - E r( </> )( V ) 

vev 
r(</»(v) = 0 (v E V - {vo, ••• ,VA:}) 

and 

{ 
k = n : r(</»(vi) = </>(Vi) (0:5 i :5 k) 
k < n : r(</»(vi) = </>(Vi) - </>(VA:+d (0:5 i < k). 

One can check that r is welldefined and continuous. 

(III) Since r. - {X.} is open in r., it is an ANR. Claim: IKllI is a retract of 

r. - {X.}, hence is an ANR. To see this, consider the map </> ~ </> 1-!~~:~·'] 

A topological space is said to be a (finite, countable) CW space if it has the homotopy 

type of a (finite, countable) CW complex. The following theorems characterize these classes 

in terms of ANRs. 

CW-ANR THEOREM Let X be a topological space-then X has the homotopy type 

of a CW complex iff X has the homotopy type of an ANR. 

[If X has the homotopy type of a CW complex, then there exists a vertex scheme K 

such that X has the homotopy type of IKI (cf. §5, Proposition 2) or still, the homotopy 

type of IKllI (d. §5, Proposition 1) and, by the lemma, IKIII is an ANR. Conversely, if X 
has the homotopy type of an ANR Y, use the placement lemma to realize Y as a closed 

subspace of a normed linear space E. Fix an open U C E : U :J Y and a retraction 

r : U ~ Y. Since U has the homotopy type of a CW complex (d. §5, Proposition 6), the 

domination theorem implies that the same is true of Y.] 

COUNTABLE CW-ANR THEOREM Let X be a topological space-then X has the 

homotopy type of a countable CW complex iff X has the homotopy type of a second 

countable ANR. 

[If X has the homotopy type of a countable CW complex, then there exists a count

able locally finite vertex scheme K such that X has the homotopy type of IKI (cf. §5, 

Proposition 3 and p. 5-14). Therefore IKI = IKllI is Lindelof, hence second countable, 

and, by the lemma, IKh, is an ANR. Conversely, if X has the homotopy type of a second 

countable ANR Y, then the «E" figuring in the preceding argument is second countable, 

therefore the "U" has the homotopy type of a countable CW complex (d. §5, Proposition 

6) and the countable domination theorem can be applied.] 
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FINITE CW-ANR THEOREM Let X be a topological space-then X has the homo

topy type of a finite CW complex iff X has the homotopy type. of a compact ANR. 

[One direction is easy: If X has the homotopy type of a finite CW complex, then there 

exists a finite vertex scheme K such that X has the homotopy type of IKI = IKI. (cf. §5, 

Proposition 3), which, by the lemma, is an ANR. The converse, however, is difficult: Its 

proof depends on an application of a number of theorems from infinite dimensional topology 

(Westt ).] 

Application: The singular homology groups of a compact ANR are finitely generated 

and vanish beyond a certain point and the fundamental group of a compact connected 

ANR is finitely presented. 

According to the CW-ANR theorem, if Y is an ANR, then it and each of its open subsets has the 

homotopy type of a CW complex. On the other hand, it can be shown that every metrizable space with 

this property is an ANR (Cautyt). 

FACT Let Y be a nonempty metrizable space-then Y is an AR iff Y is a homotopically trivial 

ANR. 

[A connected CW complex is homotopically trivial iff it is contractible. Quote the CW-ANR theorem.] 

Let X and Y be topological spaces. Let 0 = {O} be an open covering of Y -then two continuous 

functions are said to be O-contiguous if V z E X 3 0 EO: {I( z), g( z)} CO. 
{

/:X_Y 

g:X-Y 

LEMMA Suppose that Y is an ANR-then there exists an open covering 0 = {O} ofY such that 

{
I E O(X,Y) 

for any topological space X: O-contiguous:;;> 1 ~ g. 
g E O(X,Y) 

[Choose a normed linear space E containing Y as a closed subspace. Fix a neighborhood U of Y in 

E and a retraction r : U - Y. Let C = {C} be a covering of U by convex open sets. Put 0 = en Y. 

Take two O-contiguous functions 1 and g. Define h : IX - E by h(z, t) = (1 - t)/(z) + tg(z)-then 

h(IX) C U, so H = r 0 h is a homotopy IX - Y between 1 and g.] 

Let X be a topological space, U = {U} an open covering of X. Let K = (V, E) be a vertex scheme

then a function 1 : IK(O)I- X is said to be confined by U if V fT E E 3 U E U : l(lfTl n IK(O)I) C u. 

t Ann. 01 Math. 106 (1977), 1-18. 

Fund. Math. 144 (1994), 11-22. 
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LEMMA Suppose that Y is an ANR. Let 0 = {O} be an open covering of Y -then there exists 

an open refinement 'P = {P} of 0 such that for every vertex scheme K = (V, E) and every function 

/ : IK(O) I - Y confined by 'P there exists a continuous function F : IKI - Y such that FI IK(O) I = / and 

V tT E E, V P E 'P: /(ltTl n IK(O) I) C P =? 3 0 EO: F(ltTl) UP C O. 

[Choose a normed linear space E containing Y as a closed subspace. Fix a neighborhood U of Y in 

E and a retraction r : U - Y. Let C = {C} be a refinement of r- I (0) consisting of convex open sets. Put 

'P = C nY-then 'P is an open refinement of 0 which we claim has the properties in question. Thus let 

K = (V, E) be a vertex scheme. Take a function / : IK(O) I - Y confined by 'P. Given tT E E, write CfT for 

the convex hull of /(ltTl n IK(O) I), itself a subset of some element C E C. Construct by induction continuous 

functions ~n : IK(n)l_ U subject to: ~o = /,~n+IIIK(n)1 = ~n, and V tT E E,~n(ltTl n IK(n)1) C CfT' 

Here the point is that if ~n has been constructed and if tT is an (n + I)-simplex, then ItTl - (tT) C IK(n)l, 

therefore the restriction of ~n to ItTl - (tT) can be continuously extended to ItTl, CfT being an AR. This 

done, define ~ : IKI- U by ~IIK(n)1 = ~n. Since each ~n is continuous, 80 is ~. Consider F = r 0 ~.] 

These lemmas can be used to prove that if Y is an ANR of topological dimension $ n, then Y is 

dominated in homotopy by IKI, where K is a vertex scheme: dimK $ n, a result not directly implied 

by the CW-ANR theorem. In succession, let 0 be an open covering of Y per the first lemma, let 'P be 

an open refinement of 0 per the second lemma, and let Q be a neighborhood finite star refinement of 'P 

(d. §1, Proposition 13)-then Q has a precise open refinement V of order $ n + 1 (d. §19, Proposition 

6). Obviously, dimN(V) $ n, N(V) the nerve of V. Fix a point YV in each V E N(V)(O). Define 

/: IN(V)(O)I- Y by /(xv) = ltv. Claim: / is confined by 'P. For suppose that tT = {Vt, ... ,VA:} is 

a simplex of N(V). Since VI n ... n VA: 'f:. " and since V is a star refinement of 'P, there exists P E 'P : 

VI U ... U VA: C P =? /(ltTl n IN(V)(O) I) C P. Now take F : IN(V)I - Y as above and choose a V-map 

G : Y - IN(V)I (d. p. 5-3). One can check that FoG and idy are O-contiguous, hence homotopic. 

[Note: By analogous arguments, if Y is a compact (connected) ANR of topological dimension $ n, 

then Y is dominated in homotopy by IKI, where K is a vertex scheme: dim K $ n and IKI is compact 

( connected).] 

Application: Let Y be an ANR of topological dimension $ n-then the singular· homology groups of 

Y vanish in all dimensions> n. 

EXAMPLE Suppose that Y is a compact connected ANR: dim Y = 1 & "'I (Y) 'f:. I-then "'I (Y) 

is finitely generated and free. Consequently, Y has the homotopy type of a finite wedge of I-spheres. 

There are two variants of the CW-ANR theorem. 

(Paired Version) A CW pair is a pair (X, A), where X is a CW complex and 

A C X is a subcomplex; an ANR pair is a pair (Y, B), where Y is an ANR and BeY is 
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closed and an ANR. Working then in the category of pairs of topological spaces, the result 

is that an arbitrary object in this category has the homotopy type of a CW pair iff it has 

the homotopy type of an ANR pair. 

(Pointed Version) A pointed CW complex is a pair (X,X'o), where X is a CW 

complex and X'o E X<O); a pointed ANR is a pair (Y, Yo), where Y is an ANR and Yo E Y. 
Working then in the category of pointed topological spaces, the result is that an arbitrary 

object in this category has the homotopy type of a pointed CW complex iff it has the 
homotopy type of a pointed ANR. 

[Note: There is also a CW-ANR theorem for the category of pointed pairs of topolog

ical spaces.] 

In HTOP2, the relevant reduction is that if (X, A) is a CW pair, then there exists a vertex scheme 

K and a subscheme L such that (X,A) ~ (IKI, ILl), while in HTOP., the relevant reduction is that if 

(X, :'£0) is a pointed CW complex, then there exists a vertex scheme K and a vertex Vo E V such that 

(X,:.£o) ~ (IKI, Ivol) (d. p.5-12). 

Convention: The function spaces encountered below carry the compact open topology. 

LEMMA Let X, Y, and Z be topological spaces. 

(i) Let f E C(X, Y)-then the homotopy class of the precomposition arrow 

f* : C(Y, Z) -+ C(X, Z) depends only on the homotopy class of f. 
(ii) Let 9 E C(Y, Z)-then the homotopy class of the post composition arrow 

g* : C(X, Y) -+ C(X, Z) depends only on the homotopy class of g. 

Application: The homotopy type of C(X, Y) depends only on the homotopy types of 

X and Y. 

[Note: By the same token, in TOP2 the homotopy type of (C(X, Aj Y,B), C(X,B)) 

depends only on the homotopy types of (X, A) and (Y, B), whereas in TOP * the homotopy 

type of C(X, X'o; Y, Yo) depends only on the homotopy types of (X, X'o) and (Y, yo).] 

PROPOSITION 6 Let K be a nonempty compact metrizable space; let Y be a metriz

able space-then C(K, Y) is an ANR iff Y is an ANR. 

[Necessity: Assuming that Y is nonempty, embed Y in C(K, Y) via the assignment 

y -+ j(y), where j(y) is the constant map K -+ y. Fix a point ko E K and denote by 

eo : C(K, Y) -+ Y the evaluation tP -+ tP(ko). Because j 0 eo is a retraction of C(K, Y) 

onto j(Y), it follows that if C(K, Y) is an ANR, then so is Y. 
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Sufficiency: Let (X, A) be a pair, where X is metrizable and A C X is closed. Let 

f: A -+ C(K, Y) be a continuous function. Define a continuous function q, : A x K -+ Y 
by setting q,( a, k) = f( a)( k). Since Y is an ANR, there is a neighborhood 0 of Ax K in 

X x K and a continuous function ~ : 0 -+ Y with ~IA x K = q,. Fix a neighborhood 

U of A in X : U x K C O. Define a continuous function F : U -+ C(K, Y) by setting 

F(u)(k) = ~(u, k). Obviously, FIA = f, thus C(K, Y) is an ANR (cf. Proposition 5).] 

Keeping to the above notation, the compactness of K implies that 1ro(C(K, Y)) -

[K, Y]. Assume in addition that Y is separable-then C(K, Y) is separable. But C(K, Y) 

is also an ANR, hence its path components are open. Conclusion: #[K, Y] ~ w. 

Here is another corollary. Suppose that X is a finite CW space-then, on the basis of 

the CW-ANR theorem, for any CW space Y, C(X, Y) has the homotopy type of an ANR, 

hence is again a CW space. 

[Note: Some assumption on X is necessary. Example: Give {O, I} the discrete topology 

and consider {O, I}"'.] 

EXAMPLE Let X be a topological space-then the free loop space AX of X is defined by the 

AX --+ PX 

pullback square 1 1 n ,where n is the Burewicz fibration (1' -- «(1'(0), (1'(1» and X -- X x X 

X --+ XxX 
is the diagonal embedding. The arrow AX -- X is a Burewicz fibration and its fiber over a:o is O(X, a:o), 

so if X is path connected, then the homotopy type of O(X,a:o) is independent of the choice of a:o. Since 

AX can be identified with O(SI, X) (compact open topology), the free loop space of X is a CW space 

when X is a CW space. 

woo --+ PX2j 

[Note: Given a topological group a, define WOO by the pullback square 1 ln 
xoo x a ---+ xoo x XOO 

G • G G 

where ~(a:, g) = (II:, II: . g)-then WOO j a can be identified with AB2j and there is a weak homotopy equiv-

alence AB2j -- (X2j x a)ja (the action of a on itself being by conjugation).] 

EXAMPLE Suppose that X and Y are path connected CW spaces for which there exists an n 

such that (i) X has the homotopy type of a locally finite CW complex with a finite n-skeleton and (ii) 

1rq(Y) = 0 (V q > n)-then O(X, Y) is a CW space. 

[Take X to be a locally finite CW complex with a finite n-skeleton X(A). One can assume that n is 

> 0 because when n = 0, Y is contractible and the result is trivial. Consider the inclusion i : X(A) -- X

then the precomp08ition arrow i· : O(X, Y) -- O(X(A) , Y) is a Burewicz fibration (d. §4, Proposition 6) 
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and, in view ofthe assumption on Y, its fibers are either empty or contractible. But c(x{n) , Y) is a CW 

space, thus so is C(X, Y) (d. Proposition 11).] 

PROPOSITION T Let K be a nonempty compact metrizable space, L C K a 

nonempty closed subspace; let Y be a metrizable space, Z C Y a closed subspace. Suppose 

that Y is an ANR-then C(K, Lj Y, Z) is an ANR iff Z is an ANR. 

[Assuming that Z is nonempty, one may proceed 88 in the proof of Proposition 6 

and show that Z is homeomorphic to a retract of C(K, L; Y, Z), from which the necessity. 

Consider now a pair (X, A), where X is metrizable and A C X is closed. Let I : A -+ 

C( K, L; Y, Z) be a continuous function. Define a continuous function 4> : A x L -+ Z by 

setting 4>( a, i) = I( a)( i). Since Z is an ANR, there is a neighborhood 0 of Ax L in X x L 
and a continuous function. : 0 -+ Z with 91A x L = 4>. Fix a neighborhood U of A 

in X : U x LeO. Define a: continuous function t/J : A x K U U x L -+ Y by setting 

{ ~~:: ~j ~~ ::~~). Since Y is an ANR, there is a neighborhood P of Ax K U U x L in 

X x K and a continuous functionw : P -+ Y with wlA x KUU x L = t/J. Fix a neighborhood 

V of A in X: V x K c P & V c U. Define a continuous function F: V -+ C(K,LjY,Z) 

by setting F(v)(k) = w(v,k). Obviously, FIA = I, thus C(K,LjY,Z) is an ANR (d. 

Proposition 5).] 

Take, e.g., (K,L) = (8",a,,) (a" = (1,0, ... ,0) E R,,+1,n > 1) and let Yo E Y

then 1t'n(Y,YO) = 1t'o(c(sn, anj Y,yo». Accordingly, if Y is separable, then 1t'n(Y,YO) is 

countable. Example: The homotopy groups of a countable connected CW complex are 

countable. 

LOOP SPACE THEOREM Let (X,xo) be a pointed CW space-then the loop space 

n(X,xo) is a pointed CW space. 

[Fix a pointed ANR (Y, Yo) with the pointed homotopy type of (X, xo) (d. p. 6-

22)-then n(Y, Yo) = C(81
, 81; Y, yo) is a pointed ANR (d. Proposition 7), so n(X, xo) = 

C(81 ,81;X,XO) is a pointed CW space.] 

EXAMPLE Suppose that (X, :1:0) is path connected and numerably contractible. Assume: OX is 

a OW space-then X is a OW space. Thus let J : K - X be a pointed OW resolution. Owing to the 

loop space theorem, OK is a OW space. But the arrow OJ : OK - OX is a weak homotopy equivalence 

and since OX is a OW space, it follows from the realization theorem that OJ is a homotopy equivalence. 

Therefore J is a homotopy equivalence (cf. p.4-27). 

[Note: Let X be the Warsaw circle-then X is not a OW space. On the other hand, there exists a 

continuous bijection; : [0,1[- X which is a regular Hurewicz fibration. As this implies that; is a pointed 
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Hurewicz fibration (cf. p. 4-14), OX has the same pointed homotopy type as 0[0, 1[ (cf. p. 4-35), hence 

is a CW space, 80 X is not numerably contractible.] 

EXAMPLE (Classifying Spaces) Let G be a topological group-then B~ is path connected and 

numerably contractible (inspect the Milnor construction). Moreover, according to §4, Proposition 36, G 

and OB~ have the same homotopy type. Taking into account the preceding example, it follows that if 

G is a CW space, then the same is true of B~. Corollary: Any classifying space for G is a CW space 

provided that G itself is a OW space. 

LEMMA Let X -L. z I!- Y be a 2-sink. Assume: X, Y, and Z are ANRs-then W"g 

is an ANR. 

PROPOSITION 8 Let X -L. Z !- Y be a 2-sink. Assume: X, Y, and Z are CW 

spaces-then W"g is a CW space. 
. { X' . { ¢> : X' -+ X { f' = f 0 ¢> 

[FIX ANRs Y" homotopy eqrnvalences 'I/J: Y' -+ Y , and put g' = 9 0 'I/J -then 

X' 
there is a commutative diagram ~ ! 

X 

I' 
---+ Z 

II 

g' 
+-- Y' 

---+ Z +--
I 9 

! t/J, thus the arrow W" ,g' -+ W"g is 
Y 

a homotopy equivalence (d. p.4-25). Choose a homotopy equivalence ( : Z -+ Z', where 

Z' is an ANR. There is an arrow WI' ,g' -+ W,o/'"og' and it too is a homotopy equivalence. 

But from the lemma, W,o/'"og' is an ANR.] 

For a case in point, let X and Y be CW spaces-then 'V f E C(X,Y), W, is a CW 

space, and 'V f E C(X, Xo; Y, yo), E, is a CW space. 

FACT Let p : X -+ B be a regular Hurewicz fibration. Assume: 360 E B such that 0(8,60) and 

Xbo are CW spaces-then V:l:O E X.o• O(X,:l:o) is .. CW space. 

[By regularity, there is a lifting function Ao : W, -+ PX with the property that AO(:I:, T) E j(X) 

whenever T E j(8). Define I: 0(8,60 ) -+ Xbo by I(T) = AO(:l:o,T)(I), 80 1(;(60» = :1:0. The mapping 

fiber EJ of 1 has the same homotopy type as O(X, :1:0).] 

PROPOSITION 9 Suppose that p : X -+ B is a Burewicz fibration and let ~' E 

C(B', B). Assume: X,B, and B' are CW spaces-then X' = B' XB X is a CW space. 

[In view of the preceding proposition, this follows from §4, Proposition 18.] 

Application: Let p : X -+ B be a Burewicz fibration, where X and B are CW 

spaces-then 'V b E B, Xb is a CW space. 
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[Note: Let X be a CW space. Relative to a base point, work first with PX ~X to 

see that ex is a CW space and then consider ex .4 x to see that nx is a CW space, 

thereby obtaining an unpointed variant of the loop space theorem.] 

PROPOSITION 10 Suppose that p : X -+ B is a Hurewicz fibration and let 0 c B. 

Assume: X is an ANR, B is metrizable, and the inclusion 0 -+ B is a closed cofibration

then Xo is an ANR. 

[The inclusion Xo -+ X is a closed cofibration (cf. §4, Proposition 11), a condition 

which is characteristic (cf. p.6-14).] 

Application: Let p : X -+ B be a Hurewicz fibration, where X and B are ANRs-then 

V b E B, X6 is an ANR. 

[Given bE B, the inclusion {b} -+ B is a closed cofibration (cf. p.6-14).] 

EXAMPLE Let (Y, B, bo) be a pointed pair. Assume: Y and B are ANRa, with BeY closed. 

Let 9(Y, B) be the subspace of 9Y consisting of those r such that r(l) E B-then 9(Y, B) is an ANR. 

9(Y, B) --+ 9Y 

In fact, 9Y is an ANR and there is a pullback square 1 
B --+ Y 

EXAMPLE Take Y = sn X sn x··· (w factors), Yo = (Bn,Bn, ... )-then Y is not an ANR. 

Nevertheless, for every pair (X, A), where X is metrizable and A C X is closed, A has the HEP w.r.t. Y 

(d. p. 6-41). Therefore 9Y is an AR. Still, flY is not an ANR. Indeed, none of the fibers of the Hurewicz 

fibration PI : 9Y -+ Y is an ANR. 

PROPOSITION 11 Suppose that p : X -+ B is a Hurewicz fibration. Assume: B is 

a CW space and Vb E B,X6 is a CW space-then X is a CW space. 

[Fix a CW resolution I: K -+ X. Consider the Hurewicz fibration q : WI -+ X(I = 

q 0 s). Since s :K -+ WI is a homotopy equivalence, WI is a CW space. Moreover, q is 

a weak homotopy equivalence and the composite p 0 q : WI -+ B is a Hurewicz fibration. 

The fibers (p 0 q)-l(b) = q-l(X6) are therefore CW spaces. Comparison of the homotopy 

sequences of p 0 q and p shows that the arrow q6 : q-l(X6) -+ X6 is a weak homotopy 

equivalence, hence a homotopy equivalence. Because B is numerably contractible (being 

a CW space), one can then apply §4, Proposition 20 to conclude that q : WI -+ X is a 

homotopy equivalence.] 

[Note: H p : X -+ B is a Hurewicz fibration and if X and the X6 are CW spaces, then 

it need not be true that B is a CW space (consider the Warsaw circle).] 
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Let p : X - B be a Hurewicz fibration, where X is metrizable and B and the Xo are ANRs. Question: 

Is X an ANR? While the answer is unknown in general, the following lemma implies that the answer is 

"yes" provided that the topological dimension of X is finite (d. p. 6-15). Infinite dimensional results can 

be found in Ferry t . 

LEMMA Suppose that p: X - B is a Hurewicz fibration. Assume: B is an ANR and V 6 E B, 

X6 is locally contractible-then X is locally contractible. 

[Fix Zo E X, put 60 = p(zo), and let U be any neighborhood of zoo Since p has the slicing structure 

property (d. p. 4-14), it is an open map. Accordingly, one can assume at the outset that there is a 

continuous function • : p(U) - PB such that &: .(6o)(t) = 60 (0 ~ t ~ 1). Using the local { 
.(6)(0) = 6 

. .(6)(1) = 60 
contractibility of X60 ' choose a neighborhood 00 C unXr.o of Zo in X60 and a homotopy 4> : 100 - unXoo 

{ 
4>(z,O) = z 

satisfying (uo E Un Xr.o)' Fix a neighborhood Uo of Zo : Uo C U and 00 = Uo n X'o' Let 
4>(z,l) = Uo 

Ao : WI' - PX be a lifting function with the property that Ao(:, '1') E j(X) whenever '1' E j(B). Define 

FE C(U,PX) by F(z) = Ao(z, .(p(z»). Because F(zo) = j(zo) E {o" E PX : 0"([0,1]) C Uo}, there is 

a neighborhood V C Uo of:o such that V : E V, F(z)(t) E Uo (0 ~ t ~ 1). If now H : IV - U is the 

{ 
F(z)(2t) (0 < t < 1/2) { B(z,O) = z 

homotopy H(z, t) = - - , then , i.e., the inclusion V - U 
4>(F(z)(I),2t - 1) (1/2 ~ t ~ 1) B(z,l) = Uo 

is inessential.] 

Let Y be a metrizable space. Suppose that Y admits a covering V by pairwise disjoint 

open sets V, each of which is an ANR-then Y is an ANR. To see this, assume that Y 

is realized as a closed subspace of a metrizable space Z. Fix a compatible metric d on Z. 

Given a nonempty V E V, put Ov = {z : d(z, V) < d(z, Y - V)}-then Ov is open in Z 

and Ov n Y = V. Moreover, the Ov are pairwise disjoint. By hypothesis, there exists an 

open subset Uv of Ov containing V and a retraction rv : Uv -+ V. Form U = U Uv, a 
v 

neighborhood of Yin Z, and define a retraction r : U -+ Y by rlUv = rv. 

What is less apparent is that the same assertion is still true if the V are not pairwise 

disjoint. 

LEMMA Let Y be a metrizable space. Suppose that Y = Yi u 1'2, where Yi and 1'2 
are open and ANRs-then Y is an ANR. 

[This is proved in a more general context on p. 6-43 (cf. NES3 ).] 

PROPOSITION 12 Let Y be a metrizable space. Suppose that Y admits a covering 

V by open sets V, each of which is an ANR-then Y is an ANR. 

t Pacific J. Math. 15 (1978), 373-382. 
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[Use the domino principle (cf. p. 1-24).] 

Application: Every metrizable topological manifold is an ANR, hence by the CW

ANR theorem has the homotopy type of a CW complex. 

In particular, every compact topological manifold is an ANR, hence by the finite CW

ANR theorem has the homotopy type of a finite CW complex. H X and Y are finite CW 

complexes, then # [X, Y] :r:;; w (cf. p. 6-23). Specializing to the attaching process (and 

recalling that the inclusion sn-t --+ D n is a closed cofibration), it follows that the set of 

homotopy types of compact topological manifolds is countable. 

[Note: One can even prove that the set of homeomorphism types of compact topolog

ical manifolds is countable (Cheeger-Kistert ).] 

The use of the term "set" in the above is justified by remarking that the full subcategory of TOP 

whose objects are the compact topological manifolds has a small skeleton. 

EXAMPLE Let p : X -+ B be a covering projection. Suppose that X is metrizable and B is an 

ANR-then X is an ANR. 

[Note: The assumption that X is metrizable is superfluous.] 

EXAMPLE Let p : X -+ B be a Hurewicz fibration. Assume: X is an ANR and B is a path 

connected, numerably contractible, paracompact Hausdorff space--then B is an ANR. For let 0 be an 

open subset of B with the property that the inclusion 0 -+ B is inessential, say homotopic to 0 -+ b. 

Since Xo is fiber homotopy equivalent to 0 x X" (d. p. 4-24), seco(Xo) is nonempty (d. §4, Proposition 

1), so 0 is homeomorphic to a retract of Xo, an ANR. Therefore B is locally an ANR, hence an ANR 

(recall that locally metrizable + paracompact =* metrizablej d. p. 1-19). 

EXAMPLE Let X be an aspherical compact topological manifold. Assume: X(X) '# o-then the 

path component of the identity in C(X, X) is contractible. 

[Since C(X, X) is an ANR (d. Proposition 6), the path component of the identity in C(X, X) is a 

K(Cen 1r, 1) (d. p. 5--30 ff.), where 1r = 1rt (X). On the other hand, the assumption X(X) '# 0 implies that 

Cen 1r is trivial.] 

Let X and Y be metrizable spaces. Let A be a closed subspace of X and let f : A -+ Y be a 

continuous function-then Borgest has shown that X U I Y is metrizable iff every point of X U I Y belongs 

t Topology 9 (1970), 149-151. 

t Proc. Amer. Math. Soc. 24 (1970), 446-451. 
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to a compact subset of countable character, i.e., having a countable neighborhood basis in X. In particular, 

this condition is satisfied if X U J Y is first countable or if A is compact. 

[Note: In any event, X UJ Y is a perfectly normal paracompact Hausdorff space (ADs (c!. p. 3-1».] 

LEMMA Let B be a closed subspace of a metrizable space Y such that the inclusion B --. Y is a 

cofibration. Suppose that B and Y - B are ANRs-then Y is an ANR. 

[Fix a Strfllm structure (tP, 'If) on (Y,B) and put V = ",-1([O,lD. Show that V is an ANR.] 

FACT Let X and Y be ANRs. Let A be a closed subspace of X and let f : A - Y be a continuous 

function. Suppose that A is an ANR-then XU J Y is an ANR provided that it is metrizable. 

LEMMA Let B be a closed subspace of a metrizable space Y lJuch that the inclusion B - Y is a 

cofibration. Suppose that B is an AR and Y - B is an ANR-then Y is an AR if B is a strong deformation 

retract of Y. 

[It follows from the previous lemma that Y is an ANR. But Y and B have the same homotopy type 

and B is contractible.] 

FACT Let X and Y be ARs. Let A be a closed lJubapace of X and let f : A --. Y be a continuous 

function. Suppose that A is an AR-then X UJ Y is an AR provided that it is metrizable. 

EXAMPLE Take X = [0, If', A = [1/4,3/4] X {1/2}, Y = [0,1]3 and let f : A --. Y be a continuous . 

surjective map-then X UJ Y is a compact AR of topological dimension 3, yet it is not homeomorphic to 

any CW complex. 

Let (X, A) be a CW pair. Is it true that A has the EP w.r.t. any locally convex topological vector 

space? A priori, this is not clear since CW complexes are not metrizable in general. There is, however, a 

class of topologically significant spaces, encompassing both the class of metrizable spaces and the class of 

CW complexes for which a satisfactory extension theory exists. 

Let X be a Hausdorff space; let r be the topology on X-then X is said to be stratifiable if there 

exists a function STx : N x r - r, termed a stratification, such that (a) VUE r, STx(n, U) C Uj (b) 

VUE r, USTx(n, U) = Uj (c) V U, V E r: U C V ~ STx(n,U) C STx(n, V). A stratifiable space is 
n 

perfectly normal and every subspace of a stratifiable space is stratifiable. A finite or countable product of 

stratifiable spaces is stratifiable. A stratifiable space need not be compactly generated and a compactly 

generated space need not be stratifiable, even if it is regular and countable (Fogedt ). Example: Every 

t Proc. Amer. Math. Soc. 81 (1981), 337-338; see also Proc. A mer. Math. Soc. 92 (1984), 470-472. 
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metrizable space is stratifiable. Example: The Sorgenfrey line, the Niemytzki plane, and the Michael line 

are not stratifiable. 

[Note: Junnilat has shown that every topological space is the open image of a stratifiable space.] 

FACT Let X be a topological space; let A = {Aj : j E J} be an absolute closure preserving closed 

covering of X. Suppose that each Aj is stratifiable-then X is stratifiable. 

[X is necessarily a perfectly normal Hausdorff space (cf. p. 5-4). AB for stratifiability, consider the 

set 'P of all pairs (I, ST/), where I C J and STI is a stratification of XI = U Ai. Order'P by stipulating 
i 

that (I', ST I') :$ (I", ST I") iff I' C I" and for each open subset U of XI": 
=,.....-:;---::-::----c=--:-

ST/,,(n, U) n XI' = ST/,(n, Un XI') &. ST/,,(n, U) n XI' = ST/,(n, U nXI,). 

Every chain in 'P has an upper bound, 80 by Zorn, 'P has a maximal element (Io,ST/o)' Verify that 

Xlo = X.] 

Application: Every CW complex is stratifiable. 

[The collection of finite subcomplexes of a CW complex X is an absolute closure preserving closed 

covering of X.] 

Application: Let E be a vector space over R. Equip E with the finite topology-then E is stratifiable. 

[Fix a basis {ei : i E I} for E. Assign to each finite subset of I the span of the corresponding ei. The 

resulting collection of linear subspaces is an absolute closure preserving closed covering of E.] 

FACT Suppose that X and Y are stratifiable-then the coarse join X *c Y is stratifiable. 

Application: Let G be a stratifiable topological group-then V n,X~ is stratifiable. 

00 

LEMMA Let X = U Xn be· a topological space, where Xn C Xn+l and Xn is stratifiable and a 
o 

zero set in X, say Xn = tP;;l (0) (tPn E C(X, [0, 1]). Suppose that there is a retraction rn : tP;;l ([0, 1D - Xn 

such that V a: E Xn - Xn-l (X-l = I), the sets r;;l(U) n tP;;l([O, tD form a neighborhood basis of a: in X 

(U a neighborhood of a: in Xn and 0 < t :$ I)-then X is stratifiable. 

[The assumptions imply that X is Hausdorff. To construct STx, fix a stratification STxn of Xn : 

STxn (k, U) C STxn (k + 1, U). Given an open subset U of X, denote by U(n, k) the interior of 

{a: E Xn : r;l(a:) n tP;l([O,l/(k + 1)0 C U} 
in Xn and for N = 1,2, ... , put 

STx(N, U) = U r;l(STXn (N, U(n, k))) n tP;l([O,l/(k + 2)0.] 

n,1c'5,N 

t Colloq. Math. Soc. Uno, Bol,ai 23 (1980), 689-703; see also Harris, Pacific J. Math. 91 (1980), 

95-104. 
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EXAMPLE (Classifying Spaces) Let G be a stratifiable topological group-then XG' and BG' 
are stratifiable. 

[Since the X~ are stratifiable, the lemma can be used to establish the stratifiability of XG'. As for 

BG' , in the notation of the Milnor construction, XG'IOi is homeomorphic to Oi X G, thus Oi is stratifiable 

and so BG' admits a neighborhood finite closed covering by stratifiable subspaces, hence is stratifiable.] 

FACT Let X and Y be stratifiable. Let A be a closed subspace of X and let / : A -+ Y be a 

continuous function-then X U I Y is stratifiable. 

Application: Suppose that (X, A) is a relative CW complex. AMume: A is stratifiable-then X is 

stratifiable. 

Let X be a topological space; let S and T be collections of subsets of X-then S is said to be cushioned 

in T if there exists a function r : S -+ T such that V So C S : u{S : S e So} c u{r(S) : S e So}. For 

example, if S is closure preserving, then S is cushioned in S. A collection S which is the union of a 

countable number of subcollection Sn, each of which is cushioned in T, is said to be IT-cushioned in T. 

Michaelt has shown that a CRH space X is paracompact iff every open covering of X has a IT

cushioned open refinement (c!. p. 1-3). This result can be used to prove that stratifiable spaces are para

compact. For suppose that U = {U} is an open covering of X. Put U'" = {STx(n, U) : U E U}. Let Uo C 

U-thenVU e Uo, STx(n,U) C STx(n,UUo) C STx(n,UUo) C LJUo,fromwhichU{STx(n,U): U E Uo} 

C UUo, thus Un is cushioned in U and so U has a IT-cushioned open refinement. Therefore X is paracom

pact. Example: A nonmetrizable Moore space is not stratifiable (Bing (cf. p. 1-18». 

[Note: Another way to argue is to show that every stratifiable space is collectionwise normal and 

subparacompact (cf. §1, Proposition 10 and the ensuing remark).] 

Let X be a CRH space-then X is said to satisfy Arhangel'skii's condition if there exists a sequence 

{Un} of collections of open subsets of {3X such that each Un covers X and V :r: EX: nst(:r:,U,,) eX. 
n 

Example: Every topologically complete CRH space X satisfies Arhangel'skiI's condition. In fact X is a G 6 
00 

in {3X, thus X = nUn (Un open in {3X) and so we can take U" = {Un}. Example: Every Moore space 
1 

satisfies Arhangel'skii's condition. 

FACT Let X be a CRH space. Suppose that X satisfies Arhangel'skii's condition-then X is 

compactly generated. 

t Proc. Amer. Math. Soc. 10 (1959), 309-314. 
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Let X be a CRH space-then Kullmant has shown that X is Moore iff X is submetacompact, has 

a G6 diagonal, and satisfies Arhangel'skii's condition. Since a stratifiable space is paracompact and has a 

perfect square, it follows that every stratifiable space satisfying Arhangel 'skil's condition is metrizable (Bing 

(d. p. 1-18». Consequently, a nonmetrizable stratifiable space cannot be embedded in a topologically 

complete stratifiable space. Example: Every stratifiable LCH space is metrizable. 

A Hausdorff space X is said to satisfy Ceder's condition if X has a cr-closure preserving basis. Ex

ample: Suppose that X is metrizable--then X satisfies Ceder's condition. Reason: The Nagata-Smirnov 

metrization theorem says that a regular Hausdorff space X is metrizable iff X has a cr-neighborhood finite 

basis. On the other hand, every CW complex satisfies Ceder's condition (d. infra) and a CW complex is 

not in general metrizable. 

FACT Let X be a Hausdorff space. Suppose that X is the closed image of a metrizable space-then 

X sa.tisfies Ceder's condition. 

Any X that satisfies Ceder's condition is stratifiable. Proof: Let 0 = U On be a cr-closure preserving 
n 

basis for X, attach to each closed A eX: O(n, A) = X - U{O : 0 E On &; An 0 = 0} and then define 

STx : N x r - r by setting STx(n, U) = X - O(n,X - U). 

[Note: It is unknown whether the converse holds.] 

EXAMPLE (M complexes) A topological space is said to be an Mo space if it is metrizable and, 

recursively, a topological space is said to be an Mn± 1 space if it is homeomorphic to an adjunction Xu J Y, 

where X is an Mo space and Y is an Mn space. An Moo space is a topological space that is an Mn space 

for some n. 

A topological space X is said'to be an M complex if there exists a sequence of closed Moo subspaces 

Ai : - i J and the topology on X is the final topology determined by the inclusions Ai - X. 
{

X-UA' 

Ai C Ai+l 
Example: Every CW complex is an M complex. Since an M complex is the quotient of a metrizable space, 

an M complex is necessarily compactly generated. Therefore a subspace of an M complex is an M complex 

iff it is compactly generated. Every M complex satisfies Ceder's condition, hence is stratifiable. 

[Note: Not every CW complex is the closed image of a metrizable space.] 

DUGUNDJI EXTENSION THEOREM Let X be a stratifiable space; let A: be a closed 

{
C(A,E) 

subspace of X. Let E be a locally convex topological vector space. Equip with the compact 
C(X,E) 

t Proc. Amer. Math. Soc. 21 (1971), 154-160. 
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open topology-then there exists a linear embedding ext: C(A, E) -+ C(X, E) such that V I E C(A, E), 

ext(f)IA = I and the range of ext (f) is contained in the convex hull of the range of I. 

{ 
STx(n,X) = X 

[Normalize STx : &. STx(n, U) C STx(n + 1, U). Given z E U, let n(z, U) 
STx(I,X - {z}) = e 

be the smallest integer n : z E STx(n, U). Put U(z) = STx(n(z, U), U) - STx(n(z, U), X - {z}), a 

neighborhood of z. Plainly, U(z) n V(II) ¢ e &. n(z, U) ~ n(lI, V) ~ y E U. On the other hand, 

{ 
n(z,X) = 1 

~ {U : y E U(z)} ¢ e. Assuming that A is nonempty and proper, attach to each z E 
X(z) = X 

X - A: n(z) = max{n(a, 0)(0 E T) : a E A&: z E O(a)}-then n(z) < n(z, X - A). Since every subspace 

of X is stratifiable, X -A is, in particular, paracompact. Thus the open covering {(X -A)(z) : z E X -A} 

has a neighborhood finite open refinement {Ui : i E I}. Each Ui determines a point Zi E X - A : Ui C 

(X - A)(zd, from which a point ai E A and a neighborhood Oi of ai : Zi E Oi(ai) &. n(zi) = n(ai,Oi). 

Choose a partition of unity {lei: i E I} on X - A subordinate to {Ui : i E I}. Given I E C(A, E), let 

{

/(Z) (zEA) 

ext(f)(z) = ~ lei(z)/(ad (z EX - A). 

Referring back to the proof of the Dugundji extension theorem in the metrizable case and eschewing the 

obvious, it is apparent that there are two nontrivial claims. 

Claim 1: ext (f) is continuous at the points of A. 

[Let a E Aj let N be a convex neighborhood of I(a) in E. By the continuity of I, there exists a 

neighborhood 0 of a in X : I(A n 0) C N. Assertion: ext(f)(O(a)(a» C N. Case 1: z E An O(a)(a). 

Here, z E An 0 and ext(f)(z) = I(z) E N. Case 2: z E (X - A) n O(a)(a). Take any index i : lei(Z) ¢ 

O(~ z E Ui)-then e ¢ Ui nO(a)(a) C (X - A)(Zi)nO(a) ~ Zi E O(a) ~ n(a, 0) ~ n(zi) = n(ai,Oi) ~ 

ai E 0 ~ I(ad E N ~ ext(f)(z) EN.] 

Claim 2: ext E LEO (X, Aj E). 

[Define a function c{> : X -+ 2A by the rule , I ~ the set {i E {
c{>(a)={a} (aEA) 

c{>(z) = {ai : i E I~} (z E X - A) 
I : z E spt lei}. Given a nonempty compact subset K of X, put KA = U c{>(z). Assertion: KA is 

~EK 

compact. Since the c{>(z) are finite, hence compact, it will be enough to show that for every z E X and 

for every open subset V of A containing c{>(z) there exists an open subset U of X containing z such that 

uc{>(U) C V. Case 1: z E X-A. Here one need only remark that there exists a neighborhood U of z 

in X - A : y E U ~ c{>(y) C c{>(z). Case 2: a E A. Let 0 be an open subset of X: c{>(a) = {a} C o. If 

z E An O(a)(a), then c{>(z) = {z} C 0, while if z E (X - A) n O(a)(a), then arguing as in the first claim, 

ViE I~, ai EO. Conclusion: Uc{>(O(a)(a» CAn 0.]] 

[Note: Suppose that E is a normed linear space-then the image of extIBC(A, E) is contained in 

BC(X, E) and, per the uniform topology, ext: BC(A, E) -+ BC(X, E) is a linear isometric embedding: 

V I E BC(A, E), 11/11 = lIext(f)II·] 
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FACT Let A C X, where X is stratmable and A is closed-then A has the EP w.r.t. any locally 

convex topological space. 

Is it true that if K is a compact Hausdorff space and X is stratmable, then C(K, X) is stratifiable? 

The answer is "no" even if K = [0,1]. 

EXAMPLE Let X be the closed upper half plane in R2. Topologize X as follows: The basic 

neighborhoods of (~,y) (y > 0) are as usual but the basic neighborhoods of (~,O) are the "butterflies" 

N€(~) (E > 0), where N€(~) is the point (~, 0) together with all points in the open upper half plane having 

distance < E from (~,O) and lying beneath the union of the two rays emanating from (~,O) with slopes 

±E. Thus topologized, X is stratifiable (and aatisfies Ceder's condition). Moreover, X is first countable 

and separable. But X is not second countable, so X is not metrizable. Therefore X carries no CW 

structure (since for a CW complex, metrizability is equivalent to first countability). Claim: C([O, 1], X) is 

not stratifiable. To see this, assign to each r E R an element /r E C([O, 11, X) by putting /r(1/2) = (r,O) 

and then laying down [0,1] symmetrically around the circle of radius 1 centered at (r,I). The set {fr} 

is a closed discrete subspace of C([O, 1],X) of cardinality 2"'. Construct a closed separable subspace of 

C([O, 1], X) containing {fr} and finish by quoting Jones' lemma. 

[Note: X is compactly generated (being first countable). However, C([O, 1], X) is not compactly 

generated.] 

Cautyt has shown that if X is a CW complex, then for any compact Hausdorffspace K, C(K,X) is 

stratmable, hence is perfectly normal and paracompact. 

Let K be an infinite cardinal. A Hausdorff space X is said to be K-collectionwise normal 

if for every discrete collection {Ai: i E I} of closed subsets of X with #(1) :5 K there exists 

a pairwise disjoint collection {U, : i E I} of open subsets of X such that Vie I: Ai CUi. 
So: X is collectionwise normal iff X is K-collectionwise normal for every K. 

[Note: Recall that every paracompact Hausdorff space is collectionwise normal (cf. 

§1, Proposition 9).J 

EXAMPLE If X is normal, then X is "","collectionwise normal (d. p. 1-14) and conversely. 

Let K be an infinite cardinal; let I be a set: #( I) = K. Assuming that 0 ¢ I, let 

V = {OJ U I and put E = {{O}, {i}(i E In U {{O, i}(i E In-then K = (V, E) is a 

vertex scheme. Equipping I with the discrete topology, one may view IKI as the cone 

t Arch. Math. (Base.l) 21 (1976), 306-311i see also Guo, T"u.h6a 1. Math. 18 (1994), 505-517. 
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rIo Therefore IKI is contractible, hence 80 is IKI. (cf. §5, Proposition 1), the latter being 

by definition the star space S( K.) corresponding to K.. It is clear that S( K.) is completely 

metrizable of weight K.. The elements of S(K.) are equivalence classes [i, t] of pairs (i, t), 
where (i', t') ....., (i", t") iff t' = 0 = t" or i' = i" &: t' = t". There is a continuous map 

{ 
S(K.) -+ [0,1] d \J' I th' b ddin { [0,1] -+ S(K.) Th . 

1r~ : . [i, t] -+ t an v, E ere IS an em e g e,: t -+ [i, t] . e pOint 

ei(O) is independent of i and will be denoted by O~. 

PROPOSITION 13 Let X be a Hausdorff space-then X is K.-collectionwise normal 

iff every closed subspace A of X has the EP w.r.t. S(K.). 

[Necessity: Fix an I E C(A, S(K.» and let ~ : X -+ [0,1] be a continuous extension 

of 1r~ 0 I. Put Ai = I-I( {[i, t] : 0 < t < 1}) : {Ai: i E I} is a discrete collection of 

closed subsets of ~-I(]O, 1]). Since ~-I(]O, 1]) is an F(I', it too is K.-collectionwise normal, 

thus there exists a pairwise disjoint collection {U, : i E I} of open subsets of X such 

that ViE I : A, CUi. Define a continuous function g: A U (X - U Us) -+ [0,1] by the , 
{ 

glA = 1r~ 0 I 
conditions glX _ Y U. = 0 and extend it to a continuous function G : X -+ [0,1]. Set 

{ 

ei 0 G( oX ) (x E Uj) 
F(x) = O~ (x EX - yu,)-then F E C(X,S(K.» and FIA = I· 

Sufficiency: Let {Ai: i E I} be a discrete collection of closed subsets of X with #(1) = 

K.. Put A = UAi-then A is a closed subspace of X. Define I E C(A,S(K.» piecewise: 
i 

IIAi = [i,l]. Extend I to F E C(X,S(K.» and consider the collection {U. : i E I}, where 

U, = F-l( {[i, t] : 1/2 < t < 1}).] 

Applica.tion: The star space S( K.) is an AR. 

EXAMPLE Let" be an infinite cardinal-then there exists a ,,-collectionwise normal space X 

which is not ,,+ -collectionwise normal, ,,+ the cardinal successor of ". For this. fix a set 1+ of cardinality 

,,+ and equip 1+ with the discrete topology. There is an embedding 1+ - II S(,,). the terms of the 

product being indexed by the elements of 0(1+, S(,,». Let X be the result of retopologizing II S(,,) by 

isolating the points of II S(,,) -1+. 

Claim: X is ,,-collectionwise normal. 

[Let {Ai : i e I} be a discrete collection of closed subsets of X with #( 1) ~ ". Since X -1+ is discrete, 

there is no loss of generality in assuming that the Ai are contained in 1+. Define a continuous function 

f : U Ai - S(,,) by flA, = [i,l] and then, using Proposition 13, extend f to an element F e 0(1+, S(,,», , 
determining a projection PF : II S(,,) - S(,,) such that PFII+ = F. Consider the collection {U, : i e I}, 

where U, =p;l({[i,t]: 1/2 < t ~ I}).] 
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Claim: X is not IC+-collectionwise normal. 

[If X were IC+-collectionwise normal, then it would be possible to separate the points of 1+ by a 

collection of nonempty pairwise disjoint open subsets of X of cardinality IC+. Taking into account how 

X is manufactured from II S(IC), one arrives at a contradiction to an obvious corollary of the Bewitt

Pondiczery theorem.] 
co 

[Note: Give 1+ X {O} U U(X - 1+) X {lin} the topology induced by the product X X [O,I}-then 
1 

this space is perfectly normal and IC-collectionwise normal but is not IC+ -collectionwise normal. And: It is 

not a LCB space (d. p. 1-15).] 

KOWALSKY'S LEMMA Let It be an infinite cardinal.. Let Y be an AR of weight 

It-then every metrizable space X of weight < It can be embedded in yw. 

[Let U = UUn be a u-discrete basis for X : Un = {Un(i) : i E In}, where I = II In 
n n 

and #(1) < It. Write utln = U Amn , Amn closed in X. Fix distinct points 6, b which 
m 

do not belong to I. Since wt Y = It, there exists in Y a collection of nonempty pairwise 

disjoint open sets V; (j E I U { 6, b}). Choose a point Y j E V;. Given n, define a continuous 

function In : utln -+ Y by InIUn(i) = Yi (i E In) and extend In to a continuous function 

Fn : X -+ Y. Given mn, define a continuous function Imn : Amn U (X - utln) -+ Y 

b {
/mnlAmn = Yo d d $ • fun' t:"I X Y L y $ IX _ UU - an exten Jmn to a contlnuous ctlon .J:'mn: -+ . et 
Jmn n - Y6 

fJ mn : X -+ y2 be the diagonal of Fn and Fmn. Let fJ be the diagonal of the Wmn , so 

W : X -+ (y2 )101
2 = YW-then fJ is an embedding.] 

[Note: Suppose that Y is not compact-then every completely metrizable space X 

of weight :5 It can be embedded in yw as a closed subspace. For X, as a subspace of 

Y"", is a G6 (being completely metrizable), thus on elementary grounds is homeomorphic 

to a closed subspace of yw X R"": Take a compatible metric d on Y"", represent the 

complement Y"" - X as a countable union UBj of closed subsets Bj, let dj : Y"" -+ R 
j 

be the function Y -+ d(y, Bj), and consider the graph of the diagonal of the dj . Claim: 

::~:} ~m &y~: I~bed~~: 2: +~~. To an: d: :n:n: ~:~: B{U;; ;.~ 
T = U [2n + 1,2n + 2] g. 

-00 

b { 
11[2n, 2n + 1] = Yn E d {I . fun' { F : R -+ Y d I 

Y gl[2n + 1, 2n + 2] = Yn' xten 9 to a contmuous ctlOn G: R -+ Y an et 

H : R -+ y2 be the diagonal of F and G. If fJ : R -+ Y"" is any embedding, then the 

diagonal of fJ and H is a closed embedding R -+ Y"" X y2 = Y"".] 
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Application: Every metrizable space X of weight S ,., can be embedded in S(,.,)"'. 

Let ,., be an infinite cardinal. Let X be a topological space-then a subspace A C X 

is said to have the extension property with respect to B(,.,) (EP w.r.t. B(,.,» if it has the 

EP w.r.t. every Banach space of weight < ,.,. Since every completely metrizable AR can 

be realized as a closed subspace of a Banach space (d. p. 6-12), it is clear that A has the 

EP w.r.t. B(,.,) iff it has the EP w.r.t. every completely metrizable AR of weight < ,.,. 

PROPOSITION 14 Fix a pair (X, A). Suppose that for some noncompact AR Y of 

weight "', A has the EP w.r.t. Y-then A has the EP w.r.t. B(,.,). 
[:Let E be a Banach space of weight <,.,. Owing to Kowalsky's lemma, E can be 

realized as a closed subspace of Y"'. Let f E C( A, E). By hypothesis, f has a continuous 

extension F E C(X, Y"'). Consider r 0 F, where r : Y'" ..... E is a retraction.] 

One conclusion that can be drawn from this is that A has the EP w.r.t. R iff A 
has the EP w.r.t B(w). So: H X is a Hausdorff space, then X is normal iff every closed 

subspace A of X has the EP w.r. t. every separable Banach space. 

Another conclusion is that A has the EP w.r.t. S(It) iff A has the EP w.r.t. B(,.,). 

Consequently, if X is a Hausdorff space, then X is ,.,-collectionwise normal iff every closed 

subspace A of X has the EP with respect to B(It) (d. Proposition 13). Corollary: A 

Hausdorff space X is collectionwise normal iff every closed subspace A of X has the EP 

w.r.t. every Banach space. 

FACT Let A C X-then A has the EP w.r.t. R ilf IA C IX has the EP w.r.t. [0,1]. 

Let X be a topological space. Let {Un} be a sequence of open coverings of X-then 

{Un} is said to be a star sequence if Y n, Un+l is a star refinement of Un. By means 

of a standard construction from metrization theory, one can associate with a given star 
00 

sequence {Un} a continuous pseudometric 6 on X such that 6(x, y) = 0 iff y E nst(x,Un), 
1 

a subset U C X being open in the topology generated by 6 iffY x E U 3 n: st(x,Un ) CU. 

Let X6 be the metric space obtained from X by identifying points at zero distance from 

one another and write p: X ..... X6 for the projection. 

PROPOSITION 16 Let A C X-then A has the EP w.r.t. B(It) iff for every numerable 

open covering 0 of A of cardinality S It there exists a numerable open covering U of X of 

cardinality S It such that UnA is a refinement of O. 
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[Necessity: Let 0 = {Oi : i E I} be a numerable open covering of A with #(1) :5 It. 

Choose a partition of unity {lti : i E I} on A subordinate to O. Form the Banach space 

RI(I) : r = (ri) E RI(I) iff IIrll = E Inl < 00. The assignment {A -+(RI((I») defines a 
i a -+ Iti a 

continuous function I whose range is contained in S+ = {r : IIrll = 1} n {r : Vi, ri 2:: O}, a 

closed convex subset of RI(I). Therefore I has a continuous extension F : X -+ S+. Let Pi 

be the projection {RI(I) -+ R; let U'i = Pi of-then dilA = Iti and E U'i(X) = 1 (V x EX). 
r -+ ri i 

Put Ui = uil(]O, 1]) and apply NU (cf. p. 1-23) to see that the collection U = {Ui : i E I} 

is a numerable open covering of X of cardinality < It. And by construction, UnA is a 

refinement of O. 

Sufficiency: Let E be a Banach space of weight :5 It. Fix a dense subset Eo in E 

of cardinality :5 It and let En be the open covering of E consisting of the open balls of 

radius 1/3n centered at the points of Eo. Suppose that I : A -+ E is continuous-then 

V n,I-I(En ) is a numerable open covering of A of cardinality :5 It, so there exists a star 

sequence {Un} of open coverings of X of cardinality :5 It such that V n, Un n A is a 

refinement of I-I (En). Viewed as a map from A endowed with the topology induced by 

the pseudometric 6 associated with {Un}, I is continuous, thus passes to the quotient to 

give a continuous function h : A6 -+ $, where A6 = peA). Because h is actually uniformly 

continuous, there exists a continuous extension 16 : A6 -+ E of h to the closure A6 of A6 

in X6. Choose F6 E C(X6, E) : F61A6 = 16 and consider F = F6 0 p.] 

Examples: Let X be a CRH space-then V It (1) Every compact subspace of X has 

the EP w.r.t. B(It); (2) Every pseudo compact subspace of X which has the EP w.r.t. [0,1] 

has the EP w.r.t. B(It); (3) Every Lindelof subspace of X which has the EP w.r.t. R has 

the EP w.r.t. B(It). 

Suppose that X is collectionwise normal. Let A be a closed subspace of X; let 

o = {Oi : i E I} be a neighborhood finite open covering of A-then Proposition 15 im

plies that there exists a neighborhood finite open covering U = {Ui : i E I} of X such 

that ViE I, Ui n A c Oi. Question: Is it possible to arrange matters so that ViE I, 

Ui n A = Oi? The answer is "no" since Rudin's Dowker space fails to admit this im

provement (Przymusinski-Waget ) but "yes" if X is in addition count ably paracompact 

(Katetovt ). 

t Fund. Math. 109 (1980), 175-187. 

t Colloq. Math. 6 (1958), 145-151. 
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Let (X,6) be a p&eudometric space; let A be a closed subspace of X-then A has the EP w.r.t. 

every AR Y. Proof: Let X fj be the metric space obtained from X by identifying points at zero distance 

from one another, write p for the projection X - Xfj, and put Afj = p(A), a closed subspace of Xfj. 

Each 1 E C(A, Y) passes to the quotient to give an h E C(A6, Y) for which there exists an extension 

Ffj E C(X6, Y). Consider F = Ffj 0 p. 

The weight of a p&eudometric is the weight of its associated topology. 

LEMMA LetA C X-then A has the EP w.r.t. B(IC) iff' every continuous p&eudometric on A of 

weight ~ IC can be extended to a continuous p&eudometric on X. 

[Necessity: Let 6 be a continuous p&eudometric on A of weight ~ IC. Let A6 be the metric space 

obtained from A by identifying points at zero distance from one another. Embed Afj isometrically into a 

Banach space E of weight ~ IC-then the projection A - Afj C E has a continuous extension. : X - E 

{

XXX_R 
and the assignment 4: 1 II) 1 II is a continuous extension of 6. 

(z,z -1I.(z) -.(z )11 
Sufficiency: Let E be a Banach space of weight ~ lCi let 1 E C(A, E). Define a p&eudometric 6 on A 

by 6(a', all) = II/(a/ ) -/(a")II-then 6 is continuous of weight ~ IC, hence admits a continuous extension 

4. Call X(4) the set X equipped with the topology determined by 4. Let A(4) be the closure of A in 

X(4). Extend 1 continuously to a function 1(4) : A(4) - E and note that A(4) C X(4) has the EP 

w.r.t. E.] 

FACT Let A be a zero set in X. Suppose that A has the EP w.r.t. B(IC)-then A has the EP w.r.t. 

every AR Y of weight ~ IC. 

[Choose a ~ E C(X, [0, 1]) : A = ~-1(0). Fix a compatible metric d on Y. Given 1 E C(A, Y), define 

a p&eudometric 6 on A by 6(a/ , all) = d(f(a'),/(all ». Let 4 be a continuous extension of 6 to X and 

consider the sum of 4(Z/, Zll) and 1~(Z/) - ~(z")I.] 

Let X be a CRB space. Suppose that X is perfectly normal and collectionwise normal-then it 

follows that every closed subspace A of X has the EP w.r.t. every AR. 

FACT Let X be a submetrizable CRB space. Suppose that A C X has the EP with respect to 

every normed linear space--then A is a zero set in X. 

[Note: Take for X the Michael line and let A = Q-then X is a paracompact Bausdorff space, so 

A has the EP w.r.t. every Banach space. On the other hand, X is submetrlzable but A is not a Gfj. 

Therefore A does not have the EP w.r.t. every normed linear space.] 

LEMMA Fix a pair (X, A). Suppose that A has theEP w.r.t. 8(K)-then every 

continuous function </J : ioX U IA -+ S(K) has a. continuous extension W : IX -+ S(K). 
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[The restriction ..p of tP to IA determines a continuous function A -+ C([0,1],8(1t». 
But C([0,1],8(1t» is a completely metrizable AR (cf. the proof of Proposition 6), the 

weight of which is < It, so our assumption on A guarantees that this function has a 

continuous extension X -+ C([0,1],8(1t», leading thereby to a continuous function 11 : 

IX -+ 8(1t) whose restriction to IA is..p. Choose an I E C(X, [0, 1]) : 1-1(0) = {x : 

tP(x, 0) = lI(x,O)}. Let F be the function {;: :(~)/(x»' Because 8(1t) is contractible, 

there is a homotopy H : IX -+ 8(1t) such that {~~::~~ t\;)O). Consider the function 

. ( { lI(x, t) (t > I(x» 
~ . IX -+ 8 It) defined by ~(x, t) = H(x, t/I(x» (t < I(x»'] 

PROPOSITION 16 Let A c X-then A has the EP w.r.t. 8(1t) iff ioX U lA, as a 

subspace of IX, has the EP w.r.t. every completely metrizable ANR Y of weight :5 It. 

[Necessity: Let I : ioX U IA -+ Y be continuous. Using Kowalsky's lemma, realize 

Y as a closed subspace of 8( It)'" and let r : 0 -+ Y be a retraction (0 open in 8( It)"'). 

Given a projection p : 8(1t)'" -+ 8(1t), let tPP = pol-then by what has been said above, 

tPP has a continuous extension ~P : IX -+ 8(1t). Therefore I has a continuous extension 

~ : IX -+ 8(1t)"'. Set P = ~-l(O). Since P is a cozero set in IX containing IA and 

since the projection IX -+ X takes zero sets to zero sets, there is a cozero set U in X 
such that A c U and IU C P. On the other hand, A has the EP w.r.t. R, so it follows 

from Proposition 3 that 3 tP E C(X, [0, 1]) : {:l~ _ ~ . O. Define F E C(IX, Y) by 

F( x, t) = r( ~( x, cP( x )t» : F is a continuous extension of I. 
Sufficiency: Let 0 = {Ot : i E I} be a neighborhood finite cozero set covering of A 

with #(1) :5 It. Put 

P = {Oix]I/3, 1] : i E I} U {ioX U A x [OJ2/3[}. 

Then P is a neighborhood finite cozero set covering of ioX U IA of cardinality :5 It, thus 

Proposition 15 implies that there exists a numerable open covering V of IX of cardinality 

:5 It such that V n (ioX U IA) is a refinement of P. Let U = V n (ilX) : U is a numerable 

open covering of i1X such that un (ilA) is a refinement of P n (ilA) = ilO. Finish by 

quoting Proposition 15.] 

EXAMPLE Suppose that the inclusion A - X is a cofibration-then ioXUIA is a retract of IX 

(cf. §3, Proposition 1), so Proposition 16 implies that A has the EPw.r.t. every Banach space. 

[Note: This applies in particular to a relative OW complex (X, A).] 

Let X and Y be topological spaces. 
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(HEP) A subspace A C X is said to have the homotopy extension property with 

respect to Y (HEP w.r.t. Y) if given continuo~ functions {[::/~. =: ~ such that FIA = 

h 0 io, there is a continuous function H : IX -+ Y such that F = H 0 io and HilA = h. 

[Note: In this terminology, the inclusion A -+ X is a cofibration iff A has the HEP 

w.r.t. Y for every Y.] 

{ 
f E C(A Y) . 

Suppose that A has the HEP w.r.t. Y. Let 9 E C(A: Y) be homotopIc. Assume: f 
has a continuous extension F E C(X, Y)-then 9 has a continuous extension G E C(X, Y) 

and F ~ G. Therefore, under these circumstances, the extension question for continuous 

functions A -+ Y is a problem in the homotopy category. 

HAc X is closed and if ioX U lA, as a subspace of IX, has the EP w.r.t. Y, then 

it is clear that A has the HEP w.r.t. Y. Conditions ensuring that this is so are provided 

by Proposition 16. Here are two illustrations. 

(1) Every closed subspace A of a normal Hausdorff space X has the HEP w.r.t. 

every second countable completely metrizable ANR Y. 

(2) Every closed subspace A of a collectionwise normal Hausdorff space X has 

the HEP w.r.t. every completely metrizable ANR Y. 

[Note: Historically, these results were obtained by imposing in addition a countable 

paracompactness assumption on X. Reason: H X is a normal Hausdorff space, then the 

product IX is normal iff X is count ably paracompact.] 

HAC X and if A has the EP w.r.t. B(K), then A has the HEP w.r.t. every completely 

metrizable ANR Y of weight $ K. Proof: Take a pair of continuous functions { [: : I~ =: ~ 
such that FIA = h 0 io and define <p : ioX U IA -+ Y by {~~::~1 ~~:~)' In view of 

Proposition 16, the only issue is the continuity of <p. To see this, embed Y in a Banach 

space E of weight $ K. Since lA, as a subspace of IX, has the EP w.r.t. B(K), h has a 

continuous extension h : IA -+ E. Define <p : ioX U IA -+ E by {~~;:~1 ~~:~)-then 
~ is a welldefined continuous function which agrees with <p on ioX U I A. 

EXAMPLE The product Y = S" X S" X ••• ("" factors) is not an ANR. But if X is normal and 

A C X is closed, then A has the HEP w.r.t. Y. 

FACT Suppose that X is Hausdorff. Let A be a zero set in X. 

(1) If X is normal, then A has the HEP w.r.t. every second countable ANR Y. 

(2) If X is collectionwise normal, then A has the HEP w.r.t. every ANR Y. 
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FACT Let Y be a nonempty metrizable space. Suppose that Y is locally contractible-then Y is 

an ANR iff for every pair (X, A), where X is metrizable and A C X is closed, A has the HEP w.r.t. Y. 

Let X be a homeomorphism invariant class of normal Hausdorff spaces that is closed 
hereditary, i.e., if X E X and if A C X is closed, then A EX. 

Let X be the class consisting of the Hausdorff spaces satisfying Ceder's condition-then it is unknown 

whether X is closed hereditary, 

A nonempty topological. space Y is said to be an extension space for X if every closed 
subspace of every element of X has the EP w.r.t. Y. Denote by ES(X) the class of extension 

spaces for X. Obviously, if X' c X", then ES(X") c ES(X'), 80 V X : ES(normal) C 

ES(X). 
(ES1) The class ES(X) is closed under the formation of products. 

(ES2 ) Any retract of an extension space for X is in ES(X). 

(ES3 ) Suppose that Y = Yi U Y2 , where Yi and Y2 are open and {~ E 

ES( X) & Y1 n 1'2 E ES( X)-then Y E ES( X). 

(ES4 ) Assume: The elements of X are hereditarily normal. Suppose that 

Y = Yi u 1'2, where Yi and 1'2 are closed and {~ E ES( X) & Yl n Y2 E ES( X)-then 

Y E ES(X). 
(ESs) Suppose that Y = Y1 U 1'2, where Yi and Y2 are closed-then Y E 

ES(X) & Yi n 1'2 E ES(X) ~ {~ E ES(X). 

EXAMPLE A nonempty topological space Y is an extension space for the class of metrizable spaces 

iff it is an extension space for the class of M complexes. 

A nonempty topological space Y is said to be a neighborhood extension space for 

X if every closed subspace of every element of X has the NEP w.r.t. Y. Denote by 

NES( X) the class of neighborhood extension spaces for X. Obviously, if X, c X", then 

NES(X") C ,NES(X'), 80 V X : NES(normal) C NES(X). Of course, ES(X) C NES(X). 

In the other direction, every contractible element of NES( X) is in ES( X). 
[Note: It is convenient to agree that 0 E NES(X). So, if Y E NES(X) and if V C Y 

is open, then V E NES(X).] 

NES(X). 

(NES l ) The class NES( X) is closed under the formation of finite products. 

(NES2 ) Any neighborhood retract of a neighborhood extension space for X is in 
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(NES3 ) Suppose that Y = Yi U 12, where Yi and 12 are open and {~ E 

NES(X)-then Y E NES(X). 
(NES.) Assume: The elements of X are hereditarily normal. Suppose that 

Y = YI U 12, where YI and 12 are closed and {~ E NES(X) & Yi n Yz E NES(X)-then 

Y E NES(X). 
(NES&) Suppose that Y = Yi U 12, where YI and 12 are closed-then Y E 

NES(X) & YI n Y2 E NES(X) => {~ E NES(X). 

[Note: There is a slight difference between the formulation of ES3 , and NES3 • Reason: 

An empty intersection is permitted in NES3 but not in ES3 (consider X = [0,1], A = Y = 

{O,l}).] 

EXAMPLE (CW Complexes) Metrizable CW complexes are ANRs (cf. p.6-16). 

(1) Every finite CW complex is in NES(normal). 

(2) Every CW complex is in NES(compact) (but it is not true that every' CW complex is in 

NES(paracompact ». 
(3) Every CW complex is in NES(stratifiable). 

[First, if K is a full vertex scheme, then IKI is a locally convex topological space (d. p. 6-11), so 

IKI E ES(stratifiable) (cf. p. 6-34). Second, if K is a vertex scheme and if L is a subscheme, then ILl is 

a neighborhood retract of IKI. Third, if X is a CW complex, then X is the retract of a polyhedron (d. 

p.5-12).] 

FACT Every CW complex has the homotopy type of an ANR which is in NES(paracompact). 

EXAMPLE Suppose that X = Y U Z is metrin.ble. Let K and L be finite CW complexes. 

Assume: Every closed subspace of {~ has the EP w.r.t. { ~ -then every closed subspace of X has the 

EP w.r.t. K. L. 

The "ES" arguments are similar to but simpler than the "NES" arguments. Of 

the latter, the most difficult is the one for NES3, which runs as follows. Take an X 

in X and let A e X be closed-then the claim is that V / E C( A, Y) there exists an 

open U ::) A and an F E C(U, Y) : FIA = /. Since X is covered by the open sets 

{ /-I(Yi)U(X-A) d' X' al th . t losed t {Xl eX hich 
/-I(y

2
) U (X _ A) an since IS norm , ere exlS c se S X

2 
eX w cover 

. {Xl e /-I(Yi)U(X -A) {AI =XI nA 
X With X2 e /-1(12) U (X _ A)' Put A2 = X2 n A' There are now two cases, de-

pending on whether Yi n Yz is empty or not. The second possibility is more involved than 
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the first so we shall look only at it. Because Yi n 1'2 E NES(X), the restriction IIAI n A2 

has an extension 112 E C(O, Yi n Y2), where 0 is some open subset of Xl n X 2 containing 

Al n A2. Choose an open subset P of Xl n X 2 : Al n A2 C P C P C O. Observing 
- - { I( x) (x E A) 

that An P = Al n A2, define 9 E C(A U P, Y) by g(x) = 112 (x) (x E P)' Because 

{
YIENES(X) h .. {9IAIUPL__ . {GIEC(OhYi) h 
Y2 E NES(X)' t e restnctlOn glA2 U P .u.ao:t an extension G2 E C(02, Y2)' w ere 

{ g~ is some open subset of {i: containing { ~~ ~ ~. Choose an open subset { ~~ ~~ i~ : 
{ AI U P C PI C PI C 0 1 and an open subset V eX: A c V & (Xl n X 2 - P) n V = 0. 

A2 U P C P2 C P2 C O2 

{ 
Bl = (PI - X2 n V) U PI' cl h {Bl C 0 1 • h B B P h 

Let B2 = (P
2 

_ Xl n V) U P' t IS ear t at B2 C0
2

' WIt 1 n 2 = ,80 t e 

prescription G(x) = { g~~:~~= ~ ~~~ is a continuous extension of I to Bl U B2 J A. The 

set (PI - X 2) U (P2 - Xl) UP is open in X. Denote by U its intersection with V and let 

F=GIU. 

[Note: To reduce NES. to NESa, put instead {~: ~=:8~j. Since 

{ (
A Al - AA2 n) (Al- A1) = ~ and since X is hereditarily normal, there exists an open set 

1- 2 n 2- 1=" 

Tr X A A Tr U X (A A) S . {Xl = U 0 U (AI n A2 ) 
vo C : 1 - 2 C vo C 0 C - 2 - 1· ettlng X

2 
= (X _ Uo) U (AI n A

2
)' 

the argument then proceeds as before.] 

Why work with classes of normal Hausdorff spaces? Answer: If the class X contains a space that is 

not normal, then every nonempty Hausdorff Y E NES( X) is necessarily a singleton. 

FACT Suppose that Y is an AR (ANR). 

(1) Let X be the class of perfectly normal paracompact Hausdorff spaces-then Y E ES(X) 

(NES(X». 

(2) Let X be the class of perfectly normal Hausdorff spaces-then Y E ES(X) (NES(X» iff Y 

is second countable. 

[For the necessity, remark that every collection of nonempty pairwise disjoint open subsets of Y 

is countable. Reason: The construction on p. 6-35 ff. furnishes a perfectly normal Hausdorff space X 

containing an uncountable closed discrete subspace A, the points of which cannot be separated by a 

collection of nonempty pairwise disjoint open subsets of X.] 

(3) Let X be the class of paracompact Hausdorff spaces-then Y E ES(X) (NES(X» iff Y is 

completely metrizable. 
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[To establish the necessity, assume, e.g., that Y is an AR. Let X be the result of retopologizing fiY 

by isolating the pointa of fiY - Y. Every open covering of X has a cr-discrete open refinement, hence X is a 

paracompact Hausdorff space. Since Y sita inaide X as a closed subspace, there is a retraction r : X _ Y. 

On the other hand, Y is metrizable, thus is Moore, 80 Y satisfies Arhangel'skiI's condition. Fix a aequence 

{V,,} of collections of open subseta of fiY such that each V" covers Y and V y E Y: nst(y, V,,) C Y. 

" Assign to a given V E V" the open subset Pv C V determined by intersecting V with the interior in fiY 

of r- 1(V n Y). Put P" = U{Pv : V E V,,} : Pta :::> Y k Y = np", therefore Y is topologically complete 

" or still, is completely metrizable.] 

(4) Let X be the class of normal Hausdorff spacee-then Y E ES(X) (NES(X» iff Y is second 

countable and completely metrilllable. 

FACT Let X be the class consisting of the Hausdorff spaces that can be realized as a closed subspace 

of a product of a compact Hausdorff space and a metrizable space (the elementa of X are precisely those 

paracompact Hausdorff spaces satisfying Arhangel'skiI's condition)-then every AR (ANR) is in ES(X) 

(NES(X». 

[Suppose that X E X is closed in K x Z, where K is compact Hausdorff and Z is metrizable. The 

projection K x Z - Z is closed and has compact fibers, thus the same is true of ita restriction p to 

X. Fix a closed subspace A C X. Take an AR Y of weight ~ It and let J E C(A, Y). Embed Y in 

S{It)"" and apply Proposition 13 to produce a continuous extension t$ : X - S(It)"" of J. Write ~ for 

the diagonal of t$ and p-then ~(A) is closed in S(It)"" x p(X). Therefore the restriction to ~(A) of 

the projection t/J : S(It)"" x p(X) ..:... S(It)"" has a continuous extension. : S(It)"" X p(X) - Y. Put 

F= .o~: FE C(X,Y) k FIA=J.] 

Application: If K is a compact Hausdorff space and if Y is an ANR, then C(K, Y) is an ANR (50 

for any CW complex X, C(K, X) is a CW space). 

[Inspect the proof of Proposition 6, keeping in mind the preceding result.] 

Suppose that G is a stratifiable topological group-then Xa and Ba are stratifiable (d. p. 6-31) and 

Cautyt has shown that if G is also in NES(stratifiable), then the same holds for X'G and B'lJ. Example: 

If G is an ANR, then X'lJ and B'lJ are ANRs (d. p.4-65). 

LEMMA Let Y be a topological space. Suppose that Y admits a covering V by 

pairwise disjoint open sets V, each of which is in NES(collectionwise normal)-then Y is 

in NES( collectionwise normal). 

t Arch. Moth. (BtUel) 28 (1911), 623-631. 
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[Let X be collectionwise normal, A C X closed, and let I E C(A, Y). Put Av = 
1-1(V), Iv = IIAv-then there exists a neighborhood. Ov of Av in X and an Fv E 

C(Ov, V) : FvlAv = Iv. Since {Av} is a discrete collection of closed subsets of X, there 

exists a pairwise disjoint collection {Uv} of open subsets of X such that V V : Av C Uv. 

Set U = U(Ov n Uv) and define F : U -+ Y by FIOv n Uv = FvlOv n Uv to get a 
v 

continuous extension of I to U.] 

Let Y be a topological space. Suppose that Y admits a numerable covering V by 

open sets V, each of which is in NES( collectionwise normal)-then, from the proof of 

Proposition 12, it follows that Y is in NES( collectionwise normal). 

FACT Let Y be a topological space. Suppose that Y admits a covering V by open sets V, each of 

which is in NES(paracompact)-then Y is in NES{paracompact). 

Application: Every topological manifold is in NES(paracompact). 

[Note: This applies in particular to the Priifer manifold, which is not metrizable and contains a closed 

submanifold that is not a neighborhood retract.] 

Assume: IX C X. Let Y E NES(X)-then for every pair (X, A), where X E X and 

A C X is closed, A has the HEP w.r.t. Y. Proof: ioX U lA, as a closed subspace of IX, 

has the EP w.r.t. Y. 

EXAMPLE (CW Complexes) If X is stratifiable and A C X is closed, then A has the HEP w.r.t. 

any CW complex. 

PROPOSITION 1 T Assume: IX eX. Let Y E NES( X) and suppose that Y is 

homotopy equivalent to a Z E ES(X)-then Y E ES(X). 

[Choose continuous functions cfJ : Y -+ Z, t/J : Z -+ Y such that t/JocfJ ~ idy, cfJot/J ~ idz. 

Take an X in X and let A C X be closed. Given IE C(A, Y), 3 F E C(X, Z) : Foi = cfJol, 

where i : A -+ X is the inclusion. But A has the HEP w.r.t. Y and t/J 0 F 0 i ~ I, so I 

admits a continuous extension to X.] 

FACT Suppose that X is an ANR. Let Y be a topological space such that every closed subset 

A C X has the EP w.r.t. Y. Fix a weak homotopy equivalence K - Y, where K is a CW complex-then 

every closed subset A C X has the EP w.r.t. K. 

[Owing to the CW-ANR theorem, the induced map [X, K] - [X, Y] is bijective (cf. p. 5-15). On 

the other hand, every closed subset A C X has the HEP w.r.t. K (metrizable '* stratifiable).] 
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§7. C-THEORY 

A classical technique in algebraic topology is to work modulo a Serre class of abelian 

groups. I shall review these matters here, supplying proofs of the less familiar facts. 

Let C C Ob AB be a nonempty class of abelian groups-then C is said to be a 

Serre class provided that for any short exact sequence 0 ~ G' ~ G ~ Gil ~ 0 in 

AB, G E C iff {~:, E C or, equivalently, for any exact sequence G' ~ G ~ Gil in AB, 

{ 
G' 
Gil E C => G E C. 

[Note: To show that a nonempty class C C Ob AB is a Serre class, it is usually simplest 

to check that C is closed under subgroups, homomorphic images, and extensions.] 

Example: For any Serre class C, the subclass Ctor of torsion groups in C is a Serre 

class. 

[Note: A Serre class C is said to be torsion if C = Ctor .] 

EXAMPLE (p-Primary Abelian Groups) An abelian p-group G is said to be p-primary. The 

rank r(G) ofa p-primary G is the cardinality of a maximal independent system in G. IfG[p] = {g : pg = OJ, 

.",- then G[p] is a vector space over F 11 and dim G[p] = r( G). The final rank r j (G) of a p-primary G is the 

infimum of the r(pn G) (n EN). Every p-primary G can be written as G = G' EEl Gil, where G' is bounded 

and r(G") = rj(G") (Fuchsf). Fix now a symbol 00, considered to be larger than all cardinals. Given a 

Serre class C of p-primary abelian groups, let il>( C) be the smallest cardinal number> r( G) V G E C if such 

a number exists, otherwise put il>(C) = 00, and let w(C) be the smallest cardinal number> rj(G) V G E C 

{
il>(C) = 1 or il>(C) > w 

if such a number exists, otherwise put w(C) = 00. Obviously, il>(C) ? w(C), - . 
w(C) = 1 or \Ii'(C)? w . 

And: C is precisely the class of p-primary G for which r(G) < il>(C) & rj(G) < w(C). On the other 

{

il> {il>=1 M il»w 
hand, suppose that are cardinal numbers or 00 with il> ? \Ii', - . Let C be the 

W \Ii' = 1 or \Ii' > w 
class of p-primary G for which r(G) < il> & rj(G) < \Ii'-then C is a Serre class such that il>(C) = il> & 

\Ii'(C) = \Ii'. Thus the conclusion is that there is a one-to-one correspondence between the conglomerate of 

Serre classes of p-primary abelian groups and the conglomerate of ordered pairs (il>, \Ii'), where {: are 

cardinal numbers or 00 : il> ? \Ii', - . { 
il> = 1 or il> > w 

w = 1 or \Ii'? w 
[Note: If C is a Serre class and if C(p) is the subclass of C consisting of the p-primary G in C, then 

C(p) is a Serre class.] 

t Infini.te Abeli.an Groups, vol. I, Academic Press (1970), 152. 
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Notation: Given a Serre class C, tf(C) is the subclass of C made up of the torsion free 

groups in C. 

PROPOSITION 1 Let C be a Serre class. Assume: tf(C) contains a group of infinite 

rank-then either tf( C) is the class of all torsion free abelian groups or tf( C) is the class of 

all torsion free abelian groups of cardinality < 1'\" where I'\, > w. 

[Any torsion free abelian group G of infinite rank contains a free abelian group of rank 

= #(G).] 

EXAMPLE Fix a cardinal number K, > w. Let T", be the class of torsion abelian groups of 

cardinality < K,j let :F x, be the class of torsion free abelian groups of cardinality < K,. Take any Serre 

class T of torsion abelian groups: T :> Tx,-then the class C consisting of all abelian groups G which are 

extensions of a group in T by a group in :F x, is a Serre class such that Ctor = T and tf( C) = :F x, . 

A characteristic is a sequence X = {Xp : p E TI}, where each XP is a nonnegative 

integer or 00. Given characteristics {~;, , write X' ,..., X" iff #{p : X~ =I- X~} < w and 

X~ = 00 {:} X~ = oo-then ,..., is an equivalence relation on the set of characteristics, an 

equivalence class t being called a type. The sum t' + til of types {::, is the type cont~ning 
the characteristic {X~ + X~ : P E TI} and t' :$ til provided that X~ :$ X~ for almost all p, 

til - t' being the largest type t such that t + t' :$ til. 

(Rational Groups) A nonzero abelian group G is said to be rational if it is 

isomorphic to a subgroup of Q or still, is torsion free of rank 1. Such groups can be 

classified. For assume that G is rational, say G C Q. Take 9 E G : 9 =I- O. Given 

p E TI, consider the set Sp(g) of nonnegative integers n such that the equation pnx = 9 

has a solution in G. Put Xp(g) = supSp(g), thep-height of g-then X(g) = {Xp(g) ; 

P E TI} is a characteristic. Moreover, distinct nonzero elements of G determine equivalent 

characteristics. Definition: The type t( G) of G is the type of the characteristic of any 

nonzero element of G. Every type t can be realized by a rational group, i.e., t = t( G) 

(3 G) and rational {g:, are isomorphic ifft(G') = t(G") (in general, G' is isomorphic to 

a subgroup of Gil iff t( G') :$ t( Gil)). 

Example: Suppose that Z C G C Q-then G/Z ~ ffi Z/pxPZ, {Xp : p E TI} the 
p 

characteristic of 1, and Hom(G, G) is isomorphic to the subring of Q generated by 1 and 

the p -1 : pG = G . 

. FACT If G and K are rational, then G 0 K is rational and t(G 0 K) = t(G) + t(K). 
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FACT IfG and K are rational, then Hom(G, K) = 0 ift(G) 1: t(K), but is rationa.l ift(G) ~ t(K) 

with t(Hom(G, K» = t(K) - t(G). 

Notation: T is a nonempty set of types such that (i) to E T & t :5 to => t E T and 

(ii) t', til E T => t' + til E T, T(AB) being the class of abelian groups G which admit 
n 

a monomorphism G -t E9 G i, where the G i are rational (n depending on G) and the 
1 

t(G;) E T. 

FACT A torsion free abelia.n group G of finite rank is in T(AB) iff for each nonzero homomorphism 

<jJ: G -+ Q, t(<jJ(G» E T. 

PROPOSITON 2 Let C be a Serre class. Assume: tf(C) contains only groups of finite 

rank and at least one group of positive rank-then tf(C) = T(AB) for some T. 

[Let T be the set of types t such that a rational group of type t is in tf( C). If 
n 

Gl, ... ,Gn are rational and if t(Gd, ... ,t(Gn ) belong to T, then E9 G i E tf(C) and every 
1 

n 

subgroup of E9 Gi is in tf(C). On the other hand, for any G :f:. 0 in tf(C), there are rational 
1 

n 
G l , ... ,Gn and a monomorphism G -t E9 Gi. Upon restricting to homomorphic images, 

1 
one can arrange that the G i E tf(C), so the t(G i ) E T. Since C is closed under subgroups, 

T satisfies condition (i) above. As for condition (ii), let {::, E T. Choose {g:, : Z C 

{ 
G' Q & {t' = t( G') . d b th ch t' t' {X' di t Gil C til = t( Gil) IS represente y e arac ens IC X" correspon ng 0 

1. Suppose first that V p, {Xr, is finite. Let Z C G c Q : X(I) = X' + X". Fix an 
Xp . 

isomorphism </> : G'/Z -t GIG" and let K be the subgroup of G' Ee G composed of the 

(g', g) : </>(g' + Z) = 9 + Gil-then there is a short exact sequence 0 -t Gil -t K -t G' -t 0, 

hence K E C. But there is also an epimorphism K -t G, thus G E C and t' + til E T. 

{ '-'+' {' Passing to the general case, write XII - Xf" X~}oo, where XI, take finite values and 
X = XI + Xo,oo XI 

{ , {G' X~,oo have values 0 or 00. Let Z C Gf C Q : XI(1) = XI + Xli let Z C G?"oo C Q : 
Xo,oo 0,00 

{ X~,oo«i)) x?"oo. From the foregoing, G I E C; in addition, {g?t'oo is isomorphic to a 
Xo,oo Xo,oo 0,00 

subgroup of {g:, E C. Therefore GlEe G~,oo Ee G~,oo E C and G I + G~,oo + G~,oo C Q has 

type t' + til.] 

EXAMPLE Given T, let T be a Serre class of torsion abelian groups with the property that the 
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type determined by a characteristic X belongs to T iff EB Z/pXfJ Z t T -then the class C consisting of all 
p 

abelian groups G which are extensions of a. group in T by a group in T(AB) is a. Serre class such that 

Ctor = T and tf(C) = T(AB). 

Every torsion abelian group G contains a basic subgroup B, i.e., B is a direct sum of 

cyclic groups, B is pure in G, and G / B is divisible. If {g:, are torsion and if { ~:, ~ ~" 
are basic, then G' ® G" ~ B' ® B". Corollary: The tensor product of two torsion abelian 

groups is a direct sum of cyclic groups. 

LEMMA Let 0 ~ G' ~ G ~ G" ~ 0 be a short exact sequence of abelian groups. 

Suppose that the image of G' in G is pure-then for any K, the sequence 0 ~ G' ® K ~ 

G ® K ~ G" ® K ~ 0 is exact and the image of G' ® K in G ® K is pure. 

[Note: Under the same assumptions, the sequence 0 ~ Tor( G' ,K) ~ Tor( G, K) ~ 

Tor( G", K) ~ 0 is exact and the image of Tor( G', K) in Tor( G, K) is pure.] 

A Serre class C is said to be a ring if G, K E C => G ® K E C, Tor( G, K) E C. 
[Note: C is a ring provided that 'if G E C : G ® G E C, Tor(G, G) E C. This is because 

G, K E C => G ® K c (G ffi K) ® (G ffi K), Tor(G,K) c Tor(G ffi K, G ffi K).] 

EXAMPLE Let C be a. ring. Fix a group G-then G/[G, G] E C iff Vi, ri(G)/ri+l (G) E C. 

[The iterated commutator map ®i+1(G/[G, G]) -+ ri(G)/ri+l (G) is surjective.] 

EXAMPLE Let C be a ring. Fix a group G such that V n > 0, Hn(G) E C. Let M E C be a 

nilpotent G-module-then V n ~ 0, Hn{G; M) E C. 

[Since the (/[G])i . M/(/[G])i+l . ME C, it suffices to look at the case when the action of G on M is 

trivial.] 

FACT Let C be a Serre class. Suppose that G E C-then for any finitely generated K, G ® K and 

Tor( G, K) belong to C. 

PROPOSITION 3 Let C be a Serre class-then C is a ring iff Ctor is a ring. 

[Setting aside the trivial case when C is the class of all abelian groups, let us assume 

that Ctor =F C is a ring. Fix G E C - Ctor : Tor( G, G) ~ Tor( Gtor , Gtor ) ECtor, Gtor the 

torsion subgroup of G. To deal with G ® G, put tf(G) = G/Gtor and consider the exact 

sequences 

{ 

0 ~ Gtor ® G ~ G ® G ~ tf( G) ® G ~ 0 
o ~ GtOI ® GtOI ~ GtOI ® G ~ GtOI ® tf( G) ~ 0 . 
o ~ tf(G) ® Gtor ~ tf(G) ® G ~ tf(G) ® tf(G) ~ 0 



7-5 

Because Gtor ® Gtor ECtor, it will be enough to prove that Gtor ® tf(G) and tf(G) ® tf(G) 

are in C. 

(I) Suppose that tf( C) contains a group of infinite rank. Choose K > W as in 

Proposition 1 (so C contains all abelian groups of cardinality < K) : #( tf( G» < K => . 
#( tf( G) ® tf( G» < K => tf( G) ® tf( G) E C. There is a free group F in C and an epi

morphism F ~ tf( G) ~ 0, where rank F < K. Let B be a basic subgroup of Gtor and form 

the exact sequence 0 ~ B ® F ~ Gtor ® F .~ Gtorl B ® F ~ O. Using the fact that B is 

a direct sum of cyclic groups, B ® F ~ B·ffJ B" : #(B,,) < K => B ® FE C. Analogously, 

by an application of the structure theorem for divisible abelian groups, Gtor I B ® F E C. 

Conclusion: Gtor ® FE C => Gtor ® tf(G) E C. 

(II) Suppose that tf(C) = T(AB) (cf. Proposition 2). Let F be the free 

abelian group generated by a maximal independent system in tf( G)-then there is an exact 

sequence 0 ~ F ~ tf( G) ~ tf( G) j F ~ 0 and tf( G) j F ECtor. Tensor this sequence with 

Gtor to get another exact sequence F ® Gtor ~ tf( G) ® Gtor ~ tf( G) j F ® Gtor. Of course, 

tf( G) j F ® Gtor ECtor; moreover, F ® Gtor E C, which implies that tf( G) ® Gtor itself is in 

C. Finally, the sequence 0 ~ F ® tf(G) ~ tf(G) ® tf(G) ~ tf(G)jF ® tf(G) ~ 0 is exact. 

Obviously, F ® tf( G) E C and, repeating the preceding argument, tf( G) j F ® tf( G) E C, 
hence tf(G) ® tf(G) E C.] 

In what follows, a and "Y are functions having cardinal numbers as values, the domain 

of a being n x N and the domain of"Y being n. 
Examples: (1) Let G be a torsion abelian group. Assume: G is a direct sum of 

cyclic groups-then G ~ EB EB a(p, n) . (ZI pnZ)j (2) Let G be a torsion abelian group. 
p n 

Assume: G is divisible-then G ~ EB "Y(p).(ZjpOOZ); (3) Let G be a torsion abelian group. 
p 

Assume: Gis p-primary and satisfies the descending chain condition on subgroups-then 

G ~ EBa(p,n)· (Zjpnz) ffi"Y(p)' (ZjpOOZ), where Ea(p,n) < wand "Y(p) is finite. 
n n 

[Note: For use below, recall that ZjpOOZ is a homomorphic image of EB Zjpnz (in 
n 

fact, every countable p-primary G is a homomorphic image of EB Zjpnz).] 
n 

Notation: Given a torsion Serre class C, a(C) = {a: EB EB a(p, n)· (Zjpnz) E C} and 
p n 

"Y(C) = {"Y: EB"Y(p)' (ZjpOOZ) E C}. 
p 

Observations: (i) "Yo E "Y(C) & "Y ~ "Yo => "Y E "Y(C) and (ii) "Y', "Y" E "Y(C) => "Y' + "Y" E 

"Y( C). 
Suppose that C is a torsion Serre class. Let G E C-then G ~ E9 G(p), G(p) the 

p 

p-primary component of G. Denote by Co the subclass of C comprised of those G such that 
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each G(p) is bounded, so 'r;f p, :3 M(p) : pM(p)G(p) 0, and put ao(C) = a(Co) (meaningful, 

Co being Serre). 

CARDINAL LEMMA Let C be a torsion Serre class-then 'r;f a E a(C), :3 ao E ao(C) 

& 7 E ')'(C) such that a(p,n):S; ao(p,n) +7(P), where 7(P)?: w or 7(P) = O. 
00 

[Set u(p, n) = 2::: a(p, m) and choose M(p) such that u(p, n) = u(p, n + 1) = ... 
m=n 

(n ?: M(p)). Define ao by ao(p,n) = {~(p,n) ~~ ~ ~~;jj and define 7 by 7(P) = 

u(p, M(p)) : a :s; ao + 7 and ao E ao(C), thus the issue is whether 7 E ')'(C). To see this, it 

need only be shown that 'r;f p, 7(P)'(Z/pooZ) is a homomorphic image of EJ:1 a(p, n)·(Z/pnZ). 
n 

Case 1: 7(P) = w. Here, #{n: a(p,n) =j:. O} = w and there are epimorphisms EJ:1a(p,n). 
n 

(Z/pnz) --+ EJ:1 Z/pnz --+ 7(P)·(Z/pooZ). Case 2: 7(P) > w. Put Noo = {n: a(p,n) > w} : 
n 

#(Noo) = wand there are epimorphisms EJ:1 a(p, n).(Z/pnz) --+ EB na(p, n).(Z/pnz) --+ 
n nENoo 

EB a(p,n). (Z/pZ E9 ... E9 Z/pnz) --+ 7(P)' (EBZ/pnz) --+ 7(P)' (Z/pooZ).] 
nEN~ n 

Given a torsion Serre class C, let C* be the subclass of those G such that each G(p) 

satisfies the descending chain condition on subgroups. Note that C* is Serre. 

PROPOSITION 4 Let C be a torsion Serre class-then C is a ring iff C* is a ring. 

[Straightforward computations establish the necessity. As for the suffidency, fix G E C 

and let B be a basic subgroup of G. Applying the cardinal lemma, one finds that B®B E C. 

But G ® G ~ B ® B, thus G ® G E C. The verification that Tor(G,G) E C hinges on a 

preliminary remark. 

Claim: Suppose that C* is a ring-then'r;f 7 E ,),(C), 7 2 E ')'(C). 

[Write 7 = 7' + "I", where 'r;f p, 7'(P) is finite and 7"(P) ?: w or 7"(P) - 0, so 

72 = (7')2 + "I". Since C* is a ring, (7')2 E ,),(C), hence 72 E ')'(C).] 
Consider the exact sequences 

{ 

0 --+ Tor( B ,G) --+ Tor( G, G) --+ Tor( G / B ,G) --+ 0 
0--+ Tor(B,B) --+ Tor(G, B) --+ Tor(G/B,B) --+ 0 . 
0--+ Tor(B,G/B) --+ Tor(G,G/B) --+ Tor(G/B,G/B) --+ 0 

Owing to the claim, Tor(G/B,G/B) E C. Proof: G/B ~ EJ:17(P)' (Z/pooZ) => Tor(G/B, 
p 

G/B) ~ EJ:172(p). (Z/pooZ). In addition, Tor(B,B) ~ B ® BE C. Therefore everything 
p 

comes down to showing that Tor(B, G/ B) E C or still, that EB 7(P) . B(p) E C. Using 
p 
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the cardinal lemma, represent B by Bo $ Boo with Bo(p) = EBao(p,n)' (Z/pnz) and 
n 

Boo(p) = EBaoo(p,n)' (Z/pnZ), subject to (ao) V p, :3 M(p) : n;::: M(p) => ao(p,n) = 0 
n 

and (a oo ):3 'Yoo E -r(C): V p,V n,aoo(p,n)::; 'Yoo(p), where 'Yoo(p);::: w or 'Yoo(p) = O. 

From the definitions, EB 'Y(P) . Bo(p) ~ Bo ® (EB 'Y(P) . (Z/pM(p)Z» E C. Turning to Boo, 
p P 

for each p, there is a monomorphism 'Y(p) . Boo(p) -+ b(p) + 'Yoo(p» . (Z/pooZ). Because 

'Y + 'Yoo E -r(e), it follows that EB 'Y(p) . Boo(p) E C.] 
p 

Application: Let C be a Serre class. Assume: tf( C) contains a free group of infinite 

rank-then C is a ring. 

EXAMPLE Not every Serre class is a ring. For instance, let C be the class of all torsion abelian 

groups G such that V p, G(p) is finite, so G(p) :::; EB o(p, n) . (Z/pnZ), where r(G(p» = E o(p, n) < w 
n n 

(cf. p. 7-1). Enumerate U : PI < P2 < .. ·-then the subclass of C consisting of those G for which the 

sequence {r(G(Pk»/k} is bounded is a Serre class but it is not a ring (consider G = EB k· (Z/PkZ». 
k 

[Note: C is a Serre class and it is a ring.] 

A Serre class C is said to be acyclic if V G E C, Hn(G) E C (n > 0). 

FACT Let C be a Serre class. Suppose that GEe is finitely generated-then Hn(G) E C (n > 0). 

If G is a torsion abelian group and if G ~ EB G(p) is its primary decomposition, then 
p 

V n > 0, the Hn(G) are torsion and V p, Hn(G)(p) ~ Hn( G(p» (=> Hn(G) ~ EB Hn(G(p»). 
p 

[Note: V n > 0, G(p) bounded => Hn(G(p» bounded (in fact, pM(p)G(p) = 0 => 
pM(p)Hn(G(p» = 0).] 

Example: Q/Z ~ EB Z/pooZ => Hn(Q/Z) ~ EB Hn(Z/pooZ), where for n > 0, 
p p 

• L { Z/pooZ (n odd) Hn(Z/pooZ) = cohmHn(Z/p"'Z) = . o (n even) 

FACT Fix a prime p. For k = 1,2, ... , let Gk be a direct sum of k copies of Z/pZ-then by the 
'II. 

Kiinneth formula, V n > 0, Hn(Gk) = Gd(n,k), where d(l, k) = k and den, k+1) = E dei, k)+(l-( _l)n )/2 
. i=1 

(hence den, k) ~ knn). 

FACT Fix a prime p. For k = 1,2, ... , let Gk be a direct sum of k copies of Z/pooZ-then bYlthe 

. (k+~) Kiinneth formula, V n > 0, Hn(G",) = Gd(n,k), where den, k) = 0 (n even) and den, k) = n + ~ 

(n odd) (hence d(n,k) ~ kn). 2 
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LEMMA Suppose that C is a Serre class. Let 0 -+ K -+ G -+ G / K -+ 0 be a short 

exact sequence in C-then for n > 0, Hn(G) E C provided that the Hp(G/ Kj Hq(K)) E C 
(p + q > 0). 

[Apply the LHS spectral sequence.] 

[Note: By the universal coefficient theorem, Hp(G/K;Hq(K» ~ Hp(G/K)®Hq(K)ffi 
Tor(Hp- 1 (G/ K), Hq(K».] 

THEOREM OF BALCERZYK Let C be a Serre class-then C is acyclic iff C is a 

rmg. 

[Suppose that C is acyclic. Since G torsion::} Hn(G) torsion (n > 0), Ctor is acyclic, 

thus one can assume that C is torsion (cf. Proposition 3) and then, taking into account 

Proposition 4, work with C* (which is acyclic). So let G E C* : G ~ EB G(p) ::} G ® G ~ 
p 

EBG(p)®G(p) and #(G(p)®G(p» < w::} G(p)®G(p) ~ H2(G(p))ffiH2(G(p))ffiG(p)::} 
p 

G ® G ~ EB(H2(G(p» ffi H2(G(p) ffi G(p» ~ H2(G) ffi H2(G) ffi G E C*. To check that 
p 

Tor(G,G) E C*, it is obviously enough to look at the case when G ~ EB"Y(p)' (Z/pOOZ), 
p 

where 'V p, "Y(p) < w. Thus: Ha(G) ~ ~ HaC"Y(p), (Z/pOOZ» ~ ~ ( "Y(p~ + 1 ) . (Z/pOOZ) 

( cf. supra) and 2 ( "Y(p ~ + 1 ) 2:: "Y(p? ::} "Y2 E "y( C) ::} Tor ( G, G) E C* . 

Suppose that C is a ring. Let G E C-then there is a short exact sequence 0 -+ Gtor -+ 

G -+ G/Gtor -+ O. Accordingly, in view of the lemma, to prove that Hn(G) E C (n > 0), it 

suffices to prove that Hp(G/Gtor ; Hq(Gtor» E C (p+ q > 0). But Hp(G/Gtori Hq(Gtor» ~ 

Hp(G/Gtor ) ® Hq(Gtor ) ffi Tor(Hp-l(G/Gtor), Hq(Gtor» and the verification that Hn(G) E 

C (n > 0) reduces to when (i) G is torsion free or (ii) G is torsion. 

(Torsion Free) If tf( C) is the class of all torsion free abelian groups of cardinality 

< I\, (I\, > w) (d. Proposition 1), then G E tf(C) =? #(Hn(G» < I\, ::} Hn(G) E C (n > 0). 

The other possibility is that tf(C) = T(AB) for some T (cf. Proposition 2). Under these 

circumstances, a given G E tf( C) contains a free subgroup F ~ r . Z of finite rank such 
r 

that the sequence 0' -+ F -+ G -+ G / F -+ 0 is exact. Here, G / F ~ EB Ti is torsion 
1 

and the p-primary components of each Ti are isomorphic to Z/pn,z or Z/pooZ. Therefore 

Hn(Ti) ~ {oTi «n Odd» E C (n > 0) =? Hn(T) E C (n > 0) (Kiinneth). On the oth~r 
n even 

hand, H.(F) '" { }:) . Z 

(n > 0). 

(n S r) E C (n > 0). The lemma now implies that Hn(G) E C 
(n > r) 
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(Torsion) Let G ECtor' Choose a basic subgroup B of G : 0 -t B -t G -t 

G/B -t O-then, thanks to the lemma, one need only consider Hn(B) and Hn(G/B) 

(n > 0). Using the cardinal lemma, represent B by BotfJB""tfJBoo with Bo(p) = E9 ao(p, n)· 
n 

(Z/pnZ), B",,(p) = E9 a",,(p, n) . (Z/pnZ), and Boo(p) = E9 aoo(p, n) . (Z/pnZ), subject to 
n n 

(ao) V p, Eao(p,n) < w, (a",,) V p, 3 M(p): n ~ M(p) => a",,(p,n) = 0 & "In: 
n 

a",,(p,n) ~ wor a",,(p,n) = 0, and (aoo ) 3 "Yoo E "Y(C) : V p,V n, aoo(p,n) $ "Yoo(p), 
where "Yoo(p) ~ w or "Yoo(p) = O. That Hn(B) E C (n > 0) results from the following 

observations (modulo Kiinneth): (00 ) Vp, #(Bo(p)) < w, hence there is a monomorphism 

Hn(Bo(p)) -t ®nBo(p); (0",,) V p, V a ~ w, Hn(a. (Z/pkZ)) ~ a· (Z/pkZ); (0 00 ) V p, 

#(Boo(p)) $ "Yoo(p) , hence there is a monomorphism Hn(Boo(P)) -t "Yoo(p) . (Z/pOOZ). 

Finally, write G/B ~ EB"Y(p)· (Z/pOOZ) and fix n > O. Case 1: n even => Hn(G/B) = 
p 

:~;:,2:h~n O;:;1;:)1~~/:~:):~e~~~~ ~Z/r::/~:~;~.(:~:::)~:e:~ 

( 

"Y(p) + n - 1 ) 

n ~ 1 2 ~ (1(P))" and 1" E -r(C).] 

EXAMPLE Let C be a ring. Fix a nilpotent group G such that G/[G, G] E C-then V n > 0, 

Hn(G) E C. 

FACT Let C be a ring. Suppose that X is simply connected-then Hq(X) E C V q > 0 iff 

Hq(OX) E C V q > o. 

Application: Let C be a ring. Fix 11' E C-then the Hq(lI', n) E C (q > 0). 

If C is a Serre class, then a homomorphism f : G -t K of abelian groups is said to be 

C-injective (C-surjective) if the kernel (cokernel) of f is in C, f being C-bijective provided 

that it is both C-injective and C-surjective. 

MOD C HUREWICZ THEOREM Let C be a Serre class. Assume: C is a ring. 

Suppose that X is abelian-then if n ~ 2, the condition ll'q(X) E C (1 $ q < n) is 

equivalent to the condition Hq(X) E C (1 $ q < n) and either implies that the Hurewicz 

homomorphism ll'n(X) -t Hn(X) is C-bijective. 

EXAMPLE Let C be a ring. Suppose tha.t X is a. pointed connected CW space which is nilpotent. 

Agreeing to write 11'1 (X) E C if 11'1 (X)/[lI'l (X), 11'1 (X)] E c, fix n ~ 2-then the following conditions are 
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equivalent: (i) 1I'q(X) e C (1 $ q < n)j (ii) Hq(X) e C (1 $ q < n)j (iii) 7rl(X) e C & Hq(X) e C 

(1 $ q < n). Furthermore, under (i), (U), or (iii), the Hurewicz homomorphism 1I'n(X) -+ Hn(X) induces 

a C·bijection 7rn(X)'II'l(X) -+ Hn(X). 

[To illustrate the line of argument, assume (iii) and consider the spectral sequence E;.q ~ Hp(1I'l (X); 

Hq(X» => Hp+q(X) of the covering projection X -+ X (cf. p. 5-62). Since 11'1 (X) e C is nilpotent, 

E;,o e C (p > 0) (cf. p: 7-9). In addition, the Hq(X) (q > 0) are nilpotent 1I'1(X)-modules (cf. §5, 

Proposition 17), thus E;.q e C (p ~ 0,1 $ q < n) (cf. p. 7-4) => Hq(X) e C (1 $ q < n) and there 

is a C-bijection H,,(X)'II'l(X) -+ Hn(X). Owing to the mod C Hurewicz theorem, 7rq(X) ~ 7rq(X) e C 

(2 $ q < n) and the Hurewicz homomorphism 7rn(X) -+ Hn(X) is C-bijective. But then the arrow 

7rn (X)'II'l (X) -+ Hn(X)'II'l (X) is also C-bijective, 7rn (X) and Hn(X) being nil~tent 7rl (X)-modules.] 

A Serre class C is said to be an ideal if G E C :::} G ® K E C, Tor( G, K) E C for all K 
inAB. 

LEMMA Let C be a Serre class-then C is an ideal iff V G E C, e Gi E C, where e 
i i 

is taken over any index set and V i, Gi R: G. 

Example: Let C be an ideal. Suppose that 9 E [(sinX)OP, AB] is a coefficient system 

on X such that V (1', 9(1' E C-then V n ~ 0, Hn(Xj 9) E C. 

EXAMPLE The conglomerate of torsion Serre classes which are ideals is codable by a set. For in 

the set ofsubsets of F(N, Z~ou{oo}), write S '" T iff each sequence in S is $ a finite sum of sequences in T 

and each sequence in T is $ a finite sum of sequences in S. Let E be the resulting set of equivalence classes. 

Claim: The conglomerate of torsion ideals is in a one-to-one correspondence with E. Thus given a torsion 

ideal C, assign to G e C the sequence {Zn(G)} e F(N, Z~o U {co}) by letting zn(G) be the least upper 

bound of the exponents of the elements in G(pn), where V n, 1'n < 1'n+l. Put Se = {{Zn(G)} : G e C} 

and call [Se] e E the equivalence class corresponding to Se. To go the other way, take an S and let Cs 

be the class of torsion abelian groups G with the property that there exists a finite number of sequences 

in S such that the nth term of their sum is an upper bound on the exponents of the elements in G(pn)

then Cs is an ideal and S '" T => Cs = Cr. so C[S] makes sense. One has C -+ [Se] -+ Clscl = C and 

[S] -+ C[S] -+ [Se[S]] = [S]. 

[Note: It is sufficient to consider torsion ideals since any ideal containing a nonzero torsion free group 

is necessarily the class of all abelian groups.] 

MOD C WHITEHEAD THEOREM Let C be a Serre class. Assume: C is an ideal. 

Suppose that X and Y are abelian and f : X --t Y is a continuous function-then if 

n ~ 2, the condition f. : 1I"q(X) --t 1I"q(Y) is C-bijective for 1 :5 q < n and C-surjective for 
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q = n is equivalent to the condition f. : Hq(X) - Hq(Y) is C-bijective for 1 :5 q < n and 

C-surjective for q = n. 

EXAMPLE Let { ; he ahelian. Assume: V q, is finitely generated (:::} V q, { 
Hq(X) {'II"q(X) 

Hq(Y) 'll"q(Y) 
is finitely generated). 

(char k = 0) Let f : X -+ Y he a continuous function. Fix a field k of characteristic 0 

and denote hy :F the class of finite ahelian groups, T the class of torsion ahelian groups-then if n 2: 2, 

the following conditions are equivalent: (1) f. : Hq(X) -+ Hq(Y) is :F-hijective for 1 5 q < nand :F

surjective for q = nj (2) f. : Hq(X) -+ Hq(Y) is T-hijective for 1 5 q < n and T-surjective for q = n; (3) 

f. : Hq(X; k) -+ Hq(Yj k) is hijective for 1 5 q < nand surjective for q = nj (4) r : Hq(Yjk) -+ Hq(Xj k) 

is hijective for 1 5 q < n and injective for q = n. 

(char k = p) Let f : X -+ Y he a continuous function. Fix a field k of characteristic p 

and denote hy :Fp the class of finite ahelian groups with order prime to p, Tp the class of torsion ahelian 

groups with trivial p-primary component-then if n 2: 2, the following conditions are equivalent: (1) 

f. : Hq(X) -+ Hq(Y) is :Fp-hijective for 1 5 q < n and :Fp-surjective for q = nj (2) f. : Hq(X) -+ Hq(Y) 

is Tp-hijective for 1 5 q < n and'Tp-surjective for q = n; (3) f. : Hq(Xjk) -+ Hq(Y;k) is hijective for 

15 q < n and surjective for q = nj (4) r : Hq(Y;k) -+ Hq(X;k) is hijective for 1 5 q < n and injective 

for q = n. 

Example: If V n, f. induces an isomorphism Hn(X;Fp) -+ Hn(Y;Fp), then V n, f. induces an 

isomorphism 'll"n(X)(p) -+ 'll"n(Y)(P) of p-primary components. 

FACT Let X he a CW complex. Assume: X is finite and n-connected-then the Hurewicz homo

morphism 'll"q (X) -+ Hq(X) is C-hijective for q < 2n + 1, where C is the class of finite ahelian groups. 



§ 7 

BOOKS 

[1] Hu, S., Homotopy Theory, Academic Press (1959). 

[2] Mosher, R. and Tangora, M., Cohomology OpcratioR6 and ApplicatioR6 in Homotopy Theory, 

Harper II; Row (1968). 

ARTICLES 

[1] Balcerzyk, S., On Classes of Abelian Groups, Fund. MalA. 51 (1962), 149-178; see also Fund. 

Math. 56 (1964), 199-202. 

[2] Goncalves, D., Generalized Classes of Groups, C-Nilpotent Spaces, and "The Hurewicz Theo

rem" , Math. Scand. 53 (1983), 39-61. 

[3] Serre, J-P., Groupes d'Homotopie et Classes de Groupes Abeliens, Ann. 0/ MalA. 58 (1953), 

258-294. 

[4] Walker, C. and Walker, E., Quotient Categories and Rings of Quotients, Rocky Mountain J. 

Math. 2 (1972), 513-555. 



8-1 

§8.LOCALIZATION OF GROUPS 

The algebra of this section is the point of departure for the developments in the next 

§. While the primary focus is on the "abelian-nilpotent" theory, part of the material is 

presented in a more general setting. I have also included some topological applications 

that will be of use in the sequel. 

The Serre classes in AB that are closed under the formation of coproducts (and hence 

colimits) are in a one-to-one correspondence with the Giraud subcategories of AB. Under 

this correspondence, the class of all abelian groups corresponds to the class of trivial groups. 

The remaining classes are necessarily torsion ideals and their determination is embedded 

in abelian localization theory. 

[Note: Not every torsion ideal is closed under the formation of coproducts (consider, 

e.g., the class of bounded abelian groups).] 

Notation: P is a set of primes, P its complement in the set of all primes. 

Given P, put Sp = {l}U{n > 1 : pEP => pln}-then Zp = SplZ is the localization 

of Z at P and the inclusion Z -+ Zp is an epimorphism in RG. Zp is a principal ideal 

domain. Moreover, Zp is a subring of Q and every subring of Q is a Zp for a suitable P. 

The characteristic of 1 in Zp is {~ ~; ~ ~~ => Zp/Z ~ EB_ Z/pOQZ. Examples: (1) 
pEP 

Take P = 0: Zp = Q; (2) Take P = n: Zp = Z; (3) Take P = n - {p} : Zp = z[~l; (4) 

Take P = n - {2,5} : Zp = all rationals whose decimal expansion is finite. 

[Note: Write Zp in place of Z{p} : Zp is a local ring and its residue field is isomorphic. 

to Fp .] 

EXAMPLE Suppose that P #- 0-then as vector spaces over Q, Ext(Q, Zp) ::::: R. 

Equip Sp with the structure of a directed set by stipulating that n' :5 nil iff n'ln". 
View (Sp,:5) as a filtered category Sp and let Ap : Sp -+ AB be the diagram that 

" sends an object n to Z and a morphism n' -+ n" to the multiplication;' : Z -+ Z-
n 

then the homomorphism colimAp -+ Zp is an isomorphism. Example: Zp ® Z/pnz = 

{ 
0 (p E P) 
Z/pnz (p E P) . 

EXAMPLE Fix P #- D-then there is a short exact sequence 0 --> liml Hl(Z; Q[ZpD --> 

H2(Zp; Q[Zp]) --> limH2(Z; Q[Zp]) --> O. Here, H2(Zp; Q[Zp]) #- 0 (in fact, is uncountable (d. p. 

~. 5-47». 
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LEMMA Let pi and p lI be two sets of primes-then (i) ZP' +ZP" = Zp'np" and (ii) 

ZP' n ZP" = ZP'uP", the sum and intersection being as subgroups of Q. Furthermore, the 

b· dd" f . {Zp, >< Zp" -'I> Zp'np" d fi . h' f' Ia ltIve unctIon (''') I II e nes an lsomorp lsmo rIngs: ZP' ®ZPII ~ 
Z,Z -'l>ZZ 

ZpJnplI (=> Zp ® Zp ~ Zp). 

Zp/UPIl 

FACT There is a commutative .diagram ,/1 
Zpll 

1;11 and a short exact sequence 

Zpl ----+ Zp/npll ;, 
0-> Zp/Upll ~ Zpl $ Zpl/ ~ Zp/npll -> 0 (iJ(Z) = (i'(z), i"(z» &: V(Z', Zll) = /(Z/) - jl/(zl/», thus the 

square is simultaneously a pullback and a pushout in AB. 

An abelian group G is said to be Sp-torsion if V 9 E G, 3 n E Sp : ng = O. Denote by 

Cp the class of Sp-torsion abelian groups-then Cp is a Serre class which is closed under 

the formation of coproducts and every torsion Serre class with this property is a C p for 

some P. Examples: (1) Take P = 0 : Cp is the class of torsion abelian groups; (2) Take 

P = n : Cp is the class of trivial groups; (3) Take P = {p} : Cp is the class of torsion 

abelian groups with trivial p-primary component; (4) Take P = n - {p} : Cp is the class 

of abelian p-groups. 

[Note: Gis Sp-torsion iff Gis P-primary or still, iff Zp ® G = 0.] 
Let / : G -'I> K be a homomorphism of abelian groups-then / is said to be P-injective 

(P-surjective) if the kernel (cokernel) of / is Sp-torsion, / being P-bijective provided that 

it is both P-injective and P-surjective. 

[Note: This is the terminology on p. 7-9, specialized to the case C = Cp.] 

FIVE LEMMA Let 

be a commutative diagram of abelian groups with exact rows. 

(1) I~ hand !4 ar'e P-surjective and /5 is P-injective, then fa is P-surjective. 

(2) If hand !4 are P-injective and It is P-surjective, then fa is P-injective. 

The definition of "Sp-torsion" carries over without change to GR, as does the definition of up_ 

injective" but it is best to modify the definition of "P-surjective". Thus let f : G -> K be a homomorphism 

of groups-then f is said to be P-surjective if V k E K, 3 n ESp: k'" E imf (when G and K are 

nilpotent, this is equivalent to requiring that coker f be Sp-torsion). Assigning to the term "P-bijective" 
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the obvious interpretation, the five lemma retains its validity under the following additional assumptions: 

(l)+ im(K2 - K3) C CenK3 or (2)+ im(Gl - G2) C CenG2 (no extra conditions are needed in the 

nilpotent case). 

Given an abelian group G, the localization of G at P is the tensor product G P = 

Zp®G. The functor ZP®-: AB ~ Zp-MOD preserves colimits and is exact. Examples: 
r 

(1) Suppose that G is finitely generated, say G ~ ffiZ EB ffiffia(p,n). (Z/pnZ)-then 
1 p n 

r 

Gp ~ ffi Zp EB ffi ffi a(p, n). (Z/pnZ)j (2) Suppose that G is torsion, say G ~ ffi G(p)-
1 pEP n p 

then G p ~ ffi G(p). 
pEP 

[N o~e: GQ = Q ® G is the rationalization of G. Example: Q ® zw =f. Q W
• G p = Zp ® G 

is the p-Iocalization of G. ;Example: (Q/Z)p Z/pooZ.] 

FACT Let G be an abelian group--then the commutative diagram 1 1 is simultane-

Gp ---t GQ 

ously a pullback square and a pushout square in AB and the arrow is a . { 
Gp - GQ {p-bijection 

G p - GQ P-bijection 

FACT Let G be an abelian group-then G is finitely generated iff { G p are finitely generated 

{ 
Zp -modules. G

p 

Zp 
[Note: (ffi ZlpZ)q is a finitely generated Zq-module for every prime q but ffi ZlpZ is not a finitely 

p p 

generated abelian group.] 

FACT Let G be an abelian group-then G = 0 iff V p, Gp = O. 

FACT Let {~ be finitely generated abelian groups. Assume: V p,Gp ~ Kp-then G ~ K. 

[Note: To see the failure of this conclusion when one of G and K is not finitely generated, take G = Z 

and let K be the additive subgroup of Q consisting of those rationals of the form min, where n is square 

free-then V p, Gp ~ Kp, yet G ~ K. Replacing "square free" by "kth-power free", it follows that there 

exist infinitely many mutually nonisomorphic abelian groups whose p-Iocalization is isomorphic to Zp at 

every prime p.] 

FACT Let / : G - K be a homomorphism of abelian groups-then / is injective (surjective) iff 

V p, /p : Gp - Kp is injective (surjective); 

[Localization is an exact functor, hence preserves kernels and cokernels.] 
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FACT Let I, 9 : G -+ K be homomorphisms of abelian groups. Assume: V p, Ip = gp-then 1= g. 

G -L K 
9 

[The vertical arrows in the commutative diagram 1 1 are one-to-one.] 

LEMMA Let Gtor be the torsion subgroup of G-then (Gtor)p is the torsion sub
group of Gp. 

EXAMPLE Take G = TI Z/pZ-then G'or ~ ED Z/pZ ~ (Gp)\or ~ Z/pZ, so V p, (Gp)\or is a 
I' . I' 

direct summand of Gp, yet Gtor is not a direct summand of G. 

Let G be an abelian group-then one may attach to G a sink {rp : Gp -t GQ} and a 

source {/p : G -t Gp}, where V {: ' rp 0 Ip = rg olg. 

FRACTURE LEMMA Suppose that G is a finitely generated abelian group-then 

the source {/p : G -t Gp} is the multiple pullback of the sink {rp : Gp ~ GQ}. 

[It suffices to look at two cases: (i) G = Zjpnz and (ii) G = Z.] 

EXAMPLE Take G = ED Z/pZ-then Gp = Z/pZ and GQ = 0, the final object in AB. Accord
I' 

ingly, the multiple pullback of the sink {Z/pZ -+ O} is the source {TI Z/pZ -+ Z/pZ}. 
I' 

An abelian group G is said to be P-Iocal if the map {G -t G is bijective V n ESp. 
9 -t ng 

ABp is the full subcategory of AB whose objects are the P-local abelian groups. ABp 

is a Giraud subcategory of AB with exact reflector L p : {~~ -;:B p and arrow of 

localization ip : G -t G p. Therefore Gis P-Iocal iff ip is an isomorphism. In general, the 

kernel and cokernel of Ip : G -t Gp are Sp-torsion, i.e., Ip is P-bijective. 

[Note: The objects of ABp are the uniquely P -divisible abelian groups. Changing 

the notation momentarily, let S p C Mor AB be the class consisting of those s such that 

ker s E Cp and coker s E Cp-then the localization SpI AB is equivalent to ABp and 

the endomorphism ring of Z, considered as an object in SpI AB, is isomorphic to Zp. 

Moreover, a homomorphism!: G -t K of abelian groups is P-bijective iff fp : Gp -t Kp 

is bijective.] 

RECOGNITION PRINCIPLE Let G be an abelian group-then G is P-local iff it 

carries the structure of a Zp-module or satisfies one of the following equivalent conditions. 



(REC l ) 

(REC2 ) 

(REC3 ) 

(REC4 ) 
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ZpjZ ® G = 0 & Tor(ZpjZ, G) = o. 
V n ESp, ZjnZ ® G = 0 & Tor(ZjnZ, G) = O. 

Hom(ZpjZ, G) = 0 & Ext(ZpjZ, G) = O. 

V n ESp, Hom(ZjnZ, G) = 0 & Ext(ZjnZ, G) = O. 

[Note: In REC2 or REC41 one can just as well work with the p E P.] 

FACT Let G be an abelian group. Suppose that G is isomorphic to a subgroup of a P-Iocal abelian 

group and a quotient group of a P-Iocal abelian group-then G is P-locaJ. 

FACT Let 0 --+ G' --+ G --+ Gil --+ 0 be a short exact sequence of abelian groups. Assume: Two of 

the groups are P-Iocal-then so is the third. 

[Note: ABp is closed with respect to the formation of five term exact sequences but this need not 

be true of three term exact sequences unless P is the set of all primes, this being the only case when ABp 

is a Serre class.] 

EXAMPLE The homology groups attached to a chain complex of P-Iocal abelian groups are 

P-Iocal. 

EXAMPLE Let f : X --+ Y be either a Dold fibration or a Serre fibration. Assume: {: and the 

{ 

11"1 (X) 
Xy are path connected and and the 1l'1 (Xy) are abelian. Fix Yo E Y & Xo E XYO-then there 

11"1 (Y) 
is an exact sequence· .. --+ 11"n+1 (Y, YO) --+ 11"n(XyO ' xo) --+ 11"n (X, xo) --> 1l'n (Y, YO) - ... and if any two of 

{11"n(X yo I xo)}, {11"n(X, xo)}, {11"n(Y, YO)} are P-local, so is the third. 

LEMMA L p : AB ...... AB p preserves finite limits. 

EXAMPLE Lp need not preserve arbitrary limits. For instance, take P = n - {2} and define G 

{
Gn+l ....... Gn [1] in TOW(AB) by G n = Z V n and -then lim G = 0 but lim G p = Z - . 
1- 2 2 

Let f : G ...... ]{ be a homomorphism of abelian groups-then f is said to be ::...::..:::::::.::::~~ 

if :3 an isomorphism tP : G p -+ K such that f tP 0 1 p (cf. p. 0-30). 

LEMMA Let f : G -+ K be a homomorphism of abelian groups-then f IS P

localizing iff f is P-bijective and K is P-local. 

Example: Let {~ be path connected topological spaces, f : X -+ Y a continuous 

function-then by the universal coefficient theorem, f* : Hn(X) -+ Hn(Y) is P-Iocalizing 
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V n ~ 1 iff f. : Hn(Xj Zp) -t Hn(Yj Zp) is an isomorphism V n > 1 and Hn(Y) is P-local 

Vn~1. 

Example: Let X be a path connected topological space-then by the universal coef

ficient theorem, Hn(X) is P-local V n > 1 iff V p E P, Hn(X; Z/pZ) = 0 V n ~ 1. 

FACT Let 

be a commutative diagram of abelian groups with exact rows. Assume: It, h, 14, Is are P-Iocalizing-then 

Is is P-Iocalizing. 

EXAMPLE Let {~ be abelian groups-then (G ® K)p ~ Gp ® K ~ G ® Kp ~ Gp ® Kp and 

Tor(G,K)p ~ Tor(Gp,K) ~ Tor(G,Kp) ~ Tor(Gp, Kp). 

EXAMPLE Let {~ be abelian groups. 

(R) Assume: G is finitely generated-then Hom(G,K)p ~ Hom(G,Kp) and Ext(G,K)p ~ 

Ext(G, Kp). 

(L) Assume: K is P-Iocal-then Hom(Gp,K) ~ Hom(G,K) and Ext(Gp,K) ~ Ext(G,K). 

[An injective Zp-module is also injective as an abelian group.] 

FACT Let G be an abelian group-then V n ~ 1, Hn.(lp) : H,,(G) - H,,(Gp) is P-Iocalizing. In 

particular: G P-Iocal => H,,(G) P-Iocal (V n ~ 1) and conversely. 

[There are three steps: (1) G = Z/p"Z or G = Z (direct verification)j (2) G finitely generated 

(Kiinneth)j (3) G arbitrary (take colimits).] 

[Note: It is a corollary that for any abelian group G, Hn.(G; Zp) ~ H,,(Gpj Zp) (n ~ 1). This is also 

true if G is nilpotent (cf. Proposition 8) but is false in general. Example: Take G = Sa, P = {3}-then 

Ha(GiZp):f:. 0 & Ha(Gp;Zp) = 0.] 

PROPOSITION 1 Let f : X -t Y be either a Dold fibration or a Serre fibration such 

that V p E P, f is Z/pZ-orientable-then any two of the following conditions imply the 

third: (1) V k > 1, Hk(Y) is P-localj (2) V I ~ 1, H,(X"o) is P-local; (3) V n ~ 1, Hn(X) 
is P -local. 

[In the notation ofp. 4-44, take A = Z/pZ. By what has been said there, H.(-j A) = 

o for any two of Y, X 110' and X entails H. (-; A) = 0 for the third.] 

Application: Let 7r be a P-local abelian group-then V q ~ 1, Hq(7r,n) is P-local. 
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[As recorded above, this is true when n = 1. To treat the general case, proceed 

by induction, bearing in mind that the mapping fiber of the projection e K ( 1f', n + 1) -+ 

K ( 1f' , n + 1) is a K ( 1f' , n).) 

[Note: If 1f' is any abelian group, then the arrow of localization lp : 1f' -+ 1f'P induces a 

map Ip : K(?r, n) -+ K(?rp, n) and V q 2:: 1, Hq(lp) : Hq(?r, n) -+ Hq(?rp, n) is P-Iocalizing. 

In fact, Hq(lp) is P-bijective (modCp Whitehead theorem) and Hq(1f'p,n) is P-Iocal.) 

FACT Let X be a pointed connected CW space. Assume: X is simply connected-then V n ?: 1, 

lI'n(X) is P-Iocal iff¥ n ~ 1, Hn(X) is P-Iocal. 

[Pass from homotopy to homology via the Postnikov tower of X and pass from homology to homotopy 

via the Whitehead tower of X.] 

FACT Let {: be pointed connected CW spaces, f : X ~ Y a pointed continuous function. 

Assume: X & Y are simply connected-then ¥ n ~ 1, f,. : lI'n (X) - lI'n (Y) is P-Iocalizing iff ¥ n ?: 1, 

f,. : Hn(X) - Hn(Y) is P-Iocalizing. 

[Taking into account the preceding fact, this follows from the modCp Whitehead theorem.] 

If G and K are P-local abelian groups, then Hom(G, K), Ext(G, K), G ® K, Tor(G,K) 

are P-local and Zp-isomorphic to their Zp-counterparts, hence can be identified with them. 

LEMMA Suppose that P =1= 0 and let G be P-Iocal. Assume: Hom(G,Zp) = 0 & 
Ext(G,Zp) = O-then G = O. 

[To begin with, Hom(Tor(Q, G), Zp) EB Ext(Q ® G, Zp) ~ Hom(Q, Ext(G, Zp» EB 

Ext(Q, Hom(G, Zp» => Ext(Q ® G, Zp) = O. On the other hand, the condition Ext(G, Zp) 

= 0 implies that G is torsion free, so if G =1= 0, then Q ® G is a nontrivial vector space 

over Q : Q ® G ~ 1· Q (#(1) 2:: 1) => Ext(Q ® G, Zp) ~ Ext(Q, Zp)1 ~ RI (cf. p. 8-1). 

Contradiction. ) 

PROPOSITION 2 Let {; be path connected topological spaces, f : X -+ Y 

a continuous function-then f* : H*(Xj Zp) -+ H*(Y; Zp) is an isomorphism iff f* : 
H*(Y; Zp) -+ H*(X; Zp) is an isomorphism. 

[There is an exact sequence 

in homology and there is an exact sequence 
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in cohomology. Accordingly, it need only be shown that ii.( C'i Zp) = 0 iff ii·( C'i Zp) = 
O. Case 1: P = 0. Here, iin(C/iQ) ~ Hom(iin(C/iQ),Q) and the assertion is obvious. 

Case 2: P =I- 0. Since iin(CJjZp) ~ Hom(iin(C/iZp),Zp) EB Ext(Hn-1(C,iZP),Zp), 
it is clear that ii.(C,;Zp) = 0 :::} ii·(C/iZp) = 0, while if ii·(C,jZp) = 0, then 

V n, Hom(iin(C,iZP),ZP) = 0 & Ext(iin(C,jZp),Zp) =0, thus from the lemma, 

Hn(C/iZp) = 0.] 

PROPOSITION 3 Let {~ be path connected topological spaces, f : X -I> Y 

a continuous function-then f. : H.(Xi Zp) -+ H.(Yj Zp) is an isomorphism iff f. : 
H.(Xi Q) -I> H.(Yj Q) is an isomorphism and 'V pEP, f. : H.(Xi Z/pZ) -+ H.(Yi Z/pZ) 
is an isomorphism. 

[Introducing again the mapping cone, it suffices to prove that ii.(C,;Zp) 0 iff 

ii.(C'i Q) = 0 and 'V pEP, ii.(C'i Z/pZ) = O. Iffirst ii.(C'i Zp) = 0, then ii.(C'i Q) ~ 
Q 0 ii.(C,) ~ Q 0 (Zp 0 ii.(C,» ~ Q 0 ii(C,jZp) = 0 and because pEP :::} 
Zp 0 Z/pZ = Z/pZ, \f n, iin(C,;z/pZ) ~ iin(C,) 0 Z/pZ EB Tor(iin_1(C,),Z/pZ) ~ 
iin(C,) 0 (Zp 0 Z/pZ) EB Tor(iin- 1(C,), Zp 0 Z/pZ) ~ (iin(C,) 0 Zp) 0 Z/pZ EB 

Tor(Zp 0 iin-l(C,),Z/pZ)~iin(C/iZp) 0 Z/pZEBTor(iin- 1 (C/iZp),Z/pZ) =0. As 

for the implication in the opposite direction, ii. ( C Ii Z p) = 0 iff H. ( C,) is S p-torsion, so 

ii.(C'i Q) = O:::} ii.(C,) is torsion and 'V n, iin(C,; Z/pZ) = 0 :::} Tor(iin(C, ),Z/pZ) = 

O:::} iin(C,)(p) = 0 (p E P), i.e., ii.(C,) is Sp-torsion.] 

Application: Let {:;. be path connected topological spaces, f: X -+ Y a continuous 

function-then f. : Hn(X) -+ Hn(Y) is P-Iocalizing 'V n ~ 1 iff f. : Hn(Xj Q) -+ Hn(Yi Q) 

is an isomorphism \f n ~ 1 and \f pEP, f. : Hn(X; Z!pZ) -+ Hn(Yj Z/pZ) is an 

isomorphism 'V n ~ 1 and 'V p E P, Hn(Yj Z/pZ) = 0 'V n ~ 1. 

[Note: When P = fi, "P-Iocalizing" = "homology equivalence" and the last condition 

is vacuous.] 

FACT Let {: be path connected topological spaces, f : X - Y a continuous function. Assume: 

V n, {Hn(X) is finitely generated-then for P #- 0, f. : H.(Xj Zp) - H.(YjZp) is an isomorphism iff 
Hn(Y) 

V pEP, f. : H.(X; Z/pZ) - H.(Yj Z/pZ) is an isomorphism. 

The theory set forth below has been developed by a number of mathematicians and 

can be approached in a variety of ways. What follows is an account of the bare essentials. 
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A group G is said to be P-Iocal if the map {G -+ ~ is bijective V n ESp. GRp is 
g-+g 

the full subcategory of GR whose objects are the P-Iocal groups. On general grounds (cf. 

p. 0-23), GRp is a reflective subcategory of GR with reflector Lp : { ~~ -;;~Rp and 

arrow of localization I p : G -+ G p. 

[Note: H G is abelian, then the restriction of L p to AB "is" the L p introduced earlier.] 

Example: Fix P i= n-then no nontrivial free group is P-Iocal. 

EXAMPLE Let X be a pointed connected CW space-then 1r1 (X) and the 11''1 (X) )<I1r1 (X) (q ~ 2) 

{
OX-OX 

are P-Iocal itr V n ESp, the arrow is a pointed homotopy equivalence. 
(T - (Tn 

[For [S'1-1, OX] (no base points) is isomorphic to lrq(X) )<111'1 (X) (q ~ 2).] 

The kernel of Ip : G -+ Gp contains the set of Sp·torsion elements of G but IS 

ordinarily much larger. Definition: An element 9 EGis said to be of type S p if 3 a, bEG 

and n ESp : 9 = ab-1 & an = bn. The subset of G consisting of the elements of type S p 

is closed under inversion and conjugation and is annihilated by Ip. Proceeding recursively, 

construct a sequence {I} = Ao C Al C ... of normal subgroups of G by letting Ak+l/ Ak be 

the subgroup of G/ Ak generated by the elements of type Sp. Put Ap(G) = U Ak : Ap(G) 
k 

is a normal subgroup of G and it is clear that if / : G -+ K is a homomorphism of 

groups, then /(Ap(G» C Ap(K). On the other hand, G P-Iocal => Ap(G) = {I}, so 

kerlp :::> Ap( G). The containment can be proper since there are examples where Ap( G) 

is trivial but kerlp is not trivial (Berrick-Casacubertat ). However, for certain G, kerlp is 

always trivial, e.g., when G is locally free (cf. p. 10-6). 

Observation: Ap( G) = {I} iff V n ESp, the map { G -+ ~ is injective. g-+g 

EXAMPLE (Generically Trivial Groups) A group G is said to be generically trivial provided 

that V p, Gp = 1. Example: The infinite alternating group is generically trivial. The homomorphic 

image of a generically trivial group is generically trivial, so generically trivial groups are perfect (but not 

conversely as there exist perfect groups which are locally free (d. p. 5-64». Since a perfect nilpotent 

group is trivial, the only generically trivial nilpotent group is the trivial group and since a finite p-group 

is nilpotent, a perfect finite group is generically trivial. Example: Let A be a ring with unit-then ST(A) 

is generically trivial (Berrick-Millert ), hence E(A) is too (=> GL(r A) = E(r A) is acyclic and generically 

trivial (cf. p. 5-75 tr.». 

t SLN 1509 (1992), 20-29. 

t Math. Proc. Cambridge Philos. Soc. 111 (1992), 219-229. 
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[Note: In the same paper it is shown that if {Gn : n ~ 2} is a sequence of abelian groups, then there 

exists a generically trivial group G such that Hn(G) ~ Gn (n ~ 2).] 

EXAMPLE (Separable Groups) A group G is said to be separable provided that the arrow 

G - IT Gp is injective. The class of separable groups is closed under the formation of products and 
p 

subgroups, thus is the object class of an epireflective subcategory of GR (cf. p. 0-21). Every nilpotent 

group is separable as is every locally free group. 

FACT A group G is generically trivial iff every homomorphism I : G - K, where K is separable, 

is trivial. 

EXAMPLE Let X be a pointed connected OW space. Assume: X is acyclic and 1f} (X) is generi

cally trivial-then for every pointed connected OW space Y such that 1f} (Y) is separable, C(X, Zo; Y, YO) 

is homotopic ally trivial (d. p. 5-68). 

LEMMA Suppose that G is torsion-then G is P-local iff Gis Sp -torsion. 

[Necessity: Given 9 E G, 3 t : gt = e. Write t = nn (n ESp, n E Sp) : (gn)n = e => 
g"i' = e. Therefore G is Sp -torsion. 

Sufficiency: Fix n ESp. For each n E Sp, choose k, I : kn + In = 1, hence (i) 

Given 9 E G, 3 n E Sp : g"i' = e => 9 = gkn+ffi = (gk)n and (ii) Given gl, g2 E G, 

3 n E Sp : g"f = e = g"f, sO gf = g2 => gl = (gf)k(g"f)' = (g2)k(g"f)' = g2.] 

LEMMA Suppose that G is torsion-then Ip : G ~ Gp is surjective and kerlp is 

generated by the Sp-torsion elements of G. 

[Let A be the subgroup of G generated by the Sp-torsion elements of G. Since G is 

torsion, G / A is Sp -torsion, thus P-Iocal. In addition, for every homomorphism f : G ~ K, 

where K is P-local, f(A) = {1}.] 

FACT Let 1 - G' - G - Gil - 1 be a short exact sequence of groups. Assume: G' is P-Iocal 

and Gil is Sp -torsion-then G is P-Iocal. 

EXAMPLE Let X be a pointed connected OW space. Assume: 1f} (X) is Sp-torsion and V q ~ 2, 

1fq(X) is P-Iocal-then V n ESp, the arrow is a pointed homotopy equivalence. {
OX-OX 

(I'_(I'n 

FACT Let 1 - G' - G - Gil - 1 be a short exact sequence of groups. Assume: Gil is Sp

torsion-then the sequence 1 - G'p - G p - G'J> - 1 is exact. 
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EXAMPLE Let 1f' be the fundamental group of the Klein bottle--then there is a short exact 

sequence 1 - Z E9 Z - 1f' - Z/2Z - 1 so if 2 E P, there is a short exact sequence 1 - Zp E9 Zp -

1f'p - Z/2Z - 1 and Ip : 1f' - 1f'P is injective (but this is false if 2 ~ P). 

EXAMPLE (Finite Groups) Let G be a finite group-then Ip : G - Gp is surjective and 

ker Ip is the subgroup of G generated by the Sylow p-subgroups (p E P), so, e.g., if G is a p-group, 

{ 
G (p E P) 

Gp = _ . Therefore G is P-Iocal iff #(G) E Sp-
1 (p E P) 

FACT Let G be a finite group-then Gis P-Iocal iff V n ~ I, Hn(G) is P-Iocal. 

[Given a nontrivial subgroup KeG, the homomorphism Hn(K) - Hn(G) is nonzero for infinitely 

many n (Swant). Since Hn(G)::::; El1 Hn(G)(p), it follows that V pl#(G), Hn(G)(p) ¢ 0 for infinitely 
pl#(G) 

many n.] 

FACT Let G be a finite group-then Hl(1P) : H 1 (Gj Zp) - Hl (Gpi Zp) is bijective and H2(lp) : 

H2(GjZp) - H2(Gp;ZP) is surjective. 

[The short exact sequence 1 - ker Ip - G - Gp - 1 leads to an exact sequence H2(G;ZP)

H2(GpiZp) - Zp ® kerip/[G,kerip]- H1(GiZp) - Hl(Gp;Zp) - 0 in which the middle term is 

zero.] 

FACT Let G be a finite group-then V n ~ 1, Hn(lp) : Hn(G) - Hn(Gp) is P-localizing iffkerlp 

is S p-torsion. 

Application: Let G be a finite group. Suppose that V p &; V n ~ 1, Hn(/p) : Hn(G) - Hn(Gp) is 

p-Iocalizing-then G is nilpotent. 

[The Sylow subgroups of G are normal.] 

A subgroup K of a group G is said to be P-isolated if 'V 9 E G, 'V n E Sp : gn E 

K =} 9 E K. The intersection of a collection of P-isolated subgroups of G is P-isolated. 

Therefore every nonempty subset X eGis contained in a unique minimal P-isolated 

subgroup of G, the P-isolator of X, written Ip(G,X). To describe Ip(G, X), let Xl = X, 

11 = (Xl)' and define XHl, Ii+1 inductively by setting XH1 = {g : gn E Ii (3 n E Sp)}, 

IHI = (XHI)-then Ip(G,X) = UIi. Corollary: X conjugation invariant =} Ip(G,X) 
i 

normal. 

[Note: A P-isolated subgroup of a P-Iocal group is P-Iocal.] 

t Proc. Amer. Math. Soc. 11 (1960), 885-887. 
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Example: For any G, Gp = Ip(Gp,lp(G». 
[Note: More generally, if f : G -+ K is a. homomorphism of groups, then fp(Gp) = 

Ip(Kp,lp(f(G»). Corollary: f surjective:::} fp surjective.] 

EXAMPLE Fix a prime p-then Z/pooZ is isomorphic to IP{Q, Z)/Z. 

EXAMPLE Let F be a free group on n > 1 generators-then F/[F,F] ~ n· Z. By contrast, 

Baumslagt has shown that Fp/lp(Fp, [Fp, FpD ~ n'Zp, while Fp/[Fp, Fp1 ~ n'Zp EB E9 WJ·(Z/pOOZ).] 
pEP 

[Note: Since E9 WJ • (Z/pOOZ) is Sp-torsion, HI (Fp) is not· P-Iocal if P ¢ n. This example also 
pep 

shows that in GR, the operations G -+ G/[G,G] -+ (G/[G,G])p, G -+ Gp -+ Gp/[Gp,Gp] need not 

coincide.] 

FACT If G is a nilpotent group and if K is a subgroup of G, then {g : gn E K (3 n ESp)} is a 

subgroup of G, hence equals Ip(G, K). 

[Assuming that G is generated by the 9 such that for some n ESp, gn E K, one can argue inductively 

on d = nilG > 1 and suppose that V 9 E G, 3 n E Sp & h E r d- 1 (G), k E K : gn = hk. On the other 

hand, ®d([G,G]. K/[G,G]) -+ ®d(G/[G,G]) -+ r d- 1 (G), so 3 mE Sp : hm E K. But h is central, thus 

gnm = hmkm E K.] 

[Note: In particula.r, the set of Sp-torsion elements in a nilpotent group is a subgroup (cf. p. 5-54).J 

COMMUTATOR FORMULA Suppose that Ap(G) = {I}. Let {f be subgroups 

of G-then [K,L] = {I}:::} [Ip(G, K), Ip(G,L)] = {I}. 

[G' {x E Ip(G,K) h l' . h -1 Th·· t· ·al·f {x E I1(G,K) 
Iven yElp(G,L) ,t eCalmlst atxyx =y. ISIS rlVI 1 YEll(G,L) ' 

b . d t' . . th {x E IHl(G,K) . h {xn E Ii(G,K) (3 
so argue y m uc Ion on 't, assummg at y E IH1(G,L) WIt yn E Ii(G,K) n E 

Sp)-then (y-nxyn)n = y-nxnyn = xn :::} y-nxyn = X :::} xynx-l = yn :::} (xyx-1)n = 
yn :::} xyx-1 = y.] 

Application: Suppose that Ap(G) = {I}. Let gl,g2 be elements of G such that 

[g~l, g~2] = 1, where nl, n2 ESp-then [gb g2] = 1. 

LEMMA Suppose that Ap(G) = {I}. Let K be a P-isolated central subgroup of 

G-then Ap(GjK) = {I}. 

t Acta Math. 104 (1960), 217-303 (cf. 253-254 & 291-293). 
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[Consider an element of type Sp in G/K, say gK = (aK)(b-IK) & aRK = bRK 

(3 n ESp). So: a R = bRk (3 k E K) =? [aR,bR] = 1 =? [a,b] = 1 =? (ab-I)R E K =? ab- I E 

Ip(G,K) = K =? aK = bK.] 

TRANSMISSION OF NILPOTENCY Suppose that Ap(G) = {I}. Let K be a nilpo

tent subgroup of G-then Ip(G,K) is nilpotent with nillp(G,K) = nilK. 

[The assertion is obvious if K consists of the identity a;lone. Assume next that K is 

abelian and nontrivial: [K, K] = {I} =? [Ip(G, K), Ip(G, K)] = {I} =? Ip(G, K) is abelian 

and nontrivial. Induction hypothesis: The assertion is true whenever L is a nilpotent 

subgroup of H provided that Ap(H) = {I} and nilL :5 d - 1, where d = nilK > 1. Let 

Z be the center of K-then [K, Z] = {I} =? [Ip(G, K),Ip(G, Z)] = {I}, thus Ip(G, Z) is 

a P-isolated central subgroup of Ip(G,K), so by the lemma, Ap(Ip(G,K)/Ip(G,Z» = 
{I}. Now put X = K· Ip(G,Z) : II = XI is a group (XI = X) and Idlp(G,Z) :::::: 

K/K n Ip(G, Z) :::::: K/Z. Since nilK/Z = nilK -1, it follows that II is nilpotent with 

nilII = d. Write, as above, Ip(G,X) = Uli. Assume that Ii is nilpotent with nilli = d 
i 

Y i :5 io. Fix a well ordering of the elements of Xio+l : {xp : 0 :5 (J < a}. Let W")' be 

the subgroup of G generated by Iio and {xp : 0 :5 (J < "'{ }-then Iio+l = U W")' and the 
")' 

claim is that Y ",{, W")' is nilpotent with nil W")' = d, hence that Iio+1 is nilpotent with 

nillio+l = d. Consider WI : Iio/lp(G,Z) is a nilpotent subgroup of WI/lp(G,Z) with 

nil Iio / Ip( G, Z) = d - 1. Therefore the induction hypothesis implies that WI / Ip( G, Z) = 
Ip(Wdlp(G, Z),Iio/lp(G, Z» is nilpotent with nilWdlp(G,Z) = d-1. This means 

that WI is nilpotent with nil WI = d, which sets the stage for an evident transfinite 

recursion. Conclusion: Y i,Ii is nilpotent with nilli = d, i.e., Ip(G,X) is nilpotent with 

nillp(G,X) = d or still, Ip(G,K) is nilpotent with nillp(G,K) = d.] 

PROPOSITION 4: Let G be a nilpotent group-then G p is nilpotent and nil G p :5 
nilG. 

[In fact, Gp = Ip(Gp,lp(G» and transmission of nilpotency ensures that Gp is 

nilpotent with nilGp = nillp(G) :5 nil G.] 

Notation: NIL is the category of nilpotent groups and NILd is the category of nilpo

tent groups with degree of nilpotency :5 d. 

Thanks to Proposition 4, Lp respects NIL: G nilpotent =? Gp nilpotent, thus NILp, 

the full subcategory of NIL whose objects are the P-local nilpotent groups, is a reflective 

subcategory of NIL. More is true: L p respects NIL d. and there is a commutative diagram 
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NIVHl Lp NIVl+l --+ p 

T T (ohvious notation). 
NILd --+ NIL~ 

Lp 

FACT Let G be a group. Assume: G is locally nilpotent-then Gp is locally nilpotent. 

[Note: A group if said to be locally nilpotent if its finitely generated subgroups are nilpotent.] 

FACT Let G be a group. Assume: G is virtually nilpotent-then Gp is virtually nilpotent. 

[Note: A group is said to be virtually nilpotent if it contains a nilpotent subgroup of finite index.] 

Given a set of primes P, a group G is said to be residually finite P if V 9 =F e in G there 

is a finite Sp -torsion group Xg and an epimorphism 4>g : G -+ Xg such that 4>g(g) =F e. 

[Note: When P = n, the term is residually finite. Example: Q is not residually finite 

but Zp (P =F 0) is residually finite P V pEP.] 

Examples: (1) (Iwasawa) Every free group is residually finite p for all primes Pi (2) 

(Hirsch) Every polycyclic group is residually finite (::::} every finitely generated nilpotent 

group is residually finite); (3) (Gruenberg) Every finitely generated torsion free nilpo

tent group is residually finite p for all primes Pi (4) (Hall) Every finitely generated 

abelian-by-nilpotent group is residually finite. 

[Note: Proofs of these results can be found in Robinson t.] 

LEMMA Let G be a finitely generated nilpotent group. Assume: All the torsion in 

Gis Sp-torsion, where P =F 0-then G is residually finite P. 

[Fix 9 =F e in G. Case 1: 9 ¢ Gtor . According to Gruenberg, V p, G / Gtor is residually 

finite p, so a fortiori G/Gtor is residually finite P. Case 2: 9 E Gtor • According to 

Hirsch, there is a finite nilpotent group Xg and an epimorphism 4>g : G -+ Xg such that 

4>g(g) =F e. Write Xg = nXg(p),Xg(p) the Sylow p-subgroup of Xg' Let 7rp be the 
p 

projection Xg -+ n Xg(p) and consider the composite 7rp o4>g.] 
pEP 

PROPOSITION 5 Let G be a nilpotent group-then lp : G -+ G p is P-bijective. 

[Since Gp is nilpotent, {gp : gp E Ip(G) (3 n ESp)} equals Jp(Gp,lp(G» (c!. p. 

8-12) or still, Gp, thus lp is P-surjective. To verify that lp is P-injective, suppose first 

that Pis nonempty. Because the kernel of Ip contains the Sp-torsion, one can assume that 

t Finiteness Conditions and Generalized Soluble Groups, vol. II, Springer Verlag (1972); see also 

Magnus, Bull. Amer. Math. Soc. 15 (1969), 305-316. 
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all the torsion in Gis Sp -torsion. The claim in this situation is that lp is injective. H to 

begin with G is finitely generated, then on the basis of the lemma, there is an embedding 

G -t n X"~ where each Xg is a finite Sp -torsion group, hence P-Iocal (cf. p. 8-10). 
g#-e 

Therefore n Xg is P-Iocal, so lp is necessarily injective. To see that lp is injective in 
g#-e 

general, express G as the colimit of its finitely generated subgroups Gi and compute the 

kernel of G -t G p as the coli mit of the kernels of the Gi, -t Gi,P' There remains the 

possibility that P is empty. To finesse this, choose P : P::F 0 & P ::F 0 and note that the 

arrow (Gp)7> -t Ge (= GQ) is an isomorphism which implies that Gtor = kerlQ.] 

Application: Every torsion free nilpotent group embeds in its rationalization. 

LEMMA Let f : G -t K be a homomorphism of nilpotent groups. Assume: f is 

injective (surjective)-ihen fp : Gp .:..... Kp is injective (surjective). 

[It will be enough to establish injectivity (see p. 8-12 for surjectivity). Suppose that 

fp(gp) = e (gp E Gp). Since lp is P-surjective, 3 g E G & n E Sp : lp(g) = grp => 
lp(f(g)) = e => 3 m E Sp : f(g)m = e => gm = e => g E kerlp => grp = e => gp = e, Gp 

being P-Iocal.] 

PROPOSITION 6 Lp: NIL -t NILp is exact, i.e., if 1 -t G' -t G -t Gil -t 1 is a 

short exact sequence in NIL, then 1 -t G'p -t G p -t G'P -t 1 is a short exact sequence in 

NILp. 

[It is straightforward to check that im( G'p -t G p ) = ker( G p -t G'P).] 

LEMMA Let G be a nilpotent group. Suppose that K is a central subgroup of 

G-then Kp is a central subgroup of Gp. 

[In fact, [G,K] = {I} => [lp(G),lp(K)] = {I}, so by the commutator formula, 

[Ip(Gp,lp(G)), Ip(Gp,lp(K))] = {I} => [Gp,Kp] = {I}.] 

PROPOSITION 1 Lp: NIL -t NILp preserves central extensions. 

LEMMA Let G1 -t G2 -t Ga -t G4 -t Gs be an exact sequence of nilpotent groups. 

Assume: {g:: g: are P-Iocal-then Ga is P-Iocal. 

Application: Let 1 -t G' -t G -t Gil -t 1 be a short exact sequence of nilpotent 

groups. Assume: Two of the groups are P-Iocal-then so is the third. 
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EXAMPLE Let X be a pointed connected CW space. Assume: X is nilpotent and 'Itt q ;;::: 1, 1r,(X) 

is P-Iocal-then 'Itt n ESp, the arrow is a pointed homotopy equivalence. {
nx-+nx 
(/' -+ (/'n. 

[There is a split short exact sequence 1 -+ 1I"q(X) -+ 1rq(X) >411"1 (X) -+ 11"1 (X) -+ 1, where 1rq(X) >4 

1rl (X) (q ;;::: 2) is nilpotent (d. p. 5-56), hence P-Iocal.] 

I£ I, 9 : G -+ K are homomorphisms of nilpotent groups such that 'Itt p, 1'1' = g'P' then I = g. In 

other words, morpnisms in NIL (as in AD) are determined by their localizations. For finitely generated 

objects, the situation is different. Definition: Given a finitely generated nilpotent group G, the genus gen 

G of G is the conglomerate of isomorphism classes of finitely generated nilpotent groups K such that 'Itt p, 

Gp :::::! Kp. By contrast to what obtains in AD. it can happen that #(gen G) > 1 although always #(gen 

G) < w (Pickelt ). 

[Note: I£ G is a finitely generated abelian group and if K is a finitely generated nilpotent group such 

that V p. G'P :::::! K'P' then G:::::! K(:::> gen G = {[G]}). 

FACT Let G be a nilpotent group-then two elements of G are conjugate iff their images in every 

G'P are conjugate. 

Let G be a nilpotent group-then one may attach to G a sink {rp : Gp --t GQ} and a 

source {Ip : G --t Gp}, where V {~ , rp olp = rq olq. 

LEMMA Let 1 --t G' --t G --t Gil --t 1 be a short exact sequence of nilpotent 

groups. Assume: The source { 1~: ~ g:, : c;JJ} is the multiple pullback of the sink 

{ {
{rp ~ GGr, --t GG~}} -then the source {Ip : G --t Gp} is the multiple pullback of the sink 
rp. p --t Q 

{rp : Gp --t GQ}. 

[The verification is a diagram chase, using the exactness of 1 --t G~ --t Gp --t G~ --t 1. 

Precisely: Given elements gp E Gp & gQ E GQ : V p, rp(gp) = gQ, 3! 9 E G : V p, 

Ip(g) = gp.] 

FRACTURE LEMMA Suppose that G is a finitely generated nilpotent group-then 

the source {Ip : G --t Gp} is the multiple pullback of the sink {rp : Gp --t GQ}. 

[Proceed by induction on nilG. The assertion is true if nilG ~ 1 (cf. p. 8-4). 

Assume therefore that nil G > 1 and consider the short exact sequence 1 --t r 1 (G) --t G --t 

t 7\-aRS. Amer. Math. Soc. 160 (1971), 327-341; see also Mislin, SLN 418 (1974), 103-120 and 

Warfield, J. Pure Appl. Algebra 6 (1975), 125-132. 
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G /r1 (G) ~ 1 of nilpotent groups. Since G is finitely generated, r 1 (G) is finitely generated 

(cf. p. 5-54), as is G/rl(G). Furthermore, nilrl(G) < nilG and niIG/rl(G) = 1, thus 

the lemma is applicable.] 

Let f : G ~ K be a homomorphism of nilpotent groups-then f is said to be 

P-localizing if 3 an isomorphism q, : Gp ~ K such that f = q, 0 lp (cf. p. 0-30). 

LEMMA Let f : G ~ K be a homomorphism of nilpotent groups-then f is P

localizing iff f is P-bijective and K is P-Iocal. 

[Note: A homomorphism f : G ~ K of nilpotent groups is P-bijective iff fp : Gp ~ 

Kp is bijective (cf. Proposition 5).] 

FACT Let 
(il --+ G2 --+ G3 --+ G4 --+ G6 

Kl --+ K2 --+ Ka --+ K4 --+ K6 

he a commutative diagram of nilpotent groups with exact rows. Assume: It, h , f 4.16 are P-Iocalizing

then fa is P-Iocalizing. 

PROPOSITION 8 Let G be a nilpotent group-then 'if n ~ 1, Hn(lp) : Hn(G) ~ 
H n (G p) is P-Iocalizing. 

[This is true if nil G ::5 1, so argue by induction on nil G > 1. There is a commutative 

diagram 
1 --+ CenG --+ G --+ G/CenG --+ 1 

! ! ! 
·1 --+ (CenG)p --+ Gp --+ (G/CenG)p --+ 1 

of central extensions (cf. Proposition 7) and a morphism {E;,q ~ Hp( G /Cen G; Hfi Cen G»} 
~ {E;,q ~ Hp((G/Cen G)Pi Hq((Cen G)p»} ofLHS spectral sequences. SincenilCenG ::5 

1 and nilG/CenG::5 nilG -1, it follows from the induction hypothesis and the universal 

coefficient theorem that the arrow E;,q -.+ E;,q is P-Iocalizing (p + q > 0). However, the 

homology groups attached to a chain complex of P-Iocal abelian groups are P-Iocal (cf. p. 

8-5), thus this conclusion persists through the spectral sequence and in the end, it is seen 

that the arrow E~q ~ EC;:q is P-localizing (p + q > 0). Fix now an n ~ 1. Consider the 

commutative diagram 

o --+ Hp-1,q+l --+ Hp,q --+ E~q --+ 0 

! ! ! 
o --+ H p-l,q+l --+ H p,q --+ EC;:q --+ 0 
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where p + q = n-then the obvious recursion argument allows one to say that the arrow 

Hp,f -+ H P,f is P-Iocalizing, therefore Hn(lp) : Hn(G) -+ Hn(Gp) is P-Iocalizing.] 

Application: Let G be a nilpotent group-then Y n ~ 1, Hn(G)p ~ Hn(Gp). 

FACT Suppose tha.t G a.nd K are finitely generated nilpotent groups. Assume: gen G = gen K

then V n ;?: I, H .. (G) ~ H .. (K). 

[The point here is that H .. (G) and H .. (K) are finitely generated (cr. p. 5-54).] 

PROPOSITION 9 Let G be a nilpotent group. Assume: Y n ~ 1, Hn(G) is P-local

then G is P -local. 

[According to Proposition 8, Hn(lp) : Hn(G) -+ Hn(Gp) is P-Iocalizing or still, is an 

isomorphism, Hn(G) being P-Iocal. But this means that lp : G -+ Gp is an isomorphism 

(cf. p. 5-55).] 

PROPOSITION 10 Let I : G -+ K be a homomorphism of nilpotent groups-then 

I is P-Iocalizing iff Y n ~ 1, Hn(f) : Hn(G) -+ Hn(K) is P-localizing. 

[Necessity: By definition, 3 an isomorphism ¢> : Gp -+ K such that I = ¢> 0 lp, so 

Hn(f) = Hn(¢» 0 Hn{lp), where Hn(¢» is an isomorphism and Hn(lp) is P-localizing (cf. 

Proposition 8). 

Sufficiency: Since Y n ~ 1, Hn(K) is P-Iocal, Proposition 9 implies that K is P-Iocal, 

hence by universality, 3 a homomorphism ¢> : G p -+ K such that 1= ¢>o lp. Claim: ¢> is an 

isomorphism. In fact, Hn(f) = Hn(¢»oHn(lp), where Hn(f) and Hn(lp) are P-Iocalizing, 

thus Y n ~ 1, Hn(¢» is an isomorphism, from which the claim (cf. p. 5-55).] 

[Note: Similar considerations show that if I : G -+ K is a homomorphism of nilpotent 

groups, then I is P-bijective iffY n ~ 1, Hn(f): Hn(G;Zp) -+ Hn(K;Zp) is bijective.] 

PROPOSITION 11 Let I : G -+ K be a homomorphism of nilpotent groups. Assume: 

I is P-Iocalizing-then Y i > 0, ri(f) : ri(G) -+ riCK) is P-Iocalizing. 

[On the basis of the commutative diagram 

1 ~ ri(G) ~ G ~ Gjri(G) ~ 1 

1 1 lli 
1 ~ riCK) ~ K ~ Kjri(K) ~ 1 

it need only be shown that Y i, the induced map Ii is P-Iocalizing. This can be done by 

induction on i. Indeed, the assertion is trivial if i = 0 and a consequence of Proposition 10 

if i = 1, so to pass from i to i + 1, it suffices to remark that the arrow ri(G)jrHl(G) -+ 

ri(K)jri+l(K) is P-Iocalizing (inspect the proof of Proposition 14 in §5).] 
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Application: Let G be a nilpotent group-then V i ~ 0, r i (G) p R:: r; (G p ). 

LEMMA Let { ~ :: ~ : ~ be homomorphisms of nilpotent groups-then f : G x K 

H -+ Gp XKp Hp is P-Iocalizing. 

[For J is clearly P-injective, being the restriction to G x K H of the P-bijection lp x lp : 

G x H -+ Gp x Hp. To show that f is P-surjective, take (gp,hp) E Gp XKp Hp, so 

¢p(gp) = 1jJp(hp). Choose {~~ ~ & {~ E Sp : {~~ :=~~j => lp 0 ¢(gR) = 
¢p 0 'p(gR) = ¢p(gpR) = 'l/>p(hrpR) = 1jJp 0 'p(hm) = lp 0 'I/>(hm) => ¢(gR) = 'I/>(hm)k (k E 
kerlp). Choose t E Sp: kt = e. Fix d: nilK < a-then ¢(gR)"1 = (1jJ(hm)k)ttl = 1jJ(hm)ttl 

tl tl tl tl tl ttl 
(cf. p. 5-54)=> (gRt ,hmt )EGxKH=>(gp,hp)mRt =J(gRt ,hmt )=>(gp,hp)mR E 

imJ, i.e., J is P-surjective. Since Gp xKp Hp is necessarily P-Iocal, it follows that J is 

P -localizing.] 

LEMMA Let { ~ :: ~ : ~ be homomorphisms of nilpotent groups-then f : eq( ¢, '1/» 

-+ eq( ¢ p, 1jJ p) is P-Iocalizing. 

[Imitate the argument used in the preceding proof.] 

PROPOSITION 12 Lp: NIL -+ NILp preserves finite limits. 

[Combine the foregoing lemmas.] 

{
G1 

EXAMPLE Let G be a nilpotent group; let be subgroups of G-then (G/nG")p :::::: G'pnGj.. 
Gil 

FACT Let G be a nilpotent group, {g~} a subset of G. Fix n E N. Assume: (1) The set {g~[G, GJ} 

generates G/[G, GJ; (2) Each g~ is a product of nth powers-then the map { G - G is surjective. 
g_gfl 

[ri(G)/ri+l(G) has nth roots (consider the arrow ®i+l(G/[G,G]) _ ri(G)/ri+l(G», thus G/ 

ri+l (G) has nth roots (consider the central extension 1 _ r'(G)/ri+1 (G) _ G/ri+1 (G) _ G/ri(G) _ 

1).] 

EXAMPLE Let G be a nilpotent group; let K be a subgroup of G. Write norGK for the normal 

closure of Kin G, norGpKp for the normal closure of Kp in Gp-then (norGK)p :::::: norGpKp. 

{

G1 

EXAMPLE Let G be a nilpotent group; let be subgroups of G. Write (G/,G") for the 
Gil 

subgroup of G generated by G' U Gil, (G'p, Gp ) for the subgroup of G p generated by G'p U Gp-then 

(G/, Gil) p :::::: (G'p, Gp). 
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Notation: Given groups { ~:, , the kernel car( G', Gil) of the epimorphism G' * Gil -+ 

G' X Gil is the cartesian subgroup of G' * Gil. It is freely generated by {[g', gil] : g' =F e 

{
G' & gil =F e}. If Gil are subgroups of G, then V G( car( G' , Gil» = [G', Gil], where V G : 

G * G -+ G is the folding map. 

Suppose that {~:, are in NILd. Put G' *d Gil = G' * Gil /rd( G' * G")-then G' *d Gil 

is the coproduct in NILd. Call card(G', Gil) the kernel of the epimorphism G' *d Gil -+ 

G' X Gil, so card(G',G") ~ car(G',G")/rd(G' * Gil). 

FACT NIL" is a reflective subcategory of GR, hence is complete and cocomplete. 

[Note: NIL is finitely complete but not finitely cocomplete.] 

G Gp 

FACT Let G be a nilpotent group-then the commutative diagram 1 1 is simulta-

Gp ---+ GQ 

{ 
Gp -10 GQ {P-bijection 

neously a pullback square and a pushout square in NIL and the arrow is a . 
G p -10 GQ P-bijection 

{ 
G' 

PROPOSITION 13 Let G be a nilpotent group; let G" be subgroups of G-then 

Ip: G -+ Gp restricts to an arrow f: [G',G"] -+ [Gp , Gp] which is P-localizing. 

[Trivially, f is P-injective. To check that f is P-surjective, look first at the commu

tative diagram 

1 ---+ card ( G' , Gil) 

1 
1 ---+ card(Gp, Gp) 

G' *d Gil 

1 
G' * G" pdp 

G' x Gil 1 

1 
Gp xGp 1 

it being assumed that nil G :5 d. Since L p preserves colimits, (G' *d G") p ~ (Gp *d 
Gp)p (cf. p. 0-20). -Therefore the arrow G' *d G" -+ Gp *d Gp is P-bijective, thus the 

same is true of the arrow card(G', Gil) -+ card(G'p, Gp). Consequently, upon forming the 
card(G',G") ---+ [G',G"] -

commutative square 1 11 in which the horizontal arrows are 

card(Gp,Gp) ---+ [G'p,Gp] 
the epimorphisms induced by the folding maps, it is seen that f is P-surjective. Turning 

to the verification that [G'p, Gp] is P-local, there is no Sp-torsion and Y n ESp, G'p *dGp 
has nth roots (consider generators (cf. p. 8-19», so Y n ESp, card(G'p, Gp ) has nth roots 

and this suffices.] 
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Application: Let G be a nilpotent group; let {g:, be subgroups of G-then [G' , G"] p R::l 

[G~, G~J. 

Let G and 7r be groups. Suppose that G operates on 7r, i.e., suppose given a homo

morphism X : G -+ Aut 7r-then X determines a homomorphism Xp : G -+ Aut 7rp, thus G 

operates on 7r p. 

FACT If G operates on 7r and if 7r is nilpotent, then r~(7r)p ~ r~p (7rp) (here the notation is that 

of p. 5-55). In particular: 7r x-nilpotent ~ 7rp xp-nilpotent. 

[Use induction and Proposition 13, so that [7r,r~(7r)]p ~ [7rp,r~(7r)p] ~ [7rp,r~p(7rp)],] 

Given groups G and 7r, let Homuu(G, Aut 7r) be the subset of Hom(G, Aut 7r) consisting 

of those X such that 7r is x-nilpotent. 

[N ote: In order that Homuil (G, Aut 7r) be nonempty, it is necessary that 7r be nilpotent 

(d. p. 5-55).1 

Suppose that G and 7r are nilpotent. 

(nih) The arrow Hom(G,Aut7r) -+ Hom(G,Aut7rp) restricts to an arrow 

Homuu(G, Aut 7r) -+ Homuu(G, Aut 7rp). 

[For, as noted above, 7r X-nilpotent::} 7rp XP-nilpotent.] 

(nih) There is an arrow Homuu(G,Aut7r) -+ Homuu(Gp,Aut7rp) that sends 

X to Xp, where XP 0 Ip = XP· 

[The semi direct product TI = 7r>4 xG is nilpotent (d. p. 5-56). Localize the split 

short exact sequence 1 -+ 7r -+ TI -+ G -+ 1 and consider the associated action of G p on 

7rp : TIp = 7rp>4xp Gp.] 

(nil.s) The arrow Hom( G p, Aut 7rp) -+ Hom( G, Aut 7rp) restricts to an arrow 

Homuu(Gp,Aut7rp) -+ Homuu(G,Aut7rp) which is bijective. If n is its inverse, then V x, 
n(xp) = Xp· 

[Implicit in the construction of n is the relation r~p (7rp) R::l r~p (7rp ).1 

FACT Suppose that G operates nilpotently on 7r and 7r is abelian-then for any half exact functor 

F: AB - AB, G operates nilpotently on F1r. 

EXAMPLE Fix a path connected topological space X and let 7r be a. nilpotent' G-module-then 

V n ~ 0, Hn(X; 7r) is a. nilpotent G-module. 

PROPOSITION 14 Let G be a nilpotent group, M a nilpotent G-module-then 

V n ~ 0, the arrow Hn(G; M) -+ Hn(Gp; Mp) is P-loca.lizing. 
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[From the definitions, Ho(GjM) ~ M/ri(M) and Ho(Gp;Mp) ~ Mp/r~p(Mp). 

Accordingly, since Lp is exact, (M/ri(M»p ~ Mp/ri(M)p ~ Mp/rip(Mp) ~ 

Mp/r~p (Mp), thereby dispensing with the case n = o. Assume henceforth that n > 1. 

Matters are plain when nilxM = O. If nilxM = 1, i.e., if G operates trivially on M, then G p 

operates trivially on Mp and one can apply the universal coefficient theorem, in conjunc

tion with Proposition 10, to derive the desired conclusion. Arguing inductively, suppose 

that nilxM ~ d (d > 1) and that the assertion holds for operations having degree of nilpo

tency ~ d - 1. Consider the short exact sequence 0 .....,. ri(M) -+ M .....,. Mlri(M) .....,. o. 
The degree of nilpotency of the induced action of G on riC M) is ~ d -1, while that of G on 

M/ri(M) is ~ 1. Comparison of the long exact sequence··· -+ Hn+1(GjM/ri(M» -+ 

Hn(G;ri(M» .....,. Hn(G;M) .....,. Hn(G;M/ri(M» -+ Hn-1(G;ri(M» -+ ... with its 

local companion terminates the proof.] 

Application: Let G be a nilpotent group, M a nilpotent G-module-then 't/ n 2: 0, 

Hn(G;M)p ~ Hn(Gp;Mp). 

Given a group G, G-ACT is the category whose objects are the groups on which G 

operates to the left and whose morphisms are the equivariant homomorphisms. An object 

1T' in G-ACT is really a pair (X,1T'), where X : G -+ Aut1T'. One says that 1T' is P-Iocal 

or that G operates P-Iocally on 1T' if't/ n E Sp & 't/ 9 E G, the map 1T' -+ 1T' that sends 

a to a(x(g)a)···(X(gn-l)a) is bijective, so 1T' is necessarily a P-Iocal group. Denote by 

G-ACT p the full subcategory of G-ACT whose objects are the P-Iocal1T'-then G-ACT p 

is a reflective subcategory of G-ACT with reflector LG,p. This can be seen by applying 

the reflective subcategory theorem. Thus let FG be the free G-group on one generator *, 
i.e., the free group on the symbols g. * (g E G) with the obvious left action. Write SG,P 

for the set of G-maps { FG -+ nF.(G) (n E Sp), where p~( *) = *(g. *) ... (gn-l . *). Working 
* -+ Pg * 

through the definitions, one finds that Ob G-ACTp = Sa p. , 
Example: 1T'>4xG is a P-Iocal group iff G operates P-Iocally on 1T' and G is a P-Iocal 

group. 

[Note: It is a corollary that if Gis Sp -torsion, then every P-Iocal group in G-ACT is 

actually in G-ACTp. Proof: Consider the short exact sequence 1 -+ 1T' -+ 1T'>4xG -+ G -+ 1 

and quote the generality on p. 8-10.] 

FACT Let J : G - K be a. homomorphism of groups-then the functor r : K-ACT - G-ACT 

has a. left adjoint J. : G-ACT - K-ACT. 
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11" ~ 1I"*G 

[Let {:G be the normal closure of 11" in {11" * G . There are pushout squares 1 
1I"K 1I"*K 1 

* ~ G 
11" ~ 1I"*K 

1 1 ' short exact sequences 1 - 1fG - 11" * G - G - 1, 1 - 1fK - 11" * K - K - 1, 

* ~ K 
1I"*G ~ G 

and a commutative diagram id.,l 1'. Let 1I"x,G be the normal closure in 11" * G of the words 

1I"*K ~ K 
gag- t (x(g)a)-t, 1(1I"x.G) the normal closure in 11" * K of the words id * l(gag-1 (x(g)a)-t )-then 1I"x.G 

is a normal subgroup of 1fG, the quotient 1fG/1I"x,G is equivariantly isomorphic to 11", and 1(1I"x,G) C 1fK. 

Definition: 1.(11") = 1fK/f(1I"x,G), the action of K being conjugation. Note that the arrow 11" - r 1.(11") is 

equivariant.] 

EXAMPLE For any homomorphism I: G - K of groups, the composite LK,P 0 I. is a functor 

G-ACT - K-ACT - K-ACTp. Specialize and take K = Gp, 1 = Ip. Given 11" in G-ACT, form 

1I">l xG-then its localization (1I">lxG)p is isomorphic to a semidirect product ?>lGp, and? can be 

identified with LGp,p olp,.(1I"). 

Given a group G, a P-Iocal G-module is a G-module on which G operates P-Iocally. 

Every P-Iocal G-module is a P-Iocal abelian group. 

[Note: If (Z[GDsp is the localization of Z[G] at the multiplicative closure of the 

l+g+ ... +g",-1 (n ESp), then the P-Iocal G-modules are the (Z[G])sp-modules. When 

G is trivial, (Z[G])sp reduces to Zp.] 

PROPOSITION 15 Suppose that G is Sp-torsion-then every P-Iocal G-module is 

trivial. 

[In Z[G], consider the identity g'" - 1 = (9 - 1) (1 + 9 + ... + 9"'-1 ).] 

FACT Let 0 - M' - M - Mil _ 0 be a short exact sequence of G-modules. Assume: Two of 

the modules are P-local-then so is the third. 

EXAMPLE Suppose that M is a P-Iocal G-module and N is a nilpotent G-module-then M®N, 

Tor(M, N), Hom(N, M), Ext(N, M) are P-local G-modules. 

FACT Let G - 11" be a homomorphism of groups-then every P-Iocal 1I"-module is a P-Iocal G

module. 
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EXAMPLE Suppose that 1 - G' - G _ Gil _ 1 is a central extension of groupe. Let M be a 

P-local G-module-then V n ~ 0, the action of Gil on H n (G'; M) and Hfl (G'; M) is P-local. 

Given a group G, a P[G]-module is a P-local Gp-module. Every P[G]-module is a 

P-local G-module via Ip : G -+ G p. 

[Note: A Gp-module M is a P[G]-module iff the corresponding semi direct product 

M>4Gp is a P-local group (d. p. 8-22).] 
Example: Suppose that G is nilpotent. Let M be a nilpotent G p-module which is 

P-local as an abelian group-then M is a P[G]-module. 

FACT Let M be a P[G]-module-then HO(Gp;M) = HO(G;M), i.e., the Gp-invariants in M are 

equal to the G-invariants in M, 

[Let m E M G , Define homomorphisms 4>,.p : Gp - M>4G p by the rules 4>(g) = (g. m - m,g), 

.p(g) = (0, g) : 4> 0 lp = .p 0 lp ~ 4> = .p, M>4Gp being P-Iocal, i.e., m E MGP.] 

PROPOSITION 16 Let G be a nilpotent group, M a P[G]-module-then 'V n > 0, 

Hn(G;M) ~ Hn(Gp;M). 

[It suffices to treat the case of an abelian G. There are short exact sequences 0 -+ 

kerlp -+ G -+ im lp -+ 0, 0 -+ im Ip -+ G p -+ cokerlp -+ 0 and associated LHS 

spectral sequences. Since kerlp ·is Sp-torsion, Hq(kerlp) E Cp (q > 0). But the action 

of ker Ip on M is by definition trivial, and as an abelian group, M is P-local, thus the 

universal coefficient theorem implies that Hq(ker lpj M) = 0 (q > 0). So, 'V n ~ 0, 

Hn(G; M) ~ Hn(imlpjM). On the other hand, from the above, the action of cokerlp on 

the Hq(imlpiM) is P-local, hence trivial (d. Proposition 15). Appealing once again to 

the universal coefficient theorem, it follows that Hp(cokerlpi Hq(imlpi M)) = 0 (p> 0). 

So, 'V n ~ 0, Hn(imlp;M) ~ Hn(Gp;M).] 

FACT Let G be a nilpotent group, M a P[G]-module-then V n ~ 0, Hn(Gp;M) ~ Hn(G;M). 

EXAMPLE The preceding result can fail if M is not a P[G]-module. Thus fix P:F U and take 

G = Z : H2(Z:Q[Zp]) = 0 (since Z has cohomological dimension one) but H2(Zp:Q[ZpD :F 0 (cr. p. 

8-1). 

FACT Let G be a finite group-then kerlp is Sp-torsion iff V n ~ 0, Hn(G; M) ~ Hn.(GpjM), 

where M is any P[G]-module. 

There is another reflective subcategory of GR that one can attach to a given Pen 
whose definition is homological in character. The associated reflector agrees with Lp on 

NIL but differs from Lp on GR. 
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COLIMIT LEMMA Let C be a co complete category with the property that there 

exists a set So C Ob C such that each object in C is a filtered colimit of objects in So. 

Let F : C --+ SET. be a functor which preserves filtered colimits-then there exists a set 

Ko C ker F such that each X E ker F is a filtered colimit of objects in Ko. 

[Note: As the notation suggests, ker F = {X : FX = * }.] 

Let A be an abelian group-then a homomorphism f : G --+ K of groups is said to 

be an HA-homomorphismif f.: H 1 (GjA) --+ H 1(K;A) is bijective and f.: H2(G;A)--+ 
H 2(K;A) is surjective. Example: An HZ-homomorphism of nilpotent groups is an iso

morphism (cf. p. 5-55). 

(HA-Loca.lization) Let SHA C MorGR be the class of HA-homomorphisms

then SIiA is the object class of a reflective subcategory GRHA of GR. The reflector 

LHA: { ~~ -;;~RHA is ca.lled HA-Iocalization and the objects in GRHA are ca.lled the 

H A-local groups. 

[In order to apply the reflective subcategory theorem, it suffices to exhibit a set So C 

SHA: st = SftA' For this purpose, put C = GR(--+) (R:l [2,GR]) and let F: C --+ SET. 
be the functor that sends f : G --+ K to kerl ED coker I ED coker2' where kerl is the kernel 

of f. : HI(G; A) --+ HI(K; A) and cokeri is the cokernel of f. : Hi(G; A) --+ Hi(K; A) 

(i = 1,2). Owing to the colimit lemma, there exists a set So C SHA such that each 

element of SHA is a filtered colimit of elements in So, so st = SftA'] 

[Note: In general, the containment SHA C SIi* is strict (see below).] 

When A = Zp, the "Z" is dropped from the notation, thus one writes SHP for the 

class of HP-homomorphisms and LHP: {~~ -;;~RHP for the associated reflector, the 

objects in GRHP then being referred to as the HP-Iocal groups. Example: Every abelian 

P-Iocal group is H P-Iocal. 

[Note: In the two extreme cases, viz. P = 0 or P = H, H P is replaced by HQ or 

HZ.] 

PROPOSITION 17 Every H P-Iocal group is P-Iocal. 

[The homomorphisms { ~ :: (n ESp) are H P-homomorphisms, thus S P S H P => 

Sftp = ObGRHP C ObGRp = S~.] 

Consequently, there is a natural transformation Lp --+ LH p. 

[Note: For any G, the arrow of loca.liza,tion I P : G --+ G P is an H P -homomorphism 

(cf. p. 9-22). As regards lHP : G --+ GHP, it too is an HP-homomorphism (cf. p. 9-23 

if.), although a priori it can only be said that lHP E SIi~.] 
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PROPOSITION 18 Let f : G -t K be an H P-homomorphism-then V i ~ 0, the 

induced map (Gjri(G»)p -t (Kjri(K»p is an isomorphism. 

[Taking into account Propositions 6 and 8, one has only to repeat the proof of Propo

sition 14 in §5.] 

LEMMA Let 1 -t G' -t G -t Gil -t 1 be a central extension of groups. Assume: G' 
K -4- G 

is P-Iocal-then in any commutative diagram 11 1 of groups, where f : K -t L 
L -4- Gil 

K 
is an H P-homomorphism, there is a unique lifting 11 

L 
commutative. 

--+ Gil 

rendering the triangles 

[Suppose that {! are liftings and ). : L -t G' is a homomorphism such that </>(1) = 

"p(I»).(I) (I.E L). Since). 0 f is trivial and Zp ® (Kj[K, KD ~ Zp ® (Lj[L, LD, it follows 

that). is trivial, hence </> = "p, which settles uiuqueness. Existence can be established by 

passing to Eilenberg-MacLane spaces and using obstruction theory (cf. p. 8-38).] 

PROPOSITION 19 Let 1 -t G' -t G -t Gil -t 1 be a central extension of groups. 

Assume: G' is P-Iocal and Gil is H P-Iocal-then G is H P-Iocal. 

[The claim is that f .1 G for every HP-homomorphism f : K -t L. This, however, is 

obviously implied by the lemma.] 

[Note: Changing the assumption to Gil is P-Iocal changes the conclusion to G is 

P-Ioc.al (but, of course, the proof is different).] 

Application: If G is nilpotent, then Gp ~ GHP and LplNIL ~ LHP!NIL. 

[Note: It is not necessary to use Proposition 19 to make this d.eduction. Thus 

let G be a nilpotent P-Iocal group with nilG < d-then for any Il.P·homomorphism 

K -t L, Hom(L, G) ~ Hom(K, G). Proof: NILd is a reflective subcateg(;~:y of GR, hence 

Hom(L, G) ~ Hom(Ljrd(L), G), Hom(K, G) ~ Hom(Kjrd(K) , G) and NIL~ is a re

flective subcategory of NILd
, hence Hom(Ljrd(L), G) ~ Hom«Ljrd(L»p, C!), Hom(Kj 

rd(K),G) ~ Hom«Kjrd(K»p,G). And: (Kjrd(K»p ~ (Ljrd(L))p (cf. Pmposition 

18).] 

FACT Suppose that Gis a group such that for some i, r'(G)jr,+l (G) is Sp-torsion-thel1 GHP ~ 

(G jr' (G»p. 

(The short exact sequence 1 - ri (G) - G _ G jri (G) _ 1 leads to an exact sequence H 2 (G; Z p) --+ 

H2(Gjri(G);Zp) - Zp@(ri (G)jri +1 (G» _ Hl(G;ZP) _ Hl(Gjri(G)jZp) _ O. Therefore the arrow 
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G - G/ri(G) is an HP-homomorphism => GHP::::: (G/ri(G»HP or still, GHP::::: (G/ri(G»p, G/ri(G) 

being nilpotent.] 

EXAMPLE The H P-Iocalization of every finite group is nilpotent. 

EXAMPLE The H P-localization of every perfect group is trivial. So, if G is perfect and if 

H2(Gi Zp) i: 0, then the arrow * - G is in Sid; but is not in SHP' 

FACT The class of H P-homomorphisms admits a calculus of left fractions. 

KANt FACTORIZATION THEOREM Let {: be pointed connected CW spaces, f : X -

Y a pointed continuous function. Assume: f. : H'l(X; Zp) - Hq(Yj Zp) is bijective for 1 :s q < n 

and surjective for q = n-then there exists a pointed connected CW space X I and pointed continuous 

functions 4>1 : X - XI, tPl : XI - Y with f = tPl 04>1 such that H.(4)I) : H.(Xj Zp) - H.(X/iZp) is 

an isomorphism and tP I : X I - Y is an n-equivalence. 

[The case when n = 1 is handled by appropriately attaching I-cells and 2-cells. In general, one 

iterates the following statement (which can be established by appropriately attaching (n + I)-cells and 

(n + 2)-cells). 

(ST",) Let {: be pointed connected CW spaces, f : X - Y a pointed continuous function. 

Assume: f is an n-equivalence and f. : Hq(X; Zp) - Hq(Y; Zp) is bijective for 1 :s q $ n and surjective 

for q = n + I-then there exists a pointed connected CW space X I and pointed continuous functions 

4>1 : X - XI, tPl : XI - Y with f = tPl 04>1 such that H.(4)I) : H.(XjZp) - H.(X/iZp) is an 

isomorphism and tPl : XI - Y is an (n + I)-equivalence.] 

Application: Let f: G - K be a homomorphism of groups. Assume: f.: H1(GjZp) - H1(KjZp) 

is surjective--then there exists a factorization G ~ G I "!..! K of f with 4>1 an H P-homomorphism and tP I 

surjective. 

[Recall that for any pointed path connected space X, there is a surjection H2(X; Zp) - H2(1f'1 (X); 

Zp) (cf. p. 5-35).] 

EXAMPLE Let f : G - K be a homomorphism of H P-Iocal groups-then f is surjective iff 

f. : HI (G; Zp) - Hl (Ki Zp) is surjective. 

G 

[To check sufficiency, note that the commutative diagram ~ I 1 

rendering the triangles commutative.] 
GI 

G 

11 has a filler GI - G 

K 

t In: Algebra, Topology, and Category Theory, A. Heller and M. Tierney (ed.), Academic Press (1976), 

95-99. 
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FACT Let!: G - K be a homomorphism of HP-local groups-then im! is HP-Iocal. 

Let A be a ring with unit. Fix a right A-module R-then a homomorphism f : M -7 N 

of left A-modules is said to be an H R-homomorphism provided that R 0A M -7 R 0A N 

is an isomorphism and Tort(R, M) -7 Tort(R, N) is an epimorphism. 

(H R-Localization) Let SHR C MorA-MOD be the class of H R-homomor

phisms-then SfiR is the object class of a reflective subcategory A-MODHR of A-MOD. 

The reflector LHR : {1i~O:;H; A-MODHR is called HR-localization and the objects 

in A-MODHR are called the HR-Iocal (left) A-modules. 

[Each object in A-MOD is K-definite for some K. Accordingly, due to the reflective 

subcategory theorem, one has only to find a set So C SHR : sd- = SfiR' which can be done 

by using the colimit lemma.] 

PROPOSITION 20 LHR: A-MOD -7 A-MODHR is an additive functor. 

Let G be a group, A = Z[G] and write G-MOD in place of Z[G]-MOD. Take 

R = Z (trivial G-action)-then a homomorphism f : M -7 N of G-modules is an HZ

homomorphism iff f. : Ho(G; M) -7 Ho(Gj N) is bijective and f. : HI(Gj M) -7 HI(G; N) 

i:;; surjective. The reflector LHZ : {~~OJlH-: G-MOD HZ is called HZ-localization 

and the objects in G-MODHZ are called the HZ-local (left) G-modules. Example: Every 

trivial G-module is HZ-local. 

[Note: The arrow of localization [HZ: M -7 MHZ is an HZ-homomorphism (cf. p. 

9-23 ff.), i.e., [HZ E SHZ C sfi:t.] 

PROPOSITION 21 The HZ localization of any M in G-MOD which is P-Iocal as 

an abelian group is again P-Iocal: M = Zp 0 M => MHZ = Zp 0 MHZ. 

[This is because LHZ is an additive functor (cf. Proposition 20).] 

---+ N M 

SUBLEMMA Suppose that f 1 19 is a pushout square in G-MOD. As

P ---+ Q 
surne: f is an HZ-homomorphism-then 9 is an HZ-homomorphism. 

M-'4M-+N 

~ 1 19 , where 7r is surjective and 

P ---+ Q 
the square is simultaneously a pullback and a pushout in G-MOD. Observing that the 

[There is a commutative diagram 

arrow M -7 P is an HZ-homomorphism, consider the long exact sequence HI (G; M) -7 
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H1 (Gj N) ffi H1 (Gj P) --+ H1 (Gj Q) --+ Ho(Gj M) --+ Ho(Gj N) ffi Ho(Gj P) --+ Ho(Gj Q) --+ 

0.] 

LEMMA Let 0 --+ M' --+ M --+ Mil --+ 0 be a short exact sequence of G-modules. 
P ---:---+ M 

Assume: M' is HZ-local-then in any commutative diagram 11 1 of G-modules, 

Q Mil 

P 
where f : P --+ Q is an HZ-homomorphism, there is a unique lifting 11 

Q 
rendering the triangles commutative. 

--7 M" 

[Uniqueness is elementary, so we shall deal only with the existence. Define N by the 
P -----+ M 

pushout square 11 1 and display the data in a commutative diagram 

Q -----+ N 

P ----+ M M 'N' -----+ N 

11 1 1 . Put N' = ker 7r, define N by the pushout square 1 1 
Q -----+ N ---;r+ Mil N HZ -----+ N 
and pass to 

0 -----+ M' -----+ M -----+ Mil -----+ 0 

1 1 II 
0 -----+ N' -----+ N -----+ Mil -----+ o. 

1 1 II 
0 -----+ N HZ -----+ N -----+ Mil -----+ 0 

According to the sublemma, the arrows M --+ N, N --+ N are HZ-homomorphisms, thus 

the composite M' --+ N' --+ N HZ is an HZ-homomorphism, hence is an isomorphism (since 

M' and N HZ are HZ-local). Therefore the composite M --+ N --+ N is an isomorphism. 

M M 
Precompose its inverse with the arrow N --+ N to get a lifting 1 

N 
P 

then be precomposed with the arrow Q --+ N to get a lifting 11 
Q 

,/",,,, 1 ,which may 

M il 
---;r+ 
----t M 
,/",,,, 1 ,as desired.] 

--7 M" 

PROPOSITION 22 Let 0 --+ M' --+ M --+ Mil --+ 0 be a short exact sequence of 

G-modules. Assume: M' and Mil are HZ-local-then M is HZ-local. 

Application: Every nilpotent G-module is HZ-local. 
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[Note: More generally, if M is a G-module such that for some i, (I[ GD i . M ....:.. (I[ G])i+l. 

M, then MHZ ~ M/(I[GDi . M. Proof: It follows from the exact sequence H1(GjM) ---t 

H1(G;M/(I[G])i.M) ---t (I[G])i.M/(I[G])i+l.M ---t Ho(G;M) ---t Ho(G;M/(I[G])i.M)---t 

o that the arrow M ---t M/(I[G])i . M is an HZ-homomorphism. On the other hand, 

M /(I[G])i . M is a nilpotent G-module. As for the realizability of the condition, recall that 

G/[G, G] ~ I[G]/ I[G]2, hence G perfect => I[G] = I[G]2 and G/[G, G] divisible + torsion 

=> I[G]2 = I[G]3 = .... ] 

FACT The class of HZ-homomorphisms admits a calculus of left fractions. 

LEMMA Let f : M ---t N be a homomorphism of G-modules. Assume: f. : 
H 0 ( G; M) ---t H 0 ( G; N) is surjective-then there exists a factorization M J:..4 M I ~ N of f 

with <Plan HZ-homomorphism and .'IjJ I surjective. 

[Choose a free G-module P and a surjection jJ, : M ffiP ---t N such that jJ,IM = f. Since 

the composite Ho( Gj ker jJ,) ---t Ho( Gj M ffi P) ---t Ho( G; P) is surjective and Ho( Gi P) is 

free abelian, one can find a free G-module Q and a homomorphism v : Q ---t ker jJ, such 

that H o( G; Q) ~ Ho ( G; P) through Q ~ ker jJ, ---t M ffi P ---t P. Factor f as M J:..4( M ffi 

P)/v(Q) ~ N, where <PI is induced by the in&lusion M ---t M ffi P and 'ljJ1 is induced by 

jJ,. ] 

PROPOSITION 23 Let f : M ---t N be a homomorphism of HZ-local G-modules

then f is surjective iff f. : Ho( Gj M) ---t Ho( Gj N) is surjective. 
M M 

[To check sufficiency, note that the commutative diagram tf>/1 11 has a filler 

N 
M I ---t M rendering the triangles commutative.] 

PROPOSITION 24 Let f : M ---t N be a homomorphism of HZ-local G-modules

then im f is HZ-local. 

[Let N :J f(M) be the largest G-submodule of N for which the induced map Ho(G; 
M 

f(M)) ---t Ho(GjN) is surjective. There is a commutative triangle 11 ~ and 

N ----:--+ N tf>- ~ ) 
a factorization M ~ My ~ N of f with <Py an HZ-homomorphism and 'I/Jy surjective. 

Consider any lifting My ---t M of j o'l/Jy to see that N = f(M). But N is HZ-local.] 

PROPOSITION 25 Let f : M ---t N be a homomorphism of HZ-local G-modules-

- then coker f is HZ-local. 
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[Since imf is HZ-local (cf. Proposition 24), one can assume that f is injective, the 

claim thus being that N/M is HZ-local. There is a commutative diagrain 

o ---+ M N/M ---+ 0 

1 1 
o ---+ K ---+ N ---+ (N/M)HZ ---+ 0 

of short exact sequences, where the kernel K is HZ-local. The arrow M ~ K is obvi
ously injective. That it is also surjective can be seen by comp8.ring the exact sequence 

Hl(G;N) ~ H1(G;N/M) ~ Ho(G;M) ~ Ho(G;N) ~ Ho(G;N/M) from the first row 

with its analog from the second row and applying the five lemma: Ho(G; M) ~ Ho(G; K) 
surjective => M ~ K surjective (cf. Proposition 23). Conclusion: N/M ~ (N/M)HZ.] 

[Note: A priori, cokernels in G-MODHz are calculated first in G-MOD and then 

reflected back into G-MODHz. The point of the proposition is that the second step is 

not needed.] 

Application: G-MODHz is an abelian category and the reflector LHZ : G-MOD ~ 

G-MOD HZ is right exact. 

EXAMPLE Let M be an HZ-local G-module-then V n, Z/nZ ® M is HZ-local. 

EXAMPLE Let M be a tower in G-MODHz-then lim M and liml M are HZ-local (cf. p. 

5-45). 

FACT Let M be a tower in G-MODHZ. Assume: G is finitely generated-then limI M = 0 iff 

liml Ho(Gj M) = O. 

[Here, Ho(Gj M) stands for the tower determined by the arrows Ho(Gj Mn+l) -+ Ho(Gj Mn). Use 

Proposition 23 and the fact that G finitely generated => Ho(Gj n Mn) ~ n Ho(Gj Mn) (Brownt).] 
,. ,. 

PROPOSITION 26 Let G ~ 11' be a homomorphism of groups-then every HZ-local 

1I'-module is an HZ-local G-module. 

[The forgetful functor 11'- MOD ~ G- MOD has a left adjoint G-MOD ~ 1I'-MOD 

that sends M to Z[1I'] 0z[G] M. Thanks to the change of rings spectral sequence, the 

homomorphism Hi(G; M) ~ Hi(1I'j Z[1I'] 0z[G] M) is bijective for i = 0 and surjective for 

i = 1. Therefore an HZ-homomorphism of G-modules goes over to an HZ-homomorphism 

t Comment. Math. Hel1J. 50 (1975), 129-135j see also Strebel, Math. Zeit. 151 (197~), 263-275. 
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of 7r-modules. Suppose now that P is an HZ-local 7r-module. Let M ---+ N be an HZ

homomorphism of G-modules-then the bijectivity of the arrow Hom( N, P) ---+ Hom( M, P) 

follows from the bijectivity of the arrow Hom(Z[7r] Q9Z[G] N, P) ---+ Hom(Z[7r] Q9Z[G] M, P).] 

EXAMPLE Let M be an HZ-local G H p-module-then M is an HZ-local G-module. 

Although one can consider H A-localization for an arbitrary abelian group A, apart 

from A = Zp the other case of topological significance is when A = F p. The general 

aspects of the HF p-theory are similar to those of the H P-theory. For instance, the analog 

of Proposition 19 says that if 1 ---+ G' ---+ G ---+ Gil ---+ 1 is a central extension of groups with 

G' an F p-module and Gil HF p-Iocal, then G is HF p-Iocal. 

[Note: An abelian group is a Zp-module iff it is P-Iocal iff it is H P-Iocal. To perfect 

the analogy, one can relax the assumption on G' and suppose only that G' is HF p-Iocal 

(cf. Proposition 33).] 

PROPOSITION 27 Every HF p-Iocal group is p-Iocal. 

EXAMPLE Let G be a finite group-then GHFp :::::: G p . 

The Kan factorization theorem remains valid if Zp is replaced by Fp. Therefore a homomorphism 

/ : G -+ K of HF p-Iocal groups is surjective iff /. : HI (Gj F p) -+ HI (K j F p) is surjective. 

The class of HF p-Iocal abelian groups turns out to be the same as the class of p

cotorsion abelian groups (cf. Proposition 30). It will therefore be convenient to review the 

theory of the latter starting with the global situation. 

An abelian group G is said to be cotorsion if Hom(Q, G) = 0 & Ext(Q, G) = O. Taking 

into account the exact sequence Hom(Q, G) ---+ Hom(Z,G) ---+ Ext(Q/Z, G) ---+ Ext(Q,G) 

and making the identification G ::::::: Hom(Z, G), it follows that Gis cotorsion iff the arrow 

G ---+ Ext(Q/Z, G) is an isomorphism. 

[Note: One motivation for the terminology is that if 0 ---+ A ---+ B ---+ C ---+ 0 is a short 

exact sequence of abelian groups, then the sequence 0 ---+ Hom(K, A) ---+ Hom(K, B) ---+ 

Hom( K, C) ---+ 0 is exact for all torsion groups K iff the sequence 0 ---+ Hom( C, L) ---+ 

Hom( B, L) ---+ Hom( A, L) ---+ 0 is exact for all cotorsion groups L.] 

Let 0 -+ A -+ B -+ C -+ 0 be a short exact sequence of abelian groups-then 0 -+ Hom(K, A) -+ 

Hom(K, B) -+ Hom(K, C) -+ 0 is exact V torsion K iff 0 -+ Hom(K, A) -+ Hom(K, B) -+ Hom(K, C) -+ 0 

is exact V finite cyclic K iff 0 -+ A -+ B -+ C -+ 0 is pure short exact iff 0 -+ Hom( C, L) -+ Hom(B, L) -+ 
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Hom(A, L) - 0 is exact" finite cyclic L iff 0 - Hom(C, L) - Hom(B, L) - Hom(A, L) - 0 is exact" 

cotorsion L. 

LEMMA For any abelian group G, Ext(Q/Z, G) is cotorsion. 

[Given A, B, C in AB, there are isomorphisms 

Ext(A, Ext(B, C)) ~ Ext(Tor(A, B), C), 

Ext(A, Hom(B, C» ED Hom(A, Ext(B, C» ~ Ext(A ® B, C) ED Hom(Tor(A, B), C).] 

LEMMA For any abelian group G, Ext(Q/Z,Ext(Q/Z,G)) ~ Ext(Q/Z, G). 

Consequently, the full subcategory of AB whose objects are the cotorsion groups is a 

reflective subcategory of AB, the arrow of reflection being G -t Ext(Q/Z, G). 

[Note: By comparison, the full subcategory of AB whose objects are the torsion groups 

is a coreflective subcategory of AB, the arrow of coreflection being Tor(Q/Z, G) -t G.] 

EXAMPLE Z/nZ is cotorsion but Z is not cotorsion. 

A cotorsion group G is said to be adjusted if G has no torsion free direct summand 

or, equivalently, if G/Gtor is divisible. 

CO TORSION STRUCTURE LEMMA Suppose that G is cotorsion-then there is a 

split short exact sequence 0 -t K -t G -t L -t 0, where K ~ Ext(Q/Z, Gtor ) is adjusted 

cotorsion and L ~ Ext(Q/Z, G/Gtor) is torsion free cotorsion. 

[Note: In the opposite direction, recall that every abelian group is split by its maximal 

divisible subgroup and the associated quotient is reduced.] 

HARRISON'St FIRST THEOREM Let C be the full subcategory of AB whose ob

jects are the torsion free cotorsion groups; let D be the full subcategory of AB whose 

objects are the divisible torsion groups. Define ~ : C -t D by ~G = Q/Z ® Gj define 

q, : D -t C by q,G = Hom(Q/Z, G)-then the pair (~, q,) is an adjoint equivalence of 

categories. 

HARRISON'St SECOND THEOREM Let C be the full subcategory of AB whose 

objects are the adjusted cotorsion groups; let D be the full subcategory of AB whose 

t Ann. of Math. 69 (1959), 366-391. 
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objects are the reduced torsion groups. Define «1> : C ~ D by «1>G = Tor(QjZ, G)j define 

'11 : D ~ C by wG = Ext(QjZ,G)-then the pair (<<1>, '11) is an adjoint equivalence of 

categories. 

An abelian group G is said to be p-cotorsionifHom(z[~], G) = 0 & Ext(Z[~], G) = O. 

Taking into account the exact sequence Hom(z[~] ,G) ~ Hom(Z, G) ~ Ext(ZjpOOZ, G) 

~ Ext(Z [~] ,G) and making the identification G R::: Hom(Z, G), it follows that G is p

cotorsion iff the arrow G ~. Ext(ZjpOOZ, G) is an isomorphism. Example: Y n, ZjpRZ is 

p-cotorsion. 

[Note: The full subcategory of AB whose objects are the p-cotorsion groups is a 

reflective subcategory of AB with arrow of reflection G ~ Ext(ZjpOOZ, G) and there are 

evident variants of Harrison's first and second theorems.] 

EXAMPLE If G = Zp, the p-adic integers, then Zp I::::l Ext(ZjpOOZ, Zp), hence Zp is p-cotorsion. 

[Note: A subgroup of Zp is p-cotorsion iff it is an ideal.] 

EXAMPLE The following abelian groups are not p-cotorsion: ZjpOOZ, ffi Zjpnz, Zp ® Zp. 
n 

EXAMPLE For any abelian group G, Hom(ZjpOOZ, G) is p-cotorsion. In fact, Hom(Z r.~} 

Hom(ZjpOOZ,G» I::::l Hom(Z[;] ®ZjpOOZ,G) I::::l Hom(O,G) = 0 and Ext(Z[;],Hom(ZjpOOz,G» I::::l 

Ext(Tor(Z [;], ZjpOOZ), G) ~ Ext(O, G) = O. 

FACT Let G be a group and let M be a G-module. Assume: M is HZ-local-then Ext(ZjpOOZ, M) 

is HZ-local. 

[The arrow Ext(ZjpOO Z, M) -+ lim Ext(Zjpn Z, M) is surjective and its kernel can be identified 

with lim1 Hom(ZjpnZ, M) (Weibelt ), i.e., there is a short exact sequence 0 -+ lim 1 Hom(ZjpnZ, M) -+ 

Ext(ZjpOOZ, M) -+ lim Ext(Zjpnz, M). Since Ext(Zjpnz, M) I::::l Mjpn M and Mjpn M is HZ-local (cf. 

Proposition 25), lim Ext(Zjpnz, M) must be HZ-local too (G-MODHZ is limit closed). Similar remarks 

imply that liml Hom(ZjpnZ, M) is HZ-local (it is a cokernel (cf. p. 5-45». Now quote Proposition 22.] 

FACT For any abelian group G, the arrow of reflection G -+ Ext(ZjpOOZ, G) induces an isomor

phism Fp ® G -+ Fp ® Ext(ZjpOOZ,G) and an epimorphism Tor(Fp, G) -+ Tor(Fp, Ext(ZjpOOZ, G». 

t An Introduction to Homological Algebra, Cambridge University Press (1994), 85; see also Jensen, 

SLN 254 (1972), 35-37. 
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[To check the first assertion, observe that Fp ® G ~ Ext(Fp,G) ~ Ext(Tor(Fp,ZjpOOZ),G) ~ 

Ext(Fp, Ext(ZjpOOZ, G» ~ Fp ® Ext(ZjpOOZ, G).] 

Notation: Given an abelian group G, div G is the maximal divisible subgroup of G 

and divp G is the maximal p-divisible subgroup of G. 

[Note: The kernel of the arrow of reflection G ~ Ext(ZjpOOZ, G) is divp G.] 

PROPOSITION 28 Suppose that G is cotorsion-then G ~ n Gp , where Gp -
p n divq G is the maximal p-cotorsion subgroup of G. 

q:h 

[The point here is that Ext(QjZ,G) ~ II Ext(Zjp<XlZ, G).] 
p 

[Note: This result is the analog for a cotorsion group of the primary decomposition of 

a torsion group.] 

LEMMA If A and G are abelian groups with G p-cotorsion, then (i) A ® F p = 0 =? 

Hom(A, G) = 0 and (ii) Tor(A, F p) = 0 =? Ext(A, G) = O. 

[To check the second assertion, observe that Ext(A, G) ~ Ext(A, Ext(ZjpOOZ, G» ~ 
Ext(Tor(A, ZjpOOZ), G) ~ Ext(O, G) = 0.] 

PROPOSITION 29 Let {: be path connected topological spaces, f : X ~ Y 

a continuous function-then f* : H * (X; F p) ~ H * (Y; F p) is an isomorphism iff f* : 
H*(Y; G) ~ H*(X; G) is an isomorphism for all p-cotorsion abelian groups G. 

[By passing to the mapping cylinder, one can assume that f is an inclusion. If V n ~ 1, 

Hn(Y,XjFp) = 0, then V n ~ 1, Hn(Y,X)®Fp = 0 and Tor(Hn(Y,X),Fp) = O. So, from 

the lemma, for any p-cotorsion G, Hom(Hn(Y,X), G) = 0 and Ext(Hn(Y,X), G) = 0 V n ~ 

1, thus Hn(y,x; G) = 0 V n ~ 1. To reverse the argument, specialize and take G= F p .] 

In the context of H R-Iocalization, take A = Z and R = F p-then the object class 

of the corresponding reflective subcategory of Z-MOD ~ AB is the class of p-cotorsion 

groups. 

PROPOSITION 30 Let G be an abelian group-then G is HF p-Iocal iff G is p

cotorsion. 

[Let SI Mor AB be the class of homomorphisms f : A ~ B such that A ® F p ~ B ® 

F p is an isomorphism and Tor ( A, F p) ~ Tor(B, F p) is an epimorphism (thus Sf is the class 

of p-cotorsion groups) and let S2 C Mor AB be the class of homomorphisms f : A ~ B 

,--,. such that f* : Hl(A;Fp) ~ Hl(BjFp) is bijective and f* : H2(A;Fp) ~ H2(B;Fp) is 
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surjective (thus 8t is the class of abelian HF p-Iocal groups) (cf. infra). Claim: 8 1 = 8 2 • 

For, in either case, AlpA ~ BlpB. This said, consider the commutative diagram 

o ---t H2(A)®Fp ---t H2(A; F p) ---t Tor( A, F p) ---t 0 

1 1 1 
o ---t H2(B) ® F p ---t H2(B; F p) ---t Tor(B, F p) ---t 0 

f h < s· {H2(A) ® F p ~ A2(AlpA) (B t) h fi 1 . o sort exact sequences. !nee H2(B) ® Fp ~ A2(BlpB) rown, t e ve emma Im-

plies that if Tor(A, F p) ~ Tor(B, F p) is an epimorphism, then f. : H'}.(A; F p) ~ H2(B; F p) 

is surjective. The converse is trivial.] 

The reflective subcategory theorem is applicable to AB, so one can define the notion "abelian HF p

local group" internally. That this is the same as "abelian +HFp-Iocal" is a consequence of the following 

lemma. 

LEMMA An HF p-homomorphism G -+ K of groups induces an HF p-homomorphism G I[ G, G] -+ 

K/[K, K] of abelian groups. 

Given a group G, let Pp GIM ~ GIM be the function defined by pp(gO, gl, ... ) -

( 
-p -p ) gogl ,gIg2 ,... . 

PROPOSITION 31 Suppose that G is abelian-then Pp is a homomorphism and 

ker Pp ~ lim G p ~ Hom(Z [~] ,G), coker Pp ~ lim! G p ~ Ext(Z [~] ,G), where G p is the 

tower . .. +-- G !- G+--· ... 

[Representing Z [~] as a colimit ... ~ Z ~ Z ~ ... gives lim G p ~ Hom(Z [~] ,G) 

and, from the short exact sequence 0 ~ lim! Hom(Z, G) ~ Ext(Z [~l ,G) ~ lim Ext(Z, G) 

~ 0 (Weibelt ), one has lim! G p ~ Ext(Z [~l ,G).] 

Application: An abelian group G is p-cotorsion (= HF p-Iocal) iff lim G p - 0 & 
lim! G p = 0, i.e., iff Pp is bijective. 

t Cohomology of Groups, Springer Verlag (1982), 126. 

An Introduction to Homological Algebra, Cambridge University Press (1994), 85; see also Jensen, 

SLN 254 (1972), 35-37. 
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Let G be a group-then G is said to be p-cotorsion provided that pp is bijective. 

Claim: The full subcategory of GR whose objects are the p-cotorsion groups is a reflective 

subcategory of GR. To see this, let FIN be the free group on generators Xo, Xl, •.• , define 

a homomorphism I : FIN -t FIN by I(Xi) = Xi,x-;':l and consider f.L (reflective subcategory 

theorem). 

FACT Suppose that G is p-cotorsion-then Cen G is p-cotorsion. 

PROPOSITION 32 Every HF p-Iocal group is p-cotorsion. 

[It is enough to prove that f : FIN -t FIN is an HF p-homomorphism. ' But f. : 
HI (FIN; Fp) -t HI (FIN; Fp) is the identity w' Fp -t w' Fp and H2(FIN ; Fp) ~ H2(FIN ) ® Fp Ee 

Tor( HI ( FIN)' F p) vanishes.] 

The abelian p-cotorsion theory has been extended to NIL by Huber-Warfleldt . Thus 

the full subcategory of NIL whose objects are the p-cotorsion groups is a reflective subcat

egory of NIL. It is traditional to denote the arrow of reflection by G -t Ext(Z/pooZ, G) 

even though the "Ext" has no a priori connection with extensions of G by Z/pooZ. One 

reason for this is that each short exact sequence 1 -t G' -t G -t Gil -t 1 of nilpo

tent groups gives rise to an exact sequence 0 -t Hom(Z/pooZ, G') -t Hom(Z/pooZ, G) -t 

Hom(Z/pooZ, Gil) -t Ext(Z/pooZ, G') -t Ext(Z/pooZ, G) -t Ext(Z/pooZ, G") -t O. 

[Note: It is reasonable to conjecture that the p-cotorsion reflector in GR extends the 

p-cotorsion reflector in NIL but I know of no proof.] 

The p-cotorsion reflector in NIL respects NIL d : nil Ext( Z / poo Z, G) ~ nil G, hence 

its restriction to AB "is" the p-cotorsion reflector in AB. 

Notation: Given a nilpotent group G, div G is the maximal divisible subgroup of G 

and divp G is the maximal p-divisible subgroup of G. 

[Note: The kernel of the arrow of reflection G -t Ext(Z/pooZ, G) is divp G.] 

LEMMA For any nilpotent group G, Hom(Z/pooZ, G) is a torsion free p-cotorsion 

abelian group. 

[Let Gtor(p) be the maximal p-torsion subgroup of G-then div Gtor(p) is abelian and 

the range of every homomorphism f : Z/pooZ -t G is contained in divGtor(p).] 

[Note: Therefore G p-cotorsion ::::} Hom(Z/pooZ, G) = 0.] 

FACT Let G be a nilpotent group-then the arrow 9 -+ gP is bijective iff Hom(Z/pooZ, G) = 0 & 

Ext,(Z/pooZ, G) = 0 or still, iff V n > 0, Hn(G; Fp) = O. 

t J. Algebra 74 (1982), 402-442. 



8-38 

EXAMPLE There is a short exact sequence 0 -+ Z -+ Z, -+ Z,/Z -+ 0 and Z,/Z is uniquely 

p-divisible, hence H.(Z;Fp) ~ H.(Zp;F,) (cf. p. 4-44). 

FACT Let 1 -+ G' -+ G -+ Gil -+ 1 be a short exact sequence of nilpotent groups. Assume: Two 

of the groups are p-cotorsion-then so is the third. 

EXAMPLE Suppose that G is nilpotent and p-cotorsion-then G/CenG is p-cotorsion. 

[Cen G is necessa.rily p-cotorsion (cf. p. 8-37).] 

LEMMA Let 1 -+ G' -+ G -+ Gil -+ 1 be a central extension of groups. Assume: 
K --+ G 

G' is HF p-local-then in any commutative diagram f 1 1 of groups, where f : 
L --+ G" 

K ---? G 
K -+ L is an HF p-homomorphism, there is a unique lifting f! ,/"" ! rendering the 

triangles commutative. 

[Put {X = K(K, 1) 
Y = K(L, 1) 

L ---? G" 

x --+ K(G,l) 
and consider the diagram f 1 //" ! 

Y --+ K(G", l) 

Supposing, as 

we may, that f is an inclusion, the obstru~tion to lifting lies in H2 (Y, X; G'). Claim: 

H2(y,X; G') = O. To verify this, look at the short exact sequence 0 -+ Ext (HI (Y,X), G') -+ 

H2(y, X; G') -+ Hom(H2(Y,X), G') -+ O. Since f* : Hl(X; F p) -+ H1(Y; F p) is bijective 

and f* : H2(X; F p) -+ H2(Y; F p) is surjective, H2(Y, X)®F p = 0 and Tor(Hl (Y, X), F p) = 
O. But G' is HF p-Iocal or still, p-cotorsion (cr. Proposition 30), thus Hom(H2(Y, X), G') = 

o and Ext(Hl(Y,X),G') = 0 (see the lemma preceding Proposition 29). Therefore 

H2 (Y, X; G') = 0 and the lifting exists. As for its uniqueness, of necessity HI (Y, X; F p) = 
0, i.e., Hl(Y,X) ® Fp = 0, thus Hl(y,X; G') ~ Hom(H1(Y,X), G') = 0.] 

PROPOSITION 33 Let 1 -+ G' -+ G -+ G" -+ 1 be a central extension of groups. 

Assume: G' is HF p-Iocal and G" is HF p-Iocal-then G is HF p-Iocal. 

[The proof is the same as that of Proposition 19.] 

Application: If G is nilpotent and p-cotorsion, then G is HF p-Iocal. 

[In fact, Cen G and G / Cen G are p-cotorsion, so one can proceed by induction.] 

PROPOSITION 34 Let G be a p-cotorsion nilpotent group-then there exists a cen

tral series G = CO (G) :::> Cl (G) :::> ••• having the same length as the descending central 

series of G such that Vi, Ci(G)/Ci+I(G) is a p-cotorsion abelian group. 
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[Define Ci(G) to be the kernel of the composite G ~ Gjri(G) ~ Ext(ZjpOOZ, 

Gjri(G».] 

[Note: Here is a variant. Let G be a group. Let M be a nilpotent G-module, X : 

G ~ Aut M the associated homomorphism. Assume: Mis p-cotorsion-then there exists 

a finite filtration M = C~(M) :J Ci(M) :J ... :J C~(M) = {O} of M by G-submodules 

C~(M) such that V i,G operates trivially on C~(M)jC~+l(M) and C~(M)jC~+l(M) is 

p-cotorsion. ] 
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§9. HOMOTOPICAL LOCALIZATION 

Localization at a set of primes is a powerful tool in commutative algebra and group 

theory, thus it should come as no surprise that the transcription of this process to algebraic 

topology is of fundamental importance. More generally, one can interpret "localization" 

as the search for and construction of reflective subcategories in a homotopy category. 

EXAMPLE HCW is not a reflective subcategory of HTOP. Reason: HCW is not isomorphism 

closed. HCWSP is not a reflective subcategory of HTOP. Reason: HCWSP is not limit closed (e.g., the 
00 

product IT sn is not a CW space). On the other hand, HCWSP is a coreflective subcategory of HTOP, 
1 . 

the coreflector being the functor that assigns to each topological space X the geometric realization of 

its singular set (the arrow of adjunction I sin X I -+ X is a weak homotopy equivalence (Giever-Milnor 

theorem)). In particular: HCWSP has products, viz. the product of {Xi} in HCWSP is I sin IT Xii, 

where IT Xi is the product in HTOP (or still, the product in TOP). 
i 

[Note: Analogous remarks apply in the pointed setting. So, e.g., the nth homotopy group of IT Xi 
i 

(taken in HCWSP.) is isomorphic to IT 7I"n(X;).] 
i 

Notation: CONCWSP. is the full subcategory of CWSP. whose objects are the 

pointed connected CW spaces and HCONCWSP. is the associated homotopy category. 

EXAMPLE Write HCONCWSP. [n] for the full subcategory of HCONCWSP. whose objects 

have trivial homotopy groups in dimension> n (n ~ D)-then HCONCWSP. [n] is a reflective sub

category of HCONCWSP., the reflector being the functor that assigns to each X its nth Postnikov 

approximate X[n]. Example: The fundamental group functor X -+ 71"1 (X) sets up an equivalence between 

HCONCWSP.[l] and GR. 

[Note: Thedata generates an orthogonal pair (5, D). Here, [f] : X -+ Y is in 5 iff f. : 7I"q(X) -+ 7I"q(Y) 

is bijective for q ~ n.] 

EXAMPLE Write HSCONCWSP. for the full subcategory of HCONCWSP. whose objects 

are simply connected-then HSCONCWSP. is not a reflective subcategory of HCONCWSP •. For 

suppose it were and, to get a contradiction, take X = p 2 (R). Consider, in the notation of p. 0-22, 

EX : X -+ TX. By definition, EX 1.. K(Z, 2) ~ H2(TX) :::::: H2(X) :::::: Zj2Z. But HtCT X) = 0 ~ 

H2(TX):::::: Hom(H2(TX),Z), which is torsion free. 

[Note: Let f : S1 -- .-then f1.. is the object class of HSCONCWSP •. J 

Given a set of primes P, a pointed connected CW space X is said to be P-Iocal in 

homotopy if \::j n :::: 1, 7rn(X) is P-Iocal. 
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EXAMPLE Fix P # n-then the full subcategory of HCONCWSP. whose objects are P-Iocal 

in homotopy is not the object class of a reflective subcategory of HCONCWSP •. To see this, suppose 

the opposite and consider S1. Calling its localization S~, for any P-Iocal group G, the universal ar

row Ip : S1 _ S~ necessarily induces a bijection [S~, K(G, 1)] ~ [S1, K(G, 1)] ~ Hom(1I"t{S~), G) ~ 

Hom(1I"1 (S1), G). Since 11"1 (S~) is by definition P-Iocal, it follows that 11"1 (S~) ~ Zp. Form now 

K(Q[Zp],2jX), where X : Zp - AutQ[Zp] is the homomorphism corresponding to the action of Zp 

on Q[Zp]. Since K(Q[Zp],2jX) is P-Iocal, the bijection [S~,K(Q[Zp],2jX)] ~ [S1,K(Q[Zp],2jX)] re

stricts to an isomorphism H2(S~jQ[Zp]) ~ H2(S1jQ[Zp]) (cf. p. ,5-34) (locally constant coefficients), 
I 

thus H2(S~j Q[Zp]) = O. But H2(1I"1(S~)j Q[Zp]) embeds in H2(S~j Q[Zp]) (consider the spectral 

sequence E~,q ~ HP(1I"1 (S~)j Hq(S~j Q[Zp])) ~ Hp+q(S~j Q[Zp])), which contradicts the fact that 

H2(Zpj Q[Zp]) # 0 (cf. p. 8-1). 

[Note: Let p~ : sq - sq (q ~ 1) be a map of degree n (n ESp). Working in HCONCWSP., put 

So = ([p~]}-then st is the class of objects in HCONCWSP. which are P-Iocal in homotopy.] 

Given integers k, n > 1, let k : sn-l -+ sn-l be a map of degree k-then the 

adjunction space pn(k) - D n Uk sn-l is a Moore space of type (Z/kZ,n - 1) and 
Epn(k) = pn+l(k). 

Given a pointed connected CW space X, the nthmodk homotopy group of X IS 

[pn(k), X], the set of pointed homotopy classes of pointed continuous functions pn(k) -+ 

X. Notation: 7rn(X; Z/kZ). Here, the language is slightly deceptive. While it is true that 

7rn(X; Z/kZ) is a group if n > 2. (which is abelian if n > 3), 7r2(X; Z/kZ) is merely a 

pointed set (but there is a left action 7r2(X) x 7r2(X; Z/kZ) -+ 7r2(X; Z/kZ)). In the event 

that 7rl(X) is abelian, put 7rl(X; Z/kZ) = 7rl(X) 0 Z/kZ. 
[Note: When X is an H space, 7r2(X; Z/kZ) is a group (and 7rn(X; Z/kZ) is abelian 

if n > 2).] 
A pointed continuous function f : X -+ Y between pointed connected CW spaces 

induces a map f. : 7rn(X; Z/kZ) -+ 7rn(Y; Z/kZ). It is a homomorphism if n > 2 and 

respects the action of 7r2 if n = 2. 

UNIVERSAL COEFFICIENT THEOREM For each n > 1, there is a functorial exact 

sequence 0 -+ 7rn(X) 0 Z/kZ -+ 7rn(X; Z/kZ) -+ Tor(7rn-l(X), Z/kZ) -+ O. 

[Th S n-l k sn-l sn-l pn(k) Sn Sn k Sn f'al e arrows-+ , -+ -+, -+ generate a uncton exact 

sequence 7rn(X) ~ 7rn(X) -+ 7rn(X; Z/kZ) -+ 7rn-l(X) ~ 7rn-l(X).] 
[Note: If n = 2, interpret exactness in SET. and if 7rl(X) is not abelian, interpret 

Tor(7rl(X), Z/kZ) as the kernel of 7rl(X) ~ 7rl(X),] 

Example: Let X be a pointed connected CW space-then X is P-Iocal in homotopy 
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iff 7rl (X) is P-Iocal and V p E P, 7rn(X; Z/pZ) = 0 V n > 1. 

[Apply REC2 of the recognition principle (cf. p. 8-4 ff.).] 

Neisendorfert has established a mod k analog of the Hurewicz theorem. 

MOD k HUREWICZ THEOREM Suppose that X is a pointed abelian OW space-then if 

n ~ 2, the condition 1I'q(Xj Z/kZ) = 0 (1 $ q < n) is equivalent to the condition Hq(Xj Z/kZ) = 0 

(1 $ q < n) and either implies that the Hurewicz map 1I'n(Xj Z/kZ) -+ Hn(X; Z/kZ) is bijective. 

[Note: The arrow pn(k) -+ sn induces an isomorphism Hn(pn(k}j Z/kZ) -+ Hn(snj Z/kZ), so there 

is a generator of Hn(pn(k)j Z/kZ) that is sent to the canonical generator of Hn(snj Z/kZ), from which 

the Hurewicz map 1I'n(Xj Z/kZ) -+ Hn(X; Z/kZ) (it is a homomorphism if n > 2).] 

The mod Ie analog of the Whitehead theorem is also true (consult Suslin t for a variant with applica

tions to algebraic K-theory). 

Given a set of primes P, a pointed connected CW space X is said to be P-Iocal in 

homology if V n ~ 1, Hn(X) is P-local. 

[Note: X is P-local in homology iff V p E P, Hn(X; Z/pZ) = 0 V n ~ 1 (cf. p. 8-6).] 

EXAMPLE Fix P =1= D-then there exists a pointed connected OW space X such that V n ~ 2, 

1I'n(X) ~ Z and V n ~ 1, Hn(X) ~ Zp (cf. p. 5-77), so P-Iocal in homology need not imply P-Iocal in 

homotopy. 

[Note: In the other direction, P-Iocal in homotopy need not imply P-Iocal in homology. Reason: 

There exists a P-Iocal group G such that G/[G,G] (~Hl(G» has an Sp-torsion direct summand (cf. p. 

8-12), e.g., G = (Z * Z)p.] 

PROPOSITION 1 Let {: be pointed nilpotent CW spaces, f : X -+ Y a pointed 

continuous function. Assume: V n ~ 1, f* : 7rn(X) -+ 7rn(Y) is P-Iocalizing-then V n ~ 1, 

f* : Hn(X) -+ Hn(Y) is P-Iocalizing. 
X ---+ X 

[There is a commutative diagram 71 11 and a morphism {E;,q ~ Hp( 7rl (X); 

Y ---+ Y 

Hq(X))} -+ {E;,q ~ Hp(7rl (Y); Hq(Y))} of fibration spectral sequences. Since {$ are 

t Memoirs Amer. Math. Soc. 232 (1980), 1-67. 

t 1. Pure Appl. Algebra 34 (1984), 301-318. 
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simply connected, V q ~ 1, 1. : H,(X) -+ H,(Y) is P-Iocalizing (cf. p. 8-7). In addition, 

V q ~ 1, { ;: ~:j operates nilpotently on {;:~:? (d. §5, Proposition 17), thus V q ~ 1, 

the arrow E;., -+ E;" is P-Ioca.lizing (d. §8, Proposition 14). Recalling that V p ~ 1, 

the arrow Hp(?T'l(X» -+ Hp(?T'l(Y» is P-localizing (d. §8, Proposition 10), one can pass 

through the spectral sequence to see that V q ~ 1, I. : H,(X) -+ H,(Y) is P-Iocalizing.] 

Application: Let X be a pointed nilpotent CW space. Assume: X is P-Iocal in 

homotopy-then X is P -local in homology. 

[Note: The converse is also true (d. p. 9-6).] 

PROPOSITION 2 Let {;. be pointed nilpotent CW spaces, I : X -+ Y a pointed 

continuous function. Assume: V n > 1, I. : Hn(X) -+ Hn(Y) is P-Iocalizing-then for any 

pointed nilpotent CW space Z which is P-Iocal in homotopy, the precomposition arrow 

I· : [Y, Z] -+ [X, Z] is bijective. 

[There is no loss of generality in supposing that {;. are pointed nilpotent CW com

plexes with X a pointed subcomplex of Y (take I skeletal and replace Y by the pointed 

mapping cylinder of I). Because the inclusion X -+ Y is a cofibration, this reduction 

converts the problem into one that can be treated by obstruction theory. Thus given a 

pointed continuous function </> : X -+ Z, the obstructions to extending </> to a pointed 

continuous function 9 : Y -+ Z and the obstructions to any two such being homo

topic relX (hence pointed homotopic) lie in the HP(Y,Xj r~f(?T',(Z»/r~~l(?T',(Z») for 

certain p and q (nilpotent obstruction theorem). The claim is that these groups are triv

ial. But, by hypothesis, V n ~ 1, I. : Hn(Xj Zp) -+ Hn(Yj Zp) is an isomorphism, 

hence V n ~ 1, Hn(Y,Xj Zp) = O. Since Zp is a principal ideal domain and since the 

r~f(?T',(Z»/r~~l(?T',(Z» are Zp-modules (d. p. 8-21), the universal coefficient theorem 

implies tha.t the obstructions to existence and uniqueness do indeed vanish.] 

[Note: Otherwise said, under the sta.ted conditions, [I] .1 Z for any pointed nilpotent 

CW space Z which is P-Iocal in homotopy.] 

Notation: NILCWSP. is the full subcategory of CWSP. whose objects are the 

pointed nilpotent CW spaces and HNILCWSP. is the associated homotopy category, 

while NILCWSP .,p is the full subcategory of NILCWSP. whose objects are the pointed 

nilpotent CW spaces which are P-Ioca.l in homotopy and HNILCWSP .,p is the associated 

homotopy category. 
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NILPOTENT P-LOCALIZATION THEOREM HNILCWSP .,P is a reflective sub

category of HNILCWSP •. 
[On general grounds, it is a question of assigning to each X in HNILCWSP. an 

object Xp in HNILCWSP .,P and a pointed homotopy class [lp] ; X --+ Xp with the 

property that for any pointed homotopy class [I] : X --+ Y, where Y is in HNILCWSP .,P, 
there exists a unique pointed homotopy class [~] : Xp --+ Y such that [I] = [~]o[lp]. In view 

of Propositions 1 and 2, it will be enough to construct a pair (Xp,lp) : V q ~ 1,1t'q(lp): 

1t'q(X) --+ 1t'q(Xp) is P-Iocalizing. For this, we shall work first with the nth Postnikov 

approximate X[n] of X and produce (X[n]p,lp) inductively. Matters being plain if n = 0 

(X[O] is contractible), take n > O. Consider a principal refinement of order n of the arrow 

X[n] --+ X[n -1], i.e., a factorization X[n].A WN ~ WN-l --+ ... --+ WI ~ Wo = X[n -1], 
where A is a pointed homotopy equivalence and each qi : Wi --+ Wi-1 is a pointed 

Hurewicz fibration for which there is an abelian group 1t'j and 8. pointed continuous function 
Wi --+ 9K(1t'j,n+l) 

4.>i-1 : Wi-1 --+ K( 1t'i, n+ 1) such that the diagram q·l 1 is a pull-
Wi-l --+ K(1t'i,n+l) 

9.-1 
back square. To exhibit pairs (Wi,P, lp) (and hence produce (X[n]p, lp», one can proceed 

via recursion on i > 0, the existence of (Wo,p, lp) being secured by the induction hypothe-

Wi-l ---+ K(1t'i,n+l) 

sis. Chooseafiller4.>i_l,p:Wi_l,p--+K(1t'i,p,n+l)for 1 ! and 

Wi,P 

define Wi,P by the pullback square 1 
Wi-l,P 

Wi-l,P ---> 
9K(1t'i,p,n + 1) 

K(1t'i,p,n + 1) 

1 . Since the composite 
--+ K(1t'i,p,n+l) 

9.-1,P 
Wi --+ Wi-l --+ Wi-l,P --+ K(1t'i,p,n + 1) is nullhomotopic, there is a filler lp : Wi --+ Wi,P 

Wi ---+ Wi-l 

! . From the definitions, {~ is a pointed connected CW space 
I,P 

Wi,P ----+ Wi-l,P 

I 

I 

'" 
for 

homeomorphic to {~9i_l (parameter reversal). Moreover, {~ is nilpotent (cf. 
9i_l,P I,P 

§5, Proposition 15) and by comparing the homotopy sequences of { :~ one finds that 
. I,P 

V q ~ 1, 1t'q(lp) : 1t'q(Wi) --+ 1t'q{Wi,P) is P-Iocalizing. Recall now that V n, there is a pointed 

homotopy equivalence X[n] --+ PnX and a pointed Hurewicz fibration PnX --+ Pn-IX (cf. 

p. 5-41). Passing to mapping tracks and changing lp within its pointed homotopy class, 

one can always arrange that V n, the arrow (PnX)p --+ (Pn-lX)p is a pointed Hurewicz 
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PnX ---+ Pn-1X 
fibration and the diagram ! ! commutes. So, lim lp : lim PnX .......... 

(PnX)p ---+ (Pn-1X)p 
lim(PnX)p exists and Y q ;::: 1, 1I'q(lim lp) : 1I'q(lim PnX) .......... 1I'q(lim(PnX)p) is P-Iocalizing 
(cf. p. 5-50). Fix a CW resolution Xp .......... lim(PnX)p and let lp : X .......... Xp be a filler 

X -I> lim PnX 
for 1 1 (c!. §5, Proposition 4). Because the arrow X ~ lim PnX is 

Xp -+ lim(PnX)p 
a weak homotopy equivalence (cf. §5, Proposition 13), it follows that Y q ;::: 1, 1I'q(lp) : 
1I'q(X) .......... 1I'q(Xp) is P-localizing.1 

The reflector Lp figuring in the nilpotent P-localization theorem sends X to Xp 

(special cases: XQ, Xp (p E II» with arrow of localization [lp] : X .......... Xp. Brackets are 

X ~ Y 
often omitted, e.g., given 1 : X .......... Y, there is a diagram ! 

Xp 

to pointed homotopy. 

! ,commutative up 
---+ Yp 
fp 

[Note: Lp respects the "abelian subcategory" and the "simply connected subcate

gory" .] 

Let [I] : X .......... Y be a morphism in HNILCWSP .-then [/1 (or f) is said to be 

P-Iocalizing if 3 an isomorphism [4>] : Xp .......... Y such that [J) = [4>] 0 [lp] (cf. p. 0-30). 

PROPOSITION 3 Let {: be pointed nilpotent CW spaces, 1 : X .......... Y a pointed 

continuous function-then 1 is P-Iocalizing iffY n ;::: 1, I. : 1I'n(X) .......... 1I'n(Y) is P-Iocalizing. 

[This is implicit in the proof of the nilpotent P-Iocalization theorem.1 

Example: For any nilpotent group G, K(G, l)p ~ K(Gp, 1). 

PROPOSITION 4 Let {: be pointed nilpotent CW spaces, 1 : X .......... Y a pointed 

continuous function-then 1 is P-Iocalizing iff V n ;::: 1, I. : Hn(X) .......... Hn(Y) is P-

localizing. 

[The point behind the sufficiency is' that V n ;::: 1, Hn(Y) is P-Iocal, therefore Dror's 

Whitehead theorem implies that lp : Y .......... Yp is a pointed homotopy equivalence, thus Y 

is P-Iocal in homotopy.] 

Application: Let X be a pointed nilpotent CW space. Assume: X is P-Iocal in 

homology-then X is P-Iocal in homotopy. 
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[Note: The converse is also true (cf. p. 9-4).] 

FACT Let pi and P" be two sets of primes-then for any pointed nilpotent CW space X, 

(Xpl)p" :::::: (Xp")pl. 

[The left hand side computes X p/np" and the right hand side computes X p"npl.J 

The nilpotent P-Iocalization theorem has been relativized by Llerena t . In fact, sup

pose that {-; & Z are pointed connected CW spaces. Let I : X ~ Y be a pointed 

Hurewicz fibration with E f nilpotent-then there exists a pointed connected CW space 

X(P), a pointed Hurewicz fibration I(P) : X(P) ~ Y with Ef(p) nilpotent and P-Iocal 

in homotopy, and a pointed continuous function Z(P) : X ~ X(P) over Y such that the 

induced map E f ~ Ef(p) is P-Iocalizing: (Ef)p ~ Ef(p). In addition, for any pointed 

Hurewicz fibration g : Z ~ Y with Eg nilpotent and P-Iocal in homotopy, [J(P), g] ~ [J, g] 
X q, ) Z 

in the sense of pointed fiber homotopy, i.e., given a commutative triangle ~ ~, 

X(P) q,(P) ) Z 
.y 

there is a commutative triangle f(~ /. : [~] = [~(P)]o[Z(P)], ~(P) being unique 

Y 
up to pointed fiber homotopy. 

EXAMPLE Let X be a pointed connected CW space--then the diagram 
X ---+ X ---+ K(1I"1 (X), 1) 

1 II commutes in HCONCWSP. (cf. p. 5-62). Here, 11"1 (X) :::::: 

Xp ---+ X(P) ---+ K(1I"1 (X), 1) 
1I"1(X(P)) and V n ~ 2, the arrow 1I"n(X) - 1I"n(X(P)) is P-Iocalizing. 

Nilpotent P-Iocalization is compatible with homotopy and homology in that V n ~ 1, 

7l"n(X)p ~ 7l"n(Xp) and Hn(X)p ~ Hn(Xp) but this is false for cohomology. Example: 

Take X = Sn : S~ = M(Zp, n) => Hn+l(s~) ~ Ext(Zp, Z) i- 0 (P i- II). 

[Note: By contrast, taking coefficients in Zp, V n ~ 1, Hn(Xpj Zp) ~ Hn(Xj Zp) 

(cf. §8, Proposition 2).] 

Let [I] : X ~ Y be a morphism in HNILCWSP .-then [J] (or f) is said to be a 

P-equivalence if Ip : X p ~ Yp is a pointed homotopy equivalence. With regard to the 

underlying orthogonal pair (S, D), [J] is a P-equivalence iff [J] E S, so [J] is P-Iocalizing 

iff [I] E S & Y E D (cf. p. 0-30). 

t Math. Zeit. 188 (1985), 397-410. 
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[Note: When P = 0, the term is rational equivalence. Examples: (1) There is a 

rational equivalence S3 --+ K(Z,3) but there is no rational equivalence K(Z,3) --+ S3; 

(2) There are rational equivalences S3 V S5 --+ S3 V K(Z, 5), S3 V K(Z,5) --+ K(Z,3) V 

K(Z, 5), S3 V S5 --+ K(Z,3) V S5, K(Z,3) V S5 --+ K(Z,3) V K(Z,5) but there are no 

rational equivalences S3 V K(Z, 5) --+ K(Z, 3) V S5, K(Z,3) V S5 --+ S3 V K(Z, 5).] 

PROPOSITION I) Let {~ be pointed nilpotent CW spaces, f : X --+ Y a pointed 

continuous function-then f is a P-equivalence iff f. : H.(X; Zp) --+ H.(Yj Zp) is an 

isomorphism. 

[Note: This holds iff f. : H.(Xj Q) --+ H.(Y; Q) is an isomorphism and V pEP, 

f. : H.(X; Z/pZ) --+ H.(Y; Z/pZ) is an isomorphism (cf. §8, Proposition 3).] 

Example: Fix a positive integer d. Let Pd be the set of primes that do not divide 

d-then Sn!. Sn is a Pd-equivalence. 

EXAMPLE (Local Spheres) Given P, let Pl < P2 < ... be an enumeration of the elements of 

P and put dIe = p~ ... pZ (k = 1,2, ... )-then a model for Sp is the pointed mapping telescope of the 

sequence SA _ SA _ "', the ktb map having degree dIe. Since Q is P-Iocal, O-(Sj.; Q) ::::: O-(SA; Q). 

Accordingly, Sp cannot be an H space if n is even (Hopf). As for what happens when n is odd, Adams t 

has shown that if 2 f/. P, then Sp is an H space while if 2 E P, then Sp is an H space iff n = 1,3, or 7. 

EXAMPLE (Rational Spheres) If n is odd, then Sq = K(Q,n) but if n is even, then Sq = 

Ell where f ,: K(Q,n) - K(Q,2n) corresponds to t 2 E 02A(Q,n;Q) (O-(Q,n;Q) = Q[t], It I = n). 

{ 
Q (q = n) 

Consequently, if n is odd, then Q ® 'lfq(SA) = but if n is even, then Q ® 'lfq(SA) = 
o (q :F n) 

{
Q (q=n,2n-l) ( 

o (q :F n,2n - 1) 
cf. p. 5-44). 

PROPOSITION 6 Let {~ be pointed nilpotent CW spaces, f : X --+ Y a pointed 

continuous function. Suppose that f is a P-equivalence-then for any pi C P, f is a 

pl-equi valence. 

PROPOSITION,{ Let {~ be pointed nilpotentCW spaces, f : X --+ Y a pointed 

continuous function. Suppose that f is a pi-equivalence and a plt-equivalence-then f is 

a (Pi U plI)-equivalence. 

t Quart. J. Math. 12 (1961), 52-60. 
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FACT Let X be a pointed nilpotent CW space. Fix P-then for any pi C P, the canonical arrow 

Xp -+ Xpl is a (Pi U P)-equivalence. 

EXAMPLE Let {; be pointed nilpotent CW spaces. Assume: 3 a pointed homotopy equiva-

{ 
Zp R:: Xp 

lence 4> : XQ -+ YQ-then there is a pointed nilpotent CW space Z such that . 
Zp R:: Yp 

[Choose rp : Xp -+ XQ & 'Ii : Yp -+ YQ : IQ ~ rp olp (/Q : X -+ XQ) & IQ ~ rp 0 Ip 
</>orp 'P 

(/Q : Y -+ YQ). The double mapping track Z of the pointed 2-sink Xp - YQ +- Yp is a pointed CW 

space (cf. §6, Proposition 8). To check that Z is path connected (hence nilpotent (cf. p. 5-59», fix 

'Y E 11'1 (YQ). Since 4> 0 rp is a P-equivalence and rp is a P-equivalence, 3 m E Sp: 'Ym = (4) 0 rp). (Q) 

(Q E 11'1 (Xp» & 3 n E Sp : 'Yn = (rp). ({3) ({3 E 11'1 (Yp »' But m and n are relatively prime, so 3 k and 

I : km + In = 1 ::} 'Y = (4) 0 rp). (QA:) . (rp). ({31), which means that Z is path connected (cf. p. 4-37). 

{ 
Z -+ XP. { P-equivalence 

And: IS a _ .] 
Z -+ Yp P-equivalence 

PROPOSITION 8 Let {: be pointed nilpotent CW spaces, f : X --+ Y a pointed 

continuous function-then f is a pointed homotopy equivalence provided that V p, fp 

Xp --+ Yp is a pointed homotopy equivalence. 

[In fact, V p, H.(J)p : H.(X)p --+ H.(Y)p is an isomorphism. Therefore f IS a 

homology equivalence (cf. p. 8-3) and Dror's Whitehead theorem is applicable.] 

In the simply connected situation, there is another approach to P-Iocalization which 

depends on Proposition 2 but not on Proposition 1. Thus let X be a pointed simply 

connected CW space--then it will be enough to construct a pair (Xp, lp) : V q ~ 1, 

Hq(lp) : Hq(X) --+ Hq(Xp) is P-Iocalizing and for this one can assume that X is a pointed 

simply connected CW complex. 

Observation: A model for Xp, where X = V Sn (n > 1), is a Moore space of type 
I 

(I· Zp,n) : Xp = V M(Zp,n). 
I 

( dim X < 00) If dim X = 2, then X has the pointed homotopy type of a 

wedge V S2, hence (Xp, lp) exists in this case. Proceeding by induction on the dimension, 
I 

suppose that (Xp, lp) has been constructed for all X with dim X ~ n (n ~ 2) and consider 

an X with dimX = n + 1. Up to pointed homotopy type, X is the pointed mapping cone 

Cf of a pointed continuous function f : V Sn --+ x(n) (#(1) = #(£n+l)) and the pointed 
I 

cofibration j : x(n) --+ C f is a cofibration (cf. §3, Proposition 19). Choose a filler fp : 



Vsn 
I 

V sp -. X~n) for 1 I 
Vsp 
I 

--+ x(n) 

1 . 
---> X~n) 
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Since the composite V Sn -. x(n) -. X~n) -. Cfp 
I 

x(n) --+ Cf 

is nullhomotopic, there is a filler Ip : Cf -. Cfp for 1 1 . Assembling the data 

leads to a commutative diagram 

Hq(V Sn) --+ Hq(x(n» --+ Hq(Cf) 
I 

1 1 1 
Hq(V Sp) --+ 

I 
Hq(X~n» --+ Hq(Cfp) 

x(n) 
p 

--+ Hq-1(V Sn) 
I 

l' 
--+ iiq-1(V Sp) 

I 

--+ Hq_1(x(n» 

1 
--+ 

-- (n) Hq- 1(Xp ) 

of abelian groups with exact rows, where both vertical arrows on either side of the arrow 

Hq(Cf) -. Hq(Cfp) are P-Iocalizing. But this means that iiq{Cf) -. Hq(Cfp) is P

localizing as well (cf. p. 8-6). 

( dim X = (0) One can arrange matters in such a way that V· n, the diagram 
x(n) --+ x(n+l) 

1 1 is commutative and the arrow X~n) -. X~n+l) is a cofibration. Put 
x(n) --+ X(n+l) 

p p 

Xp = colim X~n) (cf. §5, Proposition 8) and define lp : X -. X p in the obvious fashion. 

FACT Let X k {~ be pointed simply connected CW spaces with finitely generated homotopy 

groups. Suppose that 9 : Y - Z is a rational equivalence-then 9 induces a bijection [XQ, Yl - [XQ. Z]. 

[Assuming that X is a pointed simply connected CW complex, construct XQ as above, and show by 

induction that V n, [Xg') , Y] ~ [Xg') , Z].] 

EXAMPLE (Phantom Maps) The notion of phantom map, as defined on p. 5-90 for pointed 

connected CW complexes, extends to pointed connected CW spaces {: : Ph{X, Y). This said, let { : 

be pointed simply connected CW spaces with finitely generated homotopy groups-then Ph{X, Y) = 
lQ[XQ, Y] C [X, Y] (cf. p. 11-6): For instance, take X = OS3, Y = S3. To compute [OS3, S3], note 

first that EOS3 ~ EOES2 ~ E( V s2n) ~ V S2n+l (cf. §4, Proposition 28 and subsequent discussion) 
n2;l n2;l 

and S3 ~ OB; (cr. p. 4-65), hence [Os3, S3] ~ [OS3, OB;] ~ [EOS3, B;] ~ [V s2n+l, B;l ~ 
n2;l 
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IT [S2 .. +1, B~] ~ IT [S2 .. , S3]. By the same token, [(OS3)Q, S3] ~ [O(S~), S3] ~ IT [S~, S3] or still, 
.. >1 .. >1 .. >1 
~- IT [S~, K(Z, 3)], the arrow S3 - K(Z, 3) being a rational equivalence. Conclusion~ Ph(OS3, S3) = o . 

.. ~1 

LEMMA Let {: be pointed connected CW spaces, f : X - Y a pointed Hurewicz fibra

tion with 1ro(XIIO) = *-then there is an exact sequence ... - 1r .. +l(Y;Z/kZ) - 1r .. (Xllo ;Z/kZ) -

1r .. (X; Z/kZ) - 1r .. (Y; Z/kZ) - ... - 1r2(Y; Z/kZ). 

EXAMPLE Let {: be pointed simply connected CW spaces with finitely generated homo

topy groups, f : X - Y a pointed continuous function-then f is a p-equivalence iff V n ~ 2, f. : 

1r .. (X; Z/pZ) - 1r .. (Y; Z/pZ) is bijective. 

(Products) Let {-; be pointed nilpotent CW spaces-then (X x Y)p ~ Xp x 

Yp. 

EXAMPLE (H Spaces) Suppose that X is a path connected H space-then Xp is a path con

nected H space and the arrow of localization /p : X - Xp is an H map. 

(Mapping Fibers) Let {-; be pointed nilpotent CW spaces, f X ---. Y a 

pointed continuous function. Assume: Ef is nilpotent-then (Ef)P ~ Efp. 

[Since 7ro(Ef) = *, the arrow 7rl (X) ---. 7rl (Y) is surjective, thus the same is true of the 

arrow 7rl (X)p ---. 7rl (Y)p or still, of the arrow 7rl (Xp) ---. 7rl (Yp). Therefore 7ro(E fp) = * 
and Efp is nilpotent (cf. p. 5-58). Compare the long exact sequences in homotopy.] 

Application: Let (K, ko) be a pointed finite connected CW complex. Suppose that 

f : X ---. Y is P-Iocalizing-then for any pointed continuous function 4> : K ---. X, the 

arrow C(K, ko; X, Xo : 4» ---. C(K, ko; Y, Yo : f 04» is P-Iocalizing. 

[Note: C(··· : 4», C(··· : f 04» stand for the path component to which 4>, f 0 4> belong 

(cf. p. 5-58 if.).] 

Example: Given a pointed nilpotent CW space X, (noX)p ~ no(Xp), where no? IS 

the path component of n? containing the constant loop. 

EXAMPLE Let X be a pointed nilpotent CW space. Denote by C 7r p the mapping cone of the 

pointed Hurewicz fibration 1rp : E, p - X-then the projection C 7rp - Xp is a pointed homotopy 

equivalence iff X is P-Iocal or Xp is simply connected (cf. p. 5-67). 
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FACT Let K be a finite CW complex; let X be a pointed nilpotent CW space. Fix a continuous 

function </I: K - X. Denote by C(K, X: </I), C(K,Xp : lpo</l) the path component ofC(K, X), C(K,Xp) 

containing </I, Ip o </l-then C(K,X: </I) is nilpotent (cf. p. 5-61) and C(K, X : </I)p:=::! C(K,Xp: Ip 0</1). 

[Reduce to when K is connected and work with the Postnikov tower of X.J 

2n+1 

4m-1 

EXAMPLE Let X = s2m X s2n+! (m, n > O)-then C(X, X : idx)q ~ IT K(Qd., i) x 
.=1 

IT K(H2n+!-i(Xj Q),j), where di = dimq H 4Tn -l-'(Xj Q) - dimq H 2m - 1 -i(Xj Q) (cr. p. 5-30). 
i=1 

(Mapping Cones) Let {: be pointed nilpotent CW spaces, f : X -+ Y a 

pointed continuous function. Assume: C f is nilpotent-then (C f)P ~ C fp. 

[Cfp is path connected and by Van Kampen, 7rl(Cfp) ~ (7rl(Cf»)P . But why is Cfp 

nilpotent? For this, it is necessary to use the result of Rao mentioned on p. 5-59 (and 

transferred to the pointed setting). Take, e.g., the third possibility: 3 a prime p such that 

7rl(Cf) is a finite p-group and V q > 0, Hq(X) is a p-group of finite exponent. Case 1: 

p f/. P. Here, (1I"1(Cf»p = 1 (cf. p. 8-11) and Cfp is simply connected. Case 2: pEP. 

X is then P-local in homology, hence is P-Iocal in homotopy (cf. p. 9-6), i.e., X ~ Xp, 

and 11"1 (C f) ~ 7r1 (C fp). Therefore C fp is nilpotent. Comparing the long exact sequences 

in homology finishes the proof.] 

Example: Given a pointed nilpotent CW space X, (~X)p ~ ~Xp. 

EXAMPLE Let {: be pointed simply connected CW spaces-then (X#Y)p:=::! Xp#Yp. 

[Observing that (X V Y)p ~ Xp V Yp, identify X#Y with the pointed mapping cone X#Y of the 

inclusion X V Y - X x Y (cf. §3, Proposition 23).] 

Every nilpotent group G is separable, i.e., the arrow G -+ TI Gp is injective. The 
p 

following result is its homotopy theoretic analog. 

PROPOSITION 9 Let X be a pointed nilpotent CW space-then for any pointed 

finite connected CW complex K, the arrow [K,X] -+ TI[K,Xp] is injective. 

['rhe assertion is certainly true if K 
Sn-l 

tively, consider the pushout square 1 

p 

is a finite wedge of circles. Arguing induc-

~ L 
1 (n 2: 2) and suppose that the arrow 



9-13 

sn-l f) L 

[L, X] ~ TI[L, Xp] is injective. Taking I skeletal, there is a factorization i 1 ~ , 
p 

Mj 
where L RS Mj and K RS G f RS Gi, so one can assume that I is a closed cofibration. 

Restoring the base points, the corresponding arrow of restriction pt' : G(L, lo; X, xo) ~ 
C(Sn-I,Sn_ljX,XO) is then a Hurewicz fibration (cf. p. 40-9) and the fiber of 1* over 

o is homeomorphic to C(L/Sn-1,*sn-tiX,Xo), *sn-t the image of Sn-l in L/Sn- 1. 
But the projection Cj ~ L/Sn

- 1 is a pointed homotopy equivalence (cf. p. 3-24), 

thus G(K,ko;X,xo) RS G(L/Sn- 1,*sn-l;X,XO) (cf. p. 6-22). This said, given tP E 

G(K k X) .1. A.IL 1 {(G,tP) = G(K,koiX,Xo : tP) d 11 {[K,X]q, th 
,0; ,Xo, put 'f/ = 'f' ,et (G,t/J) = G(L,loiX,xo: t/J) an ca [L,X]" e 

pointed set { f~'~] with {: as the base point. Noting that 71"1 (G(sn-l ,Sn-l j X, xo), 0) RS 

7I"n(X), a portion of the homotopy sequence of our fibration reads: 7I"1(G,t/J) ~ 7I"n(X) ~ 
[K,X]q, ~ [L,X]". Here, 7I"n(X) operates on [K,X]q, and the orbit of tP consists of those 

maps which are pointed homotopic to t/J when restricted to L, the stabilizer of tP being 

precisely im 71"1 (G, t/J). Collect the data and display it in a commutative diagram 
7I"1(G,t/J) ---? 7I"n(X) ---? [K,X]q, ---? [L,X]" 

1 1 1 1 
TI7I"1(Gp,lpot/J) ---? TI7I"n(Xp) ---? TI[K,Xp],poq, ---? TI[L,Xp],po" 
p p p p 

The components of the first and second vertical arrows are p-localizing and by hypothesis, 

the fourth vertical arrow is injective. As for the third vertical arrow, its injectivity amounts 

to showing that if tP' : K ~ X and if 'V p, Ip 0 tP' ~ Ip 0 tP, then tP' ~ tP. To begin, 

'V p, Ip 0 t/J' ~ Ip 0 t/J => t/J' ~ t/J, hence tP' lies on the 7I"n(X)-orbit of tP, i.e., 3! a E 

7I"n(X)/im 71"1 (G, t/J) : [tP'] = a . [tP]. Claim: a is trivial. In fact, 'V p, Ip( a) is trivial in 

7I"n(Xp)/im 71"1 (Gp, Ipot/J) and the arrow 7I"n(X)/im 7I"1(G, t/J) ~ II(7I"n(Xp)/im 71"1 (Gp, Ip ot/J» 
p 

is one-to-one.] 

Application: Let K be a pointed finite nilpotent CW complex; let X be a pointed 

nilpotent CW complex. Suppose that I, 9 : K ~ X are pointed continuous functions. 

Assume: 'V p, Ip ~ gp-then I ~ g. 

Sn ~ Sj, vSj;-

EXAMPLE Suppose that P :f: 0 & P :f: 0. Define K by the pushout square 1 1 
nn+l ---? K 

(n ~ 2), where f = (1,1) E 1rn(Sj, V Sj;-) :::::: Zp $ Zp. Let t/J : K -+ Sn+l be the collapsing map-then 

V p, I" 0 t/J !:= 0 but [t/J] :f: [0]. Therefore, even when X is a sphere, Proposition 9 can fail if K is not finite 

(but Proposition 9 does imply that t/J E Ph(K, sn+l». 
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FACT Let X be a pointed nilpotent CW space-then for any pointed finite connected CW complex 
[K,X] --+ [K,Xp] 

K, the commutative diagram 1 1 is a pullback square in SET •. 

[K,Xp] --+ [K,XQ] 

[Note: X "is" the double mapping track of the pointed 2-sink Xp -+ XQ +- Xp-] 

EXAMPLE The assumption on K plays a role in the preceding result. Thus suppose that P #; ., 

[POO(C), S3] -:--+ [POO(C), S~] 

& P #; 0--then the commutative diagram 1 1 is not a pullback square in 

SET •. 
[POO(C), S~] . --+ [POO(C), S~J 

[Show that the arrow liml[EPfl(C), S3] -+ liml [EPfl(C), S~] $liml [EPfl(C), S~] is not one-to-one 

(cf. p. 5-49).] 

FACT Let X be a pointed nilpotent CW space-then for any finite CW complex K, the'arrow 

[K, X] -+ II[K, Xp] is injective. 
p 

[Note: In this context, the brackets refer to homotopy classes of maps, not to pointed homotopy 

classes of pointed maps.] 

Let X be a pointed nilpotent CW space-then one may attach to X a sink {rp : Xp -+ 

XQ} and a source {lp : X -+ Xp}, where V {: ,rp 0 Ip ~ rq olq. 

PROPOSITION 10 Let X be a pointed nilpotent CW space with finitely generated 

homotopy groups. Suppose given a pointed finite connected CW complex K and pointed 

continuous functions ¢(p) : K -+ Xp such that V {~ ,rp 0 ¢(p) ~ rq 0 ¢(q)-then there is 

a pointed continuous function ¢ : K -+ X such that V p, Ip 0 ¢ ~ ¢(p). 
[The fracture lemma on p. 8-16 implies that the result holds if K is a finite wedge of 

sn-l ~ L 

circles. Proceeding via induction, consider the pushout square 1 1 (n !:: 2) and 

D n --+ K 
assume that there is a pointed continuous function,p : L -+ X such that V p, Ip o,p ~ ,p(p), 
where ,p(p) = ¢(p )IL. Since V p, ,p(p) 0 f ~ 0, from Proposition 9, ,p 0 f ~ 0, so ::I a pointed 

continuous function ¢' : K -+ X which restricts to,p. Taking f to be a closed cofibration 

and following the proof of Proposition 9, form the commutative diagram 

7rl (C, ,p) --+ 7rn (X) --+ [K, Xlq,1 --+ [L, X]1/J 

1 1 1 1 
7rl(Cp,lpo,p) --+ 7rn (Xp) --+ [K,X],poq,1 --+ [L,Xp],po1/J 
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Because ~(p)IL :::::= Ip 0 ~/IL, ~(p) must be on the 7fn (Xp )-orbit of lp 0 ~/, i.e., 3! a(p) E 

7fn (Xp )/im 7f} (ep, lp 0 'I/J) : [~(p)] = a(p) . [lp 0 ~/]. However, the a(p) all rationalize to the 

same element of (7fn (X)/im 7f1 (e, 'I/J))Q, thus 3! a E 7fn (X)/im 7fl(e, 'I/J) : V p, lp(a) = a(p). 
Put ~ = a· ~' : Ip 0 ~:::::= Ip 0 (a· ~/) :::::= lp(a) . (lp 0 ~/) :::::= a(p) . (lp 0 ~') :::::= ~(p).] 

FACT Let X be a pointed nilpotent CW space with finitely generated homotopy groups. Suppose 

given a finite CW complex K and continuous functions ifJ(p) : K -;. X" such that V {: ,rp 0 ifJ(p) ~ 
rq 0 ifJ(q)-then there is a continuous function ifJ : K -;. X such that V p, ,,, 0 ifJ ~ ifJ(p), 

HASSE PRINCIPLE Let X be a pointed nilpotent CW space with finitely gener

ated homotopy groups-then for any pointed finite connected CW complex K, the source 

{[K,X] -+ [K,Xp]} is the multiple pullback of the sink {[K,Xp] -+ [K,XQ]}. 

[This is a consequence of Propositions 9 and 10.] 

Given a pointed nilpotent CW space X with finitely generated homotopy groups, the genus gen X 

of X is the conglomerate of pointed homotopy types [YJ, where Y is a pointed nilpotent CW space with 

finitely generated homotopy groups such that V p, Xp ~ Yp. The members of gen X have isomorphic higher 

homotopy groups (but their fundamental groups are not necessarily isomorphic) and isomorphic integral 

singular homology groups (but their integral singular cohomology rings are not necessarily isomorphic). 

Examples: (1) gen sn = {[sn]}; (2) gen K(1r, n) = {[K(1r, n)}}, 1r a finitely generated abelian group; 

(3) gen M(1r, n) = {[M(1r, n)J}, 1r a finitely generated abelian group (n ~ 2). 

EXAMPLE Fix a generator ~ E 1r6(S3) ~ Z/12Z. Put X = D7 U a S3, Y = D7 Ulia S3-tllen 

V P, Xp ~ Yp but X and Y do not have the same pointed homotopy type. 

EXAMPLE It has been shown by Wilkerson t that if X is a pointed finite simply connected CW 

complex, then #(gen X) < w but this can fail when X is not finite. For instance, take X = POO(H)-then 

genX is in a one-to-one correspondence with the set of all functions n - {±1} (Rector-), hence has 

cardinality 2"". 

[Note: It is unknown whether #(gen X) < w for an arbitrary pointed finite nilpotent CW complex 

X.] 

EXAMPLE Let {; be pointed nilpotent CW spaces-then X and Yare said to be clones if (i) 

V n, X[n] ~ Y[n] and (ii) V p, Xp ~ Yp. While neither (i) nor (ii) alone suffices to imply that X ~ Y, one 

t Topolo911 15 (1976), 111-130. 

SLN 249 (1971), 99-105. 
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can uk whether this is the cue of their conjunction. In other words, if X and Y are clones, does it follow 

that X and Y have the same pointed homotopy type? The answer is "no". Take X = S3 X K(Z, 3)-then, 

up to pointed homotopy type, the number of distinct clones of X is uncountable (McGibbont). 

Given a set of primes P, a pointed connected CW space X is said to be P-Iocal if 

"V n ESp, the arrow {nx -tnnx is a pointed homotopy equivalence. 
0"-t0" 

[Note: X is P-loca.l iff'lrl(X) and the 'Ir,(X) >4'1rl (X) (q ~ 2) are P-Iocal groups (cf. p. 
8-9) or still, iff 'lrl(X) is a P-Iocal group and the 'Ir,(X) (q ~ 2) are P-Iocal 'lrl(X)-modules 

(cf. p. 8-22). Therefore a P-Iocal space is P-local in homotopy (but not conversely (cf. 

p. 9-2».] 
Example: For any P-local group G, K(G, 1) is a P-local space. 

[Note: Accordingly, a P-local space is not necessarily P-Iocal in homology (cf. p. 

9-3).] 
Notation: CONCWSP.,P is the full subcategory of CONCWSP. whose objects 

are the pointed connected CW spaces which are P-Iocal and HCONCWSP .,P is the 

associated homotopy category. 

[Note: This notation is a consistent extension of that introduced on p. 9-4 for the 

nilpotent category, i.e., a pointed nilpotent CW space which is P-Iocal in homotopy is 

P-Iocal (cf. p. 8-16).] 

Observation: Set S~ = SI (q = 1), S~ = (S,-1 II *)#SI (q ~ 2) and let P~ = Pn 

(q = 1), P~ = id#Pn (q ~ 2), where pn : SI -t SI is a map of degree n (n E Sp). Working 

in HCONCWSP., put So = ([p~]}-then st is the object class of HCONCWSP .,p. 
[In fact, [S},X] ~ 'lrl(X), [S~,X] ~ 'Ir,(X)>4'1rl(X) (q ~ 2) and (p~). : [ShX] -t 

[St, X] is the nth power map "V q ~ 1.] 
Let [J] : X -t Y be a morphism in HCONCWSP.-then [I] (or f) is said to be a 

P-equivalence if [I] is orthogonal to every P-local pointed connected CW space. 

[Note: This terminology does not conflict with that used earlier in the nilpotent 

category (cf. Proposition 12).] 

Convention: Given a pointed connected CW space X, a P[X]-module is a P['lrl(X)]
module. 

[Note: If {: are pointed connected CW spaces and if 1 : X -t Y is a pointed 

continuous function, then every P[Y]-module can be construed as a P[X]-module (cf. p. 
8-23).] 

t Comment. Math. Hdv. 68 (1993), 263-277. 
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PROPOSITION 11 Let {: be pointed connected CW spaces, I : X -+ Y a pointed 

continuous function-then I is a P-equivalence iff ?TI(f)P : ?TI(X)P -+ ?TI(Y)P is bijective 

and for every locally constant coefficient system g on Y arising from a P[Y]-module, 

Hn(Yjg) R:j Hn(Xj/*g) V n. 

[Necessity: Given a P-local group G, [I] J.. K(G,l) => [Y,K(G,l)] R:j [X,K(G,l)] => 
Hom(?TI(Y),G) R:j Hom(?TI(X),G) => ?TIC!).L G => ?TI(/)p: ?Tl(X)P R:j ?TI(Y)P. To check 
the cohomological assertion, fix a right P[Y]-module ?T and let X : ?Tl {Y)p -+ Aut ?T be the 
associated homomorphism .. Denote by g : IlY, -+ AB the cofunctor corresponding to the 

composite X 0 lp, where lp : ?TI (Y) -+ ?Tl (Y)p. Since for positive n, K(?T, nj X) is P-local, 
[I] .L K(?T,n;x) => [Y,K(?T,n;x)] R:j [X,K(?T,njX)] => Hn(Yjg) R:j Hn(Xj/*g) (cf. p. 

5-34), n > O. There remains the claim that HO(Yj g) R:j HO(Xi I*g), i.e., that the ?Tl(Y)

invariants in ?T equal the ?Tl(X)-invariants in?T. To see this, consider the commutative 
?TI(X) -..:; ?Tl(Y) 

diagram! !. From what has been said above, the arrow ?Tl(X)P -+ 

?TI (X)p -..:; ?TI (Y)p 
?Tl (Y) p is an isomorphism. The claim thus follows from the fact that the ?Tl (Y) p-invariants 

in ?T are equal to the ?TI (Y)-invariants in ?T (cf. p. 8-24). 

Sufficiency: In order to apply the machinery of full blown obstruction theory (lo

cally constant coefficients (Olumt », take {: to be pointed connected CW complexes 

with X a pointed sub complex of Y, so I is the inclusion X -+ Y. Fix a pointed con

tinuous function ~ : X -+ Z, where Z is P-Iocal-then ?TI(/) J.. ?TI(Z) => 3! 8 E 

Hom(?T1 (Y), ?TI (Z» : ?TI (~) = 8 0 ?TI (I). By restriction of scalars, i.e., using the filler 

?TI (Y) 9 ) ?TI (Z) 

for 1 .. " 
, ........ ' , the ?Tn(Z) (n ~ 2) become P[Y]-modules and there is a long 

?TI(Y)P 
exact sequence HI(y; ?Tn(Z» -+ HI(Xi ?Tn(Z» -+ H2(y, Xj ?Tn(Z» -+ H2(Yj ?TnCZ» -+ 

H2(X; ?Tn(Z» -+ ...• 

(Existence)· One can find a pointed continuous function t/J : (Y, X)(2) -+ Z such 

that t/JIX = ~ and ?TIel/;) = 8 ((Y,X)(2) = y(2) U X and ?TI((Y,X)(2» R:j ?Tl(Y»' On the 

other hand, the higher order obstructions to the existence of a pointed continuous function 

I[> : Y -+ Z such that I[>IX = ~(=> ?TI(I[» = 8) lie in the Hn+I(Y,Xj?TnCZ» (n ~ 2). As 

these groups necessarily vanish, the precomposition arrow 1* : [Y, Z] -+ [X, Z] is surjective. 

(Uniqueness) Suppose that 1[>', 1[>" : Y -+ Z are pointed continuous functions 

t Ann. of Math. 52 (1950), 1-50; see also Baues, Obstruction Theory, Springer Verlag (1977). 
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. h {~/ IX = <P h th I' . th ;F./ d;F./I . t d h t' I d d WIt ~IIIX = <p -t en e c aIm 1S at ~ an ~ are pOln e ·omo OplC. n ee , 

?rl.(~/) = () = ?rl(~II) => ~/I(Y,X)(1) ::: ~1I1(Y,X)(1)relX and since the Hn(Y,Xj?rn(Z» 

(n ~ 2) are trivial, ~/ and ~/I are homotopic reIX.] 

LEMMA Let {:' be pointed connected CW spaces, I : X -t Y a pointed contin

uous function. Fix a group G and a ring A with unit. Suppose given a homomorphism 

. ?rl(Y) -+ G and a homomorphism Z[G] -+ A. Let A be the locally constant coefficient 

system on Y corresponding to A. Assume: V n ~ 0, H n (X; r A) ~ H n (Y; A)-then for 

every locally constant coefficient system M on Y corresponding to a {~!ftht A-module 

M {Hn(Xj/* M) ~ Hn(Y;M) V > ° 
, Hn(Y;M)~Hn(X;I*M) n_. 

[It suffices to work with pointed connected CW complexes X and Y, where X is a 

pointed sub complex of Y (f becoming the inclusion). Put ?r = ?rl(Y) and let C*(Y,X) be 

the associated relative skeletal chain complex (Whiteheadt ), so each Cn(Y, X) is a free left 

Z[?r]-module and V n ~ 0, Hn(Y,Xj A) = Hn(A ®Z[7I'] C.(Y, X». Here, however, V n ~ 0, 

Hn(Y, Xi A) = 0, and this means that A ®Z[7I'] C.(Y,X) is a free resolution of ° as an A

module. Therefore, for any right A-module M, Hn(Y,XjM) ~ Hn(M ®Z[7I'] C.(Y,X» ~ 
Hn(M ®A A ®Z[7I'] C*(Y,X» ~ Tor:(M,O) = ° V n ~ ° and for any left A-module M, 
Hn(Y,X;M) ~ Hn(Homz[7I'](C.(Y,X),M» ~ Hn(Homz[7I'](C.(Y,X), HomA(A,M») s::d 

Hn(HomA(A ®Z[7I'] C.(Y,X),M» ~ Ext~(O,M") = ° V n ~ 0.] 

[Note: Recall that when dealing with modules over a group ring, there is no essential 

distinction between "left" and "right". In particular: The Cn(Y, X) are both left and right 

free Z[?r]-modules.] 

It is a corollary that I is a P-equivalence provided that ?rl(f)P : ?rl(X)P -t 1l"l(Y)P 

is bijective and for every locally constant coefficient system 0 on Y arising from a P[Y]

module, Hn(X; 1*0) ~ Hn(Y; 9) V n ~ 0. In fact, to pass from homology to cohomology, 

one may apply the lemma, taking G = ?rl(Y)P and A = (Z[GDsp (cf. p. 8-23). 

EXAMPLE Let X be a pointed connected CW space. Suppose that N is a perfect normal sub

group of 11"1 (X) which is contained in the kernel of the arrow of localization 11"1 (X) _ 11"1 (X)p-then 

rt. : X - xt is a P-equivalence. 

t Elements of Homotopy Theory, Springer Verlag (1978), 287-288. 
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[The assumption on N guarantees that 11'1 (X)p ~ 11'1 (xt)p· But It is acyclic, so for every locally 

constant coefficient system Q on xt, H.(Xj (lttQ) ~ H.(Xtj(i) (d. §5, Proposition 22) and the lemma 

can be quoted.] 

[Note: It is not really necessary to use the lemma. This is because acyclic maps can equally well be 

characterized in terms of cohomology with locally constant coefficients.] 

PROPOSITION 12 Let {-; be pointed nilpotent CW spaces, f : X -+ Y a pointed 

continuous function. Assume: f. : H.(Xj Zp) -+ H.(Yj Zp) is an isomorphism-then for 

every locally constant coefficient system Q on Y arising from a P[Y]-module, H n( X j /* Q) R:: 

Hn(YjQ) Y n ~ O. 
[According to Proposition 5, fp : Xp -+ Yp is a pointed homotopy equivalence, so 

there is no loss of generality in supposing that Y = Xp, f = lp. Consider the diagram 
- p X -+ X -+ K(1l'1(X),1) 

11 1 1 It commutes up to pointed homotopy and because 

Y -+ Y -+ K(ll'l(Y),l) 
- q {$ are simply connected, Hn(Xip· /*Q) R:: Hn(Xj l·q*Q) R:: Hn(Xj G), Hn(Yj q*Q) R:: 

Hn(Yj G), G the underlying P-Iocalll'l(Y)-module. Bearing in mind that G is, in par

ticular, a Zp-module, the fact that H*(Xj Zp) R:: H*(Yj Zp), in conjunction with the 

universal coefficient theorem, then gives H * (X j G) R:: H * (Y; G). Pass now to the mor

phism {E;,q R:: Hp(ll'l(X)j H,(Xj G»)} -+ {E;,q R:: Hp(ll'l(Y); Hq(Y; G»)} of fibration spec

tral sequences. Since the action of 1l'1(Y) on the H,(Y) is nilpotent (cf. §5, Proposi

tion 17), each H,(Y j G) is a P-localll'l (Y)-module (cf. p. 8-23), i.e., is a P[X]-module 

(ll'l(X)P = 1l'1(Y». Therefore, Y p & Yq, Hp(ll'l(X)j Hq(Xj G» R:: Hp(ll'l(Y)jHq(YjG» 

(d. §8, Proposition 16), which serves to complete the proof (d. p. 5-69).] 

[Note: In the nilpotent category, the term "P-equivalence" has two possible interpre

tations. The point of the proposition is that they coincide (cf. §8, Proposition 2).] 

If S is the class of P-equivalences and if D is the class of P-local spaces, then (S, D) 

is an orthogonal pair. Proof: S = Dl.. (by definition) and sd- = D => stl.. = S => D = 
stl..l.. = Sl... Consequently, S has the closure properties (1)-(3) formulated on p. 0-22. It 
will also be necessary to know the interplay between P-equivalences, wedges, and certain 
weak colimits. 

(Wedges) Let {~i (i E I) be pointed connected CW spaces. Suppose that 

Y i, fi : Xi -+ Yi is a P-equivalence-then V Ii : V Xi -+ V Yi is a P-equivalence. 
iii 
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[By assumption, V i, (71'1 (Xi) -. 71'l(Yi» 1. Ob GRp, hence (~7I'1(Xi) -. ~7I'1(Yi» 1. , . 
Ob GRp, i.e., (71'1 (V Xi) -. 71'1 (V Yi» 1. Ob GRp. Let 9 be a locally constant coef-

i i 
ficient system on V Yi arising from a P[V Yi]-module. Employing the notation used in 

i i 
the proof of Proposition 11, [VYi,K(7I',n;x)] ~ TI[Yi,K(7I',n;x)] ~ TI[Xj,K(7I',n;x)] ~ 

i j i 
[V Xi,K(7I',n;x)] ::::? Hn(VYii9) ~ Hn(v Xii(V fi)*9) (cf. p. 5-34), n > O. Finally, the 
iii i 

71'1 (V Yi)-invariants in 71' equal n7l''lfd Yi) and the 71'1 (V Xi)-invariants in 71' equal n7l''lf1 (Xi). 
iii i 

And: Vi, 71''lfl(Yi) = 71''lf1 (Xi).] 

(Double Mapping Cylinders) Let X I- z .!.. Y be a pointed 2-source, where 

{:. & Z are pointed connected CW spaces and f is a P-equivalence. Form the pointed 

double mapping cylinder M", of f,g-then the arrow Y -. M", is a P-equivalence. 

[Assuming that {:. & Z are pointed connected CW complexes and {~ are skele-

Z J.... Y Z -+ M, 

tal, pass from '1 1 to 1 1; (cf. p. 3-23), noting that 

the arrow Z -. M, is a P-equivalence. Thanks to Van Kampen, the commutative di-

71'l(Z) -+ 71'1 (M,) 

agram 1 1 is a pushout square in GR, so (7I'1(Z) -. 71'l(M,» 1. 

71'1 (M,) -+ 71'1 (M",) 
ObGRp ::::? (7I'1(M,) -. 71'l(M",» 1. ObGRp. Let 9 be a locally constant coeffi-

cient system on M", arising from a P[M",l-module. On general grounds (excision), 

Hn(M,." M,; 9) ~ Hn(M" Z; 9 I M,) V n ~ 0, thus Hn(M"" M,; 9) = 0 V n ~ 0 ::::? 

Hn(M",; 9) ~ Hn(M,; 9 I M,) V n ~ O. That the arrow M, -. M,., is a P-equivalence 

is therefore implied by Proposition 11.] 

(Mapping Telescopes) Let {Xk' fd be a sequence, where Xk is a pointed con

nected CW space and !k : Xk -. Xk+l is a P-equivalence. Form the pointed mapping 

telescope teleX, f) of (X, f)-then the arrow Xo -. teleX, f) is a. P-equivalence. 

[Assuming that the Xk are pointed connected CW complexes and the fk are skeletal, 
teb(X, f) -+ telk+l(X, f) 

there is a commutative diagram 1 1 in which the vertical arrows 

Xk -+ Xk+l 
are pointed homotopy equivalences (c!. p. 3-21). By hypothesis, V k, (7I'1(telo(X,f) -. 

71'1(teb(X,f)) 1. ObGRp, so (7I'1(telo(X,f) -. colim7l'1(telk(X,f)) 1. ObGRp ::::? 

(71'1 (telo(X, f) -. 71'1 (tel(X, f)) 1. Ob GRp. Let 9 be a locally constant coefficient system 
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on teleX, f) arising from a P[tel(X, f)]-module and put (;,. = g I telk(X, f)-then V n > 0, 

HR(teb(X, f); gk) ::::I HR (te1o (X, f); go) => limHR(teb(X, f); gk) ::::I HR(te1o(X, f); go). 
Since 11"1 (tel(X, f)) ::::I colim 11"1 (teb(X, f)), HO(tel(X, f); g) ::::IlimHO(teh(X, f)). Moreover, 

V n 2: 1, there is an exact sequence 0 --+ liml HR-I(te1k(X, f)i gk) --+ HR(tel(X, f)i g) --+ 

limHR(telk(X, f)i gk) --+ 0 of abelian groups (Whiteheadt ). But here the liml terms van

ish, so V n 2: 1, HR(tel(X, f)j g) ::::IlimHR(telk(X, f)j gk).] 

HOMOTOPICAL P-LOCALIZATION THEOREM HCONCWSP *,P is a reflective 

subcategory of HCONCWSP *. 
[The theorem will follow provided that one can show that it is possible to assign to 

each pointed connected CW space X a P-Iocal pointed connected CW space Xp and a 

P-equivalence lp : X --+ Xp. Let M: be the pointed double mapping cylinder of the 

S~ 
p~ 

S' ---+ T 
'I 'I 

pointed 2-source S~ ~ S~ ~ S~-then the diagram p~l 1-'1 is pointed homo-1n 

S' ---+ M' T -" R 
In 

{ 
i' 

topy commutative and .~ are P-equivalences. Choose pointed continuous functions 
JR 

<p~ : M: --+ S~ such that R.R = id. We shall now construct a sequence {Xk,h} { 
<p' 0 i' 
<p~ 0 J~ 

such that Xo = X and fk : Xk --+ Xk+l is a P-equivalence. Thus, arguing by recursion, 

assume that Xk has been constructed. Consider the set of morphisms [f] E [S~, XkJ which 

cannot be factored through p~ (failure of surjectivity of (p~)*) and the set of morphisms 

[gJ E [M!,Xk] which cannot be factored through <p~ (failure of injectivity of (p~)*). If V q 
& V n, these two sets are empty, then Xk is P-Iocal, so one can let Xp = Xk and take for 

lp : X --+ Xp the composite Xo --+ Xl --+ ••• --+ Xk. Otherwise, form the pointed 2-source 

Xk:!- V«V S~) V (V M!)) ~ V«V S~) V (V S~)) 
"R I 9 "R I 9 

and call Xk+l the pointed double mapping cylinder of V, h. Since h is a P-equivalence 

(being a wedge of P-equivalences), the same is true of the arrow Xk --+ Xk+l, thereby 

completing the transition from k to k + 1. Definition: Xp = teleX, f). Accordingly, 

lp : X --+ Xp is a P-equivalence. To prove that Xp is P-Iocal, it suffices to show that 

X p is orthogonal to the p~. Due to the compactness of { ~ , matters may be arranged 

t Elements of Homotopy Theory, Springer Verlag (1978), 273-274. 
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{ 
S} ~ Xp 

in such a way that any continuous function factors through some X k (cf. p. 
M~~Xp 

1-29), hence the very construction of Xp guarantees that every triangle 

has a unique filler S} ~ X p.J 

The reflector Lp produced by the homotopical P-localization theorem, when restricted 

to HNILCWSP., "is" the Lp produced by the nilpotent P-localization theorem. There

fore the idempotent triple corresponding to P-Iocalization in HCONCWSP * is an ex

tension of the idempotent triple corresponding to P-Iocalization in HNILCWSP. (cf. p. 

0-30) (however it is not the only such extension (cf. p. 9-27)). 

Remarks: (1) V X, 7rl(X)P ~ 7rl(Xp)i (2) \;f X & V n ~ 1, the arrow Hn(X) ~ 

Hn(Xp) is P-bijective but Hn(Xp) need not be P-Iocal (unless X is nilpotent)i (3) \;f X 

& V n > 1, 7rn (Xp) is P-local but the arrow 7rn (X) ~ 7rn (Xp) need not be P-bijective 

(unless X is nilpotent). 

EXAMPLE Let G be a group-then K(G,I)p ::::; K(Gp , 1) if G is nilpotent (cf. p. 9-6) but 

this is false in general (K(G, I)p will ordinarily have nontrivial higher homotopy groups). To illustrate, 

suppose that G is finite. Claim: K(G, I)p::::; K(Gp, 1) iff kerlp is Sp-torsion, lp : G -+ Gp th!'! arrow of 

localization. In fact, K(Gp, I)'is P-local, so the question is whether the arrow K(G, 1) -+ K(Gp,I) is a 

P-equivalence, which is the case iff kerlp is Sp-torsion (d. p. 8-24). 

[Note: K(S3.I)3 is simply connected but 11'3(K(S3. Ih) ::::; Z/3Z).] 

FACT For any G, the arrow of localization lp ; G -+ G p is an HP-homomorphism. 

I«G, I) ) K(G,I)p 

[The triangle 1 / commutes in HCONCWSP ... In addition, H .. (K(G,I); 

K(G p ,l) 

Zp) ::::; H.(K(G, l)p; Zp) and 1f} (K(G, I)p) ::::; G p.] 

The methods used in the proof of the homotopical P-Iocalization theorem are of a general character 

and can easily be abstracted. What follows isolates the essentials. 

Fix a cat.f'gory C wit.h coproducts. Lf't. 8 C Mol' C bf' a class of morphism;:; containing t.hf' isomor

phisms of C which is closed under composition and cancellable. Problem: Find additional conditions on 

5 that will ensure that 5'1- is the object class of a reflective subcategory of C. For this, assume that 

5 is closed under coproducts and that for every 2-source B L A -+ A', where I E 5, there is a weak 
A ~ A' 

pushout square /1 1/', where II E S. Suppose further that there is a set So C 5 ; st == SJ.. 

B ~ B' 
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and a regular cardinal It such that V limit ordinal >. ~ It, every diagram ~ : [0, >'[--+ C in which the 

~o --+ ~'" (0: < >.) are in S admits a weak colimit ~>. such that 6 0 --+ 6>. is in S and when>. = K" for 

<I> 
A ) ~'" 

each I : A --+ B in So (i) V ¢ E Mor (A, ~",), 3 0: < K, & ¢Ot E Mor (A, ~Ot) : <1>01 1 / commutes 

6", 

.p' 
B ) ~'" 

and (ii) V 1//,1/;/1 E Mor(B,~",): 1/;' 0 1= 1/;/1 0 1,30: < K, & 1/;'o,,1/;',;, E Mor(B,~Ot): .p'o,l / 

.p/l 
B ) ~'" 

"'',;, 1 / commute & 1/;'0, 0 1= 1/;',;, 0 I· 

~Ot 

Conclusion: S = Sl..L and S1. is the object class of a reflective subcategory of C. 

[The verification proceeds by transfinite recursion, the only new wrinkle being that at a limit ordinal 

>. < K" X>. is taken to be the weak colimit of the {XOt : 0: < >.} (as predicated per the hypotheses). 

Therefore, in the usual notation, TX == X",. It is automatic that the arrow EX : X --+ TX is in S. 

Since T X E Sf = S1., what remains to be shown is that S = S1.1.. Thus let f : A --+ B be orthogo

nal to S1.. Since EA : A --+ T A is in Sand T B E S1., there is a unique filler T f : T A --+ T B for the diagram 

A ~ B 

<A1 l<B. On the other hand, £B 0 I is orthogonal to TA, so one can find an arrow TB --+ TA 

'--'~ TA ---> TB 
inverting TI. It follows that TI is an isomorphism, hence TI E S => £B 0 I E S => I E S, S being 

cancellable.] 

[Note: If C is cocomplete, then the statement simplifies. Example: The reflective subcategory 

theorem is a special case of these considerations (Adamek-Rosickyt). Applied to GR, one sees, e.g., that 

. the P-localization of a countable group is countable.] 

There are situations where the preceding remarks are not applicable since the assumption of cancella

bility on S may not be satisfied. The point is that cancellable means right cancellable and left cancellable, 

i.e., go I E S & I E S => g E Sand go I E S & g E S => I E S. Let us drop the supposition that S 

is left cancellable (but retain everything else, including right canceUable)-then the argument above still 

implies that it is possible to assign to each object X E Ob C another object T X E Ob C and a morphism 

EX : X --+ T X in S. Again, T X E Sf = S1., thus S1. is the object class of a reflective subcategory of C 

but now the containment S C S1.1. can be strict (left cancellable is used to get S = S1.1.). 

EXAMPLE Let C be a cocomplete category, each object of which is K,-definite for some K,. Let 

Locally Presentable and A ccessible Categories, Cambridge U riiversity Press (1994), 30-35; see also 

Borceux, Handbook of Categorical Algebra 1, Cambridge University Press (1994), 193-209. 
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S C Mor C be a class of morphisms containing the isomorphisms of C which is closed under composition 
A ---+ A' 

and right cancellable. Assume that if 11 1/' is a pushout square, then / E S ~ /' E S and if 

B ---+ B' 
::: E Nat(~, ~'), where ~,~' : I - C, then :::i E S (V i) ~ colim::: E S. Finally, suppose that there is 

a set So C S : st = S1... Accordingly, S1.. is the object class of a reflective subcategory of C and V X, 

the arrow ex : X - TX is in S. Examples: (1) Take C = GR-then the class of HP-homomorphisms 

satisfies these conditions, hence V G, the arrow of localization lHP : G - GHP is in SHP (cf. p. 8-25); 

(2) Take C = G-MOD-then the class of HZ-homomorphisms satisfies these conditions, hence V M, the 

arrow of localization ' H z: M - MHZ is in SHZ (cf. p. 8-28). 

The role played in the theory by "closure" properties can be pinned down. 

Given a category C, let S C Mor C be a class of morphisms containing the isomorphisms of C and 

closed under composition with them. Definition: S is said to be a localization class provided that it is 

possible to assign to each object X E Ob C another object TX E Ob C and a morphism ex : X - TX 

in S with the following universal property: For every / : A - B in S and for every 9 : A - X there is a 

unique t : B - TX such that EX 0 9 = to /. So, for any arrow X - Y, there is a commutative diagram 
X ex) TX 

1 1 ,thus T defines a functor C - C and e : ide - T is a natural transformation. Here, 

Y ---+ TY 
fy 

ET = Te is not necessarily a natural isomorphism (it is if S is closed under composition). 

THEOREM OF KOROSTENSKI-THOLENt Let S be a localization class in a category C

then S = S1..1.. iff S is closed under composition and left cancellable. In addition, the assignment S _ S1.. 

sets up a one-to-one correspondence between those localization classes S such that S = S1..1.. and the 

conglomerate of reflective subcategories of C. 

Let [I] : X -+ Y be a morphism in HCONCWSP.-then [I] (or I) is said to be an 

HP-equivalence if 'v' n ~ 0, I. : Hn(X; Zp) -+ Hn(Yj Zp) is an isomorphism. 

[Note: In the two extreme cases, viz. P = 0 or P = fi, HP is replaced by HQ or 

HZ.] 

(Wedges) Let {~i (i E I) be pointed connected OW spaces. Suppose that 

'v' i, Ii : Xi -+ Yi is an H P-equivalence-then V Ii : V Xi -+ V Yi is an H P-equivalence. iii 

t Comm. Algebra 14 (1986), 741-766. 
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[This is because V n > 1, Hn(V Xi; Zp) ~ Ef:) Hn(Xi; Zp) and Hn(V Yi; Zp) ~ 
iii 

$ Hn(Yi; Zp ).] 

I (Pushouts) Suppose that {: are pointed connected CW spaces, A c X a 

pointed connected CW subspace, and f : A -+ Y a pointed continuous function. Assume: 

The inclusion A -+ X is a closed cofibration and an H P-equivalence-then the arrow 

. Y -+ X U f Y is an H P-equivalence. 

[The adjunction space X Uf Y is a pointed connected CW space (cf. §5, Proposition 

7) and it has the same pointed homotopy type as the pointed double mapping cylinder of 

the pointed 2-source X +- A -+ Y (cf. §3, Proposition 18).] 

PROPOSITION 13 Every P-equivalence f : X -+ Y is an H P-equivalence. 

[Specializing Proposition 11, one can say that V n ~ 0, f· : Hn(Yj Zp) -+ Hn(x; Zp) 
is an isomorphism, hence V n ~ 0, f. : H n (X; Z p) -+ H n (Y; Z p) is an isomorphism (cf. 

§8, Proposition 2).] 

[Note: An H P-equivalence need not be a P-equivalence. For instance, take P = u
then H P-equivalence = homology equivalence and P-equivalence = pointed homotopy 

equivalence. ] 

Given a set of primes P, a pointed connected CW space X is said to be HP-Iocal 

provided that [J] .l.. X for every H P-equivalence f. 

SUBLEMMA Let K be a pointed connected CW complex, L c K (L ::j:. K) a pointed 

connected sub complex such that H.(K, Lj Zp) = O-then there exists a pointed countable 

connected sub complex A c K such that A ¢. L and H.(A, An Lj Zp) = O. 

[We shall construct an expanding sequence of pointed countable connected subcom

plexes AI,A2 , ... of K such that \f n, An ¢. L and the arrow H.(An,An n LjZp) -+ 

H.(An+I,An+I n L;Zp) is the zero map. Thus fix Al : Al ¢. L. Given An, for each 

element x E H.(An,An n LjZp) choose a pointed finite connected sub complex Kz c K 

such that x goes to zero in H.(An U K z , (An U K:t) n Lj Zp). Let An+I be the union of 

the An and the Kz and put A = U An.] 
n 

[N ote: A n L is necessarily connected.] 

LEMMA Let Z be a pointed connected CW space. Suppose that for any CW pair 

(K, L), where K is a pointed countable connected CW complex and L C K (L ::j:. K) is a 

pointed connected sub complex such that H.(K, Lj Zp) = 0, the arrow [K, Z] -+ [L, Z] is 

.'-'. surjective-then Z is H P-Iocal. 
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[The claim is that for every H P-equivalence f : X -+ Y, the precomposition arrow 

""'-'- f* : [Y, Z] -+ [X, Z] is bijective. Since it is clear that the class of H P-equivalences admits 

a calculus of left fractions (cf. p. 0-31), it need only be shown that f* : [Y, Z] -+ [X, Z] 

is surjective. For this purpose, one can make the usual adjustments and take {~ to be 

pointed connected CW complexes and f : X -+ Y the inclusion, with X =1= Y. Build 

now a transfinite sequence of pointed connected sub complexes X Q of Y via the following 

procedure. Set Xo = X. Owing to the sublemma, there exists a pointed countable 

connected sub complex Ao C Y such that Ao <t. Xo and H*(Ao, Ao n Xoi Zp) = O. Set 

Xl = Ao U Xo. Case 1: Xl = Y. In this situation, the arrow [Y, Z] -+ [X, Z] is surjective. 

For let ¢ : X -+ Z be a pointed continuous function. Since the inclusion Ao nxo -+ Ao is a 

cofibration, our assumptions imply that the restriction of ¢ to Ao nXo extends to a pointed 

continuous function Ao -+ Z, thus ¢ extends to a pointed continuous function <P : Y -+ Z. 

Case 2: Xl =1= Y. Utilizing excision, H.(X I , Xo; Zp) = 0, so from the exact sequence of 

the triple (Y, Xl, X o), H*(Y, Xl; Zp) O. Therefore the sublemma is applicable to the 

pair (Y, Xl)' hence there exists a pointed countable connected subcomplex Al C Y such 

that Al <t. Xl and H.(A I , Al n Xl; Zp) = O. Set X 2 = Al U Xl' Continue on out to a 

sufficiently large regular cardinal K, (if necessary), taking X>. = U X Q at a limit ordinal 
O'<A 

A ::; K, (observe that H.(Y, X Ai Zp) 0), where XI( = Y.] 

Notation: CONCWSP .,H P is the full subcategory of CONCWSP. whose objects 

are the pointed connected CW spaces which are H P-local and HCONCWSP .,H P is the 

associated homotopy category. 

HOMOTOPICAL HP-LOCALIZATION THEOREM HCONCWSP .,H p is a reflec

tive subcategory of HCONCWSP •. 

[The theorem will follow provided that one can show that it is possible to assign to 

each pointed connected CW space X an H P -local pointed connected CW space X H P and 

an HP-equivalence iHP : X -+ XHP. The full subcategory of HCW. whose objects are 

t.he pointed count.able connected CW complexes has a small skeleton. One can t.herefore 

choose a set of CW pairs (Ki, Li), where Ki is a pointed countable connected CW complex 

and Li C Ki (Li =1= Kd is a pointed connected sub complex such that H.(Kj,Li;Zp) = 0, 

which contains up to isomorphism all such CW pairs with these properties. Assuming 

that X is a pointed connected CW complex, construct an expanding transfinite sequence 

X Xo C Xl C ... C Xo C X Q +1 C ... C Xo of pointed connected CW complexes by 

setting XA = U X Q at a limit ordinal A ::; n and defining X Q +1 by the pushout square 
Q<A 
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1 1 Here, 1 runs over a set of skeletal representatives in [Lj,Xo ] and 

VVEj - X O +1 
i f 

the arrow Xo -7 X o+1 is an HP-equivalence. Put XHP = Xn-then V i, [Ki,XHP] -7 

[Li,XHP] is surjective, thus by the lemma, XHP is HP-Iocal. That the inclusion X -7 

X H P is an H P-equivalence is automatic.] 

The reflector L H P produced by the homotopical H P-Iocalization theorem, when re

stricted to HNILCWSP*, "is" the Lp produced by the nilpotent P-Iocalization theorem. 

Proof: If X is nilpotent and P-Iocal, then X is H P-Iocal, as can be seen by appealing 

to the preceding lemma and using the nilpotent obstruction theorem (cf. Proposition 2). 

Therefore the idempotent triple corresponding to H P-Iocalization in HCONCWSP * is 

an extension of the idempotent triple corresponding to localization in HNILCWSP * (cf. 

p. 0-30). On the other hand, Proposition 13 implies that every H P-Iocal space is P-local, 

so there is a natural transformation Lp -7 LH p. 

PROPOSITION 14 Let [I] : X -7 Y be a morphism in HCONCWSP*. Assume: 

[/l is orthogonal to every H P-local pointed connected CW space-then [I] is an H P

equivalence. 

[By hypothesis, for every H P-Iocal Z, [V, Z] ~ [X, Z]. Specialize and substitute in 

Z K(Zp,n) (which is HP-local) to get Hn(y;zp) ~ Hn(XjZp) V n ~ 1 or still, 

Hn(X; Zp) ~ Hn(Y; Zp) V n ~ 1 (cf. §8, Proposition 2).] 

[Note: Thus, in the homotopy category, the class of H P-equivalences is "saturated" 

but the group theoretic analog of this is false (cf. p. 8-27).] 

In the P-Iocal situation, one starts with an intrinsic definition of the P-Iocal objects 

and defines the P-equivalences via orthogonality, while in the H P-Iocal situation, one 

starts with an intrinsic definition of the H P-equivalences and defines the H P-Iocal objects 

via orthogonality. The P-equivalences are characterized in Proposition 11, so to complete 

the picture. it is necessary to characterize the H P-Iocal objects. 

A pointed connected CW space X is said to satisfy Bousfield's condition if V n ~ 1, 

11"n(X) is an H P-Iocal group and V n ~ 2, 11"n(X) is an HZ-local 11"1 (X)-module. 

[Note: Recall that an abelian ,group is P-Iocal iff it is H P-local.] 

LEMMA B Let X be a pointed connected CW space. Fix n > 1 and suppose that ¢ : 

11"n(X) -7 M is a homomorphism of 11"1 (X)-modules-then ¢p : 11"n(X)p -7 Mp is an HZ

homomorphism iff there exists a pointed connected CW space Y and a pointed continuous 
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function f : X - Y such that H*(f) : H.(X; Zp) ~ H.(Y; Zp), 1rq(f) : 1rq(X) ~ 1rq(Y) 
(q < n), and 1rn(f) ~ <p in 1rn(X)\1rl(X)-MOD. 

[To establish the sufficiency, compare the exact sequence H n+2(Pn - 1X; Zp) -

H1(Pn- 1X;1rn(X)p) - Hn+1(PnX;Zp) - Hn+1(Pn-1X;Zp) - HO(Pn- 1X;1rn(X)p) 
- Hn(PnX; Zp) - Hn(Pn-1X; Zp) - 0 on p. 5--41 with its analog for Y, noting that 

HI (Pn-1X; 1rn(X)p) ~ HI (1rl (X); 1rn(X)p), HO(Pn-1X; 1rn(X)p) ~ HO(1rl (X); 1rn(X)p). 
Indeed, there are bijections Hq(PnX; Zp) ~ Hq(PnY; Zp) (q < n) and a surjection 

Hn+1(PnX; Zp) - H n+1(PnY; Zp) (cf. p. 5-51). 
To establish the necessity, attach certain n-cells and (n+l)-cells to X so as to produce a 

relative CW complex (X, X) and an isomorphism 1rn(X) - M such that X[n -1] ~ X[n-

1rn(X) 
/ ~ commutes. The composite X - X[n] - X[n] 1] and the triangle 

1r n(X) ------+. M 

induces an arrow Hq(X; Zp) - Hq(X[n]j Zp) which is bijective for q < n and surjective 

for q = n + 1. Apply the Kan factorization theorem.] 

PROPOSITION 15 Let {: be pointed connected CW spaces, f : X - Y a 

pointed continuous function. Assume: {: satisfy Bousfield's condition and f is an 

H P-equivalence--then f is a pointed homotopy equivalence. 

[Obviously, Zp ® 1rl(X)/[1rl (X), 1rl(X)] ~ Zp ® 1rl(Y)/[1rl(Y), 1rl(Y)]' Furthermore, 
H2(X;Zp) -- H2(1rl(X);Zp) 

the horizontal arrows in the commutative diagram! ! are 

H2(YjZp) -- H2(1rl(Y);Zp) 
surjective (cf. p. 5-35) and H2(X; Zp) ~ H2(Y; Zp). Therefore f. : 1rl(X) - 1rl(Y) is an 

H P-homomorphism. But this means that f. is an isomorphism, { ;~ ~:? being H P-Iocal. 

1r2(X) J.:.... 1r2(Y) 

Next, consider the commutative diagram! ! . The vertical arrows 

1r2(X)P -- 1r2(Y)P 
(J .. )p 

are isomorphisms and (f*)p is an HZ-homomorphism (cf. Lemma B). Consequently, 

f* : 1r2(X) - 1r2(Y) is an HZ-homomorphism between HZ-Iocal1rl(X)-modules, hence is 

an isomorphism. That f is a weak homotopy equivalence then follows by iteration.] 

LEMMA For any pointed connected CW space X, there exists a pointed connected 

CW space XB which satisfies Bousfield's condition and an H P-equivalence IB : X - XB, 
where 1rl (X)H p ~ 1rl (XB). 
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[Fix a pointed continuous function <p : X --;. K(?f'l (X)H p, 1) such that <P. = IH p, where 

IHP: ?f'1(X) --;. ?f'1(X)HP is the arrow oflocalization. Since IHP is an HP-homomorphism, 

the Kan factorization theorem implies that there exists a pointed connected CW space 

Xl and pointed continuous functions !1 : X --;. Xl, tPl : Xl --;. K(?f'l(X)HP,I) with 

<p = tPl o!1 such that !1 is an HP-equivalence and ?f'1(tPd : ?f'l(Xt} --;. ?f'1(X)HP is 

an isomorphism. Continuing, construct a pointed connected CW space X 2 , a pointed 

continuous function h : Xl --;. X 2, and an isomorphism ?f'2(X2) --;. (?f'2(Xt)P )HZ such 

that h is an HP-equivalence, ?f'l(h) : ?f'1(Xt) --;. ?f'1(X2) is an isomorphism, and the 

composite ?f'2(X1) --;.7r2(X2) --;. (?f'2(XI )P)HZ equals the composite ?f'2(Xt) --;. ?f'2(Xt}P--;' 

(?f'2(Xt)P )HZ (cf. Lemma B and §8, Proposition 21). This gives X --;. Xl --;. X 2. Proceed 

from here inductively and let X B be the pointed mapping telescope of the sequence thereby 

obtained.] 

[Note: It is apparent from the construction of XB that if ?f'q(X) is an HP-Iocal group 

for 1 ~ q ~ n and if ?f'q(X) is an HZ-local ?f'l(X)-module for 2 < q < n, then V q ~ n, 

?f'q(X) ~ ?f'q(XB)'] 

PROPOSITION 16 Let X be a pointed connected CW space-then X is HP-Iocal 

iff X satisfies Bousfield's condition. 

[Suppose that X satisfies Bousfield's condition. Bearing in mind that the class of 

H P-equivalences admits a calculus of left fractions, to prove that X is H P-Iocal, it suf

fices to show that every H P-equivalence f : X --;. Y has a left inverse 9 : Y --;. X in 

H CO N CWSP ., i.e., go f ~ idx. For this purpose, apply the lemma to get 1 B : Y --;. Y B

then the composite IB 0 f : X --;. YB is a pointed homotopy equivalence (cf. Proposition 

15), so 3 h : YB --;. X such that h 0 IB 0 f ~ idx and we can take 9 = h 0 lB. Con

versely, suppose that X is HP-Iocal. By what has just been said, XB is HP-local, thus 

IB : X --;. XB is a pointed homotopy equivalence.] 

EXAMPLE Take X = S1 V S1 : 11'1 (X)p is countable but 11'1 (X)HP is uncountable if 2 E P. 

EXAMPLE When P is the set of all primes, every space is P-Iocal. However, not every space 

is HZ-local and in fact the effect of HZ-localization on the higher homotopy groups can be drastic even 

if the fundamental group is nilpotent. Thus let X be a pointed connected CW space and for q > 1, 

put 1rq(X) = lim lrq(X)/(/[1r1 (X)])i . 1I"q(X). Note that 1rq(X) is an HZ-local 11"1 (X)-module, being the 

limit of nilpotent 11"1 (X)-modules (cf. p. 8-29). Assume now that 11"1 (X) is a finitely generated nilpotent 

group. Suppose further that (i) 1I"q(X) is a nilpotent 11"1 (X)-module (1 < q 5 n) and (ii) 1I"q(X) is a finitely 
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generated 1rt(X)-module (n < q :S 2n) (n ~ I)-then Dror-Dwyert have shown that (i) 1rq(XHZ) ~ 1rq(X) 

(1 < q :S n) and (ii) 1rq(XHZ) ~ ,r;(X) (n < q :S 2n) (n ~ 1). In this situation, the first conclusion is 

actually automatic, so the impact lies in the second. Example: Take X = p2(R) and n = 1 to see that 

1r2(XHZ) ~ Z2, the 2-adic integers. 

BP WHITEHEAD THEOREM Suppose that X and Y are H P-Iocal and let f : X -+ 

Y be a pointed continuous function. Assume: f. : Hq(X;Zp) -+ Hq(YiZP) is bijective 

for 1 :5 q < n and surjective for q = n-then f is an n-equivalence. 

[lfn = 1, the claim is that f.: H1(7rl(X)jZP) -+ Hl(7rl(Y)jZp) surjective => f.: 
7rl (X) -+ 7rl (Y) surjective, which is true (cf. p. 8-27). If n > 1, use the Kan factorization 

theorem to write f = '¢I o4>f, where 4>1 : X -+ XI is an HP-equivalence and '¢I : XI -+ 

Y is an n-equivalence. Since X is H P -local, X RS (X I) H P and since Y is H P -local, 

7rq(XI) RS 7rq(Y) (1 :5 q < n) => 7rq(XI) RS 7rq«XI )HP) (1 :5 q < n). Therefore the 

arrow 7rq(X) -+ 7rq(Y) is bijective for 1 :5 q < n and surjective for q = n, i.e., f is an 

n-equivalence. J 

[Note: Taking Zp = Z and {: nilpotent leads to a refinement of Dror's Whitehead 

theorem (which, of course, can also be derived directly).] 

EXAMPLE Let X be a pointed connected CW space. Assume: ii.(X; Zp) = 0, i.e., X is Zp

acyclic-then XHP is contractible. 

Given an abelian group G, one can introduce the notion of "H G-equivalence" and play 

the tape again. So, employing obvious notation, the upshot is that HCONCWSP .,HG is 

a reflective subcategory of HCONCWSP., with reflector LHG which sends X to XHG. 

[Note: The CW pairs (K,L) that intervene when testing for "HG-Iocal" have the 

property that the cardinality of the set of.cells in K is :5 #(G) if #(G) is infinite and :5 w 

if #( G) is finite.] 

While the number of distinct homological localizations appears to be large, the re

ality is that all the possibilities can be described in a simple way. Definition: LHGI and 

LHGII have the same acyclic spaces if ii.(X; G') = 0 {:> ii.(Xj G") = 0 or still, if the 

HG'-equivalences are the same as the HG"-equivalences, hence that LHGI and LHGII are 

naturally isomorphic. 

Given an abelian group G, call S(G) the class of abelian groups A such that A ® G = 

0= Tor(A,G). 

t Illinois J. Math. 21 (1977), 675-684. 
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PROPOSITION 17 Let ACYa be the class of G-acyclic spaces-then S(G) = {Hn(X) : 

n ~ 0 & X E ACYa}. 
[This follows from the universal coefficient theorem and the existence of Moore spaces.1 

Application: S(G') = S(G") iff ACYal = ACYall. 

Given an abelian group G, let Pa be the set of primes p such that G is not uniquely 

divisible by p and put Sa = pEPo -then S( G) = S(Sa) (cf. p. 5-
. { ED Z/pZ if Q ® G = 0 

Z Po if Q ® G =F 0 
66 ff.). Corollary: LHa R:: LHSo' Therefore, besides the LHP, the only other homological 

localizations that need be considered are those corresponding to ED Z/pZ for some P. 
pEP 

FACT Let X be a pointed connected CW space-then ii.(X; ED Z/pZ) = 0 iff ii·(Xj n Z/pZ) = 
pEP pEP 

o. 

The "Z/pZ-theory" (="F p-theory"), in its general aspects, runs parallel to the "Zp

theory" but there are some differences in detail. 

A pointed connected CW space X is said to satisfy Bousfield's condition mod p if 

'V n ~ 1, 1I"n(X) is an HFp-Iocal group and 'V n ~ 2, 1I"n(X) is an HZ-local 11"1 (X)-module. 

[Note: Recall that an abelian group is HFp-Iocal iff it is p-cotorsion.J 

LEMMA B mod p Let X be a pointed connected CW space. Fix n > 1 and suppose 

that 4> : 1I"n(X) -t M is a homomorphism of 1I"1(X)-modules. Consider the following 

conditions. 

(C1) id® 4>: Fp ® 1I"n(X) -t Fp ® M is an HZ-homomorphism. 

(C2 ) 4>.: HO(1I"1 (X)j Tor(Fp, 1I"n(X») -t HO(1I"1 (X)j Tor(Fp,M» is surjective. 

(C3 ) id ® 4> : Fp ® 1I"n(X) -t Fp ® M is an isomorphism. 

Then C1 + C2 => 
(E) There exists a pointed connected CW space Y and a pointed continuous 

function f: X -t Y such that H.(I) : H.(XjFp) R:: H.(YjFp), 1I"g(1) : 1I"g(X) R:: 1I"g(Y) 

(q < n), and 1I"n(1) R:: 4> in 1I"n(X)\1I"1(X)-MOD. 

Conversely, E => C1 and E + C3 => C2. 

PROPOSITION 18 Let {~ be pointed connected CW spaces, f : X -t Y a pointed 

continuous function. Assume: {~ satisfy Bousfield's condition mod p and f is an HF p
equivalence-then f is a pointed homotopy equivalence. 
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[Arguing as in the proof of Proposition 15, one finds that f* : 71"1 (X) ~ 71"1 (Y) is 

an isomorphism. To discuss f* : 7I"2(X) ~ 71"2 (Y), define M, N in 7I"1(X)-MOD by the 

exact sequence 0 ~ M ~ 7I"2(X) ~ 7I"2(Y) ~ N ~ o. The claim is that M = 0 = N, 
hence that f* : 7I"2(X) ~ 7I"2(Y) is an isomorphism. For this, it need only be shown that 

F p ® M = 0 = F p ® N (both M and N are HF p-Iocal). Since f is an HF p-equivalence, 

id®f* : Fp®7I"2(X) ~Fp®7I"2(Y) is an HZ-homomorphism(E => Ct}. But {~:: ::~;j 
are HZ-local (cf. p. 8-31), so F p ® 7I"2(X) ~ F p ® 7I"2(Y), from which F p ® N = O. Using 

now the exact sequence Tor(Fp,7I"2(X» ~ Tor(Fp,7I"2(Y» ~ Fp ® M ~ 0, E + Ca => C2 
gives HO(7I"1(X); F p ® M) = O. However, M is HZ-local (being a kernel), thus Fp ® Mis 

HZ-local (cf. p. 8-31). And: Fp ® M = I[7I"1(X)] . (Fp ® M) => (Fp ® M)HZ = 0 (cf. p. 

8-30) => F p ® M = o. That f is a weak homotopy equivalence then follows by iteration.] 

LEMMA For any pointed connected CW space X, there exists a pointed connected 

CW space XB which satisfies Bousfield's condition mod p and an HF p-equivalence IB : 

X ~ X B, where 7I"1(X)HF,. ~ 71"1 (XB). 

[Construct it : X ~ Xl as before (the Kan factorization theorem holds mod p (cf. 

p. 8-32». Continuing, construct a pointed connected CW space XL a pointed continuous 

function f~ : Xl ~ XL and an isomorphism 7I"2(XD ~ 7I"2(Xt}HZ such that f~ is an HZ

equivalence, 7I"1(fD : 7I"1(Xt} ~ 7I"1(XD is an isomorphism, and the composite 7I"2(Xt} ~ 

7I"2(XD ~ 7I"2(Xt}HZ is the arroW 7I"2(Xt} ~ 7I"2(Xt}HZ (cf. Lemma B (P = n». This gives 

X ~ Xl ~ X~. Next, construct a pointed connected CW space X 2 , a pointed continuous 

function n' : X~ ~ X 2, and an isomorphism 71"2 (X2) ~ Ext(ZjpCXlZ, 71"2 (XD) such that n' 
is an HFp-equivalence, 7I"1(fr) : 7I"1(XD ~ 7I"1(X2) is an isomorphism, and the composite 

7I"2(XD ~ 7I"2(X2) ~ Ext(ZjpCXl Z,7I"2(XD) is the arrow 7I"2(XD ~ Ext(ZjpCXlZ, 7I"2(X~» 
(cf. Lemma B mod p and p. 8-34). To justify the application of C I + C2 => E, note 

that the arrow Fp ® 7I"2(XD ~ Fp ® Ext(ZjpCXlZ, 71"2 (XD) is bijective and the arrow 

Tor(F p, 71"2 (XD) ~ Tor(F P' Ext(ZjpCXlZ, 71"2 (XD) is surjective (cf. p. 8-34). This gives 

X ~ Xl ~ X~ ~ X 2. Proceed from here inductively and let XB be the pointed mapping 

telescope of the sequence thereby obtained.] 

[Note: It is apparent from the construction of X B that if 7I"q(X) is an HF p-Iocal group 

for 1 ~ q ~ n and if 7I"q(X) is an HZ-local 7I"1(X)-module for 2 ~ q ~ n, then V q ~ n, 
7I"q(X) ~ 7I"q(XB).] 

PROPOSITION 19 Let X be a pointed connected CW space--then X is"HFp-Iocal 

iff X satisfies Bousfield's condition mod p. 

[The proof is the same as that of Proposition 16.] 
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EXAMPLE Let X be a pointed connected CW space. Assume: The homotopy groups of X are 

finite-then V n ~ I, 1rn(XHF,) is a finite p-group, thus XHF, is nilpotent. 

[For here 1rl(X)HF, ::::: 1rl(X), (cr. p. 8-32), which is a finite p-group (cr. p. 8-11).J 

EXAMPLE Every HF,-local space is p-Iocal (cr. Proposition 13 and §8, Proposition 3), so there 

is a natural transformation L, - LHF,. If G is a finite group, then K(G,I), ::::: K(G,I)HF, but if Gis 

infinite, this is false (consider G = Z). 

EXAMPLE Suppose that X is a pointed nilpotent CW space-then XHF, is nilpotent and V n ~ 

1, there is a split short exact sequence 0 - Ext(Z/pooZ, 1rn(X» - 1rn(XHF,) - Hom(Z/pooZ, 1rn-l (X» 

- 0 (see below). Therefore, even in the nilpotent case, it need not be true that 1rn(X)HF, "is" 1rn(XHF,) 

when n > 1. 

HF, WHITEHEAD THEOREM Suppose that X and Y are HF p-Iocal and let f : 
X -+ Y be a pointed continuous function. Assume: f* : H q (X; F p) -+ H q(Y ; F p) is 

bijective for 1 5 q < n and surjective for q = n-then f is an n-equivalence. 

[The proof is the same as that of the HP Whitehead theorem.] 

EXAMPLE Let X be a pointed connected CW space. Assume: ii.(X; F,) = 0, i.e., X is F,

acyclic-then XHF, is contractible. 

[Note: A pointed nilpotent CW space X is F,-acyclic iff V n ~ 1, Hom(Z/pooZ,1rn(X» = 0 &; 

Ext(Z/pooZ, 1rn(X» = 0 (cr. p. 8-37).J 

PROPOSITION 20 Let Z be a pointed nilpotent CW space-then Z is HFp-Iocal 

iff V n ~ 1, 1r n (Z) is p-cotorsion. 

[Necessity: Since Z satisfies Bousfield's condition mod p (cf. Proposition 19), the 

1rn(Z) are HFp-Iocal, hence are p-cotorsion (cf. §8, Proposition 32). 

Sufficiency: The claim is that for every HF p-equivalence f : X -+ Y, the precom-

position arrow f* : [Y, Z] -+ [X, Z] is bijective. For this, one can assume that {: 

are pointed connected CW complexes with X a pointed sub complex of Y and argue 

as in the· proof of Proposition 2. However, it is no longer possible to work with the 

r~f(1rq(Z»/r~~l(1rq(Z» (since they need not be p-cotorsion). Instead, one uses the 

C~,(1rq(Z»/C~!l(1rq(Z» (which are p-cotorsion) (cf. §8, Proposition 34); Thus now, 

V n ~ 1, Hn(Y,Xj Fp) = 0 => HP(Y,Xj C~f(1rq(Z»/C~!l(1rq(Z») = 0 (cf. §8, Proposition 

29) and the obvious modification of the nilpotent obstruction theorem is applicable.] 
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EXAMPLE Fix a prime p-then every HFp-Iocal pointed nilpotent CW space is Fq-acydic for 

all primes q =F p. 

[A p-cotorsion nilpotent group is uniquely q-divisible for all primes q =F p (cf. p. 8-37).] 

LEMMA Let F be a free abelian group-then the arrow K(F, n) -4 K(Fp, n) is an 

HF p-equivalence. 

[Since Fpj F is uniquely p-divisible, K(Fpj F, n) is F p-acyclic. On the other hand, 

K(F, n) is the mapping fiber of the arrow K(Fp, n) -4 K(Fpj F, n), so H.(F, n; F p) ~ 
H.(Fp, nj F p) (cf. p. 4-44).] 

[Note: Fp is the p-adic completion of F. Since F is torsion free, Ext(ZjpOOZ, F) ~ Fp 
(cf. p. 10-2).] 

Let G be an abelian group. Fix a presentation 0 -4 R -4 F -4 G -4 0 of G, 

i.e., a short exact sequence with R and F free abelian-then there is an exact sequence 

o -4 Hom(Z/pooZ, G) -4 Ext(ZjpOOZ, R) -4 Ext(ZjpOOZ, F) -4 Ext(ZjpOOZ, G) -4 0 

or still, an exact sequence 0 -4 Hom(ZjpOOZ, G) -4 Rp -4 Fp -4 Ext(ZjpOOZ, G) -4 O. 

Consider the following diagram 

K(F,n) --to K(G,n) --to K(R,n+l) --+ K(F,n+l) 

1 
, 
I , 
v 1 1 

where by definition K(G, n)HFp is the mapping fiber of the arrow K(Rp, n+l) -4 K(Fp, n+ 
1). To justify the notation, first note that K( G, n )HF p has two nontrivial homotopy groups, 

namely 1rn(K(G, n)HFp) ~ Ext(ZjpOOZ, G) and 1rn+l(K(G, n)HFp) ~ Hom(ZjpOOZ, G). 
Since both of these groups are p-cotorsion, Proposition 20 implies that K(G, n)HFp is 

HF p-Iocal. Taking into account the lemma, standard spectral sequence generalities allow 

one to infer that the filler K(G,n) --.->K(G,n)HFp is an HFp-equivalence. Therefore 

K(G, n)HFp is the HF p-Iocalization of K(G, n). Example: K(Q, n)HFp ~ *. 

EXAMPLE Suppose that G = Z/pooZ-then K(Z/pooZ, n)HFp ~ K(n + 1, Zp) (cf. p. 10-3). 

Let X be a pointed nilpotent CW space. Thanks to the preceding considerations, one 

can copy the proof of the nilpotent P-Iocalization theorem to see that XHFp is nilpotent. 

In so doing, one finds that there is a short exact sequence 0 -4 Ext(ZjpOOZ,1rn(X» -4 
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7t'n(XHF,) --+ Hom(Z/pooZ,7t'n_l(X» --+ 0 which necessarily splits (Ext(torsion free, p-

1rn(X) -+ Ext(Z/pooZ, 7t'n(X» 
cotorsion)= 0 (cf. p. 8-35». Moreover, the triangle ~ 1 com-

1rn(XHF,) 
mutes. When the homotopy groups of X are finitely generated, it is common to write X p 

in place of X HF, and to refer to X p as the p-adic completion of X, the rationale being 

that in this case, Y n, 1rn(Xp) ::::: 1rn(X)~ (cf. p. 10-2). 

Observation: Let X be a. pointed nilpotent OW spa.c~then Y pEP, (Xp )HF, ::::: 

XHF, and Y p ¢ P, (Xp )HF, ::::: •. 

EXAMPLE Given n ;::: I, [S;, S;] ~ [sn, S;] ~ 1rn (S;) ~ Zp, the p-adic integers. This corre

spondence is an isomorphism of rings, thus a pointed homotopy equivalence S; - S; determines a p-adic 

unit (i.e., in the notation of p. 10-10, an element of Up) and vice versa. 

[Note: S; = M(Zp, n) but S; :1:. M(Zp, n).] 

LEMMA Let G be a finite group whose order is prime to p. Suppose that X is a path connected 

free right G-space-then H-(X/G; Fp) ~ H-(X; Fp)G. 

EXAMPLE (Sullivan's Loop Space) Assume that p is odd and that n divides p-l-then ~n-1 

has the pointed homotopy type of a loop space. This is seen as follows. Since Up ~ Z/(p - I)Z e Zp 

(cf. p. 10-10), Z/nZ (C Z/(p -1)Z) operates on Zp (but the action is not nilpotent). Realize K(Zp,2) 

per p. 5-31 and form K(Zp,2;X) = (K(Z/nZ,I) x K(Zp,2»/(Z/nZ), where X : Z/nZ - AutZp 

(thus 1r1(K(Zp,2;X» ~ Z/nZ and 1r2(K(Zp,2;X» ~ Zp). Since H-(Zp,2jFp) ~ Fp[t] (It I = 2), the 

lemma implies that H-(Zp,2jXiFp) ~ Fp[t] (It I = 2n). Fix a pointed continuous function f : p 2(n)_ 

K(Zp, 2; X) which induces an isomorphism of fundamental groups (p2 (n) = M(Z/nZ,I) (cf. p. 9-2»

then CJ is simply connected (Van Kampen) and the arrow K(Zp, 2; X) - CJ is an HFp-equivalence, hence 

K(Zp,2;X)HF p ~ (CJ)HF p == B. 

Claim: B is (2n - I)-connected. 

[Hq(B;Fp) = 0 (1 ~ q < 2n) :} Hq(B) ® Fp = 0 (1 ~ q < 2n) &; 1r1(B) = * :} 1r2(B) ~ H2(B) 

(Hurewicz):} 1r2(B) = 0 (1r2(B) isp-cotorsion and p-divisible) , so by iteration, 1rq(B) = 0 (1 ~ q < 2n).1 

The cohomology algebra H-(OB;Fp) is an exterior algebra on one generator of degree 2n - 1 and 

there is an HFp-equivalence s2n-1 _ OB. Accordingly, s~n-1 ~ OB, OB being HFp-Iocal (cl. p. 9-37). 

EXAMPLE Let A be a ring with unit-then BGL(A)+ is nilpotent (in fact, abelian (cf. p. 5-74 

~.». Supposing that the Kn(A) are finitely generated, V n ;::: 1, 1rn(BGL(A)tF p) ~ Ext(Z/pooZ, Kn(A» ~ 

Zp ® Kn{A). 
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[Note: This assumption is in force whenever A is a finite field (Quillent) or the ring of integers in an 

algebraic number field (Quillen t ).] 

FACT Suppose that X is a pointed simply connected CW space which is HFp-Iocal-then 

Hn(x; Zp) is a finite "rgroup V n ~ 1 iff '1I'n(X) is a finite "rgroup V n ~ 1. 

[Since XQ is Fp-acyclic, the projection EIQ - X is an HFp-equivalence, so (EIQ)HFp R: X. In 

addition. the homotopy groups of X are "rcotorsion, thus are uniquely q-divisible for all primes q =i= p. 

Therefore the '1I'n(E,Q ) are "rprimary. The mod C Hurewicz theorem then implies that V n ~ I, Hn(E'Q) 

is "rprimary (E'Q is abelian). Finally, if the homotopy groups of either E1Q or X are finite "rgroups, then 

E1Q R: X.] 

PROPOSITION 21 Let (J] : X -+ Y be a morphism in HCONCWSP lit. Assume: 

(11 is orthogonal to every HF p-Iocal pointed connected CW space-then [f] is an HF P~ 

equivalence. 

[This is the HF p version of Proposition 14 and is proved in the same way (cf. §8, 

Proposition 29).] 

Given a set of primes P, put Fp = E9 Fp. 
pEP 

PROPOSITION 22 Let X be a pointed nilpotent CW space-then Y P, XHFp IS 

nilpotent and XHFp ~ II XHFp' 
pEP 

[Extending the algebra of p-cotorsion abelian or nilpotent groups to a P-cotorsion 

theory is a formality. The other point is that the product may be infinite, hence has to be 

interpreted as on p. 9-1.] 

EXAMPLE (Arithmetic Square) Suppose that X is a pointed nilpotent CW space-then for any 

XHFp 

P I the diagram 1 1 is pointed homotopy commutative and Xp "is" the double 

(Xp)Q --+ (XHFp)Q 
mapping track of the pointed 2-sink (Xp)Q - (XHF p)Q - XHFp (Dror-Dwyer-Kanll). 

[Note: When P = H, the result asserts that X "is" the double mapping track of the pointed 2-sink 

XQ - (II XHFp)Q - II XHFp. Replacing the XHFp by the X p, it can also be shown that X "is" the 
p p 

Ann. of Math. 96 (1972). 552-586. 

t 8LN 341 (1973), 179--198. 

U Illinoill J. Math. 21 (1977). 242-254. 
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double mapping track of the pointed 2-sink XQ -- {IT Xp)Q <I- IT XI' (Hilton-Mislint ).] 
I' I' 

PROPOSITION 23 Let G be an abelian group. Suppose that {~ are HG-equivalen

ces-then so is f x g. 

Application: Let {;. be pointed connected CW spaces-then (X X Y)HG ~ XHG X 

YHG. 

[Note: The product XHG X YHG is, a priori, HG-Iocal.] 

PROPOSITION 24 Let G be an abelian group. Suppose that X 1.. z /!... Y is a pointed 

2-sink, where {~ & Z are HG-Iocal pointed connected CW spaces-then the path com

ponent Wo of WI,g which contains the base point (XO,YO,j(zo» is HG-local. 

[It suffices to prove that if K is a pointed connected CW complex and L C K (L =F K) 

is a pointed connected subcomplex such that H.(K, Lj G) = 0, then any pointed continuous 

function ¢: L -+ Wo admits a pointed continuous extension ~ : K -+ Woo Thus write 

¢ = (x¢>, y¢>, T¢» and view T¢> as a pointed homotopy I(L,/o) -+ Z between fox¢> and 

goy¢> (note that ¢(lo) = (xo, yo,j(zo»). Fix pointed continuous functions {:: :: : : : 

extending {:: and define H : ioKUI(L, 10)UilK -+ Z accordingly ({: are HG-Iocal). 

Since the inclusion ioKUI(L, 10)UitK -+ I(K, ko) is an HG-equivalence and Z is HG-Iocal, 

H can be extended to T+ : I(K,ko) -+ Z. Therefore one can take ~ = (X+,y+,T+).] 

Application: For any HG-Iocal pointed connected CW space X, the path component 

floX of flX which contains the constant loop is HG-Iocal. 

Notation: Given compactly generated Hausdorff spaces {~ , put map(X, Y) _ 

kC(X, Y), where C(X, Y) carries the compact open topology (cf. p. 1-32). 

[Note: If {~:,,:oo/ are pointed compactly generated Hausdorff spaces, then map. (X, Y) 

is the closed subspace of map(X, Y) consisting of the base point preserving continuous 

functions. ] 

t Comment. Math. Helv. 50 (1976), 477-491. 
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Let {~:,,:uo/ be pointed connected CW spaces. Consider C( X, Xo; Y, Yo) (compact 

open topology)-then the pointed homotopy type of C(X,xo;Y,Yo) depends only on the 

pointed homotopy types of (X,xo) and (Y, Yo) (cf. p. 6-22). Therefore, when dealing with 

questions involving the pointed homotopy type of C(X,xo; Y, yo), one can always assume 

that (X, xo) and (Y, Yo) are pointed connected CW complexes, hence are wellpointed com

pactly generated Hausdorff spaces. Of course, the homotopy type of map. (X, Y) is not 

necessarily that of C(X,xo;Y,Yo) but the arrow map.(X,Y) -+ C(X,xo;Y,Yo) is at least 

a weak homotopy equivalence (cf. p. 1-32). 

[Note: The evaluation' -+ '(xu) defines a CG fibration map(X, Y) -+ Y whose fiber 

over Yo is map.(X, Y).] 
Observation: H 'Kq(map.(X, Y» is computed on the path component containing the 

constant map, then 'Kq(map.(X, Y» R$ [EqX, Y]. 

Examples: (1) V HP-Iocal X, 'Kq(map.(SHP,X» R$ 'Kn+q(X) (EqSHP R$ s~1!); (2) 

V HFp-local X, '1fq(map.(SHFp 'X» R$ '1fn+f (X) «EfSHFp)HFp ~ S~~~). 

Let (X,:eo) be a pointed connected CW space-then (X,:eo) is nondelenerate (cr. p. 5-22), thus 

satisfies Puppe'. condition (d. §3, Proposition 20). On the other hand, the identity map leX - X is a 

homotopy equivalence (cr. p. 5-22). Moreover, (leX, :eo) satisfies Puppe'. condition. Therefore (leX, :eo) is 

nondegenerate (cr. §3, Proposition 20) and the identity map leX - X is a pointed homotopy equivalence 

(d. p. 3-35). 

PROPOSITION 25 Fix an abelian group G. Let {~:,,:oo/ be pointed connected 

CW spaces, , : X -+ Y a pointed continuous function. Assume: ,is an H G-equivalence

then for any HG-local pointed connected CW space (Z,zo), the precomposition arrow 

,. : C(Y,yo;Z,zo) -+ C(X,xo; Z,zo) is a weak homotopy equivalence. 

[Make the transition spelled out above and consider instead ,. : map.(Y, Z) -+ 

map.(X, Z), there being no loss of generality in supposing that, is an inclusion. Since 

{ 
map(Y, Z) -+ Z 
map(X, Z) -+ Z are CG fibrations, thus are Serre, and since the diagram 

map.(Y, Z) --+ map(Y, Z) --+ Z 

! ! II commutes, it need only be shown that f* : 
map. (X, Z) --+ map(X, Z) --+ Z 
map(Y, Z) -+ map( X, Z) is a weak homotopy equivalence (cf. p. 4-411£.). Claim: V finite 

L ~ map(Y,Z) 

connected CW p8.1r (K, L), the diagram ! !r admits a 

K --+ map(X, Z) 

'" 
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filler q, : K -+ map(Y, Z) such that q,IL = 4> and f· 0 q, =,p. For this, convert to 
KxXULxY i )KxY 
~ ~ . Because i is a cofibration (cf. §3, Proposition 7) and an 

H G-equi valence (Mayer-Vietoris ), there exists an arrow K x Y --+ Z rendering the triangle 

strictly commutative. Now quote the WHE criterion.] 

[Note: The fact that Z is HG-Iocal gives [Y, Z] ~ [X, Zl, i.e., 7ro (map. (Y, Z)) ~ 
7ro (map* (X, Z)), so f* automatically induces a bijection of path components.] 

Application: Fix an abelian group G. Let { ~:,' :00) be p'ointed connected CW spaces. 

Assume: X is HG-acyclic and Y is HG-Iocal-then C(X,xo; Y, yo) is homotopically trivial. 

[The constant map X --+ Xo is an H G-equivalence.] 

LEMMA Let {~ be topological spaces, f : X --+ Y a continuous function, Assume: 

f is a weak homotopy equivalence--then for any CW complex Z, the post composition 

arrow f. : C(Z,X) --+ C(Z,Y) is a weak homotopy equivalence, 

[Given a finite CW pair (K, L), convert 

L ) C(Z, X) 

1 /.,/"~ I'· to 

K ------;.) C(Z, Y) 

LxZ---+,X 
1 ,// ... ~ l' 

K X Z---l» Y 

This is permissible: {t : ~ are CW complexes, hence are compactly generated Hausdorff 

A d ' I th {C(L x Z,X) --+ C(L,C(Z,X)) h h' 
spaces, ccor mg y, e arrows C(K x Z, Y) --+ C(K, C(Z, Y)) are omeomorp ISms 

(compact open topology) (Engelking t),) 

[Note: Let {~ be compactly generated Hausdorff spaces, f : X --+ Y a continu

ous function, Assume: f is a weak homotopy equivalence--then for any CW complex 

Z, the postcomposition arrow f. : map(Z, X) --+ map(Z, Y) is a weak homotopy equiva
map.(Z, X) ---+ 

lence (same argument). When {~ & f are pointed, consideration of 1 
map.(Z, Y) ---+ 

map(Z,X) ---+ X 

1 1 implies that f. : map.(Z,X) --+ map.(Z, Y) is also a weak homo-

map( Z, Y) ---+ Y 
topy equivalence (cf, p, 4-41 ff.).) 

t General Topology, Heldermann Verlag (1989), 160. 
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EXAMPLE Fix a prime p. Let K be a pointed connected CW complex; let X be a pointed 

nilpotent CW complex. Assume: K is Z [;] -acyclic, i.e., ii.(Kj Z [;]) = o-then the arrow oflocalization 

IHF, : X - XHF, induces a weak homotopy equivalence map.(K, X) - map.(K, XHF,). 

[Every pointed nilpotent CW complex Z which is either rational or BFq-Iocal (q =F p) is necessarily 

BZ[;]-local. Therefore map.(K, Z) is homotopically trivial. This said, work in the compactly gener

X --t L 

ated category and consider the arithmetic square 1 1 ,where L = XHFn (P = n). Since X 

XQ --t LQ 
can be identified with the double mapping track of the pointed 2-sink XQ - LQ - L, map.(K, X) is 

the double mapping track of the pointed 2-sink map.(K, XQ) - map.(K. LQ) - map.(K, L). Because 

map.(K, XQ) and map.(K, LQ) are both homotopically trivial, the arrow map.(K, X) - map.(K, L) 

is a weak homotopy equivalence (cf. p. 4-50). However. by definition, there is a weak homotopyequiv

alence L - XHF, Xk n XHF'l' so from the above, the arrow map.(K, L) - map.(K, XHF,) Xk 

q¢', n map.(K,XHF'l) is a weak homotopy equivalence. But n map.(K,XHF'l) is homotopically trivial. 
q¢', q¢', 
thus the projection map.(K. L) - map.(K, XHF,,) is a weak homotopy equivalence.] 

EXAMPLE Let G be a finite p-group-then BG(= K(G,1) (cf. p. 5-72» is z[;]-acYclic 

(Brownt). So, for any pointed nilpotent CW space X, [BG, X] ~ [BG,XHF,). 

[Note: If X is a simply connected CW space and if the homotopy groups of X are finite p-groups, 

then X is z[~]-acYcliC. Proof: V n > 0, BIl(X) is a finite p-group (mode Hurewicz), hence V n > 0, 

BIl(X; Z[;]) = Z[;] ® BIl(X) = 0.) 

EXAMPLE Fix a prime p. Let X be a pointed nilpotent CW complex-then the arrow of local

ization I" : X - X, induces a weak homotopy equivalence map. (BZ/pZ, X) - map. (BZ/pZ. X,,). 

[The point is that XHF, can be identified with (X,)HF,.] 

If {~ are pointed connected CW complexes and if p : A -+ B is a pointed con

tinuous function, then pi need not be the object class of a reflective subcategory of 

HCONCWSP. (d. p. 9-1). Of course, Z E pi iff p.: 1ro(G(B,bojZ,zo» -+ 1ro(G(A,aoi 
Z, zo» is bijective and it is a fundamental point of principle that the class of Z for which 

p. : G(B, bo; Z, zo) -+ G(A, ao; Z, zo) is a weak homotopy equivalence is the object class 

of a reflective subcategory of HCONCWSP. (cf. p. 9-46). This means that the "or

thogonal subcategory problem" in HCONCWSP. has a positive solution if the notion of 

t Cohomology of Groups. Springer Verlag (1982). 84. 
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"orthogonality" is strengthened so as to include not just 7ro but all the 7rn (n > 0) as well 

(cf. Proposition 25 (and its proof)). 

The formalities are best handled by working in CGH •. In fact, it is actually more 

convenient to work in CGH. Thus let {~ be CW complexes, p : A ~ B a continuous 

function-then an object Z in CGH is said to be p-local if p. : map(B, Z) ~ map(A, Z) 

is a weak homotopy equivalence. 
map(B,Z) -+ map(A,Z) 

[Note: Since the diagram 1 1 commutes and the vertical 

G(B,Z) -+ G(A,Z) 
arrows are weak homotopy equivalences, Z is p-local iff p. : G(B, Z) ~ G(A, Z) is a weak 

homotopy equivalence.] 

Notation: p-Ioe is the full subcategory of CGH whose objects are p-local. 

[Note: If {PI are homotopic, then the same holds for {P[ (cf. p. 6-22). Therefore 
P2 P2 

Z is in PI-Ioe iff Z is in P2-Ioe.] . 

p-Ioe is closed under the formation of products in CGH and is invariant under ho

motopyequivalence. 

LEMMA Let {~ be pointed CW complexes, p : A ~ B a pointed continuous 

function. Suppose that Z is a pointed compactly generated Hausdorff space-then p. : 

map.(B, Z) ~ map.(A, Z) is a weak homotopy equivalence if Z is p-Iocal and conversely 

if 7ro(Z) = *. 

EXAMPLE Take {A = W , where W is path connected, and let p : W _ *-then the p-Iocal 
B =* 

objects are said to be W-null. So, Z is W-null iff the arrow Z - map(W, Z) is a weak homotopy 

equivalence. On the other hand, relative to some choice of a base point in W, a pointed path connected 

Z is W-null iff the arrow * - map.(W, Z) is a weak homotopy equivalence or still, iff map.(W, zj is 

homotopic ally trivial, Le., iff V q ~ 0, [EqW, Z] = O. Example: When W = S,,+1 (n ~ 0), a pointed path 

connected Z is W-null iff 1rq(Z) = 0 (q > n). 

FACT Let f : X - Y be a CG fibration, where Y is path connected. Fix Yo E Y and assume that 

Xl/O & Yare W-null-then X is W-null. 

[Observing that the arrow map(W, X) - map(W, Y) is a CG fibration, consider the commutative 
Xl/O -+ X -+ Y 

diagram 1 1 1 
map(W, X l/o) -+ map(W, X) -+ map(W, Y) 

[Note: By the same token, X & Y W-null => Xl/OW-null.] 

.] 
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PROPOSITION 26 Let {~ be CW complexes, p : A --+ B a continuous function. 

Suppose that Z is p-Iocal-then V Yin CW, map(Y, Z) is p-Iocal. 

[The arrow map(B, map(Y, Z)) --+ map(A, map(Y, Z)) is a weak homotopy equivalence 

iff the arrow map(B XI. Y, Z) --+ map(A XI. Y, Z) is a weak homotopy equivalence, i.e., iff 

the arrow map(Y,map(B, Z)) --+ map(Y,map(A, Z)) is a weak homotopy equivalence.] 

LEMMA Given X in CGH, {~ in CGH., map(X, map.(Y, Z)) is homeomorphic 

to map.(Y,map(X, Z)). 

[map(X,map.(Y, Z)) ::::: map.(X+,map.(Y, Z)) ::::: map.(X+#k Y, Z) ::::: map.(Y, 

map.(X+, Z)) ::::: map.(Y,map(X, Z)).] 

PROPOSITION 27 Let {~ be pointed CW complexes, p : A --+ B a pointed con

tinuous function. Suppose that Z is pointed and p-Iocal-then V Y in CW., map.(Y, Z) 

is p-local. 

[The arrow map(B,map.(Y, Z)) --+ map(A,map.(Y, Z)) is a weak homotopy equiva

lence iff the arrow map.(Y,map(B, Z)) --+ map.(Y,map(A, Z)) is a weak homotopyequiv

alence.] 

Given a pointed compactly generated Hausdorffspace X, put EkX = X #k S1, 0kX = map.(S1, X) 

-then the assignments X -+ EkX, X -+ 0kX define functors CGH. -+ CGH. and (Ek, Ok) is an adjoint 

pair. 

EXAMPLE Let {~ be pointed CW complexes, p : A -+ B a pointed continuous function. 

Suppose that Z is pointed and p-Iocal-then 0kZ is p-Iocal. Therefore the arrow map.(B,OkZ) -+ 

map. (A, OkZ) is a weak homotopy equivalence, i.e., the arrow map.(EkB, Z) -+ map.(EkA, Z) is a weak 

homotopy equivalence, so Z is EkP-Iocal provided that Z is path connected. 

PROPOSITION 28 Let {~ be CW complexes, p : A --+ B a continuous function. 

Suppose that X --+ Z +- Y is a 2-sink of compactly generated Hausdorff spaces. Assume: 

{-; & Z are p-Iocal-then the compactly generated double mapping track W is p-Iocal. 

map(B,X) ---+ map(B, Z) +--

[The vertical arrows in the commutative diagram 1 1 
map( A, X) ---+ map( A, Z) +-

map(B,Y) 

1 are weak homotopy equivalences, thus the arrow map( B, W) --+ map( A, W) is 

map(A,Y) 
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a weak homotopy equivalence (cf. p. 4-48).] 

PROPOSITION 29 Let {~ be CW complexes, p : A -. B a continuous function. 

Suppose that W is a retract of Z, where Z is p-local-then W is p-Iocal. 
map( B, W) --. map( B, Z) --. map(B, W) 

[There is a commutative diagram 1 1 1 
map(A, W) --. map(A, Z) --. map(A, W) 

in which the composite of the horizontal arrows across the top and the bottom is the 
respective identity map, i.e., the arrow map(B, W) -. map(A, W) is a retract of the arrow 

map(B,Z) -. map(A,Z) (cf. p. 12-1). But the retract of a weak homotopy equivalence 

is a weak homotopy equivalence.] 

EXAMPLE If Z is p-local and a CW space, then any nonempty union of its path components is 

again p-local. 

[Z is the coproduct of its path components (cf p. 5-19).] 

«A, B) Construction) Let {~ be CW complexes, p : A -. B a continuous 

function. Because the objects in p-loc depend only on [p], there is no loss of generality in 

taking p skeletal. The mapping cylinder Mp of p is then a CW complex and it is clear that 

'-, the p-local spaces are the same as the i-local spaces, i : A -. Mp the embedding. One can 

therefore assume that A is a sub complex of B and p : A -. B the inclusion (which is a 

closed cofibration). Let (K, L) be (Dn, sn-l) (n ~ 0). Given an X in CGH, put Xo = X 

and with f running over map(K x Au Lx B,Xo), define Xl by the pushout square 

11 11 K x AU L x B --+ XO 
(K,L) f 1 1 

11 IlKxB ---+- Xl 
(K,L) f 

Since K x AU Lx B -. K x B is a closed cofibration (cf. §3, Proposition 7), Xo -. Xl is 

a closed cofibration and Xl is in CGH (cf. p. 3-8). Proceeding, construct ~ expanding 

transfinite sequence X = Xo C Xl C ... C Xa C X Q+ I C ... C X" of compactly 

generated Hausdorff spaces by setting X>. = U XO/ at a limit ordinal ,\ :::; K and defining 
0/<>' 

X a +l by the pushout square 

11 IlKxAULxB 
(K,L) f 

1 
11 IlKxB 

(K,L) f 

---+- Xa 

1 
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where I runs over map(K x AU L x B, Xa). Here, it is understood that each X>. has 

the final topology per the Xa --? X>. (a < A). Transfinite induction then implies that 

all the Xa (a < ,,) are in CGH and every embedding Xa --? Xp (a < (j ::; ,,) is a 

closed cofibration. As for ", choose it to be a regular cardinal> sup #(K x AU L x B) 
(K,L) 

(thus" is independent of X). Now fix a pair (K,L). Claim: The arrow of restriction 

map(K x B, X,,) --? map(K x AuL x B, X,,) is surjective. To see this, let I: K x AuL x B 

--? X". Given x E K x AU L x B, 3 0',1'; < " : I(x) E X a .. => a = sUPO'z < ", so I factors 
z 

through X a , hence the claim. Consequently, p. : map(B,X,,) --? map(A,X,,) is a weak 

homotopy equivalence (d. p. 5-16) (the arrow map(B,X,,) --? map(A,X,,) is a CG 

fibration (d. §4, Proposition 6)), i.e., X" is p-Iocal. 

Definition: Given an X in CGH, put LpX = X,,-then this assignment defines a 

functor Lp : CGH --? CGH and there is a natural transformation id --? Lp. 

[Note: The very construction of Lp guarantees that the embedding lp : X --? LpX is 

a closed cofibration.] 

Remarks: (1) {~ & X path connected => LpX path connected; (2) X in CWSP => 

LpX in CWSP. 

PROPOSITION 30 Let {~ be CW complexes, p : A --? B a continuous function. 

Suppose that Z is p-local-then V X, the arrow map(LpX,Z) --? map(X,Z) is a weak 

homotopy equivalence. 

[By definition, LpX = colimXa , hence map(LpX, Z) ~ lim map(Xa, Z) (homeomor-
a<" a<" 

phism of compactly generated Hausdorff spaces) (limit in CG H). On the other hand, 

the arrows in the "long" tower map(Xo,Z) +- map(XbZ) +- ... +- map(Xa,Z) +

map(Xa+1 , Z) +- ... are CG fibrations and at a limit ordinal A, map(X>., Z) ~ 

lim map(Xa, Z), so it will be enough to prove that V 0', map(Xa+b Z) --? map(Xa, Z) is 
a<>' 
a weak homotopy equivalence. But the commutative diagram 

map( 11 11 K x B,Z) 
(K,L) f 11' 

map(Xa, Z) ---+ map( 11 11 K x Au L x B, Z) 
(K,L) f 

is a pullback square in CG H and p is a CG fibration, thus one has only to show that p 

is a weak homotopy equivalence (cf. p. 5-16). To this end, fix a pair (K, L) and consider 
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the triangle 

map(K x B,Z) --;.map(K x AU Lx B,Z) 

~ 1 . 
map(K x A,Z) 

According to Proposition 26, the oblique arrow is a weak homotopy equivalence. In addi

tion, the commutative diagram 

map( K x Au L x B, Z) --;. map(L x B, Z) 

1 1 
map(K x A,Z) ----? map( L x A, Z) 

is a pullback square in CGH and another appeal to Proposition 26 says that the CG 

fibration map(L x B, Z) -+ map(L x A, Z) is a weak homotopy equivalence. Therefore 

the arrow map( K x A U L x B, Z) -+ map( K x A, Z) is a weak homotopy equivalence (cf. 

p. 5-16). Finally, then, the arrow map(K x B, Z) -+ map(K x AU L x B, Z) is a weak 

homotopy equivalence and our assertion follows.) 

x ~ Z 
Application: Suppose that Z is p-local-then every diagram' 'p 1 has a 

LpX 
filler q> : LpX -+ Z in the homotopy category: cP ~ q> 0 Ip. And: q> is unique up to 

homotopy. 

Because Lp is a functor CGH -+ CGH, given I, 9 E map(X, V), there are commuta

X ~ Y X -4 Y 
tive diagrams 1 1 , 1 1 . If further I ~ g, then L pI ~ Lpg, 

LpX --+ LpY LpX --+ LpY 
Lpf Lpg 

i.e., L p respects the homotopy congruence. 

HOMOTOPICAL p-LOCALIZATION THEOREM Let {~ be CW complexes, p : 

A -+ B a continuous function. Let C be either the homotopy category of compactly gen

erated Hausdorff spaces or the homotopy category of compactly generated CW Hausdorff 

spaces-then the full subcategory of C whose objects are p-local is reflective. 

[Note: Analogous conclusions can be drawn in the path connected situation provided 

that {~ themselves are path connected.] 
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Let f E map(X, Y)-then f is said to be a p-equivalence if Lpf : LpX -+LpY 
is a homotopy equivalence. On general grounds, f is a p-equivalence iff V p-Iocal Z, 

r [Y, ZJ -+ [X, ZJ is bijective. More is true: f is a p-equivalence iff V p-local Z, 
r : map(Y, Z) -+ map(X, Z) is a weak homotopy equivalence. Proof: Consider the 

map(LpY, Z) ---. map(LpX, Z) 

commutative diagram 1 1 
map(Y,Z) map(X,Z) 

In the special case when p : W - *, where W is path connected, homotopical p-Iocalization is referred 

to as W-nullification and one writes lw : X - LwX in place of Ip : X - LpX, the p-equiva.lences being 

termed W -equiva.lences. 

PROPOSITION 31 Let {; be compactly generated CW Hausdorff spaces-then 

Lp(X Xl: Y) ~ LpX Xl: LpY. 
[The product LpX Xl: LpY is necessarily p-Iocal, thus it suffices to prove that the 

arrow X Xl: Y -+ LpX Xl: LpY is a p-equivalence. To see this, let Z be p-Iocal. Thanks 

to Proposition 26, map(LpY, Z) and map(X, Z) are p-Iocal. Consider the composite 

map(LpX Xl: LpY,Z) -+ map(LpX,map(LpY,Z» -+ map(X,map(LpY,Z» -+ map(X Xl: 

LpY, Z) -+ map(LpY,map(X, Z» -+ map(Y,map(X, Z» -+ map(X Xl: Y, Z).] 

[N ote: L p need not preserve arbitrary products.] 

As it stands, base points play no role in the homotopical p-Iocalization theorem but 

they can be incorporated. 

Let {~ be pointed CW complexes, p : A -+ B a pointed continuous function. Since 

Ip : X -+ LpX is a closed cofibration, X wellpointed ::} LpX wellpointed. Accordingly, for 

any p-Iocal, wellpointed Z, the arrow map.(LpX,Z) -+ map.(X,Z) is a weak homotopy 

equivalence. Therefore if C is either the homotopy category of well pointed compactly 

generated Hausdorff spaces or the homotopy category of wellpointed compactly generated 

CW Hausdorff spaces, then the full subcategory of C whose objects are p-Iocal is reflective. 

[Note: While the data is pointed, p-Iocal is defined in terms of map, not map. (but 

one can use map. for path connected objects (cf. p. 9-41».] 

Let {~ be pointed connected CW complexes, p : A -+ B a pointed continuous 

function-then an object Z in CONCWSP. is said to be p-local if p. : C(B, bo; Z, zo) -+ 

C(A, ao; Z, zo) is a weak homotopy equivalence. 

LOCALIZATION THEOREM OF DROR FARJOUN The p-local Z constitute the 

object class of a reflective subcategory of HCONCWSP •. 
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[It is a question of assigning to each X a p-Iocal object LpX and an arrow Ip : X -t 

LpX such that \fp-Iocal Z, I; induces a bijection [LpX, Z] -t [X, Z]. Fix a pointed 

CW complex (X,xo) and a pointed homotopy equivalence (X,xo) -t (X,xo). Definition: 

LpX = LpX, Ip : X -t LpX being the composite X -t X -t LpX. 

Claim: LpX is p-Iocal. 

[Setting Y = LpX, by construction, the arrow map(B, Y) -t map(A, Y) is a weak 

homotopy equivalence. Therefore the arrow map.(B, Y) -t map.(A, Y) is a weak homo-
map.(B, Y) ----+ map.(A, Y) 

topy equivalence, so inspection of 1 1 shows that L pX 

G(B,bo;Y,yo) ----+ G(A,ao;Y,Yo) 
is p-Iocal.] 

Given a p-Iocal Z, choose a pointed CW complexiZ,zo) 
G(B, bo; Z, zo) 

equivalence (Z, zo) -t (Z, :Zo). Consideration of 1 
G(B, bo; z, zo) 

map.(B,Z) ----+ map.(A, Z) 

and a pointed homotopy 
----+ G(A, ao; Z, zo) 

1 and 

----+ G(A, ao; Z, zo) 

1 1 allows one to infer that the arrow map.(B, Z) -t 

G(B,bo;Z,zo) ----+ G(A,ao;Z,zo) 
map.(A, Z) is a weak homotopy equivalence. In turn, this means that the arrow map(B, Z) 
-t map( A, Z) is a weak homotopy equivalence (11'0 (Z) *). Take now any ¢> : X -t Z and 

<I> -,Xl ~z~z 
chase the diagram l' to see that up to pointed homotopy, there exists a 

LpX 
unique q; : LpX -t Z such that ¢> ~ q; 0 Ip.] 

[Note: If {~ are n-connected, then lI'q(lp): lI'q(X) -t lI'q(LpX) is an isomorphism for 

q ::; n (d. p. 9-49).J 

EXAMPLE Consider Lsn+l' the nullification functor corresponding to sn+l - * (n ;::: 0)

then, in this situation, one recovers the fact that HCONCWSP. [n] is a reflective subcategory of 

HCONCWSP. (cf. p. 9-1), where 'V X, Lsn+lX ::::::: X[n]. 

EXAMPLE Fix a set ofpriInes P. Given a pointed connected CW space X, its loop space OX is 

a pointed CW space (loop space theorem), thus the arrow (n ESp) is a pointed homotopy {
OX-OX 
(I _ (In 

equivalence iff it is a weak homotopy equivalence. To interpret this, put p = V pn, where pn ; S1 _ S1 
n 

is a map of degree n (n E Sp)-then the p-local objects in CONCWSP. are precisely the objects of 
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CONCWSP .o,P and the homotopical P-Iocalization theorem is seen to be a special case of the localization 

theorem of Dror Farjoun. 

[Note: The full subcategory of HCONCWSP.o whose objects are P-Iocal in homotopy is not the 

object class of a reflective subcategory of HCONCWSP.o (d. p. 9-2). However, the full subcategory 

of HCONCWSP.o whose objects are P-Iocal in "higher homotopy" is the object class of a reflective 

subcategory of HCONCWSP.o. Proof: Consider the pointed suspension of p. Therefore LEp induces an 

isomorphism of fundamental groups and P-Iocalizes the higher homotopy groups.] 

EXAMPLE Fix an abelian group G. Choose a set ofCW pairs (Ki' Li), where Ki is a pointed con

nected CW complex and Li C Ki (Li #- Ki) is a pointed connected subcomplex such that H .. (Ki' Li j G) 

o subject to the restriction that the cardinality of the set of cells in Ki is ~ #( G) if #( G) is infinite and 

~ w if #( G) is finite, which contains up to isomorphism all such CW pairs with these properties. Let 

p : V L. - V Ki-then a pointed connected CW space is HG-Iocal iff it is p-Iocal, proving once again 
, i 

that HCONCWSP .. ,HG is a reflective subcategory of HCONCWSP ... 

[Note: Take G = Z and let W be the pointed mapping cone of p-then the nullification functor Lw 

as~igns to each X its plus construction X+.J 

EXAMPLE Fix a prime p. Let W = M(Z!pZ,l) be the "standard" Moore space of type 

(Z!pZ, I)-then a simply connected Z is W-null iffY n ~ 2, ?rnCZ) is .v-local. 

EXAMPLE Fix a prime p. Let W = M(Z [~] ,1) be the "standard" Moore space of type 

(Z [;] ,I)-then a simply connected Z is W-null iff Y n ~ 2, ?rn(Z) is p-cotorsion. 

EXAMPLE Fix a prime p. Put W"= BZ!pZ-then a nilpotent Z is W-null iff Zp is W-null iff 

ZHFp is W-null (d. p. 9-40). In general, a W-null Z is Wk-null, where Wk = BZ!pkZ (1 ~ k < 00) 

(consider the short exact sequence 0 _ Z!pZ _ Z!pk+lZ _ Z!pkZ - 0, show that the pointed mapping 

cone of BZ!pZ - BZ!pk+1Z is BZ!pkZ, and use induction (replication theorem», hence Z is Woo-null, 

where Woo = BZ!pooZ. 

[Note: The arrow W - * is a ji-equivalence, so every .v-local space is W-null. Example: K(Z [~] ,1) 

is W-null.] 

LEMMA Let {~ be pointed connected CW complexes, p : A _ B a pointed continuous function. 

Assume: ?rl(p) : ?r1(A) - ?r1(B) is surjective-then for any p-Iocal Z, its universal covering space Z is 

p-Iocal. 

[Note: Therefore?r1 (Z) = * :::> ?r1 (LpZ) = *.1 
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EXAMPLE Fix a prime p. Put W = BZ/pZ-then Z W-null => Z W-null. Suppose now that 

X is a simply connected CW space. Assume: The homotopy groups of XHFp are finite p-groups. Claim: 

LWXHFp is contractible if (LWX)HFp is contractible. For let Z be W-null. Since XHFp is simply 

connected a.nd Z is W-null, one need only show that [XHFp'Z] = *. But XHFp is z[;]-acycliC (cf. p. 

9-40) and ZHFp is W-null (cf. supra), hence [XHFp' Z] ~ [XHFp' ZHFp] ~ [X, ZHFp] ~ [Lw X , ZHFpl ~ 

[(LWX)HFp,ZHFpl ~ hZHFpl = *. 

LEMMA Let 1r be a group-then for any pointed connected CW space X, the path components 

of C(X, Xo; K(1r, I), k7l",l) are homotopically trivial. 

EXAMPLE Let {~ be pointed connected CW complexes, p : A -- B a pointed continuous 

function-then the precomposition arrow Hom(1rI{B), 1r) -- Hom(1rt(A), 1r) determined by 1rr(p) is bijec

tive iff K(1r, 1) is p-Iocal. 

EXAMPLE Fix a prime p. Put W = BZ/pZ-then K(1r,l) is W-null iff 1r has no p-torsion. 

Example: Z is W-null provided that 1rl (Z) has no p-torsion and Z is W-nuiL 

FACT Fix a pointed connected CW complex W-then W is acyclic iffY Z, lw : X -- LwX is a 

homology equivalence. 

[Note: Assuming that W is acyclic, X is W -null iff [W, Xl = 0.] 

LEMMA Given PI & pz, suppose that pz is a Pl-equivalence--then there exists a 

natural transformation Lp2 -t Lpl in HCONCWSP. and the class of pz-equivalences is 

contained in the class of PI-equivalences. 

Let {~ be pointed connected CW complexes, P A -t B a pointed continuous 

function. 

Application: If {~ are n-connected, then 7rq(lp) 7rq(X) -t 7rq(LpX) is an isomor

phism for q S n. 

[The class of Pn+I-equivalences, where Pn+l : Sn+l -t *, is the class of maps X -t Y 

inducing isomorphisms in homotopy up to degree n. But P is a Pn+l-equivalence and 

X -t LpX is a p-equivalence.] 

FACT If W is n-connected, then 1rn+l(lW): 1rn+1(X) -- 1rn+dLwX) is surjective. 
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Localization theory has been developed in extenso by Bousfield t and Dror Farjoun t . 

While I shall not pursue these developments in detail, let us at least set up some of the 

machinery without proof and see how it is used to make computations. 

The simplest situation is that of W-nullification, where W is a pointed connected OW complex. 

FIBRATION RULE Let {: be pointed connected OW spaces, f : X - Y a pointed continuous 

function with 1ro (Ef) *. Suppose that LwEf is contractible-then f is a W-equivalence, i.e., the arrow 

Lw f : Lw X - Lw Y is a pointed homotopy equivalence. 

EXAMPLE Fix a prime p. Put W = BZ/pZ-then the arrow W - * is a W-equivalence, 

thus Lw K(Z/pZ, 1) is contractible. So, V k, Lw K(Z/pkZ, 1) is contractible and this implies that 

Lw K(Z/pooZ, 1) is contractible. Examples: (1) From the short exact sequence 0 - Z - Z[;] -

Z/pooZ _ 0, V n ~ 2, Lw K(Z, n) ~ K(Z [;] ,n); (2) From the short exact sequence 0 - Zp - Qp -
Z/pooZ _ 0 (cf. p. 10-3), V n ~ 2, Lw K(Zp, n) ~ K(Qp, n). 

[Note: LwK(1r, 1) is contractibleif1r is afinitep-group and, when 1r is in addition abelian, LwK(1r, n) 

is contractible as can be checked by considering K(1r, n 1) - SK(1r, n) - K(1r, n).] 

ZABROnSKY LEMMA Let {: & Z be wellpointed compactly generated connected OW 

Hausdorff spaces, f : X - Y a pointed continuous function with 1ro(Ef) = *. Assume: map.(Ef, Z) and 

map. (X, Z) are homotopically trivial-then map.(Y, Z) is homotopically trivial. 

[Note: In this setting, Ef is the compactly generated mapping track. Its base point is (zo, j(yo» and 

the inclusion {(zo, j(yo»} - E f is a closed cofibration (cf. p. 4-33).] 

EXAMPLE Miller ll has shown that if G is a locally finite group, then every pointed finite dimen

sional connected OW complex Z is W-null, where W = BG. Using the Zabrodsky lemma, it follows by 

induction that for any locally finite abelian group 1r, all such Z are K(1r, n)-null. 

[Note: A group is said to be locally finite if its finitely generated subgroups are finite. Example: Let 

X be a pointed simply connected OW space with finitely generated homotopy groups-then the homotopy 

groups of EIQ (IQ : X - XQ) are locally finite.] 

EXAMPLE Suppose that G is a locally finite group with the property that #{n : Hn(G) I- O} < 
w-then G is acyclic. 

t J. Amer. Math. Soc. 7 (1994), 831-873. 

f Cellular Spaces, Null Spaces and Homotopy Localization, Springer Verlag (1996). 

II Ann. of Math. 120 (1984), 39-87. 
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[IiBG has the pointed homotopy type of a pointed finite dimensional connected CW complex, so by 

Miller, [IiBG, IiBG] = *. Therefore IiBG is contractible, thus G is acyclic.] 

EXAMPLE Miller (ibid.) has shown that if Z is a pointed nilpotent CW space such that Hn(Z; Fp) 

:::: 0 for n » 0, then Z is W-null, where W :::: BZjpZ. Example: V n > 0, sn and S; are W-null. 

PRESERVATION RULE Let {~ be pointed connected CW spaces, f : X - Y a pointed 

continuous function with 1ro(EI) = *. Suppose that Y is W-null-then the arrow LwEI - ELwl is a 

pointed homotopy equivalence. 

[Note: The assumption that Y is W-null can be weakened to Lr:w Y:.::::; Lw Y.] 

EXAMPLE Let X be a pointed simply connected CW complex. Assume: X is finite and 1r2(X) 

is torsion-then V n 2:: 2, (LwXn)HFp :.::::; XHFp (Xn as on p. 5-38), where W = BZjpZ. 

[Let E be the mapping fiber of the pointed Hurewicz fibration Xn - X. According to Miller's 

theorem, X is W-null, so LwE can be identified with the mapping fiber of the arrow LwXn - X, hence 

(Lw E)HFp can be identified with the mapping fiber of the arrow (Lw Xn)HFp - XHFp' Let E be the 

mapping fiber of the arrow of localization lp : E - Ep. Since 1r2 (X) :.::::; 1rl (E) and 1r2 (X) is torsion, 1rl (E) 

maps onto 1rl (E)p (cf. p. 8-10). Therefore E is path connected. On the other hand, the nonzero homotopy 

groups of E are finite in number and each of them is a locally finite p-group. From this it follows that 

Lw E is contractible, thus Lw E ~ Lw Ep ~ Ep. But the homotopy groups of Ep are uniquely p-divisible 

which means that Ep is Fp-acyclic or still, that (Ep)HFp is contractible (cf. p. 9-33). Consequently, 

(LWE)HFp is contractible and (LwXn)HFp ~ XHFp.J 

[Note: Here is a numerical illustration. Take X = S3-then the fibers of the projection X3 - X have 

homotopy type (Z, 2) and LwK(Z,2) ~ K(Z[;] ,2), the mapping fiber of the arrow LWX3 - X. Thepo-

tentially nonzero homotopy groups of K(Z[;] ,2)HFp are Ext(ZjpOOZ, Z[;]) and Hom(ZjpOOZ, z[;]), 
which in fact vanish, Z[;] being uniquely p-divisible. Therefore (LwK(Z, 2»HFp is contractible. Ob

serve too that the mapping fiber of the arrow (X3)HFp - XHFp is a K(Zp, 2). Because XHFp is W-null, 

LwK(Zp, 2) ~ K(Qp, 2) can be identified with the mapping fiber of the arrow L W«X3)HFp) - XHFp.J 

Given abelian groups G and A, call A G-null if Hom(G, A) = O. Every abelian group A has a maximal 

G-null quotient Aj jG. 

EXAMPLE Fix an abelian group G. Put W = M(G, n) (n 2:: 2) and let Pa be the set of primes 

p such that G is uniquely divisible by p (Pa has the opposite meaning on p. 9-31). Let X be a pointed 

connected CW space-then 1rq(LwX) ~ 1rq(X) (q < n) and 1rn(LwX) ~ 1rn(X)j jG. Moreover, for 
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q > n, 1rq (Lw X) ~ ZPG ® 1rq(X) if Q ® G = 0, while if Q ® G ::j:. 0, there is a split short exact sequence 

0-+ n Ext(Z!pOOZ, 1rq(X» -+ 1rq(LwX) -+ n Hom(Z!pOOZ, 1rq_dX» -+ O. 
pEPG pEPG 
[Z is W-null iff Hom(G,1rq(Z» = 0 = Ext(G,1rq(Z» Y q > nand Hom(G,1rn(Z» = O. This 

said, reduce to when X is (n - I)-connected and show first that 1rn(LwX) ~ 1rn(X)!!G. Next, set 

{ 

ZPG if Q ® G = 0 _ 
SG = Ef) Z!pZ if Q ® G::j:. 0 . Since H.(W; SG) = 0, each HSG-Iocal space is W-null, thus there 

pEPG 
is a natural transformation Lw -+ LHsG , Deduce from this that 1rq(LwX) ~ 1rq(XHSG ) for q > n.] 
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§10. COMPLETION OF GROUPS 

There are many ways to "complete" a group. While the various procedures are related 

by a web of interconnections, the theory is less systematic than that of §8, one reason for 

this being that completion functors are generally not idempotent. Still, the material is 

more or less standard, so I shall omit the details and settle for a survey of what is relevant. 

Let G be a topological group. Assume: The left and right uniform structures on G 

coincide-then the completion a of G is the uniform completion of G / { e }. Therefore a is 

a uniformly complete Hausdorff topological group which is universal with respect to con

tinuous homomorphisms G --+- K, where K is a uniformly complete Hausdorff topological 
G -----+K 

group: l/",//>r 

a ~ 
[Note: The assumption is automatic if G is abelian. In this case, G is also abelian. 

Example: Each prime p determines a metrizable topology on Q and a corresponding 
~ 00 

completion Qp' the field of p-adic numbers. It is homeomorphic to II C, C the Cantor 
1 

set.] 

EXAMPLE Let G be a group and let {G;} be a collection of normal subgroups of G directed by 

inclusion (i.e., i ~ j ¢> Gj C G;). Equip G with the structure of a topological group by stipulating that 

the G; are to be a fundamental system of neighborhoods of e, thus the underlying topology is Hausdorff 

iff n Gi == {e}. Because the G; are normal, the left and right uniform structures on G coincide. On the 
i 

other hand, the G/G; are discrete, therefore limG/G; is a uniformly complete Hausdorff topological group 

and the canonical arrow G - limG/G; is an isomorphism of topological groups. 

Let G be a group-then by a filtration on G we understand a sequence {Gn} of normal 

subgroups of G such that 'V n, Gn ::J Gn+1 . The filtration is said to be exhaustive provided 

that U Gn = G. If K is a subgroup of G, {K n Gn} is a filtration on K (the induced 
n 

filtration) and if K is a normal subgroup of G, {K· Gn/K} is a filtration on G/K (the 

quotient filtration). 

[Note: The n run over Z but in practice it often happens that Go = G.] 

Let G be a group with a filtration, i.e., a filtered group. Endow G with the structure 

of a topological group in which the Gn become a fundamental system of neighborhoods 

of e-then the canonical arrow a --+- lim G/Gn is an isomorphism of topological groups 

(cf. supra). More is true: an can be identified with the closure of the image of Gn in 

a and the an form a fundamental system of neighborhoods of e in a, hence are normal 
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open subgroups of a. The topology on G is defined by the filtration {G n }. In addition: 

G/Gn ~ a/an::} limG/Gn ~ lima/an::} a ~ (a(-. 
[Note: If K is a subgroup of G, the induced topology on K is the topology defined by 

the induced filtration and if K is a normal subgroup of G, the quotient topology on G / K 

is the topology defined by the quotient filtration. J 

EXAMPLE Let G be a filtered abelian group-then 'V n, there is a short exact sequence 0 -+ 

G n -+ G -+ G/Gn -+ O. Since liml G = 0, it follows that there is an exact sequence 0 -+ limGn -+ G -+ 

IimG/Gn -+ liml G n -+ 0, hence liml G n ~ G/G provided that nGn = O. 
n 

(p-Adic Completions) Fix a prime p. Given a group G, let Gpn (n ;:::: 0) be the 

subgroup of G generated by the gP" (g E G) (take GP" = G for n < 0) and set GP'" = 
00 ~ n GP"-then the GP" filter G, thus one can form Gp = lim G /GP", the p-adic completion 
1 

~ 

of G. The assignment G --+ Gp defines a functor GR --+ GR and this data generates 

a triple in GR. In general, ap '*' (ap); but if G is nilpotent, then ap is nilpotent 

with nil ap = nil G /GP'" and ap ~ (ap); (the kernel of the projection ap --+ G /GP" is 

(Gp)p") (Warfieldt ). Accordingly, p-adic completion restricts to a functor NIL --+ NIL 
and NIL;, the full subcategory of NIL whose objects are Hausdorff and complete in the 

p-adic topology, is a reflective subcategory of NIL. Every object in NIL; is p-cotorsion. 

[Note: On a subgroup of G, the induced p-adic topology need not agree with the 

intrinsic p-adic topology. Moreover, the image of G in a p need not be normal and (G p) ~ 
is conceptually distinct from (G p ) ;.] 

Example: Take G = Z-then Gp = limZ/pnZ is Zp, the (ring of) p-adic integers. 

[Note: Zp is homeomorphic to the Cantor set, hence is uncountable. A p-adic module 

is a Zp-module. Example: Let G be an abelian group-then G is a p-adic module if G is 

p-primary or p-cotorsion.] 

EXAMPLE (Nilpotent Groups) Suppose that G is nilpotent-then there is a short exact se-
w ....... ....... ,.-., 

quence 1 -+ Ext(Z/pooZ,G)P -+ Ext(Z/pooZ,G) -+ Gp -+ 1, hence Ext(Z/pooZ,G)p ~ G p • Here, 

Ext(Z/pooZ, G)pw is a p-cotorsion abelian group. It is trivial if Gtor(P) has finite exponent, in particular, 

if G is finitely generated or torsion free. When G is abelian, Ext(Z/pooZ, G)pw can be alternatively de

scribed as PurExt(Z/pooZ, G) (the subgroup of Ext(Z/pooZ, G) which classifies the pure extensions of G 

by Z/pOOZ) or as liml Hom(Z/pnZ, G). 

t SLN 513 (1976), 59-60. 
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[Note: Proofs of the ahove assertions can be found in Huber-Warfieldt . They also show that if 

1 - G ' - G - Gil - 1 is a short exact sequence of nilpotent groups and if G~~r(P) has finite exponent, 

then the sequence 1 - G~ - Gp - G~ - 1 is short exact.] 

EXAMPLE (p-Adic Integers) Zp is a principal ideal domain. It is the closure of Z in Qp and 

Q ® Zp ~ Qp. Zp is a local ring with unique maximal ideal pZp and ZplpZp ~ Fp. Examples: (1) 

Hom(Zp, Zp) ~ Zp; (2) Hom(ZlpOOZ, ZlpOOZ) ~ Zp; (3) QplZp ~ ZlpooZ; (4) Zp ® Zp ~ Zp $ 2'" . Q; 

(5) Z; ~ (2'" . Zp);; (6) Z'" Iw . Z ~ 2'" . Q $ n Z;; (7) Ext(ZlpOOZ, w' Z) ~ (w . Z);; (8) Ext(Zp, Z) ~ 
p 

EXAMPLE The commutative diagram 1 1 is simultaneously a pullback and a pushout 

inAB. 

FACT The p-adic completion functor on AB is not right exact. Its oth left derived functor is 

Ext(ZlpOOZ,-) and its 1st left derived functor is Hom(ZlpOOZ,-). 

(F p-Completions) Fix a prime p. Given a group G, let G = r~(G) :::> r!(G) :::> 

... be its descending p-central series, so r;+l( G) is the subgroup of G generated by 

[G,r;(G)] and the gP (g E r~(G)). Note that r~(G)jr~+l(G) is central in Gjr~+l(G) and 

r~(G)jr~+l(G) is an Fp-module. Moreover, Hl(Gj Fp) ~ Fp ® (Gj[G,G]) ~ Gjr!(G). 

Definition: F pG = lim G jr~( G) is the F p-completion of G. The assignment G -? F pG 

defines a functor GR -? GR and this data generates a triple in GR. In general, 

FpG ~ FpFpG but Bousfieldt has shown that if Hl(G;Fp) is a finitely generated Fp

module, then F pG ~ F pF pG. Therefore F p-completion is idempotent on the class of 

finitely generated groups or the class of perfect groups. 

LEMMA A group G has a finite central series whose factors are elementary abelian p-groups iff 

3 i : r~(G) = {I} or still, iff G is nilpotent and 3 n : Gpn = {I}. 

EXAMPLE (Nilpotent Groups) For any group G, GPi C r~(G) V i, thus there is an arrow 

Gp -4 FpG. If in addition G is nilpotent, then V n, G1Gpn is nilpotent and (GIGpn )pn = {I}, hence by the 

lemma 3 i : r~(GIGpn) = {I} => r~(G) C GP" => Gp ~ FpG. Corollary: G nilpotent => FpG ~ FpFpG. 

J. Algebra 74 (1982), 402-442. 

Memoirs Amer. Math. Soc. 186 (1977), 1-68. 
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.",,-.. Recall that if 1 - G1 
- G - Gil - 1 is a central extension of groups with G1 an F p-module and Gil 

-

HFp-Iocal, then G is HFp-Iocal (cf. p. 8-32). Consequently, given any G, it follows by induction that Vi, 

G/r~{G) is HFp-Iocal which means that FpG is HFp-Iocal as well (for, being reflective in GR, GRHFp is 

G >FpG 

limit closed). Accordingly, there is a commutative triangle 1 / and the arrow G HFp - F pG 

GHFp 
is an isomorphism iff G - F pG is an HF p-homomorphism. Example: Suppose that G is a nilpotent group 

for which Gtor(P) has finite exponent-then GHFp ~ FpG. Proof: GHFp ~ Ext(Z/pooZ,G) ~ Op ~ FpG. 

00 

EXAMPLE Take G = Ef) Z/p"Z-then the arrow GHFp - FpG is not an isomorphism. 
1 

[Show that the induced map H2(GiFp) - H2(FpGiFp) is not surjective, hence that G - FpG is 

not an HF p-homomorphism.] 

FACT Let f : G - K be an HFp-homomorphism-then Vi 2: 0, the induced map G/r~(G) -

K/r~(K) is an isomorphism. 

[Note: Compare this result with Proposition 18 in §8.] 

Fix a set of primes P. Given a group G, its P-completion PG is lim(G/ri(G»p. The assignment 

G - PG defines a functor GR - GR and this data generates a triple in GR. In general, PG ¢ P PG but 

Bousfield f has shown that if Hl(GjZp) is a finitely generated Zp-module, then PG ~ PPG. Therefore 

P-completion is idempotent on the class of finitely generated groups or the class of perfect groups. 

[Note: It is clear that PG ~ PPG if G is nilpotent.] 

P-completion is related to HP-Iocalization in the same way that Fp-completion is related to HFp

localization. In fact, since G/r'(G) is nilpotent, (G/r'(G»p ~ (G/r'(G»HP (d. p. 8-26)::;. PG 

G )PG 

is H P-Iocal. Thus there is a commutative triangle 1 / and the arrow G H P - PG is an 

GHP 
isomorphism iff G - PG is an H P-homomorphism. 

EXAMPLE Let 'IT be the fundamental group of the Klein bottle--then the arrow'lTHP - P'IT is 

not an isomorphism if 2 E P. 

[By definition, 'IT - 'lTHP is an HP-homomorphism, so H2('lTHP;Q) = O. On the other hand, there 

is a short exact sequence 1 - Zp EEl Z2 - P'IT - Z/2Z - 1 and, from the LHS spectral sequence, 
-. 2 -. 

H2(P'lTj Q) ~ H 2(Z2i Q) ~ AQ (Z2 ® Q), which is uncountable.] 

t Memoirs Amer. Math. Soc. 186 (1977), 1-68. 
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Notation: Given a. category C, TR1c is the metacategory whose objects are the triples in C and 

IDTRlc is the full submetacategory of TR1c whose objects are the idempotent triples in C. 

[Note: Recall that a morphism of triples is a morphism in the metacategory MONIC,c] (cf. p. 

0-27).J 

THEOREM OF FAKIRt Let C be a category. Assume: C is complete and well powered-then 

IDTRlc is a monocoreflective submetacategory of TR1c. 

[Note: The co reflector sends T = (T, m, €) to its Lrl~'''''''''n' modification Too = (TOO, moo, fOO). In 

addition: (1) V T, T and Too have the same equivalences, i,e., a morphism is rendered invertible by Tiff 

it is rendered invertible by Too; (2) V T, fooT: T -> Too 0 T is a natural isomorphism.] 

Let us take C = GR and apply this result to the triple determined by P-completion. Thus, in obvious 

notation, pooG is the idempotent modification of PG, so POOG embeds in PG while PG ~ PpooG (by 

(1)) & PG ~ poo PG (by (2»), Of course, those G for which the arrow G -> pooG is an isomorphism 

constitute the object class of a reflective subcategory of GR. Moreover, pooG is H P-local, hence there is 

G 

a commutative dia.gram /l~ When restricted to NIL, Lp, LHP, and poo are 

Gp --+GHP pooG 
naturally isomorphic but on GR, these functors are distinct (see below). 

FACT The arrow PG -> P PG is surjective iff the induced map HdG; Zp) -> HdPG; Zp) IS 

surjective, 

Claim: V G, PG embeds in PPG. 

[For pooG embeds in PG ~ poo PG embeds in PPG, i.e., PG embeds in PPG.] 

Therefore PG ~ PPG iff the induced map HJ(GiZP) -> H1(PG;Zp) is surjective. This can be 

rephrased: PG ~ PPG iff the arrow GHP -> PG is surjective. Proof: Since GHP and PG are HP-local, 

the arrow GHP -> PG is surjective iff the induced map HI (GHP; Zp) -> Hl(PG; Zp) is surjective (cL p. 

8-27), 

EXAMPLE Let 7r be the fundamental group of the Klein bottle-then 7r is finitely generated, 

hence P7r ~ PP7r and the arrow 7rHP -> P7r is surjective but, as seen above, it is not an isomorphism if 

2 E P. 

FACT Let I : G -> K be a homomorphism of groups-then the following conditions are equivalent: 

(1) pool: POOG -> poo f( is an isomorphism; (2) PI: PG -> PK is an isomorphism; (3) I.lPX for every 

group X; (4) I. : (Gjri(G»p ...... (Kjri(K»p is an isomorphism V i. 

t C. R. Acad. Sci. Paris 270 (1970), 99-101. 
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Application: V G, Hl(Gj Zp) ~ Hl(pooG; Zp). 

Thus, as a consequence, V G, the induced map Hl(GHPjZp) - Hl(pooGjZp) is an isomorphism 

which means that the arrow GHP - POOG is surjective (d. p. 8-27). Corollary: The range of the arrow 

GHP - PG is POOG. 

[Note: Accordingly, POOG ~ PG ¢> PG ~ PPG ¢> Hl(G; Zp) ~ H1(PGjZp).] 

EXAMPLE Let 11" be the fundamental group of the Klein bottle--then for any P, 'It'p is countable 

(cf. p. 9-23). If now 2 E P, then poo'lt' ~ P1I' is uncountable, so 1I"p ~ 1I"Hp. On the other hand, 

1I"HP ~poo'lt'. 

FACT Suppose that G is a free group-then the arrow of localization lp : G - Gp is one-ta-one. 

[Since G is free, the quotients G Iri (G) are torsion free nilpotent groups and the intersection n ri (G) 
i 

is trivial.] 

(I-Adic Completions) Let A be a ring with unit, I c A a two sided ideal. 

Put An = In (n ~ 0), An = A (n < O)-then {An} is an exhaustive filtration on A, 

the associated topology being the I-adic topology. A is a topological ring in the I-adlc 

topology. Moreover, A is a topological ring but in general, (I)n '# In and the I-adic 

topology on A need not agree with the filtration topology. 

[Note: Given a left A-module M, put Mn = In . M (n > 0), Mn = M (n < O)-then 

{M n} is an exhaustive filtration on M, the associated topology being the I -adlc topology. -M is a topological left A-module in the I-adlc topology. Moreover, M is a topological left 

A-module and Mn = In. M = In. im M V n provided that M is finitely generated (in which -case M is finitely generated). Example: Take A commutative and I finitely generated: 

In = In . A => I = I . A=>( 'i)n = In . A = In, so, in this situation, the I-adic topology on 

A agrees with the filtration topology.] 

Let A be a left Noetherian ring with unit, [ C A a two sided ideal-then [ is said to have the 

left Artin-Rees property if for every finitely generated left A-module M and every left submodule N C M, 

the I-adic topology on N is the restriction of the [-&dic topology on M. Example: I has the left Artin-Rees 

property if V M, N, 3 i : Ii . M nNe [ . N. 

[Note: The theory has been surveyed by Smitht.J 

t SLN 924 (1982), 197-240. 
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EXAMPLE Fix a group G. Definition: G is said to have the Artin-Rees property if Z[G] is 

noetherian and I[G] has the Artin-Rees property. Here, it is not necessary to distinguish between "left" 

and "right". Example: Every finitely generated nilpotent group G has the Artin-Rees property. 

Let A be a ring with unit, I C A a two sided ideal-then there is a homomorphism of rings A -+ A, 

hence A can be viewed as an A-bimodule. Given a left A-module M, its formal completion is the left 

A-module obtained from M by extension of the scalars, i.e., the tensor product A ®A M. 

[Note: A homomorphism f : M -+ N of left A-modules leads to a commutative diagram 

A®A M ----+ A®A N 

1 1 of left A-modules.] 
....... ....... 
M --+ N ....... 

f 
Assume again that A is left noetherian and I has the left Artin-Rees property-then, like in the 

commutative case, the functor M -+ if is exact on the category of finitely generated left A-modules and 

for all such M, the arrow A ®A M -+ if is bijective. Moreover A, as a right A-module, is flat. 

FACT Suppose that A is left and right noetherian and I has the left and right Artin-Rees property. 

Let M be a left A-module-then Tor~(A/I, M) ~ Tor~(A/I, A ®A M). 

EXAMPLE Fix a group G with the Artin-Rees property. Let M be a finitely generated G

module-then H.(G; M) ~ H.(G; if). Consequently, a homomorphism f : M -+ N of finitely generated 

G-modules is an HZ-homomorphism iff! : if -+ N is an isomorphism. 

FACT Suppose that G is a finitely generated nilpotent group. Let M be a finitely generated 

G-module-then if is HZ-local and the arrow of completion M -+ if is an HZ-homomorphism, thus 

EXAMPLE Take G = Z/2Z and for any abelian group M, let G operate on M by "negation". In 

this situation, MHZ ~ Ext(Z/2OOZ, M) and there is a short exact sequence 0 -+ liml Hom(Z/2nZ, M) -+ 

Ext(Z/2OOZ, M) -+ if -+ 0 (cf. p. 8-34). And: The epimorphism Ext(Z/2OOZ, M) -+ if has a nonzero 
00 

kernel if M = EB Z/2nz. 
1 

A Hausdorff topological group G is said to be profinite if it is compact and totally 

disconnected or, equivalently, that G ::::: limG i , where i runs over a directed set and V i, 

G i is a fini te group (discrete topology). 

[Note: If Gis profinite, then G::::: limG/U, U open and normal.] 

EXAMPLE Let G be a Hausdorff topological group. Assume: G is compact and torsion-then G 

is profinite. 
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EXAMPLE Let G be an abelian group--then G is algebraically isomorphic to a profinite abelian 

group iff G is algebraically isomorphic to a product nrZ? x n Zipni Z]. Here, "p is a cardinal number 
p ,elp 

(possibly zero), Ip is an index set (possibly empty), and ni is a positive integer. 

EXAMPLE Let k be a field, K a Galois extension of k. Put G = Gal(Klk)-then G is a profinite 

group. In fact, G ~ limG., where Gi = Gal(Ki/k), Ki a finite Galois extension of k. 

[Note: The quotient G I[G, G] can be identified with Gal(ka.b I k), ka.h the maximal abelian extension 

of kin K.] 

Given a group G, the profinite completion proG of G is limG/U, the limit being 

taken over the normal subgroups of finite index in G. The assignment G ---t pro G defines 

a functor GR ---t GR and this data generates a triple in GR which, however, is not 

idempotent. 

Example: Take G = Z-then proZ = limZ/nZ is Z, the (ring of) U-adic integers. 

EXAMPLE Every residually finite group embeds in its profinite completion. This said, Evanst 

has shown that for each prime p, there exists a countable, torsion free, residually finite group G such that 

pro G contains an element of order p. 

EXAMPLE Let k = Fp-then Gal(klk) ~ Z. Moreover, the infinite cyclic group generated by 

the Frobenius is dense in Gal(klk). 

EXAMPLE It follows from the positive solution to the congruence subgroup problem for SL(n, Z) 

(n > 2) that proSL(n, Z) ~ n SL(n, Zp). 
p 

EXAMPLE Define a homomorphism X : Z -+ Aut Z by x(n) = idz if n E 2Z and x(n) = -idz if 

n tf. 2Z-then the semidirect product Z ><l xZ is isomorphic to pr01l", 11" the fundamental group of the Klein 

bottle. 

EXAMPLE Let G be a finitely generated nilpotent group--then proG is nilpotent and nilG = 

nilproG. Proof: G is residually finite (cf. p. 8-14), hence embeds in proG. 

[Note: Blackburn'st theorem says that two elements of G are conjugate iff their images in every finite 

quotient of G are conjugate, i.e., two elements of G are conjugate iff they are conjugate in pro G.] 

t J. Pure Appl. Algebra 65 (1990), 101-104. 

Proc. Amer. Math. Soc. 16 (1965), 143-148. 
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EXAMPLE If 1 --+ G' --+ G --+ Gil --+ 1 is short exact, then 1 --+ proG' --+ proG --+ pro Gil --+ 1 

need not be short exact even when the data is abelian (e.g., pro turns 0 --+ Z --+ Q --+ Q/Z --+ 0 into 

0--+ Z --+ 0 --+ 0 --+ 0). However, there are positive results. For instance Schneebelit has shown that pro 

preserves short exact sequences in the class of polycyclic groups, thus in the class of finitely generated 

nilpotent groups. 

FACT Suppose that G is a finitely generated nilpotent group-then V i ~ 0, prori(G) ~ ri(pro G). 

FACT Suppose that G is a finitely generated nilpotent group-then every normal subgroup of 

proG of finite index is open. 

[Note: This can fail if G is not finitely generated (consider a discontinuous homomorphism (ZlpZ)W --+ . 

ZlpZ).] 

A group G is said to have property S if for any pro G-module M which is finite as an abelian group, 

Htt.(pro G; M) ~ Htt.(Gj M) V n. Example: Every cyclic group has property S. 

FACT Suppose that G is a finitely generated nilpotent group-then G has property S. 

[Consider first the case of a central extension 1 --+ K --+ G --+ G I K --+ 1, where K is cyclic and 

assume that the assertion holds for G I K. Claim: The assertion holds for G. Indeed, since G is a finitely 

generated nilpotent group, the sequence 1 --+ proK --+ proG --+ proGIK --+ 1 is exact (cf. supra), so there 

is a morphism of LHS spectral sequences 

H'P(pro GI Kj Hq (pro Kj M» ==> Hp+q(proG; M) 

1 1 
H'P (G I K; Hq (K j M» ==> 

which is an isomorphism on the E~,q. In general, one can find a central series G = GO ::> .•• ::> Gn = {I}, 

where V i, G. is normal in G and Gi IG i+1 is cyclic. Proceed from here inductively to see that the GIGi 

have property S.] 

Although profinite completion is not an idemopotent functor on GR, it is idempotent 

on TOPGR, the category of topological groups. Thus let G be a topological group-then 

its continuous profinite completion procG is lim G jU, the limit being taken over the open, 

normal subgroups of finite index in G. With this understanding, procG ~ procprocG. 

[Note: Given a group G, proG ~ proproG iff every normal subgroup of proG of 

finite index is open. Corollary: pro G ~ pro pro G iff every homomorphism G -+ F, 

t Arch. Math. 31 (1978), 244-253. 
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. where F is finite, can be extended uniquely to a homomorphism pro G ~ F (in general, 

Homc(pro G, F) :::::: Hom( G, F), the subscript standing for "continuous". Example: pro is 

idempotent on the class of finitely generated nilpotent groups.] 

FACT Let f : G ---t K be a homomorphism of groups-then pro f : pro G ---t pro K is an isomor

phism of topological groups iff V finite group F, Hom(K, F) ~ Hom(G, F). 

[Note: pro is not a conservative functor (Platonov-Tavgent ).] 

Let G be a profinite group-then G is said to be p-profinite if G is p-local. In this 

connection, recall that a finite group is a p-group iff it is p-Iocal (cf. p. 8-11). Upon 

representing G as lim Gi (cf. p: 10-7), it follows that G is p-profinite iff 'v' i, Gi is p-Iocal. 

[Note: Let G be a finite group-then G is p-Iocal iff 'v' q =I p, the arrow 9 ~ gfJ is 

surjective.] 

EXAMPLE (p-Adic Units) Put Up = lim{Zjpnz)x-then Up is p-profinite. It is the group of 

units in Zp. Using the "exp-Iog" correspondence, one shows that Up ~ Zj{p -l)Z EEl Zp if p is odd, while 

U2 ~ Zj2Z EEl Z2' 

EXAMPLE Let QCY be the field generated over Q by the roots of unity in Q. For each prime p, 
n 

choose Wn subject to w~ = 1 &. w~+l = Wn (n ;::: 1). Let Kp be the field generated over Q by the roots of 

unity in Q whose order is a power of p-then Kp = UQ{wn )::::} Gal(KpjQ) ~ lim Gal(Q{wn)/Q). But 
n 

Gal(Q(wn)/Q) ~ (Z/pnz)x ::::} Gal(Kp/Q) ~ Up::::} Gal(Qcy /Q) ~ I1 Up ~ Zx. 
p 

[Note: It follows from global class field theory that QCY is the maximal abelian extension Qa.b of Q 

in Q.] 

EXAMPLE Suppose that G is p-profinite. Assume: G is torsion-then Zelmanov t has shown that 

G is locally finite. 

Platonov had conjectured that every Hausdorff topological group which is compact and torsion is 

locally finite (such a group is necessarily profinite (cf. p. 10-7)). Wilson ll reduced this to the p-profinite 

case which was then disposed of by Zelmanov. 

Given a group G, the p-profinite completion prop Gof G is lim GjU, the limit being 

taken over the normal subgroups of finite index in G subject to [G : U] E {pn}. The 

K-Theory 4 (1990), 89-101. 

Israel J. Math. 77 (1992), 83-95. 

II Monatsh. Math. 96 (1983), 57-66. 
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assignment G --+ prop G defines a functor GR --+ GR and this data generates a triple in 

GR which, however, is not idempotent. 
G -----+prop G 

[Note: Since prop Gis p-local, there is a commutative triangle 1 / and a 

Gp 

natural transformation Lp --+ prop'] 

Example: Take G = Z-then prop Z = limZ/pnZ is Zp, the (ring of) p-adic integers. 

EXAMPLE Define a homomorphism X : Z2 - Aut Z2 by xln) = id
Z2 

if n E 2Z2 and X(n:) = 

-id....... ifn rt 2Z2-then the semidirect product Z2 )<I xZ2 is isomorphic to pr0211", 11" the fundamental group 
Z2 

of the Klein bottle. 

[Note: For p odd, prop 11' ~ Zp. Therefore a nonabelian group can have an abelian p:.profinite 

completion.] 

LEMMA Suppose that a/r~(a) is finite-then Vi> 1, a/r~(a) is a finite p:.group. 

Application: dimH1 (a; Fp) < W ~ prop a ~ Fpa. 

EXAMPLE Let F be a free group on n > 1 generators-then prop F ~ FpF and Bousfieldf has 

shown that HI (prop F; Fp) ~. n· Fp but for some q > 1, Hq(prop F; Fp) is uncountable. 

[Note: If Fk is the subgroup of F generated by the kth powers, then it follows from the negative 

solution to the Burnside problem that F! Fk is infinite provided that k > > 0 (Ivanovt ). This circumstance 

makes it difficult to compare Fp and prop F.] 

EXAMPLE For any a there is an arrow Gp - prop a. It is an isomorphism if a is finitely 

generated and nilpotent but not in general (consider W· (Z!pZ)). 

FACT Suppose that a is a finitely generated nilpotent group-then the arrow pro a - n prop a 

is an isomorphism. 

[Note: This can fail if a is not nilpotent (consider 83)'] 

FACT Suppose that a is a finitely generated nilpotent group. Let K be a subgroup of a-then 

the p:.profinite topology on K is the restriction of the p:.profinite topology on a. 

Trans. Amer. Math. Soc. 331 (1992), 335-359. 

t Bull. Amer. Math. Soc. 27 (1992), 257-260. 
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§11. HOMOTOPICAL COMPLETION 

In homotopy theory, completion appeared on the scene before localization and, to a 

certain extent, has been superseded by it. Because of this, a semiproofless account will 

suffice. 

One approach to completing a space at a prime p is due to Bousfield-Kant. It is the 

analog of the F p-completion process for groups. Thus there is a functor X -+ F pX on 

HCONCWSP .. called F p-completion which is part of a triple. It is not idempotent but 

X ~FpX 

F pX is HF p-Iocal so there is a triangle 1 / ' commutative up to pointed 

XHFp 
homotopy. Definition: X is said to be F p-good provided that the arrow XHF p -+ F pX 

is a pointed homotopy equivalence; otherwise, X is said to be F p-bad. For X to be F p

good, it is necessary and sufficient that the arrow F pX -+ F pF pX be a pointed homotopy 

equivalence. Therefore F p-completion is idempotent on the class of F p-good spaces. 

[Note: X is Fp-good iff the arrow X -+ FpX is an HFp-equivalence.] 

Examples: (1) Let X be a pointed connected CW space-then X is F p-good if (i) X is 

nilpotent or (ii) 1l"l(X) is finite or (iii) Hl(X;Fp) is trivial; (2) Let F be a free group-then 

FpK(F, 1) R:J K(FpF, 1) but K(F, 1) is Fp-bad if F is free on two generators, i.e., Sl V Sl 

is F p-bad (Bousfield f). 

As a heuristic guide, HF p-localization can be thought of as the "idempotent modification" of F p

completion. Reason: I : X - Y is an HF p-equivalence iff F pi : F pX - F p Y is a pointed homotopy 

equivalence, thus HF p-Iocalization and F p-completion have the same equivalences (cf. §9, Proposition 

21). 

[Note: In a sense that can be made precise, the F p-completion of a space is but an initial step along 

the transfinite road to its HFp-Iocalization (Dror-Dwyer ll ).] 

FIBER THEOREM Let {~ be pointed connected OW spaces, I : X - Y a pointed continuous 

function with '/ro(EJ) = *. Assume: The action of '/rI(Y) on the H .. (EJ; Fp) is nilpotent 'v' n-then F pEJ 

ca.n be identified with the mapping fiber of the a.rrow F pX - F p Y. 

t SLN 304 (1972); see also Iwase, Trans. Amer. Math. Soc. 320 (1990), 77-90. 

Trans. Amer. Math. Soc. 331 (1992), 335-359. 

Comment. Math. Helv. 52 (1977), 185-210; see also Israel J. Math. 29 (1978), 141-154. 
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[Note: The action of 11'"1 (Fp Y) on the Hn(F"Ej; Fp) is nilpotent 'r/ n if Ej is Fp-good, thus if Ej 

and Yare both F p-good, then so is X.] 

EXAMPLE Suppose that X is a pointed connected CW space with the property that 1I'"1(X) 

operates nilpotently on the Hn(X; Fp) 'r/ n-then X is Fp-good if in addition 11'"1 (X) is nilpotent. 

F" WHITEHEAD THEOREM Let {: be pointed connected CW spaces, f : X - Y a 

pointed continuous function. Assume: f. : Hq(X;Fp) - Hq(Y;Fp) is bijective for 1 :$ q < nand 

surjective for q = n-then FpJ is an n-equivalence. 

[Note: To explain the difference in formulation between the Fp Whitehead theorem and the HFp 

Whitehead theorem (cf. p. 9-33), one has only to recall that the arrows p are HF,,-
{

X_XHF 

Y-YHF" 
equivalences.] 

Application: X n-connected => F"X n-connected. 

EXAMPLE Define functors L~ : GR - GR by writing L~G = 1I'"n+dFpK(G,I» (n ;::: 0). 

So, e.g., for any pointed connected CW space X, 11'"1 (FpX) ~ L~1I'"1(X) (Fp Whitehead theorem). Since 

FpK(G, 1) is HFp-Iocal, L~G is abelian p-cotorsion (n ;::: 1). Examples: (1) If G is free, then L~G ~ FpG 

and L~G = 0 (n ;::: 1); (2) If G is nilpotent, then L~G ~ Ext(Z/pooZ, G), LiG ~ Hom(Z/pooZ, G), and 

L~G = 0 (n ;::: 2); (3) If G is finite, then L~G is a finite p-group which is trivial when p and #(G) are 

relatively prime. 

[Note: 'r/ G, there is a surjection L~G - FpG (Bousfield t ) which is a bijection whenever H1 (GjFp) 

and H2(G; Fp) are finite dimensional, e.g., if G is finitely presented (Brownt).] 

EXAMPLE Let A be a ring with unit-then the arrow BGL(A) - BGL(A)+ is a homology 

equivalence, hence is an HFp-equivalence. Therefore L~GL(A) ~ 1I'"n+l(FpBGL(A)+), so if the Kn(A) 

are finitely generated, L~GL(A) ~ Zp ®Kn+l(A) (cf. p.9-35). 

Here is a final point. Fix a set of primes P-then Bousfield-Kan (ibid.) have shown that the P

completion process for groups can be imitated in the homotopy category, i.e., there is a functor X - PX 

on HCONCWSP. called P-completion which is part of a triple. Its formal properties are identical to 

those of F p-completion and its "idempotent modification" is H P-Iocalization. Example: p2 (R) is P-bad 

if 2 E P but p2(R) is Fp-good 'r/ p (since 11'"1 (P2(R» ~ Z/2Z is finite). 

Another approach to completing a space at a prime p is due to Sullivanll . In this 

t Memoirs Amer. Math. Soc. 186 (1977), 1-68 (cf. 66). 

t Cohomology of Groups, Springer Verlag (1982), 197-198. 

II Ann. oj Math. 100 (1974), 1-79. 
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context, there is also an analog of the profinite completion process for groups and we shall 

consider it first. 

Notation: F. is the full subcategory of CONCW. whose objects are the pointed 

connected CW complexes with finite homotopy groups and HF. is the associated homotopy 

category. 

[Note: Any skeleton HF. of HF. is small.] 

LEMMA For every pointed connected CW complex X, the category X\HF. is cofil

teredo 

[This is because HF. has finite products and weak pullbacks.] 

[Note: The objects of X\HF. are the pointed homotopy classes of maps X -+ K and 

the morphisms (X -+ K) -+ (X -+ L) are the pointed homotopy commutative triangles 
X 

I \ .] 
K ,L 

In what follows, lim stands for a limit calculated over X\HF •. 
X 

PROPOSITION 1 For every pointed connected CW complex X, the cofunctor Fx : 

HCONCW. -+ SET defined by Fx Y = lim[Y, K] is representable. 
x 

[It is a question of applying the Brown represent ability theorem. That Fx sat-

isfies the wedge condition is automatic. Turning to the Mayer-Vietoris condition, if 

Yk is a pointed finite connected sub complex of Y, then [Yk, K] is finite (cf. p. 5-

49). Give it the discrete topology and form lim[Yk, K], a nonempty compact Hausdorff 

space. Since [Y, K] ~ lim[Yk' K] (cf. p. 5-89), it follows that there is a factorization 
HCONCW. ----+_ CPTHAUS 

~ 1 U , where U is the forgetful functor. The verification that 

SET 
Fx satisfies the Mayer-Vietoris condition is now straightforward.] 

The profinite completion of X, denoted proX, is an object that represents Fx. There 

IS a natural transformation [-, X] -+ [-, pro X] and an arrow pro X : X -+ pro X 

(Yoneda). 

[Note: Profinite completion generates a triple in HCONCW. (or HCONCWSP.) 
which, however, is not idempotent.] 

EXAMPLE Let G be .80 topological group. Assume: G is Lie and #(7ro(G)) < w-then B'; is 

metrizable (cr. p. 4-64) (B'; is even an ANR (cr. p. 6-45)), in particular B'; is a compactly generated 
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Hausdorff space. And: For every pointed finite dimensional connected CW complex X, map .. (Ba' pro X) 

'--" is homotopic ally trivial (Friedlander-Mislin t ) . 

. [Note: Taking G = Sl, the Zabrodsky lemma and induction imply that V n 22, map .. (K(Z, n), proX) 

is homotopically trivial.] 

FACT Let X be a pointed connected CW complex-then for any CW complex Y, the arrow 

[Y, pro X] -+ lim[Y, K] is bijective. 
x 

[Note: In this context, the brackets refer to homotopy classes of maps, not to pointed homotopy 

classes of pointed maps.] 

The homotopy groups of proX are profinite. Proof: 1in (proX) :;:::j [Sn, pro X] :;:::j 

lim[Sn, K] and the [Sn, K] are finite. 
x 

[Note: It follows that V n, there is a commutative triangle . ] 

PROPOSITION 2 Let X be a pointed connected CW complex-then 1il (pro X) :;:::j 

p r01il(X). 
[The full subcategory of X\HF * consisting of those objects X -+ K such that the 

induced map 1il(X) -+ 1il(K) is surjective is an initial subcategory. To see t~s, let 
K 

K -+ K be the covering of K corresponding to im1il(X), and consider / 1. On 

X K 
the other hand, for any normal subgroup G of 1il (X) of finite index, there is an arrow 

X -+ K(1il(X)/G, 1).] 

EXAMPLE The arrow proll"n(X) -+ lI"n(proX) is not necessarily bijective when n > 1. Thus 

take X = Sl v~P2(R)-then 11"1 (X) ~ Z, 1I"2(X) ~w·(Z/2Z) and 11"1 (pro X) ~ Z, 11"2 (proX) ~ (Z/2Z)W 

but pro 11"2 (X) ~ Hom«Z/2Z)W, Z/2Z).· 

LEMMA Suppose that G is a finitely generated abelian group-then pro K( G, n) :;:::j 

K(proG,n). 

EXAMPLE proK(Z, n) ~ K(Z, n) but pro K(Q/Z, n) ~ K(Z, n + 1). 

t Invent. Math. 83 (1986), 425-436. 
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EXAMPLE Consider K(Z, 2; X), where X : Z/2Z -+ Aut Z is the nontrivial homomorphism 

(so K(Z, 2; X) :::::: BO(2) (cf. p. 5-32»-then X extends to a homomorphism X : Z/2Z -+ Aut Z and 

pro K(Z, 2; X) :::::: K(Z, 2; X). 

FACT Let X be a pointed connected CW complex-then V q, Hq(Xj Z) :::::: limn Hq(X; Z/nZ). 

[Hq(Xj Z) :::::: [X, K(Z, q)] :::::: [X,proK(Z, q)] :::::: limn[X,K(Z/nZ, q)] :::::: limn Hq(Xj Z/nZ).] 

FACT Let X be a pointed connected CW complex-then V q, Hq(X;Z):::::: limHq(Xk;Z), where 

Xk runs over the pointed finite connected subcomplexes of X. 

[Hq(XjZ/nZ) :::::: [X,K(Z/nZ,q)] :::::: lim[Xk,K(Z/nZ,q)] :::::: limHq(Xk;Z/nZ) (cf. p. 5-89) => 

Hq(Xj Z) :::::: limn Hq(X; Z/nZ) :::::: limn lim Hq(Xki Z/nZ) :::::: lim limn Hq(Xki Z/nZ) :::::: limHq(Xki Z).] 

In general, it is difficult to relate the higher homotopy groups of pro X to those of X 

itself except under the most favorable circumstances. 

PROPOSITION 3 Let X be a pointed nilpotent CW space with finitely generated 

homotopy groups-then V n, 7rn(proX) ~ pro7rn(X). 
[Note: Recall that a particular choice for the abelian groups figuring in a principal 

refinement of order n of X[n] -t X[n - 1] are the r~J7rn(X»/r~~l(7rn(X» (cf. p. 5-

60). Since the 7r n are finitely generated, there is a unique continuous nilpotent action of 

pr07rl (X) on pro 7rn(X) compatible with the action of 7rl (X) on 7rn(X). This said, Hilton

Roitberg t have shown that, in obvious notation, (i) nilxn 7rn (X) nilproxnpro7rn(X) and 

Oi) pro(r~J7rn(X»/r~~l(7rn(X)) ~ r~roxJpro7rn(X»/r~t;xJpro7rn(X). Since profi

nite completion preserves short exact sequences of finitely generated nilpotent groups (cf. 

p. 10-9), the conclusion is that the arrow (proX)[n] -t (proX)[n-1] admits a "canonical" 

principal refinement of order n, viz. apply pro to the "canonical" principal refinement of 

order n of X[n] -t X[n - 1]. Corollary: Under the stated assumptions on X, proX is 

nilpotent (but the unconditional assertion "X nilpotent =} pro X nilpotent" is seemingly 

in limbo).] 

Example: sn = M(Z, n) but proSn =F M(pro Z, n). 

FACT Let X be a pointed nilpotent CW space with finitely generated homotopy groups-then for 

every pointed finite connected CW complex K, the arrow [K,X] -+ [K, pro X] is injective. 

[Note: As a reality check, take K = SI and X = K(G, 1), where G is a finitely generated nilpotent 

group, and observe that the injectivity of the arrow [SI, K(G, 1)] -+ [SI, K(proG, I)] is equivalent to the 

assertion that G embeds in proG (d. p. 10-8).] 

1. Algebra 60 (1979), 289-306. 
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Application: Let Y be a pointed nilpotent CW space with finitely generated homotopy groups-then 

for every pointed connected CW space X, Ph{X, Y) is the kernel of the arrow [X, Y] - [X, pro Y]. 

LEMMA Let {Gn,ln : G n+l - G n } be a tower in GR. Assume: V n, G n is a compact Hausdorff 

topological group and I'll is a continuous homomorphism-then liml G n = *. 
[Note: The result is false if the "Hausdorff" hypothesis is dropped.] 

EXAMPLE Let X be a pointed connected CW complex with a finite number of cells in each 

dimension; let Y be a pointed nilpotent CW space with finitely generated homotopy groups-then V n, 

[Ex(n) ,pro Y] is a compact Hausdorff topological group and the arrow [Ex(n+l), pro Yj- [Ex(n) ,pro Y] 

is a continuous homomorphism. So, by the lemma, liml[EX(n),proY] = *, i.e., Ph{X,proY) = * (cf. p. 

5-49). 

Claim: A pointed continuous function I : X - Y is a phantom map iff proy 0 I ~ O. 

[Necessity; I E Ph{X, Y) => proy 0 I E Ph{X, pro Y) => proy 0 I ~ O. 

Sufficiency; Let ¢ : I( - X be a pointed continuous function, where K is a pointed finite connected 

CW complex-then proy 0 I 0 ¢ ~ 0 => 10 ¢ ~ 0, the arrow [K, Y] - [1(, pro Y] being one-to-one.] 

LEMMA Let {: be pointed simply connected CW spaces with finitely generated homotopy 

groups-then the function space of pointed continuous functions XQ - pro Y is homotopically trivial 

(compact open topology). 

[Adopt the conventions on p. 9-38 and work with map .. {XQ,proY). Since EnXQ ~ {EnX)Q (cf. 

p. 9-12), U .. (EnXQ;Fp) = 0 V p, thus U+{EnXQ;1rq{proY» = 0 V q (the 1rq{proY) are cotorsion). 

Accordingly, by obstruction theory (cf. p. 5-43), V n ~ 0, [EnXQ,proY] = *.] 

EXAMPLE Let {: be pointed simply connected CW spaces with finitely generated homotopy 

groups-then Ph(X, Y) = IQ[XQ, Y] C [X, Y]. 

[There is no loss of generality in supposing that X is a pointed simply connected CW complex with 

a finite number of cells in each dimension (cf. p. 5-23). 

(Ph(X, Y) C lQ [XQ , YD Fix an I E Ph(X, Y). From the above, proy 0 I ~ 0, so 3 a 

g : X - E such that I = 11" 0 g, E the mapping fiber of proy and 1r : E - Y the projection. Since E 

is rational (each of its homotopy groups is a direct sum of copies of Z/Z), 3 an h : XQ - E such that 

g::::: h 0 IQ, thus I ~ IQ 0 lQ, where IQ = 1r 0 h : XQ - Y. 

(lQ[XQ, Yj C Ph(X, Y» Assume that I ~ IQ 0 IQ, where IQ : XQ - Y. Thanks to the 

lemma, the composite proy 0 IQ is nullhomotopic, hence proy 0 I is too.] 

FACT Let X be a pointed nilpotent CW space with finitely generated homotopy groups-then for 

every finite CW complex K, the arrow [K,X] - [1(, pro X] is injective. 
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[Note: In this context, the brackets refer to homotopy classes of maps, not to pointed homotopy 

classes of pointed maps.] 

EXAMPLE The preceding result has content even when K is connected. Thus, restoring the base 

points, it follows that the arrow 1I'1(X)\[K,koiX,zo] -+ 1I'1(proX)\[K,ko;proX,prozo] is one-to-one. 

Specializing this to K = Sl, X = K(G,l), where G is a finitely generated nilpotent group, one recovers 

Blackburn's theorem (cf. p. 10-8). 

PROPOSITION 4 Let X be a pointed nilpotent CW space with finitely generated 

homotopy groups-then for every locally constant coefficient system Q on pro X arising 

from a finite pro 1I'1 (X)-module, H*(proXj Q) ~ H*(X; proxQ). 

[The main idea here is to proceed inductively, playing off K(lI'n(X),n) -t PnX -t 

Pn- 1X against proK(lI'n(X),n) -t proPnX -t proPn- I X (use the cohomological version 

of the fibration spectral sequence formulated on p. 5-69). To get the induction off the 

ground, one has to deal with K(lI'l(X), 1), the point being that 1I'1(X) has property 5 (d. 

p. 10-9).J 

LEMMA Let {-;' & Z be pointed connected CW spaces, f: X -t Y a pointed con

tinuous function-then the precomposition arrow f* : [Y, Z] -t [X, Z] is bijective whenever 

Z has finite homotopy groups iff 

(AI) Hom(lI'l(Y),F) ~ Hom(lI'l(X), F) for any finite group F 
(A2) Hn(y; Q) ~ Hn(Xj f*Q) V n for any locally constant coefficient system and 

Q on Y arising from a finite 11'1 (Y)-module. 

[Tailor the proof of Proposition 11 in §9 to the setup at hand.] 

PROPOSITION 5 Let X be a pointed nilpotent CW space with finitely generated 

homotopy groups-then every pointed continuous function <p : X -t K, where K is a 

pointed connected CW complex with finite homotopy groups, admits a continuous exten

sion pro <p : pro X -t K which is unique up to pointed homotopy. 

[Each homomorphism 11'1 (X) -t F, where F is finite, can be extended uniquely to a 

homomorphism pro 11'1 (X) -t F (d. p. 10-9 ff.), therefore Al holds. That A2 holds is the 

content of Proposition 4.] 

Application: pro is idempotent on the class of pointed nilpotent CW spaces with 

finitely generated homotopy groups. 

Fix a prime p--then upon replacing "finite group" by "finite p-group" in the foregoing, 

one arrives at the p-profinite completion propX of X. Modulo minor changes, the theory 
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carries over in the expected way. Consider, e.g., Proposition 4. There it is necessary to look 

only at those 9 whose underlying prop 7rl (X)-module G is a finite abelian p-group such that 

the associated homomorphism prOp7rl (X) ~ Aut G factors through a p-subgroup of Aut G. 

Another point to bear in mind is that p-adic completion preserves short exact sequences 

of finitely generated nilpotent groups (cf. p. 10-9) and p-adic completion = p-profinite 

completion in the class of finitely generated nilpotent groups (cf. p. 10-11). 

EXAMPLE Let X be a pointed simply connected CW complex with a finite number of cells 

in each dimension. Denote by prop,TX the pointed mapping telescope of the sequence {propx(n) -+ 

propX(n+l)}-then V n, lI'n(prop,TX) ~ Zp ® lI'n(X) => prop,TX ~ propX. 

It is clear that V p, there is an arrow proX ~ propX, from which an arrow proX ~ 

IT propX (product in HTO P.). And: [8 n ,pro X] ~ [8 n , IT propX] =} 7r n (pro X) ~ 
p p 

IT7rn(propX). 
p 

PROPOSITION 6 Let X be a pointed nilpotent CW space with finitely generated 

homotopy groups-then the arrow pro X ~ IT propX is a weak homotopy equivalence. 
p 

[In this situation, V n, 7rn(proX) ~ pro7rn(X) & 7rn(PropX) ~ prop7rn(X). Moreover, 

for any finitely generated nilpotent group G, the arrow pro G ~ IT propG is an isomorphism 
p 

(cf. p. 10-11).] 

[Note: If the product is taken in HCW8P. (cf. p. 9-1), then the arrow proX ~ 

IT propX is a pointed homotopy equivalence.] 
p 

EXAMPLE Let X = B O (2) (cf. p. 11-5)-then, in obvious notation, pro2X ~ K(Z2' 2; X2) but 

at an odd prime p, propX is simply connected and in fact OpropX ~ S~. Thus here, it is false that the 

arrow proX -+ IT propX is a weak homotopy equivalence. 
p 

Let X be a pointed nilpotent CW space-then propX and XHFp(= FpX) are, in gen

eral, not the "same." Reason: prop' fails to be idempotent. However, when the homotopy 

groups of X are finitely generated, 7rn(PropX) ~ prop7rn(X) ~ Ext(Z/pooZ, 7rn(X)) ~ 

7rn(XHFp). Therefore propX is HFp-Iocal (cf. §9, Proposition 20) (propX is nilpotent) 

and in this case, propX ~ XHF p(= Xp). 

[Note: It is a fact that for nilpotent X, propX ~ XHFp under the sole hypothesis 

that V n, Hn(x; Fp) is finite dimensional (cf. p. 11-11). In this connection, recall that if 

the homotopy groups of a nilpotent X are finitely generated, then the Hn(X) are finitely 

'\-- generated (cf. §5, Proposition 18), hence V n, Hn(X;Fp) is finite dimensional.] 
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PROPOSITION 7 Let X be a path connected topological space-then the following 

conditions are equivalent: 

(COl) V n, Hn(x; F p) is finite dimensional; 

(HOI) 

(C02) 
(H02 ) 

(C03 ) 

(H03 ) 

(C04 ) 

(H04 ) 

'V n, H n(X j F p) is finite dimensional; 

V n, Hn(x; Zp) is finitely generated over Zp; 

'V n, Hn(X; Zp) is finitely generated over Zp; 

V n, Hn(x; Zp) is finitely generated over Zp; 

'V n, Hn(Xj Zp) is finitely generated over Zpj 

V n, Hn(x; Q) is finite dimensional and Hn(x; Z)tor(P) is finite; 

'V n, Hn(X; Q) is finite dimensional and Hn(X; Z)tor(P) is finite. 

EXAMPLE Suppose that X is a pointed simply connected CW space which is HFp-Iocal-then 

Hn(x; Fp) is finite dimensional V n iff 1l"n(X) is a finitely generated Zp-module V n. 

[Note: 1l"n(X) is p-cotorsion, hence is a p-adic module (cf. p. 10-2).] 

A group G is said to be Fp-finite provided that Hl(G;Fp) and H2(G;Fp) are finite 

dimensional. Example: Every finitely generated nilpotent group is F p-finite (d. p. 5-56). 

[Note: Let G be an abelian group-then G is Fp-finite iff G ® Fp and Tor(G, Fp) are 

'- finite or still, Gis Fp-finite iff Hn(G, nj Fp) and Hn+l(G, n; F p) are finite dimensional.] 

EXAMPLE Suppose that Gis Fp-finite-then Hl(G; Fp) and H2(G; Fp) are finite dimensional. 

Therefore, L~G ~ FpG (cf. p. 11-2). In particular, for any nilpotent Fp-finite group G, Ext(Z/pooZ, G) ~ 

FpG ~ Gp ~ propG. 

[Note: In the abelian case, one may proceed directly. Thus observe first that if G is abelian and 

Fp-finite, then V n, Tor(G, Z/pnz) is finite (argue by induction, using the coefficient sequence associated 

with the short exact sequence 0 ..... Z/pZ ..... Z/pn+lZ ..... Z/pnz ..... 0). Accordingly, V n, Hom(Z/pnZ,G) 

is finite => liml Hom(Z/pnZ, G) = 0 (cf. p. 5-45) => Ext(Z/pooZ, G) ~ Gp (cf. p. 10-2).] 

EXAMPLE Any abelian group in any of the following four classes is Fp-finite: (Cl ) The finite 

abelian p-groups; (C2) The free abelian groups of finite rank; (Ca) The uniquely p-divisible abelian 

groups; (C4 ) The p-primary divisible abelian groups satisfying the descending chain condition on sub

groups. Moreover, every Fp-finite abelian group G admits a composition series G = GO :) G l :) ... :) 

Gn = {O} such that Vi, Gi /Gi+l is in one of these four classes. 

[Given an Fp-finite abelian G, 3 a short exact sequence 0 ..... G' ..... G ..... Gil ..... 0, where {G' are 
G" 

F p-finite with G' finitely generated and Gil p-divisible. Proof: One may take Gil = G /G', where G' is a 

finitely generated subgroup of G mapping onto G/pG.] 
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FACT Let G be an abelian group. Assume: Gis Fp-finite-then V n, Hfi(GiFp) is finite dimen

sional. 

PROPOSITION 8 Let G be an Fp-finite nilpotent group-then 't/ n, Hn(G; F p) is 

finite dimensional. 

[This is true if G is abelian (cf. supra). Since in general, the iterated commutator 

map ®i+I(G/[G,GD -+ ri(G)/ri+I(G) is surjective, HIcri(G)/ri+I(G);Fp) is finite di

mensional V i. In particular: HI (rd
- l (G); F p) is finite dimensional (d = nil G > 1). Put 

K = r d
- l (G) and consider the central extension 1 -+ K -+ G -+ G / K -+ 1. The as

sociated LHS spectral sequence is HP(G/K; Hq(K; Fp)) => Hp+q(G;Fp), so it need only 

be shown that the Ef,q are finite dimensional. Specialized to the present situation, the 

fundamental exact sequence in cohomology reads 0 -+ HI(G/K;Fp) -+ HI(G;Fp) -+ 

HI(K;Fp) -+ H2(G/K;Fp) -+ H2(G;Fp) (d. p. 5-54). Therefore HI(G/K;Fp) and 

H2(G/KiFp) are finite dimensional, hence by induction, 't/ n, Hn(G/K;Fp) is finite di

mensional. Claim: H2 (K; F p) is finite dimensional. To see this, suppose the contrary. 

Because dim Ei,l < w, E~,2 (the kernel of the differential Eg·2 -+ Ei,l) would be infinite 

dimensional. But dim E~'o < w => dim E:'o < w, which means that E~,2 (the kernel of 

the differential E~,2 -+ E:'o) would be infinite dimensional. This, however, is untenable: 

'- E~·2 = E~2 and H2( G; F p) is finite dimensional. Thus the conclusion is that K is F p-finite 

and, being abelian, Hn(K; Fp) is finite dimensional 't/ n. It now follows that V p & V q, 

Ef,q is finite dimensional.] 

Application: Let G be an Fp-finite nilpotent group-then Vi, ri(G)/ri+I(G) is an 

F p-finite abelian group. 

FACT Let G be a group, M a nilpotent G-module. Assume: HI (G; F p) is finite dimensional and 

Mis Fp-finite-then V i, r~(M)/r~+I(M) is Fp-finite. 

LEMMA Let G be a group, M a nilpotent G-module which is a vector space over 

Fp. Assume: HI(G;Fp) is finite dimensional and HO(G;M) is finite dimensional-then 

M is finite dimensional. 

[The assertion is clear if G operates trivially on M. Agreeing to argue inductively on 

d = nilxM > 1, put N = r~-I(M) and consider the exact sequence 0 -+ HO(GiN)-+ 

HO(G; M) -+ HO(G; M/N) , -+ HI(G; N) -+ .... Since G operates trivially on N, 

HO(G; N) = N, thus N is finite dimensional. Consequently, HI(G; N) is finite dimen

sional, so HO(G; M/N) is finite dimensional. Owing to the induction hypothesis, M/N is 

finite dimensional, hence the same holds for M itself.] 
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PROPOSITION 9 Let X be a pointed nilpotent CW space-then V n, Hn(Xi F p) is 

finite dimensional iff V n, 7rn (X) is F p-finite. 

[We shall prove that the condition on the homotopy groups is necessary, the verifica

tion that it is also sufficient being similar. For this, consider the 5-term exact sequence 

o -+ E~'o -+ Hl(Xj F p) -+ E~,l -+ Ei'o -+ H2(Xi F p) associated with the fibration 

spectral sequence HP(7rl(X)i Hq(Xj Fp)) => Hp+q(XjFp) to see that Hl(7rl(X)iFp) and 

H2( 7r1 (X)i F p) are finite dimensional, Le., that 7r1 (X) is F p-finite. Since 7rl (X) operates 

nilpotently on the Hn(X) (cf. §5, Proposition 17), Hn(Xi Fp) is a nilpotent 7rl(X)-module, 

as is its dual Hn (X; F p). Taking into account Proposition 8, one finds from the lemma that 

H2(Xj F p) is finite dimensional and then by iteration that Hn(x; F p) is finite dimensional 

V n. This sets the stage for the discussion of 7r2(X), Thus, in the notation of p. 5-38, 

consider X 2 -+ Xl -+ K(7r2(x),2) (Xl;:::: X). Once again, there is a fibration spectral 

sequence HP(K(7r2(X), 2); Hq(X2; Fp») => HP+q(Xli F p) and a low degree exact sequence 

H2(7r2(X),2jFp) -+ H2(XliFp) -+ H2(X2iFp) -+ H3(7r2(X),2jFp) -+ H3(XliFp). Be

cause H2(XI j F p) and H3(XI ; F p) are finite dimensional and H2(X2i F p) = 0, it follows 

that H2(7r2(X),2iFp) and H3(7r2(X),2jFp) are finite dimensional. Therefore 7r2(X) is 

F p-finite and the process can be continued.] 

FACT Let G be an Fp-finite nilpotent group-then propG operates nilpotently on the L~G. 

FACT Let G be an Fp-finite nilpotent group, M an Fp-finite nilpotent G-module-then propG 

operates nil potently on the L~M. 

COINCIDENCE CRITERION Let X be a pointed nilpotent CW space such that V n, 

Hn(Xj Fp) is finite dimensional-then V n, there is a split short exact sequence 0 - prop1l'n(X) -

1I'n(propX) - Hom(Z/pooZ, 1I'n-l (X» - 0, hence propX ~ XHFp' 

[Note: Recall that here, Ext(Z/pooZ,1I'n(X» ~ Fp1l'n(X) ~ 1I'n(X)~ ~ prop1l'n(X) (cf. p. 11-9).] 

EXAMPLE Let X be a pointed nilpotent CW space such that V n, Hn(XjFp) is finite dimen

sional. Let Ap be the mod p Steenrod algebra-then H· (X; F p) is an unstable Ap-module and Lannes

Schwartz t have shown that X is W-null, where W = BZ/pZ, iff every cyclic submodule of H*(Xj Fp) is 

finite. 

t Topology 28 (1989), 153-169. 
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§12. MODEL CATEGORIES 

Of the various proposals that have been advanced for the development of abstract 

homotopy theory, perhaps the most widely used and successful axiomization is Quillen's. 

The resulting unification is striking and the underlying techniques are applicable not only 

in topology but also in algebra. 

Let i : A -+ Y, p : X -+ B be morphisms in a category C-then i is said to 

have the left lifting property with respect to p (LLP w.r.t. p) and p is said to have the 

right lifting property with respect to i (RLP w.r.t. i) if for all u : A -+ X, v: Y -+ B such 

that po u = v 0 i, there is a w : Y -+ X such that w 0 i u, pOW = v. 

For instance, take C TOP~then i : A -+ Y is a cofibration iff V X, i has the LLP w.r.t. 

A -----+PX 

Po : PX -+ X, i.e., 1////'f 1:110, and P : X -+ B is a Hurewicz fibration iff V Y, p has the RLP w.r.t. 

Y ,X 
Y ----?-X 

io : Y -+ IY, i.e., '01 ,////'f 1p . 

IY -----+B 

Consider a category C equipped with three composition closed classes of morphisms 

termed weak equivalences (denoted ~), cofibrations (denoted >--+), and fibrations (denoted 

-# ), each containing the isomorphisms of C. Agreeing to call a morphism which is both a 

weak equivalence and a cofibration (fibration) an acyclic cofibration {fibration), C is said 

to be a model category provided that the following axioms are satisfied. 

(MC-l) C is finitely complete and finitely cocomplete. 

(MC-2) Given composable morphisms I, g, if any two of I, g, go I are weak 

equivalences, so is the third. 

(MC-3) Every retract of a weak equivalence, cofibration, or fibration is again 

a weak equivalence, cofibration, or fibration. 

[Note: To say that I : X -+ Y is a retract of 9 : W -+ Z means that there exist 

morphisms i : X -+ W, r : W -+ X, j : Y -+ Z, s : Z -+ Y with 9 0 i = j 0 I, lor S 0 g, 

r 0 i = idx, S 0 j = idy. A retract of an isomorphism is an isomorphism.] 

(MC-4) Every cofibration has the LLP w.r.t. every acyclic fibration and every 

fibration has the RLP w.r.t. every acyclic cofibration. 

(MC-5) Every morphism can be written as the composite of a cofibration and 

;'~ an acyclic fibration and the composite of an acyclic cofibration and a fibration. 

[Note: In proofs, the axioms for a model category are often used without citation.] 
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Remark: A weak equivalence which is a cofibration and a fibration is an isomorphism. 

A model category C has an initial object (denoted 0) and a final object (denoted *). 

An object X in C is said to be cofibrant if 0 -T X is a cofibration and fibrant if X -T * is 

a fibration. 

FACT Suppose that C is a model category. Let X E Ob C-then X is cofibrant iff every acyclic 

fibration Y -+ X has a right inverse and X is fibrant iff every acyclic cofibration X -+ Y has a left inverse. 

Example: Take C = TOP-then TOP is a model category if weak equivalence= 

homotopy equivalence, cofibration=closed cofibration, fibration=Hurewicz fibration. All 

objects are cofibrant and fibrant. 

[MC-1 is clear, as is MC-2. That MC-4 obtains is implied by what can be found on 

p. 4-16 & p. 4-17, p. 4-21 & p. 4-22 and that MC-5 obtains is implied by what can be 

found on p. 4-12. There remains the verification of MC-3. That MC-3 obtains for closed 

cofibrations or Hurewicz fibrations is implied by what can be found on p. 4-16 & p. 4-17, 

p. 4-21 & p. 4-22. Finally, suppose that 1 is the retract of a homotopy equivalence-then 

[I] is the retract of an isomorphism in HTOP, so [I] is an isomorphism in HTOP, i.e., 1 
is a homotopy equivalence.] 

[Note: We shall refer to this structure of a model category on TOP as the standard 

~tructure. ] 

Addendum: CG has a standard model category structure, viz. weak equivalence= 

homotopy equivalence, cofibration=cIosed cofibration, fibration=CG fibration. 

[The verification of MC-4 for CG is essentially the same as it is forTOP. To check 

MC-5, note that k preserves homotopy equival~nces, sends closed cofibrations to closed 

cofibrations (cf. p. 3-8), and takes Hurewicz fibrations to CG fibrations (cf. p. 4-7). 

Therefore, if {~ are in CG and if 1 : X -T Y is a continuous function, one can first 

factor 1 in TOP and then apply k to get the desired factorization of 1 in CG.] 

EXAMPLE Let A be an abelian category. Write CXA for the abelian category of chain complexes 

over A. Given a morphism I : X -+ Y in CXA, call I a weak equivalence if I is a chain homotopy 

equivalence, a cofibration if V n, I", : X",t -+ Y", has a left inverse, and a fi~ration if V n, I", : X", -+ Y .. has 

a right inverse-then CXA is a model category. Every object is cofibrant and fibrant. 

EXAMPLE Let A be an abelian category with enough projectives. Write CXA~o for the full 

subcategory of CXA whose objects X have the property that X", = 0 if n < O. Given a morphism 

I : X -+ Y in CXA~o, call I a weak equivalence if I is a homology equivalence, a cofibration if V n, 

I", : X", -+ Y", is a monomorphism with a projective cokernel, and a fibration if V n > 0, I", : X", -+ Y", is 
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an epimorphism-then CXA~o is a model category. Every object is fibrant and the cofibrant objects are 

those X such that V n, Xn is projective. 

There are lots of other "algebraic" examples of model categories, many of which figure prominently 

in rational homotopy theory (specifics can he found in the references at the end of the §). 

Given a model category C, Cop acquires the structure of a model category by stipu

lating that lOP is a weak equivalence in CoP iff I is a weak equivalence in C, that lOP is 

a cofibration in CoP iff I is a fibration in C, and that lOP is a fibration in CoP iff I is a 

cofibration in C. 

Given a model category C and objects A, B in C, the categories A\C, C/B are again 

model categories, a morphism in either case being declared a weak equivalence, cofibration, 

or fibration if it is such when viewed in C alone. 

Example: Take C = TOP (standard structure)-then an object (X,xo) in TOP ... is 

cofibrant iff * -+ (X, xo) is a closed cofibration (in TOP), i.e., iff (X, xo) is wellpointed 

with {xo} C X closed. 

PROPOSITION 1 Let C be a model category. 

(1) The cofibrations in C are the morphisms that have the LLP w.r.t. acyclic 

fibrations. 

(2) The acyclic cofibrations in C are the morphisms that have the LLP w.r.t. 

fibrations. 

(3) The fibrations in C are the morphisms that have the RLP w.r.t. acyclic 

cofibrations. 

(4) The acyclic fibrations in C are the morphisms that have the RLP w.r.t. 

cofibrations. 

[Statements (3) and (4) follow from statements (1) and (2) by duality. The proofs 

of (1) and (2) being analogous, consider (1). Thus suppose that i : A -+ Y has the LLP 

w.r.t. acyclic fibrations. Using Me-5, write i = poj, where j : A -+ X is a cofibration and 

p : X -+ Y is an acyclic fibration. By hypothesis, 3 a w such that w 0 i = j, pow = idy, 

and this implies that i is a retract of j, so i is a cofibration.] 

Example: Take C = CG (standard structure )-then an arrow A -+ Y that has the 

LLP w.r.t. acyclic CG fibrations must be a closed cofibration. 

{

F:C_D 
EXAMPLE Let C and D be model categories. Suppose that are functors and 

G:D-C 
(F, G) is an adjoint pair-then F preserves cofibrations and acyclic cofibrations iff G preserves fibrations 

and acyclic fibrations. 
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[Note: Either condition is equivalent to requiring that F preserve cofibrations and G preserve fibra

tions.] 

In a model category 0, the classes of cofibrations and fibrationspossess a number of 
"closure~ properties (all verifications are simple consequences of Proposition 1). 

(Coproducts) If V i, I. : Xi ~ Ys is a cofibration (acyclic cofibration), then 

II I. : II X. ~ II Ys is a cofibration (acyclic cofibration). 
ii' i 

(Products) IT V i, Ii : Xi ~ Ys is a fibration (acyclic fibration), then n Ii 
i n Xi ~ n Ys is a fibration (acyclic fibration). 

i i 

--+ 
( 

(Pushouts) 
y 

Given a 2-source X L z ..!.. Y, define P by the pushout square 

1 ". Assume: I is a cofibration (acyclic cofibration )-then ." is a cofibration 
P 

(acyclic cofibration). 

(Pullbacks) 
-!..Y 

Given a 2-sink X 1. z !- Y, define P by the pullback square 

--+ 
/ 

fibration). 

1'. Assume: g is a fibration (acyclic fibration)-then e is a fibration (acyclic 
Z 

(Sequential Colimits) If V n, In : Xn ~ X n+1 is a cofibration (acyclic cofibra-

tion), then V n, in : Xn ~ colimXn is a cofibration (acyclic cofibration). 

(Sequential Limits) If V n, In : X n+1 ~ Xn is a fibration (acyclic fibration), 

then V n, Pn : limXn ~ Xn is a fibration (acyclic fibration). 

[Note: It is assumed that the relevant coproducts, products, sequential colimits, and 

sequential limits exist.] 

EXAMPLE (Pushouts) Fix a model category C. Let! be the category h~ _!. _2 (d. p. 0-9)-
3 

then the functor category [I, C] is again a model category. Thus an object of [I, C] is a 2-source X L z.!.. y 

X ~ z ....!..... y 

and a morphism E of 2-sources is a commutative diagram 1 1 1 . Stipulate that E 

X, +-- Z' ---+ yl 
II " 

is a weak equivalence or a fibration if this is the case of each of its vertical constituents. Define now PL, 

X ~ Z Z ....!..... y 

PIt by the pushout squares 1 1 1 1 ,let PL : PL - XI, PIt : PIt - yl be the 
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ind uced morphisms, and call E a cofi bration provided that Z --+ Z', P L, and P R. are cofibrations. With 

these choices, [I, C] is a model category. The fibrant objects X L Z.!.. Y in [I, C] are those for which X, 

Y, and Z are fibrant. The cofibrant objects X L Z.!.. Y in [I, C] are those for which Z is cofibrant and 

{
/:Z--+X 

are cofibrations. 
g:Z--+Y 

[Note: The story for pullbacks is analogous.] 

EXAMPLE Fix a model category C-then FIL( C) is again a model category. Thus let 4> : 

(X,!) --+ (Y, g) be a morphism in FIL( C). Stipulate that 4> is a weak equivalence or a fibration if this is the 
In 

Xn --+ Xn+l 

case of each 4>n. Define now Pn+l by the pushout square 4>n1 

be the induced morphism, and call 4> a cofibration provided that 4>0 and all the Pn+1 are cofibrations (each 

4>n (n > 0) is then a cofibration as well). With these choices,.FIL(C) is a model category. The fibrant 

objects (X,!) in FIL(C) are those for which Xn is fibrant V n. The cofibrant objects (X,!) in FIL(C) 

are those for which Xo is cofibrant and V n, In : Xn --+ Xn+1 is a cofibration. 

[Note: The story for TOW(C) is analogous.] 

A ~ X 

FACT Let C be a model category. Suppose that .1 1" is a commutative diagram in C, 

Y --+ B 
" where i is a'cofibration, p is a weak equivalence, and X is fibrant-then 3 a w : Y --+ X such that woi = u. 

[Note: There is a similar assertion for fibrations and cofibrant objects.] 

Given a model category C, objects X' and X" are said to be weakly equivalent if there 

exists a path beginning at X' and ending at X": X' = Xo -+ Xl +- ... -+ X 2n- 1 +- X 2n = 

X", where all the arrows are weak equivalences. Example: Take C = TOP (standard 

structure )-then X' and X" are weakly equivalent iff they have the same homotopy type. 

EXAMPLE The arrow category C( --+) of a model category C is again a model category (cf. p. 

12-26). Therefore it makes sense to consider weakly equivalent morphislIlIJ. Example: Every morphism in 

C is weakly equivalent to a fibration with a fibrant domain and codomain . 

• --+.--+. 
COMPOSITION LEMMA Consider the commutative diagram 1 1 1 .--+.--+. 

in a category C. Suppose that both the squares are pushouts-then the rectangle is a 

pushout. Conversely, if the rectangle and the first square are pushouts, then the second 

'-'" square is a pushout. 
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/i 71 
Application: Consider the commutative cube 14+ 1 in a category C. Sup-

./ .. 7 
pose that the top and the left and right hand sides are pushouts-then the bottom is a 

pushout. 

PROPOSITION 2 Let C be a model category. Given a 2-source X I- Z ~ Y, define 
Z ~ Y 

P by the pushout square J 1 
X ---+ 

1". Assume: f is a cofibration and 9 is a weak 
P 

( 
equivalence--then e is a weak equivalence provided that Z & Y are cofibrant. 

[Introduce the cylinder object IZ for Z (cf. p. 12-16) and define M, by the pushout 

ZIIZ ,~z YIIZ ZIIZ~YIIZ 

square '1 1 (c!. p. 3-21). Noting that IZ/ (idy,g)l 

IZ ---+ Mg. ~Z .Y 
commutes, choose r : Mg -+ Y accordingly, so 9 = r 0 i and r 0 j = idy, where i ~ Z -+ M, 

is the composite Z -+ Y II Z -+ Mg and j : Y -+ Mg is the composite Y -+ Y II Z -+ Mg. 
o ---+ Z 

Since t is a cofibration and 1 1 is a pushout square, i and j are cofibrations. 

Y ---+ YIIZ 
Moreover, j is acyclic. This is because io : Z -+ I Z is an acyclic cofibration and j is 

Z ~ Y 
ino~.1. . 

obtained from io via Z II Z ---+ Y II Z (io = toino). Therefore r is a weak equivalence. 
'~ ~ 
IZ ---+ Mg 

But, by assumption, 9 is a weak equivalence. Therefore i is a weak equivalence. Define 1 by 
Z ~ Mg 

the pushout square f 1 17 . Since f is a cofibration and i is an acyclic cofibration, 
X ---+ 1 

Mg 

f is a cofibration and r is an acyclic cofibration. The commutative diagram 71 
1 
y~ 

is a pushout square and e Define J by the pushout square" 1 
P ---+ 

j 

r; 

Since '1 is a cofibration and j is an acyclic cofibration, if is a cofibration and J is an 
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~y Mg 

acyclic cofibration. The commutative diagram if 1 
J 

1'1 is a pushout square and 
---+ P 
rj 

idp = rio;' Therefore r i is a weak equivalence. Define Zo, ZI by the pushout squares 

Z ~ IZ Z ~ IZ 

11 1/0, 11 111. The composites z!2. IZ:::::' Z, Z ~ IZ:::::' Z being idz, 

'"'" '"'" X ---+ Zo X ---+ ZI 
there are weak equivalences (0 : Zo -+ X, (I : ZI -+ X and factorizations X :::::. Zo ~ X, 

IZ ..A.. ZI 
X :::::. ZI ~ X of idx. Define W by the pushout square 10 1 1 and determine 

Zo ---+ W 

( : W -+ X so that (0 is the composite Zo -+ W s.. X and (I is the composite ZI -+ W s.. X. 

Decompose ( per W )00-+ W..:;. X-then the composites Zo -+ W, ZI -+ W are acyclic 

cofibrations. To go from Z to 1 through Z ~ IZ :::::. Z ~ M, L 1 is the same as going from 
- 1 1- - -Z to 1 through Z -+ X -+ I. Consequently, there is an arrow i l : ZI -+ 1 such that the 

IZ ---+ M, 

composite X :::::. ZI 11 is -: and the commutative diagram 111 1 is a pushout 
ZI ---+ 1 

i l 

square. But -: is a wea!c equivalence. Therefore -:1 is a weak equivalence. Define K by the 

ZI ~ 1 
pushout square 1 

W 

1. Since '1 is a weak equivalence, the same holds for W -+ K. 

---+ K 

To go from Z to J through Z !2. 1 Z :::::. Z .!!. 'Y L Mg ~ J is the same as going from Z to 

J through Z ~ X 1. P.1 J. Consequently, there is an arrow}o : Zo -+ J such that the 
IZ ---+ Mg 

composite X :::::. Zo ~ J is loe and the commutative diagram 101 
Zo ---+ 

10 

1 is a pushout 
J 

square. To go from IZ to K by IZ -+ Mg -+ 1 -+ K is the same 88 going from IZ to 

K by IZ -+ Zo -+ W:::::. K, thus there is an arrow J -+ I( and a commutative diagram 
Z 10 J Mg---+-I 

1 ~ 1 which is a pushout "7 ~ 1 
W~K . t/r/K, 

Zo ----+- W 
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It follows that )0 is a weak equivalence and this implies that) 0 e is a weak equivalence. 

Finally, e = idp 0 e = rj 0) 0 e is a weak equivalence.] 

[Note: There is a parallel statement for fibrations and pullbacks.] 

EXAMPLE Working in C = TOP (standard structure), suppose that A --+ X is a closed cofibra

tion. Let f : A --+ Y be a homotopy equivalence--then the arrow X --+ Xu I Y is a homotopy equivalence 

(cf. p. 3-24). 

PROPOSITION 3 Let C be a model category. Suppose given a commutative diagram 
X ?- Z ....!..... y 

1 1 1 ,where {~, are cofibrations and the vertical arrows are weak 
X' +-- Z' ---+ y' 

/' gl 

equivalences-then the induced morphism P --+ P' of pushouts is a weak equivalence 

provided that { ;, ~~, are cofibrant. 

[We shall first treat the special case when 9 is a cofibration. In this situation, the arrow 

y --+ Z' U Y is a weak equivalence (cf. Proposition 2) and Z' U Y is cofibrant. Form the 
Z Z 

Y ---+ Z' U Y 
Z 

pushout square 1 1 and apply Proposition 2 once again to see 

X U Y ---+ X U (Z' U Y) 
Z Z Z 

that the arrow X U Y --+ X U (Z' U Y) is a weak equivalence. Next write X U (Z' U Y) R:l 
Z Z Z Z Z 

(X U Z') U (Z' U Y) and note that the arrow X U Z' --+ X' is a weak equivalence (cf. 
Z ~ Z Z 

Proposition 2). Consider now the commutative diagram 

Z' ------+-. X U Z' ------.... X' 

1 1 1 
Z' U Y ---+(X U Z') U (Z' U Y) ---+X' U (Z' U Y) 

Z Z Z' Z Z' Z 

10 which both the squares and the rectangle are pushouts. Since Z' ~ Z' U Y => 
Z 

X U Z' ~ (X U Z') U (Z' U Y) and X U Z' is cofibrant, still another application of 
Z Z Z' Z Z 

Proposition 2 implies that the arrow (X U Z') U (Z' U Y) --+ X' U (Z' U Y) is a weak 
Z Z' Z Z' Z 

equivalence. Repeating the reasoning with 

Z' ---+1 Z' U Y ------+1 Y' 

1 r 1 
X' ---+ x' U (Z' U Y) ---+ x' U Y' 

z' Z Z' 
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leads to the conclusion that the arrow X' U (Z' U Y) -+ X' U Y' is a weak equivalence. z' z Zl 
We have therefore built a weak equivalence from P to P'. To proceed in general, factor 9 

Z ~ X Z ~ Y 
as Z >-+ y": Y. Define X', Y' by the pushout squares 1 1 1 1 

z' ~ x' z' ~ Y' 
then there are weak equivalences X' -+ X', Y' -+ Y'. The 2-sources X +- Z -+ Y, 
X' +- Z' -+ Y' generate pushouts P, P'. Since the arrows on the "right" are cofibrations, 

the induced morphisms P -+ P, P -+ P', pl_-+ pi are weak equivalences. The assertion 
p ~ p 

thus follows from the fact that the diagram 1 1 commutes.] 
pi ~ pi 

[Note: There is a parallel statement for fibrations and pullbacks.] 

{
A_X 

EXAMPLE Working in C = TOP (standard structure), suppose that 
A'-X' 
X +--

brations. Let be continuous functions. Assume that the diagram 
I' : A' - yl 

are closed cofi-

A ~ Y 

1 1 {
,:A-Y 1 

X, +-- A' --+ yl 
I' 

commutes and that the vertical arrows are homotopy equivalences-then the induced map X U, Y -

X, U/ ' yl is a homotopy equivalence (d. p. 3-24 fr.). 

X 

1 

PROPOSITION" Let C be a model category. 
?-z2....y 

Suppose given a commutative diagram 

1 1 ,where Y -+ Y' and X U Z' -+ X' are cofibrations (acyclic 
X' +-- ZI ~ Y' Z 

f' " cofibrations )-then the induced morphism P -+ P' of pushouts is a cofibration (acyclic 

cofibration ). 

[Each morphism in the string P = X U Y -+ X U Y' ~ (X U Z') U Y' -+ X' U Y' = 
Z Z Z z' Z' 

pi is a cofibration (acyclic cofibration).] 

[Note: There is a parallel statement for fibrations and pullbacks.] 

In the topological setting, Proposition 4 is related to but does not directly imply the lemma on p. 

3-15 fr. 

(Small Object Argument) Suppose that C is a co complete category. Let So = 

{Li ~ Ki (i E I)} be a set of morphisms in C. Given a morphism f : X -+ Y, consider the 
Li 2.... X 

set of pairs of morphisms (g, h) such that the diagram t/li 1 1 f commutes. Put 
~ Y 

h 
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II II Li ----'" Xo 
i (g,h) 1 

Xo = X and define Xl by the pushout square 1. Observing that the 

llil Ki ---.. Xl 
i (g,h) 

,Xo ,Xl 

data furnishes a commutative triangle ~ / ,one may proceed and construct 
y 

a sequence X = Xo ~ Xl ~ ... ~ Xw; of objects in C, taking Xw; = colim Xn. There is 
'X Xw; 

a commutative triangle ~ ~ and if 'V i, Li is w-definite, then the conclusion is 
y 

that /w; : Xw; ~ Y has the RLP w.r.t. each <Pi. 
[Note: All that's really required of the Li is that the arrow colim Mor(Li,X,,) ~ 

Mor(Li,Xw;)'be surjective 'V i.] 

Example: Take C = TOP-then TOP is a model category if weak equivalence=weak 

homotopy equivalence, fibration=Serre fibration, cofibration=all Continuous functions 

which have the LLP w.r.t. Serre fibrations that are weak homotopy equivalences. Ev

ery object is fibrant and every CW complex is cofibrant. Every object is weakly equivalent 

to a CW complex. 

[Axioms MC-l, MC-2, and MC-3 are immediate. 

Claim: Every continuous function / : X ~ Y can be written as a composite /w; 0 iw;, 
where iw; : X ~ Xw; is a weak homotopy equivalence and has the LLP w.r.t. Serre fibrations 

and /w; : Xw; ~ Y is a Serre fibration. 

[Serre fibrations can be characterized by the property that they have the RLP w.r.t. 

the embeddings io : [0, l]n ~ 1[0, l]n (n ~ 0) (cf. p. 4-8). Accordingly, in the small object 

argument, take So = {[o,l]n i.!? I[O,I]n (n ~ O)}-then'V k, the arrow X" ~ X"+l is a. 

homotopy equivalence and has the LLP w.r.t. Serre fibrations. Consider the factorization of 
X i", X , w; 

/ arising from the small object argument: ~ ~ . It is clear that iw; has the LLP 
Y 

w.r.t. Serre flbrations. On the other hand, since the points of Xw; - iw;(X) are closed, every 

compact subset of Xw; lies in some X", thus the arrow colim G([O, 1]'\ X,,) ~ G([O, l]n ,Xw;) 
is surjective 'V n. Therefore /w; has the RLP w.r.t. each io : [0, l]n ~ 1[0, l]n, hence is a. 

Serre fibration. And: iw; is a homotopy equivalence (cf. §3, Proposition 15), hence is a 

weak homotopy equivalence.] 
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Claim: Every continuous function f : X --+ Y can be written as a composite f w 0 

1."", where i"" : X --+ Xw has the LLP w.r.t. Serre fibrations that are weak homotopy 

equivalences and f"" is both a weak homotopy equivalence and a Serre fibration. 

[Serre fibrations that are weak homotopy equivalences can be characterized by the 

property that they have the RLP w.r.t. the inclusions Sn-l --+ D n (n 2:: 0) (cf. p. 5-16). 

Accordingly, in the small object argument, take So = {Sn-l --+ D n (n 2:: On and reason 

as above.] 

Combining the claims gives MC-5. Turning to the nontrivial half of MC-4, viz. that 

"every fibration has the RLP w.r.t. every acyclic cofibration", suppose that f : X --+ Y 

is an "acyclic cofibration". Decompose f per the first claim: f = fw 0 iw. Since f and 

iw are weak homotopy equivalences, the same is true of fw, so :3 a 9 : Y --+ Xw such that 

go f = iw, f w 0 9 = id y. This means that f is a retract of iw. But the class of maps which 

have the LLP w.r.t. Serre fibrations is closed under the formation of retracts.] 

[Note: We shall refer to this structure of a model category on TOP as the singular 

structure. ] 

Remark: If (K,L) is a relative CW complex, then the inclusion L --+ K has the 

LLP w.r.t. Serre fibrations that are weak homotopy equivalences (cf. p. 5-16), hence is a 

cofibration in the singular structure. 

[Note: Every cofibration in the singular structure is a cofibration in the standard 

structure, thus is a closed cofibration. In fact there is a characterization: A continuous 

function is a cofibration in the singular structure iff it is a retract of a "countable compo

sition" Xo --+ Xl --+ ••• --+' X w, where 'V k the arrow XI. --+ Xk+l is defined by a pushout 
llll Sn-l } XI. 

square 
n~O 1 1 . ] 
llll D n ----}-Xk+l 

n>O 

Addendum: CG, .t:1-CG, and CGH have a singular model category structure, viz. 

weak equivalence=weak homotopy equivalence, fibration=Serre fibration, cofibration=all 

continuous functions which have the LLP w.r.t. Serre fibrations that are weak homotopy 

equivalences. 

[In fact, if f : X --+ Y is a continuous function, where {: are in CG, .t:1-CG, or 

CGH, then the Xw that figures in either of the small object arguments used above is again 

in CG, .t:1-CG, or CGH.] 

EXAMPLE Take C = TOP (singular structure)-then any cofibrant X is a CW space. Thus 

'" fix a CW resolution f : K - X. Factor f as K >-+ L - X, where L is a cofibrant CW space (that this 
; p 
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is possible is implicit in the relevant small object argument). Since X is cofibrant, 3 an B : X - L such 

th t 'd F' . L K r hich {i 0 j ~ idL (.. ak h . I h a p 0 B = I X. IX a J: - lor w • IS a we omotopy equlva ence, ence a 
j 0 i ~ idK 

homotopy equivalence (realization theorem». So: f 0 (j 0 B) = (p 0 i) 0 (j 0 B) ~ P 0 B = idx. Therefore X 

is dominated in homotopy by K, thus by the domination theorem is a CW space. 

[Note: L is a compactly generated Hausdorff space and B : X - L is a closed embedding. Conclusion: 

Every cofibrant X is in CGH. Example: [0,1]/[0, 1[ is compactly generated (and contractible) but not 

Hausdorff, hence not cofibrant.] 

A model category C is said to be proper provided that the following axiom is satisfied. 

(PMC) Given a 2:"source X L z ~ Y, define P by the pushout square 
Z ~ Y 

f 1 1" . Assume: f is a cofibration and 9 is a weak equivalence-then e is a weak 
X --+ P 

~ 

P 

equivalence. Given a 2-sink X ~ Z ~ Y, define P by the pullback square ~ 1 
" --+ 

X --+ 
f 

Assume: 9 is a fibration and f is a weak equivalence-then,., is a weak equivalence. 

Remark: In a proper model category, Proposition 2 becomes an axiom (no cofibrancy 

conditions), which suffices to ensure the validity of Proposition 3 (no cofibrancy conditions). 

PROPOSITION 5 Let C be a model category. Assume: All the objects of C are 

cofibrant and fibrant-then C is proper .. 

[This follows from Proposition 2.] 

[Note: Not every model category is proper (cf. p. 13-40).] 

Example: TOP (or CG), in its standard structure, is a proper model category. 

EXAMPLE TOP (or CG, 4-CG, CGH), in its singular structure, is a proper model category. 

In fact, since every object is fibrant, half of Proposition 5 is immediately applicable. However, not every 

object is cofibrant so for this part an ad hoc argument is necessary. Thus consider the commutative diagram 

X ~ Z idz l Z 

II II 1 g, where f is a cofibration in the singular structure and 9 is a weak homotopy 

X+--Z --+Y 
I 9 

equivalence-then f is a closed cofibration, therefore e : X - P is a weak homotopy equivalence (cf. p. 

4-51). 
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[Note: Let X be a topological space which is not compactly generated-then r X is not compactly 

generated and the identity map kr X - r X is an acyclic Serre fibration, so r X is not cofibrant (but r X 

is a CW space).] 

W 

Let C be a proper model category-then a commutative diagram 1 
X ~ 

f 

Y 

19 

Z 
inC 

is said to be a homotopy pullback if for some factorization Y .:+ Y - Z of g, the induced 

morphism W -+ X x z Y is a weak equivalence. This definition is essentially independent 

{ 
y.:+ y' - Z 

of the choice of the factorization of 9 since any two such factorizations y.:+ Y" _ Z 

X xzY' 

~ r~ 
lead to a commutative diagram W ) • and it does not matter whether one 

~ l~_ 
X Xz y" 

p 

factors 9 or f (see below). Example: A pullback square eJ 
X 

pullback provided that 9 is a fibration. 

[Note: The dual notion is homotopy pushout.] 

~y 

19 IS a homotopy 

~ Z 
f 

Take two factorizations "'" _ of g, form the pullback Y' x z Y", and note that the { Y~Y'- Z _ 

Y-Y" - Z 
projections Y' x z Y" - Y', y' x z y" - y" are fibrations. Factor the arrow Y - Y' x z y" as Y ~ W -

Y ~ y' 
Y' Xz Y". Since the diagram 1 

Y' 

T commutes, the arrows W - Y', W - Y" are weak 

W 
X ----+z~WX ----+z~ w 

equivalences. Consider the commutative diagrams II II II 1· 
X ----+ z ~ y' X ----+ Z ~ y" 

Because the arrows W _ Z, Y' _ Z, Y" - Z are fibrations, Proposition 3 implies that the induced 

morphisms X x z W - X x z Y', X x z W - X x z Y" are weak equivalences. Therefore one may put 

• = X Xz W in the above. 

[Note: Take a factorization Y ~ Y - Z of g and a factorization X ~ X - Z of f. Claim: The 

induced morphism W - X Xz Y is a weak equivalence iff the induced morphism W - X Xz Y is a weak 
W ----+ XXzY 

equivalence. Proof: The diagram 1 1 commutes and the arrows X X Z Y - X x z Y, 
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x Xz Y - X Xz Yare weak equivalences (cf. Proposition 3).] 

Example: In a proper model category C, a commutative diagram 

w --+ 

1 
x --+ 

/ 
where f is a weak equivalence, is a homotopy pullback iff the arrow W -+ Y is a weak 

equivalence. 

• --+ • --+ • 

COMPOSITION LEMMA Consider the commutative diagram 1 1 1 
• --+.--+. 

in a proper model category C. Suppose that both the squares are homotopy pullbacks-

then the rectangle is a homotopy pullback. Conversely, if the rectangle and the second 

square are homotopy pullbacks, then the first square is a homotopy pullback. 

W --+ Y 

EXAMPLE Take C = TOP (standard structure)-then the commutative diagram 1 19 
X ---+ Z 

I 
is a homotopy pullback iff the arrow W - WI" is a homotopy equivalence. Proof: The commutative 

WI" --+ Y 

diagram 1 1, is a pullback square (f = q 0 8) (cf. p. 4-23). One may therefore take this 

p ~ Y 

condition as the definition of homotopy pullback in TOP. Example: A pullback square (1 19 
X ---+ Z 

I 
is a homotopy pullback provided that 9 is a Dold fibration (cf. §4, Proposition 18 (with "Hurewicz" 

replaced by "Dold"». 

[Note: Let W be a topological space; let {: be pointed topological spaces, I : X - Y a 

pointed continuous function-then a sequence W - X J.. Y is said to be a fibration up to homotopy 

W --+ {yo} 

(or a homotopy fiber sequence) if the diagram 1 1 commutes and the induced map W - E J 

X ---+ Y 
J 

-- is a homotopy equivalence. Because EI is the double mapping track of the 2-sink X J.. Y - bo}, a se

quence W -+ X J.. Y is a flhn.tion up to homotopy if the composite W -+ Y is the constant map W -+ Yo 
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w --+ {yo} 

and the co.mmutative diagram 1 1 is a ho.mo.to.py pullback.] 

x -+ Y 
/ 

x....Lz~y 

FACT Let 1 1 1 be a co.mmutative diagram o.f topological spaces in which 

X, +-- Zl -+ yl 

/' " 
X --+ M/" +-- Y 

the squares are ho.motopy pullbacks-then in the co.mmuta.tive diagram 1 1 
the squares are homoto.py puUbacks. 

Applica.tion: Suppose that {A - X 
A'_X' 

a:re closed co.fibratio.ns. Let be COBtirutowJ {
/:A-y 

I' : A' - yl 

X +-- A y 

functio.ns. Assume that the diagram 1 1 1 co.mmutes and that the squares are h~ 
X, +-- A' -+ yl 

/' 
X· --+ XU/ Y +-- Y 

mo.to.py pullba.cks--then in the co.mmutative diagram 1 
x, --+ 

1 
X, U I yl 

/ 

1 ' the squares are 

+-- yl 
ho.mo.topy pullbacks. 

X .. 

FACT Let {(X,t) be o.bjects in FIL(TOP), tP : (X,t) _ (Y,g) a mo.rphism. Assume: V n, 
(Y,g) 

/ .. 
-+ X .. +l X.. --+ tel(X,t) 

1 '; .. +1 is a homo.topy pullback-then V n, 1 1 is a ho.mo.to.py pullback. 

y.. --+ tel(Y, g) 

XO --+ Xl --+ ... 

Applicatio.n: Let 1 1 be a co.mmutative ladder co.nnecting two. expand-

yO --+ yl --+ 

ing sequences o.f to.po.lo.gical spaces. Assume: V n, the inclusio.ns are co.fibratio.ns and {
X" _X .. +l 

. y" _ y .. +l 

X.. --+ X .. +l X" --+ Xoo 

1 1 is a ho.mo.to.py pullback-then V n, 1 1 is a ho.mo.to.py pullback. 

y.. --+ yoo 
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Let C be a model category-then a morphism g : Y --to Z in C is said to be a 

X' x z Y ~ X x z Y --+ Y 

homotopy fibration if in any commutative diagram 1 1 1', 
x' --+ X --+ Z 

" f 
~ is a weak equivalence whenever ¢ is a weak equivalence. Example: Every fibration in a 

proper model category is a homotopy fibration. 

LEMMA Let C be a proper model category. Suppose that g : Y --to Z is a homotopy 

fibration-then the pullback square 

X xzY --+ Y 

1 
X --+ 

f 

l' is a homotopy pullback. 
Z 

[Fix factorizations Y -=+ Y - Z,X -=+X - Z of g,/ and form the commutative dia-

gram 

X Xz Y ---+ X Xz Y---+Y 

1 1 1~ 
XxzY---+ XxzY---+Y 

1 1 ! 
X --...,..,...----1>. X -----1.*. Z 

XxzY 

Isolate the upper left hand comer: .1 
--+ XxzY 

1 . From the assumptions, the 

XxzY --+ XxzY 
three unlabeled arrows are weak equivalences. Therefore ~ is a weak equivalence.] 

FACT The class of homotopy fibrations is closed under composition and the formation of retracts 

and is pullback stable. 

In a model category C, one can introduce two notions of "homotopy", which are 

defined respectively via "cylinder objects" and "path objects". These considerations then 

lead to the construction of the homotopy category HC of C. 

(CO) A cylinder object for X is an object IX in C together with a diagram 

X U X ~ IX -=+ X that factors the folding map X U X --to X. Write { ~~ ~ i =: ~i for 

{
to ino S.. { X --to IX -=+ X {io . the arrows .. mce tdx factors as X IX ~ X ' . are weak eqwvalences. 
t 0 tnl . --to --to '1 

If X is in addition cofibrant, then {~o are cofibrations. Proof: XU X is defined by the 
. '1 



o 
pushout square 1 

X 

X 

~ XlIX 
iao 

is composition closed. 
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, so {~no are cofibrations and the class of cofibrations 
Ini 

(PO) A path object for X is an object PX in C together with a diagram 

X ::. P X ! X x X that factors the diagonal map X -+ X xX. Write {~ ~ ~~ : ~ for 

{
pro 0 II . 'd ~ {X::' PX -+ X {po the arrows . SInce 1 x lactors as X"" PX X ' are weak equivalences. 
pri 0 II -+ -+ PI 

If X is in addition fibrant, then {PO are fibrations. Proof: X X X is defined by the 
PI 

X x X P!\ X { 
pullback square Plol 1 ,so :~: are fibrations and the class of fibrations is 

X ~ * 
composition closed. 

[Note: Cylinder objects and path objects exist (cf. MC-5).] 

EXAMPLE Take C = TOP (standard structure)-then a choice for IX is X x [0,1] (cf. p. 3-5) 

and a choice for PX is C([O, 1],X) (cf. p. 4-10). 

EXAMPLE Take C = TOP (singular structure)-then a choice for IX is X x [0,1] if X is a CW 

complex (but not in general). However, for any X, a choice for PX is C([O, 1],X). 

[Note: Let X be the Warsaw circle-then the y.clusion ioXUilX -+ X x [0,1] is not a cofibration in 
ioXUilX --+ X 

the singular structure. Thus consider 1 , where . Since X -+ * is a Serre 1 { 
f(z,O) = z 

fez, 1) = zo 
X x [0,1] --+ * 

fibration and a weak homotopy equivalence, the existence of a filler for this diagram would mean that X 

is contractible which it isn't.] 

LEMMA Let (K, L) be a relative CW complex, where K is a LCH space. Suppose that X -+ B 

is a Serre fibration-then the arrow C(K, X) -+ C(L, X) XC(L,B) C(K, B) is a Serre fibration which is a 

weak homotopy equivalence if this is the case of L -+ K or X -+ B. 

[Note: Dropping the assumption that (K, L) is a rela:tive CW complex and supposing only that 

L -+ K is a closed cofibration (with K a LCH space), the result continues to hold if "Serre" is replaced 

by "Hurewicz" and weak homotopy equivalence by homotopy equivalence.] 

Application: Let (K, L) be a relative CW complex, where K is a LCH space. Suppose that A -+ Y 

is a cofibration in the singular structure-then the arrow L x Y U K X A -+ K x Y is a cofibration in the 

singular structure which is a weak homotopy equivalence if this is the case of L -+ K or A -+ Y. 
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EXAMPLE Take L = {O, I}, K = [0, 1 ]-then for any cofibration A - Y in the singular structure, 

the inclusion io Y U A X [0,1] U i1 Y - Y X [0,1] is a cofibration in the singular structure (cf. p. 3-6). In 

particular, V cofibrant X, a choice for IX is X X [0,1]. 

(LH) Morphisms I, 9 : X --+ Y in C are said to be left homotopic if 3 a 

cylinder object IX for X and a morphism H : IX --+ Y such that H 0 io = I, H 0 i l = g. 

One calls H a left homotopy between I and g. Notation: I'.:::!. g. If Y is fibrant and if 
I . 

" "" I'.:::!. g, then 3 a cylinder object I' X for X with X II X )-+ I' X - X and a left homotopy 
I 

H' : I' X --+ Y between I and g. Proof: Factor IX ..::t X as IX';::" I' X .:;. X and consider a 

IX ..!!. Y 
filler H' : I' X --+ Y for the commutative diagram 1 1 . 

I'X ~ * 
[Note: Suppose that I'.:::!. g-then I is a weak equivalence iff 9 is a weak equivalence.] 

I 
(RH) Morphisms I, 9 : X --+ Y in C are said to be right homotopic if 3 a 

path object PY for Y and a morphism G : X --+ PY such that Po 0 G = I, PI 0 G = g. 

One calls G a right homotopy between I and g. Notation: I'.:::!. g. If X is cofibrant and 
r 

if I'.:::!. g, then 3 a path object P'Y for Y with y';::" P'Y ! Y X Y and a right homotopy 
r 

G' : X --+ P'Y between I and g. Proof: Factor y,:+ PY as Y';::" P'Y':;' PY and consider 
o ~ P'Y 

a filler G' : X --+ P'Y for the commutative diagram 1 1 . 
X ~ PY 

G 
[Note: Suppose that I'.:::!. g-then I is a weak equivalence iff 9 is a weak equivalence.] 

r 

Notation: Given X, Y E Ob C, let {(:i: ~I~ be the set of equivalence classes in 

Mor(X, Y) under the equivalence relation generated by {l~ftht homotopy. 
, rig 

[Note: The relations of {~:!~t homotopy are reflexive and symmetric but not neces-

sarily transitive. Elements of { f:i: ~t are denoted by {f~~ and referred to as {:!~t 
homotopy classes of morphisms.] 

Left homotopy is reftexive. Proof: Given I : X - Y, take for H the composition IX ~X!.. Y. 

Left homotopy is symmetric. Proof: Given I,g : X - Y and H : IX - Y such that H 0 io = I, 
,oT ...... 

H 0 i1 == g, let T : X II X - X II X be the interchange, note that X II X )0-+ IX -X factors the folding 

map X II X - X, and H 0 (, 0 T) 0 ino = g, H 0 (, 0 T) 0 in1 == I. 
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PROPOSITION 6 Left homotopy is an equivalence relation on Mor(X, Y) if X is 

cofibrant and right homotopy is an equivalence relation on Mor(X, Y) if Y is fibrant. 

[To check transitivity in the case of left homotopy, suppose that I ~ 9 & 9 ~ h, say 
, I 

., 
X ~ I'X 

{ 
Hoi = I { H' 0 i' = 9 ! ! H .0 

- & H' .~ _ h' Define I" X by the pushout square ;1 h-
0'1 - 9 0 'I - IX --+ I" X 

j~ 

then I" X is a cylinder object for X (specify," : X II X -t I" X by { I.:: 0 ~no = ~~ 0 ~~ ). 
, Olnl = Jl 0 'I 

. ,., 3" I" Y {H" 0 i~ = I ] Moreover, H 0 'I = H 0 '0 ::::} H: X -t : H" ." - h . 
0'1 -

[Note: Here is the verification that I." is a cofibration. Form the commutative diagram 
x+--0 --+ X 

iO! ! 
IX +-- X --+ ., 

'0 

! i~ and apply Proposition 4.] 
I'X 

PROPOSITION T H X is cofibrant and p : Y -t Z is an acyclic fibration, then 

the post composition arrow PIll : [X, Y], -t [X, z], is bijective, while if Z is fibrant and 

i : X -t Y is an acyclic cofibration, then the precomposition arrow i'" : [Y, Z]r -t [X, Z]r 
is bijective. 

[In either case, the arrows are welldefined. That PIll is surjective follows from the fact 
0--+Y 

that, generica.l1y, ! ! p has a filler X -t Y. Assume now that pol ~ po g, where 
I 

X --+ Z 

I, 9 e Mor(X, Y). Choose H : IX -t Z with {HH 0 ~o = POl-then any filler IX -t Y 
0'1 = po 9 

XIIX In~ Y 

In ,! !p is a left homotopy between I and g. Therefore PIll is injective.] 

IX --+ Z 
H 

FACT Suppose that {~ are fibrant and p : Y -I- Z is a weak equivalence-then for any X, the 

postcomposition arrow p. : [X, Y]r -I- [X, Zlr is injective. 

FACT Suppose that {: are cofibrant and i : X -I- Y is a weak equivalence-then for any Z, the 

precomposition arrow i· : [y, Z], -I- [X, Zl, is injective. 

LEMMA (LH) Let I, 9 e Mor(X, Y) be left homotopic. Assume: Y is fibrant-then 

'V q, : X' -t X, I 0 q, ~ 9 0 q,. 
I 
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[Since Y is fibrant, one can arrange that the left homotopy H : IX -+ Y between , "" I and 9 is computed per X II X )-+ IX -* X (d. LH). This said, form the commutative 

X' II X' ~ XIIX ~ IX 

diagram " 1 1 , choose a filler ~ : IX' -+ IX, and note 
IX' --+ X' --+ X 

q, 

that H 0 ~ is a left homotopy between I 0 4> and 9 0 4>.] 

PROPOSITION 8 (LB) Suppose that Y is fibrant-then composition in Mor C in

duces a map [X', Xh x [X, Y], -+ [X', Y],. 
[The contention is that [I], = [g], (/,g E Mor(X, Y» & [4>], = [tP], (4), tP E Mor (X', X» 

=> [I 0 4>]' = [g 0 tP],. From the definitions, 3 /I, ... ,In E Mor(X, Y) : /I = I, In = 9 

with Ii ~ Ii+l' hence by the lemma, Ii 0 4> ~ Ii+l 04> Vi=> [/ 0 4>], = [g 0 4>]" But trivially, , , 
[g 0 4>]' = [g 0 tP],.] 

LEMMA (RH) Let I,g E Mor(X, Y) be right homotopic. Assume: X is cofibrant

then V tP : Y -+ Y', tP 0 I ~ tP 0 g. 
r 

PROPOSITION 8 (RB) Suppose that X is cofibrant-then composition in Mor C 

induces a map [X, Y]r x [Y, Y']r -+ [X, Y']r. 

FACT Let I, 9 e Mor(X, Y) be left homotopic. Suppose that.p : X, -+ X is an acyclic fibration

then 10 .p::.g o.p. 
I 

FACT Let I, 9 e Mor (X, Y) be right homotopic. Suppose that t/J : Y -+ y' is an acyclic 

cofibration-then t/J 0 I::. t/J 0 g. 
r 

PROPOSITION 9 Let I, 9 E Mor (X, Y)-then (i) X cofibrant & I ~ 9 => I ~ 9 and 
I r 

(ii) Y fibrant & I ~ 9 => I ~ g. 
r I 

[We shall prove (i), the proof of (ii) being analogous. Choose a left homotopy H : 

IX -+ Y between I and 9 and let p : IX -+ X be the ambient weak equivalence. Fix a path 

object PY for Y and let j : Y -+ PY be the ambient weak equivalence. Since X is cofibrant, 
X jo~ PY 

.io is an acyclic cofibration, thus the commutative diagram io1 1n has a 
IX --+ Y x Y 

(fop,H) 

filler p: IX -+ PY and the composite G = po i l is a right homotopy between I and g.] 
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Notation: Given a cofibrant X and a fibrant Y, write ~ for ~ = ~, call this equiv
I r 

alence relation homotopy, and let [X, Y] be the set of homotopy classes of morphisms in 

Mor(X, Y), a typical element being [I]. 
[Note: If 1 ~ g, then 1 is a weak equivalence iff 9 is a weak equivalence.] 

Observation: Suppose that X is cofibrant and Y is fibrant. Let I,g E Mor(X, Y)

then the following conditions are equivalent: (1) 1 and 9 are left homotopic; (2) 1 and 9 

are right homotopic with respect to a fixed choice of path object; (3) 1 and 9 are right 

homotopic; (4) 1 and 9 are left homotopic with respect to a fixed choice of cylinder object. 

x ~ y 

FACT Let ,pl 1'" be a diagram in C, where X is cofibrant and Z is fibrant. Assume: 

W ---+ Z 
9 

tP 0 f ~ go t/r-then if W is fibrant and 9 is a fibration, 3 q, : X -+ W such that q, ~ q, & go q, = tP 0 f and 

if Y is cofibrant and f is a cofibration, 3 tP : Y -+ Z such that tP ~ tP & tP 0 f = go q,. 

PROPOSITION 10 Suppose that {: are both cofibrant and fibrant. Let 1 E 

Mor(X, Y)-then 1 is a weak equivalence iff 1 has a homotopy inverse, i.e., iff there exists 

agE Mor(Y,X) such that go 1 ~ idx & log ~ idy . 

[Necessity: Write 1 = poi, where i : X -+ Z is an acyclic cofibration and p : Z -+ Y 

is a fibration. Note that Z is both cofibrant and fibrant and p is a weak equivalence. Fix a 
X X 

filler r : Z -+ X for ill. Since i*([i 0 r]) = [i 0 r 0 i] = [i] = [idz 0 i] = i*([idz ]), 

Z -+ * 
it follows that i 0 r ~ idz (cf. Proposition 7). Therefore r is a homotopy inverse for i. 

Similarly, p admits a homotopy inverse s. Put 9 = r 0 s-then 9 : Y -+ X is a homotopy 

inverse for I. 
Sufficiency: Decompose 1 as above: 1 = poi. Because i is a weak equivalence, one 

has only to prove that p is a weak equivalence. Let 9 : Y -+ X be a homotopy inverse for 

I. Fix a left homotopy H : IY -+ Y between log and idy and choose a filler H' : IY -+ Z 

Y 

In iol 
IY 

iog 
-+ 

-+ 
H 

Set s = H' 0 i 1 (=> po s = idy ). If r : Z -+ X is a homotopy inverse 

for i, then p ~ lor => sop ~ i 0 gop ~ i 0 9 0 lor ~ i 0 r ~ idz , so sop is a weak 

equivalence. But p is a retract of sop, hence it too is a weak equivalence.] 

EXAMPLE Take C = TOP (singular structure) and let X, Y be cofibrant, e.g., CW complexes-

,-/ then Proposition 10 says that a weak homotopy equivalence f : X -+ Y is a homotopy equivalence, which, 
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when specialized to X, Y CW complexes, is the realization theorem. 

[Note: Bear in mind that a cylinder object for a cofibrant X, Y is IX,IY (cf. p. 12-18).] 

Notation: C e is the full subcategory of C whose objects are cofibrant, Cf is the full 

subcategory of C whose objects are fibrant, and Cef is the full subcategory of C whose 

objects are cofibrant and fibrant. H .. C e is the category with Ob H .. C e = Ob C e and 

Mor H .. C e = right homotopy classes of morphisms (cf. Proposition 8 (RH», HI Cf is the 

category with Ob HI Cf = Ob Cf and Mor HI Cf = left homotopy classes of morphisms (d. 
Proposition 8 (LH», and HCef is the category with Ob HCef = Ob Cef and Mor HCef = 

homotopy classes of morphisms (cf. Proposition 9). 

[Note: Write HCe (HCf) for HCef if all objects are fibrant (cofibrant).] 

Given X E Ob C, use MC-5 to factor 0 -+ X as 0 )---+ £,X..:;. X and X -+ * as 

X~ 'RX - *, thus 'Trx : £,X -+ X is an acyclic fibration and LX : X -+ 'RX is an acyclic 

cofibration. 

[Note: £,X is cofibrant and 'RX is fibrant. If X is cofibrant, take £,X = X & 'Trx = idx 

and if X is fibrant, take 'RX = X & LX = idx.] 

. {X 
LEMMA J; Fix Y E ObC and let / E Mor(X, Y)-then there exists £,/ E 

£,x ~ £'Y 

Mor (£'X, £'Y) such that the diagram "'x 1 
X --+ 

1 "'Y commutes. £, / is uniquely de
y 

/ 
termined up to left homotopy and is a weak equivalence iff / is. Moreover, for fibrant Y, 

£,/ is uniquely determined up to left homotopy by [I],. 
o 

[To establish the existence of £, /, consider any filler £,X -+ £'Y for 1 
£,x --+ 

/0 "'x 

£'Y 

Since £,X is cofibrant and 'Try is an acyclic fibration, the post composition arrow [£,X, £,Y], -+ 

[£,X, Y], determined by 'Try is bijective (cf. Proposition 7). This implies that £,/ is unique 

up to left homotopy. The weak equivalence assertion is clear. Finally, if Y is fibrant, then 

composition in MorC induces a map [£,X,X], x [X, V], -+ [£,X, y], (d. Proposition 8 

(LH». Therefore [I], = [g], => [/0 'Trxh = [g 0 'Trxh => ['Try 0 £,/], = ['Try 0 £,g], => £,/ :::!.£'g , 
(d. Proposition 7).] 

Application: £'idx :::!.id.cx => £'idx :::!.id.cx and £,(gof):::!. £,go£,/ => £,(gof):::!. £,go£'/ 
, r , r 

(d. Proposition 9), thus there is a functor £, : C -+ H .. C c that takes X to £,X and 

/ : X -+ Y to [£'/]r E [£,X, £'Y]r. 
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LEMMA 'R. Fix {: E Ob C and let f E Mor(X, Y)-then there exists 'Rf E 

X ~ Y 
Mor('RX, 'RY) such that the diagram 'x 1 

'RX --+ 
1lJ 

1 &y commutes. 'Rf is uniquely de
'RY 

termined up to right homotopy and is a weak equivalence iff f is. Moreover, for cofibrant 

X, 'Rf is uniquely determined up to right homotopy by [J]r. 

Application: 'Ridx!:: id1lx * 'Ridx!:: id1lx and 'R(gof)!:: 'Rg 0 'Rf * 'R(gof)!:: 'Rgo 
r I r I 

'Rf (cf. Proposition 9), thus there is a functor 'R : C --+ HIC, that takes X to 'RX and 

f : X --+ Y to ['Rf], E ['RX, 'RY],. 

REEDY'S LIFTING LEMMA Suppose tha.t {: are cofibrant. Let 4J E Mor(X, Y)-then 

x u 
---+ U 

4J is a weak equivalence iff given any commutative diagram ~ 1 1 ~ , where () is a. fibration, 

Y ---+ V 
11 

3 w : Y -+ U k H : IX -+ U such that () 0 W = v, , and () 0 H = v 0 4J 0 p, p : IX -+ X 
{

HOiO=U 

H 0 i1 = W 0 4J 
the projection. 

[Necessity: Write 4J = '7 0 e, where e : X -+ Z is an acyclic cofibration and '7 : Z -+ Y is an acyclic 
XlIX ~ IX 

fibration. Define I Z by the pushout square 1 1 to get a cylinder object for Z compatible 

ZIIZ --+ IZ 

IX 2...t X 

with that for X in the sense that there is a commutative diagram 1(1 1 (. Since Y is cofibrant, 

IZ ---+ Z 
'P 

one can find an 8 : Y -+ Z such that '708 = idy. Therefore '70 idz = '70 (8 0 '7) :::;. 3 h : IZ -+ Z such 

IZ ~ Z 

{
h 0 to = idz 1 

that and '7 0 h = '7 0 p: 'P 
h 0 il = B 0 '1 

Z 

X ~ U 

1 f/ (cf. Proposition 7 and its proof). Choose 

---+ Y 
'I 

now a filler (1' Z -+ U for (1 1 ~ . Definition: w = (1' 0 B k H = (1' 0 hole. So, e.g., 

Z· ---+ V 
110'1 

4> 0 H = 4> 0 (1' 0 hole = v 0 '70 hole = v 0 '7 0 pole = v 0 '7 0 e 0 p = v 0 4J 0 p. 

Sufficiency: If 4J : X -+ Y has the stated. property, then for every fibrant Z, 4J. : [y,Z], -+ [X,Z], 
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is surjective and t/J. : [y, Z],. - [X, Z],. is injective, hence t/J. : [y, Z] - [X, Z] is bijective. Because the 
['R.Y, CZ] --+ [y, Z] 

horizontal arrows in the commutative diagram 1 1 are bijective, ('R.t/J). : ['R.Y, CZ] -

['R.X,CZ] --+ [X,Z] 
['R.X,CZ] is also bijective for every fibrant Z. Take Z = 'R.CX : CZ = C'R.CX = 'R.CX = 'R.X => 3 1/J : 

'R.Y - 'R.X such that ('R.t/». ([,pD = [id1tx], i.e., ,p 0 'R.t/J ~ id1tx . Working next with Z = 'R.CY, it follows 

that ,p. : ['R.X, 'R.Y] - ['R.Y, 'R.Y] is the inverse to the bijection ('R.q,). : ['R.Y, 'R.Y] - ['R.X, 'R.Y], thus 

(Xq,)·([id1ty]) = [Xq,] => 1/J·([Xq,]) = [id1ty] => Xq, 0 1/J ~ id1ty. In other words, Xq, has a homotopy 

inverse and this means that 'R.t/J is a weak equivalence (d. Proposition 10) or still, t/J is a weak equivalence.] 

The proof of Proposition 2 can be shortened by using Reedy's lifting lemma. Thus consider the 

Z ~ X 

pushout square ,1 1 ( ,where f is a cofibration, 9 is a weak equivalence, and { ; are cofibrant

Y --+ P 

" 
Z X 

then the claim is that e is a weak equivalence. First define Mf by the pushout square iol 1 
IZ --+ Mf 

(cf. p. 3-20) and construct a cylinder object IX for X with the property that the arrow Mf - IX is 

X ~ U 

an acyclic cofibration. This done, fix a commutative diagram (1 1. (note that Pis cofibrant). 

P ---+ V 
v 

_ {HOiO = uof 
Since 9 is a weak equivalence, 3 'iii: Y - U &; H : IZ - U such that !II 0 'iii = f} 0 '1, _ , 

Ho i1 ='iiiog 
(H,u) 

Mf ---+ U 

and !II 0 H = f} 0 '1 0 gop, p : IZ - Z the projection. Choose a filler H : IX - U for 1 1. 

Z ~ X 

IX ---+ V 
vo(op 

(p : IX - X) and then determine w : P - U from the commutativity of 9 1 1 H oil • 

Y ---+ U 
'iii 

PROPOSITION 11 The restriction of the functor .c : C -+ H"Cc to Cr induces a 

functor Hc : HICr -+ HCcr, while the restriction of the functor 'R, : C -+ HICr to Cc 
induces a functor H'R. : H"Cc -+ HCcr. 

Definition: Let C be a model category-then the homotopy category H C of C is the 

category whose underlying object class is the same as that of C, the morphism set [X, Y] 
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of X, Y being [RCX, RCY]. 

[Note: [RCX, RCY] is the morphism set of Hx 0 C(X), Hx 0 C(Y) in the category 

HCef. Of course, the situation is symmetrical in that one could just as well work with 

HI:, 0 R.] 

Denote by Q the functor C -+ He which is the identity on objects and sends I : X -+ 

Y to Hx 0 C(I) = [RC/]. 

FACT Let " 9 E Mor (X, Y)-then XC, ~ XCg iff Ly 0' 0 1rx ~ Ly 0 9 0 1rx. 

PROPOSITION 12 Let IE Mor(X, Y)-then QI is an isomorphism iff I is a weak 

equivalence. 

[This follows from Proposition 10 and the fact that I is a weak equivalence iff RCI 
is a weak equivalence.] 

Application: Weakly equivalent objects in C are isomorphic in HC. 

PROPOSITION 13 The inclusion HCef -+ HC is an equivalence of categories. 

[The inclusion is obviously full and faithful. On the other hand, a given X E Db C is 

weakly equivalent to RCX : X ~ CX ~ RCX, thus the inclusion has a representative 

image.] 

LEMMA Let C be a model category. Suppose that F : C -+ D is a functor which 

sends weak equivalences to isomorphisms-then g ~: ~ F f = F g. 

[Consider the case of left homotopy: {HH 0 ~o = I and let p : IX'::' X be the pro
o Zl = g 

jection: {p 0 ~o = idx ::} Fp 0 Fio = Fp 0 Fil ::} Fio = Fil ::} F I = F H 0 Fio = 
pO Zl 

FH 0 Fil = Fg.] 

Given a cofibrant X and a fibrant Y, the symbol [X, Y] has two possible interpreta

tions. H Mor(X, Y)/~ is the quotient of Mor(X, Y) modulo homotopy (the meaning of 

[X, Y] on p. 12-21), then the lemma implies that Q induces a map Mor(X, Y)/~-+ [X, Y], 

which in fact is bijective. 

. FACT Let p : Y _ Z be a weak equivalence, where {~ are fibrant-then for any cofibrant X 

and any , : X - Z, 3 a 9 : X - Y such that po 9 ~ " 9 being unique up to homotopy. 
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THEOREM Q Let S be the class of weak equivalences-then S-IC = HC, Le., the 

pair (HC, Q) is a localization of C at S. 
[Proposition 12 implies that Q sends weak equivalences to isomorphisms. Suppose 

now that D is a metacategory and F : C -+ D is a functor such that V s E S, F s is an 

isomorphism. Claim: There exists a unique functor F' : H C -+ D such that F = F' 0 Q. 
Thus take F' = F on objects and given [j] E [X, Y], represent [j] by if> E Mor (RCX, RCY) 

and let F' [j] be the filler F X -+ FY in the diagram 

FRCX {'c.x FCX F1TX) FX 

FtPl 1 .] 
FRCY +:::--F FCY -=----TF FY 

LC. Y 1Ty 

Example: Let C be a finitely complete and finitely cocomplete category-then C 

is a model category if weak equivalence=isomorphism, cofibration=any morphism, fibra

tion=any morphism and HC = C. 

Example: Consider the arrow category C( -+ ) of a model category C-then C( -+) can 

be equipped with two distinct model category structures. Thus let (if>,,,p) : (X, j, Y) -+ 

X ~ Y 
(X', f', Y') be a morphism in C( -+), so tP 1 1 t/J commutes. In the first structure, 

X' ---I' Y' 
f' 

call (if>,,,p) a weak equivalence if if> & "p are weak equivalences, a cofibration if if> and 

X' U Y -+ Y' are cofibrations, a fibration if if> & "p are fibrations and, in the second 
x 

structure, call (if>,,,p) a weak equivalence if if> & "p are weak equivalences, a cofibration 

if if> & "p are cofibrations, a fibration if "p and X -+ X' X yl Y are fibrations. The weak 

equivalences in either structure are the same, thus both lead to the same homotopy category 

HC(-+). 

EXAMPLE Take C = TOP (standard structure)-then HTOP "is" HTOP but the pointed 

situation is different. Thus let TOP.c be the full subcategory of TOP. whose objects are the (X,:l:o) 

such that * - (X, :1:0) is a closed cofibration, i.e., whose objects are cofibrant relative to the model category 

structure on TOP. inherited from TOP (d. p. 12-3). The corresponding homotopy category of TOP. 

is equivalent to HTOP.c (d. Proposition 13). Here, the "H" has its usual inte~pretation since for X in 

TOP.c , the inclusion X V X - J(X, :1:0) is a closed cofibration, so a homotopy between objects in TOP.c 

preserves the base points. However, HTOP.c is not equivalent to HTOP. if this symbol is assigned its 

customary meaning. Reason: The isomorphism closure in HTOP. of the objects in TOP.c is the class 

of nondegenerate spaces, therefore the inclusion HTOP.c - HTOP. does not have a representative 
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image. Of course the explanation is that the machine is rendering invertible not just pointed homotopy 

equivalences between pointed spaces but also homotopy equivalences between pointed spaces. 

[Note: TOP.c itself satisfies all the axioms for a model category except the first.] 

EXAMPLE Take C = TOP (singular structure)-then HC is equivalent to HCW. 

Let C be a model category. Given a category D and a functor F : C -+- D, a 

left derived functor for F is a pair (LF,I) consisting of a functor LF : HC -+- D and a 

natural transformation 1 : LF 0 Q -+- F, (LF,I) being final among all pairs having this 

property, i.e., for any pair (F', S'), where F' E Ob [HC, D] & S' E Nat(F' 0 Q, F), there 

exists a unique natural transformation S : F' -+- LF such that S' = 10 SQ. Left derived 

functors, if they exist, are unique up to natural isomorphism. 

[Note: A right derived functor for F is a pair (RF, r) consisting of a functor RF : 

HC -+- D and a natural transformation r : F -+- RF 0 Q, (RF,r) being initial among 

all pairs having this property, i.e., for any pair (F', S'), where F' E Ob [HC, D] & S' E 

Nat(F, F' 0 Q), there exists a unique natural transformation S : RF -+- F' such that 

S' = SQ 0 r.] 
Example: Suppose that F : C -+- D sends weak equivalences to isomorphisms-then 

by Theorem Q, there exists a unique functor F' : HC -+- D with F = F' 0 Q, so one can 

take LF = F' and 1 = idF. 

FACT Let {~ be functors HC .... D. Suppose that =: : FoQ .... GoQ is a natural transformation

then =: induces a natural transformation F .... G. 

LEMMA Let C be a model category. Suppose that F : Ce -+- D is a functor which 

sends acyclic cofibrations to isomorphisms-then f~g => Ff = Fg. 
r 

[Fix a path object PY for Y with Y ;:... PY ! Y X Y and a right homotopy G : X -+- PY 

between f and 9 (cf. RH (X is cofibrant». Calling j the acyclic cofibration Y -+- PY, Fj 

is an isomorphism. Therefore {PO 0 ~ = ~ddY => FPo 0 Fj = FPI 0 Fj => FPo = FPl => 
PI 0 J = 1 Y 

F f = FPo 0 FG = FPl 0 FG = Fg.] 

PROPOSITION 14 Let C be a model category. Given a category D and a func

tor F : C -+- D, suppose that F sends weak equivalences between cofibrant objects 

to isomorphisms-then the left derived functor (LF, I) of F exists and V cofibrant X, 

Ix : LFX -+- FX is an isomorphism. 

[The lemma implies that F induces a functor F : HrCe -+- D. In addition, there is a 

functor C : C -+- HrCe that takes X to CX and f : X -+- Y to [Cf]r E [CX,CY]r (d. p. 
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12-22}. Since the composite Foe sends weak equivalences to isomorphisms, it follows from 
Theorem Q that there exists a unique functor LF : HC -+ D such that LF 0 Q = F 0 C. 

Define a natural transformation 1 : LFoQ -+ F by assigning to each X E Ob C the element 

Ix = F1f'X E Mor(FeX,FX)-then X cofibrant => {ex ='Xd => Ix = Fidx = idFx, 
1f'x = I X 

It remains to prove that the pair (LF, I) is final. So fix a pair (F', S') as above. Define 

a natural transformation S : F' -+ LF by assigning to each X E ObHC the element 
F'(Q'ltx )-1 E~x 

8x E Mor(F'X,LFX) determined from F'X t F'CX I FCX = LFX. 

Bearing in mind that V X, QX = X and ex is cofibrant, the commutativity of 

F'eX E.cx. LFeX ....!£4Fex 

F'Q'ltx 1 II IF'ltx 

F'X • LFX I FX 
Ex Ix 

ensures the uniqueness of S.] 

Given model categories {~ and a functor F : C -+ D, a total left derived functor 

for F is a functor LF : HC -+ HD which is a left derived functor for the composite 

Q 0 F : C -+ HD. Total left derived functors, if they exist; are unique up to natural 

isomorphism. 

[Note: A total right derived functor for F is a functor RF : HC -+ HD which is a 

right derived functor for the composite Q 0 F: C -+ HD.] 

C ~ D 
Remark: The substitute for the failure of 1 1 to commute is the natural 

HC ---+ HD 
LF 

transformation I : LF 0 Q -+ Q 0 F. 

Example: Suppose that F : C -+ D sends weak equivalences between cofibrant objects 

to weak equivalences-then by Proposition 14, LF exists and V cofibrant X, Ix : LFX -+ 

F X is an isomorphism. 

LEMMA Let F : C -+ D be a functor between model categories. Suppose that F 

sends acyclic cofibrations between cofibrant objects to weak equivalences-then F preserves 

weak equivalences between cofibrant objects. 

[Let f : X -+ Y be a weak equivalence, where X & Y are cofibrant. Factor f II idy : 

X II Y -+ Y as poi, where i : X II Y -+ Z is a cofibration and p : Z -+ Y is an acyclic 

fib . S' & Y fib h . { i 0 ino : X -+ Z fib' ratIon. mce X are co rant, t e compOSItes .. Y Z are co ratIons. ,Olnl: -+ 

In adell ." {p 0 i 0 ino ak'val h { i 0 ino ak'val tlOn, .. are we eqw ences, ence .. are we eqw ences. 
po, oml ,0 ml 
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Therefore {FF«~ 0 ~no» are weak equivalences. But Fp 0 F( i 0 inl) = idFY, thus Fp is a 
IOlnl 

weak eq.uivalence and so F f = Fp 0 F( i 0 ino) is a weak equivalence.] 

TDF THEOREM Let C and D be model categories. Suppose that { ~ ~ ~ : ~ are 

functors and (F, G) is an adjoint pair. Assume: F preserves cofibrations and G preserves 

fibrations-then { i~:; ~~ -: ~~ exist and (LF, RG) is an adjoint pair. 

[The existence of LF follows from the fact that F preserves acyclic cofibrations (cf. 
p. 12-3 ff'.), thus by the lemma, F preserves weak equivalences between cofibrant objects, 

and Proposition 14 is applicable (the argument for RG is dual). Because F is a left adjoint 

and G is a right adjoint, F preserves initial objects and G preserves final objects. There

fore F sends cofibrant objects to cofibrant objects and G sends fibrant objects to fibrant 

objects. Consider now the bijection of adjunction SX,Y : Mor(FX,Y) ~ Mor(X,GY) 

(cf. p. 0--14). If { -;, ~ g~~; , then SX,Y respects the relation of homotopy and induces 

a bijection [F X, Y] ~ [X, GY]. Using the definitions, for arbitrary { -;, ~ g~ ~ this leads 

to functorial bijections [LFX, Y] ~ [F.eX, RY] ~ [.eX, GRY] ~ [X, RGY).] 

[Note: Suppose that 'V { -; ~ g~~; , SX,y maps the weak equivalences in Mor(FX, Y) 

onto the weak equivalences in Mor (X, GY)-then the pair (LF, RG) is an adjoint equiv

alence of categories.] 

Implicit in the proof of the TDF theorem is the fact that 'V X, LF X is isomorphic (in 

HD) to F X', where X, is any cofibrant object which is weakly equivalent to X. 

EXAMPLE (Pushouts) Fix a model category C. Let I be the category 1 • ~ • ..!..2 (cf. p. 
3 

0-9)-then the functor category [I, C] is again a model ca.tegory (cf. p. 12-4 ff.). Given a 2-source 

Z -L. Y 

x L z .!!... Y, define P by the pushout square 11 1., and put colim(X L z.!!... Y) = P to get a 

x --+ P 
( 

functor colim : [I. C] - C which is left adjoint to the constant diagram functor K : C - [I. C]. Since K 

preserves fibrations and acyclic fibrations, the hypotheses of the TDF theorem are satisfied (cf. p. 12-3 ff.). 

Therefore Lcolim and RK exist and (Lcolim, RK) is an adjoint pair. Moreover, according to the theory, 

Lcolim(X L z.!!... Y) is isomorphic (in HC) to colim(X L Z .!!... Y) whenever xL z.!!... Y is cofibrant. i.e., 

whenever Z is cofibrant and {f : Z - X are cofibrations. For instance, by way of illustration, let us 
g:Z-Y 

,-' take C = TOP (standard structure). Claim: Lcolim(X L z.!!... Y) and MI,g have the same homotopy 
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type. To see this, consider the 2-source MI - Z -+ Mil' It is cofibrant and the vertical arrows in the 
MI +-- Z --+ Mil 

commutative diagram 1 II 1 are homotopy equivalences (but M I - Z -+ Mil is not 

x +--Z --+ Y 

C(X L Z.!.. Y», so Lcolim(X L Z.!.. Y) ~ colim(MI - Z -+ Mg) ~ Ml,g (cf. p. 3-23). 

[Note: The story for pullbacks is analogous (work with Rlim).] 

EXAMPLE Fix a model category C-then FIL(C) is again a model category (cf. p. 12-5). 

Assuming that C admits sequential colimits, there is a functor colim : FIL(C) -+ C which is left adjoint 

to the constant diagram functor K : C - FIL(C). Since K preserves fibrations and acyclic fibrations, 

the hypotheses of the TDF theorem are satisfied (d. p. 12-3 if.). Therefore Lcolim and RK exist and 

(Lcolim, RK) is an adjoint pair. Moreover, according to the theory, Lcolim(X, f) is isomorphic (in HC) 

to colim(X, f) whenever (X, f) is cofibrant, i.e., whenever Xo is cofibrant and V n, In : Xn - X n+l is a 

cofibration. If C = TOP (standard structure), Lcolim(X, f) and teleX, f) have the same homotopy type 

(cf. p. 3-21). In general, colim: FIL(C) _ C preserves weak equivalenceS between cofibrant objects, a 

fact which specialized to the topological setting recovers Proposition 15 in §3 provided that the cofibrations 

are closed. 

[Note: The story for TOW(C) is analogous (work with Rlim).] 

The axioms defining a model category interlock cofibrations and fibrations in such a 

way that certain canonical examples are excluded. This difficulty can be circumvented 

by simply weakening the assumptions and concentrating on either the cofibrations or the 

fibrations. 

Consider a category C equipped with two composition closed classes of morphisms 

termed weak equivalences (denoted":::') and cofibrations (denoted >-+ ), each containing the 

isomorphisms of C. Agreeing to call a morphism which is both a weak equivalence and a 

cofibration an ~yclic 'cofibration, C is said to be a cofibration category provided that the 

following axioms are satisfied. 

(CC-l) C has an initial object 0. 
(CC-2) Given compos able morphisms I, g, if any two of I, g, go I are weak 

equivalences, so is the third. 

(CC-3) Every 2-source xL Z'!':' Y, where I is a cofibration (acyclic cofibra

tion), admits a pushout X J. p:l- Y, where 'Tl is a cofibration (acyclic cofibration). 

(CC-4) Every morphism can be written as the composite of a cofibration and 

a weak equivalence. 

[Note: The axioms defining a fibration category are dual.] 
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Let C be a cofibration category-then an X E Ob C is said to be cofibrant if 0 -+ X 

is a cofibration and fibrant if every acyclic cofibration X -+ Y has a left inverse (cf. p. 

12-2). 

(Fibrant Embedding Axiom) (FEA) Given an object X In C, there IS an 

acyclic cofibration 'x : X -+ 'RX, where RX is fibrant. 

[Note: The FEA is trivially met if all objects are fibrant.] 

Example: The cofibrant objects in a model category are the object class of a cofibration 

category satisfying the FEA. 

EXAMPLE Take C = TOP-then TOP is a cofibration ca.tegory if weak equivalence=homotopy 

equiva.lence, cofibra.tion=cofibra.tion. All objects are cofibra.nt and fibrant. 

EXAMPLE Take C = TOP .-then TOP. is a cofibration category if weak equivalence=pointed 

homotopy equivalence, cofibration=pointed cofibration. All objects are cofibrant a.nd fibra.nt. 

[Note: This is the "internal" structure of a cofibration category on TOP •. An "external" structure is 

obta.ined by letting the weak equivalences be the pointed maps which are homotopy equivalences in TOP 

a.nd the cofibrations be the pointed maps which are cofibrations in TOP. Here, all objects are fibrant and 

the cofibra.nt objects are the wellpointed spaces. Another "external" structure arises by requiring that the 

cofibrations be closed, which reduces the number of cofibrant objects.] 

EXAMPLE Take for C the category whose objects are pairs (X, Nx), where X is a pointed 

connected CW space a.nd N x is a perfect normal subgroup of 11'1 (X), a.nd whose morphisms f : (X, N x) -

(Y, Ny) are pointed continuous functions f : X - Y such that f.(Nx) C Ny. Stipulate that f is a weak 

equivalence if f. : 1I'1(X)/Nx ~ 1I'1(Y)/Ny and f. : H.(Xjrfi) ~ H.(Yjfi) for every locally constant 

coefficient system fi on Y arising from a 11'1 (Y)/ Ny-module. If by cofibration one understands a pointed 

continuous function which is a closed cofibration in TOP, then C is a cofibration category satisfying the 

FEA. 

lCG-I, CC-2, and CC-4 are clear. As for CC-3, given a 2-source X L Z..!!.. Y, where f is a cofibra.

Z ~ Y 

tion, define P by the pushout square f 1 1'1 and let N p be the normal subgroup of 11'1 (P) = 
X ---+ P 

e 
11'1 (X) *"'1(Z) 1I'1(Y) generated by N x & Ny. To check the FEA assertion, fix a pair (X,Nx). Tha.nks to 

the plus construction, there is a pair (XN+ ,0) and a cofibration (X, N x) - (xt ,0) which is a weak 
x X 

equivalence (cf. §5, Proposition 22). Claim: (xtx ' 0) is fibrant. For suppose given (xtx ' 0) ~(Y, Ny). 

Denote by f the composite (XN+ ,0) ~(Y, Ny) ~(YN+ ,0), so f. : 11'1 (XN+ ) ~ 11'1 (Y)/ Ny ~ 11'1 (YN+ ). 
X, Y X y 

Since f is acyclic (as a map) and a cofibration, one may now invoke §5, Proposition 19 and §3, Proposition 

5.] 
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EXAMPLE Take for C the category whose objects are the pointed connected CW spaces. Fix an 

abelian group G-then C = CONCWSP. is a cofibration category if weak equivalence=H G-equivalence, 

cofibration:closed. cofibration in TOP and this structure satisfies the FEA. 

[Note: The fibrant objects are the HG-Iocal spaces.] 

The formal "one sided" results in model category theory carryover to cofibration 

categories, e.g., Propositions 2, 3, and 4. Assuming in addition that C satisfies the FEA, 

one can also show that the inclusion HCef ~ HC is an equivalence of categories (cf. 

Proposition 13) and S-IC = HC, where S is the class of weak equivalences (cf. Theorem 

Q). 

EXAMPLE Take C = TOP.-then HTOP. "is" HTOP. if TOP. carries its "internal" struc

ture of a cofibration ca.tegory. 

EXAMPLE The homotopy category of the cofibration category evolving from the plus construc

tion is equivalent to HCONCWSP •. 

Let C be a category. Suppose given a composition closed class S c Mor C containing 

the isomorphisms of C such that for comp08able morphisms /,g, if any two of /,g,g 0 / 

are in S, so is the third. Problem: Does S-IC exist as a category? The assumption that 

S admits a calculus of left or right fractions does not suffice to resolve the issue. However, 

one strategy that will work is to somehow place on C the structure of a model category 

(or a cofibration category) in which S appears as the class of weak equivalences. For then 

S-IC "is" HC and HC is a category. 

EXAMPLE Let C be a model category. Assume: C is complete and cocomplete. Suppose that 

I is a small category and let 8 C Mol' [I, C] he the cl8S8 of levelwise weak equivalences-then it has been 

shown by Dwyer-Kant that 8-1 [I, C] exists as a category even though [I, C] need not carry the structure 

of a model category having 8 for its class of weak equivalences. 

[Note: Given a functor [I, C] - C or C - [I, C], one can define'in the obvious way its total left 

(right) derived functor. In particular: colim : [I, C] - C (lim: [I, C] - C) is a left (right) adjoint 

for the constant diagram functor K : C - [I, C]. Moreover, Lcolim and RK (LK and Rlim) exist and 

(Lcolim, RK) «LK, Rlim» is an adjoint pa.ir (Dwyer-Kan (ibid.».] 

t Model CategonelJ and General AblJtract Homotopy Theory, 
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§ 13. SIMPLICIAL SETS 

It is possible to develop much of algebraic topology entirely within the context of 

simplicial s~ts. However, I shall not go down that road. Instead, the focus will be on the 

simplicial aspects of model categories which, for instance, is the homotopical basis of the 

algebraic K-theory of rings or spaces. 

SISET( = A) is complete and cocomplete, wellpowered and cowellpowered, and carte

sian closed (cf. p. 0-24). 

[Note: SISET admits an involution X --+ XOP, where d?P = dn-i, s?P = Sn-i. 

Example: V small category C, nerCop = (nerC)oP.] 

Notation: 0 stands for an initial object in SISET (e.g., ~[O]) and * stands for a final 

object in SISET (e.g., ~[O]). 

The four exponential objects associated with 0 and '. are 01 = ., .1 = ., 0* = 0, .* = •. 

Let X be a simplicial set-then IXI is a CW complex (cf. p. 5-7), thus is a compactly 

generated Hausdorff space. Therefore "geometric realization" can be viewed as a functor 

SISET --+ CGH. 

111 : SISET - TOP preserves colimits (being a left adjoint) and it is immaterial whether the colimit 

is taken in TOP or CGH. Reason: A colimit in CGH is calculated by taking the maximal Hausdorff 

quotient of the colimit calculated in TOP. 

~[nJ - ~[O] 

EXAMPLE The pushout square 1 1 defines the simplicial n-sphere S[n]. Its goo-

~[n] _ S[n] 
metric realization is homeomorphic to sn. 

LEMMA I?I: SISET --+ CGH preserves equalizers. 

[Let X and Y be simplicial sets; let u, v : X --+ Y be a pair of simplicial maps-then 

Z = eq(u,v) is a simplicial subset of X and IZI is a sub complex of IXI which is contained 

in eq(lul, Ivl). Take now a point [x, t] E eq(lul, lvI), say x E X~ & t E ~n (cf. p. 0-

18). Write {:i:? i~;?::, where y",Yv E Y are nondegenerate and a,p E MorA are 

epimorphisms. By assu~ption, lul([x, t]) = Ivl([x, t]); moreover {Iul([x, t]) = [u(x), t] = 
, Iv/([x, t]) [v(x), t] = 

[(Ya )Yu, t] = [Yu, ~ Q( t)] Q fJ " 
[(Y,8)Ytl! t] = [Ytl,~fJ(t)]' so Yu = Yti and ~ (t) = ~ (t) (because the Issue IS one of 
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epimorphisms, interior points go to interior points). But dQ(t) = dt'(t) ::::} Q = /3, henee 

u(x) = v(x) or still, x E Z ::::} [x, t] E IZI.] 

LEMMA /?I: SISET --+- CGH preserves finite products. 

[Let X d Y b . li'al t W't { X = colimi d[mi] (cf. p. 0-20). Sl'nee an e SImp Cl se s. rI e Y = colimj d[nj] 
SISET is cartesian closed, products commute with colimits. Therefore IX x YI ~ 

I COlimi,j d[mi] xd[nj]l, from which IX xYI ~ COlimi,j Id[mi] xd[nj]l ~ colimi,j(ld[mi]l Xl; 

Id[nj]l), the arrow Id[mi] x d[nj]l--+- Id[miJl x Id[nj]l = Id[mi]1 Xl; Id[njJl being a home

omorphism (d. p. 0-19). But CGH is also cartesian closed (cf. p. 1-32), thus once again 

products commute with colimits. This gives IX x YI ~ colimi Id(mi]1 Xl; colimj Id[nj]l ~ 

IXI Xl; IYI, i.e., the arrow IX X YI --+- IXI Xl; IYI is a homeomorphism.] 

[Note: While the arrow IX X YI --+- IXI X IYI is a set theoretic bijection, it need not 

be a homeomorphism when IXI X IYI has the product topology.] 

PROPOSITION 1 I?I: SISET --+- CGH preserves finite limits. 

[This is implied by the lemmas.] 

[Note: I?I: SISET --+- CGH does not preserve arbitrary limits. Example: The arrow 

Id[1]"'I--+- Id[1]!'" is not a homeomorphism.] 

Example: The composite I?/ a sin preserves homotopies (I ~ g ::::} / sin II ~ I sing/). 

[For any topological space X, I sinXI X d l ~ I sinXI x Id[111 ~ I sin X x d[lJl --+

I sin X x sinld[1111 ~ Isin(X x d l )/, --+- being the geometric realization of idsinx times 

the arrow of adjunction d[1] --+- sin Id[1J1. So, if H : X X d l --+- Y is a homotopy, then 

I sinXI x d l --+-lsin(X x dl)1 ~ I sinYI is a homotopy.] 

EXAMPLE Let G be a simplicial group-then IGI is a compactly generated group. 

[Note: IGI is a topological group if IGI is countable, i.e., if V n, #(G'f) $ w.] 

FACT Let X and Y be simplicial sets, llX a.nd llY their fundamental groupoids-then ll(X X Y) ::::::: 

nx x nY. 

[Note: The functor n : SISET - GRD does not preserve equalizers. Example: Define X by the 
A [21 - A. [21 

pushout square 1 1 v : llA[2] = lleq(u, v) #- eq(nu, llv) = llA.[2].] 

A. [2] - X .. 
Let (2n) be the category whose objects are the integers in the interval [0,2nJ and 

whose morphisms, apart from identities, are depicted by • --+- • +- ... --+- • +- •. Put 
o I 2n-1 2n 
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12n = ner(2n) : 112nl is homeomorphic to [O,2n]. Given a simplicial set X, a path in X 

is a simplicial map q : 12n -+ X. One says that q begins at q(O) and ends at q(2n). 

Write 11"o(X) for the quotient of Xo with respect to the equivalence relation obtained by 

declaring that x' '" x" iff there exists a path in X which begins at x' and ends at x"-then 

the assignment X -+ 11"o(X) defines a functor 11"0 : SISET -+ SET which preserves finite 

products and is a left adjoint for the functor si : SET -+ SISET that sends X to siX, the 

constant simplicial set on X, Le., siX([nD = X&:{ di = ~ddx (V n). 
8i = 1 X 

[Note: The geometric realization of siX is X equipped with the discrete topology.] 

Let X be a simplicial set, nx its fundamental groupoid-then there is .. canonical surjection 
00 

UNat(12",X) -+ MorDX compatible with the composition of morphiaJms. Thus fix n and call inj : 
o 

..:1[1] -+ 12 .. the injection corresponding to i. Attach to (T : 12" -+ X an element :l:i e Xl by set-

ting :l:j = (T 0 ini (id[I]) : (T -+ 1(1:1' e Mor IIX, where 1(1:1' = :I:;~ 0 :1:2,,-1 0 ••. 0 :1:;1 0 :1:1. Corollary: 

1(o(X) +-+ 1(o(IIX). 

[Note: IIX and IIIXI are equivalent but, in general, not isomorphic.] 

{ 
dl : Xl -+ Xo 

FACT Let X be a simplicial set; let -then 1(0 (X) ::::: coeq(dt,do}. 
do: Xl -+ Xo 

Given a simplicial set X, the decomposition of Xo into equivalence classes determines 

a partition of X into simplicial subsets Xi. The Xi are called the components of X and 

X is connected if it has exactly one component. 

[Note: X = Il Xi => IXI = IlIXil, IXil running through the components of lXI, so 
i i 

11"o(X) f+ 11"o(IXI).] 

EXAMPLE A small category C is connected iff its nerve ner C is connected or, equivalently, iff 

its classifying space BC is connected (=path connected). 

Let B be a simplicial set. An object in SISET / B is a simplicial set X together with 

a simplicial map p: X -+ B called the projection. Given b E Bn, define X" by the pullback 
XI> ---+- X 

square 1 lJJ-then Xb is the fiber of p over b if bE Bo. 
6[nJ ---+- B 

AI> 
There is a functor SISET -+ SISET / B that sends a simplicial set T to B X T with 

projection B x T -+ B. An X in SISET/B is said to be trivial if there exists a T in 

SISET such that X is isomorphic over B to B x T, locally trivial if V n &: V b E Bn, XI> 

is trivial over 6[n], say Xb R: 6[n] X Tb. 
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[Note: If for some T, Tb ~ TV n & V b E B n, then X is said to be locally trivial with 

fiber T.] 
Notation: Given b E B n, let bo,bl , ... ,bn be its vertex set, i.e., bi = (B€i)b, €i: [O]-r 

[n] the ith vertex operator (i = 0,1, ... ,n). 

SUBLEMMA Let X be in SISETIB. Assume: X is locally trivial-then V b E Bn, 

Tb is isomorphic to Xb. (i = 0,1, ... ,n). 
Xbo 

[Take i = 0 and consider the commutative diagram 1 
~[O] 

Xbo ---+ Xb 
Here, 1 1 is a pullback square. But X b, viewed as an object in SISETI ~[n], 

~[O] ---+ ~[n] 
is isomorphic to ~[n] X Tb, so Xbo is isomorphic to Tb.] 

LEMMA Let X be in SISET lB. Assume: X is locally trivial and B is connected

then X is locally trivial with fiber T. 

.. {b
l 

E BnJ {Tb J ~ Xb J 
] [The sublemma ImplIes that V b" E B ,,..,, X 0 and V b E B I , Xbo ~ Xbl . 

n/J .L b" ~ b~ 

The terms "trivial", "locally trivial", and "locally trivial with fiber T" as used in 

TOP are also used in CGH, the only difference being that products are taken in CGH. 

PROPOSITION 2 Let X be a locally trivial object in SISET I B-then IXI is a 

locally trivial object in CGH IIBI. 

[There is no loss of generality in assuming that IBI is connected, hence that B is 

connected. So, thanks to the lemma, X is locally trivial with fiber T and the contention is 

that IXI is locally trivial with fiber ITI. Fix a point [b, t] E IBI with b E B'ff, t E b,.n-then 

the associated n-cell eb is an open subset of IB(n) I = IBI(n). Employing a standard collaring 

procedure, one can find an expanding sequence eb = On C On+l C ... of subsets of IBI 

such that 0 00 = colimOm is open in IBI and contains eb as a strong deformation retract. 

In this connection, reca:ll that Om-I = IB(m-I)1 nOm, Om is open in IB(m)l, and there is a 
11 Ox ---+ Om-I 

xEB!f. 

pushout square 1 
11 Ox ---+ 

1 ,where V x, { g: ~~: and Ox -r Ox is a closed 

Om 
xEB!f. 

cofibration, thus Om-I -r Om is a closed cofibration. It will, of course, be enough to prove 

that Ipl-I(Ooo) ~ 0 00 Xk ITI. One can go further. Indeed, 0 00 Xk ITI colim(Om Xk IT!) 
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and Ipl-l ( 0 (0 ) = colim Ipl-l ( am), which reduces the problem to constructing a compatible 

Ipl-l(Om) ) am Xk ITI 

sequence of homeomorphisms \ I 
am 

Xb 

(m = n) Applying I?I to the pullback square 1 
~[n] 

---t X 

lp in SISET gives 
---t B 
~b 

a pullback square in CGH (cf. Proposition 1). On the other hand, 
~n ---t 

16bl 
o 

Xb R:l ~[n] x T and I~bl : ~n - eb is a homeomorphism. 
Ipl-I(Om-l) ---+) Om-l Xk ITI 

(m > n) Suppose that the homeomorphism 

has been constructed. There is a pushout square 

11 Ox xlBllXI 
xEB:;' 1 

11 Ox x IBIIXI 
xEB:;' 

homeomorphisms 

Ox 

and a commutative diagram 

11 Ox x IBI IXI 
xEB:;' 1 

11 Ox Xk ITI 
xEB!!. 

11 Ox x IBI IXI ---t 

xEB;r. 1 
11 Ox Xk ITI ---7 

xEB!!. 

\ I 

Om-l Xk ITI 

compatible with the projections. Accordingly, the induced map Ipl-l(Om) - am Xk ITI 
is a homeomorphism over am.] 

Application: Let X be in SISET/ B. Assume: X is locally trivial-then Ipl : IXI -
IBI is a CG fibration (cf. p. 4-11), thus is Serre (cf. p. 4-7). 
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The following lemma has been implicitly used in the proof of Proposition 2. 

LEMMA Fix B in CGH, X in CGH I B, and let .a. : I -I- CGH I B be a diagram. Assume: The 

colimit of.a. calculated in TOP is Hausdorff-then the arrow colim(.a.. XB X} -I- (colim.a.;) XB X is a 

homeomorphism of compactly generated Hausdorff spaces. 

Let X be in SISET I B-then p : X -I- B is said to be a covering projection if X is locally trivial and 

'if b E Bo, Xb is discrete, i.e., Xb = XiO) . 

FACT A simplicial map p : X -I- B is a covering projection iff every commutative diagram 
.a. [0] -+ X 

1 1'P has a unique filler . 

.a.[n] -+ B 

EXAMPLE A covering projection in SISET is sent by 171 to a covering projection in TOP and 

a covering projection in TOP is sent by sin to a covering projection in SISET. 

EXAMPLE Let C be a small category-then the category of covering spaces of BC is equivalent 

to the functor category [11'1 (C), SET], 11'1 (C) the fundamental groupoid of C (cf. p. 0-16). 

PROPOSITION 3 Let q;, 'It : a -+ SISET be functors; let =: E Nat(q;, 'It). Assume: 

V n, 1=:[nJI : Iq;[nll -+ 1'It[nli is a homotopy equivalence-then V simplicial set X, the 

geometric realization of the arrow r~x -+ r'\lfx is a homotopy equivalence provided that 

r ~, r'\lf preserve injections. 

[r. , r'\lf are the realization functors corresponding to q;, 'It, so r ~ 0 ~ = q;, r'lf 0 ~ = 'It 

(cf. p. 0-16), thus the assertion is true if X = ~[n], thus too if X = II ~[n]. In general 

there are pushout squares 

x1!. r~A[nl 
1 

X1! . r~~[n] 

---+ r~x(n-l) 

1 
---+ r~x(n) 

x1! . r'\lfA[n] ---+ 

1 
x1! . r'\lf~[n] ---+ 

where, by hypothesis, the vertical arrows on the left are injective simplicial maps. Consider 

now the commutative diagram 

x1! . Ir.~[nll 
1 

x1t . Ir'\lf~[nll 

Ir~x(n-I)1 

1 
Ir'\lfx(n-l)I 
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Since the geometric realization of an injective simplicial map is a closed cofibration and 

since inductively the arrows IrIJA[nJl -t Ir",A[nJl, IrlJx(n-l)1 -t Ir",x(n-l)1 are homo

topy equivalences, the induced map IrlJx(n)1 -t Ir",x(n)1 of pushouts is a homotopy equiv-
. {rIJX = colimrIJX(n) { IrlJxl = colim IrlJx(n)1 

alence (cf. p. 3-24 if.). Fmally, r",x = colimr",X(n) => Ir",xl = coHm Ir",x(n)1 ' 

which leads to the desired conclusion (cf. §3, Proposition 15).] 

EXAMPLE Let <I> : 4. -+ SISET be a functor such that V n, 14>[n] I is contractible. Assume given 

a natural transformation <I> -+ YA -then V simplicia.l set X, Ir.,xl -+ IXI is a homotopy equivalence 

whenever r it preserves injections. 

Let MA be the set of monomorphisms in Mor.6.; let EA be the set of epimorphisms 

in Mor .6.-then every 0' E Mor.6. can be written uniquely in the form 0' = 0'1 0 O'b, where 

0'1 E MA and aD E EA' 

[Note: Every 0' E EA has a "maximal" right inverse 0'+ E MA, viz. O'+(i) = 
max 0'-1 (i).] 

Notation: .6.M is the category with Ob.6.M = Ob.6. and Mor .6.M MA, i M : .6.M -t 

.6. being the inclusion and C:J.M : .6.M -t aM being the Yoneda embedding. 

Write SSISET for the functor category [.6.~, SETJ-then an object in SSISET is 

called a semisimplicial set and a morphism in SSISET is called a semisimplicial map . 

.6.'M AOtM~ a 
There is a commutative triangle AM 1 ~.'M ,where r AOtM is the realization functor 

~ 

.6.M 
corresponding to C:J. 0 i M . It assigns to a semisimplicial set X a simplicial set P X, the 

prolongment of X. Explicitly, the elements of (PX)n are all pairs (x,p) with x E Xp 
and p : [n] -t [P] an epimorphism, thus (PXO')(x,p) = ((X(p 0 O')#)x, (p 0 0')") if the 

codomain of 0' is [n]. And: P assigns to a semisimplicial map f : X -t Y the simplicial 

map P f : { rx ~p )!(~( x ), p) . The prolongment functor is a left adjoint for the forgetful 
..... -.. 

functor U : .6. -t .6.M (the singular functor in this setup). 

[Note: The Kan extension theorem implies that U is also a left adjoint. In particular: 

U preserves colimits.] 

Definition: I?IM = I?I 0 P. So, (I?IM, U 0 sin) is an adjoint pair and 111M is the 

realization functor determined by the composite C:J.? 0 t M • 

[Note: I?IM: SSISET -t CGH does not preserve finite products.] 

PROPOSITION 4 For any simplicial set X, the arrow IUXIM -t IXI is a homotopy 
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equivalence. 

[In the notation of Proposition 3, take <P = Po U 0 Do, \II = Do, and let S E Nat(<P, \II) 

be the natural transformation arising from the arrow of adjunction Po U ---t id via precom

position. Because r4>, r\If preserve injections, it need only be shown that V n, the arrow 

IPU Do[n] I ---t IDo[n]1 is a homotopy equivalence or still, that V n, IPU Do[nJi is contractible. 

Suppose first that n = 0. In this case, IPU Do [0] I = II Don /I"V, the equivalence relation being 
n 

generated by writing (to, ... ,ti-l,O,ti+l, ... ,tn) I"V (to, ... ,ti-l,tj+l,'" ,tn)' Therefore 

IPU Do [0] I is the infinite dimensional "dunce hat" D. As such, it is contractible. For pos-

itive n, let D * ... * D 'be the quotient of D x ... x D x Don with respect to the relations 

(d~, ... , d~, (to, ... , t n)) I"V (d~, .. . , d~, (to, ... , tn)) iff di = di' when tj =1= O-then up to 

homeomorphism, IPU Do[nJi is D * ... * D, a contractible space.] 

Given n, let Do[n] be the simplicial set defined by the following conditions. 

(Ob) Do[n] assigns to an object [P] the set Do[n]p of all finite sequences fL 

(fLo, . .. ,fLp) of monomorphisms in d having codomain [n] such that Vi, j (0 $ i $ j $ p) 
there is a monomorphism fLjj with fLj = fLj 0 fLjj. 

(Mor) Do[n] assigns to a morphism a : [q] ---t [P] the map Do[n]p ---t Do[nJq taking 

fL to fL 0 a, i.e., (fLo, ... , fLp) ---t (fLa( 0) , ... , fLa( q) ). 
Call Do the functor d ---t ~ that sends [n] to Do[n] and a : [m] ---t [n] to Do[a] : Do[m] ---t 

Do[n], where Do[a]v ((a 0 vo)', ... ,(a 0 vp)'). The associated realization functor rLi" is 

a functor SISET ---t SISET such that r,::. 0 Do = Do. It assigns to a simplicial set X 

J
[n] 

a simplicial set SdX = Xn . D.[n], the subdivision of X, and to a simplicial map 

f : X ---t Y a simplicial map Sd f : Sd X ---t Sd Y, the of f. In particular, 

Sd D.[n] = D.[n] and Sd D.[a] = D.[a]. On the other hand, the realization functor r,::. 
associated with the Yoneda embedding D. is naturally isomorphic to the identity functor 

J
[n] 

id on SISET : X Xn . D.[n]. If dn : D.[n] ---t D.[n] is the simplicial map that sends 

fL = (fLo, ... 'fLp) E D.[n]p to dnfL E D.[n]p : dnfL(i) = fLj(mj) (fLi : [mil ---t [n]), then the df} 

determine a natural transformation d : D. ---t D., which, by functoriality, leads to a natural 

transformation d : r,::. ---t r,::.. Thus, V X, Y and V f : X ---t Y, there is a commutative 

SdX X 

diagram Sd 11 
SdY ---t 

dy 

1/. It will be shown below that Idxl : ISdXI---t IXI is a homotopy 
Y 

equivalence (cf. Proposition 5). 

Given n, write Don for 1D.[nJi and DoG' for IDo[a]l. The elements of D.n are equivalence 

classes [fL, t]. Any two representatives of [fL, t] are related by a finite chain of "elementary 
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equivalences" involving omission of J.Li and ti if ti = 0 and replacement of ti and ti+l by 

ti + ti+l if J.Li+l = J.Li. Every [J.L, t] has a canonical representative, meaning that [J.L, t] can 

be represented by a pair (J.L, t) : J.L = (J.Lo, ... ,J.Ln) E ~[n]n with J.Li : [i] --+ [n] (0 ~ i ~ n) 
and t = (to, ... ,tn) E ~ n. So, J.Ln = id[nJ and there exists a permutation 7T' of {O, 1, ... ,n} 

such that Vi, J.Li([iD = {7T'(0),7T'(1), ... ,7T'(i)}. 
1 m 

Notation: Given a E MI:J., say a: [m] --+ [n], put b(a) = Eea(i) E Rn-tl. 
m+l 0 

p 

LEMMA For each n ~ 0, the assignment [J.L, t] --+ E tib(J.Li) is a (welldefined) home
o 

omorphism hn : ~ n --+ ~ n . 

[N ote: Geometrically, ~ n is "barycentric subdivision" of ~ n .] 

The homeomorphisms hn do not determine a natural transformation I?I 0 a -+ I?I 0 a. In fact, it is 

impossible for these functors to be naturally isomorphic. To see this, suppose to the contrary that there ex

ists a natural isomorphism 3 : 1?loa -+ 1?loa. There would then be homeomorphisms { 3
m : am -+ am 

. 3 n : an -+ an 
Em am --+ am 

such that for any a : [m] -+ [n] the diagram a-a 1 l.o.a commutes. Take m = 2, n = 1 and 

an --+ an 
En 

trace the effect on the pair (id[2], 1) when a is in succession 0"0 : [2] -+ [1], 0"1 : [2] -+ [1]. 
h m am --+ am 

[Note: If a: [m] -+ [n] is a monomorphism, then the diagram a-a 1 l.o.a commutes.] 

SUBDIVISION THEOREM Let X be a simplicial set-then there is a homeomor

phism hx : ISdXl--+ IXI. 

[Before proceeding to the details, I shall first outline the argument. In order to define 

a continuous function hx : ISdXI --+ lXI, it is enough to define a continuous function 

J
[n] 

II X n x ~ n --+ II X n x ~ n that respects the relations defining I Sd X I = X n • ~ nand 
n n 

J
[n] 

IXI = Xn . ~ n. This amounts to exhibiting a collection of continuous functions hx : 

~m ~ ~m 

~ n --+ ~ n (x E X n, n ~ 0) such that for all a : [m] --+ [n], the diagram a all a a 

~n -----+ ~n 
h", 

commutes. Here, y = (Xa)x. To ensure that hx is a homeomorphism, one need only 
# 00 

arrange that if x E Xn (n ~ 0), then hx restricts to a homeomorphism h;;l(~n) --+ ~n. 
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Let x E X n' Consider a pair (P? t), with p - (Po,..., pp) E ~ [n]p and t = 

(to, ... ,tp) E ~p. Write (Xpi)X = (Xai)Xi, where ai is an epimorphism and Xi is nonde-

generate. Put 'Yij (a j 0 Pij)~, bij = b(Pi 0 'Yt) (0 ::; i ::; j ::; p). Definition: 

hx([p, t]) tpbpp + L ti(1 - tp - ... - ti+l)bii + L titjbij. 
O::;i<p 05i<j5p 

This expression is a convex combination of points in ~ n, hence is in ~ n. Moreover, its 

value depends only on the class [p, t] and not on a specific representative (p, t). Therefore 

hz : ~ n -+ ~ n makes sense. Because there exist finitely many non degenerate p such that 

U 1~#JI(~n) = ~n, hz is continuous. Turning to compatibility, fix a : [m] -+ [n]-then the 
#J 

claim is that ~Q 0 hg = hz 0 ~Q. Given v = (vo, ... ,vp) E ~[m]p, let p = ~[a]v E ~[n]p 

and construct f3i, Yi, 6ij per v and Y exactly like ai, xi, 'Yij are constructed per p and x. 

From the definitions, aovio6~ = PiO'Y~ and this implies that ~Q matches the barycenters, 

which suffices. 

Let X E X!!. Pick a canonical representative (p, t) for [p, t]-then V i, 'Yin = 'Y~ = id[il 
o 

and [p,t] E h;;l(~n) iff tn > O. Since each of the coordinates of hz([p,t]) E ~n is 
o 0 

bounded from below by tn/en + 1), it follows that hz(h;;l(~n)) C ~n. To address the 

issueofinjectivity, suppose that [p',t'], [p",t"] E h;;l(6.h ) and hx([p',t']) = (to, ... ,tn) = 
hx([p", t"]). In terms of canonical representatives, one has to prove that V i, t~ = t~' and 

p~ = p~' if t~ & t~' are > O. This will be done by decreasing induction on i. Let {;:, be 

the permutations attached to {P:, . Looking at t1r/(n) = t~/(n+ 1) and t1rll(n) = t~/(n+ 1) 
p . 

yields t~ = t~, starting the induction. Assume that k < n and that the assertion is true 

Vi> k. Define T' = (TJ, ... ,T~) by 

"'"'" t~(l - t' - ... - t+l )b~. + "'"'" t~t'·b~· L....t' n ,n L....t' J 'J' 
05i5k 05i5k 

i<i$n 

Define Til = (TJ', ... ,T::) analogously-then, from the induction hypothesis, T' = Til. 

Case 1: Pk f:. p1. Choose 1 E [n] : 1 E p~([k]) & 1 ¢ p~([k]) => tkt~/(k + 1) < T{ = T{' = 
o => t~ = O. Similarly, t~ = O. Case 2: p~ = p~. Take T' and split off 

(1 - t~ - ... - t~+l)b~k + L tjb~j 
k<j5n 

to get S' = (S~, ... ,S~). Do the same with Til to get SIt = (S~, ... ,S~)-then, from 

the induction hypothesis, S' = S". Set 1 = lI"(k) and compute: tkS: = T{ = T{' ~ 
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t~S:' = t~S:. But S: !::: t~/(k + 1) > 0 => tk !::: t~. Similarly, t~ !::: tk. Thus the 
o 

induction is complete. Owing to the theorem of invariance of domain, hx(h;;l(LlR)) is 
000 . 

open in LlR and the restriction h;;l(LlR) ~ hx(h;;l(LlR)) is a homeomorphism. However, 

hx(Lln - h;;l(!n)) c ~n, so hx(h;;l(!n)) =!n n h:r;(Lln) is closed in !n. Being nonempty, 
o 0 

h:r;(h;;l(LlR)) must be equal to LlR.] 

BARRATT'S LEMMA Let d be a simplex, d1 a proper face of d, do a proper face of d1. 

Let r : d] -+ do be an affine retraction, i.e., a retraction induced by the composition of a linear map and 
r 

d1 ---t do 

a translation mapping vertexes onto vertexes. Define X by the pushout square 1 1 -then 

d ---+ X 

dO ---?- d 

there exists a homeomorphism q, : X -+ d such that the triangle 1 /. commutes. 

X 
[Supposing that n + 1 = dim d, normalize the situation as follows. Take for d the one point com-

pactification of {( Zo, ... ,z",) : z", ~ O}, let dl be the convex hull of {O, eo, ... , em}, let do be the convex 

hull of {O, eo, ... ,e J:}, and let P be the orthogonal projection onto the span of {eo, ... ,e J:, em+l , ... , en}, 

so Pld1 = r and X = d/"', where z "" 1/ iff z = 1/ rt. d1 or r(z) = r(1/) (z, Y Edt). Let d(z) be the 

distance of z from dl, f(z) = min{1, d(z)}, and put q,(z) = f(z)z + (1 - f(z»P(z) (thus q,(oo) = 00 and 

.......... q,ld1 = r). 

Claim: q, : d -+ d is surjective and q,ld - d1 is injective. 

[Given z = (zo, ... ,z",), set z(t) = (zo, ... ,ZJ:,bJ:+1,'" ,tzm,Zm+1,'" ,Z,.). Obviously, Z1I:+1 = 
... = Zm = 0 => q,(z) = z. On the other hand, if some z. #: 0 (k < i $; m), then t -+ 00 => z(t) -+ 

00 => f(z(t» = 1 (t > > 0). However, q,(z(t» = (zo, ... ,Z1l:, tf(z(t»Z1c+l" .. , tf(z(t»Zm, Zm+l, ... , Z,.) 

and the intermediate value theorem guarantees that 3 t : tf(z(t» = 1. Assume now that Z,1/ E d] with 

q,(z) = q,(1/) : a:i = 1/i (i:$ II: & i > m),f(z)a:. = f(Y)Yi (k < i:$ m) => 1/ = a: (~~:D. But t -+ q,(z(t» is 

one-to-one (=> z = y). To see this, it need only be shown that t -+ d(z(t» is nondecreasing. Proceeding 

by contradiction, suppose that d(a:(t')) < d(z(t» (3 t' > t) and choose u : d(z(t'» < u < d(z(t» => u > 
d(z(O», i.e., z(O), z(t') E d-1 ([0, uJ), z(t) rt. d-1 ([0, uJ), an impossibility, d- 1 ([0, u)) being convex.] 

Therefore q, determines a continuous bijection X -+ d between compact Hausdorff spaces with the 

stated property.] 

FACT Let X be a simplicial set-then ISdXI is a polyhedron, hence IXI can be triangulated. 

[Using Barratt's lemma, apply the criterion on p. 5-13 to ISdXI, observing that V nondegenerate z 
d[n - 1] ---+ {dna:} 

in (SdX),. there is a pushout square 1 ,where {?} equals "generated simplicial 

subset" .J 
{z} 
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PROPOSITION 5 Let X be a simplicial set-then Idxl : ISdXI -+ IXI is a homotopy 

equivalence. 

[One can define Idx I by a collection of continuous functions d x : il n -+ il n satisfying 

the same compatibility conditions as the hx : il n -+ il n that figure in the proof of the 

subdivision theorem. Introduce Hx : iln x [0,1]-+ iln by writing Hx(u, t) = (l-t)hx(u)+ 

tdx(u)-then, in total, the Hx define a homotopy ISdXI x [0,1] -+ IXI between hx and 

Idxl·] 
[Note: hx is not natural but is homotopic to Idx I which is natural. The fact that Idx I 

is a homotopy equivalence can also be seen directly. Proof: V n, lil[n] I = iln is contractible 

and r A = Sd preserves injections, thus the example following Proposition 3 is applicable.] 

EXAMPLE Let X be a simplicial set-then IXI is homeomorphic to B(cSd2 X) (Fritsch-Latch t ). 

Therefore the geometric realization of a simplicial set is homeomorphic to the classifying space of a small 

category. 

[Note: The homeomorphism is not natural.] 

Sd is the realization functor r a' The associated singular functor S a is denoted by Ex and referred 

to as extension. Since (Sd, Ex) is an adjoint pair, there is a bijective map SX,Y : Nat(SdX, Y) -+ 

Nat(X, Ex Y) which is functorial in X and Y (cf. p. 0-14). Put ex = Sx,x (dx )-then ex : X -+ Ex X 

is the simplicial map given by ex(x) = ~x 0 dn (x E X n ), hence ex is injective. 

LEMMA For every simplicial set X, lexl : IXI-+ IExXI is a homotopy equivalence (cf. p. 13-29). 

[Note: Since ex is injective, IXI can be considered as a strong deformation retract of lEx XI (cf. §3, 

Proposition 5).] 

Denote by EXDO the colimit of id -+ Ex -+ Ex 2 -+ ... -then EXDO is a functor SISET -+ SISET 

and for any simplicial set X, there is an arrow e': : X -+ EXDO X. Claim: Ie': I : IX I -+ IExDO X I 

is a homotopy equivalence. In fact, IExn XI embeds in IExn+1 XI as a strong deformation retract and 

IExDO XI = colim IExn XI. Therefore IXI is a strong deformation retract of lEx DO XI (cf. p. 3-20). 

The subdivision functor can also be introduced in the semisimplicial setting. It is com-

SSISET 

patible with prolongment in that there is a commutative diagram P 1 
SISET 

t Math. Zeit. 177 (1981),147-179. 

Sd 
----t 

----t 
Sd 

SSISET 

lp 
SISET 
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and, in contradistinction to what happens in the simplicial setting, the homeomorphism 

hpx : ISdXIM -+ IXIM is natural, as is the homotopy between hpx and Idpxl. 
Put S = U 0 sin-then S : TOP -+ SSISET and (I?IM, S) is an adjoint pair. 

Given a topological space X, postcompose hpsx : ISdSXIM -+ ISXIM with the arrow 

ISXIM -+ X to get a continuous function ISd SXIM -+ X which by adjointness corre

sponds to a semisimplicial map gsx : SdSX -+ SX. Definition: bx = IPgsxl 0 hp1x E 

C(ISXIM, ISXIM). Using Proposition 4, one can check that bx is naturally homotopic to 
ISXIM fix • ISXIM . 

idlsxl.v. In effect, the triangle \ I commutes up to homotopy. 

IsinXI 

SIMPLICIAL EXCISION THEOREM Let X be a topological space. Suppose that 

{i~ are subspaces of X with X = int Xl U int X'J-then the geometric realization of 

sin Xl U sin X'J is a strong deformation retract of I sin X I. 

[The inclusion I sin Xl Usin X'J I -+ I sinXI is a closed cofibration, thus it will be enough 

to prove that it is a homotopy equivalence (cf. §3, Proposition 5). According to Proposition 
ISXI U SX'JIM -+ ISXIM 

4, the vertical arrows in the commutative diagram 1 1 are 

I sin Xl U sinX'J1 -+ I sinXI 
homotopy equivalences, which reduces the problem to showing that the inclusion ISXI U 

SX2 1M -+ ISXIM is a homotopy equivalence or still, a weak homotopy equivalence. To 

this end, fix n ~ 0 and let f : DR -+ 15XIM be a continuous function such that !(SR-I) c 
ISX1 U SX2 IM. Since the image of f is contained in the union of a finite number of cells 

of ISXIM, 3 k » 0 : b~ 0 f factors through ISXI U SX2 1M (the "excisive" consequence of 

the assumption that X = intXI U intX2 ). On the other hand, by naturality, bx(ISXI U 

SX2 IM) C ISXI U SX'JIM and the same is true of the homotopy between bx and idlsxl.v, 
hence too for the kth iterate b~. Therefore! is homotopic reI SR-I to a continuous function 

9 : DR -+ ISXIM with g(DR) c ISXI U SX2 IM. These considerations suffice to imply that 

the inclusion ISXI U SX2 1M -+ ISXIM is a weak homotopy equivalence (cf. p. 3-39).] 

Let C be a class of topological spaces-then C is said to be homotopy cocomplete , 
provided that the following conditions are satisfied. 

(HOCOd If X E C and if Y has the same homotopy type as X, then Y E C. 

(HOC02 ) C is closed under the formation of coproducts. 

(HOC03 ) If X I- z ~ Y is a 2-source with {~ & Z E C, then Mj,g E C. 

Examples: (1) The class of CW spaces is homotopy cocompletej (2) The class of 

numerably contractible spaces is homotopy cocomplete. 
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PROPOSITION 6 The class of topological spaces for which the arrow of adjunction 

I sinXI -+ X is a homotopy equivalence is homotopy oooomplete. 

[If I : X -+ Y is a homotopy equivalence, then 1 sin II : I sinXI -+ I sin YI is a ho-

IsinXI I~I IsinYI 

motopy equivalence (cf. p. 13-2). Since the diagram 1 1 commutes, 
X --+ Y 

/ 
BOCO} obtains. That BOC02 holds is clear, so it remains to deal with BOCOa . Viewing 

M/,g as a quotient of XIIIZIIY, let X be the image of XIIZ x [0,2/3], let Y be the image 

of Z x [1/3,1] llY and put Z = X nY-then M/" = intXu int Y and there are homotopy 

equivalences X -+ X, Y -+ Y, Z -+ Z. Because X, Y, Z are in our class, the same is true 

of X, Y, Z. To establish that the arrow 1 sin M /,g 1 -+ _ M /,g is a homotopy equivalence, 
IsinXI +- IsinZI --+ IsinYI 

consider the commutative diagram 1 1 1 .. The horizontal 

X +- Z --+ Y 
arrows are closed cofibrations, hence the induced map of pushouts is a hOJIlotopy equiva-

lence (cf. p. 3-24 ff.). The pushout arising from the 2-source on the bottom is Mj" , while 

the pushout arising from the 2-source on the top is I sin X U sin YI which, by the simplicial 

excision theorem, is a strong deformation retract of I sin M j,g I. Inspection of the triangle 

I sin X U sin YI---+-I sin Mj,g I 

~! finishes the argument.] 

Mj,g 
[Note: V X, I sin X 1 is a CW complex, thus X is a CW space if the arrow of adjunction 

I sinXI-+ X is a homotopy equivalence.] 

Any homotopy cocomplete class of topological spaces that contains a one point space 

necessarily contains the class of CW spaces. But #(X) = 1 => #(1 sinXI) = 1, therefore 

the class of CW spaces is precisely the class of topological spaces for which the arrow of 

adjunction I sinXI-+ X is a homotopy equivalence. 

GIEVER·MILNOR THEOREM Let X be a topological space-then the arrow of 

adjunction I sin X 1 -+ X is a weak homotopy equivalence. 

[The adjoint pair (I?I, sin) determines a cotriple in TOP (cf. p. 0-28), which induces 

a cotriple in HTOP (I?I 0 sin preserves homotopies (cf. p. 13-2». On general grounds, 

V Y, the postcomposition arrow [I sin YI, 1 sinXI] -+ (I sin YI,X] is surjective. However 

here it is also injective. Reason: V Z, the arrow of adjunction IsinlsinZl1 -+ IsinZI is 

a homotopy equivalence, i.e., is an isomorphism in HTOP. It therefore follows that for 

every CW complex K, the post composition arrow [K, IsinXI1 -+ [K,X] is bijective and 
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thls means that the arrow of adjunction I sinXI -+ X is a weak homotopy equivalence.(cf. 
p. 5-15 if.).] 

Application: Let X be a simplicial set-then the geometric realization of the arrow 

of adjunction X -+ sin IXI is a homotopy equivalence. 
IX!---.I sin IXII 

[The triangle i~ 1 commutes.] 

IXI 

EXAMPLE Consider the adjoint situa.tion (F,G,p.,,,), where F = I?I. G = sin-then in the 

{ 
S-lSISET 

notation of p. 0-32, are equivalent to HeW. 
T-ITOP 

Given simplicial sets X and Y, write map(X, Y) in place of yX (cf. p. 0-23). The ele

ments of map(X, Y)o ::::l Nat(X, Y) are the simplicial maps X -+ Y, two such being termed 

homotopic if they belong to the same component of map(X, Y). In other words, simplicial 

maps I, 9 E Nat(X, Y) are homotopic (I ~ g) provided that 3 n ;::: 0 and a simplicial map 
. {H 0 io : X ::::l X X ~[O] id~eo X X 12n ~ Y 

H : X X 12n -+ Y such that If H 0 i2n : X ::::l X X ~[O] . ---+ X X 12n ---+ Y' 
Idx xe2n H 

h { 
H 0 io = 1 h { eo : ~[O] -+ 12n h . 1 . { 0 t en H . _ ,were . A[O] [. are t e vertex mc USlons per 2 . 

o '2n - 9 e2n • ~ -+ 2n n 
[Note: Paths 12n -+ map(X, Y) correspond to homotopies H : X X 12n -+ Y.] 

Given simplicial sets X and Y, simplicial maps I,g E Nat(X, Y) are said to be 

simplicially homotopic (I ~ g) provided that 3 a simplicial map H : X x ~[1] -+ Y such 
#I . {H 0 io : X ::::l X X ~[O] idxx1e

o X x ~[1] ~ Y {H 0 io = 1 
that If H 0 i l : X ::::l X X ~[O] . ---+ X x ~[1] ---+ Y' then H 0 i

l 
= 9 , where 

Idx xel H 

{ :: ~ ~~~j : ~fi~ are the vertex inclusions per {~. The relation "; is reflexive but it 

needn't be symmetric or transitive. 

[Note: Elements of map(X, Yh correspond to simplicial homotopies H : X x ~[1] -+ 

Y.] { 
Example: Suppose that ~ are small categories. Let F, G : C -+ D be functors, 

S : F -+ G a natural transformation-then S defines a functorSH : C x [1] -+ D, hence 

ner SH : ner( C x [1]) -+ ner D, i.e., ner SH : ner C x ~[1] -+ ner D is a simplicial homotopy 

between ner F and ner G. So, e.g., {~~ have the same homotopy type if there is a 

functor C -+ D which admits a left or right adjoint. In particular: The classifying space 

of a small category having either an initial or a final object is contractible. Example: Bll. 

is contractible. 
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EXAMPLE Take X = Y = ~[n] (n > 0). Let Co : ~[n] - ~[n] be the projection of ~[n] onto 

""-'" the O\b vertex, i.e., send (ao, ... ,a,,) e ~[n]" to (0, ... ,0) e ~[n1p, Claim: Co::::dd.o.[n]' To see this, 
• 

consider the simplicial map H : ~[n] x ~[1] - ~[n] defined by H«ao, ... , a p), (0, ... ,0,1, ... ,1» = 
(0, ... ,0,ai+1J ... ,a,,) so that H«ao, ... ,a,,), (0, ... ,0» = (0, ... ,0), H«ao, ... ,ap), (1, ... ,1» = 

(ao, ... ,a" )-then H is a simplicial homotopy between Co and id.o.[nJ. On the other hand, there is no 

simplicial homotopy H between id.o.[nJ and Co. For suppose that H«I, 1), (0, 1» = (#I, v) E ~[nh. Apply 

d1 k do to get #I = 1 k v = 0, an impossibility. 

[Note: Let Cit: : ~[n] - ~[n] be the projection of ~[n] onto the k\b vertex, i.e., send (ao, . .. ,a,,) e 

~[n]p to (k, ... ,k) e ~[n]p (0 :s;; k :s;; n)-then id.o.[nJ!:!:! Cn but id.o.[nJ ~ C. (0 :s;; k < n). Still, V k, 3 a 
• • 

homotopy Hit: : ~[n1 x 12 - ~[n1such that H. 0 eo = id.o.[nJ and Hit: 0 e2 = CIt:.1 

FACT Suppose that I,g: X - Y are simplicially homotopic-then Ex/, Exg: ExX - ExY are 

simplicially homotopic. 

[Ex is a right adjoint, hence preserves products.] 

The equivalence relation generated by ~ is~. Given simplicial sets X and Y, put 
• [X, Y]o = Nat(X, Y)/~, so [X, Y]o = 1ro(map(X, Y))-then HoSISET is the category 

whose objects are the simplicial sets and whose morphisms are the homotopy classes of 

simplicial maps. 

[Note: The symbol HSISET is reserved for a different role (cf. p. 13-35).] 

To check that the reWi.on of homotopy is compatible wi.th composition, let X, Y, and Z be simplicial 

sets. Define a 5implicial map CX,Y,Z :. map(X, Y) x map(Y, Z) - map(X, Z) by assigning to a pair (I, g) in 
idxdl A jxid 

map(X, Y) .. x map(Y, Z). the composite X x ~[n] - X x (~[n] x ~[n]) -(X x ~[n]) x ~[n] - Y x 

~[n].!.. Z in map(X, Z) •. At level 0, CX,Y,Z is composition of simplicial maps. Since ""0 (map(X, Y) x 

map(Y, Z» R:l1I'o(map(X, Y» x ,,"0 (map(Y, Z», CX,Y,Z induces an arrow [X, Ylo x [Y, Z]o - [X, Z]O with 

the requisite properties. 

[Note: HoSISET haa finite products. In addition, map(X x Y, Z) R:I map(X, map(Y, Z» => [X x 

Y, Z]o R:I [X,map(Y, Z)]o, so HoSISET is cartesian closed.] 

EXAMPLE Geometric realization preserves homotopies but 111 : HoSISET - HTOP is not 

conservative. 

[Take X = ~[01, Y = ner(oo}, where (oo) is the zig-zag on the set of nonnegative integers: ° < 1 > 
2 < 3 > 4 ... , and consider the inclusion X - Y corresponding to 0- 0.] 

Notation: Given a simplicial set X, write IX in place of X x .6[lJ. 
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The obvious composite X U X - IX - X factors the folding map X U X - X and SISET carries 

the structure of a model category in which IX is a cylinder object (d. p. 13-35). 

A simplicial map f : X -+ Y is said to be a weak homotopy equivalence if its geometric 

realization If I : IXI -+ IYI is 8. weak homotopy equivalence (= homotopy equivalence). 

Example: V X, the projection IX -+ X is a weak homotopy equivalence. 

[Note: A homotopy equivalence in SISET is 8. weak homotopy equivalence (but not 

conversely).] 

EXAMPLE Suppose that {; are topological spaces and I : X - Y is a continuous function

Isin II 
IsinXI --+ IsinYI 

then there is a commutative diagram 1 1 ' thus I is a weak homotopy equivalence iff 

X --+ Y 
I 

sinl is a weak homotopy equivalence (Giever-Milnor theorem).] 

EXAMPLE (Simplicial Groups) Given a simplicial group G, put N"G = n ker d. (n > 0) 
;>0 

(NoG = Go) and let 8" : N"G - N,,_lG be the restriction dolN"G (n > 0) (80 : NoG - 0)-

then im 8,,+! is a normal subgroup of ker 8". Definition: The homotopy groups of G are the quotients 

1I",,(G) = ker 8,,/im8,,+1' Justification: V n ~ 0, 'lr,,(G) ~ 'lr,,(IGI, e). Since a homomorphism I: G - K 

of simplicial groups induces a morphism NI : NG - NK of chain complexes, thus a homomorphism 

11".(1) : 1I".(G) - 1I".(K) in homotopy, it follows that I is a weak homotopy equivalence iff 11".(1) is 

bijective. 

[Note: A short exact sequence 1 - G' - G - G" - 1 of simplicial groups gives rise to a short exact 

sequence 1- NG' - NG - NG" - 1 of chain complexes and a long exact sequence··· - 11",,+1 (Gil) -

1I",,(G') - 1I",,(G) - 1I",,(G") - 11",,-1 (G') - ... of homotopy groups.] 

EXAMPLE (Simplex Categories) Let X be a simplicial set-then X is a cofundor A - SET, 

thus one can form the Grothendieck construction groAX on X. So: The objects of groAX are the ([n],z) 

(z E X,,) and the morphisms ([n], z) - ([m], y) are the a : [n] - [m] such that (Xa)y = z. One calls 

a[n] ---+. a[m] 
groAXthesimplexcategoryofX. ItisisomorphictothecommacategoryIYA,Kxl: ~ /' . 

X 
There is a natural weak homotopy equivalence ner(groAX) - X, viz. the rule nerp(groAX) - XI' that 

ao a p _l 
sends ([no], zo) --+ ... -([np], zp) to (Xa)zp, where a : [P] - [np] is defined by a(i) = a,-l 0'" 0 

ai(ni) (0 ~ i ~ p) (a(p) = n,). 

[First check the assertion when X = a[n].] 
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A simplicial map I : X -+ Y is said to be a cofibration if its geometric realization 

III : IXI -+ IYI is a cofibration. Example: V X, the arrows { :~ ~ i =: ~i are cofibrations 

and weak homotopy equivalences. 

LEMMA The cofibrations in SISET are the injective simplicial maps. 

Example: Let X be a simplicial set-then the arrow of adjunction X -+ sin IXI is a 

cofibration and a weak homotopy equivalence (cf. p. 13-15). 

EXAMPLE Let X be a simplicial set-then ex : X -+ ExX is a cofibration, as is ex : X -+ Exoo X 

and both are weak homotopy equivalences (d. p. 13-12). 

PROPOSITION 7 Let p : X-+ B be a simplicial map-then p has the RLP w.r.t. 

the inclusions 6.[n] -+ 6.[n] (n ~ 0) iff p has the RLP w.r.t. all cofibrations. 

A 

[Let i : A -+ Y be an injective simplicial map. To construct a filler for i 1 
Y 

v 

take i to be an inclusion and call (Y, A)~ the subset of Y! consisting of those elements which 
(Y, A)~ .6.[n] -+ y(n-l) U A 

do not belong to A-then V n, there is a pushout square 1 1 
(Y, A)~ ·6.[n] -+ y(n) U A 

so one can construct the arrow Y -+ X by induction.] 
I 

Given n ~ 1, the kth-horn A[k, n] of 6.[n] (0 ~ k ~ n) is the simplicial subset of 6.[n] 
defined by the condition that A[k, n]m is the set of Q : [m] -+ [n] whose image does not 

contain the set [n] - {k}. So: IA[k,nll = Ak,n is the subset of 16.[nll = 6.n consisting of 

those (to, ... ,tn) : ti = 0 (3 i i- k), thus Ak,n is a strong deformation retract of 6.n • 

Example: Let {; be topological spaces, I: X -+ Y a continuous function-then I 
is a Serre fibration iff I has the RLP w.r.t. the inclusions Ak,n -+ 6.n (0 ~ k ~ n,n ~ 1). 

The representation of A[n] as a coequalizer can be modified to exhibit A[k, n] as a coequalizer (in the 

notation of p. 0-18, replace II A[n -l]i by II A[n -l]i). A corollary is that for every simplicial set 
O<i<n O<i<n 
- - T~k 

X, Nat(A[k, n],X) is in a one-to-one correspondence with the set of finite sequences (zo, ... , Zk, ... , zn) 

of elements of X n - 1 such that diZj = dj-1Zi (i < j & i,j ¢ k). 

A retract invariant, composition closed class of injective simplicial maps is said to be 

replete if it contains the isomorphisms and is stable under the formation of coproducts, 
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pushouts, and sequential colimits. The repletion of a set So of injective simplicial maps is 

nM, M replete with So C M. 

Specialize to So = {A[k, n] -+ ~[n] (0 ~ k ~ n, n ~ In-then the repletion of So is 

the class of anodyne extensions. Examples: (1) The injections ~[c5i] : ~[n -1] -+ ~[n] are 

anodyne extensions; (2) The inclusions ~[m] x A[k, n] U Li[m] x ~[n] -+ ~[m] X ~[n] are 

anodyne extensions. 

PROPOSITION 8 Let f : X -+ Y be an anodyne extension-then Ifl(IXI) is a strong 

deformation retract of IYI. 
[The class of injective simplicial maps with this property is replete (c!. §3, Proposition 

3 and p. 3-20) and contains So.] 

Application: Every anodyne extension is a weak homotopy equivalence. 

PROPOSITION 9 Let {~ be a simplicial subset of { -; . Suppose that the inclusion 

B -+ Y is an anodyne extension-then the inclusion X x B U A x Y -+ X x Y is an anodyne 

extension. 

[The class of injective simplicial maps B' -+ Y' for which the arrow X x B' U A X 
AxB' 

Y' -+ X x Y' is an anodyne extension is replete. On the other hand, an induction shows 

that the inclusions X x A[k, n] U A x ~[n] -+ X X ~[n] are anodyne.] 

EXAMPLE The inclusion SdA[k,n] -- SdL1[nJ is a.n a.nodyne extension. 

[Note: In general, Sd preserves anodyne extensions (d. p. 13-34).] 

FACT Tb.e class of homotopy classes of anodyne extensions admits a calculus of left fractions. 

[The point is to show that if I, g : X -- Y are simplicial maps and if • : X, -- X is an anodyne 

extension with 10. ~ go., then 3 an anodyne extension t : Y -- Y' with to I ~ tog.] 

Let p : X -+ B be a simplicial map-then p is said to be a Kan fibration if it has the 

RLP w.r.t. the inclusions A[k, n] -+ ~[n] (0 ~ k ~ n, n ~ 1). 

[Note: Let p : X -+ B be a Kan fibration-then for any component A of X, P(A) 
is a component of B and A -+ p( A) is a Kan fibration. Therefore p( X) is a union of 

components of B. So, if B is connected and X is nonempty, then p is surjective.] 

Example: Let {-; be topological spaces, f : X -+ Y a continuous function-then f 
is a Serre fibration iff sin f : sin X -+ sin Y is a Kan fibration. 
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In "parameters". the condition that p be a Kan fibration is equivalent to requiring that if (zo, ... , 

Zlru ... ,z .. ) is a finite sequence of elements of X .. -l such that d,zj = dj-1Zi (i < j &; i,j ¢ k) and 

P(Zi) = d,b (b E B .. ), then 3 Z EX .. : d,z :: Z, (i ¢ k) with p(z) :: b. 

PROPOSITION 10 Let p : X -+ B be a simplicial map-then p is a Kan fibration 

iff it has the RLP w.r.t. every anodyne extension. 

[The class of injective simplicial maps that have the LLP w.r.t. p is replete.] 

Application: Let A be a simplicial subset of Y. Suppose that p : X -+ B is a Kan 

ioYUIA ~ X 

fibration-then every commutative diagram 1 1, has a filler H : IY -+ X 

IY ---.j> B 
h 

(cf. §4, Proposition 12). 

[The vertex inclusion eo : ~[O] -+ ~[1] is anodyne.] 

FACT Let p : X - B be a Kan fibration-then Exp : ExX - ExB is a Kan fibration. 

A simplicial set X is said to be fibrant if the arrow X -+ * is a Kan fibration. The 

fibrant objects are therefore those X such that every simplicial map f : A[k, n] -+ X can 

be extended to a simplicial map F : ~{n] -+ X (0 S k S n, n 2:: 1). 

[Note: The components of a fibrant X are fibrant.] 

Example: Let X be a topological space-then sin X is fibrant. 

LEMMA Suppose that X is fibrant. Assume: 3 no 2:: 1 such that #(X'Ifo) 2:: I-then 

V n 2:: no, #(X!!) 2:: 1. 

[Fix x E X'Ifo and choose y E Xno+l such that doy = x, d1 Y = sodox. Claim: 

y E X!o+l' Suppose not, so y = SiZ (3 i). Case 1: i 2:: 1 : x = doY = dOSiZ = Si-l doz, an 

impossibility. Case 2: i = 0 : x = doy = dosoz = Z => x = Z => y = sox => d1y = d1sOx => 
X = d1sOx = sodox, an impossibility.] 

Application: ~[n] (n 2:: 1) is not fibrant. 

Remark: Let Y be a simplicial set-then the arrow Y -+ * is a homotopy fibration. 

X' X Y ~ X X Y ---.j> Y 

Proof: Take any commutative diagram 1 1 1 ,where 4> is a 

X' X ---.j> * 
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IX/I Xk IYI 
weak homotopy equivalence, and apply I?I to get a commutative diagram 1 

IX/I 

IXI Xk IYI -+ IYI 
1 1 in CGH (cf. Proposition 1). Since the projection IXI Xk IYI -

IXI -+ * 
IXI is a CG fibration and 14>1 is a homotopy equivalence, I~I is a homotopy equivalence 

(cf. p. 4-24), i.e., ~ is a weak homotopy equivalence. 

[Note: See p. 13-32 for the model category structure on SISET.] 

EXAMPLE The underlying simplicial set of a simplicial group Gis fibrant. 

[Let (xo, ... ,;k,'" ,x ... ) be a finite sequence of elements of G ... - 1 such that d;xj = dj_1X; (i < j & 

i,j::/= k). Claim: 3 elements g-1>go, ... E G ... such that d;gr = Xi (i:S; r,i::/= k). Thus put g-l = e E G ... 

and assume that gr-l E Gft has been constructed. Case 1: r = k. Take gr = gr-l. Case 2: r::/= k. Take 

gr = gr_l(srhr)-l, where h r ';' x;1(drgr _ 1).] 

[Note: A homomorphism J : G -+ K of simplicial groups is a Kan fibration iff N ... J : N ... G -+ N ... K 

is surjective 'V n > O. Therefore a surjective homomorphism of simplicial groups is a Kan fibration.] 

EXAMPLE Let C be a small category-then nerC is fibrant iff C is a groupoid. 

[Note: It is a corollary that ~[n] (n ~ 1) is not fibrant.] 

LEMMA Put dk, ... = dA[k, ... ] (0 :s; k :s; n, n ~ I)-then there is a simplicial map Dk, ... : Sd2 ~[n] -+ 

SdA[k,n] such that Dk,nlSd2 A[k,n] = Sddk, .... 

FACT For any simplicial set. X, Exoo X is fibrant. 

[Suppose given a simplicial map J : A[k, n] -+ Exoo X. Choose an r such that J factors through 

ExrX and let g be the composite A[k,n] -+ ExrX -+ ExExrX-then, under Nat(A[k,n],ExExrX) ~ 

Nat(SdA[k, n], Exr X), g corresponds to h : SdA[k, n] -+ Exr X and an extension F : ~[n] -+ Exoo X of J 

can be constructed by working with the "double adjoint" of h 0 Dk, ... (it being a simplicial map from ~[nl 

to Ex2 Exr X).] 

The class of Kan fibrations is pullback stable. In particular: The fibers of a Kan 

fibration are fibrant objects. 

PROPOSITION 11 Let p : X - B be a Kan fibration-then B fibrant =} X fibrant 

and X fibrant + p surjective =} B fibrant. 
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PROPOSITION 12 Suppose that L -+ K is an inclusion of simplicial sets and X -+ B 

is a Kan fibration-then the arrow map(K, X) -+ mapeL, X) Xmap(L,B) map(K, B) is a 

Kan fibration. 

[Pass from 
A[k, n] ----""'"+map(K, X) 

1 1 
6.[n] ---+~ map(L, X) Xmap(L,B) map(K,B) 

to 
A[k, n] x K U 6.[n] xL--+X 

il 1 
6.[n] x K ----+~ B 

and note that i is anodyne (cf. Proposition 9).] 

[Note: Compare this result with its topological analog on p. 12-17.] 

Application: Let p : X -+ B be a Kan fibration-then for any simplicial set Y, the 

postcomposition arrow P* :map(Y, X) -+ map(Y, B) is a Kan fibration (cf. §4, Proposition 

5). 
[Note: Take B = * to see that X fibrant => map(Y, X) fib rant V Y.] 

Application: Let i : A -+ X be a cofibration-then for any fibrant Y, the precompo

sition arrow i* : map(X, Y) -+ map(A, Y) is a Kan fibration (cf. §4, Proposition 6). 

FACT Let L - K be an anodyne extension-then V fibrant Z, the arrow [K,Z]o - [L,Z]o is 

bijective. 

[Since Z is fibrant, the arrow [K, Z]O - [L, Z]O is surjective, hence bijective (cf. p. 13-19).] 

Application: Let L - K be an anodyne extension-then V fibrant Z, the arrow map(K, Z) -

map(L, Z) is a homotopy equivalence. 

[For any simplicial set X, the inclusion X x L - X x K is anodyne (cf. Proposition 9). But 

[X,map(K, Z)]o - [X,map(L, Z)]o is bijective iff [X x K, Z]o - [X xL, Z]o is bijective.] 

PROPOSITION 13 Let p : X -+ B be a Kan fibration. Suppose that b' , btl E Bo are 

in the same component of B-then the fibers Xb /, Xb ll have the same homotopy type. 

[Note: Compare this result with its topological analog on p. 4-13.] 

LEMMA For any fibrant X, simplicial homotopy of simplicial maps 6.[0] -+ X is an 

equivalence relation. 
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[The relation is reflexive: V x E Xo, d1s0 x = X = dosox. 

The relation is transitive. For suppose that x ~ y & y~ z (x, y, z E Xo), say {ddl
U = X 

If If OU = Y 

(u E Xd & {ddl
V = Y (v E Xl). The pair (v,u) determines a simplicial map A[1,2] -+ X. 

OV = z 
Extend it to a simplicial map F : ~[2] -+ X and put w = dl F EX1 : d1w = d1d1F = 
d1d2 F = x & dow = dodl F = dodoF = z (F i-+ F(id[2]»' 

The relation is symmetric. For suppose that x~y (x,y E Xo), say {ddl
U = X (u E 

If OU = y 
Xd. The pair (sox, u) determines a simplicial map A[O, 2] -+ X. Extend it to a simplicial 

map G : ~[2] -+ X and put v = doG: dlv = dldoG = dod2G = y & dov = dodoG = 
dodlG = x (G i-+ G(id[2]»'] 

[Note: It is a corollary that ~[n] (n ;:::: 1) is not fibrant.] 

Application: For any fibrant X and any Y, simplicial homotopy of simplicial maps 

Y -+ X is an equivalence relation, so homotopy=simplicial homotopy in this situation. 

[In fact, X fibrant =* map(Y,X) fibrant V Y (cf. supra).] 

Denote by t.n the inclusion 6.[n] -+ ~[n]. Given a Kan fibration p : X -+ B, put 

map(tn,p) = map(6.[n],X) xma.p(.i[n],B) map(~[n],B) and let tn/P be the arrow map 
(~[n], X) -+ map(tn,p)-then t.nlp is a Kan fibration (c!. Proposition 12). Definition: 

Elements x', x" E Xn are said to be p-connected (x' ~ x") if ~z" ~z" E map(~[n],X)o 
p 

belong to the same component of the same fiber of tn/Po Since an element of map(tn,p)o 

is a pair (/, F), where f : 6.[n] -+ X, F : ~[n] -+ B and po f = F 0 tn, an element ~z E 

map(~[n],X)o lies on the fiber map(~[n],X)(f,F) of tn/P over (f,F) if {~o ~z F
f

. 
L.1z 0 tn -

Accordingly, elements x', x" E Xn with {p 0 ~z' = F & { ~Zl 0 tn = f are p-connected 
po L.1z 11 L.1Z 11 0 tn 

if 3 H : I~[n] -+ X : H oio = ~z" H Oil = ~ZII, poH = Fopr, HII6.[n] = f opr or still, 

'f 3 H' H" . I A[] X . {HI 0 io = ~z' & H· I . _ H" . ( { H' 0 il = ~z, & 
1 , . L.1 n -+ . H'" A 0 '1 - 0 'lor H'" A o '0 = L.1Z11 0 11 = L.1z" 

H' 0 io = H" 0 io), po H' = po H", H'II6.[n] = H"II6.[n]. 

[Note: The relation ~ is an equivalence relation on X n.] 
p 

LEMMA Let X be a simplicial set. Suppose that x', x" E Xn are degenerate-then 

diX' = diXIt (0 ::; i ::; n) =* x' = x". 

[Write x' = s"y', x" = SlY"· Case 1: k = I. Here, y' = d"x' = d"x" = y" =* x' = x". 

Case 2: k =F 1, say k < 1. (1) y' = d"x' = d"x" = d"sIY" = SI-ld"y"; (2) x' = s"y' = 

S"sl_ld"y" = sls"d"Y"j (3) y" = d,xIt =d,x' = d,s,s"d"y" = s"d"y"j (4) x' = SlY" = x".] 



13-24 

Application: Given a Kan fibration p : X -t B, degenerate elements x', x" E Xn are 

p-connected iff they are equal. 

A Kan fibration p : X -t B is said to be minimal if V n, V x', x" E Xn : Xl::: X'I ::::} 
P 

x' = x". 

[Note: A fibrant X is minimal when X -t * is minimal.J 

FACT Suppose that X is fibrant-then X is minimal iff V n, V x', x" E Xn : diX' = diX" (V i -:f; 

j) => djx ' djx" (0 ~ i, j ~ n). 

EXAMPLE Let G be a simplicial group-then G is minimal iff the chain complex (NG, a) is 

minimal, i.e., iff V n,an : NnG -+ Nn_1G is the zero homomorphism. 

The class of minimal Kan fibrations is pullback stable. In particular: The fibers of a 

minimal Kan fibration are minimal fibrant objects. 

PROPOSITION 14 A minimal Kan fibrationp : X -t B is locally trivial. 

[The claim is that V n & V b E B n , Xb is trivial over ~[n]. Therefore it will be 

enough to prove that every minimal Kan fibration p : X -t ~[n] is trivial. To this 

end, let Co : .6.[n] -t .6.[n] be the projection onto the oth vertex and choose a simplicial 

homotopy H : I ~[n] -t ~[nl between Co and ida[nl (cf. p, 13-16), Call A the fiber of 

p Over the oth vertex-then there is a retraction r : X -t A and a simplicial homotopy 

H : IX -t X between X ~ A -t X and idx with po H = H 0 (p x ida[l])' Define a 

simplicial map f: X -t ~[nl x A over ~[nl by f(x) = (p(x),r(x)). To establish that f is 

an isomorphism, we shall proceed by induction on k, taking X-I = 0 and assuming fiX/ 

is bijective (I < k, k ;:::: 0). 

Injectivity: Suppose that f(x l
) = f(x"), where X',X" E Xk, Put H'(a,t) = 

H((Xa)x',t), H"(a,t) = H((Xa)xll,t) to get simplicial homotopies H',H II
: I~[k] -t X 

{
HI 0 i l = ~ I ' , 

such that H" . _ AX & H' 0 io = H" 0 io, po H' = po H", H/II~[k] = H"II~[k], 
OZI - i...l. X " 

thus x' ::: x", so minimality forces Xl = x". 
p 

Surjectivity: Let (ao, ao) E (~[n] x A)k, The induction hypothesis, coupled with 

the injectivity of f, ensures the existence of a simplicial map 9 : A[k] -t X such that 

Va E A[k], f 0 g(a) (ao 0 a, (Xa)ao). In addition, one can find a simplicial homotopy 

G: I~[k] -t X satisfying Goio = ~ao, GIIA[k] = Ho(gxida[I]),poG(a,t) = H(aooa,t). 

W 't - () ( G('d 1)) d G (G' 'd ) h { Go io = ~ao n e ao = r Xk Xk = I [k], an set = 0 OZI X I a[l] -t en Go io = ~ao 
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& Go i l = Go iI, po G = po G, GII£i[k] = GII£i[k]. Therefore ao ~ao =} ao = ao =} 
p 

Application: The geometric realization of a minimal Kan fibration is a Serre fibration 

(cf. p. 13-5). 

Let p : X -+ B be a Kan fibration; let A be a simplicial subset of X, i : A -+ X the 

inclusion. 

(DR) A is said to be a deformation retract of X over B if there is a simplicial 

map r : X -+ A over B and a simplicial homotopy H : IX -+ X over B such that roi = idA 

and H 0 io = i 0 r, H 0 i l = idx. 

(SDR) A is said to be a strong deformation retract of X over B if there is a 

simplicial map r : X -+ A over B and a simplicial homotopy H : IX -+ X over B such 

that r 0 i = idA and H 0 io = i 0 r, H(a, t) = a (a E A), H 0 i l = idx. 

[Note: Taking B = * leads to the corresponding absolute notions for fibrant objects.] 

If p : X -+ B is Kan and A C X is a retract of X over B, then the restriction PA = piA 

is Kan. 

FACT Let p : X - B be a Kan fibration. Suppose that A C X is a deformation retract of X over 

B-then p has the RLP w.r.t. every cofibration that has the LLP w.r.t. PA. 

PROPOSITION 15 Let p : X -+ B be a Kan fibration-then there is a simplicial 

subset A C X which is a strong deformation retract of X over B such that PA is a minimal 

Kan fibration. 

[Let E be a set of representatives for the equivalence classes per ~ containing the 
p 

degenerate elements of X (cf. p. 13-24). Choose a simplicial subset A C X maximal with 

respect to ACE: PA will be minimal if it is Kan. Consider the set y of all pairs (Y, G), 

where A eYe X and G : IY -+ X is a simplicial homotopy over B such that G( io (Y)) C 

A, G(a,t) = a (a E A), Go i l = Y -+ X. Example: (A,IA~A -+ X) E y. Order Y by 

stipulating that (Y', G') ~ (Y", G") iff Y' c Y" & G" IIY' = G'. Every chain in Y has an 

upper bound, so by Zorn, Y has a maximal element (Yo, Go). Claim: Yo = X. Supposing 

this is false, take x E Xn : x ¢ Yo, with n minimal. Note that x is nondegenerate. Call Yz 

the smallest simplicial subset of X : Yo c Yz & x E Yz • Since ~zl£i[n] factors through Yo, 
£i[n] --+ Yo 

there is a pushout square 1 1 . Fix a simplicial homotopy Hz : I ~ [n] -+ X over 
~[n] --+ Yz a", 



13-26 

B such that H:r; 0 h =~:r; and HxII~[n] = Go 0 (~:r;I~[nl x id~[ll)' Put x" = Hx(id[n],O) 
and define x, E E via x' ':::::. x" : di x" E A (0 ::; i ::; n) ::::} x' E A. Fix a simplicial homotopy 

p 

H : I~[n] --+ X reI ~[n] over B such that H oio = ~Xl, H Oil = ~xl/. Determine a simplicial 

K I211.[] X . f . K( T) «X) ) {K(a, t, 1) = H:r;(a, t) map : ~ n --+ sabs ymg po a,t, = p a x, K(a,O,T) = H(a,T) ' 

K(a,t,T) = Go«Xa)x,t) (a E ~[n]), andK(a,l,T) = (Xa)x. Extend Go to a simplicial 

homotopy G:r;: IY:r; --+ X (G:r;(x,t) = K(id[n],t,O»: (Y:r;,G:r;) E y. Contradiction.] 

LEMMA Let I, 9 : X -- Y be simplicial maps, where I!::: 9 & {X are fibrant. Assume: I is an 
~ Y 

isomorphism and Y is minimal-then 9 is an isomorphism. 

Application: A simplicial homotopy equivalence between minimal fibrant objects is an isomorphism. 

Consequently, if X is fibrant and if {AI are deformation retracts of X .that are minimal, then 
A" 

{ AI are isomorphic. 
A" 

A simplicial map p : X --+ B which has the RLP w.r.t. the inclusions ~[n] --+ ~[n] 
(n 2:: 0) is a Kan fibration (cf. Proposition 7). Moreover, p is a simplicial homotopy 

Xx~[11 ~ X 

equivalence. Proof: p admits a section s : B --+ X and 1 lp admits a filler 

X x ~[11 ~ B 
H : X x ~[11--+ X. Here, u(x,O) = s(p(x), u(x, 1) = x. 

PROPOSITION 16 Let p : X --+ B be a Kan fibration-then p can be written as 

the composite of a simplicial map which has the RLP w.r.t. the inclusions ~[n] --+ ~[n] 
(n 2:: 0) and a minimal Kan fibration. 

[Using the notation of Proposition 15, write p = PA 0 I, I : X --+ A the retraction. 

~[n] ~ X 

Suppose given a commutative diagram 1 
Ll.[n] 

v 

1 r • Since A is a strong deformation 

A 

retract of X over B, there is a simplicial homotopy H : IX --+ X over B such that 

H 0 io = i 0 I, H(a,t) a (a E A), H 0 i l = idx . Choose a simplicial homotopy 

G: ILl.[n] --+ X subject to G(a,O) = v(a), GII~[n] = Ho(u xid~[ll)' poG(a,t) p(v(a». 
- _ (_ _ _ . { a' = v(id[n]) {G' = ,OG 

Let G(a,t) - H (Xa)x,t), where x - G(ld[nl,l). Put a" = I(X) , Gil ,OG-
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then {GG:'O i? = ~a' & G' 0 i l = G" 0 iI, PA 0 G' = PA 0 G", G'IIA[n] = G"IIA[n]. So: 
0'0 = ~a" 

a' ~ a" => a' = a" (by minimality), hence Llz- : Ll[n] -+ X is our filler.] 
PA 

LEMMA Suppose that P : X -+ B has the RLP w.r.t. the inclusions A[n] -+ Ll[n] 
(n ;::: O)-then Ipi : IXI -+ IBI is a CG fibration, thus is Serre (cf. p. 4-7). 

X ~ X 
[Consider a filler X x B -+ X for 1 lp ,bearing in mind that IX x BI R: 

XxB --+ B 

IXI XI; IBI·] 

PROPOSITION 11 The geometric realization of a Kan fibration is a Serre fibration. 

[This follows from Proposition 16, the lemma, and the fact that the geometric real

ization of a minimal Kan fibration is a Serre fibration (cf. p. 13-25).] 

[Note: The argument proves more: The geometric realization of a Kan fibration is a 

CG fibration.] 

For instance, suppose that p : X -+ B is Kan and a weak homotopy equivalence. Let B' -+ B be 
X, - X 

a simplicial map and define X, by the pullback square pll 1 p -then pi is Kan and a weak 

B' - B 
homotopy equivalence. 

Suppose that X is fib rant-then X is said to be simplicially contractible if the pro

jection X -+ * is a simplicial homotopy equivalence. 

EXAMPLE Let X be fibrant-then Ex X is fibrant (cf. p. 13-20) and is simplicially contractible 

if this is so of X. 

[Recall that Ex preserves simplicial homotopy equivalences (cf. p. 13-16).] 

PROPOSITION 18 A fibrant X is simplicially contractible iff every simplicial map 

J : A[n] -+ X can be extended to a simplicial map F : Ll[n] -+ X (n ;::: 0). 

[The stated extension property implies that X is fibrant and simplicially contractible 

(cf. p. 13-26). To deal with the converse, fix a section s : Ll[O] -+ X for P : X -+ Ll[O] and 

a simplicial homotopy H : IX -+ X between SOp and idx. Given J : Ll[n] -+ X, choose 

G : ILl[n] -+ X such that Go io = so (Ll[n] -+ Ll[O]), GIILl[n] = H 0 (J X id~[ll) and put 

........... ' F = Go iI-then FILl[n] = J.] 
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A simplicial pair is a pair (X, A), where X is a simplicialaet and A C X is a simplicial 

subset. Example: Fix Xo E Xo and, in an abuse of notation, let Xo be the simplicial subset 

of X generated by Xo so that (xo)" = {S,,-l ... soxo} (n > I)-then (X, xo) is a simplicial 

pair. 

A pointed simplicial set is a simplicial pair (X, xo). A pointed simplicial map is a base 

point preserving simplicial map 1 : X -+ Y, i.e., a simplicial map 1 : X -+ Y for which 
~[O] 

the triangle fl..y ,,\'0 commutes or, in brief, 1(:1:0) = Yo. 

X f ,Y 
SISET. is the category whose objects are the pointed simplicial sets and whose mor-

phisms are the pointed simplicial maps. Thus SISET. = [.6. oP, SET.) and the forgetful 

functor SISET. -+ SISET has a left adjoint that sends a simplicial set X to the pointed 

simplicial set X+ = X II *. 
[Note: The vertex inclusion eo : 6[0) -+ 6[1] defines the base point of 6[1], hence of 

6[1].] 

~[O] is a zero object in SISET. and SISET. has the obvious products and coproducts. In addition, 
XvY - ~[O] 

the pushout square 1 1 defines the smash product X#Y. Therefore SISET. is a closed 

XxY - X#Y 
category if X ® Y = X#Y and e = 6.[1]. Here, the internal hom functor sends (X, Y) to map. (X, Y), the 

simplicial subset ofmap(X, Y) whose elements in degree n are the / : Xx~[n] -+ Y with /(zo x~[n]) = Yo, 

i.e., the pointed simplicial maps X#~[n]+ -+ Y, the zero morphism OXY being the base point. 

FACT Let i : A -+ X be a pointed cofibration-then for any pointed fibrant Y, the precomposition 

arrow i· : map. (X, Y) -+ map. (A, Y) is a Kan fibration. 
map. (X, Y) - map(X, Y) 

[Consider the pullback square 1 1 
map. (A, Y) - map(A, Y) 

map(A, Y) is a Kan fibration (d. p. 13-22).] 

, recalling that the arrow map(X, Y) -+ 

Application: Fix a pointed fibrant Y-then V pointed X, map. (X, Y) is fibrant. 

Suppose that X is fibrant. Fix Xo E Xo-then the mapping space ex of the pointed 

ex ---+ map(6[1),X) 

simplicial set (X, xo) is defined by the pullback square 1 1 e~ 
6[0) ---+ map(6[0] , X) R:: X 

fl. .. 0 
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Since X is fibrant, eo is a Kan fibration (d. p. 13-22), hence ex is fibrant.Furthermore, 

the composite ex -+ map(..6.[l],X) ..1 map(..6.[O],X) ~ X is a Kan fibration, call it PI
e x ---. map(..6. [1], X) 

Proof: Consider the pullback square PI 1 .1 i* , noting that i* is a 
X map(..6.[l],X) ~ X x X 

I J 
Kan fibration (cf. p. 13-22). 

ex can be identified with map. (A[l], X), thus is a pointed simplicial set. The fiber of PI : ax - X 

over the base point is the loop space OX, i.e., map. (S[l], X), S[l] = A[l]1 ~[1] the simplicial circle. 

Example: V pointed topological space X, there are natural isomorphisms a(sinX) ~ sin ex, n(sinX) ~ 

sinnX. 

LEMMA eo : map(..6.[l],X) -+ map(..6.[O],X) has the RLP w.r.t. the inclusions 

6.[n] -+ ..6.[n] (n ;;:: 0). 
6.[n] -+ map(..6.[l], X) ..6.[n] x ..6.[0] U 6.[n] x ..6.[1] X 

[Convert 1 1 e~ to 1 1 , bearing 

..6.[n] --+ map(..6.[O], X) 
in mind that eo : ..6.[0] -+ ..6.[1] is anodyne.] 

..6.[n] x ..6.[1] * 

PROPOSITION 19 Suppose that X is fibrant-then ex is simplicially contractible. 

[In view of the lemma, this is a consequence of Proposition 18.] 

LEMMA For every simplicial set X, lexl: IXI-IExXlisahomotopyequivaience(d. p. 13-12). 

[Show that lex I is bijective on 1fo and 1f1 and, using an acyclic models argument, that lex I is 

a homology equivalence. To handle the higher homotopy groups, define ex by the pullback square 
ex --+ a sin IXI 

1 1'1 . Since X - sin IXI is a weak homotopy equivalence (d. p. 13-15), the same is 

X --+ sinlXI 
true of ax - a sin IXI (d. p. 13-33). But a sin IXI is simplicially contractible (d. Proposition 19), 

thus ex - * is a weak homotopy equivalence and so Exex - * is a weak homotopy equivalence. In 

addition: ex - X Kan =* Exex - ExX Kan (cf. p. 13-20). Compare the homotopy sequences of 

the associated Serre fibrations and use induction.] 

SIMPLICIAL EXTENSION THEOREM Let (K,L) be a simplicial pair, P : X -+ 

L ~ X 

B a Kan fibration. Suppose given a commutative diagram 1 1p -then V 4> E 
B K --+ 

/ 
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C(IKI,IXI) such that 4>1 ILl = Igl and Ipi 0 4> = If I there is a simplicial map F : K -+ X 

with FIL = g, po F = f, and IFI ~ </>reIILI. 
IBI 

[It will be enough to consider the case when {f tl~] (n 2:: 0). Identify {'i 
'h" . {sinlXI d h 'f d' . {x-+sinIXI h A.. Wlt Its Image In sin IBI un er t e arrow 0 a JunctIon B -+ sin IBI ' so t at Of' E 

c(~n, IXI) = sinn lXI, di 4> E X (0 ~ i ~ n), b" = Ipi 0 4> E Bn. The assertion can 
thus be recast: 3 x E Xn such that x ~ 4>. This being clear if n = 0, take n > 0, write 

sin Ipi 
b" = (B {:J)b, where {:J is an epimorphism and b is nondegenerate, and argue inductively on n 

and on the finite set of epimorphisms having domain [n] (viz., {:J' ~ {:J1t iff V i, {:J'(i) ~ {:J"(i». 

[Note: p Kan => Ipi Serre (cf. Proposition 17) => sin Ipl Kan.] 

(I) {:J: [n] -+ [0]. Here, b E Bo and d.</> E X" (0 < i ~ n). View X" (which 

is fibrant) as a pointed simplicial set with base point </>0 (the oth element in the vertex 

set of </> (cf. p. 13-4». Put Y = X", W = ey, q = PI, and choose a finite sequence 

(wo, ... ,Wn-l, wn) of elements of Wn- I such that diWj = dj-IWi (i < j & i,j =1= n) with 

q(Wi) = di </> (0 ~ i ~ n - 1) (q maps W surjectively onto the component of Y containing 

the base point). Encode the data in the commutative diagram 

A[n, n] -+ sin IWI 

1 1 
~[n] -+ sinlYI 

1:1.. 

to 

produce a 'I/J E sinn IWI : sin Iql('I/J) = </>. The induction hypothesis furnishes a Wn E 

Wn- I : Wn ~ dn'I/J. On the other hand, W is simplicially contractible (cf. Proposition 
sin Iql 

19), so one can find awE Wn : diW = Wi (0 ~ i < n) (cf. Proposition 18). Claim: 

x.~ </>, where x = q(w). To see this, fix a simplicial homotopy H : I~[n - 1] -+ 
SIn Ipi 

sinlWI relA[n -1] over sin IYI such that H 0 io = ~w .. , H 0 i 1 = ~d .. "'. Define a simplicial 

map H : ~[n] X A[I] U A[n] x ~[1] -+ sin IWI by the recipe H 0 io = ~w, H 0 i l = ~"', 
H(diid[nl' t) = Wi (0 < i < n-l), H(dnid[n] , t) = H(id[n-I], t). Using the fact that (I?I, sin) 

is an adjoint pair, H determines a continuous function G: io~nUil~nUIAn -+ IWI which 

can then be extended to a continuous function G : I~n -+ IWI (IWI is contractible). Pass 

back to get a simplicial homotopy if : I~[n] -+ sin IWI extending H. Consider the 

composite sin Iql 0 if followed by the inclusion sin IYI-+ sin IXI. 

(II) {:J: [n] -+ [m] (m > 0). Let k = m,in i: {:J(i) =1= {:J(i + 1). Choose x E Xn : 
O<.<n 

d.x = di</> (0 ~ i ~ n -1) with p(x) = b" and ch~s; 'I/J E sinn+1IXI : dk'I/J = x, dk+I'I/J = </>, 

di'I/J = diSk</> (0 ~ i ~ n, i =1= k, k + 1) with Ipl o'I/J = skbq,-then 3 y E Xn : y.~ dn+1'I/J 
8ln Ipi 

, (induction). Choose wE X n+1 : dkW = x, dn+Iw -:- y, djw = diSk</> (0 ~ i ~ n, i =1= k, k+l) 

with pew) = Skb". Fix a simplicial homotopy H : I ~[nJ -+ sin IXI reI A[n] over sin IBI such 
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that H 0 io = tl." H 0 i l = tl.dn+l" and incorporate the choices into a simplicial homotopy 

H : Itl.[n + 1] -+ sinlXI satisfying H 0 io = tl.w, H 0 i l = tl.", H(diid[n+l],t) = diW 

(0 ~ i ~ n,i =f.: k + 1), H(dn+lid[n+l],t) = H(id[n],t),lpl 0 H(id[n+l],t) = s"bt;. Put 
x = d"+l W and examine H 0 (tl.[.5"+l] X id~[l]) : Itl.[n] -+ sin IXI to conclude that x . ~ <p.] 

SIn Ipi 

Specialized to B = *, one can say that if (K, L) is a simplicial pair and X is fibrant, then given 

a simplicial map 9 : L - X and a continuous extension ,p : IKI - IXI of 191, there exists a simplicial 

extension F: K - X of 9 such that IFI ~ ,preIILI. Conversely, every simplicial set X with this property is 

fibrant. Proof: The geometric realization of a simplicial map A[k, n] - X can be extended to a continuous 

function ~n -IXI. 

Example: Suppose that X is fibrant-then X is a strong deformation retract of sin IXI. 

X id-X) X 
[Apply the simplicial extension theorem to the commutative diagram 1 

sinlXI 
taking for <p E e(1 sin lXII, IXI) the arrow of adjunction I sin IXII -+ IXI.] 

1 ' 
* 

EXAMPLE Let {; be simplicial sets. Assume: Y is fibrant-then there is a weak homotopy 

equivalence I map(X, Y)I - map(IXI, IYD· 

[Since Y is fibrant, the arrow of adjunction Y - sin IYI is a simplicial homotopy equivalence, thus 

the arrow map(X, Y) - map(X, sin IYI) is a simplicial homotopy equivalence. But map(X, sin IYI) ~ 

sinmap(IXI,IYD and the arrow of adjunction Isinmap(IXI, IYDI - map(IXI,IYI) is a weak homotopy 

equivalence (Giever-Milnor theorem).] 

PROPOSITION 20 Let {~ be fibrant-then a simplicial map f : X -+ Y is a 

simplicial homotopy equivalence iff its geometric realization If I : IXI-+ IYI is a homotopy 

equivalence. 

[In general, geometric realization takes simplicial homotopy equivalences to homotopy 

equivalences. The fibrancy of X & Y is used to go the other way. Thus fix a homotopy 

inverse 9 : IYI -+ IXI for If I and let r : sin IXI -+ X be a simplicial homotopy inverse for 

X -+ sin IXI (cf. supra)-then the composite Y -+ sin IYI ~sin IXI ~X is a simplicial 

homotopy inverse for f.] 
[Note: It is a corollary that a fibrant X is simplicially contractible iff IXI is con

tractible.] 

Application: Suppose that {~ are topological spaces and f : X -+ Y is a continuous 
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function-then I is a weak homotopy equivalence iff sin I : sin X ~ sin Y is a simplicial 

'- homotopy equivalence. 

[H I is a weak homotopy equivalence, then I sin II isa weak homotopy equivalence 

(d. p. 13-17) or still, a homotopy equivalence. But this means that sin I is a simplicial 

homotopy equivalence, {s~nxy being fibrant.] 
SIn 

A simplicial set X is said to be finite if IXI is finite. 

[Note: A finite simplicial set is a simplicial object in the category of finite sets (but not conversely).] 

SIMPLICIAL APPROXIMATION THEOREM Let {: be simplicial sets with X finite. 

Fix 4> e C(IXI, IYI}-then 3 n > 0 and a simplicial map I : Sd" X -+ Y such that III ~ 4> 0 Idx I. 
[Since Exoo Y is fibrant (d. p. 13-21), it follows from the simplicial extension theorem that there 

exists a simplicial map F : X -+ Exoo Y such that IFI ~ ley I 0 4>. But X is finite, so F factors through 

Ex" Y for some n.] 

[Note: The natural transformations d" : Sd" -+ id are defined inductively by d'1- = idx, d~+l = 
dx odSd" x·] 

PROPOSITION 21 Let p : X ~ B be a simplicial map-then p is a Kan fibration 

and a weak homotopy equivalence iff p has the RLP w.r.t. the inclusions A[n] ~ ~[n] 
(n ~ 0). 

[That the condition is sufficient has been noted on p. 13-26. As for the necessity, one 

can assume that p is minimal (cf. Proposition 16). To construct a filler ~[n] ~ X for 

A[n] --+ X A[n] --+ X. 

1 1p (b E B n ), it suffices to construct a filler ~[n] ~ X. for 1 1. 
~[n] -;;:: B ~[n] _ ~[n] 

But the projection X. ~ ~[n] is a weak homotopy equivalence (d. p. 13-27) and X. is 

trivial over ~[n] (d. Proposition 14), say X. ~ ~[n] X T., where T. is fibrant. Therefore 

IT.I is contractible, hence T. is simplicially contractible. Now quote Proposition 18.] 

Recall that CGH in its singular structure is a proper model category (cf. p. 12-12). 

FUNDAMENTAL THEOREM OF SIMPLICIAL HOMOTOPY THEORY SISET 
IS a proper model category if weak equivalence=weak homotopy equivalence, cofibra

tion=injective simplicial map, fibration=Kan fibration. Every object is cofibrant and the 

fibrant objects are the fibrant simplicial sets. 
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[Axioms MC-1, MC-2, and MC-3 are immediate. 

Claim: Every simplicial map I : X -+ Y can be written as a composite Iw 0 iw, ~here 
iw : X -+ Xw is an anodyne extension and Iw : Xw -+ Y is a Kan fibration. 

[In the small object argument, take So = {A[k, n] -+ ~[n] (0 < k ~ n, n ~ In.] 
Claim: Every simplicial map I : X -+ Y can be written as a composite Iw 0 iw, where 

iw : X -+ Xw is a cofibration and Iw : Xw -+ Y is both a weak homotopy equivalence and 

a Kan fibration. 

[In the small object argument, take So = {6[n] -+ ~[n] (n > On.] 
Combining the claims gives MC-5. Turning to MC-4, consider a commutative diagram 

A ~ X 

il lp ,where i is a cofibration and p is a Kan fibration. H p is a weak homotopy 
Y --+ B 

II 

equivalence, then the existence of a filler w : Y -+ X is implied by Proposition 7 and 

Proposition 21. On the other hand, if i is a weak homotopy equivalence, then by the :first 

claim i = q 0 j, where j : A -+ Z is anodyne and q : Z -+ Y is a Kan fibration which is 

necessarily a weak homotopy equivalence, so 3 I : Y -+ Z such that I 0 i = j, q 0 I = idy. 

Consequently, i is a retract of j, thus is itself anodyne. 

There remains the verification of PMC. Since all objects are cofibrant, half of this 

is automatic (cf. §12, Proposition 5). Employing the usual notation, consider a pull

P ~ Y 
back square £ 1 

X --+ 
I 

l'in SISET. Assume: 9 is a Kan fibration and I is a weak ho
Z 

motopy equivalence-then.,., is a weak homotopy equivalence. 

IPI 
Proof: lell 

IXI --+ 
III 

is a pullback square in CGH (cf. Proposition 1), Igi is a Serre fibration (cf. Propo-

sition 17), and III is a weak homotopy equivalence. Therefore 1.,.,1 is a weak homotopy 

equivalence.] 

[Note: It is a corollary that SISET. (= ~[O]\SISET) is a proper model category.] 

EXAMPLE (Simplicial Groups) The free group functor Fgr : SET - GR extends to a functor 

Fgr : SISET - SIGR which is left adjoint to the forgetful functor U : SIGR - SISET. Call a 

homomorphism f : G - K of simplicial groups a weak equivalence if U f is a weak homotopy equivalence, 

a fibration if U f is a Kan fibration, and a cofibration if f has the LLP w.r.t. acyclic fibrations-then 

with these choices, SIGR is a model category. Here the point is that f : G _ K is a fibration (acyclic 
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fibra.tion) iffit has the RLP w.r.t. the arrows FgrA[k, n] -+ Fgr6[n] (0 ~ k ~ n, n ~ 1) (FgrLl[n] -+ Fgr6[n] 

(n ~ 0». Since Fgr preserves cofibrations and U preserves fibra.tions, the TDF theorem implies that 

LFgr : HSISET -+ HSIGR and RU : HSIGR -+ HSISET exist and constitute an adjoint pair. 

[Note: Every object in SIGR is fibrant (cf. p. 13-21) but not every. object in SIGR is cofibrant. 

Definition: A simplicial group G is said to be free if V n, Gn is a free group with a specified basis Bn such 

that siBn C Bn+1 (0 ~ i ~ n). Every free simplicial group is cofibrant and every cofibrant simplicial 

group is the retract of a free simplicial group.] 

EXAMPLE (Groupoids) GRD acquires the structure of a model category when one stipulates 

that a functor F is a weak equivalence if F is an equivalence of categories, a cofibration if F is injective 

on objects, and a fibration if ner F is a Kan fibration. All objects are cofibrant and fibrant. 

EXAMPLE (G-Sets) Fix a group G. Denote by G the groupoid having a single object * with 

Mor (*, *) = G-then the category SET G of right G-sets is the functor category [GoP, SET] and the cat

egory of simplicial right G-sets SISET G is the functor category [40P , [GoP, SET]] ~ [(4 x G)OP ,SET]. 

Claim: SISET G is a model category. Thus let U : SISET G -+ SISET be the forgetful functor and declare 

that a morphism f : X -+ Y of simplicial right G-sets is a weak equivalence if U f is a weak homotopy 

equivalence, a fibration if U f is a Kan fibration, and a cofibration if f has the LLP w.r.t. acyclic fibrations. 

(CO) An object X in SISETG is cofibrant iff V n, Xn is a free G-set. 

Fix a cofibrant XG in SISETG such that XG -+ * is an acyclic fibration. Put BG = XGfG-then 

XG is simplicially contractible and locally trivial with fiber G (i.e., siG), the projection XG -+ BG is a 

Kan fibration, BG is fibrant, and IBGI is a K(G, 1). Explicit models for (XG, BG) can be found, e.g., in 

the notation of p. 0-45, XG = bar(*j GjG) (~nertranG), BG bar(*j Gj *) (~ nerG). 

[Note: U has a left adjoint FG which sends X to X x siG. And, thanks to the TDF theorem, 

(LFG, RU) is an adjoint pair.] 

Remark: The class of anodyne extensions is precisely the class of acyclic cofibrations. 

Claim: Sd preserves anodyne extensions. For suppose that f : X -+ Y is anodyne and form the 

SdX ~ SdY 

commutative diagram dxl 1 dy . Since Sd preserves injections, Sd f is a cofibration. But 

X ---+ Y 
f 

dx & d y are weak homotopy equivalences (cf. Proposition 5), thus Sdf is an acyclic cofibration, Le., is 

anodyne. 

PROPOSITION 22 Suppose that L -+ K is an inclusion of simplicial sets and X -+ B 

- is a Kan fibration-then the arrow map(K, X) -+ map(L, X) Xmap(L,B) map(K, B) is. a 



Kan fibration (cf. Proposition 12) which is a weak homotopy equivalence if this is the case 

of L ~ K or X ~ B. 

. [Owing to Proposition 21, the problem is to produ~e a filler D.[n] x K ~ X for 
D.[n] x K U D.[n] x L ---. X 

ill. If L ~ K is an acyclic cofibration, then, as pointed out 

D.[n1 x K B 
above, L ~ K is anodyne. Therefore i is anodyne (d. Proposition 9) and the filler exists. 

If X ~ B is an acyclic Kan fibration, then the existence of the filler is guaranteed by 

MC-4.] 

HSISET is the homotopy category of SISET (cf. p. 12-24 ff.). In this situation, IX 

= X x .0.[1] serves as a cylinder object while PX = map(D.[l] , X) is a path object when 

X is fibrant but not in general (Berger t ). Since all objects are cofibrant, .eX = X V X 

and there are canonical choices for nx, e.g., sin IXI or Ex 00 X. If X is cofibrant and 

Y is fibrant, then left homotopy=right homotopy or still, simplicial homotopy: [X, Y] :::::: 
[X, Y]o. HSISET has finite products. And: HSISET is cartesian closed. Proof: [X x 

Y,Z]:::::: [X x Y,sinIZI]:::::: [X x Y,sinIZl]o:::::: [X,map(Y,sinIZl)Jo:::::: [X,map(Y,sinIZI)1. 

[Note: Recall too that the inclusion HSISETr ~ HSISET is an equivalence of . 

categories (cf. §12, Proposition 13).] 

Example: X and XOP are naturally isomorphic in HSISET. 

FACT Let S C Mor HoSISET be the class of homotopy classes of anodyne extensions-then 

S-lHoSISET is equivalent to HSISET. 

COMPARISON THEOREM The adjoint pair (I?I, sin) induces an adjoint equivalence 

of categories between HSISET and HTOP (singular structure). 

[In the TDF theorem, take F = I?I, G = sin-then F preserves cofibrations and G 

preserves fibrations, thus {i~ exist and (LF, RG) is an adjoint pair. Consider now the 

bijection of adjunction 2 x ,Y : C(IXI, Y) ~ Nat(X, sin Y), so 2x,Y I is the composition 

X ~ sin IX I ~ sin Y. Since the arrow X ~ sin IX I is a weak homotopy equivalence 

(cf. p. 13-15), 2x,Y I is a weak homotopy equivalence iff sin I is a weak homotopy equiva

lence, i.e., iff I is a weak homotopy equivalence (cf. p. 13-17).· Therefore the pair (LF, RG) 
is an adjoint equivalence of categories (cf. p. 12-29).] 

Application: HSISET is equivalent to HeW. 

t Bull. Soc. Math. France 123 (1995), 1-32. 
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[Note: Analogously, HSISET. is equivalent to HeW •. ] 

Are there other model categories C whose associated homotopy category HC is equiv

alent to HCW? The answer is "yes". 

EXAMPLE Take C = CAT and call a morphism f a weak equivalence if Ex2 0 ner f is a weak 

homotopy equivalence, a fibration if Ex2 0 ner f is a Kan fibration, and a cofibration if f has the LLP 

w.r.t. all fibratioDS that are weak equivalences-then Thomasont has shown that eAT is a proper model 

{ 
F=coSd2 

category. Put : (F, G) is an adjoint pair with the property that F preserves cofibrations 
G = Ex2 oner 

and G preserves fibratioDS, thus {LF exist and (LF, RG) is an adjoint pair (TDF theorem). Moreover, 
RG 

the arrow X -+ Ex2 
0 ner 0 c 0 Sd2 X is a weak homotopy equivalence of simplicial sets, 80 the pair 

(LF, RG) is an adjoint equivalence of categories. It therefore follows that HSISET, HeAT, and HeW 

are equivalent. 

[Note: Latch1 proved that ner: eAT -+ SISET induces an equivalence HeAT -+ HSISET (but 

the adjoint pair (c, ner) does not induce an adjoint equivalence).] 

EXAMPLE The category of simplicial groupoids is a model category and its homotopy category 

is equivalent to HSISET, hence to HCW (Dwyer-Kanll ). 

[Note: A simplicial groupoid G is a category object (M, 0) in SISET, where 0 is a constant simplicial 

set, equipped with a simplicial map X : M -+ M such that 8 = to X, t = 80 X, co (X X idM ) eo s, 

co (idM X X) :;;;:; e 0 t. So, V n, G" is a groupoid and Ob G" :;;;:; Ob Go. Introducing the obvious notion of 

morphism, the simplicial groupoids are seen to constitute a category which is complete and cocomplete. 

Its model category structure is derived from (1)-(3) below. 

(1) A morphism F : G -+ K of simplicial groupoids is a weak equivalence if F restricts to a 

bijection on components and V X E 0, the induced morphism G(X) -+ K(FX) of simplicial groups is a 

weak equivalence. 

(2) A morphism F : G -+ K of simplicial groupoids is a fibration if Fo : Go -+ Ko is a 

fibration of groupoids and V X E 0, the induced morphism G(X) -+ K(FX) of simplicial groups is a 

fibration. 

(3) A morphism F : G -+ K of simplicial groupoids is a cofibration if it has the LLP w.r.t. 

acyclic fibratioDS.] 

t CahierlJ Topologie GI-om. Diflerentielle 21 (1980), 305-324. 

* J. Pure Appl. Algebra 9 (1977), 221-237. 

II Nederl. Akad. Wetensch. Indag. Math. 46 (1984), 379-385; see also Heller, Illinois J. Math. 24 

(1980), 576-605. 
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Fix a small category I-then the functor category [I, SISET] admits two proper model 

category structures. However, the weak equivalences in either structure are the same, so 

both give rise to the same homotopy category H[I, SISET]. 

(L) Given functors F, G : 1-+ SISET, call S E Nat(F, G) a weak equivalence 

if 'V i, Si : Fi -+ Gi is a weak homotopy equivalence, a fibration if 'V i, Sa : Fi -+ Gi is a 

Kan fibration, a cofibration if S has the LLP w.r.t. acyclic fibrations. 

(R) Given functors F, G : I -+ SISET, call SEN ate F, G) a weak equivalence 

if 'V i, Si : Fi -+ Gi is a weak homotopy equivalence, a cofibration if 'V i : Sa : Fi -+ Gi is 

an injective simplicial map, a fibration if S has the RLP w.r.t. acyclic cofibrations. 

In practice, both structures are used but for theoretical work, structure L is generally 

the preferred choice. 

[Note: When I is discrete, structure L=structure R (all data is levelwise).] 

Since the arguments are dual, it will be enough to outline the proof in the case of structure L. 

Notation: Let / : X - Y be a simplicial map--then / admits a functorial factorization X j. C J ~ Y, 

where i J is a cofibration and 1C'J is an acyclic Kan fibration, and a functorial factorization X':.!. 'R..J ~ Y, 

where £J is an acyclic cofibration and PJ is a Kan fibration. 
i- ,..-

Observation: These factorizations extend levelwise to factorizations of E : F - G. viz. F -=; Cs ....:; G 
''=' p-::: 

and F":::; 'R..s -=+ G. 

Write I.iis for the discrete category underlying I-then the forgetful functor U [I, SISET] -

[ldis, SISET] has a left adjoint that sends X to frX, where frXj = IJ Mor (i, j) . Xi. 
ieObl 

LEMMA Fix an F in [I, SISET]. Suppose that 1/1 : U F - X is a cofibration in [I.iis, SISET] and 
frt) 

frUF --+ frX 

1" is a pushout square in [I, SISET1-then the composite Uu 0 POx : X ~ UfrX ~ UG 

F ---+ G 

is a cofibration in [ldis, SISET]. 

, [The commutative diagram 

Xj Xj 

! !(I'X)j 

( II Fi) Il Fj ---+ ( II Fi) Il Xj ---+ ( II Xi) Il Xj 

'6'1 '6'1 '6'1 
'-J '-J '-J 
6 'jill idj 6'j11lidj 6'j11lidj "J 
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tells the tale. Indeed, the middle row is a factorization of (frw)j (suppression of "U"), the bottom square 

on the right is a pushout, and a coproduct of cofibrations is a cofibration.] 

[Note: As usual, {: are the ambient arrows of adjunction.] 

Consider any E : F -t G. Claim: E can be written as the composite of a cofibration and an acyclic 
frUi'C' 

frU F -4 frU £s 

fibration. Thus define Fl by the pushout square "F 1 
F 

diagram 

£s 

1 -then there is a commutative 

--+ 

in which frU£s -t Fl -t £s is II,CS' Putting Fo = F (and Eo = E), iterate the construction to obtain 

a sequence F = Fo -t Fl -t .. , -t FIAI of objects in [I, SISET], taking FIAI = colim Fn. This leads to a 

F 
ilAl .,. 

) rIAl 

,-, commutative triangle ~ /sIAl' Here, i lAl is a cofibration (since the Fn -t Fn+l are). Moreover, i lAl 

G 
is a weak equivalence whenever E is a weak equiValence and in that situation, i lAl has the LLP w.r.t. all 

fibrations. 'Ib see that EIAI is an acyclic fibration, look at the interpolation 

UFo ---+ U £so ---+ U Fl ---+ U £Sl ---+ ... 

1 1 1 1 
UG UG UG UG 

in [Idis, SISET]. Thanks to the lemma, the horizontal arrows in the top row are cofibrations. On the 

other hand, the arrows U£Sn -t UG are acyclic fibrations. But then UEIAI is an acyclic fibration per 

[Idis, SISET], i.e., EIAI is an acyclic fibration per [I, SISET]. Hence the claim. 

To finish the verification of MC-5, one has to establish that E can be written as the composite of an 

acyclic cofibration and a fibration. This, however, is immediate: Apply the claim to 's. MC-4 is equally 

clear. For if E is a cofibration, then E is a retract of i lAl , so if E is an acyclic cofibration, then E has the 

LLP w.r.t, all fibrations. PMC is obvious. 

EXAMPLE Definition: A functor F : I -t SISET is said to be free if 3 functors Bn : Idis -t SET 

(n ~ 0) such that V j e ObI: Bnj C (Fj)n &; 8;Bnj C Bn+d (0 :$ i :$ n), with frBn ~ Fn 

(Fnj = (Fj)n). Every free functor is cofibrant in structure L and every cofibrant functor in structure Lis 

the retract of a free functor. Example: ner(I/-) is a free functor, hence is cofibrant in structure L. 
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Fix an abelian group G . Let I : X -+ Y be a simplicial map-then I is said to be an 

HG-equivalence if 'V n ~ 0, III. : Hn(IXI; G) -+ Hn(IYj; G) is an isomorphism. Agreeing 

that an HG-cofibration is an injective simplicial map, an HG-fibration is a simplicial 

map which has the RLP w.r.t. all HG-cofibrations that are HG-equivalences. Every HG
fibration is a Kan fibration. Proof: A k,n is a strong deformation retract of ~ n. 

PROPOSITION 23 Let P: X -+ B be a simplicial map-then P is an HG-fibration 

and an HG-equivalence iff P is a J(an fibration and a weak homotopy equivalence. 
I 

[Necessity: Write p = q 0 j,' where j : X -+ Y is a cofibration and q : Y -+ B is 

an acyclic Kan fibration. Since p is an H G-equivalence, the same is true of j, thus the 
X - X 

commutative diagram j 1 l' admits a filler 9 : Y -+ X. Therefore p is a retract of 
Y ~ B , 

q, hence is an acyclic Kan fibration. 

Sufficiency: Apply Proposition 7 and Proposition 21.] 

Notation: Given a simplicial set X, write #(X) for #(e), the cardinality of the set of 

cells in IXI. 

[Note: 'V set X, #(siX) = #(X), the cardinality of X.] 

PROPOSITION 24 Let p : X -+ B be a simplicial map which has the RLP w.r.t. 

every inclusion A -+ Y, where H.(IYI, IAI; G) = 0 and #(Y) is ::; #(G) if #(G) is infinite 

and ::; w if #( G) is finite-then p is an HG-fibration. 

[It suffices to prove that p has the RLP w.r.t. every inclusion L -+ K (L ¥- K) with 

H.(IKI, ILl; G) = O. This can be established by using Zorn's lemma. Indeed, 3 a simplicial 

subset A C K (A rt L) such that H.(IAI, IA n LI; G) = 0 subject to the restriction that 

#(A) is ::; #(G) if #(G) is infinite and ::; w if #(G) is finite (cf. p. 9-25).] 

PREFACTORIZATION LEMMA Suppose that K is an infinite cardinal. Let I : 
X -+ Y be a simplicial map-then I can be written as a composite I = PI 0 iI, where 

i I : X -+ X I is an injection with H. (IX I I, IX I; G) = 0, such that every commuta.tive 
il L--+X---+XI 

diagram 1 1,1 has a filler K -+ Xj, (K,L) being any simplicial pair with 

K IY 
#(K) ::; K and H.(IKI, ILl; G) = O. 

[Choose a set of simplicial pairs (K.,L.) with #(Ki) < K and H.(IKil,ILil;G) = 0 

which contains up to isomorphism all such simplicial pairs. Consider the set of pairs 
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Li ~ X 

of morphisms (g, h) such that the diagram 1 11 commutes, define XI by the 
Ki --+ Y 

A 

II II Li ) X 
i (g,A) 1 l' 

pushout square ", and let PI : XI -+ Y be the induced simplicial map.] 

II II Ki ----+-XI 
i (g,A) 

HOMOLOGICAL MODEL CATEGORY THEOREM Fix an abelian group G-then 

SISET is a model category if weak equivalence=H G-equivalence, cofibration=H G

cofibration, fi bration=H G-fibration. 

[On the basis of Proposition 23, one has only to show that every ·simplicial map 

f : X -+ Y can be written as a composite poi, where i is an acyclic HG-cofibration 

and P is an HG-fibration. This can be done by a transfinite lifting argument, using the 

prefactorization lemma with K, a regular cardinal> #(G) (cf. Proposition 24).] 

[Note: The fibrant objects in this structure are the HG-local objects, i.e., those X 

such that X -+ * is an HG-fibration.] 

PROPOSITION 25 Suppose that L -+ K is an inclusion of simplicial sets and X -+ B 

is an HG-fibration-then the arrow map(K, X) -+ map(L, X) Xma.p(L,B) map(K, B) is an 

HG-fibration which is an HG-equivalence if this is the case of L -+ K or X -+ B. 

EXAMPLE The model category structure on SISET provided by the homological model category 

theorem is generally not proper. Thus factor X - * as X - XHG - *, where X - XHG is an acyclic 

HG-cofibration and XHG - * is an HG-fibration. Assuming that X is fibrant and connected, define 
EHG --+ eXHG 

EHG by the pullback square 1 1 -then the arrow E HG - eXHG is not necessa.rilyan 

HG-equivalence. 

FACT Suppose given simplicial maps I : X - Y, 9 : Y - Z, where I is a Kan fibration and 9, 

go I are HG-fibrations-then I is an HG-fibration. 

Application: If I: X - Y is a. Kan fibration and {; are HG-Iocal, then I is an HG-fibration. 

EXAMPLE The HG-Iocal objects in SISET are closed under the formation of products and 

map(X, Y) is HG-Iocal V X provided that Y is HG-Iocal. Given a 2-sink xL Z !.- Y of HG-Iocal objects 
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with I a Kan fibration, the pullback X Xz Y is HG-Iocal. Finally, for any tower Xo +- Xl +- .•. of Kan 

fibrations and HG-local X"" the limit limX", is HG-Iocal. 

A simplicial category is a SISET-category. So, to specify a simplicial category one 

must specify a class of objects 0 and a function that assigns to each ordered pair X, YEO 

a simplicial set HOM(X, Y) plus simplicial maps CX,y,Z : HOM(X, Y) x HOM(Y, Z) -+ 

HOM(X, Z), Ix : .6.[0] -+ Hom(X, X) satisfying SISET-catl and SISET-cat2 (cf. p. 

0-40). Here is an equivalent description. Fix a class O. Consider the metacategory CATo 
whose objects are the categories with object class 0, the morphisms being the functors 

which are the identity on objects-then a simplicial category with object class 0 is a 

simplicial object in CATo. 

A category object (M,O) in SISET, where 0 is a constant simplicial set, is a simplicial category. In 

particular: A simplicial groupoid is a simplicial category (cf. p. 13-36). 

EXAMPLE There is a functor A OP - SISET which sends [n] to .6.[1]'" and • • ,where {
6' toa' 

at to 8, 

{ 

(a2, ... ,a",) (i = 0) 

a.(al, ... ,a",) = (al, ... ,max(ai+l,a,), ... ,a",) (~< i < n) , 

(al,'" ,a",-t) (. = n) 

8i(at. ... ,atl) = (at, ... ,ai,O,ai+l,'" ,atl). Now fix a small category C. Given X,Y e ObC, 

let C = C(X, Y) be the c08implicial set defined by taking for C(X, Y)'" the set of all functors F : 

[n + 1] _ C with Fo = X, F"'+t = Y and letting C6;. : C'" _ C",+I, Co';' : cn _ C",-1 be the assign-

ments (fo, ... ,J"') - (fo) ... ) Ii-l ,id, Ii, ... ,I",), (fo, . .. ,/ro) - (fo, ... ,/i+l 0 Ii, ... ,J"')' Definition: 

/
["'] j["'] 

HOM(X, Y) = .6.[1]" X C(X, Y)"'. Since HOM(X, Y)m = .6.[1]~ X C(X, Y)"', one can intro-

duce a ('composition" rule and a "unit" rule satisfying the axioms. The upshot, therefore, is a simplicial 

category FRC with 0 = ObC. 

[Note: The abstract interpretation of FRC is this. Observe first that the forgetful functor from 

CAT to the category of small graphs with distinguished loops at the vertexes has a left adjoint. Consider 

the associated cotriple in CAT-then the standard resolution of C is FRC and the underlying category 

UFRC is the free category on ObC having one generator for each nonidentity morphism in C.] 

Let C be a category. Suppose that X, Y are simplicial objects in C and let K be 

a simplicial set-then a formality f : X 0 K -+ Y is a collection of morphisms f n (k) : 

Xn -+ Yn in C, one for each n > 0 and k E K n, such that Ya 0 fn(k) = fm«Ka)k) 0 Xa 

(a : [m] -+ [n]). Notation: For(XDK, Y). Example: For(XD.6.[O], Y) can be identified 

with Nat(X, Y). 
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[Note: As it stands, XOK is just a symbol, not an object in SIC (but see below).] 

PROPOSITION 26 Let C be a category-then the class of simplicial objects in C is 

the object class of a simplicial category SIMCo 

[Define HOM(X, Y) by letting HOM(X, Y)n be For(X O.6.[n], Y).] 

[Note: SIC is isomorphic to the underlying ca.tegory of SIMC.] 

A simplicial functor is a SISET-functor. Example: IT {~ are categories and F : 

C -+ D is a functor, then F extends to a. simplicial functor SF: SIMC -+ SIMD. 

EXAMPLE CAT is cartesian closed, hence can be viewed 88 a CAT-category. Since ner : CAT -+ 

SISET is a morphism of symmetric monoidal categories, ner.CAT is a simplicial category whose object 

class is the class of small categories, HOM(C, D) being ner[C, D] (d. p. 9-41). One may therefore 

interpret ner 88 a simplicial functor ner.CAT -+ SISET (for ner[C, D] ~ map(ner C, nerD». 

Given a category C, a simplicial action on C is a functor 0 : C x SISET -+ C, 

together with natural isomorphisms R and A, where Rx : X 0.6.[0] -+ X, AX,K,L : 

XO(K xL) -+ (XOK)OL, subject to the following assumptions. 

(SAd The diagram 

XO(K x (L x M)) ~(XOK)O(L x M) ~«XOK)OL)OM 

idOA! lAO id 

XD«K x L) x M) -----::'A----..; (XO(K x L))OM 

commutes. 

(SA2 ) The diagram 

commutes. 

XO(.6.[O] x K) ~(XO.6.[O])OK 

idOL! 

XOK 

!ROid 

XOK 

[Note: Every category admits a simplicial action, viz. the trivial simplicial action.] 

It is automatic that the diagr&m 

XO(K x .6.[0]) ~ (X OK) 0.6.[0] 

IdOR! !R 
XOK====XOK 
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commutes. 

EXAMPLE If 0 is a simplicial action on C, then for every small category I, the composition 
[I,e] 

[I, C] x SISET - [I, C] x [I, SISETI s::::: [I, C x SISET] I [I, C] is a simplicial action on [I, C]. 

PROPOSITION 2T Let C be a category. Assume: C admits a simplicial action 

O-then there is a simplicial category DC such that C is isomorphic to the underlying 

category U 0 C. 

[Put 0 = Ob C and assign to each ordered pair X, YEO the simplicial set 

HOM(X, Y) defined by HOM(X, Y)n = Mor(XO~[n], Y) (n ~ 0). 

(Composition) Given X, Y, Z, let CX,Y,Z : HOM(X, Y) x HOM(Y, Z) -+ 

HOM (X, Z) be the simplicial map that sends {~; :~t[~]: i to the composite 

idOdi A /0 id 
XO~[n] I XO(~[n] x ~[n]) -+(XO~[n])O~[n] I YO~[n].!.. Z. 

(Unit) Given X, let Ix : ~[O] -+ HOM(X,X) be the simplicial map that sends 

[n] -+ [0] to XO~[n] -+ XO~[O] ~ X. 

Call 0 C the simplicial category arising from this data. That C is isomorphic to the 

underlying category UOC can be seen by considering the functor which is the identity 

on objects and sends a morphism f : X -+ Y in C to X 0 ~[O] ~ X !.... Y, an element of 

Mor (X O~[O], Y) = HOM(X, Y)o R:: Nat(~[O], HOM(X, Y)).] 

[Note: HOM: cOP x C -+ SISET is a functor and the simplicial set HOM (X, Y) is 

called the simplicial mapping space between X and Y. Example: Take for 0 the trivial 

simplicial action-then in this case, HOM(X, Y) = siMor(X, Y).] 

Examples: (1) SISET admits a simplicial action: KOL = K x L (so HOM(K, L) = 

map(K, L))j (2) CGH admits a simplicial action: XOK = X Xk IKI (so HOM(X, Y)n = 

all continuous functions X Xk~n -+ Y)j (3) SISET. admits a simplicial action: KOL = 

K#L+ (so HOM(K,L) = map.(K,L))j (4) CGH. admits a simplicial action: XOK = 
X#kIKI+ (so HOM(X,Y)n = all pointed continuous functions X#k~+ -+ Y). 

[Note: IT X, Y are in CGH, then HOM(X, Y) R:: sin(map(X, Y)) and if X, Y are in 

CGH., then HOM(X, Y) R:: sin(map.(X, Y)). In either situation, HOM(X, Y) is fibrant.] 

Neither TOP nor TOP. fits into the preceding framework (products or smash products are preserved 

in general only if the compactly generated category is used). This difficulty can be circumvented by 

restricting the definition of simplicial action to the full subcategory of SISET whose objects are the finite 

simplicial sets. It is therefore still the case that TOP (TOP.) is isomorphic to the underlying category of 
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a simplicial category with HOM(X, Y)n = all continuous functions X x iln _ Y (all pointed continuous 

functions X #il+' - Y). 

Example: Let C be a category. Assume: C has coproducts-then SIC admits a 

simplicial action 0 such that OSIC is isomorphic to SIMC (cf. Proposition 26). 

[Define XOK by (XOK)n = Kn . Xn (thus for a : [m] -+ [n], Kn . Xn ~ Kn . 

Xm ~ Km . Xm). The symbol XOK also has another connotation (cf. p. 13-41). To 

reconcile the ambiguity, note that there is a formality in: XOK -+ XOK, where inn(k) : 

Xn -+ (X OK)n is the injection from Xn to Kn . Xn corresponding to k E Kn (cf. p. 0-

8). Moreover, in* : Nat(XOK, Y) -+ For(X OK, Y) is bijective and functorial. Therefore 

OSIC and SIMC are isomorphic.] 

[Note: 0 is the canonical simplicial action on SIC.] 

EXAMPLE Let I be a small category-then there is an induced simplicial action on [I, SISETj 

«FDK)i = Fi x K (cf. p. 13-43». And: HOM(F, G):::::: 1 map(Fi, Gi). In fact, HOM(F, G)n :::::: 

Nat(FOil[n],G) :::::: 1 Nat(Fi x il[n],Gi) :::::: 1 Nat(il[n],map(Fi, Gi» :::::: Nat(il[n], 1 map(Fi, Gi» 

:::::: (1 map(Fi, Gi»n. 

A simplicial action 0 on a category C is said to be cartesian if V X E Ob C, the 

functor X 0- : SISET -+ C has a right adjoint. 

Example: Let C be a category. Assume: C has coproducts-then the canonical 

simplicial action 0 on SIC is cartesian. 

[Let HOM(X, Y) be the simplicial set figuring in the definition of SIMC, so 

HOM(X,Y)n = For(XO~[n],Y) (cf. Proposition 26). Define ev E For(X OHOM(X, Y), 

Y) by evn(f) = fn(id[n]) : Xn -+ Yn' Viewing ev as "evaluation", there is an induced 

functorial bijection Nat(K, HOM(X, Y)) -+ For(XOK, Y). However, For(XOK, Y) ~ 

Nat(XOK, Y) (cf. supra), hence 0 is cartesian.] 

PROPOSITION 28 Suppose that the simplicial action 0 on C is cartesian-then 

V X E ObC, HOM(X,-): C -+ SISET is a right adjoint for XO-. 

[Given a simplicial set K, write K colimi~[ni]: Mor(XOK,Y) ~ limi 

Mor(Xl:l~[ni]'Y) ~ limiHOM(X,Y)n; ~ limiNat(~[ni],HOM(X,Y)) ~ Nat(K, 

HOM(X, Y)).] 

A simplicial action 0 on a category C is said to be closed provided that it is carte

sian and each of the functors -OK: C -+ C has a right adjoint X -+ HOM(K,X), so 

Mor(XOK,Y) ~ Mor(X, HOM(K, Y)). 
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[Note: The above defined simplicial actions on SISET, CGH, SISET., and 

CGH. are closed.] 

If C admits a closed simplicial action, then CoP admits a closed simplicial action. 

Example: GRD admits a closed simplicial action: GDK = G x IIK(HOM(K,G) = 
[IlK, GJ). 

[Note: Recall that II: SISET -4 GRD preserves finite products (cf. p. 13-2).J 

EXAMPLE If 0 is a closed simplicial action on C, then for every small category I, the composition 
[1,0] 

[I, C] x SISET -+ [I, C] x [I, SISET] ~ [I, C x SISET] I [I. C] is a closed simplicial action on 

[I, C]. 

PROPOSITION 29 Suppose that the simplicial action 0 on C IS closed-then 

HOM(XDK, Y) ~ map(K, HOM(X, Y» ~ HOM(X, HOM(K, Y». 

{
c {F:C-+D FACT Let be categories equipped with closed simplicial actions. Suppose that 
D . G:D-+C 

are functors and (F, G) is an adjoint pair. Assume: \:f X, \:f K : F( X 0 K) ~ F X 0 K -then 

HOM(FX, Y) ~ HOM(X, GY) and GHOM(K, Y) ~ HOM(K, GY). 

Notation: Given a category C and a simplicial object X in C, write hx for the 

cofunctor C -4 SISET defined by (hxA)n = Mor(A,Xn) .. 

[Note: For all X,Y in SIC, Nat(X,Y) ~ Nat(hx,hy) (simplicial Yoneda).] 

PROPOSITION 30 Let C be a category. Assume: C has coproducts and is com

plete-then the canonical simplicial action 0 on SIC is closed (0 is necessarily cartesian 

(cf. p. 13-44». 

[Given a simplicial set K, write K x .6.[nJ = colimi .6.[ni] : Nat(K x .6.[n],hy A) ~ 

limiNat(.6.[ni],hyA) ~ limjMor(A,YnJ ~ Mor(A,limjYnJ ~ Mor(A,HoM(K,Y)n), 

where by definition HOM(K, Y)n = limi Yni . In other words, HOM(K, Y)n represents 

A -4 Nat(K x .6.[n] , hy A). Varying n yields a simplicial object HOM(K, Y) in C with 

hHOM(K,Y) :=::;j map(K, hy). Agreeing to let hx OK be the cofunctor C -4 SISET that 

sends A to hxA x K, we have Nat(XDK,Y) :=::;j Nat(hxOK,hy) :=::;j Nat(hxOK,hy) :=::;j 

Nat(hx,map(K,hy»:=::;j Nat(hx,hHOM(K,Y) ~ Nat(X,HoM(K,Y», which proves that 0 

is closed.] 

Example: The canonical simplicial action 0 on SIGR or SlAB is closed. 

EXAMPLE (G-Sets) Fix a group G-then SISETa admits a canonical simplicial action 0, viz. 

XDK :;: X x K, with trivial operations on K. In addition, 0 is closed, HOM(K, X) being map(K, X) 

(operations inthe target). Obviously, Fa(XOK) ~ Fa(X)OK. 
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A simplicial model category is a model category C equipped with a closed simplicial 

action 0 satisfying 

(SMC) Suppose that A -+ Y is a cofibration and X -+ B is a fibration-then 

the arrow HOM(Y, X) -+ HOM(A, X) XHOM(A,B) HOM(Y, B) is a Kan fibration which is 

a weak homotopy equivalence if A -+ Y or X -+ B is acyclic. 

Observation: It is clear that SMC ::} MC-4. Indeed, the commutative diagram 
A ---+ X 
1 1 is a vertex of HOM(A, X) XHOM(A,B) HOM(Y, B), a filler Y -+ X is a preim-
Y ---+ B 
age in HOM(Y, X)o, and acyclic Kan fibrations are surjective. 

Example: SISET, CGH, SISET., CGH. are simplicial model categories. 

[Note: CGH and CGH. are taken in their singular structures (cf. p. 12-11).] 

EXAMPLE Fix a small category I-then the functor category [.[, SISET] is a simplicial model 

category (use structure L (cf. p. 13-37». 

EXAMPLE Fix an abelian group G and take SISET in the model category structure furnished 

by the homological model category theorem. Since every HG-fibration is a Kan fibration, it follows from 

Propositions 23 and 25 that SISET is a simplicial model category. 

EXAMPLE (G-Sets) Fix a group G-then SISETG is a simplicial model category (cf. p. 13-

34). 

In a simplicial model category C: (1) XD~[O] ::::: X; (2) HOM(~[O],X) ::::: X; (3) 
0DK ::::: 0; (4) HOM(K,*) ::::: *j (5) HOM(0,X) ::::: ~[O]; (6) HOM(X,*) ::::: ~[O]; (7) 
X [] 0 ::::: 0; (8) HOM(0, X) ::::: *. 

PROPOSITION 31 Suppose that 0 is a closed simplicial action on a model category 

C-then C is a simplicial model category iff whenever A -+ Y is a cofibration in C 

and L -+ K is an inclusion of simplicial sets, the arrow ADK U YDL -+ YDK is a 
ADL 

cofibration which is acyclic if A -+ Y or L -+ K is acyclic. 

Application: Let C be a simplicial model category. 

(i) Suppose that A -+ Y is a cofibration in C-then for every simplicial set K, 

the arrow AD K -+ YO K is a cofibration which is acyclic if A -+ Y is acyclic. 

(ii) Suppose that Y is cofibrant and L -+ K is an inclusion of simplicial sets

then the arrow YO L -+ YO K is a cofibration which is acyclic if L -+ K is acyclic. 

[Note: In particular, Y cofibrant ::} YDK cofibrant.] 
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FACT Suppose that 0 is a closed simplicial action on a model category C-then C is a simplicial 

model category iff whenever A ..... Y is a cofibration in C, the arrows AD~[n] LJ YDa[n] ..... YD~[n] 
ACl:I.[nJ 

(n ;::: 0) are cofibrations which are acyclic if A ..... Y is acyclic and the arrows AD~[11 u. YDA[i, 1] ..... 
ACA[ •• l] 

YD~[11 (i = 0, 1) are acyclic cofibrations. 

PROPOSITION 32 Suppose that 0 is a closed simplicial action on a model category 

C-then C is a simplicial model category iff whenever L --+ K is an inclusion of simplicial 

sets and X --+ B is a fibration in C, the arrow HOM(K,X) --+ HOM(L,X) XHOM(L,B) 

HOM(K, B) is a fibration which is acyclic if L --+ K or X --+ B is acyclic. 

Application: Let C be a simplicial model category. 

(i) Suppose that L --+ K is an inclusion of simplicial sets and X is fibrant-then 

the arrow HOM(K, X) --+ HOM(L, X) is a fibration which is acyclic if L --+ K is acyclic. 

(ii) Suppose that X --+ B is a fibration in C-then for every simplicial set K, 

the arrow HOM(K, X) --+ HOM(K, B) is a fibration which is acyclic if X --+ B is acyclic. 

[Note: In particular, X fibrant :::} HOM(K, X) fibrant.] 

FACT Suppose that 0 is a closed simplicial action on a model category C-then C is a simplicial 

model category iff whenever X ..... B is a fibration in C, the arrows HOM(~[nl, X) ..... HOM(a[n], X) 

xsoM(a[n].B) HOM(~[n], B) (n ;::: 0) are fibrations which are acyclic if X ..... B is acyclic a.nd .the arrows 

HOM(~[l], X) ..... HOM(A[i, 1], X) XHoM(A[i.1J,B) HOM(~[l], B) (i = 0,1) are acyclic fibrations. 

Example: Let C be a category. Assume: C is complete and cocomplete and there 

. d' . t . (F G) h {F: SISET --+ SIC b' t t th . t h t G 
IS an a Jom paIr , ,were G : SIC --+ SISET ,su Jec 0 e reqUlremen t a 

preserves filtered colimits. Call a morphism f : X --+ Y a weak equivalence if G f is a weak 

homotopy equivalence, a fibration if G f is a Kan fibration, and a cofibration if f has the 

LLP w.r.t. acyclic fibrations-then SIC is a model category provided that every cofibration 

with the LLP w.r.t. fibrations is a weak equivalence (cf. infra). Claim: SIC is a simplicial 

model category (0 canonical simplicial action (cf. Proposition 30)). To see this, note 

first that F(X x K) ~ FXDK, hence GHOM(K, Y) ~ map(K, GY) (cf. p. 13-45). Let 

now L --+ K be an inclusion of simplicial sets and X --+ B a fibration in SIC. Apply 

G to the arrow HOM(K,X) --+ HOM(L,X) XHOM(L,B) HOM(K,B) to get GHOM(K,X) --+ 

GHOM(L, X) XGHOM(L,B) GHOM(K, B) or still, map(K, GX) --+ mapeL, GX) Xma.p(L,GB) 

map(K, GB). Taking into account Proposition 22 and the definitions, the claim thus 

- follows from Proposition 32. 
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[Note: Typically, such a setup is realized in "algebraic" situations (consider, e.g., 

C = GR). Consult Cranst for a variation on the overall procedure with applications to 

simplicial sheaves.] 

The model category structure on SIC is produced by a small object argument. Thus one works with 

the Fa[n] - F~[n] (n 2: 0) to show that every f can be written as the composite of a cofibration and an 

acyclic fibration and one works with the FA[k,n] - F~[n] (0 :$; k :$; n,n 2: 1) to show that every f can 

be written as the composite of a cofibration that has the LLP w.r.t. fibrations and a fibration. This leads 

to MC-5 under the assumption that every cofibration with the LLP w.r.t. fibrations is a weak equivalence, 

which is also needed to establish the nontrivial half of MC-4. In practice, this condition can be forced. 

SUBLEMMA Let {; be topological spaces, f : X - Y a continuous function; let ifJ : XI - X, 

1/1 : Y - Y' be continuous functions. Assume: f 0 ifJ, 1/1 0 f are weak homotopy equivalences-then f is a 

weak homotopy equivalence. 

LEMMA Suppose that there is a functor T : SIC - SIC and a natural transformation € : idsIC -

T such that V X, €X : X - T X is a weak equivalence and T X - * is a fibration-then every cofibration 

with the LLP w.r.t. fibrations is a weak equivalence. 

[Let i : A - Y be a cofibration with the stated properties. Fix a filler w Y - T A for , 

A T A A ~ HOM(~[l], TY) 

;1 1 . Consider the commutative diagram ;1 1" ,wherefisthearrow 

Y ---+ * Y ----+ HOM(a[l], TY) 

; ey 9 {Y~TY . 
A - Y - TY ~ HOM(a[o], TY) - HOM(a[l], TY) and 9 is the arrow w T; (HoM(a[l], TY) ~ 

Y-TA-TY 

{ 
GHoM(a[l], TY) ~ map(a[l], GTY) 

TY X TY). Since GTY is fibrant and. ., n is a fibration (cf. p. 13-
GHOM(~[l], TY) ~ map(~[l], GTY) 

22), thus our diagram admits a filler Y - HOM(~[l], TY). This in tUrn implies that Tiow is a weak equiva-
. . . IGil IGwl IGTil 

lence, I.e., IGTilolGwlls a weak homotopy equivalence. Assemble the data: IGAI - IGYI - IGTAI -

IGTYI. Because IGwl 0 IGil = IG€AI is a weak homotopy equivalence, one can apply the sublemma and 

conclude that IGwl is a weak homotopy equivalence. Therefore IGil is a weak homotopy equivalence which 

means by definition that i is a weak equivalence.] 

EXAMPLE The hypotheses of the lemma are trivially met if V X, X - * is a fibration. So, 

for instance, SIC is a simplicial model category when C = GR, AB, or A-MOD, G being the forgetful 

functor. 

t J. Pure Appl. Algebra 101 (1995), 35-57. 
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Retaining the supposition that C is complete and cocomplete, let us assume in addition that C has a 

set of separators and is cowellpowered. Given a simplicial object X in C, the cofunctor C -+ SET defined 

by A -+ (Ex HOM(A, X»n (n ~ 0) is representable (view A as a constant simplicial object). Indeed, 

HOM(-, X) converts colimits into limits and Ex preserves limits. The assertion is then a consequence of 

the special adjoint functor theorem. Accordingly, 3 an object (Ex X)n in C a.nd a natural isomorphism 

Mor (A, (ExX)n) :::::: (Ex HOM(A, X»n. Thus there is a functor Ex: SIC -+ SIC, where 'v' X, ExX([n]) = 
(ExX)n (n ~ 0), with HOM(A, ExX):::::: ExHOM(A,X) (since HOM(A, ExX)n :::::: Nat(AD~[n], ExX):::::: 

Mor(A,(ExX)n):::::: (Ex HOM(A,X»n). Iterate to arrive at Exoo : SIC -+ stc and ,,00 : idslc -+ ExOO. 

SMALL OBJECT CONSTRUCTION Fix aPE Ob C such that Mor(P, -) : C -+ SET 

preserves filtered colimits. Viewing P as a constant simplicial object, define G : SIC -+ SISET by 

GX = HOM(P,X)-then G has a left adjoint F, viz. FK = PDK, and G preserves filtered co

limits (for (GcolimX;}n :::::: HOM(P,colimX;}n :::::: Nat(PD~[n],colimXi) :::::: Mor(P, (colimXi)n) :::::: 

Mor(P,colim(X;}n) :::::: colimMor(P,(Xi)n) :::::: colimNat(PD~[n],Xi) :::::: colimHOM(P,Xi)n :::::: 

(colimGXi)n). In the lemma, take T = Exoo , ,,= ,,00. Because HOM(P, Ex 00 X) :::::: HOM(P, colimExn X) 

:::::: colim HOM(P, Exn X) :::::: ExOOHOM(P, X), it follows that 'v' X, <X' : X -+ Exoo X is a weak equivalence 

(cf. p. 13-12) and ExOO X -+ * is a fibration (cf. p. 13-21). Therefore SIC admits the structure of a 

simplicial model category in which a morphism f : X -+ Y is a weak equivalence or a fibration if this is 

the case of the simplicial map f. : HOM(P, X) -+ HOM(P, Y). 

EXAMPLE In the small object construction, take C = SISET-then every finite simplicial set 

P determines a simplicial model category structure on [a oP, SISET]. 

PROPOSITION 33 Let X, Y, and Z be objects in a simplicial model category C. 

(i) If f : X --+ Y is an acyclic cofibration and Z is fibrant, then r : HOM(Y, Z) 

--+ HOM(X, Z) is a weak homotopy equivalence. 

(ii) If 9 : Y --+ Z is an acyclic fibration and X is cofibrant, then g. : HOM(X, Y) 

--+ HOM(X, Z) is a weak homotopy equivalence. 

PROPOSITION 34 Let X, Y, and Z be objects in a simplicial model category C. 

(i) If f : X --+ Y is a weak equivalence between cofibrant objects and Z is 

fibrant, then r : HOM(Y, Z) --+ HOM(X, Z) is a weak homotopy equivalence. 

(ii) If 9 : Y --+ Z is a weak equivalence between fibrant objects and X IS 

cofibrant, then g. : HOM(X, Y) --+ HOM(X, Z) is a weak homotopy equivalence. 

[Use Proposition 33 and the lemma prefacing the proof of the TDF theorem.] 

EXAMPLE Take C = CGH (singular structure)-then all objects are fibrant, so if g : Y -+ Z 

is a weak homotopy equivalence and X is cofibrant, g. : HOM(X, Y) -+ HOM(X, Z) is a weak homotopy 



13-50 

equivalence. But HOM(X, Y) :::; sin(map(X, Y», HOM(X, Z) :::; sin(map(X, Z», thus g. : map(X, Y) -

map(X,Z) is a weak homotopy equivalence (cf. p. 13-17). 

[Note: Contra.st this approach with that used on p. 9-39.] 

Let i : A -+ Y, p : X -+ B he morphisms in a simplicial model category C. Assume: i 

is a cofibration and p is a fibration-then i is said to have the homotopy left lifting property 

with respect to p (HLLP w.r.t. p) and p is said to have the homotopy right lifting property 

with respect to i(HRLP w.r.t. i) if the arrow HOM(Y,X) -+ HOM(A,X) XHOM(A,B) 

HOM(Y, B) is a weak homotopy equivalence. 

FACT Given a cofibration i : A - Y and a fibration p : X - B in a simplicial model category C, 

each of the following conditions is equivalent to i having the HLLP w.r.t p and p having the HRLP w.r.t. 

i. 

(1) If L - K is an inclusion of simplicial sets, then p ha.s the RLP w.r.t. the arrow 

AOK U YOL - YOK. 
ADL 

(2) The fibration p ha.s the RLP w.r.t. the arrows AO~[nJ y YOLi[n] - YO~[n] 
ADA[ .. I . 

(n ~ 0). 

(3) If L - K is an inclusion of simplicial sets, then i has the LLP w.r.t. the arrow HOM(K, X) 

- HOM(L, X) x_<L,B) HOM(K, B). 

(4) The cofibration i has the LLP w.r.t. the arrows HOM(~[n],X) - HOM(Li[n],X) 

x-<A[n],B) HOM(~[n], B) (n ~ 0). 

Let C be a simplicial model category. Agreeing to identify Mor (X, Y) and HOM(X, Y)o, 

one may transfer from SISET to C the notions of homotopic (I ~ g) and simplicially homo

topic (I ~g) leading thereby to HoC (thus [X, Y]o = Mor(X, Y)/~ (= 7ro(HOM(X, Y))). 
/I 

[Note: Mor(XOI2n ,Y) ~ Nat(I2n ,HOM(X,Y)) ~ Mor(X,HoM(I2n ,Y)) and 

Mor(X OA[l], Y) ~ Nat(A[l], HOM(X, Y)) ~ Mor (X, HOM(A[l], Y)).] 

Example: Suppose that i : A -+ Y is a cofibration and p : X -+ B is a fibration. 
A --+ X 

Assume: i has the HLLP w.r.t. p-then every commutative diagram 1 
Y 

filler and any two such are homotopic. 

1 has a 

B 

PROPOSITION 35 Let C be a simplicial model category. Suppose that I ~ g-then 

I, 9 are left homotopic and right homotopic. 

[Note: Therefore QI = Qg (cf. p. 12-25). Corollary: A homotopy equivalence in C 

is a weak equivalence (but not conversely).] 
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PROPOSITION 36 Let C be a simplicial model category. Assume: X is cofibrant and 

Y is fibrant-then the relations of homotopy, simplicial homotopy, left homotopy, and right 

homotopy on Mor(X, Y) coincide and are equivalence relations. Therefore "homotopy is 

homotopy" and [X, Y]o +-+ [X, Y]. 
[Note: HOM(X, Y) is necessarily fibrant (cf. SMC).] 

EXAMPLE Under the assumption that X is cofibrant and Y is fibrant, [XDK, Y] ~ [K, 

HOM(X, Y)] ~ [X, HOM(K, Y)]. 

[Note: Bear in mind that XDK is cofibrant (cf. p. 13-46) and HOM(K, Y) is fibrant (cf. p. 13-47).] 

PROPOSITION 37 Let X, Y, and Z be objects in a simplicial model category C. 

(i) Let f E Mor (X, Y)-then the homotopy class of the precomposition arrow 

f* : HOM(Y, Z) --+ HOM(X, Z) depends only on the homotopy class of f. 
[Note: Thus f· is a homotopy equivalence of simplicial sets if f is a homotopy equiv

alence.] 

(ii) Let 9 E Mor (Y, Z)-then the homotopy class of the post composition arrow 

g. : HOM(X, Y) --+ HOM(X, Z) depends only on the homotopy class of g. 

[Note: Thus g. is a homotopy equivalence of simplicial sets if 9 is a homotopy equiv

alence.] 

PROPOSITION38 Suppose that C is a simplicial model category. Let f E Mor (X, 

Y) A Th . . {HOM(Y,X) --+ HOM(X,X) k h 
. ssume: e precomposltIon arrows HOM(Y, Y) --+ HOM(X, Y) are wea omo-

topyequivalences-then f is a homotopy equivalence. 

[Note: The result can also be formulated in terms of the postcomposition arrows 

{ 
HOM(X,X) --+ HOM(X, Y) ] 
HOM(Y, X) --+ HOM(Y, Y) . 

PROPOSITION 39 Let C be a simplicial model category-then a morphism f : 
X --+ Y is a weak equivalence if V fib rant Z, the precomposition arrow f* : HOM(Y, Z) --+ 

HOM(X, Z) is a weak homotopy equivalence. 

X 

[Using the notation of Lemma 'R (cf. p. 12-23), consider the commutative diagram 

~ Y HOM(X, Z) t- HOM(Y, Z) 

~ 

1lj 

1 'Y and apply HOM(-, Z) to get 
'RY 

T T 
HOM('RX,Z) t- HOM('RY,Z) 

(Z 

fibrant j. Since {t.x are acyclic cofibrations, the vertical arrows are weak homotopy t.y 
equivalences (cf. Proposition 33). Taking into account the hypothesis, it follows that 
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(n!)· : HOM(nY, Z) -i> HOM(nX, Z) is a weak homotopy equivalence. But {~: are 

fibrant, so one can let Z = nx, ny and conclude that nf is a homotopy equivalence (d. 
Proposition 38), hence a weak equivalence (d. Proposition 35). Therefore f is a weak 

equivalence (cf. Lemma n).] 

[Note: The result can also be formulated in terms of the post composition arrows 

f. : HOM(Z,X) -i> HOM(Z, Y) (Z cofibrant).] 

Application: Let C be a simplicial model category. Suppose that f : X -i> Y is a 

weak equivalence between cofibrant objects-then V K, fOidK : XOK -i> YOK is a weak 

equivalence between cofibrant objects (cf. p. 13-46). 

[Take any fibrant Z and consider the arrow HOM(YDK, Z) -i> HOM(XDK, Z) or 

still, the arrow HOM(Y, HOM(K, Z)) -i> HOM(X, HOM(K, Z)). Because HOM(K, Z) is fi

brant (d. p. 13-47), the latter is a weak homotopy equivalence (d. Proposition 34), so 

by the above, the arrow XDK -i> YOK is a weak equivalence.] 

EXAMPLE Fix a small category I and view the functor category [JOP, SISET] as a simplicial 

model category (d. p. 13-46). Suppose that L - K is a weak equivalence, where L, K : JOP - SISET are 

'-" cofibrant-then V F : I - SISET, the induced map Ji Fi x Li - Ji Fi x K i of simplicial sets is a weak 

homotopy equivalence. To see this, use Proposition 39. Thus take any fibrant Z and consider the arrow 

map(Ji Fi x Ki,Z) - map(Ji Fi x Li,Z), i.e., the arrow 1 map(Fi x Ki,Z) -1 map(Fi X Li,Z), 

i.e., the arrow 1 map(Ki,map(Fi,Z» -1 map(Li,map(Fi,Z», i.e., the arrow HOM(K,map(F,Z»

HOM(L,map(F, Z» (cf. p. 13-44), which is a weak homotopy equivalence (cf. Proposition 34). 

[Note: Here, map(F, Z) is the functor lOP - SISET defined by i - map(Fi, Z), thus map(F, Z) is 

a. fibrant object in [lop, SISET].] 

Let p : A -i> B be an inclusion of simplicial sets-then a fibrant object Z in SISET 

is said to be p-local if p. : map(B, Z) -i> map(A, Z) is a weak homotopy equivalence. 

[Note: Since Z is fibrant, p. is actually a simplicial homotopy equivalence (cf. Propo

sition 20).] 

Imitating the (A,B) construction in §9 (d. p. 9-43 ff.), one can show that there 

is a functor Lp : SISET -i> SISET and a natural transformation id -i> LPI where V X, 
LpX is p-local and Ip : X -i> LpX is a cofibration such that for all p-local Z, the ar

row map(LpX, Z) -i> map(X, Z) is a weak homotopy equivalence. Consequently, the full 

- subcategory of HoSISET whose objects are p-local is reflective. 
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[Note: Observe that it is necessary to work not only with the A x L).[n] W B x 
Ax~[n1 

A[n] -+ B x L).[n] (n ~ 0) but also with the A[k, n] -+ L).[n] (0 ::; k ::; n, n ~ 1) (this to 

ensure that LpX is fibrant).] 

LEMMA Let j : X -+ Y be a cofibration in SISET. Assume: V p-Iocal Z, f* : 
map(Y, Z) -+ map(X, Z) is a weak homotopy equivalence-then Lpj : LpX -+ LpY is a 

homotopy equivalence. 

X Y map(X, Z) .f-- map(Y, Z) 

[Pass from 1 1 to T T (Z p-local), take 

LpX --t LpY map(LpX, Z) f-- map(LpY, Z) 
LpJ 

Z = LpX, LpY, and quote Proposition 38.] 

Application: Suppose that j : X -+ Y is an acyclic cofibration~then Lpj : LpX -+ 

LpY is a homotopy equivalence. 

[Note: Therefore Lp : SISET -+ SISET preserves weak homotopy equivalences (cf. 

p. 12~28) (all objects are cofibrant), hence LLp : HSISET -+ HSISET exists (cf. §12, 

Proposition 14).] 

EXAMPLE Fix an inclusion p : A ~ B of simplicial sets. Let f : X ~ Y be a simplicial map

then f is said to be a p-equivalence if Lpf : LpX ~ LpY is a homotopy equivalence (or just a weak 

homotopy equivalence (cf. Proposition 20)). Agreeing that a p-cofibration is an injective simplicial map, 

a p-fibration is a simplicial map which has the RLP w.r.t. all p-cofibrations that are p-equivalences. Every 

p-fibration is a Kan fibration (cf. supra). This said, SISET acquires the structure of a simplicial model 

category by letting weak equivalence = p-equivalence, cofibration = p-cofibration, fibration p-fibration. 

[Note: The fibrant objects in this structure are the p-local objects.] 

Let C be a complete and cocomplete category-then in the notation of p. O~ 18, the 

truncation tr(n) : SIC -+ SICn has a left adjoint sk(n) : SICn -+ SIC, where V X in 

SICn, (sk(n) X)m = colim Xk, and a right adjoint cosk(n) : SICn -+ SIC, where V X in 
[m]_[Io] 
Io~n 

lim Xk. 
[Io]_[m] 
Io~n 

[Note: The colimit and limit are taken over a comma category.] 

EXTENSION PRINCIPLE (OBJECTS) Let X be an object in SICn-then a factor

ization (sk(n) X)n+l -+ X n+1 -+ (cosk(n) X)n+l ofthe arrow (sk(n) X)n+l -+ (cosk(n) X)n+l 

determines an extension of X to an object in SICn+1 • 
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EXTENSION PRINCIPLE (MORPHISMS) Let {: be objects in SICn+1 ; let 

I : xla~P -+ Yla~P be a morphism-then an arrow X n +1 -+ Yn +1 determines an ex-
(sk(n) X)n+l -- X n+1 __ (cosk(n) X)n+l 

tension F : X -+ Y of I provided that 1 1 1 
(sk(n)Y)n+l -- Yn+1 __ (cosk(n)Y)n+l 

commutes in C. 

Let X be a simplicial object in C. Recall that sk(n) X = sk(n)(tr(n) X) and cosk(n) X = 
cosk(n) (tr(n)X) (cf. p. 0-18). 

(L) The latching object of X at [n] is LnX = (sk(n-l) X)n and the latching 

morphism is the arrow LnX -+ X n. 

(M) The matching object of X at [n] is MnX = (cosk(n-l)X)n and the match

ing morphism is the arrow Xn -+ MnX. 

[Note: The connecting morphism of X at [n] is the composite LnX -+ Xn -+ MnX.] 

In particular: LoX is an initial object in C and MoX is a final object in C. 

PROPOSITION 40 Let C be a complete and cocomplete model category. Suppose 

that I : X -+ Y is a morphism in SIC such that V n, the arrow Xn U LnY -+ Yn is 
LnX 

a cofibration (acyclic cofibration) in C-then V n, Lnl : LnX -+ LnY is a cofibration 

(acyclic cofibration) in C. 

[One checks by induction that L~I has the LLP w.r.t. acyclic fibrations (fibrations) 

in C.] 

[Note: There is a parallel statement for fibrations (acyclic fibrations) involving the 

arrows Xn -+ MnX x Mn y Yn.] 

PROPOSITION 41 Let C be a complete and cocomplete model category. Suppose 

that I : X -+ Y is a morphism in SIC such that V n, the arrow Xn U LnY -+ Yn 
Ln X 

(Xn -+ MnX XMnY Yn) is a cofibration (fibration) in C-then V n, In : Xn -+ Yn is a 

cofibration (fibration) in C. 
LnX -- LnY 

[Consider the pushout square 1 1·. Owing to Proposition 40, 

Xn -- Xn U LnY 
Ln X 

the arrow LnX -+ LnY is a cofibration. Therefore the arrow Xn -+ Xn U LnY is a 
Ln X 

cofibration. But In is the composite Xn -+ Xn U LnY -+ Yn.] 
Ln X 

PROPOSITION 42 Let C be a complete and co complete model category. Suppose 

that I : X -+ Y is a morphism in SIC such that V n, In : Xn -+ Yn is a weak equiva-
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lence in C and the arrow Xn U LnY -+ Yn is a cofibration in C-then V n, the arrow 
Ln X 

Xn U LnY -+ Yn is an acyclic cofibration in C. 
Ln X 

[One checks by inductio,n that Lnl has the LLP w.r.t. fibrations in C.] 

[Note: There is a parallel statement for fibrations involving the arrows Xn -+ MnX 

XMnY Yn .] 

Let C be a complete and cocomplete model category. Given a morphism I: X -+ Y 

in SIC, call I a weak equivalence if V n, In : Xn -+ Yn is a weak equivalence in C, a 

cofibration if V n, the arrow X n U Ln Y -+ Yn is a cofibration in C, a fibration if V n, 
LnX 

the arrow Xn -+ MnX XMnY Yn is a fibration in C. This structure is the Reedy structure 

on SIC. 

REEDY MODEL .CATEGORY THEOREM Let C be a complete and cocomplete 

(proper) model category-then SIC in the Reedy structure is a (proper) model category. 

[The crux of the matter is the verification of MC--4 and MC-5. However, due to 

the extension principle, the requisite liftings and factorizations can be constructed via 

induction, using Propositions 40, 41, and 42.] 

[Note: Suppose further that C is a simplicial model category-then SIC is a sim

plicial model category. In fact, SIC admits a closed simplicial action derived from that 

on C (cf. p. 13--45), so it suffices to verify that SMC holds. For this, it is conven

ient to employ Proposition 31. Thus let X -+ Y be a cofibration in SIC and L -+ K 

an inclusion of simplicial sets. Claim: The arrow XDK U YDL -+ YDK is a cofi-
XCL 

bration which is acyclic if X -+ Y or L -+ K is acyclic. Fix n and consider the arrow 

(XDK U YDL)nULn(XCK U YOL)Ln(YDK) -+ (YDK)n or, equivalently, the arrow 
XCL XCL 

(Xn U LnY)DK U(Xn U Ln Y)oL Yn DL -+ YnDK. On the other hand, the canonical 
LnX Ln X 

simplicial action 0 on SIC need not be compatible with the Reedy structure on SIC. Thus 

let X -+ Y be a cofibration in SIC and consider the arrows XD~[l] U YDA[i, 1] -+ 
XCA[i,lJ 

YD~[l] (i = 0,1) (cf. p. 13--47). While cofibrations; they need not be weak equivalences.] 

EXAMPLE Take C = TOP .. (singular structure)-then according to Dwyer-Kan-Stovert there 

is a model category structure on SITOP .. having for its weak equivalences those f : X ---+ Y such that 

'V n ~ 1, f .. : 1I"n(X) ---+ 1I"n (Y) is a weak equivalence of simplicial groups. Obviously, every weak equivalence 

in the Reedy structure is a weak equivalence in this structure (but not conversely). 

t J. Pure Appl. Algebra. 90 (1993), 137-152; see also J. Pure Appl. Algebra. 103 (1995), 167-188. 
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The functor category [A OP, SISET] carries two other proper model category struc

tures (d. p. 13-37). Every cofibration in the Reedy structure is a cofibration in structure 

R and every fibration in the Reedy structure is a fibration in structure L (d. Proposition 

41). Therefore every fibration in structure R is a fibration in the Reedy structure and 

every cofibration in structure L is a cofibration in the Reedy structure. 

[Note: In reality, the cofibrations in the Reedy structure are precisely the levelwise 

injective simplicial maps, thus the Reedy structure is structure R.] 

r is the category whose objects are the finite sets D == {O, 1, ... ,n} (n 2: 0) with base point 0 and. 

whose morphiams are the base point·preserving mapa. 

[Note: Suppose that -y: m - D is a morphism in r-then the partition 11 -y-1(j) = m of m 
. °SiS" 

determines a permutation II : m - m such that -y 0 II is order preserving. Therefore -y h .. a unique 

factorization of the form a 0 liT, where a : m - D is order preserving and liT : m - m is a base point 

preserving permutation which is order preserving in the fiben of -y.] 

Notation: Write rSISET. for the full subcategory of [1', SISET .] whOse object.. are the X : r -

SISET. such that Xo = * (X. = X(D». 

EXAMPLE Let G be an abelian semigroup with unit .. Using additive notation, view G" .. the 

set of base point preserving functions D - G-then the rule X" = siG" defines an object in rSISET •. 

Here the arrow Gm - G" attached to -y : m - D sends (g1 , ... ,gm) to (91, ... ,9,,), where 9i = E gi 
..,(i)=j 

if -y-1 (j) :# e, 9j = 0 if -y-1(j) = e. 

Let S,,(SISET.) be the category whose objects are the pointed simplicial left S,,-sets-then 

8,,(SISET.) is a simplicial model category (d. p. 13-46). 

[Note: The group of hue point preserving permutations D - D is 8" and for any X in rSISET., 

X" is a pointed simpIicialleft 8,,-set.] 

Let r" be the full subcategory of r whose object.. are the m (m S n). Assigning to the sym

bol r"SISET. the obvioUB interpretation, one can follow the UBUal procedure and introduce trC") : 

rSISET. - r "SISET. and. it.. left (right) adjoint sk(·) (cosk("» (d. p. 6-18). Put "k(") = sk(") otr(·) 

(the n-skeleton), cod(·) = cosk(·) 0 tr(") (the n-coskeleton). 

EXTENSION PRINCIPLE (OBJECTS) Let X be an object in r"SISET.-then a fac

torization (sk(") X),,+1 - X,,+l - (cosk(") X),,+1 of the arrow (sk(") X),,+! - (cosk(n.) X),,+1 in 

8,,+1(SISET.) determines an extension of X to an object in r ,,+1SISET •. 

EXTENSION PRINCIPLE (MORPHISMS) Let {; be objects in rn.+!SISET.j let 

f : xlr" - Ylr" be a morphism-then an 8,,+1-equivariant arrow X,,+l - Y,,+1 determines an ex-
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tension F : X - Y of I provided that 1 1 1 commutes in 

Given an X in rSISET., write LnX = (sk(n-l) X)n, MnX = (cosk(n-l) X)n for the latching, 

matching objects of X at n (cf. p. 13-54). 

Given a morphism I : X - Y, call I a weak equivalence if V n ~ 1, In : Xn - Yn is a weak 

equivalence in Sn (SISET .), a cofibration if V n ~ 1, the arrow X n U Ln Y - Yn is a cofibration in 
Ln X 

Sn(SISET.), a fibration if V n ~ 1, the arrow Xn - MnX xMnY Yn is a fibration in Sn(SISET.). This 

structure is the Reedy structure on rSISET •. 

BOUSFIELD-FRIEDLANDER MODEL CATEGORY THEOREM rSISET. 10 the 

Reedy structure is a proper simplicial model category. 

Observation: The opposite of a model category is a model category (cf. p. 12-3). 

So, if C is a complete and cocomplete model category, then by the above [A op, CoP] is 

a model category. Therefore [A oP, COP]OP is a model category, i.e., COSIC is a model 

category (Reedy structure). 

EXAMPLE Take C = SISET-then the class of weak equivalences in [a, SISET] (Reedy struc

ture) is the same as the class of weak equivalences in [a, SISET] (structure L (cf. p. 13-37)) but the class 

of cofibrations is larger. Example: Y A == 6. (cf. p. 0-17) is a cosimplicial object in a which is cofibrant 

in the Reedy structure but not in structure L. 

PROPOSITION 43 Let C be a complete and cocomplete model category. Equip SIC 

with its Reedy structure-then the functor Ln : SIC -+ C preserves weak equivalences 

between cofibrant objects. 

[Inspect the proof of Proposition 42 and quote the lemma on p. 12-28.] 

Let C be a simplicial model category. Assume: C is complete and cocomplete. 

J
[n] 

Given an X in SIC, put IXI = Xn Ob.[n]-then IXI is the realization of X and 

the assignment X -+ IXI is a functor SIC -+ c. I?I is a left adjoint for sin: C -+ 

J
[n] 

SIC, where sinn Y = HOM(b.[n], Y). In fact, Mor(IXI, Y) ~ Mor( XnOb.[n], Y) ~ 

r Mor(XnOb.[n]'Y) ~ r Mor(Xn,HoM(b.[n],Y)) ~ r Mor(Xn,sinnY) ~ Nat(X, 
i[n) i[n) i[n) 
sin Y). 
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EXAMPLE Take C = SISET and let X be a simplicial object in C. One can fix [m] and 

form IX!:.!. the geometric realization of [n] -+ X([n], [mD and one can fix [n] and form IX:I. the geometric 

realization of [m] -+ X([n], [mD. The assignments { [m] -+ IX!:.I define simplicial objects {Xh in CGH 
[n] -. IX;: I Xv 

and their realizations {IXhl are homeomorphic to the geometric realization of IXI. 
Ixvi 

LEMMA Let X be a simplicial object in C-then IXI ~ colim IXln, where IXln = 

j
[k] 

Xk D.6.[k](n). Moreover, Ir:I n > 0 there is a pushout square 

LnX D.6.[n] U. Xn DA[n] 
L,.X[J~[n] 

1 
Xn D.6.[n] 

IX In-l 

1 
IXln 

j
[n] 

[The functors Xn D- are left adjoints, hence preserve colimits, so IXI = Xn D.6.[n] 

f
In] f[n] f[k] 

~ Xn D colimk .6.[n](k) ~ colimk Xn D.6.[n](k) ~ colimn Xk D.6.[k](n) = 

colimn IXln.And: Relative to the inclusion.6.n -+ .6., the left Kan extension of [m] -+ .6.[m] 

J
Im] 

(m :5 n) is [k] -+ .6.[k](n), thus IXln can be identified with Xm D.6.[m] (m:5 n).] 

If X is a cofibrant object in SIC (Reedy structure), then the latching morphism 

LnX -+ Xn is a cofibration in C. Therefore the arrow LnXD.6.[n] U. Xn DA[n] -+ 
LnXD~[n] 

Xn D.6.[n] is a cofibration in C (cf. Proposition 31). Consequently, the arrow IXln-l -+ 

IXln is a cofibration in C. 

[Note: It follows from Proposition 40 that LnX is a cofibrant object in C, hence Xn 

is a cofibrant object in C. This means that LnXDA[n], LnXD.6.[n], and XnDA[n] are 

cofibrant objects in C, so LnX D.6.[n] U . Xn DA[n] is a cofibrant object in C (cf. p. 
LnX[J~[n] 

13-46).] 

LEMMA Let C be a simplicial model category. Assume: C is complete and cocom

plete. Suppose that {: are cofibrant objects in SIC (Reedy structure) and f : X -+ Y 

is a weak equivalence-then the arrow LnXD.6.[n] U. XnDA[n] -+ LnYD.6.[n] 
Lnx[J~[nl 

U. YnDA[n] is a weak equivalence in C. 
L,.y[J~[nl 
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[Consider the commutative diagram 

LnXD~[n] r- LnXD~[n] ----t Xn D~[n] 

1 1 1 
LnYD~[n] r- LnYDA[n] ----t Yn DA[n] 

The horizontal arrows are cofibrations (cf. p. 13-46) and the vertical arrows are weak 

equivalences (cf. Proposition 43 and p. 13-52). Therefore Proposition 3 in §12 is applica

ble.] 

PROPOSITION 44 Let C be a simplicial model category. Assume: C is complete 

and cocomplete. Suppose that {: are cofibrant objects in SIC (Reedy structure) and 

f : X -;. Y is a weak equivalence-then If I : IXI -;. IYI is a weak equivalence. 

[S O { IXlo = Xo d \..J { IXln -;. IXln+l. fib" C . 
Ince IYlo = Yo an v n, IYln -;. IYln+! IS a co ratIon In ,one may vIew 

{ ~!:II=:: ~: gj as cofibrant objects in FIL(C) (cf. p. 12-5). So, to prove that If I : 
IXI -;. IYI is a weak equivalence, it need only be shown that V n, If In : IXln -;. IYln is a 

weak equivalence (cf. p. 12-30). For this, work with 

r- LnXD~[n] U. XnDA[n] 
LnXD~[nl 

IX In-l XnD~[n] 

1 1 1 
YnD~[n] r- LnYD~[n] U. YnDA[n] 

. LnYD~[nl 
IYln-l 

and use induction (cf. §12, Proposition 3).] 

EXAMPLE Take C = SISET and suppose that I : X -+ Y is a weak equivalence, i.e., Ir:/ n, 

In : Xn -+ Yn is a weak homotopy equivalence--then III : IXI.-+ IYI is a weak homotopy equivalence. 

[All simplicial objects in .6. are cofibrant in the Reedy structure.] 

[Note: Fix an abelian group G and consider SISET in the homological model category structure 

determined by G-then SISET is a simplicial model category (cf. p. 13-46), hence III : IXI -+ IYI is an 

HG-equivalence if Ir:/ n, In : Xn -+ Yn is an HG-equivalence.] 

EXAMPLE Suppose that C is a simplicial model category which is complete and cocomplete. Let 

X be a cofibrant object in SIC (Reedy structure). Assume: Ir:/ G', XG' is a weak equivalence--then the 

arrow IXlo -+ IXI is a weak equivalence. 

Let C be a simplicial model category. Assume: C is complete and cocomplete. 

Given an X in COSIC, put tot X = [ HOM(~[n], Xn)-then tot X is the totalization 
l[n] 
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of X and the assignment X - tot X is a functor COSIC _ C. tot is a right ad

joint for cosin: C -+ COSIC, where cosinnY = YnD.6.[n]. In fact, Mor(Y,totX) ~ 

Mor(Y, f HOM(.6.[n],Xn)) ~ f Mor(Y,HoM(.6.[n],Xn» ~ f Mor(YD.6.[n],Xn) ~ 
~ ~ ~ 

f Mor(cosinn Y,Xn) ~ Nat(cosinY,X). 
J[n] 

Example: Take C = SISET-then tot X = HOM(Y,A,X) (d. p. 13-44). 

Example: Let X be a simplicial set. Given a cosimplicial object Y in .6., the functor 

A - SISET that sends [n] to map(X, Yn ) defines a.nother cosimplicial object in.6., call it 

map(X, Y). And: tot map(X, Y) ~ f map(.6.[n], map(X, Yn)) ~ f map(X, map(.6.[n], 
J[n] J[n] 

Yn)) ~ map(X, f map(.6.[n], Yn)) ~ map(X, tot Y). 
J[n] 

EXAMPLE Given a simplicial set K and a compactly generated Hausdorff space X, let XK be 

the cosimplicial object in CGH with (XK ) .. = XK .. -then map(IKI,X) s::::: totXK. 

EXAMPLE Fix a prime p-then there is a forgetful functor from the category of simplicial vector 

spaces over Fp to SISET. It has a left adjoint, thus this data determines a triple in SISET. Write 

--respX for the standard resolution of X: respX is therefore a cosimplicial object in a and tot respX is the 

Fp-completion FpX of X (Bousfield-Kant). 

PROPOSITION 45 Let C be a simplicial model category. Assume: C is complete 

and cocomplete. Suppose that {~ are fibrant objects in COSIC (Reedy structure) and 

f : X -+ Y is a weak equivalence--then tot f : tot X -+ tot Y is a weak equivalence. 

[The proof is dual to that of Proposition 44. Of course, tot X ~ lim totn X (obvious 

notation).] 

The simplex category gro,AK of a simplicial set K can be viewed as a comma category: 
.6.[n] , .6.[m] 

\ / (cf. p. 13-17). Call this interpretation 11K, 11 OP K being its opposite. 

K 
There is a forgetful functor .6.K : 11K -+ SISET and K ~ colim.6.K (d. p. 0-20). 

FACT The fundamental groupoid of aK is equivalent to the fundamental groupoid of K. 

t SLN 304 (1972). 
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Given a category C, write K-SIC for the functor category [a OP K, C] and K-COSIC 

for the functor category [aK, CJ-then by definition, a K-simplicial object in C is an . 

object in K-SIC and a K-cosimplicial object in C is an object in K-COSIC. 

[Note: Take K 60[0] to recover SIC and COSIC.] 

The preceding results can now be generalized. Thus if C is a complete and cocom

plete model category, one can -again introduce latching objects and matching objects and 

use them to equip K-SIC (dually, K-COSIC) with the structure of a model category 

(Reedy structure). Assuming in addition that C is a simplicial model category, there is 

a realization functor I?IK : K-SIC ~ C that sends X to IXIK = JAK XD6oK, where 

OP OP XxAK 0 
XD6.K : a K x aK ~ C is the composite a K x aK I C x SISET~C. 

So, in the notation of the Kan extension theorem, I?IK = I?I 0 lan, i.e., the diagram 
K-SIC~SIC 
I~ 1111 commutes. Here, Ian is computed from the arrow a OP K ~ a OP in-

C 
duced by the projection K ~ 60[0]. I?IK is a left adjoint for sinK: C ~ K-SIC. On 

the other hand, there is a totalization functor totK : K-COSIC ~ C that sends X to 

tot K X = ( HOM( 6oK, X), where HOM( 6oK, X) : a OP K x aK ~ C is the composite 
jAK 

AOPKxX HOM a OP K x aK . ) SISETOP x C ---+ C. So, in the notation of the Kan extension 
K-COSIC ~COSIC 

theorem, totK = tot 0 ran, i.e., the diagram ~ 1tot commutes. Here, 
totK~ 

C 
ran is computed from the arrow aK ~ a induced by the projection K ~ 60[0]. totK is a 

right adjoint for cosinK : C ~ K-COSIC. 

To check the claimed factorization of I?IK, represent IXIK as the coequalizer of the diagram 

II X,D~Kk ::::; IIXkD~Kk. Noting that (lanX)n = II Xk. we have II X,D~Kk:::::: II 
Ie_I Ie kEKn Ie_I n,m~O 

II II X1D~[n]:::::: II II (lanX)mD~[n]andIIXkD~Kk:::::: II II XkD~[n]:::::: 
[n]-[m] IEKm n,m~O [n]-[m] k n~O kEKn 
II (lanX)nD~[n], i.e., IXIK is naturally isomorphic to the coequalizer of the diagram II II 

n2:0 n,m2:0 [n]-Im] 
(lanX)m D~[n]::::; II (lanX)n D~[n], i.e., to IIanXI. 

n2: 0 

Example: Take C = SISET-then I * IK = K. 

EXAMPLE Let B be a simplicial set. Fix an X in SISET / B-then V n & V b E B n , there is a 
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pullback square 1 11' (cf. p. 13-3). This data thus determines a B-cosimplicial object XB 

.6.[n] ---+ B 
~b 

in SISET. One has X ~ colimXB and XB is cofibrant in the Reedy structure. 

PROPOSITION 44 (K) Let C be a simplicial model category. Assume: C is com

plete and cocomplete. Suppose that {: are cofibrant objects in K -SIC (Reedy structure) 

and I: X -+ Y is a weak equivalence-then I/IK : IXIK -+ IYIK is a weak equivalence. 

PROPOSITION 45 (K) Let C be a simplicial model category. Assume: C is com

plete and cocomplete. Suppose that {;. are fibrant objects in K-COSIC (Reedy struc

ture) and I : X -+ Y is a weak equivalence-then tot K I : tot K X -+ tot K Y is a weak 

equivalence. 

FACT sinK preserves fibrations and acyclic fibrations. 

[Note: Therefore 111K preserves cofibrations and acyclic cofibrations (cf. p. 12-3 if.).] 

FACT cosinK preserves cofibrations and acyclic cofibrations. 

[Note: Therefore totK preserves fibrations and acyclic fibrations (cf. p. 12-3 if.).] 

Notation: Let I be a small category. Put.AI = .A ner I and call it the simplex category 

[n) ) [m) 

ofI~then.AI is isomorphic to the comma category Ii, KII: \ / (i : .A -+ CAT). 

I 
There is a projection 11'1 : .AI -+ I that sends an object [n] l. I to In E ObI. Example: 

.AI =.A. 

[Note: .A oPI is the opposite of M. Example: .A OPt = .A oP. Replacing I by lOP, 

there is a projection 1I'PP : .A opIoP -+ I that sends an object [n) l. lOP to In E Db I.] 

EXAMPLE Let C be a complete and cocomplete model category. Suppose that F : I --+ C is a 

functor such that 'r/ i, Fi is cofibrant (fibrant)-then F 0 lI'pP (F 0 11'1) is a cofibrant (fibrant) object in 

[AoPIOP , C] ([AI, CD (Reedy structure). 

Let I be a small category and C a simplicial model category. Assume: C is complete 

and cocomplete-then the functor colim : [I, C] -+ C (lim: [I, C) -+ C) need not pre

serve levelwise weak equivalences between levelwise cofibrant (fibrant) objects. To remedy 
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this defect, one introduces the notion of homotopy colimit (limit). Thus define a functor 
lOP 

hocoliml: [I, C] -+ C by hocoliml F (or hocolimF) = j FD ner(-\I)OP and define a 

functor holiml : [I, C] -+ C by holiml F (or holimF) = 1 HOM(ner(I/-), F). 

[Note: One has HOM(hocoliml F, Y) :::::: HOM(jiFiDner(i\I)OP, Y) :::::: 

lHOM(FiDner(i\I)OP, Y) :::::: 1 map(ner(i\I)OP, HOM(Fi, Y» :::::: 1 map(ner(IOP Ii), 

HOM(Fi, Y» :::::: holimloP HOM(F, Y), where HOM(F, Y) : lOP -+ SISET sends i to 

HOM(Fi, Y).] 

Remark: The functor hocolim has a right adjoint, viz. HOM(ner(-\I)OP,-), and the 

functor holim has a left adjoint, viz. -Dner(I/-). 

Remark: There are natural transformations hocolim -+ colim, lim -+ holim. 

[Note: It can be shown that Lhocolim and Rholim exist and that there are natural 

isomorphisms Lhocolim -+ Lcolim, Rlim -+ Rholim (Dwyer-Kant) (cf. p. 12-32).1 

Example: Take C = SISET, CGH, SISET., CGH.-then FiDner(i\I)OP = 
Fi xner(i\I)OP, Fi x/i:B(i\I)OP, Fi#ner(i\I)~P, Fi#/i:B(i\I)~P and HOM(ner(l/i), Fi) = 
map(ner(l/i), Fi), map(B(I/i), Fi), map. (ner(l/i)+, Fi), map.(B(I/i)+, Fi). 

[Note: Consider jiFiDner(i\l) and jiFiDner(i\I)OP. When C = SISET or 

SISET., they are simplicial opposites of one another (d. p. 13-1), hence are natu

rally weakly equivalent, and when C = CGH or CGH., they are related by a natural 

homeomorphism (since V i, B(i\l) :::::: B(i\I)OP (cf. p. 0-19».1 

Place on [I<>P, SISET] and [I, SISET] structure L (cf. p. 13-37)-then i - ner(i\l)oP is a cofibrant 

object in [lop, SISET] and i - ner(l/i) is a cofibrant object in [I. SISET] (cf. p. 13-38). Observe too 

that ViE ObI, the classifying spaces B(i\I)OP and B(I/i) are contractible (cf. p. 13-15). 

EXAMPLE Let F be the functor 1- SISET tha.t sends i E Ob I to Fi = A [O]-then hocolim F ~ 

nerloP , i.e., ji A [0] xner(i\I)OP ~ nerJOP or still, ji A [0] x ner(IoP Ii) ~ nerIoP . Similarly, ji A [0] x 

ner(i\I) ~ nerI and j' A [0] xner(i\IoP) ~ nerJOP. In addition, ji A [0] x ner(i\IoP)oP ~ nerIor still, 

ji A [0] x ner(I/i) ~ ner I. 

EXAMPLE Let U : CGH. - CGH be the forgetful functor and consider a. functor F : I -

CGH •. Question: What is the relation between hocolim F &; hocolim U of and holim F &; holim U of? The 

t Model Categories and General Abstract Homotopy Theory, 
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answer for homotopy limits is that there is essentially no difference (since map .. (X+, Y) ~ map(X, UY)). 

Turning to homotopy colimits, assume that V i, Fi is cofibrant-then there is a cofibration BIoP ---+ 

hocolim U 0 F and a homeomorphism hocolim U 0 F / BJOP ---+ hocolim F. 

[N ote: If BIoP is contractible, the projection hocolim U 0 F ---+ hocolim F is a weak homotopy 
BIoP ~ * 

equivalence. Proof: Consider the pushout square 1 1 
hocolim U 0 F ~ hocolim F 

CGH (singular structure) is a proper model category.] 

, bearing in mind that 

LEMMA Let X ---+ B be a simplicial map. Suppose that for every commutative diagram 

1 1 
6. [n'] 6.[n] 

~ X 

1 P ,the arrow X b, ---+ Xb is a weak homotopy equivalence-then p is a 

---t B 
~b 

homotopy fibration. 

FACT Let F : I ---+ SISET be a functor-then the arrow hocolim F ---+ ner lOP is a homotopy 

fibration iff V 0 E Mor I, Fo is a weak homotopy equivalence. 

and 

PROPOSITION 46 Fix F E Ob[l, C]-then 

.dIOP 

hocolim F RJ J F 0 7I"PP D~ ner lOP 

holimF RJ ( HOM(~ner I, F 0 71"1) J.dI 

Application: Let F, G : I -t C be functors and let S : F -t G be a natural 

transformation. Assume: V i, Si : Fi -t Gi is a weak equivalence-then hocolimS : 

hocolim F -t hocolim G is a weak equivalence provided that V i, {~~ is cofibrant and 

holimS : holimF -t holimG is a weak equivalence provided that Vi, {~~ is fibrant. 

[In view of the above result and the example on p. 13-62, this follows from Proposi

tions 44(K) and 45(K).] 

EXAMPLE Let F : I ---+ SISET be a functor-then there is a natural homeomorphism I hocolim FI 
-+ hocolim IFI of compactly generated Hausdorff spaces. 

[Geometric realization is a left adjoint, hence preserves colimits.] 
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EXAMPLE Let F : I ---+ CGH be a functor such that V' i, Fi is cofibrant-then there is a natural 

weak homotopy equivalence hocolim sin F ---+ sin hocolim F .. 

[Consider the natural transformation IsinFI ---+ F. Thanks fo the Giever-Milnor theorem, V' i, 

I sin Fil ---+ Fi is a weak homotopy equivalence, thus the arrow hocolim I sin FI ---+ hocolim F is a weak 

homotopy equivalence (d. supra). But from the preceding example, I hocolimsinFI ~ hocolim I sinFI, so 

taking adjoints leads to the conclusion.] 

EXAMPLE Let F : I ---+ CGH be a functor-then there is a natural isomorphism sinholimF---+ 

holim sin F of simplicial sets. 

EXAMPLE Let F : 1---+ SISET be a functor such that V' i, Fi is fibrant-then there is a natural 

weak homotopy equivalence I holimFI---+ holim IFI. 

Another corollary to Proposition 46 is the fact that hocolim F ~ \Ian F 0 1rPP I and 

holim F ~ tot ran F 0 1r1. 

SIMPLICIAL REPLACEMENT LEMMA Fix FE Ob[I, C]. Define II F in SIC by 

(ll F)n = II Fin-then II F ~ Ian F 0 1rPP. 

[n].!... lOP 

COSIMPLICIAL REPLACEMENT LEMMA Fix F E Ob[I, C]. Define IT F III 

COSIC by, (IT F)n = II Fin-then IT F ~ ran F 0 1r1· 

[n].!... I 

FACT Let F, G : I ---+ SISET be functors and let S : F ---+ G be a natural transformation. Assume: 

V' i, Si : Fi ---+ Gi is a Kan fibration-then holimS : holimF ---+ holimG is a Kan fibration. 

[The arrow IT S : IT F ---+ IT G is a fibration in [A, SISET] (Reedy structure). But tot: [A, SISET] 

---+ SISET preserves fibrations (d. p. 13-62).] 

Application: Let F : I ---+ SISET be a functor. Assume: V'i, Fi is fibrant-then holimF is fibrant. 

EXAMPLE Let p : A ---+ B be an inclusion of simplicial sets. Suppose that F : I ---+ SISET is a 

functor such that V' i, Fi is p-Iocal-then holim F is p-Iocal. 

[Each Fi is fibrant, so holim F is fibrant. Denote by the functor I ---+ SISET that 
. {map(A,F) 

map(B, F) 

sends i to , which are fibrant (d. p. 13-22). Since 
{ 

map(A, Fi) {map(A, holimF) ~ holimmap(A, F) 

map(B, Fi) map(B, holimF) ~ holimmap(B, F) 
and each Fi is p-Iocal, the arrow map( B, holim F) ---+ map( A, holim F) is a weak homotopy equivalence 

(cf. p. 13-64).] 
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EXAMPLE Let p : A -- B be an inclusion of simplicial sets. Suppose that F, G : 1-- SISET are 

functors and :=: : F -- G is a natural transformation. Assume: V i, :=:i : Fi -- Gi is a p-equivalence-then 

hocolim:=: : hocolimF -- hocolimG is a p-equivalence. 

[It is a question of proving that the arrow map(hocolim G, Z) -- map(hocolim F, Z) is a weak ho

motopy equivalence V p-local Z or still, that the arrow holimmap(G, Z) __ holimmap(F, Z) is a weak 

homotopy equivalence, which is true (cf. p. 13-64).] 

PROPOSITION 47 . For any cofibrant object F in [I, S1SET) (structure L), the arrow 

hocolim F -+ colim F is a weak homotopy equivalence. 

[It suffices to show that V fibrant Z, the arrow map( colim F, Z) -+ map(hocolim F, Z) 

is a weak homotopy equivalence (cf. Proposition 39). Since hocolim F -+ colim F is induced 

by the projection ner(-\I)OP -+ *, one need only consider the arrow HOM(F, map ( *, Z)) -+ 

HOM(F, map(ner(-\I)OP, Z)). But F is a cofibrant object in [I, SISET] and map( *, Z) -+ 

map(ner(-\I)OP, Z) is a weak equivalence between fibrant objects in [I, SISET], thus the 

assertion is a consequence of Proposition 34.] 

FACT Suppose that I is filtered-then V F in [I, SISET], the arrow hocolimF __ colimF is a 

weak homotopy equivalence. 

EXAMPLE V F in FIL(SISET), the arrow hocolim F -- colim F is a weak homotopy equivalence. 

Therefore' colimFI is contractible if V n, IFni is contractible. 

[The arrow h~colim F -- ner [N]OP is a weak homotopy equivalence. And: [N]OP has a final object, 

hence B[N]OP is contractible (cf. p. 13-15).] 

LEMMA If X is a cofibrant K-simplicial (K-cosimplicial) object in SISET, then 

V fibrant Y in SISET, map(X, Y) is a fibrant K-cosimplicial (K-simplicial) object in 

SISET. 

PROPOSITION 48 For any cofibrant K-simplicial (K-cosimplicial) object X III 

SISET, the arrow hocolim X -+ colim X is a weak homotopy equivalence. 

EXAMPLE Let B be a simplicial set. Fix an X in SISET / B and determine the cofibrant B

cosimplicial object XB in SISET as on p. 13-61 ff.-then the arrow hocolimXB -- colimXB (~ X) is a 

weak homotopy equivalence. 
X f ) Y 

[Note: Suppose given ~ /< such that V n & V b E B n ) XI> -- Yb is a weak homotopy 

B 

.",-", equivalence-then hocolim XB -- hocolim YB is a weak homotopy equivalence (cf. p. 13-64). Since there 
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hocolim X B ----+ X 

is a commutative diagram 1 if ,it follows that f is a weak homotopy equivalence .. 

hocolim YB ----+ Y 
Example: p is a weak homotopy equivalence if the IXb I are contractible.] 

Given a category C, write BISIC for the functor category [(a x a)oP, C] (i.e., 

[a oP, SICD-then by definition, a bisimplicial object in C is an object in BISIC (Le., 

a simplicial object in SIC). Example: Assuming that C has finite products, if {: are 

simplicial objects in C, the assignment ([n], [mD --+ Xn x Ym defines a bisimplicial object 

XxY in C. -Specialize to C = SET-then an object in BISISET (= a x a) is called a bisimpli-

cial set and a morphism in BISISET is called a bisimplicial map. Given a bisimpli

cial set X, put Xn,m X([n], [m]) (= Xn([m]))-then there are horizontal operators 

{ 
d~ : Xn,m --+ Xn-1,m (0 < . < ) d t' I t { dj : Xn,m --+ Xn,m-l (0 < 

h • X X - z - n an ver lca opera ors 11 • X X -
Si' n,m --+ n+l,m 8;. n,m --+ n,m+l 

j ~ m). The horizontal operators commute with the vertical operators, the simpli-

cial identities are satisfied horizontally and vertically, and thanks to the Yoneda lemma, 

Nat(~[n, m], X) ~ Xn,m, where ~[n, m] = ~[n] x~[m]. 
[Note: Every simplicial set X can be regarded as a bisimplicial set by trivializing its 

structure in either the horizontal or vertical direction, i.e., Xn,m = Xm or Xn,m = Xn.] 

EXAMPLE Any functor T : A -+ CAT gives rise to a functor XT : CAT -+ BISISET by 

writing XTI([n], [mD = nern([T[m],I]) (~ Nat([n], [T[m],I]) ~ Nat(T[m], [[n],l]) ~ (ST[[n],I])m, ST the 

singular functor (cf. p. 0-16». 

EXAMPLE Let C be a double category, i.e., a category object in CAT-then ner C is a simplicial 

object in CAT, hence ner( ner C) is a bisimplicial set. 

Viewing [n] as a small category, one may form its simplex category a[ n] (= a ner[ n] = 
a~[n] = aj[nJ). The assignments [n] --+ nera[n], [n] --+ ~[n] define cosimplicial objects 

Y A, Y A in SISET which are cofibrant in the Reedy structure and there is a weak equiva

lence Y A --+ YA (cf. p. 13-17). 

j
[n) j[n] 

Let X be abisimplicial set-then hocolimX = Xnxner([n]\aoP)oP = Xnx 

j

[n] j[n] 
ner (aj[nD = Xn x ner a[n] --+ Xn X ~[n] = IXI. 

PROPOSITION 49 The arrow hocolim X --+ IX I is a weak homotopy equivalence. 
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[Bearing in mind Proposition 39, take a fibrant Z and consider the arrow map(IXI, Z) 

-+ map(hocolimX, Z) or still, the arrow HOM(X,map(YA , Z» -+ HOM(X,map(Y A, Z». 
In the Reedy structure, X is necessarily cofibrant while map(YA , Z) -+ map(Y AI Z) is a 

weak equivalence between fibrant objects (see the lemma prefacing Proposition 48). One 

may therefore quote Proposition 34.] 

Using the notation of the Kan extension theorem, take C = .d oP, D = .d OP x .d oP, 
S = SET, and let K be the diagonal .d OP -+ .d OP x .d oP-then the functor [K, S] == 
di : BISISET -+ SISET has both a right and left adjoint. One calls di the diagonal: 

(diX)n = X([n), [n), the operators being I - i ,- i , . Exam Ie: di(XxY) = {
d' - dhdv - dVdh 

s.· = s~ sV = sV s~ p -I. •• 
X x Y (=> di.6.[n, m) = .6.[n] x .6.[m]). 

PROPOSITION 50 Up to natural isomorphism, di and I?I are the same. 

[It suffices to prove that di is a left adjoint for sin: Nat ( diX, Y) Rj Nat(X, sin Y). But 

X Rj colim"j .6.[ni' mj] and one has Nat(.6.[n, m], sin Y) Rj map(.6.[n], Y)m Rj Nat(.6.[n] x 
.6.[m] , Y) Rj Nat( di.6.[n, m], Y).] 

Application: V bisimplicial set X, there is a weak homotopy equivalence hocolimX -+ 
diX. 

EXAMPLE Let F : I -+ SISET-then in the notation of the simplicial replacement lemma, F 

determines a bisimplicial set II F by the rule <ll F)n = II Fin. And: hocolim F ~ III FI ~ 

In] .4 lOP 

di II F. 

EXAMPLE Place on CGH its singular structure and equip [4oP ,CGH] with the corresponding 

Reedy structure. 'Th.ke an X in SICGH which is both Reedy fibrant and Reedy cofibrant and let UX be 

the simplicial set obtained from X by forgetting the topologies-then the arrow IU XI -+ IXI is a weak: 

homotopy equivalence. To see this, let sin X be the bisimplicial set defined by (sinX). = sinX" and write 

sin T X for the "transpose" of sinX, Le., (sin T X)n,m = (sinX)m •• (=> (sin T X)o ... ~ U X). Since sin X is 

Reedy fibrant, Va, sin T X(a) is a weak homotopy equivalence. Therefore the arrow I sin T Xlo -+ I sin T XI 

is a weak homotopy equivalence (cf. p. 13-59). Write I sinXI for the simplicial object in CGH with 

IsinXln = IsinX"I. Because IsinXI is Reedy cofibrant, in view of the Giever-Milnor theorem, the arrow 

/I sin XII -+ IXI is a weak homotopy equivalence (cf. Proposition 44). So, putting everything together gives 

/U XI ~ II sin T Xlo 1-=+ II sin T XII ~ Idisin T XI = IdisinXI ~ "sin XII-=+ IXI. 
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PROPOSITION 51 Suppose that I : X --+- Y is a bisimplicial map. Assume: V n, 

In : Xn --+- Yn is a weak homotopy equivalence-then dil : diX --+- diY is a weak homotopy 

equivalence. 

[Since all simplicial objects in A are cofibrant in the Reedy structure, this is a conse

quence of Propositions 44 and 50.] 

[Note: In both the statement and the conclusion, one can replace "weak homotopy 

equivalence" by "HG-equivalence" (cf. p. 13-59).] 

w ---+- Y 

Let X -4 z /!- Y by a 2-sink in SISET-then a commutative diagram 1 1'1 is said to 

X --+ Z , 
be a pullback up to homotopy if the arrow W -t X X Z Y is a weak homotopy equivalence. Example: 

~[l] ---+- A[1,2] 

1 1 is not a homotopy pullback but is a pullback up to homotopy. 

,&[1] ---+- ,&[2] 

FACT Let I : X -t Y be a bisimplicial map. Assume: V m, n &l V Q : [m] -t [n], the commutar
Xa 

X" --+ X... X .. x .&[n] ---+- diX 

tive diagram ',,1 11m is a pullback up to homotopy-then V n, 

Y" --+ Ym 
Ya 

pullback up to homotopy. 

1 1 isa 

Y" x .&[n] ---+- diY 

PROPOSITION 52 BISISET carries a proper model category structure in which a 

bisimplicial map I : X --+- Y is a weak equivalence if dil is a weak homotopy equivalence, 

a fibration if dil is a Kan fibration, and a cofibration if I has the LLP w.r.t. acyclic 

fibrations. 

[This is an instance of the generalities on p. 13-47, the essential point being that 

di (which plays the role of "G") has both a right and left adjoint. In particular: di 

preserves filtered colimits. The stage is thus set for a small object argument. Let D 

be the left adjoint of di normalized by the condition D6.[n] = 6.[n, n]. Put 6[n, n] = 
D6[n], A[k, n, n] = DA[k, n]-then the arrow 6[n, n] --+- 6.[n, n] is a cofibration and the 

arrow A[k, n, nJ --+- 6.[n, nJ is an acyclic cofibration (ldiA[k, n, nJI is contractible). The 

requisite factorizations can therefore be established in the usual way. Let us note only 

that every I admits a decomposition of the form I = poi, where p is a fibration and i is an 

acyclic cofibration that has the LLP w.r.t. fibrations (specifically, i is a sequential colimit 

of pushouts of coproducts of inclusions A[k, n, n] --+- 6.[n, n]). As for properness, the part 
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of PMC concerning pullbacks is obvious while the part concerning pushouts follows from 

the observation that a cofibration is necessarily an injective bisimplicial map.] 

FACT Take BISISET in the model category structure supplied by Proposition 52-then the 

adjoint pair (D, di) induces an adjoint equivalence of categories between HSISET and HBISISET. 

For certain purposes, it is technically more convenient to use a modification of the 

homotopy coli mit in order to minimize the proliferation of opposites. Definition: Given 
lOP 

F E Ob[l; C], put hocolimI F (or hocolim F) = J FDner(-\I). The formal properties 

of hocolim are the same as those of hocolim, the primary difference being that hocolim F ~ 

I II FI, where now (II F)n II F JO. 

[n] I 

EXAMPLE Let F : I - CAT be a functor-then the Grothendieck construction on F is the 

category groIF whose objects are the pairs (i, X), where i E Obi and X E ObFi, and whose mor

phisms are the arrows (0, f) : (i, X) - (j, Y), where 0 E Mor (i, j) and f E Mor «Fo)X, Y) (composition 

is given by (6',/') 0 (o,!) = (6' 0 o,/, 0 (Fo')!). Put NF = ner 0 F, so NF : I - SISET. One 

can thus form hocolim N F and Thomason t has shown that there is a natural weak homotopy equiva

lence fl : hocolimNF - nergroIF. The situation for homotopy limits is simpler. Indeed, holimNF R:: 

j map(ner(l/i), (ner 0 F)i) R:: jner[~/i, Fi] R:: ner(j[l/i, Fi]). 

[Note: Here is the definition of fl. Representing hocolim N F as di II N F, fix n and consider a 

typical string (io ~il - ... - in-l in,Xo - Xl - ... - Xn-l - Xn), where the Xk E ObFio 

(0 ~ k ~ n)-then fln takes it to the element ofnerngroIF given by (io,Xo) - (iI, (FOO)Xl) -"'

(in, (Fon_ 1 0 ... 0 Foo)Xn ).] 

Let I and J be small categories, \7 : J -+ I a functor. 

Notation: Given i E ObI, write i\ \7 for the comma category IKi' \71. 
[Note: Dually, \7 Ii stands for the comma category 1\7, Kil.] 

i\ \7 ----t J 

Observation: The commutative diagram 1 1 is a pullback square in CAT. 

i\1 ----t I 
\7- I (i) 

[Note: The fiber of \7 over i is defined by the pullback square 1 
1 

----t 

----t 
Ki 

J 

lv. So: 
I 

Math. Proc. Cambridge Philos. Soc. 85 (1979), 91-109; see also Heggie, Cahiers Topologie Geom. 

Differentielle Gategoriques 34 (1993), 13-36. 
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V-I( i) is the subcategory of J having objects j such that V j = i, morphisms fj such that 
V-lei) ----+i\ V 

Vfj = idi, and there is a commutative diagram 1 ~ 1 .] 
Vii ) J 

EXAMPLE The arrow colim ner(-\ '\7) -+ nerJ is an isomorphism. Viewed as an object in 

[lOP, SISET] (structure L), ner(-\ '\7) is free, hence cofibrant (cf. p. 13-38). Therefore the arrow 

hocolimner(-\ '\7) -+ colim ner(-\ '\7) (~nerJ) is a weak homotopy equivalence (cf. Proposition 47). 

[Note: Take I J and '\7 = idl-then the arrow hocolimner(-\I) ji ner(i\l) x ner(i\loP ) -+ 

ji ner(i\l) x 8[0] ~ nerlis a weak homotopy equivalence, as is the arrow hocolimner(-\I) ji ner(i\l)x 

ner(i\loP ) -+ ji 8 [OJ x ner(i\loP ) ~ nerloP.] 

LEMMA Let I and J be small categories, V : J ---+ I a functor-then V F in 

[loP, SISET], j map(ner(i\ V), Fi) r::::i i map(ner(j\J), (FoVOP)j), i.e., HOM(ner(-\ V), 

F) r::::i HOM(ner(-\J), F 0 VOP). 

[The left Kan extension of ner(-\J) along VOP is ner(-\ V).] 

PROPOSITION 53 Let I and J be small categories, V : J ---+ I a functor-then V F 

in [I, SISET], the arrow jj (F 0 V)j x ner(j\J) ---+ ji Fi x ner(i\ V) is a weak homotopy 

equivalence. . 

[This is yet another application of Proposition 39. Thus fix a fibrant Z and pass to 

map(ji Fi x ner(i\ V), Z) ---+ map(jj (Fo V)j xner(j\J), Z), i.e., to 1 map(ner(i\ V),map 

(Fi, Z)) ---+ 1 map(ner(j\J), map«F 0 V)j, Z)), i.e., to HOM(ner(-\ V), map(F, Z)) ---+ 
J . 

HOM(ner(-\J), map(F, Z) 0 VOP), which by the lemma is an isomorphism, hence a 

fortiori, a weak homotopy equivalence.] 

A small category is contractible if its classifying space is contractible. Example: Every 

filtered category is contractible. 

EXAMPLE Let e be a small category-then the cone re of e is the small category with Ob re 

Ob e I1 {0}, where 0 is an adjoined initial object. Example: ro = 1. So, re is contractible (cf. p. 13-15) 

and Bre ~ rBe. 
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[Note: Given small categories {C , their join C * D is the full subcategory of rc x rD with 
D -

ObC * D = ObC x ObD II ObC x {0} II{0} x ObD. Under the join, CAT is a symmetric monoidal 

category (0 is the unit). One has B(C * D) R.:l BC *k BD.] 

Given small categories {~ , a functor V : J -+ I is said to be strictly final provided 

that for every i E Ob I, the comma category IKi' VI is contractible. A strictly final 

functor is final. In particular: V : J -+ I strictly final :::::} coHm 6 0 V R:i colim 6, where 

6 : 1'-+ SISET (cf. p. 0-11). 

[Note: A subcategory of a small category is strictly final if the inclusion is a strictly 

final functor.] 

PROPOSITION 54 Let I and J be small categories, V : J -+ I a strictly final 

functor-then \f F in [I, SISETj, the arrow hocolimFoV -+ hocolimF is a weak homotopy 

equivalence. 

[According to Proposition 53, the arrow hocolimF 0 V = Ii (F 0 V)j x ner(j\J) -+ 

Ii Fi x ner( i\ V) is a weak homotopy equivalence. Claim: The arrow Ii Fi x ner( i\ V) -+ 

Ii Fi x ner( i\I) = hocolim F is a weak homotopy equivalence. Indeed: ner(-\ V), 

ner(-\I) are cofibrant objects in [lOP, SISETj and since V is strictly final, the arrow 

ner(-\ V) -+ ner(-\I) is a weak equivalence. Therefore one may appeal to the example 

on p. 13-52:] 

FACT Let I and J be small categories, V : J ...... I a functor. Assume: nerV : nerJ ...... nerl is a 

weak homotopy equivalence. Suppose that F : I ...... SISET sends the morphisms in I to weak homotopy 

equivalences-then the arrow hocolim F 0 V ...... hocolim F is a weak homotopy equivalence. 

IIFoV ---+ IIF 

[The commutative diagram 1 1 of bisimplicial sets is a pullback square, there-

fore the commutative diagram 

II * ---+ II * 
di II F 0 V ---+ di II F 

1 
di II * 

1 of simplicial sets is a pullback square (di is a 

---+ di II * 
hocolim F 0 V ---+. hocolim F 

right adjoint). Accordingly, in SISET, the commutative diagram 1 1 IS a 

nerJ nerl 
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pullback square. The result thus follows from the fact that the arrow hocolim F -+ ner I is a homotopy 

fibration (d. p. 13--64).] 

EXAMPLE If I is contractible and if F : I -+ SISET sends the morphisrns in I to weak homotopy 

equivalences, then Vie Ob I, the arrow Fa -+ hocolim F is a weak homotopy equivalence. 

FACT (Homotopy Pushdowns) Let I and J be small categories, V : J -+ I a functor. Given a 

functor G : J -+ SISET, define an object hocolimv G in [I, SISET] by (hocolimv G)i = hocolimv /i GoU., 

where U. : V /i -+ J is the forgetful functor-then the arrow hocoliml hocolimv G -+ hocoliIIlJ G is a weak 

homotopy equivalence. 

QUILLEN'S THEOREM A Suppose that I and J are small categories and V : J -t I 

is a strictly final functor-then ner V : ner J -t ner I is a weak homotopy equivalence, 

hence BV : BJ -t BI is a homotopy equivalence. 

[In Proposition 54, let F be the functor I -t SISET that sends i E ObI to Fi = Do[OJ.] 

[Note: The same conclusion obtains if V is "strictly initial".J 

EXAMPLE Let X be a topological space, sinX its singular set-then sinX can be regarded 
A'" .a. m --=---+01 .a." 

as a category: ~/ (a e Mor ([m], [n])) (cf. p. 4-38). This category is isomorphic to 

X 

.a./X == groAsinX and there is a natural weak homotopy equivalence ner.a./X -+ sinX (d. p. 13-17), 

which thus gives a natural weak homotopy equivalence B.a./ X -+ X (Giever-Milnor theorem). Let C be 

any small full subcategory of TOP / X containing .a./ X as a subcategory. Assume: V Y -+ X in C, Y 

is homotopically trivial-then the arrow B, : B.a./ X -+ BC induced by the inclusion, : .a./ X -+ C is a 

homotopy equivalence. To see this, one can suppose that X is nonempty and appeal to Quillen's theorem 

A. Claim: , is a strictly initial functor, i.e., V Y -+ X in C, the comma category '/Y -+ X is contractible. 

Indeed, '/Y -+ X is simply .a./y and the arrow B.a./y -+ * is a weak homotopy equivalence, hence a 

homotopy equivalence. 

Let C be a category-then the twisted arrow category C( ..... ) of C is the category 

whose objects are the arrows I : X -t Y of C and whose morphisms I -t I' are the pairs 

X -4 Y 

{
<p E Mor(X',X). T 1 ( <p, tP): tP E Mor (Y, yl) for which the square 1/1 .p commutes. Denote by 

X, --+ Y' 
I' 

{ t
s h . al . . { C( ..... ) -t Cop 

t e canowc projectIOns C( ..... ) -t C 
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EXAMPLE Suppose that C is a small category-then ner s : ner C( ~) --+ ner COP, nert : 

ner C( ~) --+ ner C are weak homotopy equivalences. 

[To discuss ner s, observe that V X, the functor X\ C --+ siX that sends X 1. Y to (X 1. Y, idx ) (so 
f id x 

seX --+ Y) I X) has a left adjoint. Since X\C is contractible, siX must be too (cf. p. 13-15), i.e., 

s is strictly initial, thus by Quillen's theorem A, ner s is a weak homotopy equivalence.] 

[Note: It is a corollary that ner C and ner CoP are naturally weakly equivalent.] 

Let I and J be small categories, \7 : J -T I a functor-then by V( ~) we shall 

understand the category whose objects are the triples (i, 0, j), where 0 : i -T \7 j, and 

h h ' (. 1:') (" 1:1 ") h . ('" ./,) {<p E Mor(i',i) r h' h w ose morp Isms 2, u, J -T Z, U ,J are t e paIrs 'f/, <p: ./, M (. ") lor w IC 
. <p E or J, J 

8 ~. 
Z --+ VJ 

the square q, T . 1 Vtj> commutes. Example: idI( ~ ) = I( ~ ). 
i ' --+ \7j' 

8' 

QUILLEN'S THEOREM B Suppose that I and J are small categories and \7 : 

J -T I is a functor with the property that for every morphism i' -T i" in I, the arrow 

ner(il/\ \7) -T ner(i' \ \7) is a weak homotopy equivalence-then ViE ObI, the pullback 
ner( i\ \7) --+ ner J 

square 1 1 is a homotopy pullback. 

ner( i\l) --+ ner I 
i\ \7 --+ \7(~) 

1 1 
[Each of the squares in the commutative diagram i\1 --+ I( ~) 

1 1 
1 --+ lOP 

pullback squares in CAT, hence each of the squares in the commutative diagram 

ner(i\ \7) --+ ner \7( ~) --+ ner J 

1 1 1 
ner( i\l) 

1 
il[O] 

--+ ner I( ~ ) --+ ner I 

1 

J 

1 
I are 

are pullback squares in SISET (ner is a right adjoint). And, from the definitions, 

hocolimner(-\ \7) ~ ner \7( ~), hocolimner(-\I) ~ ner I( ~). Since the arrows 

hocolimner(-\I) -T ner lOP, ner( i\l) -T il[O] are weak homotopy equivalences, the com-

ner( i\l) --+ hocolimner(-\I) 

mutative diagram 1 1 is a homotopy pullback (cf. p. 12-

il[O] 



13-75 

14); since the arrows hocolimner(-\ V) -+ nerJ, hocolimner(-\I) -+ nerl are weak 

hocolim ner(-\ V) ---t ner J 

homotopy equivalences, the commutative diagram 1 1 is a ho-

hocolim ner(-\I) ---t ner I 
motopy pullback (cf. p. 12-14). Owing to our assumption on V, the arrow 

hocolimner(-\ V) -+ ner lOP is a homotopy fibration (cf. p. 13-64). Accordingly, the pull

ner( i\ V) ---t hocolim ner(-\ V) 
back square 1 1 is a homotopy pullback (cf. p. 12-16). 

~[O] ---t nerloP 

The composition lemma therefore implies that the commutative diagram 

ner( i\ V) ---t hocolim ner(-\ V) 

1 1 is a homotopy pullback. Finally, then, by another ap-

ner(i\l) ---t hocolimner(-\I) 
plication of the composition lemma, one concludes that the commutative diagram 
ner( i\ V) ---t ner J 

1 1 is a homotopy pullback.] 
ner( i\l) ---t ner I 

[Note: One can also formulate the result in terms of the V Ii.] 

LEMMA 

W 

If 1 
Y 

,lg is a homotopy pullback in SISET, then 

IBT! ---t 

1 
X ---t Z IX! ---t 

I III 

IYI 

11g1 

IZI 

is a homotopy pullback in CGH (singular structure) and the arrow !WI -+ WI/I,lgl is a 

homotopy equivalence (compactly generated double mapping track). 

[In the notation of p. 12-13, write Y ~ Y - Z-then Y -+ Z Kan => !YI -+ !Z! 
Serre and W -+ X Xy Z goes to !W! -+ !X Xy Z! = !X! x lYl !ZI (cf. Proposition 1), 

!WI ---t IY! 
so 1 11g1 is a homotopy pullback in CGH. The double mapping track of the 

IX! III !ZI 

2-sink IX! La IZ!!!d Y calculated in TOP is a CW space (cf. §6, Proposition 8). Its image 

under k is WI/I,lgl, thus WI/I,lgl is a CW space. Therefore the arrow !WI-+ WI/I,lgl, which 

is a priori a weak homotopy equivalence, is actually a homotopy equivalence.] 

Consequently, under the conditions of Quillen's theorem B, ViE ObI: V-lei) =j:. 0, 

there is a homotopy equivalence B(i\ V) -+ EBV (compactly generated mapping fiber), 

so V j E V-l(i), there is an exact'sequence .. · -+ 7T'q+I(BI,i) -+ 7T'q(B(i\V),(j,id i ))-+ 
7T'q(BJ,j) -+ 7T'q(BI,i) -+ .... 
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Remark: It is thus a corollary that theorem B =? theorem A. 

Waldhausen t has extended Quillen's theorems A and B from CAT to [4. OP , CAT]. 

w --+ 

Fix an abelian group G-then a commutative diagram 1 
X --+ 

f 

y 

19 of simplicial 
Z 

sets is said to be an HG-pullback if for some factorization Y -=+ Y - Z of g, the induced 

simplicial map W --+ X x z Y is an H G-equivalence. Here, the factorization of 9 is in 

the usual model category structure on SISET and not in that of the homological model 

category theorem, hence the choice of the factorization of 9 is immaterial and one can work 

with either 9 or f. Example: A homotopy pullback is an HG-pullback. 

[Note: When G = Z, the term is homology pullback.] 

W --+ Y 

Example: A commutative diagram 1 
X --+ 

19 of simplicial sets, where f is a weak 
Z 

f 
homotopy equivalence, is an HG-pullback iff the arrow W --+ Y is an HG-equivalence . 

• --+.--+. 
COMPOSITION LEMMA Consider the commutative diagram 1 1 1 .--+.--+. 

in SISET. Assume: The square on the right is a homotopy pullback-then the rectangle 

is an HG-pullback iff the square on the left is an HG-pullback. 

Rappel: SISET is a topos, so 'V B, SISET/ B is a topos (MacLane-Moerdijk f ), thus 

is cartesian closed. 

[Note: Similar remarks apply to BISISET.] 

PROPOSITION 55 Let F : I --+ SISET be a functor. Assume: 'V 5 E Mor I, F5 is 
Fi --+ hocolim F 

an HG-equivalenc~then 'V i E Db I, the pullback square 1 1 IS an 
~[O] nerl 

HG-pullback. 

t CMS Con/. Proc. 2 (1982), 141-184. 

t Sheaves in Geometry and Logic, Springer Verlag (1992), 190. 
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[Factor ~[O] -+ ner I as ~[O] ....... X - ner I, where ~z is a weak homotopy equivalence, 
.0., .0.. 

the claim being that the arrow Fi -+ X Xnel' I hocolimF is an HG-equivalence. In view 

of the small object argument, one can suppose that .6.z is a sequential colimit of pushouts 

of coproducts of inclusions A[k, n] -+ .6.[n]. Because of this and the fact that the functor 

- X nel' I hocolim F preserves colimits, it is obviously enough to prove that every diagram of 
hocolimF 

the form 1 leads to an HG-equivalence A[k, n] XaarI 

A[k,n] - ~[n] - nerI 
.0., 

hocolimF -+ .6.[n] Xnel' I rho-co-'li;-·m-F. To begin with, .6.[n] Xllel'l hocolimF ~ hocolimF 0 I 
(f : [n] -+ I). Furthermore, the initial object 0 E [n] defines a natural transformation 

F 0/(0) -+ F 0 I, so there is a commutative diagram 

Il Fo 1(0) Il Fo 1(0) 
ao-···-am ao-···-a ... 

eA[k,n] 

1 
e.o.[n] 

1 
Il F 0 1(0:0) ----t- Il F 0/(0:0) 

ao-···-a ... ao-· .. -am 
eA[k,n] e.o.[n] 

of bisimplicial sets. The hypothesis on F, in conjunction with the appended note to 

Proposition 51, implies that the diagonal of either vertical arrow is an HG-equivalence. 

But the diagonal of the top horizontal arrow is the weak homotopy equivalence A[k, n] x 

Fo/(O) -+ .6.[n] X Fo/(O), therefore the diagonal of the bottom horizontal arrow is an HG
equivalence, i.e., A[k,n] Xnel' I hocolimF -+ .6.[n] Xnel' I hocolimF is an HG-equivalence.] 

PROPOSITION 56 Suppose that I and J are small categories and V : J -+ I is a 

functor with the property that for every morphism i' -+ itt in I, the arrow ner(i"\ V) -+ 

ner( i\ V) - ner J 

ner(i'\ V) is an HG-equivalence-then Vi E ObI, the pullback square 1 1 
ner(i\l) - nerl 

is an H G-pullback. 

[One has only to trace the proof of Quillen's theorem B, using Proposition 55 to 
ner(i\ V) - hocolimner(-\ V) 

. establish that the pullback square 1 1 is an H G-pullback.] 
.6.[0] _ ner lOP 

[Note: It follows that ViE ObI: V-I (i) i= 0, the arrow B(i\ V) -+ EBV is an 

H G-equivalence (compact1;r generated mapping fiber).] 
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Proposition 56 is the homological analog of Quillen's theorem B. The same style of argument can 

also be used for it (in Proposition 55, replace "HG-equivalence" by "weak homotopy equivalence" and 

"HG-pullback" by "homotopy pullback"). 

Let (M,O) be a category object in SISET. Suppose that Y is a left M-object and 

tranY is the associated translation category-then the projection T: Y -+ 0 gives rise to 

an internal functor tranY -+ M from which a morphism ner tranY -+ ner M of simplicial 

objects in .A or still, a bisimplicial map. Each x E 0 0 determines a pullback square 
Yz ~ Y 

1 
~[O] 

IT in SISET and through e : 0 -+ M, arrows ~[O] -+ nern M, thus there is 
~ 0 . ~'" 
~., 

Yx ---+ ner tranY 

a pullback square 1 
~[O] 

1 in BISISET (abuse of notation). 
~ 

~., 
nerM 

[Note: \! IE Mo, {:; E 0 0 and A : M Xo Y -+ Y defines an arrow Y.f -+ }'if.] 

PROPOSITION 57 If\! IE Mo, the arrow Y.f -+ }'if is an HG-equivalence, then the 

Yx ~ InertranYI 

pullback square 1 
~[O] 

1 (cf. Proposition 50) is an HG-pullback provided 
InerMI 

that 0 is a constant simplicial set. 

[Use the model category structure on BISISET furnished by Proposition 52 to fac

tor ~[O] -+ ner M as poi, where p is a fibration and i is an acyclic cofibration repre
~., 

sent able as a sequential colimit of pushouts of coproducts of inclusions A[k, n, n] -+ ~[n, n]. 
Reasoning as in the proof of Proposition 55, it suffices to show that for any diagram 

nertranY 

of the form 
A[k, n, n] ---+ ~[n, n] ---+ 

~1 

1 , IA[k, n, nll x Iner Milner tranYI -+ 
nerM 

1~[n,nll XlnerMllnertranYI is an HG-equivalence. The arrow ~f : ~[n,n] -+ nerM cor-

responds to Xo 4. Xl -+ ... -+ Xn-l ~ X n, where the Xi E On (= 0) and the Ii E Mn. 

This said, consider the commutative diagram 

A[k, n, n] X Yxo -------!» ~[n, n] X Yxo 

1 1 
A[k, n, n] XnerM nertranY -----+ ~[n, n] XnerM nertranY 
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which results from piecing together the definitions. The diagonal of the top horizontal 

arrow is an HG-equivalence (ldiA[k, n, nll is contractible), as is the diagonal of the two 

vertical arrows.] 

[Note: Changing the assumption to "weak homotopy equivalence" changes the con

clusion to "homotopy pullback" .] 

EXAMPLE Let (M,O) be a category object in sISET with 0 ~ a[O]. So: M is a sim

plicial monoid or, equivalently, M is a simplicial object in MONsET. Let Y be a left M-object. 

Assume: V mEMo. m. : H.(lYI;G) - H",(IYliG) is an isomorphism-then the pullback square 
Y ~ Ibar(*jMjY)1 

1 

W ~ 

Let! 
X ~ 

1 is an HG-pullback. 

Y 

! be a commutative diagram of bisimplicial sets. Problem: Find condi

Z 
diW ~ 

tions which ensure that 1 
diY 

1 is a homotopy pullback. To this end, assume that 

diZ diX ~ 

Vn, ! ! is a homotopy pullback. Using the Reedy structure on [.6. oP, SISET], 

W ~ Y ~ Y 

construct a commutative diagram ! ! l' where { ~ : i are levelwise 

X ~ Z ~ Z 

weak homotopy equivalences, {~ are Reedy fibrant, and Y -+ Z is a Reedy fibration-

Wn ~ Y n diW ~ 

then V n, 1 1 is a homotopy pullback. Form the commutative diagram 1 
Xn ~ Zn diX ~ 

diY ~ diY diY ~ diY 

1 1 . The square 1 1 is a homotopy pullback (cf. Proposition 

diZ ~ diZ diZ ~ diZ 
diW ~ diY 

51), so by the composition lemma, ! ! will be a homotopy pullback if this 

diX ~ diZ 
diW ~ diY 

is the case of 1 1 . Since V n, Y n -+ Zn is a Kan fibration (cf. Proposition 

diX ~ diZ 
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41), the induced map W ~ X x z Y of bisimplicial sets is a levelwise weak homotopy 

equivalence, thus diW ~ diX x diZ diY is a weak homotopy equivalence (cf. Proposition 

51). Therefore the central issue is whether diY ~ diZ is a Kan fibration. However it is 

definitely not a.utomatic that di takes Reedy fibrations to Kan fibrations, meaning that 

conditions have to be imposed. 

EXAMPLE Let {: be simplicial sets, f : X - Y a simplicial map. Extend {: to bisimplicial 

sets by rendering them trivial in the vertical direction-then the associated bisimplicial map is a fibration 

in the Reedy structure and its diagonal is f but, of course, f need not be Kan. 

PROPOSITION 58 Let {-; be bisimplicial sets, f : X ~ Y a Reedy fibration. 

Assume: V m, the arrow X.,m ~ Y.,m is a Kan fibration-then dif: diX ~ diY is a Kan 

fibration. 
A[k, n] ----+- diX A[k, n, n] ----+- X 

[Convert the lifting problem 1 ,///"' 1 to the lifting problem 1 ,///"' 1 
D.[n] I diY D.[n, n] , Y 

(notation as in the proof of Proposition 52) and factor the inclusion A[k, n, n] ~ D.[n, n] 

as A[k, n, n] ~ A[k, n]2S..D.[n] ~ D.[n, n]. Since f is Reedy, it has the RLP w.r.t. the first 

inclusion and since f is horizontally Kan, it has the RLP w.r.t. the second inclusion.] 

Let K be a simplicial set. Given a bisimplicial set X, the matching space of X at K is 

the simplicial set MKX defined by the end [ X;;n. So: MKX([mDR:lNat(D.[m], [ X;;n) 
l[n] l[n] 

R:I [ Nat(D.[m], X;;n) R:I j Nat(D.[m], Xn)Kn R:I j X;;,r:n R:I j Mor(Kn, Xn,m) R:I 

lIn] In] In] In] 
Nat(K,X.,m)' Obviously, MKX is. functorial, covariant in X and contravariant in K. 

[Note: The functor X ~ MKX is a right adjoint for the functor L ~ K2S..L.] 

Examples: (1) Ma[n]X([mD R:I Nat(D.[n],X.,m) R:I Xn,m => Ma[n]X R:I X n,.(= 
Xn)j (2) MA,[n]X([mD R:I Nat(~[n], X.,m) R:I Nat(sk(n-l) D.[n], X.,m) R:I (cosk(n-l) X)n => 
MA[n]X R:I MnX. 

[Note: The inclusion ~[n] ~ D.[n] leads to an arrow Ma[n]X ~ MA,[n]X or still, to 

an arrow Xn ~ MnX, which is precisely the matching morphism.] 

One can use an analogous definition for the matching space of X at K if X is a 

simplicial set rather than a bisimplicial set: MKX = j X;;n (R:I Nat(K,X)). 
In] 

[Note: Suppose that X is a bisimplicial set-then MKX.,m R:I (MKX)m.] 

Put Mk,nX = MA[k,n]X (0 =:; k =:; n, n > 1). Because A[k, n] C ~[nl, there are arrows 

Xn ~ MnX ~ Mk,nX natural in X. 
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LEMMA A simplicial map K -t L is a Kan fibration iff the arrows Kn -t Mk,nK X M", .. L 

Ln are surjective (0 ~ k ~ n, n ~ 1). 

[Note: A simplicial map K -t L is a Kan fibration and a weak homotopy equivalence 

iff the arrows Kn -t MnK XM .. L Ln are surjective (n ~ 0).] 

PROPOSITION 59 Let {: be bisimplicial sets, f : X -t Y a Reedy fibration. 

Suppose that the arrows lro(Xn,.) -t lrO(Mk,nX XM",nY Yn,.) arising from the squares 
X n ,. --+ Yn ,. 

1 1 are surjective (0 ~ k ~ n, n ~ 1)-then dif is a Kan fibration. 

Mk,n X --+ Mk,nY 
[Since SISET satisfies SMC, so does BISISET (Reedy structure) (cf. p. 13-55). 

Applying this to the cofibration A[k, n]~~[O] -t ~[n]~~[O], it follows that the arrow 

HOM(~[n]~~[O], X) -t HOM(A[k, n]~~[O], X) X HOM(A[k,n] x.:1[oj,Y) HOM(~[n]~~[O], Y) 
is a Kan fibration. Therefore the arrow X n,. -t Mk,nX XM",nY Yn,. is a Kan fibration. It 

is surjective by the assumption on 11"0. The lemma thus implies that f is horizontally Kan, 

from which the assertion (cf. Proposition 58).] 

Convention: The homotopy groups of a pointed simplicial set are those of its geometric 

realization. 

Homotopy groupt'l commute with finite products. Homotopy groupt'l also commute with infinite prod

ucts if the data is fibrant but not in general (consider 11'1 (S[l]"'». 

Let X be a bisimplicial set-then for n, q ~ 1 and x E Xn,o, there are homomorphisms 

(d~). : lrq(Xn,., x) -t lrq(Xn- 1,., d~x) (0 ~ i ~ n). 
(1I"q) X satisfies the lrq-Kan condition at x E Xn,o if for every finite sequence 

(ao, ... ,ak, ... ,an), where aj E 1I"q(Xn-l,.,d~x) and (d~).aj = (dJ-l).aj (i < j & 

i,j =I k), 3 a E lrq(Xn,.,x) : (d~).a = aj (i =I k). 

[Note: H x',x" E Xn,o are in the same component of X"' then X sa.tisfies the lrq-Kan 

condition at x' iff X satisfies the lrq-Kan condition at x".] 

Definition: A bisimplicial set X satisfies the 11" .-Kan condition if V n, q ~ 1, X satisfies 

the 1I"q-Kan condition at each x E Xn,o. 
Example: Bisimplicial groups satisfy the 11" .-Kan condition. 

EXAMPLE Let X be a bisimplicial set such that V n, X,. is connected-then X satisfies the 

1I'.-Kan condition. 

[Consider the 1I'!-Kan condition at z = 8~_1 ••• 8~ZO (zo E Xo,o).] 
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LEMMA Let {-;' be bisimplicial sets, f : X -+ Y a bisimplicial map. Assume: 

f is a levelwise weak homotopy equivalence-then X satisfies the 1I".-Kan condition iff Y 

satisfies the 1I".-Kan condition. 

One can describe 6[n] as the simplicial subset of A[n] generated by the diid[n] (0 :$ 

i :$ n) and one can describe A[k, n] as the simplicial subset of A[n] generated by the diidrn] 

(0 :$ i :$ n, i :f:. k). In general, if to, ... ,tr are integers such that 0 :$ to < ... < tr :$ n, 
let A~a, ... ,''') be the simplicial subset of .6.[n] generated by the dtaid[n]"" ,dtrid[n]-then 

there is a pushout square 

A[n - 1] • A (ta, ... ,tr ) 

a[li;'r] n 

[Note: A~al .... tr) is a simplicial subset of A[k,n] provided that k:f:. t, (i = 0, ... ,r).] 
Given a bisimplicial set X, write MiCa .... ,tr) X for the matching space of X at .6.~al'" It,.). 

There are arrows Xn -+ MnX -+ MiCa, ... ,t,.) X natural in X. Example: Mio .... • k, ... n) X = 
Mk,nX, 

[Note: Mito , ... ,t .. ) X{[m]) consists of the set of finite sequences (Xto, ... , xc,.) of ele-

ments of Xn-1,m such that d~xj = d'_lXi for all i < j in {to, ... ,tr} (cf. p. 13-18). 
Moreover, the arrow Xn -+ Mico, ... ,t .. ) X sends X E X n,m to (d~ox, ... , d~,.x) and it is Kan 

if X is Reedy fibrant.] 

LEMMA Let X be a bisimplicial set. Assume: X is Reedy fibrant and satisfies the 

1I".-Kan condition. Suppose that x = (Xta, ... ,xc .. ) E MiCa •...• C,.) X([OD-then V q ~ 1, the 

(M(tal ... ,Cr)X) (X ) (X ). . . t' d 't map 1I"q n ,x -+ 1I"q n-l,.,XCa x··· X 1I"q n-l,.,XCr IS 1nJeC 1Ve an 1 s range 

is the set of finite sequences (ata, ... ,ac .. ) in the product such that (d~).aj = (d~_l).ai 

for all i < j in {to, ... ,tr}. 

[Work inductively with the pullback squares 

X n - 1 ,. 

1 1 . ] 
MiCo "" ,cr-d X 

[Note: The result also holds for q = 0.] 

Given a bisimplicial set X, define a simplicial set 1I"o(X) by 1I"O(X)n = 1I"o(Xn) (= 
1I"o(Xn,.». Example: Suppose that X is Reedy fibrant and satisfies the 1I".-Kan condition

then 1I"o(Mk,nX) ::::: Mk,n1l"o(X). 
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EXAMPLE Let X be a bisimplicial set such that V n, the path components of IX"I are abelian. 

Write [Sf, X] for the simplicial set with [Sf, X]" = [Sf, IX"I]-then X satisfies the 'II'".-Kan condition if 

the simplicial map [Sf, X] ~ '11'"0 (X) is a Kan fibration V q ~ 1. 

FACT Let X be a bisimpUcial set such that V n, X" is connected-then diX is connected. 

[There is a coequalizer diagram '11'"0 (X.) ~ 11"0 (Xo) ~ '11'"0 (diX).] 
do 

PROPOSITION 60 Let {: be bisimplicial sets, I : X -+ Y a Reedy fibration with 

I. : lro(X) -+ lro(Y) a Kan fibration. Assume: {~ are Reedy fibrant and satisfy the 

11" .-Kan condition-then dil is a Kan fibration. 

[According to Proposition 59, it suffices to show that the arrows lro(Xn,.) -+ lro(Mk,nX 
X n ,. -r Yn ,. 

XM",nYYn,.) are surjective (0 ~ k ~ n,n ~ 1). Consider the square 1 1 
Mk,nX -r Mk,nY 

then lro(Mk,nX XM",n Y Yn,.) ~ lro(Mk,nX) X'lro(M",n Y ) lro(Yn,.). In fact, Yn,. -+ Mk,nY 
is a Kan fibration and the lemma implies that V y E Yn,o, Yn,. -+ Mk,nY induces a 

surjection of fundamental groups (cf. infra). But lrO(Mk,nX) X'lro(M",n Y) lro(Yn,.) ~ 

Mk,nlrO(X) XM",n'lro(Y) lro(Yn,.) and lro(Xn,.) -+ Mk,nlrO(X) XM",n'lro(Y) lro(Yn .• ) is sur
jective, lro(X) -+ lro(Y) being Kan by assumption (cf. p. 13-81).] 

X' -r X 

LEMMA Let 1 1 p be a pullback square of topological spaces, where p : X ~ B is a 

B' -r B 
Serre fibration. Assume: V z E X, the homomorphism 1I"dX,z) ~ 'II'".{B,p(z» is surjective-then the 

arrow '11'"0 (X') ~ '11'"0 (B') x"'o(B) 'll'"o(X) is bijective. 

[Injectivity is a consequence of the 'll'"l-hypothesis.] 

W -r 
THEOREM OF BOUSFIELD-FRIEDLANDER Let 1 

Y 
1 be a commutative 

X -r Z 
Wn -r Yn 

diagram of bisimplicial sets such that V n, 1 1 is a homotopy pullback. As-

Xn -r Zn 
sume: lro(Y) -+ lro(Z) is a Kan fibration and Y, Z satisfy the 1r.-Kan condition-then 

-r diY diW 

1 1 is a homotopy pullback. 

diX -r diZ 
[Proceed as on p. 13-79 fr.: diY -+ diZ is a Kan fibration (cf. Proposition 60).] 
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[Proceed as on p. 13-79 if.: diY --. diZ is a Kan fibration (cf. Proposition 60).] 

[Note: When Yn,Zn are connected V n, 1I"o(Y) --. 1I"o(Z) is trivially Kan and Y,Z 
necessarily satisfy the 1I".-Kan condition (cf. p. 13-81).] 

Let K be a simplicial set. Given a bisimplicial set X, define a bisimplicial set map(K, X) by 

map(K, X)" :::;: map(K, X,,). 

LEMMA There is a canonical arrow I map(K, X)I- map(K, IXI). 

[The evaluation K X map(K, X,,) - X" defines a bisimplicial map K X map(K, X) - X or still, a 

simplicial map IK x map(K, X)I - IXI. However multiplication by K in BISISET is a left adjoint, hence 

IK x map(K,X)1 ~ K x Imap(K,X)I.] 

A bisimplicial set X is said to be pointed if an z E Xo,o has been fixed and each X" is equipped 

with the base point 8!_1 ... 8~ZO. 

EXAMPLE Let X be a Reedy fibrant pointed bisimplicial set such that V n, X" is connected

then X is 1f.-Kan, thus IXII=:::: diX is fibrant (d. Proposition 60). Denote by ex (OX) the bisimplicial 

set which takes [n] to ex" (nx,,) (it follows from Proposition 41 that V n, X" is fibrant). Specializing 

the lemma to K = .6.[1] provides us with canonical arrows lexi - elxl (IOXI - niX!) (I?I preserves 
Inxi ----+ lexi ----+ IXI 

pullbacks) and a commutative diagram 1 1 
0IXI ----+ elxl 

IOXI ----+ lexi 

II . On the other hand, the theorem 

!X! 

of Bousfield-Friedlander says that 1 1 is a homotopy pullback. Because the geometric 

.6.[0] ----+ IXI 
realization of lexi is contractible (d. Proposition 51), the conclusion is that the canonical arrow IOXI-

0IXI is a weak homotopy equivalence. 

EXAMPLE Let X be a pointed bisimplicial set such that V n, IX" I is simply connected-then 

IdiX! is simply connected. 

[For this, one can suppose that X is Reedy fibrant. On general grounds, IdiXl is path connected (d. 

p. 13-83) and by the preceding example, 1fo(diOX) ~ 1fo(OdiX). But V n, OX" is connected, thus dinx 

is connected (d. p. 13-83) and so IdiXl is simply connected. 

[Note: It is clear that the argument can be iterated: IX" I k-connected V n => IdiXl k-connected.] 
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§14. SIMPLICIAL SPACE 

After working through the foundations of the theory, various applications will be given, 
e.g., the James construction and infinite symmetric products. I have also included some 

material on operads and delooping procedures. 

A simplicial space is a simplicial object in TOP and a simplicial map is a morphism 
of simplicial spaces. TOP, in its standard structure, is a model category, thus SITOP is 

a model category (Reedy structure) (cf. p. 13-55). This fact notwithstanding, it will be 

simplest to proceed from first principles. 

There is a forgetful functor SITOP -t SISET and it has a left and right adjoint (cf. 
p. 0-15). 

[Note: The purely set theoretic properties of simplicial spaces are the same as those 
of simplicial sets.] 

j [n] 
GivenanX in SITOP, put IXI = Xnx~n-then IXI is the geometric realization 

of X and the assignment X -t IXI is a functor SITOP -t TOP. 171 has a right adjoint 
TOP -t SITOP (compact open topology on the singular set). 

EXAMPLE (Star Construction) Let X be a nonempty topological space. Define a simplicial 

space AX by the prescription (AX)n = Xx·· ·XX (11+1 factors) with c4(:l:o, ... ,:l:n) = (:1:0, ... ,i" ... ,:l:n), 

8;(:1:0,'" ,:l:n} = (:1:0, ... ,:1:;,:1:;, ... ,:l:n). Represent ~n as the set of points (tI, ... ,tn) in Rn such 

that ° :S tl :S ... :S tn :S 1 (which entails a change in the formulas defining the simplicial oper

ators). Form X* as on p. 1-28 and let >'n : xn+l x ~n - X* be the continuous function that 

sends «:1:0, ... ,:l:n), (tl,'" ,tn )} to the right continuous step function 10,11- X which is equal to :1:. 

on It"~ tHl [ (to = 0, tn+l = I)-then the >'n combine to give a continuous bijection>. : IAXI- X*. Since 

X T2 :::} X* T2, IAXI is Hausdorff whenever X is and in this situation, the composite X -.:. Xx~o -IAXI 
is a closed embedding. 

INote: Like X*, IAXI is contractible (cf. p. 14--11).] 

A simplicial space X is said to be Hausdorff, compactly generated ... if V n, Xn is 

Hausdorff, compactly generated ... , Le., if X is a simplicial object in HAUS, CG .... 

On general grounds, the geometric realization of a compactly generated simplicial space is 

automatically compactly generated but there is no a priori guarantee that the geometric 
realization of a Hausdorff simplicial space is Hausdorff. 

Observation: If X is a simplicial space and if a : [m] -t [n] is an epimorphism, then 
Xa: Xn -t Xm is an embedding and (Xa)Xn is a retract of Xm. 
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Let X be a simplicial space-then X is said to satisfy the embedding condition if V n 

& V i, Si : X n- 1 -+ Xn is a closed embedding. Examples: (1) A Hausdorff simplicial space 

satisfies the embedding condition; (2) A L\.-separated compactly generated simplicial space 

satisfies the embedding condition. 

X' X 
LEMMA Suppose given a diagram pi I Ip of topological spaces and con

B' ---t B 
I 

tinuous functions, where p is quotient and i is one-to-one. Assume: :3 a neighborhood 

finite collection {Aj} of closed subsets of X and continuous functions Ii : Aj -+ X' such 

that p-l(i(B')) = U Aj with plAj = i 0 p' 0 fj V j-then p' is quotient and i is a closed 
j 

embedding. 

If X is a simplicial space, then IX I can be identified with the quotient Il X n x L\. n I"', 
1t 

the equivalence relation being generated by writing ((X a )x, t) '" (x, L\. O't). Let p : Il Xn x 
n 

L\.n -+ !X! be the projection and put !X!n = p( Il Xm x L\.m). 
m$n 

PROPOSITION 1 Let X be a simplicial space. Assume: X satisfies the embedding 

condition-then V n, IXln is a closed subspace of IXI and IX! colim IXln. 
Il XmxL\.m IlXnxL\.n 

[Fix n' and consider m$n' pll n lp For each m S n' and n, there 

IXln l -;-+ IXI 
are but finitely many diagrams of the form [m] L[k] ~[n], where a is a monomorphism 

and j3 is an epimorphism. Put AO',,, = (Xa)-l(Xj3)Xm x L\.O'L\.k C Xn x L\.n, define 

fO',,, : AO',,, -+ Xm X L\.m by fO',,,(x,t) = (y,L\."u) (t = L\.O'u (:31 u E L\.k), (Xa)x = 
(Xj3)y (3! y E X m)), and apply the lemma.] 

FACT Suppose that X is a simplicial space satisfying the embedding condition. Define a simplicial 

set 7ro(X) by 7rO(X)n = 7ro(Xn)-then 7ro(IXI) ~ 7rol7ro(X)I. 
[Every point in IX I can be joined by a path in IX I to a point in Xo = IX 10. On the other hand, given 

x E Xl, O'(t) = [x, (1- t,t)] (0:$ t :$1) is a path in IXI which begins at dlx and ends at dox.] 

[Note: Therefore IXI is path connected if Xo is path connected.] 

Notation: Given an X in SITOP, write sXn- 1 for the union soXn- 1 U·· ,USn-lXn- l • 



14-3 

PROPOSITION 2 Let X be a simplicial space. Assume: X satisfies the embedding 
"""" Xn x ~n U sXn - 1 X an ---+ IXI,.-l 

condition-then V n, there is a pushout square! ! 

Xn x an IXI,. 

Xn x an II Xm x am 

-so 1 
[The arrow X. xa· --+ [XI. is quotient. To see this, form 1 

IXln==== IX I" 
Taking into account the lemma, let In : Xn x an -+ Xn x an be the identity. To define 

1m : Xm x am -+ Xn x an if m < n, fix a monomorphism a: [m] -+ [n], an epimorphism 

f3 : [n] -+ [mJ such that f3 0 a = id[m] , and put Im(x, t) = «Xf3)x, aat).] 

Application: Suppose that X is a a·separated compactly generated simplicial space

then IX I is a a-separated compactly generated space. 

[lXln is a a-separated compactly generated space (ADs (cf. p. 3-1», thus the 

assertion follows from the fact that IXI = colim IXln (d. p. 1-36).] 

Let X be a simplicial space-then X is said to satisfy the cofibration condition if 

V n & V i, Si : X n - 1 -+ Xn is a closed cofibration. Since the commutative diagram .. 
4 Xn 

! .1+1 is a pullback square (0 :5 i :5 j :5 n - 1), one can use Proposition 

Xn ---+ X,,+l ., 
8 in §3 to see that the cofibration condition implies that the sXn - 1 -+ Xn are closed 

cofibrations. 

Example: Given a topological space X, denote by siX the constant simplicial set on 

X · 'X([ J) X & { d. = idx (U) h 'X 'fi h fib' d' . d , l,e., 81 n = 'd v n -t en SI satlS es t e co ratIon con Itlon an 
8; = 1 X 

I siX I ~X. 

Since L"X can be identified with sX,,_l! every X which satisfies the cofibration condition is neces. 

sadly cofibrant (Reedy structure). 

FACT Suppose that X is a simplicial space satisfying the embedding condition-then X satisfies 

the cofibration condition ifI X is 1Uledy cofibrant. 

PROPOSITION 3 Let X be a simplicial space. Assume: X satisfies the cofibration 

condition-then V n, the arrow IX In-l -+ IXln is a closed cofibration. 
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[The arrow Xn x An U sXn- 1 X 6 n -+ Xn X 6 n is a closed cofibration (cf. §3, 

Proposition 7). Now quote Propositio.n 2 (cf. §3, Proposition 2).] 

Application: Let X be a compactly generated simplicial space satisfying the cofi

bration condition. Assume: V n, Xn is Hausdorff-then IXI is a compactly generated 

Hausdorff space. 

[This follows from the lemma on p. 3-8 and condition B on p. 1-29.] 

Application: Let X be a simplicial space satisfying the cofibration condition. Assume: 

V n, Xn is numerably contractible-then IXI is numerably contractible. 

[It suffices to show that the IXln are numerably contractible (cf. p. 3-13). But 

inductively, the double mapping cylinder of the 2-source Xn X 6 n 
+- Xn x An U sXn- 1 X 

6 n -+ IXln-1 is numerably contractible and numerable contractibility is a homotopy type 

invariant(cf. p. 3-13).] 

EXAMPLE Let X be a Hausdorff simplicial space. Assume: V n, the inclusion ~Xn -+ Xn X Xn 

is a cofibration-then X satisfies the cofibration condition. 

[V i, SiXn-1 is a retract of X n , hence the inclusion SiXn-1 -+ Xn is a closed cofibration (cf. p. 

3-15).] 

XO --t Xl --t 

LEMMA Let 1 1 be a commutative ladder connecting two expanding 

yO --t yl --t 

sequences of topological spaces. Assume: V n, the inclusions are closed cofibrations, {
xn -+ xn+l 

yn -+ yn+l 

1 1 is a pullback square, and the vertical arrows 4>n : xn -+ yn are closed cofibrations-

yn --t yn+l 
then the induced map 4>00 : Xoo -+ yoo is a closed cofibration. 

[Take any arrow Z -+ B which is both a homotopy equivalence and a Hurewicz fibration and con
XOO --t Z 

stI'uct a filler yoo -+ Z for 1 1 via induction, noting that yn U xn+l -+ yn+l is a closed 
xn 

yoo --t B 
cofibration (cf. §3, Proposition 8).] 

Application: Let XO C Xl C ... be an expanding sequence of topological spaces. Assume: V n, 

xn is in 4-CG, xn -+ Xn+l is a cofibration, and ~xn -+ xn Xk xn is a cofibration-then ~Xoo -+ 

Xoo X k XOO is a cofibration. 
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EXAMPLE Let X be a 6-separated compactly generated simplicial space. Assume: V n, 6xn -

Xn Xk Xn is a cofibration-then X satisfies the cofibration condition (cf. p. 3-15) and 61X ln - IXln XI< 

IXln is a cofibration (cf. p. 3-16). Therefore 6 1x1 -IXI XI< IXI is a cofibration. 

FACT Let {: be 6-separated compactly generated simplicial spaces satisfying the cofibration 

condition. Suppose that I : X - Y is a simplicial map such that V n, In : Xn - Yn is a cofibration-then 

Ifl : IXI - IYI is a cofibration. 

[Use the lemma on p. 3-15 fr. to conclude that V n, I/ln : IXln - IYln is a cofibration. And: 

IXln-l ---7 IXln 
1 1 is a pullback square.] 

IYln-1 ---7 IYln 

PROPOSITION 4 Suppose that {: are simplicial spaces satisfying the cofibration 

condition and let f : X - Y be a simplicial map. Assume: 'if n, fn : Xn - Yn is a 

homotopy equivalence-then If I : IXI- IYI is a homotopy equivalence. 

[S O { IXI coHm IXln d h {IXln-l - IXln I d fib' . d 
mce IYI = coHm IYln an t e IYln-l _ IYln are c ose co ratIOns, It nee 

only be shown that the IXln - IYln are homotopy equivalences (cf. §3, Proposition 15). 

This is done by induction, the point being that sXn - I - sYn - 1 is a homotopy equivalence.] 

EXAMPLE Let X be a simplicial space such that V n, Xn has the homotopy type of a compactly 

generated space--then the arrow IkXI - IXI is a homotopy equivalence if X satisfies the cofibration 

condition. 

[V n, kXn - Xn is a homotopy equivalence and kX satisfies the cofibration cOJldition (cf. p. 3-8).] 

Given an X in SITOP, the homotopic realization of X is the quotient HRX 

llXn x I::1 n l'"'-', where'"'-' is restricted to the monomorphisms in 1::1, i.e., ((XO')x,t) '"'-' 
n 

(x,l::1G't) (0' E Mt::.). Write (HRX)n for the image of II Xm X I::1 m under the projection 
m$n 

Example: Viewing a simplicial set X as a "discrete" simplicial space, HRX = IV XIM, 

(cf. p. 13-7). 

Example: I * I = * but HR* = "a large contractible space" . 

PROPOSITION 5 Let X be a simplicial space-then 'if n, (HRX)n is a closed sub

space of HRX and HRX = colim(HRX)n. 
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PROPOSITION 6 Let X be a simplicial space-then 'I:f n, there is a pushout square 
Xn X ~ n --+ (HRX)n-1 

1 1 and the arrow (HRX)n-1 -+ (HRX)n is a closed cofibration. 

Xn X ~n --+ (HRX)n 

FACT Let X be a simplicial space. Assume: Xa is numerably contractible--then HRX is numer

ably contractible. 

[It suffices to show that the (HRX)n are numerably contractible (cf. p. 3-13). This is done by 

induction on n, starting from (HRX)a = Xa. Suppose, therefore, that n is positive and (HRX)n-l IS 

o 
numerably contractible. Choose distinct points u, v E t:::.n . Because the arrow X X t:::. n - (HRX)n is 

surjective, (HRX)n = Uu V, where U = im(Xn x t:::. n - {u}), V = im(Xn x t:::. n - {v}). But {U, V} is a 

mimerable covering of (HRX)n and the retractions t:::. n - {u} _ ~ n, t:::. n - {v} _ ~ n induce homotopy 

equivalences U - (HRX)n_l, V - (HRX)n_l.] 

It follows from Propositions 5 and 6 that the homotopic realization of a Hausdorff 

simplicial space is a Hausdorff space and the homotopic realization of a (~-separated, 

Hausdorff) compactly generated simplicial space is a (~-separated, Hausdorff) compactly 

generated space. 

[Note: Another corollary is that if 'I:f n, Xn is a CW space, then HRX is a CW space 

(cf. §5, Propositions 7 and 8).] 

Notation: UW is the semisimplicial set defined by UW n = {(ia, ... , in) : ij E Z~a & ia < ... < in}, 

wheredj: UWn - UWn- 1 sends (ia , ... ,in) to (ia , ... ,i;, ... ,in). 

Let X be a simplicial space--then the unwinding UW X is the "homotopic realization" of the cofunctor 

.tJ.M - TOP which takes [n] to Xn X UWn (= II Xn). Example: UW* is the "infinite dimensional 
'a<"'<'n 

simplex" (Whitehead topology). 

EXAMPLE Let G be a topological group, G the topological groupoid having a single object 

* with Mor (*, *) = G--:then ner G is a simplicial space and there is a canonical continuous bijection 

UWnerG - BG'. 
[Note: This arrow is not a homeomorphism (consider G = *) but it is a homotopy equivalence.] 

FACT For every simplicial space X, the projection UW X - HRX is a homotopy equivalence. 

PROPOSITION 7 Let X be a simplicial space. Assume: X satisfies the cofibration 

condition-then the arrow HRX -+ IX I is a homotopy equivalence. 

[The argument is similar to that used in the proof of Proposition 4 in §13.] 
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Application: Let X be a simplicial space. Assume: V n, Xn is a CW space~then IXI 
is a CW space whenever X satisfies the cofibration condition. 

EXAMPLE Let X be a simplicial space satisfying the cofibration condition. Assume: Xo IS 

numerably contractible-then IXI is numerably contractible (cr. p. 14-4). 

[HRX is numerably contractible (cr. p. 14-6) and numerable contractibility is a homotopy type 

invariant (cr. p. 3-13).] 

FACT Equip TOP with its standard structure. Let f : X -+ Y be a simplicial map. Assume: 
Xrx 

Xn ----+ Xm 

V m,n & "10: : [m] -+ [n], the commutative diagram Inl 11m is a homotopy pullback-then 

"In, 1 1 is a homotopy pullback. 

Yn X J:ln ---+ HRY 

Xn x J:l n ---+ (HRX)n 

[One first shows by induction that V n, 1 1 is a homotopy pullback. To carry 

Yn X J:l n ---+ (HRY)n 
Xn X J:ln +-

out the passage rrom n - 1 to n, observe tha.t the squares in the commutative diagram 1 
Yn x J:ln +--

Xn x .&n ---+ (HRX)n_l 

1 1 are homotopy pullbacks, thus the squares in the commutative diagram 

---+ (HRY)n_l 
---+ (HRX)n +-- (HRX)n-l 

1 1 1 are homotopy pullbacks (cf. p. 12-15). So, V n, 

Yn X J:ln ---+ (HRY)n +-- (HRY)n-l 
(HRX)n ---+ HRX 

1 1 is a homotopy pullback (cf. p. 12-15). Accordingly, both the squares in the 

(HRY)n ---+ HRY 
Xn x J:l n ---+ (HRX)n ---+ HRX 

commutative diagram 1 1 1 are homotopy pullbacks, hence by the 

composition lemma, 

Yn X J:l n ---+ (HRY)n ---+ HRY 
Xn x J:ln ---+ HRX 

1 1 is a homotopy pullback.] 

Yn X J:l n ---+ HRY 
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It follows from Proposition 7 that this result remains va.lid if {HRX are replaced by { IX I provided 
HRY IYI 

tha.t {: satisfy the cofibration condition. Proof: Consider the commutative diagram ! 

HRX ---t IXI 

! ! 
HRY ---t IYI 

PROPOSITION 8 Suppose that {~ are simplicial spaces and let f : X -+ Y 

be a simplicial map. Assume: 'r:/ n, fn : Xn -+ Yn is a homotopy equivalence-then 

HRf : HRX -+ HRY is a homotopy equivalence. 

PROPOSITION 9 Suppose that {; are simplicial spaces and let f : X -+ Y be 

a simplicial map. Assume: 'r:/ n, fn : Xn -+ Yn is a weak homotopy equivalence-then 

HRf : HRX -+ HRY is a weak homotopy equivalence. 
Xn x ~n +-- Xn X ~n ---+ 

[If the vertical arrows in the commutative diagram ! ! 
Y. x Lin n . 

(HRX)n-l 

! are weak homotopy equivalences, then the induced map (HRX)n -+ (HRY)n 

(HRY)n-l 
is a weak homotopy equivalence (cf. p. 4-51). Pass now to colimits via the result on p. 

4-48.] 

Application: Let {~ be simplicial spaces satisfying the cofibration condition. Sup

pose that f : X -+ Y is a simplicial map such that 'r:/ n, fn : Xn -+ Yn is a weak homotopy 

equivalence-then If I : IXI -+ IYI is a weak homotopy equivalence. 

Example: Let X be a simplicial space satisfying the cofibration condition. Consider 

klXI----? IXI 
the commutative triangle ~ r . By the above, IkXI -+ IXI is a weak homotopy 

IkXI 
equivalence. Since the same is true of klXI -+ lXI, it follows that the arrow IkXI -+ klXI 
is a weak homotopy equivalence. 

EXAMPLE Given an X in SITOP, denote by IsinXI the simplicial space which takes [n] to 

IsinXnl· Thanks to the Giever-Milnor theorem, the arrow of adjunction IsinXnl-+ Xn is a weak homo-



topyequivalence. On the other hand, I sinXI satisfies the cofibration condition. Consequently, the arrow 

IjsinXIl- IXI is a weak homotopy equivalence if X satisfies the cofibration condition. 

[Note: sin X is a bisimplicialset and IdisinX!:::::: II sin XII.] 

EXAMPLE (Homotopy Pullbacks) Equip CG with its singular structure and suppose given a 

W ---+ Y 

commutative diagram 1 1 g of compactly generated simplicial spaces such that 1 1 
X ----+ Z Xn ---+ Zn 

I 
is a homotopy pullback in CG V n, where Yn , Zn are path connected. The associated commutative 

sin W ---+ sin Y sin W n ---+ sin Yn 

diagram 1 
sin X 

1 of bisimplicial sets then has the property that V n, 1 
---+ sinZ sinXn 

disin W 

is a homotopy pullback in SISET with sin Yn , sin Zn connected. Accordingly, 1 

is a homotopy pullback in SISET (theorem of Bousfield-Friedlander), so 

disinX 

Idisin WI ---+ 

1 

1 
---+ sinZn 

---+ disin Y 

1 
---+ disin Z 

Idisin Y! 

1 IS a 

Idisin X I ---+ Idisin ZI 

IWI 

homotopy pullback in CG (cf. p. 13-75). Therefore 1 
IX! 

W, X, Y, Z satisfy the cofibration condition. 

---+ !YI 

11g1 is a homotopy pullback in CG if 

III IZ! 

W ---+ Y 

[Note: Equip TOP with its singular structure and suppose given a commutative diagram 1 1 g 

X ----+ Z 
I 

of simplicial spaces such that 1 1 is a homotopy pullback in TOP V n, where Yn, Zn are path 

IW! 

connected-then 1 
!X! 

11g1 is a homotopy pullback in TOP if W, X, Y, Z satisfy the cofibration 

----+ IZI 
III 

IkWI ---+ IkYI 

condition. To see this, observe that 1 11hgl is a homotopy pullback in CG, thus the arrow 

IkXI ----+ IkZI 
Ih/l 
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IWI --+ WIII.I,I 

Ikwi -I- Wlk/l,lk,1 is a weak homotopy equivalence. In the commutative diagram T T 
kiWI --+ WklJl,kl,1 

the vertical arrow on the left is a weak homotopy equivalence, as is the vertical arrow on the right. Therefore 

IWI -I- WIII,lgl is a weak homotopy equivalence iff kiWI -I- Wkl!l,k", is a weak homotopy equivalence. 

IkXI ~ IkZI ~ IkYI 

Working in the compactly generated category, form ! ! ! . The vertical arrows 

klXI --t klZI +-- klYI 
kill kl,l 

are weak homotopy equivalences (cr. p. 14-8), so W,k/l,lkll -I- Wkl/l,kll' is a weak homotopy equivalence 

Wlk/l,lk,1 --+ Wkl/l,k',1 

(cf. p. 4-48). Examination of T T then implies that kiWI -I- Wkl/l,kl,1 is a 

IkWI kiWI 
weak homotopy equivalence.] 

PROPOSITION 10 If {: are Hausdorff simplicial spaces and if I : X -+ Y is 

a simplicial map such that V n, In : Xn -+ Yn is a homology equivalence, then HRI : 

HRX -+ HRY is a homology equivalence, thus so is III : IXI -+ IYI subject to the 

cofibration condition on { : . 

[By Mayer-Vietoris and the five lemma, the arrow (HRX)n -+ (HRY)n is a homology 

equivalence V n.] 
[Note: The Hausdorff assumption can be replaced by ~-separated and compactly 

generated. ] 

Notation: Given an X in SITOP, put IX = X x silO, 1], so V n, (IX)n = IXn. 

LEMMA For every simplicial space X, IIXI ~ IIXI. 

[The functor - X [0,1] : TOP -+ TOP has a right adjoint, thus preserves colimits, 

in particular, coends.] 

Application: Let X, Y be simplicial spaces, H : IX -+ Y a simplicial map-then 

IH 0 io I ~ IH 0 ill· 

Example: Suppose that X is a simplicial space. Define simplicial spaces r X, EX by 

(rX)n = rxn, (EX)n = EXn-then Irxi ~ rlxl, IEXI ~ EIXI. 
Xn --+ 

[The diagrams 1 
* Xn II Xn --+ * II * 
1, 1 1 determine pushout squares 

IXn 
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IXI -+ * 
in [4oP

, TOP], thus the diagrams 1 1 
IIXI -+ Irxi 

squares in TOP and, from the lemma, 11 XI ~ IIXI.] 

IXIIIIXI 
1 

IIXI 

1 are pushout 

I'EXI 

[Note: When dealing with a pointed simplicial space X, one can work with either 

/
["] 

its unpointed geometric realization X" x .6." or its pointed geometric realization 

/
[") 

X,,#.6.+. However, both give the "same" result (consider right adjoints). There-

fore if one defines pointed simplicial spaces rx, 'EX by (rX)" = rx", ('EX)" = 'EX" 
(pointed cone, pointed suspension), then it is still the case that Ir XI ~ rlXI, I'EXI ~ 'EIXI 
(unpointed geometric realiza.tion).] 

EXAMPLE Let X be a pointed simplicial space satisfying the cofibration condition (give IXI the 

base point Zo E Xo = IXlo). Assume: V n, X". is path connected. Denote by ex (OX) the simplicial 

space which takes [n] to ex". (OX".)-then ex (OX) satisfies the cofibration condition (inspect the proof 
IOXI -+ lexi 

of Proposition 6 in §3). hence 1 1 is a homotopy pullback in TOP (singular structure). 

{zo} -+ IXI 
IOXI -+ lexi IXI 

Becauae there is a commutative diagram 1 1 II and lexi is contractible, it 

0IXI -+ elxl -+ IXI 
follows that the arrow IOXI-+ 0IXI is a weak homotopy equivalence. 

FACT Let X be a pointed simplicial space satisfying the cofibration condition (give IXI the base 

point Zo E Xo = IXlo)-then Xo n-connected, Xl (n - I)-connected, ... , X".-l I-connected => IXI 

n-connected. 

[If n = 1, one can suppose that V m > I, Xm is path connected, thus IOXI is path connected and 

• = 1ro(lOXI) ~ 1ro(OIXI) ~ 1rl (lXI). If n > 1, show that Hq(IXI) = 0 (q ~ n) and quote Hurewicz.] 

Recall tha.t if X is a. locally compa.ct space and 9 : Y -+ Z is quotient, then idx x 9 : 

X X Y -+ X x Z is quotient {cf. §2, Proposition 1 (X is cartesian». Here is a. variant in 

which X is allowed to be arbitrary. 

WHITEHEAD LEMMA Let 9 : Y -+ Z be quotient. Assume: 'V z E Z and 'V 

neighborhood V of z, there exists an open subset U C Y with U compact and contained in 

g-l{V) such tha.t g{U) is a neighborhood of z-then for any X, idx x 9 : X X Y -+ X x Z 

is quotient. 
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[Writing p ~ idx x g, the claim is that a subset 0 C X x Z having the property that 

p-l(O) is open in X x Y is itself open in X x Z. Fix (xo, zo) E 0 and choose an open 

Yo c Y : {xo} X Yo = ({xo} X Y)np-l(O). If Vo = g(Yo), then Yo = g-l(Vo), so Vo is open 

in Z. Per Zo & Vo, take Uo as in the assumption and let Xo = {x : {x} X Uo C p-l(O)}. 
Since Xo is open in X and (xo, zo) E Xo x g(Uo) c 0, it follows that 0 is open in X x Z.] 

[Note: The argument goes through for any arrow X --. W which is quotient.] 

Application: For every topological space X, IsiX x d[l]1 ~ X x [0,1]. 

FACT Let X, Y be simplicial spaces and let 1,9 : X - Y be simplicial maps. Suppose that V n, 

there are continuous functions hi :Xn - Yn+1 (0 ~ i ~ n) such that do 0 ho = In, dn+1 0 hn = 9n and 

{ 
hj+1 08i (i ~ i) 

8i 0 hj = . 
hj 08i_1 (i > i) 

Then III = 191 in the homotopy category. 

EXAMPLE Given a triple T = (T, m, f) in TOP, V T-algebra X, Ibar(Tj TjX)1 and X have the 

same homotopy type (cf. p. 0-46 ff.).] 

EXAMPLE Let X be a simplicial space-then the translate T X of X is the simplicial space 

with TnX = X n+l> where if a : [m] - [n], TX(a) : TnX - TmX is X(Ta) : X n+1 - X m+l> 

Ta: [m + 1] - [n + 1] being the rule that sends 0 to 0 and i to a(i - 1) + 1 (i > 0). There are simplicial 

maps siXo - TX, TX - siXo, viz. 8~+1 : Xo - X n+l> d~+1 : X n+1 - Xo, and the composition 

siXo - TX - siXo is the identity. On the other hand, if hi : TnX - Tn+1X is defined by hi = 8~+1 od~ 
(0 ~ i ~ n), then d1 0 ho = id, dn+2 0 hn = 8~+1 0 d~+1 and 

{ 

hj-1 Odi+1 (i < i) 
di+1 0 hj = di+1 0 hi-1 (i = i > 0) , 

hj 0 di (i > i + 1) 

(i ~ i) 

(i > i) 

Therefore IT XI and Xo have the same homotopy type. In particular: Xo contractible => IT XI cc;mtractible. 

While the general theory of simplicial spaces does not require a compactly generated 

hypothesis, one can say more with it than without it. A key point here is that CG 
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admits a closed simplicial action, viz. X OK = X Xk IKI, relative to which CG satisfies 

SMC in either its standard or singular model category structure. Note, however, that 

the formal definition of, e.g., hocolimI : [I, CG] --+ CG depends only on o (hocolimI- = 
ji_i Xk B(i\l) (cf. p. 13-70)) and not on the underlying simplicial model category 

structure. 

LEMMA Let F, G : 1- CG be functors and let ::: : F - G be a natural transformation. Assume: 

V i, :::i : Fi - Gi is a weak homotopy equivalence-then hocolim ::: : hocolim F - hocolim G is a weak 

homotopy equivalence. 

{ 
hocolim F :::::: III FI { II F 

[One has (cf. p. 13-70) and satisfy the cofibration condition. In 
hocolim G :::::: III GI II G 

addition, V n, (ll :::) .. : (ll F) .. - (ll G) .. is a weak homotopy equivalence. Therefore Ill:::1 : III FI -

III GI is a weak homotopy equivalence (cf. p. 14-8).] 

[Note: Changing the assumption to "homotopy equivalence" changes the conclusion to "homotopy 

equivalence" (cf. Proposition 4).] 

EXAMPLE For any compactly generated simplicial space X, hocolim X and HRX have the same 

weak homotopy type. To see this, consider IsinXI (cf. p. 14-8 ff.)-then the arrow hocolim IsinXI -

hocolim X is a weak homotopy equivalence (by the lemma) and the arrow HRI sin X I - HRX is a weak 

homotopy equivalence (cf. Proposition 9). But Ihocolim sinXI is homeomorphic to hocolim IsinXI (cf. 

p. 13-64) and the homotopy type of Ihocolim sinXI is the same as that of IdisinXI :::::: II sin XII (cf. p. 

13-68), the homotopy type of the latter being that of HRI sin XI (cf. Proposition 7). 

[Note: More is true: hocolim X and HRX have the same homotopy type. Thus take CG in its 

standard structure and equip SICG with the corresponding Reedy structure-then V Reedy cofibrant X, 

the arrow hocolim X - IXI is a homotopy equivalence (cf. §13, Proposition 49) and IXI has the same 

homotopy type as HRX (cf. Proposition 7). To handle an arbitrary X, pass to ex (cf. p. 12-22). 

Beca~ the arrow ex - X is a levelwise homotopy equivalence, hocolim ex and hocolim X have the 

same homotopy type (cf. supra). However ex is Reedy cofibrant, so hocolim ex has the same homotopy 

type as HReX, i.e., as HRX (cf. Proposition 8).] 

Let {~ and I be small categories. 

(®I) This is the functor [C x lOP, CG] x [I x D, CG] --+ [C x D, CG] glven 

by (F ®I G)x,y = ji F(X, i) Xk G(i, Y). 

(HomI) This is the functor [C x I, CG]OP x [I x D, CG] --+ [CoP x D, CG] 

given by HomI(F, G)x,y = 1 G[f/· 
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[Note: In either situation one can, of course, take {~ = 1. Special cases: * ®I- ~ 
co1iml -, Homl ( *, -) ~ liml-.] 

Examples: (1) (F ®I G) ®,J H ~ F ®I (G ®,J H); (2) HOIll.J(F ®I G,H) ~ 
Homlop(F, Hom,J(G, H)). 

Example: Suppose that X is a compactly generated simplicialspace--then X ®A6 1 = 
IXI· 

[Note: 6 1 : l1 ~ CG sends [n] to 6".] 

Example: Suppose that X is a compactly generated simplicial space-then XM ®AM 

aL =HRX. 
[Note: XM is the restriction of X to aM and aL : ilM ~ CG sends [n] to a".] 

Given Y, Z in [I, CG], put ZY = Homl(Mor x Y, Z), where Mor x Y : lOP x I -+ CG sends (j, i) to 

Mor(j,i) x ¥t. So, e.g., Homl(Mor,Z)i = !zrOr(i'i) = Zi (integral Yoneda). 

FACT The functor category [I, CG] is cartesian closed. 

[Let X, Y,Z be in [I, CG]-then Nat(X xY,Z) ~ Nat(X®loP (Mor xY),Z) ~ Nat(X,Homl(Mor x 

Y,Z» ~ Nat(X,ZY).] 

LEMMA Let I and J be small categories, V : J ~ I a functor-then F 0 VOP ®,J G ~ 

F®IlanG. 

Notation: Given a small category I and functors {~ : I ~ CG, write F~G for the 

functor I x I ~ CG that sends (i,j) to Fi XI; Gj. 

LEMMA Relative to the diagonal il ~ il X il, Ian a? ~ a 1 ~a? 

PROPOSITION 11 If X and Y are compactly generated simplicial spaces, then IX X I; 

YI ~ IXI XI; IYI· 
[One has IX XI; YI ~ (X XI; Y) ®A a 1 ~ (X~I;Y) ®AxA a1~a? ~ (X ®A a?) XI; 

(Y ®A a 1
) ~ IXI XI; IYI·] 

[Note: Therefore 111 preserves finite products so long as one works in [A. oP, CG].] 

It is not true that HR preserves finite products. However hocolim(X XA: Y) and hocolim X XII 

hocolim Yare homeomorphic, thus HR(X XA: Y) and HRX XA: HRY have the same homotopy type (d. p. 

14-13). 

FACT Let X be a simplicial object in CG / Bj let Y be an object in CG / B. Assume: B is 

a-separated-then IX X.iB siYI ~ IXI XB Y. 
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[Since B is a-separated, the functor - XB Y has a right adjoint (cf. -p. 1-35).] 

FACT I?I: [A OP , A- CG] - A- CG preserves finite limits. 

[It suffices to deal with equalizers. For this, let u, v : X - Y be a pair of simplicial maps-then 

I eq(u, v)1 is closed in lXI, which is enough.] 

Let C be a small category-then C is said to be compactly generated if 0 = Ob C and 

M = Mor C are compactly generated topological spaces and the four structure functions 

s : M -+ 0, t: M -+ 0, e: 0-+ M, c: M Xo M -+ M are continuous. One appends the 

terms Ll-separated or Hausdorff when ° and M are, in addition, Ll-separated or Hausdorff. 

Example: Every compactly generated semi group with unit (= monoid in CG) determines 

a compactly generated category. 

[Note: Any small category can be regarded as a compactly generated category by 

equipping its objects and morphisms with the discrete topology.] 

If C, D are compactly generated categories, then a functor F : C -+ D is said 
.. . {ObC -+ ObD {MorC -+ MorD 

to be contmuous prOVIded that the functIOns X -+ F X 'I -+ Flare 

continuous. 

If C, D are compactly generated categories and if F, G : C -+ D are continuous 

functors, then a natural transformation S : F -+ G is said to be continuous provided that 

h f . { Ob C -+ Mor D . . t e unctIOn X _ IS contInuous. 
-+ '='x 

In other words, per CG, compactly generated category = internal category, continuous functor = 
internal functor, continuous natural transformation = internal natural transformation. 

[Note: If (M,O) is a category object in SISET, then (1M!, 101) is a category object in CG. Con

versely, if (M,O) is a category object in CG, then (sinM,sinO) is a category object in SISET.] 

Let C be a compactly generated category-then ner C is a compactly generated simpli

cial space: nero C = O,nerl C = M, ... ,nern C = M Xo'" Xo M (n factors) (fiber prod

uct in CG), an n-tuple (fn-b'" ,10) corresponding to Xo ~ X 1 ---+ •.. ---+ X n - l f~_:/ X n . 

Thus one can form either the geometric realization or the homotopic realization of ner C. 

These two spaces are necessarily compactly generated and they have the same homotopy 

type if ner C satisfies the cofibration condition (cf. Proposition 7). 

[Note: Meyert has established versions of Quillen's theorems A and B for compactly 

generated categories.] 

t Israel 1. Math. 48 (1984), 331-339. 
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EXAMPLE Let C be a compactly generated category, where 0 has the discrete topology-then 

C is a CG-category and V X, Y, Mor (X, Y) is a clopen subset of M, so ner C satisfies the cofibration 

condition provided that V X, the inclusion {idx } - Mor (X, X) is a closed cofibration. 

EXAMPLE Let C be a compactly generated category. View M as an object in CG /0 XI: 0 via 

{
8:M_0 

. Assume: The CG embedding e : 0 - M is a closed cofibration over 0 X I: o-then ner C 
t:M-O 

satisfies the cofibration condition. 

Example: Given an internal category M in CG, and a right M-object X and a left 

M-object Y, consider bar(Xj Mj Y), the bar construction on (X, Y). So: bar(Xj Mj Y) ~ 

ner Mx,Y, where Mx,Y = tran(X, Y), the translation category of (X, Y). 
[Note: Suppose that I is a small category. Let F : lOP ---.. CG, G : I ---.. CG be 

functors-then F determines a right I-object XF, G determines a left I-object Ya, and 

there is a canonical arrow Ibar(XFj Ij Ya)1 ---.. F ®I G.] 

To simplify the notation, write bar(Fj Ij G) in place of bar(XFj Ij YG). 

Examples: (1) The assignment r- Ibar(Mor(-,j)jljG)1 defines a functor PG : I - CG and the 

arrow of evaluation (PG)j - Gj is a homotopy equivalencej (2) The assignment i - Ibar(Fj Ij Mor(i, -»1 

defines a functor P F : lOP - CG and the arrow of evaluation (P F)i - Fi is a homotopy equivalence. 

Observation: Ibar(FjljG)1 ~ PF®I G ~ F®I PG. 

EXAMPLE hocolim G ~ B(-\I) ®I G ~ P* ®IG ~ * ®I PG ~ colimPG. 

Working with the unit interval, one can define a notion of homotopy (~) in the functor category 

[I, CG] that formally extends the special case I = 1. This leads to a quotient category [I, CG]/ ~. Agreeing 

to call a morphism in [I, CG] a homotopy equivalence if its image in [I, CG]/ ~ is an isomorphism, it 

is seen by the usual argument that [1, CG]/ ~ is the localization of [I, CG] at the class of homotopy 

equivalences. 

[Note: The functor P : [I, CG] - [I, CG] respects the homotopy congruence.] 

L~MMA Let G', Gil : I - CG be functors and let S : G' - Gil be a natural transformation. 

Assume: V j, Sj : G'j - G"j is a homotopy equivalence-then PS : PG' - PG" is a homotopy 

equivalence. 

Application: V G, the arrow of evaluation P PG - PG is a homotopy equivalence. 

Application: Assume: V j, G' j, Gil j are contractible-then there is a homotopy equivalence PG' _ 

PG". 
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[The arrows PGI -+ P*, PGII -+ P* are homotopy equivalences.] 

[Note: There is only one homotopy class of arrows PGI -+ PGII. Thus suppose that C), '" : 

PPGI ~ PPGII ~ P* 

PGI -+ PGII ar~ not homotopic and form the commutative diagrams 1 1 
PGI --+ PGII --+ * 

~ T 

P PGI !:.!.. P PGII 
PT 
--+ P* 

1 1 1 . Since the vertical arrows in the squares on the left are homotopy 

PGI --+ PGII --+ * 
.. T 

equivalences, PC), P'" are not homotopic. On the other hand, To C) = To'" ~ PT 0 P+ = PT 0 P"ik ~ 

P+:::::: P'" (T is a level wise homotopy equ.ivalence, hence PT is a homotopy equivalence). Contradiction.] 

PROPOSITION 12 Suppose that {~ are compactly generated categories. Let 

F, G : C -+ D be continuous functors, S : F -+ G a continuous natural transformation

then InerFI, InerGI: InerCI-+ InerDI are homotopic via InerSHI (d. p. 13-15). 

[Note: A topological category is a category object in TOP. And: The analog of 

Proposition 12 is true in this setting as well (since 11 x A[1J1 ~ 111 x [0,1] (cf. p. 14-12)).] 

EXAMPLE Let X be a nonempty compactly generated space. View grdX as a compactly gener

ated category-then InergrdXl is contractible. 

[Note: For any nonempty topological space X, grdX is a topological category and InergrdXI (= IAXI 

(cf. p. 14-1» is contractible.] 

Given a monoid G in CG with the property that the inclusion {e} -+ G is a closed 

cofibration, write G for the associated compactly generated category and put X G = 
Ibar(*jGjG)1 «XG)n = Ibar(*;G;G)ln), BG = Ibar(*;Gj*)1 «BG)n = Ibar(*;Gj*)ln)

then there are projections XG -+ BG«XG)n -+ (BG)n) and closed cofibrations G -+ XG, 
{e} -+ BG. 

[Note: The assumption on G implies that bar( *j Gj G), bar( *j G; *) satisfy the cofi

bration condition.] 

EXAMPLE bar(*; G; G) is isomorphic to Tbar(*; G; *), the translate of bar(*; Gi*) (cf. p. 14-

12). 

[Use the transposition bar(*; G; G)..!. Tbar(*; G; *) defined by bar .. (*i G;G) !l T .. bar(*; G;*), where 

T .. (gO, ... ,g .. -l ,g .. ) = (g .. ,go,· .. , g .. -d.] 

LEMMA X G is contractible. 
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[Consider the compactly generated category tranG. It has an initial object, viz. e (the 

unique morphism from e to 9 is (g, e». But the assignment {G -+ G( Xk) G is continuous. 
. 9 -+ g, e 

Therefore Ibar(*; G; G)/ is contractible (cf. Proposition 12);] 

[Note: XG is a right G-space.] 

LEMMA BG is path connected (cf. p. 14-2) and numerably contractible (cf. p. 
14-7). 

[Note: BG is called the classifying space of G but I shall pass in silence on just what 

BG classifies (for an abstract approach to this question, see Moerdijkt).] 

Remark: X G and BG are abelian monoids in CG provided that G is abelian. 

The formation of Ibar(X; G; Y)I is functorial in the sense that if tP : G - G' is a continuous homo

morphism and {X - XI are tf>-equivariant, then there is an arrow Ibar(X; G; Y)I _ Ibar(X'j G'j Y')I. 
Y-Y' 

In particular: tP induces arrows XG - XG', BG - BG'. 

The formation of Ibar(X; Gj Y)I is product preserving in the sense that the projections define a 

natural homeomorphism Ibar(X XI< X'; G x'" G/i Y x'" Y')I-lbar(Xi Gj Y)I x'" Ibar(X'j G/i Y')I. 

[Note: In the compactly generated category, B(Gx",G') :::::: BGx",BG' but in the topological category 

all one can say is that the arrow B(G X G') - BG X BG' is a homotopy equivalence (Vogt*).] 

EXAMPLE Let G be a compactly generated group with {e} - G a closed cofibration-then XG 

is a compactly generated group containing G as a closed subgroup, the action XG x'" G - XG agrees 

with the product in XG, BG is the homogeneous space XGIG, and XG is a numerable G-bundle over 

BG (in the compactly generated category). 

A cofibered monoid is a monoid G in CG for which the inclusion {e} -+ G is a closed 

cofibration. 

LEMMA Let G,K be cofibered monolds in CG, f : G -+ K a continuous homo
morphism. Assume: f is a weak homotopy equivalence-then Bf: BG -+ BK is a weak 
homotopy equivalence. 

[Apply the criterion on p. 14-8 to bar f : bar(*; Gj *) -+ bar(*j Kj *).] 

t SLN 1616 (1995). 

* Math. Zeit. 153 (1977), 59-82. 

----_ .. _--
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v 
Let a be a monoid in CG. If the inclusion {e} - a is not a closed cofibration, consider a (d. p. 

3-33)-then by construction, the inclusion {~} - G is a closed cofibration. Moreover, G is a monoid in 

CG: Take Cor the product in [0,1] the usual product and extend the product in a by writing gt = 9 = tg 
v 

(g E a, 0 ~ t ~ 1). The retraction r : a - a is a morphism oC monoids and a homotopy equivalence. 

EXAMPLE (Wreath Products) Let a be a cofibered monoid in CG-then the wreath product 

S" J a is the cofibered monoid in CG with S .. J a = s" x a" as a set. multiplication being (IT. (gl , ... ,g,,»' 

(r.(h1 ••••• h .. » = (ITr.(g.,.(l)ht. ..•• 9.,.(,,)h,,) (so (id.(e •... e» is the unit). Generalizing the Cact that 

BS .. 1\1 XS,,/S ... one has B(S .. J a) A$ XS .. xs" (Ba)". 

[Note: Embedding S" in S .. +1 as the sl.lbgroup fixing the last letter and embedding a" in a .. +1 as 

a" x {e} serves to fix an embedding oC S" J a in 5,,+1 J a and Soo J a is by definition U 5" J a (colimit 

" topology). Another point is that iC X is a compactly generated space on whicll a operates to the right. then 

X" is a compactly generated space on whicll SOl J a operates to the right: (a:t, ...• a:")'(IT, (gt, ... ,g .. » :: 
(ZO'(l) • g1,'" • a: ... (,,) . g .. ).] 

A discrete monoid is a monoid G in SET equipped with the discrete topology. H G is 

a discrete monoid, then G is a cofibered monoid and BG = BG. Example: Suppose that 

G is a discrete group-then BG is a K( G, 1). 

EXAMPLE Let a be a discrete monoid; let ,p, t/J : a - a be homomorphisms-then ,p, t/J cor

respond to functors 07>." : G - G and there exists a natural transCormation E : 07> - .. iff ,p, t/J are 

semiconjugate in the sense that e,p = t/Je Cor some e Ea. Semiconjugate homomorphisms lead to homo

topic maps at the classiCying space level (cf. p. 13-15). To illustrate, suppose that X is IUl infinite set 

and let Mx be the monoid oC one-to-one functions X-X. Fix I. E Mx : #(,(X» = #(X - ,(X». 

Define a homomorphism ,p : Mx - Mx by ,p(f)(z) = '(/(' -1 (a:))) it a: E ,(X). ,p(f)(a:) = z iC a: rt. .(X). 

Obviously, ,idMx =,p.. Fix an injection i : X _ X - .(X) and let qdx : {MX ~ Mx ,80 iqdx =,pi. 
I-ldx 

Conclusion: BMx is contractible. 

EXAMPLE Every nonempty path connected topological space has the weak homotopy type oC 

the classiCying space of a discrete monoid (McDutrt). Consequently, if a is a discrete monoid, then the 

'lrf(Ba) can be anything at all. 

[Note: Compare this result with the Kan-Thurston theorem.] 

PROPOSITION 13 Let G be a cofibered monoid in CG. Assume: G admits a 

homotopy inverse--then the sequence G -+ X G -+ BG is a fibration up to homotopy (per 

CG (standard structure». 

t Topology 18 (1979). 313-320. 
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[The fact that G has a homotopy inverse implies that V m, n & Va: [m] -+ [n], the 
Gn+l ---+ Gm+l 

commutative diagram 1 
Gn 

14-7 fr.).] 

is a homotopy pullback, which suffices (d. p. 

[Note: If the inclusion {e} -+ G is a closed cofibration, 7l"o( G) is a group, and G is 

numerably contractible, then G admits a homotopy inverse (cf. p. 4-27).] 

Notation: Given a pointed compactly generated space X, put <:hX = X[O,lj,nkx 

X S1 (pointed exponential objects in CG.) (dispense with the "sub k" if there is no question 

as to the context). 

Returning to G, there is a morphism of H spaces G -+ nBG which sends 9 to the loop 

O"g : [0,1] -+ BG defined by O"g(t) = [g, (1 - t, t)] (0 ~ t ~ 1). 

[Note: The base point of BG is [e,l].] 

PROPOSITION 14 Let G be a cofibered monoid in CG. Assume: G admits a 

homotopy inverse--then the arrow G -+ nBG is a pointed homotopy equivalence. 
G ---+ XG 

[There is an arrow XG -+ 8BG and a commutative diagram 1 1 
nBG ---+ 8BG 

---+ BG 

II . Since XG is contractible, the arrow from the compactly generated mapping 

---+ BG 
fiber of XG -+ BG to the compactly generated mapping fiber of 8BG -+ BG, i.e., to 

nBG, is a homotopy equivalence. Therefore by Proposition 13, the arrow G -+ nBG 

is a homotopy equivalence or still, a pointed homotopy equivalence, both spaces being 

wellpointed.] 

Example: Let G be an abelian group-then BG is an abelian compactly generated 

group, so B(2)G BBG is a K(G,2) and by iteration, B(n)G is a K(G,n). 

Let X be a pointed compactly generated simplicial space. Given n ~ 1, there are maps 1I"i : [1] - [n] 

(i 1, ... , n), where 11",(0) = i 1,11",(1) = i. Definition: X is said to be monoidal if Xo = * and V n ~ 1, 

the arrow Xn - Xl X k .•• X k Xl determined by the 1I"i is a pointed homotopy equivalence. Example: Let 

G be a monoid in CG-then ner Gis monoidal. 

EXAMPLE There is a functor sp : CG. _ [A OP , CG.] that assigns to each pointed compactly 

generated space (X, xo) a monoidal compactly generated simplicial space spX, where, suitably topologized, 
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sPnX is the set of continuous functions ~n _ X which carry the vertexes Vi of ~n to the base point :1:0 

of X. In particular: sPI X = nX. 
[Consider [0, n] as the segmented interval consisting of the edges of ~n connecting the vertexes 

Vo, ... ,vn-then [0, n] is a strong deformation retract of ~n and a continuous function J : [0, n] - X such 

that J( Vi) = :1:0 can be identified with a sequence of n loops in X.] 

[Note: spX generally does not satisfy the cofibration condition.] 

If X is monoidal, then Xl is a homotopy associative H space: Xl XI: Xl - X2 ~XI (relative to 

some choice of a homotopy inverse for X2 - Xl XI: Xt), thus 'lro(Xt} is a monoid. Moreover, one has 

an arrow EXI - IXI (E = pointed suspension), hence, by adjunction, an arrow Xl - nixi (which is a 

morphism of H spaces). 

FACT Let X be a monoidal compactly generated simplicial space. Assume: X satisfies the cofi

bration condition and Xl admits a homotopy inverse--then the arrow Xl - nixi is a pointed homotopy 

equivalence. 

[The role of XG in the above is played here by the contractible space ITXI, where TX is the translate 

of X (cf. p. 14-12), and the sequence Xl -ITXI- IXI is a fibration up to homotopy (per CG (standard 

structure».] 

[Note: The do : Xn+l - X" define a simplicial map TX - X.] 

Remark: If C is a pointed category with finite products and if X is a monoidal simplicial object in 

C (obvious definition), then Xl is a monoid object in C. 

DOLD-LASHOF THEOREM Let G be a cofibered monoid in CG-then the arrow 

G -+ nBG is a weak homotopy equivalence iff 11"0 ( G) is a group. 

[The necessity is clear. To establish the sufficiency, note that 
IsinGI -+ 

monoid in CG. Form now the commutative diagram 1· 

I sin GI is a cofibered 
nBlsinGI 

1 . Thanks 

G -+ nBG 
to the Giever-Milnor theorem, the arrow of adjunction I sin GI -+ G is a weak homotopy 

equivalence. Because 1I"0(lsin GI) is a group and I sin GI is a CW complex, hence numerably 

contractible (cf. p. 5-10 (TCW4 )), the arrow IsinGI -+ nBlsinGI is, in particular, a 

weak homotopy equivalence (cf. supra). Finally, BI sin GI -+ BG is a weak homotopy 

equivalence (cf. p. 14-8), thus nBI sin GI -+ nBG is a weak homotopy equivalence (cf. p. 

9-39). Therefore the arrow G -+ nBG is a weak homotopy equivalence.] 

Example: Let G, K be path connected cofibered monoids in CG, f : G-+ K a 

continuous homomorphism. Assume: Bf : BG -+ BK is a weak homotopy equivalence---:

then f is a weak homotopy equivalence. 
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--+ nBG G 

[Consider the commutative diagram ! 
K 

! and apply Dold-Lashof.] 

--+ nBK 

Modulo obvious changes in the definitions, Propositions 13 and 14 are valid for cofibered monoids in 

TOP. The same holds for the Dold-Lashof theorem. Indeed, if G is a cofibered monoid in TOP, then kG 

is a cofibered monoid in CG and the arrow kG - G is a weak homotopy equivalence. Suppose in addition 

that "-0 (G) is a group-then "-0 (kG) is a group, so the arrow kG - O"BkG is a weak homotopy equivalence. 

On 'the other hand, BkG - BG is a weak homotopy equivalence (d. p. 14-8), thus OBkG - OBG is a 
kG --+ O"BkG 

weak homotopy equivalence, as is O"BkG _ OBkG, Since the diagram ! ! commutes, 

G --+ OBG 
it follows that the arrow G - OBG is a weak homotopy equivalence. 

EXAMPLE (The Moore Loop Space) Let (X, zo) be a. pointed topological space-then 0MX is 

a monoid in TOP. As such, it admits a homotopy inverse and there is a canonical arrow BOM X - X such 

that the composite OX - OM X - OBOM X - OX is the identity. Assume now that X is path connected, 

numerably contractible, and the inclusion {zo} _ X is a closed cofibration (so OMX is cofibered (d. §3, 

Proposition 21». Owing to Proposition 14, the arrow 0MX - OBOMX is a homotopy equivalence. 

But the retraction OMX - OX is a homotopy equivalence. Therefore the arrow OBOMX - OX is a 

homotopy equivalence. Since BOMX is numerably contractible (d. p. 14-7), the delooping criterion on 

p. 4-27 then says that the arrow BOMX - X is a homotopy equivalence. 

[Note: The same reasoning shows that BOMX - X is a weak homotopy equivalence provided that 

X is path connected and the inclusion {zo} - X is a closed cofibration.] 

LEMMA Let M be a simplicial monoid, Y a left M-object-then IYI is a left IMI

object and the geometric realization of Ibar( *j Mj Y)I can be identified with I bar( *j IMlj IYDI. 

[One has barn( *; M; Y) = M X ... X M X Y. The geometric realization of [m] --+ 

barn(*i Mi Y)m = Mm X ... X Mm x Ym is IMln Xk IYI = barn(*i IMI; IYD, which, when 

realized with respect to [n], gives lbar(*j IMI; IYDI.] 

[Note: As a special case, IIbar(*;Mj*)1I (= liner MID ~ BIMI. Alternatively, I[m]--+ 

I[n] --+ barn(*j Mj *)mll ~ I[m] --+ Iner Mmll ~ I[m] --+ BMml ~ BIMI.] 

EXAMPLE (Algebraic K-Theory) Let A be a ring with unit. Put M(A) = 11 nerGL(n,A) 
n~O 

(ner GL(O, A) = d[OD-then M(A)" = JJ GL(n, A)I:, thus M(A) acquires the structure of a sim
n~O 

I, 'al 'd f . ad" . . {(91, ... ,9,,) E GL(n, A)I: 
p lei monol rom matnx dltlon, I.e., If , (91, ... ,9,,) . (hI.'" ,h,,) = 

. (ht, ... ,h,,) E GL(m, A)" 
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(91 E9 hI.··· ,9/t; E9 h/t;), where 9i E9 hi = (9i 0) E GL(n + m, A) (i = 1, ... ,k). Right multipli-
o hi 

cation by the vertex 1 E neroGL(I, A) determines a simplicial map - E9 1 : M(A) - M(A) whose 

restriction to nerGL(n,A) is the arrow nerGL(n,A) - nerGL(n + I,A) induced by the canonical 

inclusion GL(n, A) - GL(n + 1, A). The colimit of the diagram M(A) ~ M(A) ~ ... is is0-

morphic to the simplicial set Y(A) = II ner GL(A). It is a left M(A)-object and the pullback square 
Z 

Y(A) --+ lbar(*; M(A); Y(A»I 

1 1 is a homology pullback (cf. p. 13-79). In fact, left multiplication by 

a [0] --+ Ibar(*; M(A); *)1 
a vertex n E M(A) shifts the vertexes of Y(A) (the term indexed by z E Z is sent to the term indexed 

by n + z) and the corresponding map of simplicial sets nerGL(A) - nerGL(A) is induced by the ho-

{ 
GL(A) - GL(A) 

momorphism (I" = rank n identity matrix), so n. : H.(IY(A)I) - H.(IY(A)I) is 
9 - In E9 9 

an isomorphism. But bar(*; M(A); Y(A» ~ colim[NJ bar(*; M(A); M(A» ~ Ibar(*; M(A); Y(A»I ~ 

colim[NJlbar(*; M(A); M(A»I and, by the lemma, the geometric realization of Ibar(*; M(A); M(A»I 

is Ibar(*j IM(A)lj IM(A)I)I = XIM(A)I, a contractible space. Therefore the geometric realization of 

Ibar(*j M(A); Y(A»I is contractible (cf. p. 13-66). Consequently, IY(A)I = II BGL(A) has the ho-
Z 

mology of OBIM(A)I (IM(A)I = II BGL(n, A» and a model for BGL(A)+ is the path component of 
,,~o 

OBIM(A)I containing the constant loop. 

[Note: An analogous discussion can be given for the simplicial monoid Moo = II ner Sn that one 
n~O 

obtains from the symmetric group8 Sn. Spelled out, if Soo is as on p. 5-28, II BSoo has the homology 
Z 

of OBIMool (IMool = II BSn ) and a model for BS;t, is the path component of OBIMool containing the 
n~O 

constant loop.] 

A left G-object Y is a compactly generated space on which G operates to the left and 
Y --+ Ibar(*j Gj Y)I 

there is a commutative diagram 1 1 
* --+ Ibar( *j Gj * )1 = BG 

PROPOSITION 15 Let G be a cofibered monoid in CG. Let Y be a left G-object 

such that V 9 E G, the arrow 'Y -+g. 'Y is a weak homotopy equivalence-then the sequence 

Y -+ Ibar(*j Gj Y)I-+ BG is a fibration up to homotopy (per CG (singular structure». 

[Pass to the simplicial monoid sin G, noting that sin Y is a left sin G-object. Since 

every 9 E sino G induces a weak homotopy equivalence sin Y -+ sin Y, the pullback square 
sinY --+ Ibar(*j sin GjsinY)1 

1 1 is a homotopy pullback (cf. p. 13-79). Therefore, 

~[Ol --+ Ibar( *j sin Gj *)1 
taking into account the lemma, the sequence 1 sin YI-+ Ibar( *j Isin Glj 1 sin YI) -+ BI sin GI 



14-24 

is a fibration up to homotopy (per CG (singular structure» (cf. p. 13-75). The obvious 

comparison then implies that the same is true of the sequence Y -+ Ibar(*; G; Y)I-+ BG.] 
[Note: Similar methods lead to a homological version of this proposition.] 

EXAMPLE Given a cofibered monoid G in CG, let UG be the associated discrete monoid

then the mapping fiber of the arrow BUG - BG at the base point has the weak: homotopy type of 

Ibar(*; UGi G)I whenever 1ro(G) is a group. 

The forgetful functor from the category of groups to the category of monoids has a 

left adjoint that sends a monoid G to its group completion G. Example: Let G be any 

monoid with a zero element (Og = gO = 0 V g E G), e.g., G = Z:-then G = *, the trivial 

group. 

[Note: G abelian => G abelian.} 

LEMMA The functor G -+ G preserves finite products. 

EXAMPLE Suppose that G is a discrete abelian monoid. In this situation, a model for G is the 

quotient of G x G by the equivalence relation (gl, h') "" (gil, h") iff 3 k', k" E G such that (gl k' , h' k') = 
(gil kit , hltklt), the morphism G _ G being induced by g _ (g, e). Let G operate on G x G via the diagonal 

{ 
dl : G x (G x G) _ G x G 

and form Ibar(*; Gj GxG)I-then 1ro(lbar(*j G; GxG)1) is the coequalizer of 
do : G x (G x G) _ G x G 

(cf. p. 13-3), which, from the definitions, is precisely G. 

[Note: There is an arrow Ibar(*i*jG)I-lbar(*; GiG x G)I corresponding to (*, *,g) - (*,e,(g,e» 

and G ~ 1ro(G) ~ 1ro(lbar(*j *j G)I).] 

FACT Let M be a simplicial monoid, M its simplicial group completion-then the arrow 1ro (M) -

1ro(M) is a morphism of monoids and 1ro(M) ~ 1ro(M). 

[Representing 1ro(M) as coeq(d}, do) (cf. p. 13-3), one has 1ro(M) = coeq(d}, do) ~ coeq(di, do) = 
1ro(M).] 

LEMMA Let X be a pointed simplicial set. Assume: Xo = *-then eX is a monoid 

and 1rl(X) ~ eX. 

Application: Let M be a simplicial monoid-then elner MI ~ 1ro(M), hence 1rl (Iner MI) 

.~ 1ro(M) or still, 1rl(BIMI) ~ 1ro(M). 

PROPOSITION 16 Let G be a cofibered monoid in CG-then 1rl(BG) ~ 1ro(G). 

[In the above, take M = sinG to get 1rl(BlsinGI) ~ 1ro(sinG).] 
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[Note: If G is a discrete monoid, then 1rl(BG) ~ G ~ 1rl(BG).] 

Let M be a simplicial monoid, M its simplicial group completion-then 1I"0(M) :::::I 11"0 (M), so 

11"1 (HIMI) :::::I 11"1 (BIMI). When lI"o(M) is a group, IMI and IMI admit a homotopy inverse (d. p. 4-

27) (OW complexes are numerably contractible (d. p. 5-10 (TOW.»), thus the rows in the commutative 
IMI ---t XIMI ---t BIMI 

diagram 1 1 1 are fibrations up to homotopy per CG (standard structure) 

IMI ---t XIMI ---t HIMI 
(cf. Proposition 13). Therefore the arrow IMI - IMI is a pointed homotopy equivalence iff the arrow 

BIMI - BIMI is a pointed homotopy equivalence, Le., iff the arrow BIMI - BIMI is acyclic (d. §5, 

Proposition 19). Of course, the arrow IMI - IMI cannot be a pointed homotopy equivalence if 1I"0(M) 

is not a group. Since the fundamental groups of BIMI and BIMI are isomorphic, the general question is 

whether the arrow BIMI- BIMI is acyclic and for this one has the criterion provided by Proposition 22 

in §5. 

EXAMPLE Suppose that G is a discrete monoid-then the arrow BG - BG is a pointed ho

motopy equivalence iff Tor~[G](Z, z[a]) :::::I Tor~(Gi(Z, Z[GJ), i.e., iff Tor:[G](Z, Z[G]) = 0 V q ~ 1 and 

Z ®Z[GJ Z[G] ~ Z. For instance, this will be true if G is abelian. It also holds when G is free (Oartan

Eilenbergt). 

[Note: Tor: [GJ (Z, Z[G]) ~ Z®Z[G] Z[G] :::::I (Z[G]/I[G])®z[G] Z[G] :::::I Z[G]/I[G] ,Z[G] ~ z, 1[G] .Z[G] 

being I[G].] 

FACT Let M be a simplicial monoid, M its simplicial group completion. Suppose that V n, the 

arrow BMn - BMn is a pointed homotopy equivalence-then the arrow BIMI - BIMI is a pointed 

homotopy equivalence. 

[Given a 11"0 (M)-module A, compare the spectral sequence E;.m ~ Tor~[Mnl(Z, A) => Hn+m(BIMI,A) 

with the spectral sequence E;,m :::::I Tor~[Mnl(Z, A) => Hn+m(BIMI, A).] 

Application: If V n, Mn is abelia.n or free, then the arrow BIMI - BIMI is a. pointed homotopy 

equivalence. 

According to the Dold-Lashof theorem, for a cofibered monoid G in CG, the arrow 

G -+ nBG is a weak homotopy equivalence iff 1ro(G) is a group. What happens in general? 

To give an answer, one replaces "homotopy" by "homology", the point being that the arrow 

G -+ nBG is a morphism of H spaces, thus the arrow H*( G) -+ H*{nBG) is a morphism of 

t Homological Algebra, Princeton University Press (1956), 192. 



14-26 

Pontryagin rings. Viewing 1ro(G) as a multiplicative subset of H.(G), the image of 1ro(G) 

in H.(nBG) consists of units (since 1ro(nBG) is a group) and under certain conditions, 

H.(nBG) represents the localization of H.(G) at 1ro(G). 

GROUP COMPLETION THEOREM Let G be a cofibered monoid in eG. Assume: 

1ro( G) is in the center of H.( G)-then H.( G)[1ro( G)-I] ~ H.(flBG). 

Z[1ro(G)] ---t Z[1ro(G)] 
[Note: The diagram 1 1 is therefore a pushout square in the 

H.( G) ---t H.(nBG) 
category of graded associative Z-algebras.] 

EXAMPLE The group completion theorem is false for an arbitrary cofibered monoid in· CG. 

Thus choose a discrete monoid G whose classifying space BG has the weak homotopy type of S"'(n > 1) 

(cf. p. 14-19)-then if the group completion theorem held for G, one would have H.(nS"') ~ Ho(nS"'), 

an absurdity. 

To eliminate topological technicalities, we shall work with I sin GI and argue simpli

cially. 

LEMMA Let A be a ring with unit. Suppose that S is a countable multiplicative 

subset of A which is contained in the center of A-then A[S-l] is isomorphic as a (left or 

right) A-module to the colimit of A ~ A ~ .. " where Ps; is right multiplication by 

Si and {Si} is an enumeration of the elements of S, each element being repeated infinitely 

often. 

PROPOSITION 17 Let M be a simplicial monoid-then H.(IMI)[1ro(IMI)-l] ~ 

H.(flBIMI) provided that 1ro(IMI) is contained in the center of H.(IMI). 

[As functors of M, both sides of the purported relation commute with filtered colimits. 

Because M can be written as a filtered colimit of countable simplicial submonoids Mj; such 

that 1rO(IMk I) is contained in the center of H.(IMj; I), one can assume that M is countable. 

Pick a vertex in each component of M and, with an eye to the lemma, arrange them in 

a:. sequence {mil subject to the proviso that every choice appears an infinity of times. 
Pml Pm2 

Consider M ----t M ----t ... , where Pm; : M -+ M is right multiplication by mi. This 

sequence defines an object in FIL(SISET). Form its colimit to get a left M-object Y such 

t~at the geometric realization of Ibar( *j M; Y)I is contractible (compare the discussion in 

the example preceding Proposition 15). By construction, H.(IYI) ~ H.(IMI)[1ro(IMI}-lj, 

hence V m E MOl m. : H.(IYI) -+ H.(IYI) is an isomorphism. This means that the 
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Y - Ibar(*jM;Y)1 
pullback square 1 1 is a homology pullback (d. p. 13-79), so the 

~[O] - Ibar(*jMj*)1 
arrow from IYI to the mapping fiber E of Ibar( *j IMlj IYDI --+ BIMI over the base point 

is a homology equivalence. Working with the standard model category structure on CG 

(cf. p. 12-2), factor the projection XIMI --+ BIMI into an acyclic closed cofibration 

XIMI --+ X followed by a CG fibration X --+ BIMI to get the commutative diagram 
IMI - XIMI - BIMI 
1 1 " ,F denoting the fiber. Choose a filler X --+ 8BIMI for 

F 

XIMI 
1 
X 

X - BIMI 

9BIMI 
1 

BIMI 
-then 

IMI 

1 
F 

1 
nBIMI 

XIMI 
1 
X 

1 
9BIMI 

BIMI 

" BIMI 
11 

BIMI 

commutes, the com-

posite IMI --+ F --+ nBIMI being our morphism of H spaces. There is also a commutative 
IMI - XIMI - BIMI 

diagram 1 1 " ,where YIMI - Ibar(*j IMlj IYDI· Putting ev-

IYI - YIMI - BIMI 

erything together leads finally to the commutative diagram 

IMI~IYI 

/1 1· 
nBIMI ( F .E 

Since the arrows nBIMI +- F --+ E are homotopy equivalences, the result then falls out 

by applying H",.] 

I sinGI 

Upon forming the commutative diagram 1 
- nBlsinGI 

1 , the group com-

G - nBG 
pletion theorem is seen to follow from Proposition 17. 

[Note: The centrality hypothesis on 7I'"o(G) is automatic if G is homotopy commuta

tive.] 

The group completion theorem remains in force when Z is replaced by any commutative ring k with 

unit as long as 1ro(G) is in the center of H.(G;k). 

EXAMPLE (Strict Monoidal Categories) CAT is a monoidal category (0 = X,e = 1) and a 

monoid therein is a strict monoidal category (strict in the sense that multiplication is literally associative 

(not just up to natural isomorphism) and the unit is a two sided identity). A strict monoidal category 

is therefore a category object in CAT with object element 1. When considered as a discrete category, 
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every monoid in SET becomes a strict monoidal category. Fix now a strict monoidal category M. View

ing M as an internal category in CAT, one can form bar(l; M; 1) (cf. p. 0-45), which is a simplicial 

object in CAT. On the other hand, viewing M as a small category (= internal category in SET), 

one can form nerM (a simplicial monoid) and BM (a cofibered monoid in CG). Bearing in mind that 

bar(ljMj1) : a OP -+ CAT, put GM = groA opbar(1;Mj1)-then there is a weak homotopy equiva

lence hocolimNbar(l;M;l) -+ nerGM (c!. p. 13-70). But there is also a weak homotopy equivalence 

hocolimNbar(l; M; 1) -+ INbar(lj Mj 1)1 (d. §13, Proposition 49). Since Nbar(l; Mj 1) ~ bar(*;ner M;*) 

and IIbar(*,nerM,*)1I ~ BlnerMI, it follows that BlnerMI and BGM have the same homotopy type. 

Therefore H .. (BM)[1l'o(BM)-l] ~ H.(OBGM) if M is in addition symmetric (for this condition implies 

that BM is homotopy commutative). 

[Note: A symmetric strict monoidaI category is said to be permutative. Every small symmetric 

monoidal category is equivalent to a permutative category (IsbeUt). Examples: (1) r is a permutative cat

egory under wedge sum. Thus mVn = m+n in blocks (the empty wedge sum is 0) and for { l' : m - n , 
1" : m' - n' 

{
1'(k) (l<k<m) 

(1' V 1")(k) = 0 if l'(k) = 0 or 1"(k) = 0, otherwise (1' V 1"}(k) = - - j 
1"(k - m) + n (m < k ~ m + m') 

(2) r is a permutative category under smash product. Thus m#n = mn via lexicographic ordering of 

pairs (the empty smash product is 1) and for , (1'#1")«i - l)m' + i') = 0 if l'(i) = 0 or {
1':m_n 

1'1: m l _ n' 
1"(i') = 0, otherwise (1'#I")«i -l)ml + il) = (1'(i) - l)n' + 1"(i') (1 ~ i ~ m, 1 ~ i' ~ m

/).] 

EXAMPLE (Algebraic K-Theory) Let A be a ring with unit. Denote by M(A) the category 

whose objects are the An (n;::: 0), there being no morphism from An to Am unless n = m, in which case 

Mor(An,An) = GL(n,A)-then M(A) is a permutative category and nerM(A) = M(A) = 

I1 ner GL(n, A) (d. p. 14-22 ff.). Here, Z~o ~ 1l'o(BM(A», Z ~ 'll'o(BM(A» ~ '11'0 (OBIM(A)I), 
n~O 

and H. (BM(A»)[1l'o (BM(A»-l] ~ H.(OBIM(A)I). 

[Note: Write Moo for the category whose objects are the finite sets n == {O, 1, ... ,n} (n ;::: 0) with 

base point 0, there being no morphism from n to m unless n = tn, in which case Mor(n,n) = Sn (thus 

Moo = isor (ef. p. 0-16». Again, Moo is permutative and the discussion above can be paralleled (c!. p. 

14-23).] 

The compactly generated analog of the "free topological group" on X ((X,xo)) is 

. meaningful on purely formal grounds (cf. p. 1-37) but the situation is simpler since one has 

a direct description of the topology on FgrX (Fgr(X, xo», the free compactly generated 

group on X ((X,xo)). To be specific, consider an (X,xo) in CG •. Let (X-l,x;l) be 

a copy of (X, xo). Put X = X V X-I, xn = X XI: ••• XI: X (n factors)-then with 

t J. Algebra 13 (1969), 299-307. 
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Fgr(X,xO) the free group on X - {xo}, there is a surjection p : llxn -+ Fgr(X,xo) 
n 

sending xn to F;(X, xo), the subset of Fgr(X, xo) consisting of those words of length at 

most n, and Fgr(X, xo) is equipped with the quotient topology derived from p. When X 

is ~-sepa.rated, Fgr (X, xo) is ~-sepa.rated, the arrow of adjunction X -+ Fgr (X, xo) is a 

closed embedding, F;(X,xo) is closed, Pn: xn -+ Fg~(X,xo) is quotient (Pn = plxn), 
x n-l Fn-l(X) • -+ gr ,Xo 

Fgr(X, xo) = colimF;(X, xo), and the commutative diagram 1 
xn 

is a pushout square (X:- 1 = p;l(F;-l(X,xo))). 

1 
-+ 

[Note: A reference for this material is La Martin t . Incidentally, it is false in general 

that k applied to the free topological group on (X, xo) is the free compactly generated 

group on (X,xo) but if X is the colimit of an expanding sequence of compact Hausdorff 

spaces, then the free compactly generated group on (X, xo) is a topological group, hence 

is the free topological group on (X, xo).] 

EXAMPLE The structure of Fgr(X, :1:0) definitely depends on whether one is working in the 

topological category or the compactly generated category. This can be seen by taking X = Q. For the 

free topological group on (Q, 0) is not compactly generated and its topology is not the quotient topology 

associated with the projection II Q" - Fgr(Q, 0). Moreover, Fgr(Q, 0) is not the colimit of the F;r(Q, 0). 
n 

Still, V n, F;r(Q,O) is closed in Fgr(Q,O) and every compact subset of Fgr(Q,0) is contained in some 

F;r(Q, 0). Nevertheless, p" : Q" - F;r(Q, 0) is not quotient if n » 0. 

[Note: Details can be found in Fay-Ordman-Thomast.] 

The intent of the preceding remarks is motivational, our main concern being with free 

compactly generated monoids, not free compactly generated groups. Thus fix (X, xo) in 

CG., call J X the free monoid on X - {xo}, and give J X the quotient topology coming from 

II xn ~ J X. Letting 7r be the multiplication in J X, consider the commutative diagram 
n 

llxn Xk II xn PXIcP~ J X Xk J X 

n 1 n 1'" Since 7r 0 (p X k p) is continuous and p x k P is quotient, 7r is 

II xn ----:p:----?~ J X 
n 

continuous. Therefore J X is a monoid in CG. Suppose now that G is a monoid in CG and 

f : X -+ G is a pointed continuous function. On algebraic grounds, there exists a unique 

Dissertationes Math. 146 (1977), 1-36; see also Ordman, General Topology Appl. 5 (1975), 205-219. 

General Topology Appl. 10 (1979), 33-47. 
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X ---to. JX 
morphism of monoids J I : J X -+- G rendering the triangle ~ ~, commutative. 

G 
Claim: JI is continuous. Indeed, there is a continuous function PI : II xn -+- G with 

n 
JI 0 P = PI' But P is quotient, so JI is continuous. Therefore JX is the free compactly 

generated monoid on (X, xo). 

[Note: JX is the James construction on (X,xo).] 

JX can be represented as a. coend, viz. JX ~ fl1 X" Xk In, In the James construction on the 

pointed finite set n = {O, 1, ... ,n} (d. p. 13-56). 

LEMMA Let X be a pointed compactly genera.ted simplicial space. Define a simplicial space .J X 

by (JX)n = JXn-then IJXI ~ JIXI. 

[In fact, IJXI = fn JXn X ~n ~ fn (fm (Xn)m Xk Jm) x.6n ~ fm (fn (Xn)m x .6n ) Xk Jm ~ 

fm,x,m Xk Jm~ JIXI.] 

Put Jnx = p(xn) and consider p-I(JnX) nxm. Obviously, m < n => p-l(Jnx) n 
xm xm. On the other hand, n < m => p-l (In X) n xm = U X s , where for 8 C 

S 
{I, ... ,m} : #(8) = m - n, Xs = {(Xl, ... ,Xm) : Xi = Xo (i E 8)}. Consequently, In X 

is closed in J X if {xo} is closed in X. 

LEMMA Assume: {xo} is closed in X. Let A be a subset of In X such that p-l(A)n 

xn is closed in Xn-then A is closed in J X. 

[Case 1: m < n. Denoting by im,n the insertion xm -+- xn that sends (XI, ... , xm) 

to (XI, ... ,Xm,xO, ... ,xo), one has p-I(A) nxm = i;~n (p-l(A) nxn). Case 2: n < m. 

Write p-I(A) n xm = U(pSI(p-I(A) n xn», Ps : Xs -+- xn the striking map (i.e., 
s 

PS(XI, . .. ,xm) retains only those Xi, where i ¢ 8).] 

Accordingly, when {xo} C X is closed, the arrow xn -+- In X is quotient and the 
X: ---+ In-1x 

commutative diagram 1 1 
xn ---+ JnX 

is a pushout square (X: = U X~ (#(8) = 
S 

1) => xn / X: ~ X #k ... #kX (n factors». It therefore follows that if X is D.-separated, 

then each Jnx is D.-separated (ADs (d. p. 3-1», hence JX = colimJnX is D.-separated 

(cf. p. 1-36). 

[Note: The arrow of adjunction X -+- JX is a closed embedding. Reason: The 

continuous bijection X -+- Jl X is quotient.] 
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PROPOSITION 18 Let (X, xo) be a wellpointed compactly generated space with 

{xo} C X closed-then (JX,xo) is a wellpointed compactly generated space with {xo} C 

J X closed, thus is a cofibered monoid in CG. 

[In fact, by the above, V n, In-l X -+' In X is a closed cofibration.] 

LEMMA If (X, :to) is a wellpointed compactly generated Hausdorff space, then (JX, :to) is a 

wellpointed compactly generated Hausdorff space. 

[V n, J1l X is Hausdorff (cf. p. 3-8) and condition B on p. 1-29 can be applied.] 

FACT Suppose that (X,:to) is a pointed CW complex-then (JX,:to) is a pointed CW complex. 

IT X is a wellpointed compactly generated space with {xo} C X closed, then the 

pointed cone r X and the pointed suspension EX are wellpointed compactly generated 

spaces with closed basepoints. 
X Xk JX ---+ JX 

Define E by the pushout square 1 1 ,where X Xk JX -+' JX is 

rx Xk JX ---+ E 
multiplication. 

LEMMA E is contractible. 

[Letting En be the image of r X x k In X in E, there is a pushout square 

rx Xk In-lx U {xo} Xk Jnx ---+ En- 1 

1 1 
rx Xk In X ---+ En 

so the arrow En- 1 -+' En is a closed cofibration. But En/ En- 1 ~ r X #k( In X / I n- 1 X), 

hence En/ En- 1 is contractible. Since Eo ~ r X, it follows by induction that En is con

tractible (cf. p. 3-24). Therefore E = colim En is contractible (cf. p. 3-20).] 

Notation: Given a pointed compactly generated space X, let fhMX (fhMX) be the 

compactly generated Moore mapping (loop) space of X (dispense with the "sub k" if there 

is no question as to the context). 

There are two ways to place a compactly generated topology on 9MX (OM X). 

(1) View 9MX (OM X) as a subset of C(R2;o, X) x R2;o (cf. p. 3-31 ff.) and take the 

"k-ification" of the induced topology. 

(2) Form kC(R2;o, X) XI: R2;o = kC(R2;O' X) X R2;o, equip 9MX (OMX) with the induced 

topology, and pass to its "k-ification". 
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Both procedures yield the same compactly generated. topology on eM X (OM X), from which e 11M X 

(OIlMX), 

EXAMPLE Let X be a pointed compactly generated space. Write moX for the nerve of the 

category associated with the compactly generated monoid OM X -then there is a canonical arrow moX -

spX which is a levelwise homotopy equivalence. 

Let X be a wellpointed compactly generated space with {xu} C X closed. Choose a 

continuous function ¢ : X ..... [0,1] such that ¢-1(0) = {xu} (cf. §3, Proposition 21)-then 

the meridian map m : X ..... !lMEX is the pointed continuous function specified by the 

rule m(x)(t) = [x,tj¢(x)] (0::; t :5 ¢(x», where [xu,OjO] is the base point of EX. Since 
X ----+JX 

!lMEX is a monoid in CG, m extends to JX: m\ !Jm , Jm being the arrow of James. 

!lMEX 
[Note: The composite X ~!lMEX ..... !lEX is x ..... [x,-].] 

Ostensibly, the meridian map depends on q" call it mfJ' Suppose, however, that m", is the meridian 

map corresponding to another continuous function tP : X - [0,1] such that tP-1 (0) = {a:o}-then mfJ ~ 

m",. 

[Let H : IX - 0MEX be the homotopy given by H(a:,t) : [0,(1 - t)q,(a:) + ttP(a:)] - EX, where 

H(a:,t)(T) = [a:,T/«l- t)q,(a:) +ttP(a:»]. Write G: X - (OMEX)[O,l] for its adjoint, view (OMEX)[O,l] 

X .JX 

as a monoid in CG, determine G via the commutative triangle G\ !G ,and consider its adjoint 

(OMEX)[O,l] 

Let r m : r X ..... ~ M EX be the continous function defined by the prescription 

rm([x,t])(T) - [x, Tj¢(x)] (0 < T < t¢(x»-then there is an arrow 
rmx"Jm + r X x I; J X I eM EX x I; !lM EX ..... eM EX and a commutative diagram 

XXkJX .JX 

1 1 -------nM!:x. This leads in turn to an arrow E --+ 9MEX and a 

rx XI; JX---..eMEX/ 
E .eMEX 

commutative triangle ~ / (eMEX ..... EX is the CG fibration that evaluates 

EX 
a Moore path at its free end). 
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PROPOSITION 19 Let (X, xo) be a wellpointed compactly generated space with 

{ xo} C X closed. Assume: X is path connected and numerably contractible--then the 

arrow of James J X --? OM EX is a pointed homotopy equivalence. 
rx Xk JX +-- X Xk JX --+ JX 

[In the commutative diagram 1 1 1 , the arrows 

rx +-- X --+ * 
rx Xk JX+--X >:<k JX 

X x k J X --? r X x k J X, X --? r X are closed cofibrations and 1 1 is a ho-

rx +-- X 
X Xk JX--+JX 

motopy pullback, as is 1 1 (the shearing map sh : {X( x k) J X( --? X) X k J X 
x, Y --? X, xy 

X --+ * 
is a homotopy equivalence (cf. p. 4-27)). Consequently, the sequence J X --? E --? EX is 

a fibration up to homotopy (per CG (standard structure) (cf. p. 12-15)). Since E is con
JX --+ E --+EX 

tractible, it remains only to consider the commutative diagram 1 1 II .] 
OMEX --+eMEX --+EX 

Application: Under the hypotheses of Proposition 19, the composite J X ~ OM EX --? 

OEX is a pointed homotopy equivalence. 

PROPOSITION 20 Let (X,xo) be a wellpointed compactly generated space with 

{xo} C X closed. Assume: X is path connected-then the arrow of James J X --? OM EX 

is a weak homotopy equivalence. 

[Thanks to the cone construction (cf. p. 
JX --+ E 

fibration. Work with 1 1 

4-56 fr.), the arrow E --? EX is a quasi
--+ EX 

II and compare the long exact 

OMEX --+ eMEX --+ EX 
sequences of homotopy groups.] 

[Note: In the case at hand, EX is simply-connected.] 

Application: Under the hypotheses of Proposition 20, the composite J X ~ OM EX --? 

OEX is a weak homotopy equivalence. 

EXAMPLE Let X be the broom pointed at (O,O)-then X is path connected. But-JX and {lEX 

do not have the same weak homotopy type (EX is not simply connected). 

PROPOSITION 21 Let {~~,:oo/ be wellpointed compactly generated spaces with 

{ ~:: 1 ~: closed; let f : X --? Y be a pointed continuous function. Assume: f is a 
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homotopy equivalence (weak homotopy equivalence )-then J f : J X -+ JY is a homotopy 

equivalence (weak homotopy equivalence). 
xn +-- xn -----+ In-1 X 

* 
[Arguing by induction from 1 1 1, one finds that V n, In X -+ 

yn +-- yn -----+ In-1 Y 
* Jny is a homotopy equivalence (cf. p. 3-24 ff.) (weak homotopy equivalence (cf. p. 4-

51)), hence JX -+ JY is a homotopy equivalence (cf. §3, Proposition 15) (weak homotopy 

equivalence (cf. p. 4-48)).] 

Convention: Given a cofibered monoid G in CG, ~G -+ BG is the adjoint of G -+ 

nBG (cf. p. 14-20). 

LEMMA Let (X,xo) be a wellpointed compactly generated space with {xo} C X 
closed. Assume: X is discrete-then the composite ~X -+ ~JX -+ BJX is a weak 

homotopy equivalence. 

[Since X = V So, JX -
x -{xo} 

II JSo (II the coproduct in the category of 
x -{xo} 

~Z~o -----+ BZ~o 

monoids), where JSo = Z>o, thus it suffices to consider ~SO 
/ 

1 .] 
'\, 

~z -----+ BZ 

PROPOSITION 22 Let (X, xo) be a wellpointed compactly generated space with 

{xo} c X closed-then the composite ~X -+ ~JX -+ BJX is a weak homotopy equiva

lence. 

[The lemma implies that V n, the composite ~ sinn X -+ ~J sinn X -+ BJ sinn X 

is a weak homotopy equivalence (sinn X being supplied with the discrete topology), thus 

the composite In -+ ~ sinn XI -+ In -+ ~J sinn XI -+ In -+ BJ sinn XI is a weak ho

motopy equivalence (cf. p. 14-8). But In -+ ~sinnXI ~ ~lsinXI (cf. p. 14-10 ff.), 

In -+ ~JsinnXI ~ ~In -+ JsinnXI ~ ~JlsinXI (cf. p. 14-30), In -+ BJsinnXI ~ 

Bin -+ J sinn XI (cf. p. 14-22) ~ BJI sinXI and there is a commutative diagram 
~I sinXI -----+ ~JI sinXI -----+ BJI sinXI 

1 1 1· The arrow ~I sinXI -+ ~X is a weak ho-

~X ~JX BJX 
motopy equivalence (cf. infra). According to Proposition 21, the same holds for the arrow 

JlsinXI -+ JX or still, for the arrows ~JlsinXI -+ ~JX, BJlsinXI -+ BJX (cf. p. 

14-18). Combining these facts yields the assertion.] 

LEMMA Let , (Z, zo) be wellpointed compactly generated spaces with , {
(X, xo) { {xo} ex 
(Y, YO) {Yo} c Y 
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{zo} C Z closed and let f : X -+ Y be a pointed continuous function. Assume: f is a weak homotopy 

equivalence-then f#kidz : X#kZ -+ Y#kZ is a weak homotopy equivalence. 

{
(X,zo) {{zo}CX 

Application: Let be wellpointed compactly generated spaces with closed 
(Y, Yo) {yo} C Y 

and let f : X -+ Y be a pointed continuous function. Assume: f is a weak homotopy equivalence-then 

"Ef : "EX -+ "EY is a weak homotopy equivalence. 

[Note: Recall too that Of: ox -+ OY is a weak homotopy equivalence (cf. p. 9-39).] 

LEMMA Let (X, xo) be a wellpointed compactly generated space with {xo} c 
X dosed-then there is a canonical arrow BflM X ~ X and a commutative diagram 
2:flMX ----+ BflMX 

1/ . 
X 

[Note: BflMX ~ X is a weak homotopy equivalence provided that X is path con

nected (d. 14-22).] 

PROPOSITION 23 Let (X, xo) be a wellpointed compactly generated space with 

{xo} C X closed-then the arrow of James J m : J X ~ flM 2:X induces a weak homotopy 

equivalence BJm : BJX ~ BflM2:X. 

[The composite 2:X~2:flM2:X ~ 2:X is idEx. Proof: [x,t] ~ [m(x),t] ~ m(x) 
(t¢(x)) = [x,t¢(x)/¢(x)] = [x,t]. With this in mind, the commutative diagram 

2:JX ----+1 BJX 

~ 1 1B~ 
2:X ----+ 2:fl M 2:X ----+ Bfl M 2:X 

~1/ 
2:X 

BJ'ffl 
shows that 2:X ~ 2:J X ~ B J X ----+ BflM 2:X ~ 2:X is also idEx. On account of 

Proposition 22, the composite 2:X ~ 2:J X ~ B J X is a weak homotopy equivalence. 

However 2:X is path connected, hence BflM2:X ~ 2:X is a weak homotopy equivalence. 

Therefore BJm : BJX ~ BflM2:X is a weak homotopy equivalence.] 

[Note: One can view Proposition 23 as the 7ro(X) =1= * analog of Proposition 20.] 

FACT Let (X, zo) be a wellpointed compactly generated space with {zo} C X dosed. Assume: X 

is a-separated and ax -+ X Xk X is a cofibration. Put GX = Fgr(X, zo) (cf. p. 14-28)-then the arrow 

BJX -+ BGX is a weak homotopy equivalence. 
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[Note: It follows that the arrow JX - GX is a weak homotopy equivalence whenever X is path 

connected (cr. p. 14-21).] 

It is also of interest to consider the free abelian compactly generated monoid on 

(X,xo), denoted by SpooX and referred to as the infinite symmetric product on (X,xo). 

Like J X, S poo X carries the quotient topology coming from Il xn -+ S poo X. Put 
n 

spnx = p(Xn)-then if {xo} is closed in X, spnx is closed in SpooX and the arrow 

xn -+ spnx is quotient, hence spoox = colimSpnX and Xn/Sn ~ spnx. Example: 

SpooSo ~ Z2::o• 

Under certain conditions, it is possible to identify xn / Sn. For instance, S2/ Sn is homeomorphic to 

pn(c), therefore SpooS2 is homeomorphic to POO(C), a K(Z, 2) (cf. p. 14-38). 

[Note: A survey of this aspect of the theory has been given by Wagnert.J 

EXAMPLE Let X be a compact metric space with dimX < 00. Assume: X is an ANR-then 

xn / Sn is an ANR (Floyd t). 

PROPOSITION 24 Let (X, xo) be a wellpointed compactly generated space with 

{xo} c X closed-then (SPOO X, xo) is a wellpointed compactly generated space with 

{xo} c Spoo X closed, thus is an abelian cofibered monoid in CG. 

LEMMA If (X, zo) is a well pointed compactly generated Hausdorff space, then (SPOO X,zo) is a 

well pointed compactly generated Hausdorff space. 

FACT Suppose that (X,zo) is a pointed CW complex-then (SpOOX,zo) is a pointed CW com-

plex. 

[It is enough to place a CW structure on each spn X in such a way that spn-l X is a subcomplex 

of spn X (d. p. 5-25). For this, it is necessary to alter the CW structure on xn in order to reflect the 

action of Sn.] 

PROPOSITION 25 Let (X, xo) be a wellpointed compactly generated space with 

{xo} C X closed-then there is an isomorphism BSpoo X ~ SpooEX of abelian monoids 

inCG. 

t Dissertationes Math. 182 (1980), 1-52. 

Duke Math. J. 22 (1955), 33-38. 
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SpooX --+- XSpooX --+-

[Analogously, X S poo X ~ spoor X and the diagram II 1 

BSpooX 

1 commutes.] 
SpOOEX 

spoox --+- spoorx --+-

PROPOSITION 26 Let (X, xo) be a wellpointed compactly generated space with 

{xo} C X closed. Assume: X is path connected and numerably contractible-then the 

arrow S poo X _ nB S poo X is a pointed homotopy equivalence. 

['v' n, spnx is numerably contractible, so Spoo X = colim spnx is numerably con

tractible (d. p. 3-13). Since the inclusion {xo} - SpooX is a closed cofibration and 

Spoo X is path connected, it follows that Spoo X admits a homotopy inverse (cf. p. 4-

27). Therefore the arrow S poo X _ nBS poo X is a pointed homotopy equivalence (d. 

Proposition 14).] 

Application: Under the hypotheses of Proposition 26, the composite Spoo X -

nBSpoo X _ nSpooEX is a pointed homotopy equivalence. 

DOLD-THOM THEOREM Suppose that (X, xo) is a pointed connected CW complex 

-then V n > 0, 7rn(Spoo X) ~ Hn(X). 

[There are pointed homotopy equivalences ISpoo sinXI _ Spool sinXI, Spool sinXI -

Spoo X. One has ii.(1 sinXI) ~ ii.(X) and, in the notation of p. 13-17, 7r. (Fa.b (sin X, xo)) 

~ ii.(1 sin XI) (Weibel t ). But Spoo sinX = Fa.b(sinX, xo), thus the arrow ISpoo sinXI -

I Fa.b(sin X, xo)1 is a pointed homotopy equivalence (d. p. 14-25). Accordingly, 

7r.(ISpoosinXI) ~ 7r.(!Fa.b(sinX,xo)1) ~ 7r.(Fa.b(sinX,xo)), from which the assertion.] 

EXAMPLE Dold-Thom can fail if X is not a CW complex. Example: Take for X the Hawaiian 

earring pointed at (0,0), form its cone r X and consider r X V r X -then Hl (r X V r X) ::j; 0, so either 

1t'l(SpOOrX) ::j; Hl(rX) or 1t'l (SpOO(rX V rX» ::j; Hl (rX V rX). 

Remark: If (X, xo) is a pointed connected CW complex, then (SPOO X, xo) is a pointed 
00 

connected CW complex (cf. p. 14-36) and SpooX ~ (w) II K(7rn(SpooX),n)) (cf. p. 5-
1 

00 

43) or still, by the Dold-Thom theorem, SpooX ~ (w) II K(Hn(X),n). 
1 

t An Introduction to Homological Algebra, Cambridge University Press (1994), 266-267. 
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EXAMPLE Let 7r be an abelian group and let X = M(7r, n) (realized as a pointed connected CW 

complex)-then Spoo M(7r, n) is a K(7r, n). In particular: spoosn is a K(Z, n). 

rin is the category whose objects are the finite sets n = {O,l, ... ,n} (n ~ 0) with 

base point 0 and whose morphisms are the base point preserving injective maps. 

Example: Let (X,xo) be a wellpointed compactly generated space with {xo} C X 

closed. Viewing xn as the space of base point preserving continuous functions n -+ X, 

define a functor pow X : rin -+ CG. by writing pow nX = xn, stipulating that the arrow 

xm -+ xn attached to,: m -+ n sends (Xl, ... ,Xm ) to (Xl, ... ,xn), where Xj = X,-l(j) 

if ,-l(j) #- 0, Xj = Xo if ,-l(j) = 0. 
[Note: colim pow X can be identified with Spoo X.] 

EXAMPLE For n > 0, colim pown:::::: Spoon:::::: Z~o x ... x Z~o (n factors). On the other hand, 

hocolim pow n has the homotopy type of BMoo x,.··· x,. BMoo (n factors), Moo the permutative category 

of p. 14-28 (so BMoo = II BSn). 
n~O 

[Note: colim pow 0:::::: SpooO :::::: {OJ while hocolimpowO:::::: Brin, a contractible space (cf. p. 13-15).] 

Definition: A creation operator is a functor C : r~P -+ CG such that Co = *. 
[Note: V n, Cn is a right Sn-space.] 

EXAMPLE Every nonempty compactly generated Hausdorff space Y gives rise to a creation 

operator CY whose nth space is yn (yo = *), the arrow yn _ ym determined by, : m _ n being the 

map (Yl, ... ,Yn) - (Y-r(l), ... 'Y-r(m»· 

If C is a creation operator and if (X,xo) is a wellpointed compactly generated space 

with {xo} C X closed, then the realizationC[X] ofC at X is /n Cn Xk Xn (= C0rinPow X). 

Example: Suppose that Cn = * V n-then C[X] = * 0rin pow X:::::: colim pow X:::::: Spoo X. 

EXAMPLE Let Cn = Sn V n. Given a morphism, : m - n in rin, specify C, : Sn - Sm as 

follows: VuE Sn, there exists a unique order preserving injection,' : m - n such that ,'(m) = (uo,)(m) 

and (C,)u E Sm is the permutation for which " 0 (C,)u = u 0,. This data thus defines a creation operator 

and V X, C[X]:::::: JX. 

PROPOSITION 27 Suppose that (X, xo) is a wellpointed compactly generated space 

with {xo} C X closed and let C be a creation operator. Denote by Cn[X] the image of 

II Cm X k xm in C[X]-then Cn[X] is a closed subspace of C[X] and C[X] = colim Cn[X]. 
m:5n 
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In addition, the commutative diagram 1 
Cn X S", xn ----+

and the arrow Cn- 1 [X] --to Cn [X] is a closed cofibration. 

Cn-dX ] 

1 
Cn[X] 

is a pushout square 

[Note: The base point of C[X] is [*, xo] and the inclusion {[*, xo]} --to C[X] is a closed 

cofibration. ] 

Remark: X d-separated + Cn d-separated V n => C[X] d-separated. 

The validation of the above remark depends on Proposition 27 and the following lemma. 

LEMMA Let G be a compact Hausdorff topological group. Suppose that X is a ~-separated right 

G-space-then X/G is ~-separated. 

[It is a matter of proving that {(:e,:e' g) : z EX, g E G} is closed in X XI: X (cf. p. 1-35). However, 

G acts to the right on X XI: X, viz. (:e,y). g = (z,y' g), and ~x is closed in X XI: X, hence ~x . Gis 

closed in X X I: X, G being compact Hausdorff.] 

{ 
(X,zo) {{zo} c X FACT Let be well pointed compactly generated spaces with closed; let 
(Y,yo) {Yo} c Y 

f : X - Y be a pointed continuous function. Assume: f is a closed cofibration-then V creation operator 

C, the induced map C[X] - C[Y] is a closed cofibration. 

[Use the lemma on p. 3-15 ff. and the lemma on p. 14-4.] 

[Note: The conclusion of the lemma on p. 3-15 ff. is "closed cofibration" rather than just Ilcofibra

tion" provided that this is so of the vertical arrow on the right in the hypothesis. To see this, observe 

that the argument there can be repeated, testing against any arrow Z - B which is both a homotopy 

equivalence and a Hurewicz fibration (cf. p. 4-22).] 

PROPOSITION 28 Let <p : C --to 'D be a morphism of creation operators. Assume: 

V n, <Pn : Cn --to 'Dn is an Sn-equivariant homotopy equivalence---then <p induces a homotopy 

equivalence C[X] --to'D[X]. 

By definition, hocolimpow X ;::;:;: B(-\rin) 0r
in 

pow X. Problem: Exhibit models for 
.----:;-;--
hocolim pow X in the homotopy category. 

[Note: Strictly speaking,B(-\rin) is not a creation operator (since B(O\rin ) =1= * ).] 
A compactly generated paracompact Hausdorff space X is said to be Sn-universal if it 

is a contractible free right Sn-space. The covering projection X --to X/Sn is then a closed 

map, hence X / Sn is a compactly generated paracompact Hausdorff space. Therefore X / Sn 

is a classifying space for Sn (in the sense of p. 4-60). Examples: (1) XS: is Sn-universal; 

(2) B(n\rin) is Sn-universal; (3) XSn is Sn-universal. 
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A creation operator C is said to be universal if 'V n, Cn is Sn-universaL 

\.......- Example: Let C be a universal creation operator-then for any cofibered monoid G 

in CG, Cn xs" (BG)n has the same homotopy type as B(Sn J G) (cf. p. 14-19). 

PROPOSITION 29 Suppose that C is a universal creation operator-then there exists 

an arrow B(-\I'in) -+ C such that 'Vn, B(n\I'in) -+ Cn is an Sn-equivariant homotopy 
equi valence. 

(In the notation of p. 14-161£., compose the homotopy equivalence B(-\I'in) -+ PC 

and the arrow of evaluation PC -+ C.] 

Application: Let (X, xo) be a wellpointed compactly generated space with {xo} eX 

closed-then 'V universal creation operator C, C[X] 'and hocolimpow X have the same 

homotopy type. 

FACT Let 4> : C --+ V be a morphism of creation opera.tors. Assume: C a.nd V are universal-then 

4> induces a homotopy equivalence C[X] --+ V[X]. 

Given a nonempty compactly generated Hausdorff space Y, let F(Y, n) be the subspace 

of yn consisting of those n-tuples (Yl,' .. ,Yn) such that i =F j ::::> Yi =F Yj-then F(Y, n) 

is open in yn, hence is a compactly generated Hausdorff space, and Sn operates freely to 

the right by permuting coordinates. 

[Note: F(Y, n) is the configuration space of n-tuples of distinct points in Y. Consult 

Cohent for additional information and references.] 

Notation: con Y is the creation operator that sends n to F(Y, n), the arrow F(Y, n) -+ 

F(Y, m) determined by; : m -+ n being the map (Y!,··· ,Yn) -+ (Y,(l), ... ,Y,(m»' 

[Note: Therefore con Y is a subfunctor of CY (cf. p. 14-38).] 

Observation: The points of con Y[X] are equivalence classes of pairs (S, /), where 

S c Y is a finite subset of Y, f : S -+ X is a function, and (S, /) '" (S - {y}, flS - {y}) 

iff fey) = Xo· 

[Note: All pairs (S,/), where f(S) = {xo}, are identified with (O,O).] 
Examples: (1) conRO[X] ~ Xj (2) con Y[SO] ~ {S c Y : #(S) < w}. 

LEMMA F(R 00, n) is Sn-universal. 

[(R oo)n is a polyhedron. But F(R 00, n) is an open subset of (R oo)n, thus it too is 

a polyhedron (cf. p. 5-3). Therefore F(R 00, n) is a compactly generated paracompact 

"-' t J. Pure Appl. Algebra 100 (1995), 19-42. 
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Hausdorff space. Contractibility is clear if n = 0 or 1, so take n ~ 2 and represent 

F(Rex> , n) as colim F(R', n). Since for q » 0, F(R', n) is the complement in R,n of 

certain hyperplanes of codimension q, F(R', n) is (q - 2)-connected, and this implies that 

F(R ex>, n) is contractible.] 

PROPOSITION 30 con Rex> is a universal creation operator. 

Application: Let (X,xo) be a wellpointed compactly generated space with {xc} eX 

closed-then hocolim pow X and con Rex> [X] have the same homotopy type. 

EXAMPLE conROO[SO] Ri II F(ROO ,n)/8n Ri II B8n , which agrees with the fact that the 
n~O n~O 

homotopy type of hocolimpowSo is BMoo (cf. p. 14-38). 

A q-dimensional rectangle in [0,1]' is a product of the form R = [al' bll x ... x [a" b,l, 
where 0 $ ai < bi $ 1. Call R(q) the set of such and topologize it as a subspace of [0,1]2'. 

Note that there is a closed embedding R(q) --j. R(q + 1) defined by multiplication on the 

right by [0,1] and put R(oo) = colimR(q). Let BV(R(q), n) be the subspace of F(R(q), n) 

consisting of those n-tuples (Rl , ... , Rn) with the property that the interior of Ri does 

not meet the interior of Rj if i '# j-then there is a closed embedding BV(R(q), n) --j. 

BV(R(q + 1), n) and BV(R(oo), n) = colimBV(R(q), n) is a free right Sn-space. 

Notation: BVex> is the creation operator that sends n to BV(R( 00), n). 

LEMMA BV( R( 00), n) is Sn-universal. 

[It follows from condition C on p. 1-29 that BV(R(oo),n) is a co~pactly generated 

paracompact Hausdorff space. Since the closed embedding BV(R(q), n) --j. BV(R(q+ 1), n) 
is a cofibration, one need only establish that it is also inessential in order to conclude that 

BV(R( 00), n) is contractible (cf. p. 3-20). To define H : IBV(R(q), n) --j. BV(R(q+ 1), n), 

represent an n-tuple (Rl , ... , Rn) by a 2n-tuple (A}, BI, ... ,An, Bn) of points in [0,1]'. 

Here Rk +--+ (Ak,Bk) andAk = (au, ... ,akq), Bk = (bkb .. ' ,bk,) (1 $ k $ n). Now write 

H((Ah B I , ... ,An, B n), t) = (AI (t), BI (t), ... , An(t), Bn(t», where 

Ak(t) _ {(au, ... ,akq, 2t(k - l)/n) (0 $ t $ 1/2) 
- ((2 - 2t)akl, ... ,(2 - 2t)akq, (k - l)/n) (1/2 $ t $ 1) 

and 

Bk(t) - {(bu , ... , bkq, 1 - 2t(1- kin»~ (0 $ t $ 1/2) 
- (2t-1+(2-2t)bu , ... ,2t-l+(2-2t)bkq ,k/n) (1/2$t 1).] 
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[Note: At the opposite extreme, each path component of BY(R(l), n) is contractible 

"-' and ll'o(BY(R(l),n)) ~ Sn.] 

PROPOSITION 31 BYoo is a universal creation operator. 

Application: Let (X,xo) be a wellpointed compactly generated space with {xo} eX 
closed-then hocolimpow X and BYOO[X] have the same homotopy type. 

Let Byq be the creation operator that sends n to BY (R( q), n )-then BYoo = colim Byq 

=? BYoo [X] = coHm Byq [X]. 

FACT The arrow BY9 [X] - BY9+1 [X] is a closed cofibration. 

PROPOSITION 32 The map BY(R(q),n) --... F(Rq,n) which takes (Rt, ... ,Rn) to 

its center is an Sn-equivariant homotopy equivalence, hence induces a homotopy equiva

lence Byq[X] --... con Rq[X]. 

The elements of R(q) are in a one-to-one correspondence with the functions [0, l]q --... 

[0, l]q of the form R = rl x ... X rq, where ri(t) = (bi - ai)t + ai (0 ::; ai < bi ::; 1). Thus 

R(q) can be viewed as a subspace of C([O, l]q, [0, l]q) (compact open topology), there being 

no ambiguity in so doing since the two interpretations are homeomorphic. 

Representing sq as [0, l]q Ifr [0, l]q, adjust the definitions of r;qx and nqr;qx corres

pondingly-then the arrow of May is the continuous function mq : Byq[X] --... nqr;qx 

specified by the rule 

MAY'S APPROXIMATION THEOREM Let (X, xo) be a wellpointed compactly gen

erated space with {xo} C X closed. Assume: X is path connected-then mq : Byq[X] --... 
nqr;q X is a weak homotopy equivalence. 

[Note: If X has the pointed homotopy type of a pointed connected CW complex, 

then Byq[X] is a pointed CW space, as is nqr;qx (loop space theorem), thus under these 

circumstances the arrow of May is a pointed homotopy equivalence.] 

The proof of this result is fairly lengthy and will be omitted. In principle, the argument 

is an elaboration of that used in Proposition 20 and can be summarized in a sentence: There 
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is a commutative diagram 

BV9[X] ---t E9(rX,X) ---t BV9-1 [EX] 

mIll 1 1 m,,_l , 

nn9- 1 E9X ---t en9- 1 E9x ---t n 9- 1E9x 

where E9(rX,X) -+- BV9-1 [EX] is a quasifibration with fiber BV9[X] and Eq(rX,X) is 

contractible, thus one may proceed by induction. Details are in Mayt. 

[Note: When q = 1, BVO[EX] = EX and mo is the identity map.] 

Notation: Given a pointed .6.-separated compactly generated space X, let nCXlECXl X = 

colimnqEqX. 

[Note: The reason for imposing the .6.-separation condition is that it ensures the 

validity of the repetition principle: nnCXlECXlEX ~ nCXlECXl X. Proof: (nCXlECXlEX)Sl ~ 
(colimnq E9EX)Sl ~ colim(nq E9EX)Sl ~ colimnq+!E9+1 X ~ nCXlECXl X.] 

The arrow nllEIJX _ n ll+ 1EIl+IX is the result of applying nil to the arrow of adjunction EIlX_ 

nEEIJ X. It is a closed embedding but it need not be a closed cofibration even if X is wellpointed (in which 

case, of course, nIJEIlX is wellpointed V q). 

EXAMPLE Suppose that X and Yare pointed finite CW complexes-then nOOEOO X and nooEooy 

are homotopy equivalent iff Ell X and EIJY are homotopy equivalent for some q > > 0 (Bruner-Cohen

McGibbont). 

Notation: Given a wellpointed .6.-separated compactly generated space X, put mCXl = 

colim m9 : BVCXl[X] -+- nCXlECXl X. 

[Note: BVCXl[X] is wellpointed (since V q, the arrow BV9[X] -+- BV9+1[X] is a closed 

cofibration (cf. p. 14-42» but it is problematic whether this is true of nCXlECXl X without 

additional assumptions on X.] 

PROPOSITION 33 Let (X, xo) be a wellpointed compactly generated space with 

{xo} c X closed. Assume: X is .6.-separated and path connected-then mCXl : BVCXl[X] -+

nCXlECXl X is a weak homotopy equivalence. 

SLN 271 (1972), 50-68. 

Quart. J. Math. 46 (1995), 11-20. 
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[In the commutative ladder 1 
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OEX ---+ 0 2 E2 X ---+ 

, the vertical arrows 

are weak homotopy equivalences and the spaces are T 1 , so the generality on p. 4-48 can 

be quoted.] 

A compactly generated space X is said to be ~-cofibered if the inclusion ~x -+ X X kX 
is a closed cofibration. 

[Note: It is automatic that V Xo EX, {xo} -+ X is a closed cofibration (d. p. 3-15).] 

FACT Let K be a pointed compact Hausdorffspace. Suppose that X is pointed and ~-cofibered

then the pointed exponential object X K is ~-cofibered . 

. Example: Let (X, xo) be a pointed compactly generated space. Assume: X is ~

cofibered-then EX is ~-cofibered (d. p. 3-16), as is OX. 

LEMMA Let (X, xo) be a pointed compactly generated space. Assume: X is ~

cofibered-then the arrow of adjunction X -+ OEX is a closed cofibration. 

Application: Let (X, xo) be a pointed compactly generated space. Assume: X is 

~-cofibered-then V q, the arrow OqEqX -+ Oq+lEq+I X is a closed cofibration. 

[N ote: It is a corollary that n=E= X is ~-cofibered (d. p. 14-4).] 

LEMMA Let (X, :llo) be a pointed compactly generated space. Assume: X is ~-cofibered-then 

for every pointed ~-cofibered compact Hausdorff space K '# *, the arrow X ..... (X#kK)K adjoint to the 

identity X#kK ..... X#kK is a closed cofibration. 

[Note: Specialize and take K = S1 to see that the arrow of adjunction X ..... n:EX is a closed 

cofibration.] 

{
(X,zo) 

FACT Let be pointed compactly generated spaces. Assume: X is ~-cofibered and Y 
(Y, YO) 

is ~-separated-then for every pointed ~-cofibered compact Hausdorff space K '# * I the arrow X ..... Y K 

~joint to a closed cofibration X#kK ..... Y is a closed cofibration. 

[Factor the arrow X -+ yK as the composite X ..... (X#kK)K -+ yK.] 

FACT Suppose that A ..... X is a closed cofibration, where X is ~-cofibered-then A is ~-cofibered 

(cf. §3, Proposition 11) and the arrow noo:Eoo A -+ noo:Eoo X is a closed cofibration. 
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[All the arrows in the pullback square 1 1 are closed cofibrations, so one 

can appeal to the lemma on p. 14-4.] 

PROPOSITION 34 Let (X, xo) be a pointed compactly generated space. Assume: X 
is Do-cofibered and has the pointed homotopy type of a pointed connected CW complex

then moo : BYoo[X] -+ gooEoo X is a pointed homotopy equivalence. 
Byl[X] --+ By2[X] --+ ... 

[In the commutative ladder 1 1 ' the horizontal arrows 

nEX --+ n 2E2 X --+ 

are closed cofibrations and the vertical arrows are pointed homotopy equivalences. Now 

cite Proposition 15 in §3.] 

HOMOTOPY COLIMIT THEOREM Let (X,xo) be a pointed connected CW com

plex or a pointed connected ANR-then hocolimpow X and nooEoo X have the same ho

motopy type. 

[One has only to recall that hocolimpow X and BYoo[X] have the same homotopy 

type (cf. p. 14-42).] 

[Note: For the validity of the condition on the diagonal, cf. p. 3-14 & p. 6-14.] 

EXAMPLE Connectedness is essential here. For example, the homotopy type of hocolim pow SO 

is represented by BMoo (cf. p. 14-38) but the homotopy type of oooEooSo is represented by OBIMool 

(cf. p. 14-61) (IMool = BMoo = II BS"). 
,,~o 

Given a cofunctor C : isor -+ CG, let C(m, n) = II n C(#("Y-1(j») (here "Y 
-y:m-+n lSiSn 

ranges over the morphisms m -+ n in r and C( m, 0) is a point indexed by the unique arrow 

m -+ O)-then with the obvious choice for the unit, [(isor)OP, CG] acquires the structure 

of a monoidal category by writing C 0 V(m) = II C(n) xs,. V(m, n). 
n~O 

LEMMA The functor -01' has a right adjoint HOM(V,-), where HOM(V,£)(n) = 
n hom(V(m,n),£(m»Sm(hom = kG", the internal hom functor in CG (cf. p. 1-33», 

m>O 

so-Nat(CoV,£) ~ Nat(C,HoM(V,£». 

An operad 0 in CG is a monoid in the monoidal category [(isor)OP, CG]. Examples: 

(1) Let On = * V nj (2) Let On = Sn V n. 
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The definition of an operad makes sense if CG is replaced by any symmetric monoidal category C 

which is complete and co complete. 

[Note: Agreeing to write OPERe for MON[(IIJor)OP ,0)' one can show that OPERe is complete 

and co complete and that the forgetful functor OPERe -+ [(iso r)OP , C] has a left adjoint, the free operad 

functor (Getzler-J ones t).] 

Equivalently, an operad 0 in CG consists of compactly generated spaces On equipped 

with a right action of Sn, a point 1 E 0 1 (the unit), and for each sequence iI,··· ,in of 

nonnegative integers, a continuous function A : On Xk (Oil Xk'" Xk OJ,,) -+ 0il+ ... +j" 
satisfying the following conditions. 

(OPERI) . Given (j E Sn, (jk E Sj" (k = 1, ... , n), and f EOn, gk EO;", 

one has A(f· (jjg}, ... ,gn) = A(fjgu-1(1),'" ,gu-1(n»' (j(jt, ... ,in) ((j(jl,'" ,in) the 

permutation in S;1+"+;" that permutes the n blocks of ik successive integers per (j, the 

order within each block staying fixed) and A(f j gl . (jl , . .. , gn . (j n) = A(f; gl , ... ,gn)' ((j1 II 
... II (j n) ((jl II ... II (j n the permutation in Sj1 + ... + jn that leaves the n blocks invariant 

and which restricts to (jk on the kth block). 

(OPER2) Given f EOn) gk E OJ,, (k = 1, ... ,n), hkl EO;", (I = 1, ... ,ile), 
one has A(f;A(gle;hkl» = A(A(f;gk);hlel)' 

(OPERa) Given f E On, one has A(f; 1, ... ,1) = f and given 9 E OJ, one has 

A(ljg) = g. 

Example: BV' is an operad in CG. Thus with On = BV(R(q), n), write (Rb ... ,Rn)' 
(j = (Ru(lh'" ,Ru(n» ((j E Sn), take for 1 E BV(R(q),I) the identity function, and let 

A : BV(R(q),n) Xk (BV(R(q),jI) Xle ... Xk BV(R(q),ik» -+ BV(R(q),jl + ... + in) be 

defined on elements via composition i1 . [0,1]11 II·· . II in . [0,1]11 -+ n . [0,1]11 -+ [0,1]. 

[Note: conR' is not an operad in CG.] 

EXAMPLE Let 0 be an operad in CG such that V n, On :I:: e. Definition: grdO is the op

erad in CG with grdnO = InergrdOnl (cf. p. 14-17). To specify the right action of Sn, note that 

there is a simplicial map siSn -+ nergrdSn , hence InergrdOnl X Sn -+ InergrdOnl x InergrdSnl ~ 

Inergrd(On x Sn)1 -+ InergrdOnl. Next, 01 = Inergrd01lo, so the choice for 1 is clear. Finally, A is 

defined by InergrdOnl Xk (InergrdOh I x,,··· x" InergrdOjn I) ~ Inergrd(On x" (Oh xk'" x" Ojn»l-+ 

Inergrd(Oh+ ... +jn)l. Example: Let On = Sn V n-then grdnO ~ InertranSnl (cf. p. 0-45 ff.), i.e., 

grdnO ~ XSn . 

t Operads, Homotopy Algebra, and Iterated Integrals for Double Loop Spaces, Preprint. 
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In terms of the A, a morphism 0 - P of operads in CG is a sequence of Sn-equivariant 
On Xk (0lt Xk'" Xk Oin) ---i' 

continuous functions On - Pn such that the diagrams 1 
Pn XI. (Pil Xk'" xk Pi,..) ---i' 

°il+"+in 
1 commute and 0 1 - PI sends 1 to 1. 

Pit+"+in 
Example: V q, the arrow BVq 

- BVq+1 is a morphism of operads in CG. 

EXAMPLE If 0 is an opera.d in CG, then sin 0 is an operad in SISET. Its geometric realization 

I sin 01 is an opera.d in CG and the arrow I sin 01 ---+ 0 is a morphism of opera.ds in CG. 

An operad 0 in CG is said to be reduced if 0 0 = *. 

PROPOSITION 35 Let 0 be a reduced operad in CG-then 0 extends to a creation 

operator r~P - CG. 

[It suffices to define 0 on the order preserving injections (cf. p. 13-56) or still, 

for each n, on the n + 1 elementary order preserving injections aj : n - n + 1, where 

{ ~ - ~ + 1 ((~ ~ 9) (0 < i :::; n), the requisite arrows On+1 - On thus being the assign-)-) »z -
ments f - A(f; (1 i, *, 1 n-i)).] 

Notation: CG.c is the full subcategory of CG. whose objects are the (X, xo) such 

that * - (X, xo) is a closed cofibration. 

[Note: The standard model category structure on CG. is that inherited from the 

standard model category structure on CG (cf. p. 12-3) and the cofibrant objects therein 

are the objects of CG.c '] 

Observation: For any creation operator C, C[?] is a functor CG.c - CG.c (cf. Propo

sition 27). 

PROPOSITION 36 Let 0 be a reduced operad in CG-then 0 determines a triple 

To = (To, m, e) in CG.c . 

[Take To = Or?] and for each X, define mx : 02[X] - O[X], ex : X - O[X] by the 

formulas mx[f,[gl,XI],'" ,[gn,xn]] = [A(j;gl, ... ,gn),XI,'" ,xn] (j E On,gk E 0ilc & 
XI. E Xilc (1 ~ k ~ n)), ex(x) = [l,x] (x EX).] 

[Note: A morphism 0 - P of reduced operads in CG leads to a morphism To - T1' 

of triples in CG.c '] 

Examples: (1) With On = * V n, ToX = SpooX; (2) With On = Sn V n, ToX = JX. 
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FACT Let X be a pointed compactly generated simplicial space satisfying the cofibration condition 

such that V n, X .. is in CG.c . Given a reduced operad 0 in CG, define a pointed compactly generated 

simplicial space O[X] by O[X] .. = O[X .. ]-then 10[X]1 ~ O[lXIl. 

[Work with the arrow [[I, Z1. ... ,Zk], t] - [I, [Zl' t], ... ,[Zk, t]], where f E Ok, Zj E X .. (1 $ j $ £:), 

t E ~".] 

--+ 

[Note: The diagrams Imxll 1 mlXI , 

10[Xll --+ O[lXI] 

I I 10[X]I 
~~ 

IXI ~ 1 commute. Consequently, if 

~Ixi O[lXll 

X is a simplicial To-algebra, then IXI is a To-algebra (by the composite O[lXI] - 10[X]I- IX!).] 

Let 0 be a reduced operad in CG-then an O-space is an object (X, xo) in CG.c and 

continuous functions Bn : On X" xn -+ X (n ~ 0) subject to the following assumptions. 

(O-SP I ) Given u E Sn, I E On, and x" E X (k = 1, ... ,n), one has Bn(/· 

u, XI, ... ,xn) = Bn(/, x tT-l(1),'" ,XtT-l(n»)' 
(0-SP2 ) Given I EOn, g" E OJ, (k = 1, ... ,n), X'" E X (I = 1, ... ,i,,), one 

has Bh+ ... +jn (A(/; gI, ... ,gn), Xu, ... ,X1jll'" ,Xnl, .. · ,Xnjn) = Bn(f, Bh (gl; Xu, .. · , 

xlh),'" ,Bjn (gn; XnI,'" ,Xnjn )). 

(0-SP3 ) Bo(*) = Xo and BI(I,x) = X V X EX. 

[Note: In practice, one sometimes encounters objects in CG. satisfying all the as

sumptions that define an O-space but, strictly speaking, are not O-spaces because they 

may not be in CG*c. Up to homotopy equivalence, this is not a problem. Thus let 

X be an O-space in CG. and consider .f (cf. p. 3-33). Define 8n : On x" .fn -+ .f 
b B

v (I v V) {Bn(/,r(XI)'''' ,r(xn)) if Xi ¢ [0,1] - {OJ (3 i) th .~. 
y n , Xl , ... ,Xn = v v 'f v [0 1] (V') - en A 1S an Xl ... Xn 1 Xi E , v , 

O-space in CG.c and the retraction r : .f -+ X is a morphism of O-spaces.] 

Examples: (1) IT On = * V n, then the O-spaces are the abelian cofibered monoids in 

CG; (2) IT On = Sn V n, then the O-spaces are the cofibered monoids in CG. 

Example: V X in CG.c , n 9x is a BV9-space. 

[Define Bn: BV(R(q),n) x" (n9X)n -+ n 9x by sending «RI, ... ,Rn),/I, ... ,In) to 

that element of n 9x which at s is li(t) if Ri(t) = s lies in the interior of Ri and is Xo 
otherwise. ] 

EXAMPLE Let S be the operad in CAT with S .. = tranS .. V n-then in suggestive terminology, 

a permutative category C is an S-category, thus its classifying space BC is a BS-space. 

[Note: BS .. = BtranS .. = Inel'tranS .. 1 = Ibar(*jS .. jS .. )1 =XS ... ] 

O-SP is the category whose objects are the O-spaces and whose morphisms X -+ Y 
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0,. Xi X" ---+ 

are the pointed continuous functions X -+ Y such that the diagrams 1 
X 

0,. Xi y,. 

1 commute. 

Y 
Example: O-SP = CG.c if 0 0 = *, 0 1 = {I}, 0,. = 0 (n > 1). 

EXAMPLE If X is an O-space, then 80 are OX and ex. Moreover, the inclusion OX - ex is 

a morphism of O-spaces, 86 is the CG fibration ex - X. 

PROPOSITION 31 Let 0 be a reduced operad in CG-then the categories O-SP 

and To-ALG are canonically isomorphic. 

[There is a one-to-one correspondence between the O-space structures on X and 

the To-algebra structures on X, encapsulated in the commutativity of the diagrams 
0,. Xi X,. ---+ 0,. [X] ---+ O[X] 

~ . l' for all n, i.e., the 6,. combine to define an arrow 6 : 
B .. ~ 

X 
O[X] -+ X satisfying TAl and TA2 (cf. p. 0-27 if.) and vice versa).] 

[Note: The endomorphism operad End X of X is defined by (End X),. = X X" (pointed 

exponential object in CG.), supplied with the evident operations. Taking adjoints, the 

To-algebra structures on X correspond bijectively to morphisms of operads 0 -+ End X 

in CG.] 

Example: V X, O[X] is a To-algebra, hence is an O-space. 

EXAMPLE The functors I:' : CG. - CG., Of : CG. - CG. both respect CG.c and (I:f, Of) 

is an adjoint pair, thus V X, there is an arrow of adjunction X - OfI:'X. As noted above, OfI:fX is a 

BV'-space or stiIl, is a TBv,-algebra. The composite BVf[X] - BVf[OfI:fX] - OfI:fX is mf • the arrow 

of May. It is a morphism of TBvf-algebras. On the other hand, V X, there is an arrow of adjunction 

I:fO'X - X, from which OfI:fOfX - OfX. Viewing the BVf-space Of X as a TBVf-algebra., its 

structural morphism BVf[OfX] _ Of X is the composite BVf[OfX]:J OfI:fOfX _ OfX. 

FACT Let X be a pointed compactly generated simplicial space satisfying the cofibration condition 

such that V n, X"" is in CG.c-then the arrow jOfXj_ OfjXj is a morphism of TBvf-algebras. 

[The structural morphism BVf[jOfXI] - 10f XI is the composite BVf[jOfXI] - IBVf[OfX] I -
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loqxl (cf. p. 14-48), thus one haS to check that the diagram 

Byq[loqxl] ------7~ Byq[oqlXI1 

1 1 
commutes.] 

FACT Let X be a pointed compactly generated simplicial space satisfying the cofibration condition 
IByq[X)1 ----t Byq[lXI] 

such that Y n, Xn is in CG"c-then the diagram Imql! ! mq commutes. 

Let 0 be a reduced operad in CG, F: CG.c ~ CG.c a right To-functor-then for 

any To-algebra X, bar(F; To; X) is a simplicial object in CG.c (cf. p. 0-,-46) and one 

writes B( F; OJ X) for its geometric realization (or just B( OJ 0; X) if F = To = O[?]). 

PROPOSITION 38 Let 0 be a reduced operad in CG such that {I} ~ 0 1 is a closed 

cofibration. Suppose that F : CG.c ~ CG.c is a right To-functor which preserves closed 

cofibrations-then V O-space X, bar(F; To; X) satisfies the cofibration condition, hence 

B(F; 0; X) is in CG.c • 

[On general grounds, O[?] preserves closed cofibrations (cf. p. 14-39). Moreover the 

assumption on the unit of 0 implies that fX : X ~ O[X] is a closed cofibration V X, so 

the conclusion follows from the definition of the Si and the fact that F preserves closed 

cofibrations.] 

EXAMPLE E is a right T Byl -functor and preserves closed cofibrations. If G is a cofibered monoid 

in CG, then G acquires the structure of a T Byl -algebra via the composite Byl [GJ -+ JG -+ G. Thus it 

is meaningful to form bar(E; T Byl ; G). Since {I} -+ BY(R(l), 1) is a closed cofibration, bar(Ej T Byl j G) 

satisfies the cofibration condition (cf. Proposition 38) and its geometric realization B(E; Byl j G) is the 

classifying space of G in the sense of May. It is true but not obvious that B(E; Byl ; G) and BG have the 

same weak homotopy type (Thomasont ). 

EXAMPLE Suppose that X is a path connected Byq-space--then X has the weak homotopy type 

of a q-fold loop space. In fact, Eq is a right TByq-functor, as is OqEq, so one can form B(EqjByqjX) 

and B(OqEq; Byq; X), where now X is viewed as a TByq-algebra. Consider the following diagram 

t Duke Math. J. 46 (1979), 217-252; see also Fiedorowicz, Amer. J. Math. 106 (1984), 301-350. 
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in the category of TByq-algebras: X +- B(BVqjBVqjX) --+ B(OqEqjBVqjX) --+ OqB(EqjBVqjX). 

Owing to the generalities on p. 0-46 ff., the arrow X +- B(BVq j BVq 
j X) is a homotopy equivalence 

(cf. p. 14-12). Next, according to May's approximation theorem, V n, mq : BVq[(BVq)",[X]] --+ 

OqEq(BVq)",[X] is a weak homotopy equivalence. Therefore, on account of Proposition 38, the ar

row B(BVqjBVqjX) --+ B(OqEqjBVqjX) is a weak homotopy equivalence (cf. p. 14-8). As for 

the arrow B(09EqjBVqjX) --+ OqB(EqjBVqjX), it too is a weak homotopy equivalence. Indeed, all 

data is path connected and bar(OqEqjTByq;X) Oqbar(Eq;TByq;X), thus I09bar(EqjTByq jX) --+ 

0 9 Ibar(Eq ; TByq ; X)I is a weak homotopy equivalence (cf. p. 14-11). 

[Note: The composite X --+ B(BVq j BVq 
j X) --+ B(OqEq; BVq 

j X) --+ oq B(Eq j BVq j X) is the adjoint 

of Eq X - B(Eq j BVq 
j X) but it is not a morphism of TBY9 -algebras and one cannot expect to always 

find a morphism X - oqy of TByq-algebras which is a weak homotopy equivalence. Take, e.g., q 1 

and let X be a path connected cofibered monoid in CG (thought of as a TByl-algebra). Claim: The only 

morphism X --+ OY of TBy1-algebras is the constant map X --+ j(yo). Proof: Inspect the commutative 

BV(R(l), 1) x k X ---+ BV(R(l),l) x k OY 

diagram 1 1 .] 

X OY 

EXAMPLE Let 0 be a reducedoperad in CG such that {I} --+ 0 1 is a closed cofibration. Assume: 

V n, 0", --+ * is an Sn-equivariant homotopy equivalence-then every O-space X has the homotopy type of 

an abelian cofibered monoid in CG. Indeed, X and B(O; 0; X) have the same homotopy type. Moreover, 

V n, the arrow o[on[x]] --+ spooon[x] is a homotopy equivalence (cf. Proposition 28), so the arrow 

B(O;O;X) --+ B(SpOO;O;X) is a homotopy equivalence (cf. Proposition 4 and Proposition 38). But 

B(SpOO;OjX) is an abelian cofibered monoid in CG. 

Let 0 be a reduced operad in CG-then 0 is said to be an Eoo operad if V n, On 

is a contractible compactly generated Hausdorff space, the action of Sn is free, and the 

inclusion {I} -+- 0 1 is a closed cofibration. 

Example: BVoo = coHm BVq is an Eoo operad, the Boardman-Vogt operad. 

[In view of Proposition 31, the only thing that has to be checked is the cofibration 

condition on the unit. However, by definition, BV(R(oo),l) = colim BV(R(q), 1) and 

BV(R(q), 1) -+- BV(R(q + 1),1) is a closed cofibration. In addition, the diagonal embed

ding BV(R(q), 1) -+- BV(R(q), 1) Xk BV(R(q), 1) is a closed cofibration (BV(R(q), 1) is a 

polyhedron), thus the diagonal embedding BV(R(oo), 1) -+- BV(R(oo), 1) Xk BV(R(oo), 1) 

is a closed cofibration (d. p. 14-4). Therefore the inclusion {I} -+- BV(R(oo),l) is a 

closed cofibration (d. p. 3-15).] 

EXAMPLE Let On 

operad PER. 

Sn V n-then grdO is an Eoo operad (cf. p. 14-46), the permutation 
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[Note: In the notation of p. 14-49, PER ~ BS.] 

Given two real inner product spaces {~ with { :: ~ ~ : ' each equipped with the 

finite topology, let I(U, V) be the set of linear isometries U ~ V. EndowI(U, V) with 

the structure of a compactly generated Hausdorff' space by relativising the compact open 

topology on C(U, V) and taking its "k-mcation". 

LEMMA Fix a real inner product space V with dim V = w-then V real inner 

product space U with dim U ~ w, I(U, V) is contractible. 

{ 
il i2 : U ~ U e U 

[Let {ud, {Vi} be orthonormal bases for U, V and let "'. V V £tl. V be the 
11,)2· ~ w 

inclusions onto the first, second summands. Choose a homotopy F through isometries 

between il and i2and choose a homotopy W through isometries between idv and tP: V ~ 

V h "I.() L h V V V b h . { h( V2j) = (vb 0) fix ~ , were 'f' Vj = V2j· et : ~ e e t e Isometry h( . ) _ (0 .), JO E 
V2J-l - , vJ 

{ 
W(2t) 0 I 

I(U, V), and define H : II(U, V) ~ I(U, V) by H(/, t) = h-1 0 (I e 10) 0 F(2t _ 1) 

~~/~ ~ ~ ~i;-then H(/, 0) = I, H(/, 1/2) = tP 0 1= h-1 
0 h 0 tP 0 I = h-1 

0 i1 0 I = 
h-1 o(fe/o)oi1 , and H(/, 1) = h-1 o(fe/o)oi2 = h-1 o(foe/o)oi2 , which is independent 

of I.] 

FACT Suppose that dimU < w and dim V = w-then X(U, V) is a CW complex, hence the 

dia.gonal embeddingI(U, V) - I(U, V) x~I(U, V) is a cloaed colibration (and, by the lemma, a homotopy 

equivalence). 

LEMMA Fix a real inner product space V with dim V = w-then the diagonal 

embedding I(V, V) ~ I(V, V) X k I(V, V) is a closed cofibration. 

[Write V = colim V"' where 'V n, dim Vn = n and Vn C Vn+1 C V. Consider the 

commutative diagram 

I(V", V) <t-t ------ I(Vn+h V) 

1 1 
Here, the horizontal arrows are CG fibrations and the vertical arrows are closed cofi

brations and homotopy equivalences. Since I(V, V) = limI(V", V), the assertion is a 

consequence of the generality infra.] 

Application: The inclusion {idv} ~ I(V, V) is a closed cofibration. 
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Xo +-- Xl +-- ... 

LEMMA Let 1 1 be It. commutative ladder of compactly generated spaces. 

Yo +-- Yl +--
Assume: V n, the horizontal a.rrows a.re CG fibrations and the vertical a.rrows a.re closed. cofibrations and 

homotopy equivalences-then the induced map lim Xn -+ lim Yn is a closed. cofibration and It. homotopy 

equivalence. 

Example: Let V be a real inner product space with dim V = w and write V" for the 
orthogonal direct sum of n copies of V-then the assignment n -+ £n = I(vn, V) defines 

. an Eoo opera.d. £, the linear isometries opera.d.. 

rrhe left action of 8" on V" by permutations induces a free right action of 8 n on £n, 

the unit 1 E £1 is the identity map V -+ V, and.A : £n Xk (£j1 xk'" Xk £j,,) -+ £j1+ ... +j" 
sends (/j gl, ... ,gn) to 1 0 (gl Ef) ••• Ef) gn).] 

EXAMPLE Take V = ROO-then oooEooSo is an C-space. Indeed, oooEooSo ~ colimOnSn = 

colim(S,,)Sn and V m,n, there is a smash product pairing (sm)Sm Xl: (sn)Sn -+ (sm#i:sn)Sm#i:Sn, 

where sm#l:sn = Sm+" (cf. p. 3-28).] 

[Note: Boa.rdman-Vogt t have given a systematic procedure for generating va.rious classes of examples 

of C-spaces.] 

LEMMA Let G be a finite group and let X be a right G-spa.ce. Assume: Each x EX 

has a neighborhood U with the property that U· gnU = 0 V 9 =F e-then the projection 

X -+ X/G is a covering projection. 

Application: Let G be a finite group and let X be a right G-spa.ce. Assume: The 

action of G is free and X is Hausdorff-then the projection X -+ X / G is a covering 

projection. 

[Note: Subject to these conditions on X, given any other right G-spa.ce Y, the product 

X x Y satisfies the hypotheses of the lemma, as does X x k Y, hence the projection X x Y -+ 

(X x Y)/G is a covering projection, as is X Xk Y -+ (X Xk Y)/G.] 

PROPOSITION 39 Let 0 -+ P be a morphism of Eoo operads-then V X, the 

induced map O[X] -+ P[X] is a weak homotopy equivalence. 

[Consider the commutative diagram 

On Xs" X" 40- 0" Xs" X: --+ On-l [X] 

1 1 1 
Pn XSn xn 40- P" XSn x: --+ Pn- 1 [X] 

',,- t SLN 347 (1973), 207-217; see also May, SLN 577 (1977), 9-24. 
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Arguing inductively, the arrow On-l[X] ---l- Pn-dX] is a weak homotopy equivalence. But 

'""", the same is also true of the other two vertical arrows (compare the long exact sequences 

in homotopy of the relevant covering projections). Therefore, since the horizontal arrows 

on the left are closed cofibrations, it follows that On[X] ---l- Pn[X] is a weak homotopy 

equivalence (cf. p. 4-51), thus O[X] ---l- P[X] is a weak homotopy equivalence (cf. p. 

4-48).] 

Example: Let {g;, be uce(X) operads-then their product 0' x 0" is an E(X) operad 

and V X, the arrows (0' x O")[X] ---l- {g:J~l induced by the projections 0' x 0" ---l- { ~' 
are weak homotopy equivalences. 

Example: Let 0 be anE(X) operad-then I sin 01 is an E(X) operad (cf. p. 14-47) and 

V X, the arrow I sin OI[X] ---l- O[X] is a weak homotopy equivalence. 

[Note: Viewed as a creation operator, 0 need not be universal (but IsinOI is).] 

FACT Let be creation operators, where 'r;f n, is a compactly generated Hausdorff space {
c {Cn 
V Vn 

and the action of Sn is free. Suppose given an arrow q, : C - V such that 'r;f n, q,n : Cn - Vn is a weak 

homotopy equivalence-then 'r;f X, q, induces a weak homotopy equivalence C[X] - V[X]. 

[Note: By the same token, if f : X - Y is a weak homotopy equivalence, then Cf ; C[X] - C[Y] 

is a weak homotopy equivalence provided that 'r;f n, Cn is a compactly generated Hausdorff space and the 

action of Sn is free.] 

PROPOSITION 40 Let 0 be an Eoo operad-then every O-space X is a homotopy 

associative, homotopy commutative H-space. 

[To define the product, fix h E O2 and consider fJ2(h, -I) : X2 ---l- X (up to homotopy, 

the product is independent of the choice of h E O2 ),] 

[Note: If X ---l- Y is a morphism of O-spaces, then X ---l- Y is a morphism of H-spaces.] 

EXAMPLE Let 0 = PER ~ BS and take h e E S2 C X S2-then with this choice for the 

product, every O-space is a homotopy commutative cofibered monoid in CG. 

Working in the compactly generated category, let X be a homotopy associative, ho

motopy commutative H-space--then a group completion of X is a morphism X -+ Yof 

H-spaces, where Y is homotopy associative and 1!'o(Y) is a group, such that 1!'o(X) ~ 1!'o(Y) 

and H ... (Xj k)[1!'O(X)-l] ~ H ... (Y; k) for every commutative ring k with unit. 

Example: Let G be a cofibered monoid in CG. Assume: G is homotopy commutative

then according to Proposition 16 and the group completion th~orem, the arrow G -+ nBG 

is a group completion. 
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EXAMPLE 'l8.ke X = Q (discrete topology), Y = Q (usual topology)-then the identity map 

X -+ Y is a group completion but it is not a homotopy equivalence. 

[Note: Suppose that X -+ Y is a group completion, where {: are pointed compactly generated 

CW spaces--then X -+ Y is a weak homotopy equivalence if '11"0 (X) is a group. Proof: One has 'll"o(X) ~ 

'll"o(X) ~ 'll"o(Y) and there are homotopy equivalences , where is the path -- {X -+ Xo X '11"0 (X) {xo 
Y -+ Yo X'll"o(Y) Yo 

component of t.he identity element, thus the assertion follows from Dror's Whitehead theorem.] 

EXAMPLE Given a permutative category C, let C+ be the simplicial object in CAT defined by 
,,+2 

ct = II C, where 
1 

{ 

(Xo ®Xl'X~ ®Xl ,X2 , ••• ,X,,) 

d.(XO,X~.Xl"" ,X,,)= (XO,X~,Xl'''' ,Xi®Xi+lo ... ,X,,) 

(XO,X~,Xl"" ,X,,-t> 

(i = 0) 

(0 < i < n) , 

(i = n) 

",(XO,X~,Xl •... ,X,,) = (XO,X~,Xl"" ,X"e,Xi+l,'" ,X,,)-then there is a functor C -+ sro.opC+ 

and Thomason t has shown that the arrow BC -+ B(gro.opC+) is a group completion. 

EXAMPLE Let X be a monoidal compactly generated simplicial space. Assume: X satisfies the 

cofibration condition and Xl is homotopy commutative-then the arrow Xl -+ nixi is a group completion 

........... (Quillen*). 

LEMMA Let X be a homotopy associative, homotopy commutative H space. Sup

pose that X -+ Y is a morphism of H spaces, where Y is homotopy associative and 1ro(Y) 
is a group, such that 1ro(X) ~ 1ro(Y) and H.(X;k)[7I'o(X)-l] ~ H.(Y;k) for all prime 

fields k-then the arrow X -+ Y is a group completion. 

SUB LEMMA Let {~ be pointed CW complexes, / : K -+ L a pointed continuous function. 

Assume: / is a pointed homology equivalence-then E/ : EK -+ EL is a pointed homotopy equivalence. 

[Given (X, zo) in CW., let X'o' Xi (i e I) be its set of path components, where:l:o e X'o' Chooee 

a vertex z, in each Xi-then up to pointed homotopy, EX = VEX, V E'II"o(X),] 
i 

LEMMA Let {: ' Z be 4-separated pointed CW spaces in CG.c , / : X -+ Y a pointed 

homology equivalence. Suppose that Z is a homotopy associative H space such that 'll"o(Z) is a group

then the precomp08ition arrow r : [y, Z] -+ [X, Z] is bijective. 

t Math. Proc. Cambridge Philo,. Soc. 85 (1979), 91-109. 

f Memoira Amer. Math. Soc. 529 (1994), 89-105. 
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[Take Z path connected and fix a retraction JZ - Z. Since [EY,EZ] ~ [EX,EZ], the arrow 

[y,OEZ] - [X,OEZ} is bijective, so the assertion is true for JZ (cf. Proposition 19). Now use the 
[y,JZ] ---. [X,JZ] 

commutative diagram 1 1 to see that the assertion is true for Z;] 

[Y, Z] ---. [X, Z] 
[Note: To define a retraction JZ - Z, make a choice for associating iterated products. Continuity 

is ensured if the homotopy unit is a strict unit, which can always be arranged (since Z V Z - Z x k Z is a 

closed cofibration (cf. p. 3-27».] 

FACT Let X, {Yt be .a.-separated pointed CW spaces in CG.c:. Assume: n'o(X) = Z~o and 
Y2 

{ X - Yt are group completions-then 3 a pointed homotopy equivalence Yt - Y2 • 

X-Y2 

MAY'S GROUP COMPLETION THEOREM Let (X,xo) be a wellpointed compactly 

generated space with {xo} C X closed. Assume: X is a-separated-then moo : BYOO[X] -t 

nooEoo X is a group completion. 

[Note: When specialized to a path connected X, one recovers Proposition 33.] 

Homological calculations of this sort have their origins in the work of Dyer-Lashof1'. 

Details are in Mayt. 

Example: X a-cofibered => nooEoo X a-cofibered (cf. p. 14-44). And: nooEoo X is a 

Byoo-space. The composite BYOO[X] -t ByOO[nOOEOO X] -t nooEoo X is moo, the arrow of 

May. It is a morphism of TBvoo-algebras. 

PROPOSITION 41 Let 0 be an Eoo operad-then there is a functor G : O-SP -t 

CG.c and a natural transformation id -t G such that for every O-space X, the arrow 

X -t GX is a group completion. 

[The product 0 x PER is an Eoo operad and X is an 0 x PER-space (through the 

projection 0 x PER -t 0). Consider the arrows X ~ B( 0 x PER; 0 x PER; X) -t 

B(PERj 0 x PER; X) in the category of ToxPER-algebras. The generalities on p. 0-46 

if. imply that the arrow X ~ B( 0 x PER; 0 x PER; X) is a homotopy equivalence (cf. 

p. 14-12) and Propositions 38 and 39 imply that the arrow B(O x PER; 0 x PER; X) -t 

B(PER; 0 x PER; X) is a weak homotopy equivalence (cf. p. 14-8). Since B(PER; 0 x 

PER; X) is a PER-space, it is a homotopy commutative cofibered monoid in CG (cf. 

tAmer. J. Math. 84 (1962), 35-88. 

t SLN 533 (1976), 39-59. 
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p. 14-54). Put GX = nBB(PERj 0 x PERjX) and let X -+ GX be the composite 

X -+ B(O x PERjO x PERjX) -+ B(PERjO x PERjX) -+ GX.] 

FACT Let 0 be an Eoo opera.d. Suppose that A - X is a closed cofibration, where A, X are 

a-separated O-spaces-then GA - GX is a closed cofibration. 

[The arrow B(PER; 0 X PER; A) - B(PER; 0 x PER; X) is a closed cofibration (cr. p. 14-5 & p. 

14-39).] 

PROPOSITION 42 Let 0 be an E<.X) operad such that V n, On is an Sn-CW complex-. 

then V .6.-cofibered X, O[Xl is .6.-cofibered. 

[By induction, V n, On[X] is .6.-cofibered (d. p. 3-16). Therefore O[X] = colimOn[X] 

is .6.-cofibered (cf. p. 14-4).] 

[Note: If 0 is an E<.X) operad, then I sinOI is an E<.X) operad such that V n, I sinOnl is 

an Sn-CW complex.] 

Given an E<.X) operad 0, put O<.X) = 0 x BV<.X)-then every O-space X is an o <.X) -

space. On the other hand, I sin X I is a I sin o I-space, hence is a I sin O<.X) I-space. The 

arrows IsinO<.X)l[lsinXIl-+ IsinBV<.X)l[lsinXI1, IsinBV<.X)I[lsinXI1-+ BV<.X)[lsinXIl are 

weak homotopy equivalences (cf. Proposition 39), thus the composite I sin O<.X) I [I sin X I] -+ 

n<.X)~<.X)1 sinXI is a group completion. 

[Note: The diagram 

I sinXI----+ B(I sin O<.X)li I sin O<.X) Ii I sinXI) 

1 1 

commutes. Here, the horizontal arrows are homotopy equivalences and the vertical arrows 

are weak homotopy equivalences.] 

PROPOSITION 43 Let 0 be an E<.X) operad. Suppose that X is an O-space-then 

the arrow B(I sin o <.X) Ii I sin O<.X) Ii I sinXI) -+ B(n<.X)~<.X)j I sin o <.X) I; I sinXI) is a morphism of 

I sin O<.X)I-spaces (cf. p. 14-48) and a group completion. 

[Consider the commutative diagram 

I sinXI <t-( -- B(I sin O<.X)lj I sin O<.X)I; I sin XI) ---+. B(n<.X)~<.X)j I sin o <.X) I; I sin XI) 

1 1 1 
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The arrow I sin XI +- B( I sin 0 00 I; I sin 0 00 I; I sin XI) is a homotopy equivalence, as is 

the arrow GlsinXI +- B(GlsinOool; I sin 0 00 1; I sin XI). But IsinXI -+ GlsinXI is a 
group completion, so B(lsinOOOlj IsinOOOlj IsinXI) -+ B(GI sin OOOlj IsinOooli I sin XI) 
is a group completion. Since oooEoo preserves closed cofibrations between .6.-cofibered 

objects (cf. p. 14-44), Proposition 42 implies that bar(OOOEOOjTlunOcoli IsinXI) satis

fies the cofibration condition (see the proof of Proposition 38). Analogous remarks ap

ply to bar(GOooEooi T,.haO .... ,; I sin XI) and bar(GI sinoooli T,.inO .... ,; I sinXI). Therefore 
the arrows B(OOOEOOi IsinOooli I sin XI) -+ B(GoooEooi IsinOooli I sinXI), B(GI sinOooli 

1 sin 0 00 1; I sin XI) -+ B( GoooEoo; 1 sin 0 00 1; I sin XI) induce isomorphisms in homology V k 
(cf. Proposition 10) and the assertion follows.] 

Maintaining the preceding assumptions, put 0'1 = 0 X BVf. 

LEMMA Let 0 be an Eoo operad. Suppose that X is a .6.-separated O-space

then the arrow B(OOOEOO;lsinOool;lsinXI) -+ B(OOOEOOjOOOjX) is a weak homotopy 

equivalence. 

[Since B(OOOEOO; 1 sinOoold sin XI) ~ colimB(OfEflj I sinO'll;! sin XI), B(OOOEOOj 

OOOjX) R:J colimB(OflEfljOfjX), where B(OflEfljlsinOfll;lsinXI) -+ B(Ofl+lEfl+1j 

IsinOf+1lj I sin XI), B(OflEfjOfjX) -+ B(Of+1Ef+1jOf+1 jX) are closed embeddings, it 

will be enough to show that V q, the arrow B(OfEfj IsinOfli I sin XI) -+ B(OflEfiOfjX) 

is a weak homotopy equivalence (cf. p. 4-48). However, bearing in mind Proposition 

38, V n, I sinOfl"U sin XI] -+ (Of)"[X] is a weak homotopy equivalence (cf. p. 14-54), 

hence V n, OfEfl sinOfl"[lsinXI] -+ Of Ef(Of)" [X] is a weak homotopy equivalence (d. 
p. 14-34 fr.), so the generality on p. 14-8 is applicable.] 

[Note: While B(OOOEOOj I sin 0 00 1; I sin XI) is in CG.c , this is not a priori the case of 

B(OOOEOOj 0 00
; X) (both spaces are, of course, .6.-separated). Still, B(OOOEOOj 0 00

; X) is 

an Ooo-space in CG. (see the remarks on p. 14-48).] 

PROPOSITION 44 Let 0 be an Eoo operad. Suppose that X is a .6.-separated 0-
space-then the arrow B(OOOj OOOjX) -+ B(OOOEOOj OOOjX) is a morphism of Ooo-spaces 

(d. p. 14-48) and a group completion. 

[In the commutative diagram 

B(I sinOOOlj I sin 0 00 1; I sinXI) ---+ B(OOOEOOj IsinOooli I sin XI) 

1 1 
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the vertical arrows are weak homotopy equivalences and, by Proposition 43, the top hori

zontal arrow is a group completion.] 

[Note: When X is path connected, the arrow B(O(X)jO(X)jX) -. B(O(X)E(X)jO(X)jX) 

is a weak homotopy equivalence (d. Proposition 33).] 

A spectrum X is a sequence of pointed ~-separated compactly generated spaces X9 

and pointed homeomorphisms X9 ~ nX9+1. SPEC is the category whose objects are the 
spectra and whose morphisms f: X -+ Y are sequences of pointed continuous functions 

X I" y; 9 --+ 9 
19 : Xq -. Y9 such that the diagram 1 1 commutes V q. 

OX9+1 --+OY9+1 
fl/"H 

[Note: The indexing begins at 0.] 
There is a functor U(X) : SPEC -. .6.-CG. that sends X = {Xq} to Xo. It has a left 

adjoint Q(X) : .6.-CG. -. SPEC defined by (Q(X) X)9 = 0(X)E(X)E9X. 

[Note: The repetition principle implies that 00(X)E(X)E9+1 X ~ OO(X)E(X)EEqX ~ 
0(X)E(X)E9X.] 

An infinite loop space is a pointed ~-separated compactly generated space in the 

image of U(X). Example: V X, O(X) E(X) X is an infinite loop space. Every infinite loop space 

is a BV(X)-space (in the extended sense of the word (cf. p. 14-48)). 

EXAMPLE If X = {Xq} is a spectrum such that Xo is wellpointed, then IrI q, there is an arrow 

oqEqnqxq - oqxq, from which an a.rrow nooEooXo _ Xo. Viewing the BVoo-spa.ce Xo as a TBvoo

algebra, its structural morphism BVoo[Xo] - Xo is the composite BVoo[Xo] ~ oooEoo Xo - Xo. 

A spectrum X is said to be connective if Xl is path connected and X9 is (q - 1)
connected (q > 1). 

Example: Given an E(X) operad 0 and a ~-separated O-space X, the assignment 

q -. B9X = colimOn B(En+9 j on+9j X) specifies a connective spectrum BX. 

[To check that BqX is ~-separated, it need only be shown that the arrow on B(En+9j 
on+9j X) -. on+1 B(En+1+9j on+1+9j X) is a closed embedding (cf. p. 1-36). To see this, 

note that EB(En+9j on+9 j X) ~ B(En+1+9j on+9j X) (cf. p. 14-11) and B(En+1+q
j on+9; 

X) -. B(En+1+9j on+1+9 j X) is a closed embedding (in fact, a closed cofibration). There

fore B(En+9j on+9j X) -. OB(En+1+9j on+1+9j X) is a closed embedding. And: on pre

serves closed embeddings.] 

[Note: That BX is connective is implied by the generalities on p. 14-11.] 

Remark: The arrow colimB(09E9j09jX) -. colim09B(E9j09jX) is a morphism of 

',- ~-separated O(X)-spaces (cr. p. 14-49 ff.) and a weak homotopy equivalence. 
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[In fact, bar(OfEfj To,; X) = Ofbar(Efj To,; X), so IOfbar(Efj To,; X)I -+ 

Oflbar(Efj To,; X)I is a. weak homotopy equivalence (cf. p. 14-11).] 

PROPOSITION 46 Let 0 be an Eoo opera.d. Suppose that X is a ~-separated 0-

space-then the composite X -+ B( 0 00
; 0 00

; X) -+ B(OooEooj 0 00
; X) -+ BoX is a group 

completion. 

[Taking into account Proposition 44, this follows from what has been said above.] 

[Note: It is not claimed tha.t BoX is wellpointed.] 

Therefore every ~-separated O-space X group completes to an infinite loop space. 

[Note: Consequently, if X is path connected, then X has the weak homotopy type of 

an infinite loop space.] 

Remark: Proposition 45 is true for any A-separated Ooo-space (same argument). 

[Note: Observe that every BVoo-space is an Ooo-space.] 

EXAMPLE Specializing to 0 = PER, one sees that the classifying space BC of a permutative 

category C group completes to an infinite loop space. 

PROPOSITION 48 Let 0 be an Eoo opera.d. Suppose that X = {Xf} is a spectrum 

such that Xo is wellpointed-then there is a morphism b : BXo -+ X in SPEC such that 
B(Ooo; Ooo;Xo) ---+- B(OooEooj Ooo;Xo) 

the diagram 1 1 commutes. 

Xo· 60 BoXo 
[Proceeding formally, use the arrow B(En+fj on+fj on+fXn+f) -+ X n+f to define 

bf : BfXO -+ X f ·] 

[Note: It is a corollary that the composite Xo -+ BoXo !2. Xo is the identity. Another 

corollary is that bo is a weak homotopy equivalence provided that Xo is path connected.] 

PROPOSITION 41 Let 0 be an Eoo opera.d-then V A-cofibered X in CG., there is 

a morphism f: BOoo[X] -+ Qoo X of spectra such that V q, If : BfOoo[X] -+ oooEooEfX 

is a pointed homotopy equivalence. 

[The arrow B(En+fj on+fj on+f[X]) -+ En+fX is a pointed homotopy equivalence 

(d. p. 0-46 it.). Apply on and let n -+ 00. In this connection, the assumption that X 

is A-cofibered guarantees that onEn+fX -+ on+1En+l+fX is a closed cofibration (d. p. 

14-44), so Proposition 15 in §3 is applicable.] 

[Note: Working through the definitions, one finds that f is equal to the composite 

BOoo[X] -+ BBVoo[X] -+ BoooEoo X ~ Qoo X.] 



14-61 

EXAMPLE Take 0 = PER ~ BS and let X = SO-then O[SO] ~ I Moo I = Il BSn and 
n>O 

the projection OOO[SO] _ O[SO] is a weak homotopy equivalence. On the other hand, th; composite 

OOO[SO] _ BoOOO[SO] _ 0 00 1:;00 SO is a group completion (cf. Propositions 45 and 47), as is the arrow 

IMool- OBIMool. Therefore 0 00 1:;00 SO and OBIMool have the same pointed homotopy type (cf. p. 14-

56). The homotopy groups'll": of ooo1:;ooSo are the stable homotopy groups of spheres. Since OBIMool ~ 

Z X BSt" it follows that '11": ~ '11". (BSt,). Example: 'll"i ~ '11"1 (BSt,) = Soo/Aoo ~ Z/2Z. There 

is also a connection with algebraic K-theory. Thus Soo C GL(Z), Aoo C E(Z), so there is an arrow 

BSt, - BGL(Z)+. The associated homomorphism'll": - Kn(Z) (= 'll"n(BGL(Z)+» can be bijective 

(e.g., if n = 1) but in general is neither injective nor surjective (see Mitchellt for a discussion and more 

information ). 

[Note: Let C = Moo = isor-then another model for 0 00 1:;00 SO is B(groAopC+) (cf. p. 14-55).] 

EXAMPLE Given a discrete group G, form Soo J G (cf. p. 14-19)-then a model for the plus 

construction on BSoo J G is the path component of 0 001:;00 BG+ containing the constant loop. E.g.: When 

G = .,000 1:;00 BG+ is ooo1:;ooSo and when G Z/2Z, 0 00 1:;00 BG+ is 0 00 1:;OOpoo(R)+ . 

n is the category whose objects are the finite sets 0 = {O, 1, ... ,n} (n ~ 0) with base 

point 0 and whose morphisms are the base point preserving maps, : m -+ 0 such that 

#C,-1(j)) < 1 (1 < j < n). So: r in is a subcategory of nand n is a subcategory of r. 
[Note: Let (X, xo) be a wellpointed compactly generated space with {xo} C X 

closed-then the formulas that define pow X as a functor rin -+ CG. serve to define 

pow X as a functor n -+ CG •. ] 

A category of operators is a compactly generated category C such that Ob C -+ 

Mor C is a closed cofibration, where ObC = Obr (discrete topology), subject to the 

requirement that C contains n and admits an augmentation f : C -+ r which restricts to 

the inclusion n -+ r. One writes C(m, 0) for the set of morphisms m -+ o. Example: r 
is a category of operators, as is n. 

Every category of operators is a CG-category. 

[N ote: A morphism of categories of operators is a continuous functor F : C -+ D such 

/r~ 
that Fo = 0 for all 0 and C F • D commutes.] 

~n/ 

In: Algebraic Topology and its Applications, G. Carlsson et al. (ed.), Springer Verlag (1994), 163-240 

(cf. 182-183). 
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FACT Let C be a categor;y of operators, Suppose that X is a right C-object and Y is a left 

O-object-then bar(Xj Cj Y) satisfies the cofibration condition. 

A cotibered operad in CG is a reduced operad 0 in CG for which the inclusion 

{I} -+ 0 1 is a closed cotibration. Example: Every Eoo operad is a cofibered operad in 

CG. 

Notation: Given morphisms "'( : m -+ n,6 : n -+ pin r, let O'i( 0, "'() be the permutation 

on #«6o"'()-I(k» letters which converts the natural ordering of (oo"'()-I(k) to the ordering 
associated with U "'(-I(j) (all elements of "'(-I(j) precede all elements of ",(-I(j') if j < j' 

6(j)=i 

and each "'(-I(j) has its natural ordering). 

PROPOSITION 4:8 Let 0 be a cofibered operad in CO-then 0 determines a cate

gory of operators O. 
[Put O(m, n) = II II 0(#b-1(j») (d. p. 14-45). Here composition O(m, n) 

.,.:m-A ISjSn 

X O(n,p) -+ O(m,p) is the rule (O;gl,'" ,gp) 0 b; /I, ... ,/A) = (60 "'(; hit ... ,hp), hi 

being A(gi;/j(O(j) = k»· O'i(O,"'(), and (idn;I, ... ,1) is the identity element in O(n,n). 

The augmentation E : 0 -+ r is obvious, viz. E("'(; /I, ... ,In) = "'(. To define the inclusion 
-. ( {/j = I (j E im"'() II-+O,send"'(:m-+nto ",(;/I, .. ·,/A),where f ('d' ).] 

j = * J ~ Im"'( 

Examples: (1) Let 0. = * V n-then 0 = r; (2) Let 0 0 = *, 0 1 = {I}, On = 0 
(n> I)-then 0 = II. 

A II-space is a functor X : II -+ CG. and a II-map is a natural transformation 

I: X -+ Y. 

Given n > 1, there are projections 7ri : n -+ 1 (i = 1, ... ,n), where 7ri(j) = 
{~ ~ ~ ':F ~~. A II-space X is said to be special if Xo = * and V n ~ 1, the arrow 

Xn -+ Xl Xi'" Xi Xl determined by the 7ri is a weak homotopy equivalence. 

Given an injection "'( : m -+ n, let S.,. be the subgroup of Sn consisting of those 0' such 
that O'(im"'() = im",(. A II-space X is said to be proper if Xo = * and V"'( : m -+ n in rin, 
X"'( : Xm -+ Xn is a closed S.,.-cofibration (d. infra). In particular: * -+ Xn is a closed 

Sn-cofibration, so V n, Xn is inCG.c • 

[Note: Associated with each 0' E S.,. is a permutation 'iT E Sm such that 0' 0"'( = "'( 0 'iT 
and the assignment 0' -+ 'iT is a homomorphism S.,. -+ Sm. Thus Xm and Xn are left 

".....,., S.,.-spaces and X",( : Xm -+ X. is equivariant.] 

Example: V X in CG.c , pow X is a proper special II-space. 
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Let G he • finite group. Let A and X he lett G-sp&ces--then an equiva.riant continuous function 

i : A _ X is said to he • G-cofibration if it has the following property: Given any left G-space Y and 

{
F:X-Y 

any pair (F, h) of equiva.riant continuous functions .. such that F 0 i = h 0 io, there is an 
h:/A-Y 

equiva.riant continuoUIJ function H: IX - Y such that F = H 0 io and H 0 Ii = h. 

[~ote: Every G-c::ofibration is an embedding and the induced map G\A - G\X is a cofibration.] 

The theory set forth in §3 has an equivariant analog (Boa.rdman-Vogtt). For example, Proposition 

I in §S becomes: Let A he an inva.riant subspace of X -then the inclusion A - X is a G-cofibration iff 

ioX U I A is an equiva.riant retract of IX. The notion of an equiva.riant StrjiSm structure on (X, A) is clear 

and there is. G-c::ofibration characterization theorem. 

[Note: A G-cofibration is thus a cofibration.] 

EXAMPLE Suppose that (X,zo) is in CG.c-then the inclusion X: -- XD is a closed SD

cofibration. 

LEMMA Let A he an invariant subspace of the left G-space X. Suppose that A = A1 U .•• u A", 

where each Ai is closed in X. and suppose that G operates on {I, ... ,n} in such a way that g. Ai:;; Ag.i. 

Put As:;; n Ai (S C {I, ... ,n}}-then A -- X is .• closed G-c::ofibration if" S i: 0, As -- X is a closed 
IES 

Gs-cofibration, Gs C G the stabilizer of S. 

[Note: Take for G the trivial group to recover Proposition 8 in §3 (with 2 replaced by n).] 

EXAMPLE Let X be a proper D-space. Put .XD-1 :;; .OX,,-1 u·· ,U.D-IXD-lt where.i :;; XtTi 

and tTi(j) =' , -' (0 ~ i < n)-then the inclusion .X,,_l -- X" is a closed S,,-cofibration. {
. C<') 
j+1 (j>i) 

Notation: ps n-sp is the category of proper special n-spa.ces. 

PROPOSITION 49 Let L be the functor from psn-sp to CG ... c that sends X to 

Xl and let R be the functor from CG IIIC to ps n-sp that sends X to pow X-then (L, R) 

is an adjoint pair. 

[Note: The arrow of adjunction LRX ....... X is the identity and the arrow of adjunction 

X ....... RLX has for its components the map induced by the 1ri.} 

Let C be a category of operators-then a C-spa.ce is a continuous functor X : C ....... 

CG ... and a C-map is a natural transformation f : X ....... Y. 

t SLN 341 (1973), 231-239. 
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Continuity in this context means that Vm,n, the arrow C(m,n) XI: Xm -+ XII. is continuous. To 

clarify the matter, let E = x:m (exponential object in CG), E. = x:m (pointed exponential object 

C(m,n) ---.--+ E. 

in CG. )-then there is a commutative triangle ~ 1 , where E. -+ E is a CG-embedding. 
E 

Thus the arrow C(m, n) -+ E. is continuous iff the arrow C(m, n) -+ E is continuous or still, iff the arrow 

C(m, n) XI: Xm -+ Xn is continuous. 

A C-space is said to be special or proper if its restriction to D is special or proper. 

Example: A r-space is an O-space, where On = * 'V n. Every abelian monoid G in 

CG gives rise to a special r-space (c!. p. 13-56), the r-nerve of G : r-nerG (which is 

proper if Gis cofibered). 

LEMMA Let 0 be a cofibered operad in CG-then an O-space with underlying 

space pow X determines and is determined by an O-space structure on X. 

[To specify an O-space structure on X is to specify a morphism 0 -+ End X of 

operads in CG (cf. p. 14--49), from which an O-space 0 -+ CG. with underlying space 

pow X. Conversely, let "In : n -+ 1 be the arrow j -+ 1 (1 ::; j ::; n) and view On as the 

component of "In in O(n, 1). Per an O-space with underlying space pow X, restriction of 

O(n, 1) -+ Xxn to On defines a morphism 0 -+ End X of operads in CG.] 

Let 0 be a cofibered operad in CG-then by restriction, 0(-, n) defines a functor 

DOP -+ CG 'V n ~ O. Given a D-space X, put On[X] = O(-,n) ®n X (so Oo[X] = Xo) 
and call O[X] the D-space which takes n to On[X]. Composition in 0 leads to maps 

Oem, n) x Om[XJ -+ On[XJ or still, to an arrow mx : 02[X] -+ O[X], while the identities 

in 0 induce an arrow fX : X -+ O[X]. Both arrows are natural in X and with To = O[?J, 

it is seen that To = (To' m, f) is a triple in [D, CG.]. 

Notation: Let t'(m, n) be the set of base point preserving maps f : m -+ n such 

that f-I(O) = {O} and i < i' => f(i) ::; f(i'). Put SE = SEl X ••• X SEn C Sm, where 

fj = #( f-l(j». 

[Note: Let (1 E Sm-then f 0 (1 E £(m, n) iff (1 ESE'] 

PROPOSITION 50 Suppose that X is a proper D-space. Denote by Om,n[X] the 

image of 11 O(m/,n) Xk Xml in On[X]-then Om,n[X] is a closed subspace of On[X] 
m'~m 
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~ and On[X] = colimOm,n[X]. In addition, the commutative diagram 

II IT OEj xs. sXm- 1 ~ Om-1,n[X] 
EE£(m,o) l~j~n 1 1 

II IT OEj Xs. Xm .0m,n[X] 
EE£(m,o) l~j~n 

is a pushout square and the arrow Om-l,n[X] -+ Om,n[X] is a closed cofibration. 

[Note: For the definition of "s", see p. 14--63.] 

Remark: Xn a-separated "'In + On a-separated "'In=> On[X] a-separated V n (d. 
p. 14-39). 

FACT If X is a proper D-space, then O[X] is a proper D-space and €x : X -+ O[X] is a levelwise 

closed cofibration. 

PROPOSITION 61 Fix an X in CG*C-then LO[RX] (= 01 [pow Xl (cf. Proposi

tion 49» ~ O[X] and O[RX] ~ RO[X]. 

LEMMA Let 0 be a cofibered operad in CG. Assume: V n, On is a compactly 

generated Hausdorff space and the action of Sn is free. Suppose given a II-map I : X -+ Y 

such that V n, In : Xn -+ Yn is a weak homotopy equivalence-then "'In, Onl : On[X] -+ 

OnlY] is a weak homotopy equivalence provided that X and Y are proper. 

[This is a variant on the argument used in the proof of Proposition 39.1 

PROPOSITION 62 Let 0 be a cofibered operad in CG. Assume: V n, On is a 

compactly generated Hausdorff space and the action of Sn is free. Suppose that X is a 

proper special U-space-then O[X] is a proper special II-space. 

[O[X] is necessarily proper (d. supra). To check that O[X] is special, consider the 

On [X] -. . On[RLX] 
commutative diagram' 1 1, bearing in mind the lemma and the 

(01 [x])n -. (01 [RLx])n 
fact that the arrow of adjunction X -+ RLX is a levelwise weak homotopy equivalence 

(Proposition 51 supplies an identification On[RLX] ~ (01 [RLx])n).] 

Application: Let 0 be an Eoo operad-then the triple To = (To,m,f) in [II,CG.] 

restricts to a triple in ps II-SP and its associated category of algebras is canonically iso

morphic to the category ps O-SP of proper special O-spaces (d. Proposition 37). 
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~, Suppose that X is a simplicial D-space-then the realization IX I of X is the D-space 

defined by IXI(n) = I[m] -. Xm(n)l. 
Example: H 0 is an Eoo operad and if X is a proper special a-space, then the 

realization B( 0; OJ X) of bar(TO'j To; X) is a proper special a-space. 

LEMMA Suppose that F : CG.c -. V is a right To-functor-then FoL :ps D-SP-. 

V is a right To-functor. 

[The relevant natural transformation F 0 L 0 TO' -. F 0 L is the composite FLO[X] -. 

FLO[RLX] = FLRO[LX] = FO[LX] PLX I FLX.] 

Let 0 be an Eoo operad, F: CG.c -. CG..: a right To-functor-then for any TO'

algebra X, bar(FoL;TO'j X) is a simplicial object in CG..: and one writes B(FoL; OjX) 
for its geometric realization. 

[Note: It is clear that there is a version of Proposition 38 applicable to this situation.] 

PROPOSITION 53 Let 0 be an Eoo operad-then there is a functor U from ps O-SP 

to ps O-SP and a functor V from ps O-SP to O-SP plus a-maps X +- U X -. RV X 

natural in X such that X +- U X is a levelwise homotopy equivalence and U X -. RV X is 

a lefelwise weak homotopy equivalence. 

[Put UX = B(Oj OjX) and VX = B(TooLj OjX). So, in obvious notation, RVX = 
B( R 0 To 0 L; OJ X) and the arrow U X -. RV X is defined in terms of the arrows On[X] -. 
(O[Xl])n, hence is a levelwise weak homotopy equivalence (see the proof of Proposition 

52).] 
[Note: Suppose that X is an O-space-then B( OJ OJ RX) ~ RB( OJ 0; X) (::;. LB( OJ 

OjRX) ~ B(O;OjX)) and VRX ~ B(OjOjX) (d. Proposition 51).] 

Remarks: (1) X a-separated::;. UX, V X a-separatedj (2) X -. UX is not an a-map 

(but it is aD-map). 

FACT Let 0 be an Eoo operad, E : a - r the augmentation-then there are functors E· 

p. r-sp - p. O-SP, E* : p.O-SP - p. r-sp respecting the a-separation condition and an a-ma.p 

UX - E*E*X natural in X which is a levelwise wea.lc homotopy equivalence. 

Let 0 be an Eoo operad-then there is a functor B from the category of a-separated 

O-spaces to the category of connective spectra (d. p. 14-59) and this functor can be 

extended to the category of a-separated proper special a-spaces by writing BqX = 
colim on B(E,,+q Lj 0"+' j X). To see that this prescription really is an extension, consider 
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any .a-separated O-space X: B(En+IlLj on+llj RX) ~ B(En+ll j on+lljX) (cf. Proposition 

51) => BRX ~ BX. 

PROPOSITION 54 Let 0 be an Eoo operad. Suppose that X is a .a-separated proper 

special O-space-then the composite B(Tooo 0 Lj 000
; X) --+ B({looEoo Lj Oooj X) --+ BoX 

is a group completion. 

[Rework the discussion leading up to Proposition 45.] 

Let 0 be a cofibered operad in CG-then an infinite loop space machine on 0 consists 

of a functor B from the category of .a-separated proper special O-spaces to the category of 

connective spectra, a functor K from the category of .a-separated proper special O-spaces 

to the category of homotopy associative, homotopy commutative H spaces, a natural trans

formation L --+ K such that V X, the arrow LX --+ K X is a weak homotopy equivalence, 

and a natural transformation K --+ Bo such that V X, K X --+ BoX is a group completion. 

PROPOSITION 55 Let 0 be an Eoo operad-then there exists an infinite loop space 

machine on 0, the May machine. 

[Take B as above and put KX = B(Tooo 0 Lj 000
; X). The composite X --+ 

B( 000
; 000

; X) --+ RB(Tooo 0 Lj Oooj X) is a levelwise weak homotopy equivalence, hence 

LX --+ K X is a weak homotopy equivalence. On the other hand, thanks to Proposition 

54, the composite KX --+ B({looEooL;OoojX) --+ BoX is a group completion.] 

Let 0 be an Eoo operad-then, using the augmentation e : 0 --+ r, a .a-separated 

proper special r -space can be regarded as a .a-separated proper special O-space. Therefore 

an infinite loop space machine on 0 defines an infinite loop space machine on r. However, 

there is another ostensibly very different method for generating connective spectra from 

.a-separated proper special r -spaces which is completely internal and makes no reference 

to operads. The question then arises: Are the spectra thereby produced in some sense the 

"same"? As we shall see, the answer is "yes" (cf. Proposition 62), a corollary being that 

infinite loop machines associated with distinct Eoo operads 0 and P attach the "same" 

spectra to a .a-separated proper special r-space. 

LEMMA 11 OP is isomorphic to the category whose objects are the D+ (j < *,0::; 

j ::; n) and whose morphisms are the order preserving maps a : m+ --+ D+ such that 

a(O) = 0 and a(*) = *. 

The composite [n] --+ D+ --+ D+/O ,.., * = D defines a functor 5[1] : A OP --+ r. 
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[Note: To justify the notation, observe that the pointed simplicial set 11 op -+ r c 
SET. thus displayed is in fact a model for the simplicial circle (cf. p. 13-29).] 

EXAMPLE Suppose that CIt : [n] -+ [m] is a morphism in A. Put "'{ = S[I]CIt (so "'{ : m -+ n 

is a morphism in r)-then "'{ is given by "'{-1(j) = {i : CIt(j - 1) < i :5 CIt(i)} (1 :5 i :5 n), "'{-1(0) = 
n 

m - U "'{-1(j). Examples: (1) The tTl : [n + 1] -+ [n] of p. 0-16 are sent by S[I] to the tTi. : n -+ n + 1 
;=1 

of p. 14-47 (n ~ 0,0 :5 i :5 n); (2) The 1I'i. : [1] -+ [n] of p. 14-20 are sent by S[I] to the 1I'i. : n -+ 1 of p. 

14-62 (n ~ 1,1 :5 i :5 n). 

Notation: Ca.ll pow X the functor rOP -+ CG. corresponding to a cofibrant X in 

CG. (standard model category structure). 

EXAMPLE Let Y : r -+ CG be a functor-then V X, one can form bar(pow X; r; Y) and 

denoting by B(X; rj Y) its geometric realization, there is a canonical arrow B(X; rj Y) -+ pow X ®r Y 

(d. p. 14-16). Example: V n, (PY)n ~ B(n;rjY), yen) ~ pown ®r Y and the arrow of evalua.tion 

(PY)n -+ Yen) is a homotopy equivalence. 

EXAMPLE Let ( : rgP -+ r be the functor which is the identity on objects and sends "'{ : m -+ n 

to ("'{ : n -+ m, where ("'{(i) = "'{-1(j) if "'{-l(i) :F 0, ("'{(i) = 0 if ",{-l(i) = 0-then for any X in CG.c:, 

pow X 0 (op = pow X. The assignment n -+ hocolimpown defines a functor "'{OO : r -+ CG. And: 

hocolim pow X ~ pow X ®r "'{oo • 

[The left Kan extension of B(-\rin) along (is "'{oo I hence hocolimpow X ~ B(-\rin)®r. pow X ~ 
. In 

pow X ®r~P B(-\rin) ~ pow X 0 (op ®r~P B(-\rin) ~ pow X ®r "'{oo.] 
In In 

[Note: Let X be a pointed connected CW complex or a pointed connected ANR-then the homotopy 

colimit theorem says that hocolim pow X and noo Eoo X have the same homotopy type, thus by the above, 

pow X ®r "'{oo and nooEoo X have the same homotopy type.] 

LEMMA Relative to S[l]OP : 11-+ rOP
, lanA? ~ powS l . 

Let X : r -+ CG be a functor-then the realization IX Ir of X is by definition 

IX 0 S[I]1, the geometric realization of X 0 S[I]. And: IX 0 S[I]1 = X 0 S[I] ®A A? ~ 

X ®rop lanA? ~ X ®rop powS l ~ powS l ®r X. 

Example: Let G be an abelian cofibered monoid in CG-then (r -ner G) 0 S[I] -

ner G => Ir-ner Glr = BG. 

Given an abelian cofibered monoid Gin CG, let SpOO(?; G) be the functor CG.c: -+ CG.c: that sends 

X to pow X ®r r-nerG-then SPoo(X;G) is an abelian cofibered monoid in CG, the infinite symmetric 
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product on (X, ioIlo) with coefficients in G. Example: Take G = Z~o to see that SPOO X ~ f' xn X" 
Spoon ~ Spoo(Xj Z~o) (the choice G = Z leads to the free abelian compactly generated group on 

(X,ioIlo)), 

LEMMA V X, Y,SPoo(X#"YjG) ~ Spoo(XjSpoo(YjG» (isomorphism of abelian monoids in 

CG). 

EXAMPLE Let G bean abeliancofibered monoid in CG-then SPoo(SOjG) ~ G, Spoo(SljG) ~ 

BG, and in general, spoo(sn+l j G) ~ B(n+1)G, where B(n+I)G = B(B(n)G). 

[Representing sn+1 as the smash product sn#IcSI, the lemma implies that spoo(sn+l jG) ~ 

Let X be a proper special r-space-then X 0 S[I] satisfies the cofibration condition. 

Moreover, if X 0 S[I] is monoidal, then Xl is a homotopy associative, homotopy commu

tative H space and the arrow Xl -+ 0IXlr is a group completion (cf. p. 14-55). 

[Note: sinX is an object in rSISET. (d. p. 13-56) and I sinXI is a proper special r

space. The simplicial space I sinXI 0 S[l] is monoidal and there is a commutative diagram 
I sin Xl I -+ 011 sinXllr 

1 1· Since the vertical arrows are weak homotopy equivalences 

Xl -+ OIXlr 
(Giever-Milnor (cf. p. 14-8 fr.» and since the arrow I sin Xl I -+ Oil sinXllr is a group 

completion, it follows that the arrow Xl -+ 0IXlr is a weak group completion (Xl is 

not necessarily an H space) (but V k, 11"o(Xd is a central submonoid of H.(XI ; k) and 

H.(XI ; k)[11"O(Xt}-I] ~ H.(OIXlri k).] 

Remark: If C is a pointed category with finite products and if X is a special r-object in C (obvious 

definition), then Xl is an abelian monoid object in C (cf. p. 14-21). 

FACT Let X be a proper special r-space. Assume: V n ~ 1, the arrow Xn ~ Xl XII •.. XII Xl 

determined by the 11'; is an Sn-equivariant homotopy equivalence-then there exists an abelian cofibered 

monoid G in CG and a levelwise homotopy equivalence X ~ r-nerG. 

LEMMA Let X be a proper special r-space-then Xl path connected => IXlr simply 

connected and Xl n-connected => IXlr (n + I)-connected (cf. p. 14-11). 

Let r~rxr be the functor defined by p -+ (n, p) on objects and /-+ (idn ,/) onmor

phisms. Given a proper special r-space X, call X R the composite r ~ r x r ~ r":;' CG., 

# being the smash product (cf. p. 14-28). So: X n(P) = X np and X n is a proper special 

r-space. 
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[Note: Suppose that "Y : m -+ n is a morphism in r. Set "Yp = "Y#idp : mp -+ np

then the "Yp induce a r-map Xm -+ X n, thus X is a functor from r to psr-sp.] 

The classifying space of a proper special r-space X is the proper special r-space BX 

which takes n to BnX = IXnlr. In particular: B1X = IXlr is path connected, hence 
B1X -+ 0IBXlr is a weak homotopy equivalence. 

FACT Let G be an abelian cofibered monoid in CG-then the classifying space of the r-nerve of 

G is the r-nerve of BG. 

Notation: Given a proper special r-space X, write B(O) X = X, B(q+l) X = B(B(q) X), 

and put SoX = 0IXlr, Sq+l X = IB(q) Xlr (q ;::: 0). 

EXAMPLE Let X be a proper special r-space-then V q > 0, SqX:::::: powSq ®r x. 

A prespectrum X is a sequence of pointed a-separated compactly generated spaces Xq 

and pointed continuous functions Xq ~ OXq+1 • PRESPEC is the category whose objects 

are the prespectra and whose morphisms f: X -+ Y are sequences of pointed continuous 

Xq ~ Yq 

functions Iq : Xq -+ Yq such that the diagram 1 1 commutes V q. 

Every spectrum is a prespectrum. 

[Note: The indexing begins at 0.] 

OXq+1 

EXAMPLE Let () be an Eoo operad. Suppose that X is a A-separated proper special a-space

then the assignment q - B(EqLjaqjX) is a prespectrum. 

Remark: PRESPEC is complete and cocomplete (limits and colimits are calculated 

levelwise ). 

PROPOSITION 56 Equip.6.- CG. with its singular structure-then PRESPEC is 

a model category if weak equivalences and fibrations are levelwise, a cofibration f: X -+ Y 

being alevelwise cofibration with the additional property that V q, the arrow Pq+l -+ Yq+l 
. EXq ~ EYq 

is a cofibration, where Pq+l is defined by the pushout square 1 1 . 
X q+1 ~ Pq+1 

[Note: In the presence of the condition on the Pq+1 -+ Yq+1 ,to describe the cofibra-

tions in PRESPEC, it suffices to require that 10 : Xo -+ Yo be a cofibration.] 
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If C is a category and if F, G : C -+ PRESPEC are functors, then a natural transformation 

S : F -+ G is a function that assigns to each X E ObC an element Sx E Mor(FX,GX) natural in X. 

Using the notation {FX = {Fx,q} ,Sx = {SX,q}' the fact that 5x E Mor(FX, GX) is expressed by the 
GX = {Gx,q} 

Fx,q 
S:x,q 

GX,q 

commutativity of '" F,q 1 1 "'G,q V q. A pseudo natural transformation S : F -+ G is 

OFX,q+l I OGX,q+l 
nS:X,q+l 

a function tha.t assigns to each X E ObC a sequence of pointed continuous functions SX,q : FX,q -+ Gx,q 

natural in X and a sequence of pointed homotopies Hx,q between OSX,q+l 0 tTF,q and tTG,q 0 SX,q natural 

in X (thus natural ~ pseudo natural (constant homotopies». A pseudo natural homotopy between pseudo 

natural transformations So, 51 : F -+ G is a pseudo natural transformation T : F#I+ -+ G such that 

{
To ~o =:0 ,where (F#I+)(X) = FX#I+ (= {FX,q#I+}) (cf. p. 3-28). 
To 11 ='::'1 

[Note: A natural (pseudo natural) transformation 5 is called a natural (pseudo natural) weak equiv-

alence if the SX,q are weak homotopy equivalences.] 

EXAMPLE (Cylinder Construction) There is a functor M : PRESPEC -+ PRESPEC with 

the property that V X, the arrows (MX)f -+ O(MX)q+l are closed embeddings. And: 

(Ml) 3 a natural transformation r : M -+ id such that V X, rX,q : (MX)q -+ Xq is a pointed 

homotopy equivalence. 

(M2) 3 a pseudo natural transformation j : id -+ M such that V X, jX,q : Xq -+ (MX)q is a 

pointed homotopy equivalence. 

(M3) The composite r 0 j is idM and the composite j 0 r is pseudo naturally homotopic to 

[Construct M by repeated use of pointed mapping cylinders (this forces the definitions of rand j).] 

[Note: V X, the rule q -+ colim O"(MX),,+q defines a spectrum, call it eMX.] 

FACT (Conversion Principle) Let C be a category and let F, G : C -+ PRESPEC be functors. 

Suppose given a pseudo natural transformation S : F -+ G-then there exists a natural transformation 

MFX ~ MGX 

MS : M 0 F -+ M 0 G such that the diagram ,.1 is pseudo naturally homotopy 

FX ---+ GX 
=: 

commutative. 

A prespectrum X is said to be connective if Xl is path connected and X q is (q - 1)

connected (q > 1). 

Example: Given a .6.-separated proper special r-space ~, the assignment q -+ SqX 

specifies a connective prespectrum SX. 
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[The arrow SoX -+ ns1x is the identity map nlXlr -+ nlXlr. For q > 0, the arrow 
SqX -+ nsq+lx is the weak group completion Bl(B(q-l)X) (= IB(q-l)Xlr) -+ nIB(q)Xlr 
of p. 14-69.] 

[Note: That SX is connective is implied by the generalities on p. 14-11.] 

A prespectrum X is said to be an n-prespectrum if V q, the arrow Xq ~ nXq+1 is a 

weak homotopy equivalence. 

Example: Given a ~-separated proper special r-spa.ce X, the assignment q -+ SqX 

specifies an n-prespectrum SX. 

EXAMPLE (Algebraic K-Theory) Let A be a ring with unit-then the prescription q -+ Ko(EqA) 

x BGL(Eq A)+ attaches to A an n-prespectrum W A. Proof: n(Ko(Eq+l A) x BGL(Eq+l A)+) ~ 

. nBGL(Eq+l A)+ (trivially) ~ Ko(EqA) X BGL(EqA)+ (cf. p. 5-75 ff.). 

[Note: As it stands, a morphism A' -+ All of rings does not induce a morphism W A' -+ WAil of 

n-prespectra (the relevant diagrams are only pointed homotopy commutative).] 

PROPOSITION 51 Let {~ be connective n-prespectra-then a morphism f: X -+ 

Y is a weak equivalence provided that 10 : Xo -+ Yo is a weak homotopy equivalence. 

LEMMA Let {: be homotopy associative H spaces such that {::~:? is a group 

under the induced product; let I : X -+ Y be a pointed continuous function such that 

1fo(f) : 1fo(X) -+ 1fo(Y) is bijective-then I is a weak homotopy equivalence if I is a 

homology equivalence. 

IsinXI I~I IsinYI 

[Consider the commutative diagram 1 1 Since the hypotheses on 

X ---+ Y 

{: and I are also satisfied by { I :~::II and I sin}1 and since there are homotopyequiva.-

{
I sinXI-+ I sinXlo x 1fo(1 sin XI) { I sinXlo . 

lences I' YI I' YI (I . YI) ,where I' YI IS the path component of the SIn -+ sln 0 X 1fo sln sIn 0 

identity element, Dror's Whitehead theorem implies that I sin II is a homotopy equivalence, 

hence I is a weak homotopy equivalence (Giever-Milnor).] 

Example: Suppose that X -+ Y is a group completion-then X -+ Y is a weak 

homotopy equivalence if 1fo(X) is a group. 

[Note: Let X be a proper special r-space such that 1fo(X1) is a group. Because 

1fo(lsinXll) is likewise a group, the group completion 1 sin Xl I -+ nlisinXllr is a weak 

homotopy equivalence, thus the same is true of the weak group completion Xl -+ n!Xlr 

(cf. p. 14-69).] 
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EXAMPLE Let 0 be an Eoo operad. Suppose that X is a d-sep&rated O-space. Assume: 11'0 (X) 

is a group-then X has the weak homotopy type of an infinite loop space. 

[The group completion X -I- BoX is a weak homotopy equivalence.] 

PROPOSITION 58 Let {~ be connective !l-prespectra-then a morphism f: X -+ 

Y is a weak equivalence whenever 10 : Xo -+ Yo induces a bijection 7ro(Xo) -+ 7ro(1'O) and 

is a homology equivalence. 

Xo 

[There is a commutative diagram 1 
!lXl 

fa 
---+ Yo 

1 
---+ !lYl 
nft 

and, in view of the lemma, !lh is 

a weak homotopy equivalence. So, 10 is a weak homotopy equivalence and one can quote 

Proposition 57.] 

PROPOSITION 59 Suppose given an infinite loop space machine on r. Let {: be 

~-separated proper special r-spaces, I: X -+ Y a r-map. Assume: 11 : Xl -+ Yi is a weak 

homotopy equivalence or KI: KX -+ KY is a group completion-then BI : BX -+ BY 
is a weak equivalence. 

Xl ---+ KX ---+ BoX 

[Work with 1 1 1 and apply Proposition 58.] 

Yi ---+ KY ---+ BoY 
[Note: There is an evident analog of this result for S.] 

PROPOSITION 60 Suppose given an infinite loop space machine on r. Let {: be 

~-separated proper special r-spaces-then the arrow B(X x Y) -+ BX x BY is a weak 

equivalence. 

[To begin with, the arrow K(X x Y) -+ KX Xl: KY is a weak homotopy equiva
K(X x Y) ---+ KX Xl: KY 

lence (examine 1 1)· This said, form the commutative diagram 

L( X x Y) LX Xl: LY 
K(X x Y) --+KX Xl: KY 

1 1 By definition, K(X x Y) -+ Bo(X x Y) is a group com-

Bo(X x Y) --+BoX Xl: BoY 
pletion. The same is true of KX Xl: KY -+ BoX Xl: BoY. Proof: 7ro(KX Xl: KY) ~ 

7ro(KX) x 7ro(KY) ~ 7ro(KX) x 7ro(KY) ~ 7ro(BoX) x 7ro(BoY) ~ 7ro(BoX Xl: BoY) 

(cf. p. 14-24) and, using the Kiinneth formula, H.(KX Xl: KYj k)[7ro(KX Xl: Ky)-l] ~ 



14-74 

H.(BoX X. BOYjk) for all prime fields k (d. p. 14-55). It now follows that 1ro(Bo(X x 

Y» ~ 1ro(BoX x.BoY) and H.(Bo(X X Y» ~ H.(BoX x.BoY), from which the assertion 
(cf. Proposition 58).] 

Let X be a b.-separated proper special r -space--then an infinite loop machine on r 
defines a sequence of functors BqX : r -+ 6.- CG., viz. n -+ BqX n. It is not claimed 

that BqX is special. However, BqXo is homotopically trivial and V n > 1, the arrow 

BqXn -+ BqXl x.'" X. BqXl determined by the 1ri is a weak homotopy equivalence (cf. 

Propositions 59 and 60). 

A r-space X is said to be semispecial or semiproper if the requirement Xo = * is relaxed to Xo ho

motopically trivial, the other conditions on XIII staying the same. Example: V q 2: 0, BqX is semispecial. 

LEMMA Suppose that X is a .a.-separated semispecial r-space-then there exists a .a.-separated 

semiproper semispecial r-space WX and a r-map 'II' : WX -+ X such that V n, 'll'n : WnX -+ Xn is a 

weak homotopy equivalence. 

[Equip [0,1] with the structure of an abelian cofibered monoid in CG by writing st = min{s, t}. 

Put I = r-ner[O, 1], 80 for "{ : In -+ n, I"{ : 1m -+ In is the function (81, ... ,sm) -+ (t1,'" ,tn ), where 

ti = min {Si} (a minimum over the empty set is 1). Set WoX = Xo and define a subfunctor WX of 
..,( i)==i 

I X X and a r-map 'II' : W X -+ X as follows. Given an order preserving injection "{ : In -+ n, let [0, 1]~ 

be the subspace of [o,l]n consisting of those (tl, ... ,tn) such that ti = 0 if j e im,,{, ti > 0 if j "- im,,{. 

Now form WnX = U[O,l]~ x (X"{)Xm C [o,l]n x Xn : Xn embeds in WnX (consider"{ = idll ) and 
.., 

the homotopy H((tl, ... , tn, :r:), T) = (t1 T, ... ,tnT,:r:) (0 :5 T :5 1) exhibits Xn as a strong deformation 

retract of WnX (hence 'll'n(tl, ... ,tn,:r:) = (0, ... ,O,:r:». Therefore the .a.-separated r-space WX is 

semispecial. To establish that W X is semiproper, one has to show that for each injection "{ : In -+ n, 

(WXh : WmX -+ WnX is a closed S..,-cofibration. This can be done by observing that im(WXh admits 

the description {(tll'" ,tn,:r:): ti = 1 V j "- im"{&:r: e (X"{)Xm}.] 

[Note: W is functorial and 'II' is natural: For any r-map f : X -+ Y between .a.-separated semispecial 
WX WI, WY 

r-spaces, the diagram 1 1 commutes.] 

X ---+ Y 
I 

Observation: The arrow WoX -+ WnX corresponding to 0 -+ n is a closed cofibration. Put W nX = 

WnXfWoX-then WX is a proper special r-space, the projection WX -+ WX is a levelwise weak 

homotopy equivalence, and the diagram X - W X -+ W X is natural in X. 
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Notation: If X is a prespectrum, then OX is the prespectrum specified by (OX)q = 
Ocr, T 

OXg, where OXq -. OOXq+! is the composite OXg I OOXg -+ OOX", T being the 

twist (Tf)(s)(t) = f(t)(s). 

EXAMPLE Let X be a ~-separated proper special r-space. Assume: Xl is path connected-then 

'II q, IB(9) Xlr is (q + I)-connected, hence OSX is a connective O-prespectrum. 

LEMMA For any proper special r-space X, OX is a proper special r-space and there 

is a canonical arrow /OX/r 2t 0IX/r. 

[Note: Here, of course, OX takes n to OXn.] 

PROPOSITION 61 Let X be a ~-separated proper special r-space-then there is a 
OXI 

morphism s : SOX -. OSX in PRESPEC such that the triangle I \ 
SoOX ---:---+ OSoX 

commutes. 
OX1 

[Explicated, the oblique arrow on the left IS /' and the composite 

°IOXlr 
OXI 

OXI -. 0IOXlr ~ OOIXlr ~ OOIXlr is 0 of Xl -. 0IXlr, the oblique arrow ~ 
OOIX/r 

on the right. Definition: So = ToO,. To force compatibility, take SI = , : SIOX -. 

SoOX .!.4 OSoX 

OSIX, thereby ensuring that the diagram II 1 T commutes. The ar-

OSIOX --+ OOSIX 
0.1 

- "'f -rows BnOX = 10Xn/r -.OIXnlr = OBnX yield a r-map b : BOX -. OBX. Setting 
B,,(,-1) " 

b(O) = idox, let b(q) (q > 0) be the composite B(g)OX , BOB(g-l)X -.OB(")X. 
Ib(f-1)lr 

Definition: Sg = ,0 Ib(q-l) Ir (q > 1). This makes sense: SgOX = IB(g-I)OXlr I 

SgOX 2. OSqX 

/OB(g-I)Xlr 2t 0IB(q-l)Xlr = OSqX and the diagram 1 1 
OSq+IOX OSq+IOX 

0.,+1 

commutes.] 

[Note: If Xl is path connected, then OSX is a connective O-prespectrum (d. p. 14-

75) and So is a weak homotopy equivalence (cf. p. 14-72), thus s is a weak equivalence 

(cf. Proposition 57). It is also clear that s is natural.] 
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LEMMA Suppose that X is a .t.\-separated semispecial r-space-then there exists a r-map w : 

wnx c.I .OWX 

wnx - ow X such that the triangle ~ /ole' is homotopy commutative, thus ¥ n, 

w" : W"OX - nw"x is a weak homotopy equivale~!. 
[Represent a typical element in w"nx by (tl' ... ,t", a') (0' E O"X = OX,,) and let 

{ 

(Ul(t), ... • u,,(t),O'(O» (O:S t:S 1/3) 

w,,(tl .... ,t".O')(t) = (tl •... • t",0'(3t -1» (1/3:S t:S 2/3). 

(VI (t), ... ,v,,(t). 0'(1» (2/3:S t :S 1) 

where Uj(t) = 1- 3t + 3ttj. Vj(t) = 3t - 2 + (3 - 3t)tj (1 :S j :S n). The prescription 

{ 

0'(0) 
3t - T 

Hc.I«tl , ... ,t", 0'), T)(t) = 0'(--) 
3-2T 

is a homotopy between 1[' and n1[' 0 w.J 
[Note: w and Hc.I are naturaL] 

wnx 

0'(1) 

c.I 
---+ nwx 

(0 :S: t :S (1/3)T) 

«1/3)T :S t :S 1 - (1/3)T) 

(1 - (1/3)T :S t :S 1) 

Observation: The diagram 1 1 commutes and w is a levelwise weak homotopy 

equivalence. 
wnx ---+ nwx 

w 

A biprespectrum X is a sequence of prespectra X, and morphisms Xq ~ OXq+ 1 (q ~ 
0). Spelled out, a biprespectrum is a doubly indexed sequence of pointed .6.-separated 

compactly generated spaces Xq,p and pointed continuous functions (fq,p : Xq,p -I- OXq+1 ,p, 

(fq,p : Xq,p -I- nXq,p+l such that the diagram 

commutes ¥ q,p. BIPRESPEC is the category whose objects are the biprespectra and 

whose morphisms f : X -I- Yare doubly indexed sequences of pointed continuous functions 

Iq,p : Xq,p -I- Yq,p such that Iq,. & I.,p are morphisms of prespectra ¥ q,p. 

THE UP AND ACROSS THEOltEM Let X be a biprespectrum. Assume: ¥ q, ITq 

is a weak equivalence and Xq is an O-prespectrum-then the O-prespectra {io,. are 
.,0 

naturally weakly equivalent. 

---_ .. -_. 
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[Let C be the full subcategory of BIPRESPEC whose objects X have the property 

that 'V q, ISq isa weak equivalence and Xq is an n-prespectrnm. Denote by {~;, the functor 

C --+ PRESPEC that sends X to {XXo, ... -then the claim is that {E;;C are naturally 
... ,0 E X 

weakly equivalent. For this, it suffices to construct functors D', D" : C --+ PRESPEC 

and a pseudo natural weak equivalence 3x : D'X --+ D"X together with natural weak 
. { e~ : E'X --+ D'X " 

eqwvalences ei: E"X --+ D"X . Reason: ConsIder the diagram 

MD'X MS. MD"X 

rl Ir 
E'X ---+. D'X --:=---+. D"X +1 -- E"X -

furnished by the conversion principle. Definition: D'X = nqxq,q = D"X, the ar

rows of structure u~ : D~X --+ nD~+IX, u~ : D~X --+ nD~+lX being the composites 
Ofu T OfHu 0' 

nqxq,q M J n q+1 Xq,q+l " n q+1 Xq,q+l M+1, nq+2 X q+1,q+b nqxq,q Uf,f I 

q+l "q+l 9+
1

,9 q+2 T 0,+117 { D' f 
n X q+1,q ---+ n X q+1,q , n X q+1,q+l and D~f = n q !q,q, where f: X --+ y 

(!q,q : Xq,q --+ Yq,q). Here T q is given by twisting the last coordinate past the first q coor

dinates: (Tq!)(s)(t) = !(t)(s)(s E sq,t E S1). If 3x,q : nqxq,q --+ nqxq,q is the identity 

for even q and the negative of the identity for odd q (Le., reverse the first coordinate), then 

there are pointed homotopies Hx,q between n3X,q+1 0 u~ and u~ o3x,q. Since the data 

is natural in X, 3x : D'X --+ D"X is a pseudo natural weak equivalence. Introduce weak 

homotopy equivalences e~,p : Xq,p --+ np-qxp,p, taking e~,q = id and inductively letting 

• 17", Oe~+1" • 
e~,p (q < p) be the composite Xq,p ~ nxq+1,p I np-qxp,p' Call wq,p the composite 

0'-'171'1' T p _, 01'+1-'171'1'+1 
np-qxp,p , I n p+1- qX p,p+l ' np+1-qXp,p+l ' , np+2-qxp+1,p+l-

then for each q, the e~,p (q ~ p) specify a morphism {Xq,p ~ nXq,p+Il--+ {np-qXp,p ~ 
n p+2- qx,+1,p+Il of prespectra (use induction on p - q) (note the shift in the indexing). 

Put e~ = e~, ... and define e~ analogously.] 

COMPARISON THEOREM Suppose given an infinite loop space machine on r

then 'V ..6.-separated proper special r -space X, BX is naturally weakly equivalent to SX. 

[Note: S is a functor from the category of ..6.-separated proper special r-spaces to the 

full subcategory of PRESPEC whose objects are the connective n-prespectra while B is 

a functor from the category of ..6.-separated proper special r-spaces to the full subcategory 

of PRESPEC whose objects are the connective spectra. It is therefore of interest to 
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observe that the proof gQeS through unchanged if the definition of infinite loop machine is 

weakened: It suffices that B take values in the category of connective O-prespectra.] 

Application: Let 0 be an Eoo operad. Suppose given an infinite loop space machine 

on fj (e.g., the May machine )-then V ~-separated proper special r-space X, B( f* X)( = 
B(X 0 f» is naturally weakly equivalent to SX. 

FACT Let 0 be an Eoo operad. Suppose given an infinite loop space machine on a-then va

separated proper special a-space x, BX and S(f.X) are naturally'weakly equivalent. 

[Recalling that f. : pi a-Sp - pi r-sp respects the a-separation condition (d. p. 14-66), BX is 

naturally weakly equivalent to BUX or still, is naturally weakly equivalent to B(f·f.X) which is naturally 

weakly equivalent to S(f.X).] 

Heuristics: The proof of the comparison theorem is complicated by a technicality: The 

BqX are not necessarily ~-separated proper special r-spaces (but are ~-separated semi

special r-spaces). However, let us proceed as if they were-then one can form the connec-
_. _ SIT, _ • _ 

tive O-prespectraSBqX and there are morphismstTq : SBqX ----+ SOBq+IX -+ OSBq+IX 

(cf. Proposition 61). Since V q, tT q is a weak equivalence, it follows from the up and across 

. theorem that the connective O-prespectra SBoX(= {SqBoX}), SoBX (= {SoBqX}) are 

natura.lly weakly equivalent. The idea now is to show that SX is natura.lly weakly equiv

alent to SBoX and BX is natura.lly weakly equivalent to SoBX. 

(SBoX) V n, there are arrows LXn -+ KXn, KXn -+ BoXn, i.e., there are 

r-maps LX -+ KX, KX -+ BoX. Because LXI -+ KX I is a weak homotopy equivalence 

and K X 1 -+ BoX 1 is a group completion, the arrow SLX -+ SK X is a weak equivalence, 

as is the arrow SKX -+ SBoX (cf. Proposition 59). But LX = X. 

(SoBX) The weak group completions BqX = BqX 1 -+ OIBqXlr = SoBqX 

define a morphism BX -+ SoBX of connective O-prespectra (cf. Proposition 61) which 

we claim is a weak equivalence. In fact, '1I'o(BoX) is a group, thus BoX -+ SoBoX is a 

weak homotopy equivalence (cf. p. 14-72), so Proposition 57 is applicable. 

To establish the comparison theorem in full generality, one first has to extend the basic definitions 

from the context of proper special r-spaces to that of semiproper semispecial r-spaces. Thus let X be a 

semiproper semispecial r-space-then there is a closed cofibration Xo - IXlr and it is best to work with 

the quotient IXIi' = IXlr/Xo. Again one has a canonical arrow EXl -IXIi' whose adjoint Xl - nlxli' 

is a weak group completion. It still makes sense to form X and the classifying space BX of X takes n to 

BnX = IXnlr . The definition of B(q)X is as before but SoX = nlxlr, Sq+1X = IB(q)Xlr (q ~ 0). 
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Turning to the proof of the comparison theorem, let X be a .6.-separated proper special r-space--then 

V q, W BqX is a .6.-separated semiproper semispecial r-space (d. p. 14-74), sw BqX is a connective n-
_sw"" _ SIll _ • _ 

prespectrum,and therearemorphisms"q : SWBqX -SWnBqHx --+SnWBq+lX -nSWBqHX 

(cf. Proposition 61) (w as in the lemma on p. 14-76). Since V q, "q is a weak equivalence, it follows 

from the up and across theorem that the connective n-prespectra SW BoX (= {Sq W BoX}), So WBX 

(= {So W Bq X}) are naturally weakly equivalent. The idea now is to show that SX is naturally weakly 

equivalent to SW BoX and BX is naturally weakly equivalent to So WBX. 

(SWBoX) There is a natural weak equivalence SWX - SX. On the other hand, there are 

natural weak equivalences SWLX - SWKX, SWKX - SWBoX and LX = X. 

(SoWBX) Let WBX be the connective n-prespectrum specified by q - WIBqX and 
_ WI "q _ "'I _ _ 

WI BqX - WI nBq+l X --+ nWl Bq+l X-then there is a natural weak equivalence WBX - So WBX. 

But there is also a pseudo natural weak equiva.lence WBX - BX, hence BX is naturally weakly equiv

alent to WBX (conversion principle). 

LEMMA Let X be a ~-separated proper special r-space-then EXI is homeomor

phic to (IXlr)l, thus the arrow Xl ~ nlXlr is a closed embedding. 

Application: Let X be a ~-separated proper special r-space-then V q, the arrow 

.SqX ~ nSq+1X is a closed embedding. 

Consequently, if X is a ~-separated proper special r-space, then the rule q ~ 

colimnnSn+qX defines a spectrum, call it eSX. 

PROPOSITION 62 Suppose given an infinite loop space machine on r-then V ~

separated proper special r-space X, BX is naturally weakly equivalent to eSX. 

[There is an obvious natural weak equivalence SX ~ eSX, so the assertion follows 

from the comparison theorem.] 

Remark: It is a fact that SPEC carries a model category structure in which the 

weak equivalences are the levelwise weak homotopy equivalences (cf. §15, Proposition 8). 

One can therefore interpret Proposition 62 as saying that BX and eSX are isomorphic in 

HSPEC (a.k.a. "the" stable homotopy category). 
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§15. TRIANGULATED CATEGORIES 

Because the theory of triangulated categories lies outside the usual categorical experi

ence, an exposition of the basics seems to be in order. Topologically, the rationale is that 

the stable homotopy category is triangulated. 

Let C be an additive category-then an additive functor E : C -+ C is said to be a 

suspension functor if it is an equivalence of categories. 

[Note: Thus there is also a functor n ; C -+ C which is simultaneously a right and left 
-1 

adjoint for E and the four arrows of adjunction Eon.!+ ide, ide ~ no E, n 0 E ~ ide, 
-1 

ide ~ Eon are natural isomorphisms.] 

Let C be an additive category, E a suspension functor-then a triangle in C consists of 

objects X, Y, Z and morphisms u, v, w, where X ~ Y, Y ~ Z, Z ~ EX, a morphism of tri

X~Y~Z~EX 

angles being a triple (j, g, h) such that the diagram 11 
x' 

19 1" lEI com-
Y' ---+ Z' ---+ EX' 

w' 
mutes. 

Let C be an additive category-then a triangulation of C is a pair (E,6.), where E 

is a suspension functor and 6. is a class of triangles (the exact triangles), subject to the 

following assumptions. 

Z~EX. 

-En 

(TRl) Every triangle isomorphic to an exact triangle is exact. 

(TR2) For any X E Db C, the triangle X j~ X -+ 0 -+ EX is exact. 

(TRa) Every morphism X ~ Y can be completed to an exact triangle X ~ Y ~ 

(T~) The triangle X ~ Y ~ Z ~ EX is exact iff the triangle Y ~ Z ~ EX 

---+ EY is exact. , , , 
(TR5) If X ~ Y ~ Z ~ EX, X' ~ Y' ~ ZI ~ EX' are exact triangles and if 

X ~ EX Y 11 Z W 
---+ ---+ 

in the diagram 11 19 lEI ,g 0 u = u' 0 I, then there is a 

EX' x' ---+ Y' ---+ Z' ---+ .' v' w' 
morphism h : Z -+ Z' such that (I, g, h) is a morphism of triangles. 

EXAMPLE Suppose that X.!. Y ~ Z ~ EX is exact. Let 1 : X -+ X', 9 : Y -+ Y', h : Z -+ Z' , , , 
be isomorphisms. Put u' = go u 0 1-1, v' = h 0 v 0 g-l, w' = E/o W 0 h- 1 -then X'.!.. Y' ~ z' ~ EX' 

-E1.I 
is exact (cr. TR1)' Examples: (I) X:': Y ::! Z ~ EX is exact; (2) Y::! Z ~ EX -----+ EY is exact (cr. 

TR4). 
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'd 
EXAMPLE V X E ObC, the triangle 0 - X ~X - 0 (= EO) is in.a. (cf. TR2 & T~). 

EXAMPLE Suppose that X ~ Y ..!. Z ~ EX is exact-then there is a commutative diagram 
11-1 0" u Z WOII-l 

---+ Y ---+ EOZ EX 

II 
-1 

liZ 0" WOIIZ II ' thus the triangle X ~ Y - EOZ - EX is exact (cf. 

X ---+Y--+ ---+ EX 
u " W 

-(l'x100w) . liZ 1 0" 
TR1) and so, by T~, the triangle OZ I X ~ Y - EOZ is exact. 

[Note: Under the bijection of adjunction Mor (Z, EX) ~ Mor (OZ, X), w corresponds to /A}/ 0 Ow 

and E(/A:x1 0 Ow) equals w 0 liZ,] 

OZ 

II 
OZ 

EXAMPLE Suppose that X..!. Y ..!. Z ~ EX is exact-then there is a commutative diagram 
-(1':x100w) lIy 1

0U EO" 

----, X -- EOY -

II 
X Y - EOZ 

11-1 0" 
Z 

EO" -0" -(1':x100w) lIy1
0U 

_ EOZ is exact (cf. TR1) and so, by T~, the triangle OY - OZ J X ----+, EOY is 
1'-1 00W II-lou 

exact or still, the triangle OY ~ OZ X I X -_Y---+J EOY is exact. 

A triangulated category IS an additive category C equipped with a triangulation 

(E,~). 

[Note: The opposite of a triangulated category is triangulated. In detail: The suspen-
OP OP u OP "OP wOP OP sion functor is 0 and the elements of ~ are those triangles X -+ Y -+ Z -+ 0 X 

,,-lou 
in CoP such that OX ~ Z..!t Y ~ EOX is exact.] 

Example: Let C be a triangulated category. Call a triangle X ~ Y ~ Z ~ EX anti

exact if the triangle X ~ Y ~ Z ~ EX is exact-then C endowed with the class of antiex

act triangles is triangulated. 

EXAMPLE Let A be an abelian category. Write CXA for the abelian category of cochain 

complexes over A. Let E : CXA - CXA be the additive functor that sends X to X[I], where 

{ 
X[1]n = xn+1 

+1 -then E is an automorphism of CXA, hence is a suspension functor. The quotient 
dn - _dn 

cate~gJYK(A) of CXA per cochain homotopy is an additive category and the projection CXA - K(A) 

is an additive functor. Moreover, E induces a suspension functor K(A) - K(A). Definition: A triangle 
I I I J . 

X' !:... yl .!... ZI ~ EX' in K(A) is exact if it is isomorphic to a triangle X - Y 1. C J ~ EX for some f. Here 
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OJ is the mapping cone of f : OJ = Xn+l e yn, de = (dEX 0 ) (j" = (~ ) , 'lI'n = (id xn+l ,0». 
J f"+l dy Idyn 

With these choices, one can check by direct computation that K(A) is triangulated (a detailed explanation 

can be found in Kashiwara-Schapirat). 

PROPOSITION 1 Let C be a triangulated category. Suppose that 

w 
----+ EX 

x u 
----+ 

X' ----+ 
u' 

Y v 
----+ 

19 
Y' ----+ 

v' 

is a diagram with rows in.6.. Assume: h 0 v = v' 0 g-then there is a 
Z' ----+ :EX' 

w' 
morphism 1 : X ~ X' such that (I, g, h) is a morphism of triangles. 

Y~Z~:EX~ 
[Bearing in mind TIt., pass to ! 9 ! h 

Y' ----+ Z' ----+ :EX' ----+ 
v, w' -Eu' 

TRs.] 

:EY 

! Eg and apply 

:EY' 

PROPOSITION 2 

X~Y 

Let C be a triangulated category. Suppose that 11 
v 

----+ 

w 
----+ :EX 

X' ----+ Y' ----+ 
u' v' 

! EI is a diagram with rows in.6.. Assume: :E/o W = w' 0 h-then there is a 
Z' ----+ :EX' 

w' 
morphism 9 : Y ~ Y' such that (I, g, h) is a morphism of triangles. 

PROPOSITION 3 Let C be a triangulated category-then for any exact triangle 

X ..!.. Y ~ Z ~ :EX, v 0 U = 0 and W 0 v = o. 
X 

[It suffices to prove that v 0 U = O. But the diagram II 
X---+O 

I 

I 
-Ir 

:EX 

II 

must commute (cf. TRs), thus v 0 U = 0.] 
X U'" Y 7 Z 7 :EX 

Application: Every morphism X..!.. Y admits a weak cokemel. 

[Thanks to TR3 , 3 an exact triangle X ..!.. Y ~ Z ~:EX and v 0 U = O. On the other 

t Sheav.es on Manifolds, Springer Verlag (1990), 35-38; see also Weibel, An Introduction to Homological 

Algebra, Cambridge University Press (1994), 376. 
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X " Y 
v Z 'W EX ---. ---. ---. 

hand, if gou = 0 (g : Y --? W), then the diagram 1 19 1 has 
0 ---. W ---. W ---. 0 

idw 

a filler h : Z --? W such that h 0 v = g (cf. TRlS).] 

Suppose that a triangulated category C has coproducts--then C has weak pushouts, hence weak 

colimits. One ca.n be specific. Thus let a , I ~ C be a diagram. Given 6E Mor I, say ( ~L )ut ,6 = i, t6 = 

j. Define an arrow 11 ~.6 - 11 ~j by taking the coproduct of the arrows ~d I ~.6 II ~t6-
Merl Obi 

then a candidate for a weak colimit of ~ is any completion L of 11 ~.6 - 11 ~j to an exact triangle 
Merl Ob I 

(cf. TRa). 

Let C be a triangulated category, D an abelian category-then an additive functor 

( cofunctor) F : C --? D is said to be exact if for every exact triangle X ..!; Y ~ Z ~ EX, 

the sequence FX --? FY --? FZ (FZ --? FY --? FX) is exact. 

[Note: An exact functor (cofunctor) generates a long exact sequence involving E and 

n.] 

PROPOSITION 4 Let C be a triangulated category-then 'V W E Ob C, Mor (W,-) 
is an exact functor and Mor (-, W) is an exact cofunctor. 

[Take any exact triangle X ..!; Y ~ Z ~ EX and consider Mor (W, X) ~ Mor (W, Y) ~ 

Mor (W, Z). In view of Proposition 3, im u. C ker v.. To go the other way, assume that 

v 0 'I/J = 0 ('I/J E Mor (W, Y) )-then 3 4> E Mor (W, X) : 'I/J = u 0 4>. Proof: Examine 
W id!f W ---. 0 ---. EW 

1'" 1 lr:t/> (cf. Proposition 1).] 

X --u+ Y ---v+ Z 7 EX 

X 

Application: IT 11 
x' 

" ---. 

---. 
"I 

v ---. EX 

1 r:1 is a commutative diagram with 
EX' 

rows in .6 and if any two of I, g, h are isomorphisms, then so is the third. 

[For instance, suppose that I and g are isomorphisms-then the five lemma implies 

that h. : Mor (Z' , Z) --? Mor (Z' ,Z'), h· : Mor (Z' ,Z) --? Mor (Z, Z) are isomorphisms, so 

3 4>, 'I/J E Mor (Z', Z) : h 04> = idzl, 'I/J 0 h = idz, i.e., h an isomorphism.] 

EXAMPLE Let C be a triangulated category with finite coproducts~then V X, Y E Ob C, the 

triangle X - X II Y - Y ~ l::X is in ~. 
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[According to TRa, the morphism X - X II Y can be completed to an exact triangle X - X II Y -

Z - EX. Compare it with the exact triangle 0 _ Y idYl Y _ 0 to get a filler h : Z - Y (cf. TR6)' 

Consideration of 

o ~ Mor(W, EX) ~ Mor (W, EX II EY) ~ Mor(W, EZ) ~ 0 

1 l(Eh). 

Mor(W,EY) Mor(W,EY) 

allows one to say that (Eh). is an isomorphism V W, hence Eh is an isomorphism or still, h IS a.n 

isomorphism.] 

EXAMPLE Let C be a triangulated category with finite coproducts-then any exact trian-
U 1/ 0 

gle of the form X-Y-Z-EX 
1/ 0 -Eu . 

Y - Z - EX -----+ EY IS exact (cf. 

Y~Z~EX~ 

is isomorphic to X - X II Z - Z ~ EX. Indeed, the triangle 

T~) and there is a morphism Y - X II Z rendering the diagram 

EY 
I 

I 
-Ir II II 

I 

I 
-Ir 

X II Z -----+ Z -----+ EX -----+ EX II EZ 
o 

commutative (cf. Proposition 1). 

[Note: Analogously, an exact triangle of the form X ~ Y..!. Z ~ EX is isomorphic to X ~ Y -

YIIEX - EX.] 

EXAMPLE Let C be a triangulated category with finite coproducts. Suppose given a morphism 

i : X - Y that admits a left inverse r : Y - X -then there exists an isomorphism Y - X II Z and a 
X y 

commutative triangle ~ 1 
XIIZ 

X~ 
[Complete X ~ Y to an exact triangle X ~ Y..!. Z ~ EX (cf. TRa) and choose a filler II 

Y ...!4 Z 
I 

I 
-Ir 

EX 

II (cf. TR6 ) to see that w = 0.] 

X ---; 0 ---; EX 

X -;-:--?d lX 

EXAMPLE Let C be a triangulated category with finite(c:pr~d)ucts.,-then(:he ~i)angles X _(u :..!.o ) 
tv u' 1/' tv' 0 U' 0 v' 0 w' 

Z - EX, X' - y' - Z, - EX' are exact iff the triangle X II X' -- Y II y' -- Z II Z' __ 

EX II EX' is exact. 

EXAMPLE Let C be a triangulated category with finite coproducts. Suppose that X ~ Y ~ Z ~ 



............. 

15-6 

EX i. ex~.---then £0' any Y' E Qb C and any 9 E Mo' (Y, Y'), .he ',iangle y' II Y Cd;, ~" ~ y' II 

(
E(90 u») 

(D-w) -Eu 
Z - EX I EY' II EY is exact. 

FACT Let C be a triangulated category-then a morphism X ~ Y is an isomorphism iff the triangle 

X ~ Y - 0 - EX is exact. 

'" 11 w' FACT Let C be a triangulated category. Suppose that X - Y - Z -! EX (i = 1,2) are exact 

triangles-then Wl = W2 if Mor (EX, Z) = O. 

PROPOSITION 5 Let C be a triangulated category. Fix a morphism X ~ Y in C 
u v w u ,,' w' and suppose that X--+- Y --+- Z --+- EX, X--+- Y --+- Z' --+- EX are exact triangles (cf. TRa)-

then Z ~ Z'. 
X~ 

[Any filler for II 
Xu+ 

Y~Z 

II • I 
{. 

Y Z' 7 -t v w 

EX 
II is an isomorphism (cf. p. 15-4).] 

EX 

Let C be a triangulated category-then a full, isomorphism closed subcategory D of 

C containing 0 and stable under E and n is said to be a triangulated subcategory of C if 

V X ~ Yin MorD, there exists an exact triangle X ~ Y ~ Z ~ EX with Z in ObD. 

[Note: D is, in its own right, a triangulated category (the suspension functor is the 

restriction of ~ to D and the exact triangles X ~ Y ~ Z ~ EX are those elements of Ll 

such that X, Y, Z E ObD).] 

EXAMPLE Let A be an abelian category. Write CXA + for the full subcategory of CXA consist

ing ofthose X which are bounded below (xn = 0 (n « 0», write CXA - for the full subcategory ofCXA 

consisting of those X which are bounded above (XI!. = 0 (n > > 0», and put CXA b = CXA + nCXA -

then, in obvious notation, K+(A), K-(A), and Kb(A) are triangulated subcategories of K(A). 

PROPOSITION 6 Let C be a triangulated category. Suppose that 0 is the object 

class of a triangulated subcategory of C-then for any exact triangle X ~ Y ~ Z ~ EX, 

if two of X, Y, Z are in 0, so is the third. 
. u Vi Wi 

[Assuming that X, YEO, choose Z' EO: X--+- Y --+- Z' --+- EX is exact. On the 

basis of Proposition 5, Z ~ Z', hence Z E 0 (0 is isomorphism closed). Next assume 

that Y, Z E 0 and fix an exact triangle Y ~ Z --+- W --+- EY with W E O. By TR4 , 
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-I:u 
Y ~ Z ~ EX ---+ EY is exact. Therefore W ~ EX (cf. Proposition 5) => nw ~ nEX. 
But nw EO=> nEX EO=> X E O. The argument that X, Z EO=> YEO is similar.] 

PROPOSITION 7 Let C be a triangulated category. Suppose given a nonempty class 

o C Ob C-then 0 is the object class of a triangulated subcategory of C provided that 

for any exact triangle X ~ Y ~ Z ~ EX, if two of X, Y, Z are in 0, so is the third. 
'd 

[(1) 0 E O. Proof: V X E 0; X ~X -+ 0 -+ EX is exact (cf. TR2)' (2) 0 is 

isomorphism closed. Proof: If X E 0 and if X ~ X' is an isomorphism, then the triangle 

X ~ X' -+ 0 -+ EX is exact (cf. p. 15-6). (3) EO c O. Proof: For any X E 0, 
-idI:X 

X -+ 0 -+ EX I EX is exact (cf. T~), thus EX E O. (4) no c O. Proof: For any 
~X ~1 

X E 0, 0 -+ X ---+X -+ 0 is exact (cf. p. 15-2), hence nx -+ 0 -+ X ---+ EnX is exact 

(cf. p. 15-2), thus nx E O. The final requirement that 0 must satisfy is clear.] 

EXAMPLE Let C be a triangulated category, D an abelian category. Suppose that F : C _ D is 

an exact functor, Let SF be the class of morphisms X ~ Y such that "'In> 0, is an isomorphism {
FEnU 

- Fonu 

and let OF be the class of objects Z for which there exists an exact triangle X ~ Y ~ z .!!. EX with 

u E SF-then OF is the object class of a triangulated subcategory of C. 

{ 
FEnz = 0 

[Note: OF is the class of objects Z such that "'In> 0, .J 
- Fonz=o 

EXAMPLE Let A be an abelian category with a separator. Suppose that A is a Serre class in 

A-then SAl A exists (cf. p. 0-39) and the composite K(A) ~ A - SAl A is exact, hence determines 

a triangulated subcategory K.A (A) of K(A) whose objects X are characterized by the condition that 

Hn(x) E A "'In. 

Let C, D be triangulated categories-then an additive functor F : C -+ D is said to 

be a triangulated functor if there exists a natural isomorphism ~ : FoE -+ E 0 F such 
u v w Fu Fv +xoFw 

that X -+ Y -+ Z -+ EX exact => FX -+ FY -+ FZ ) EFX exact. 

Example: The inclusion functor determined by a triangulated subcategory of a trian

gulated category is a triangulated functor. 

FACT Let C, D be triangulated categories, F: C - D a triangulated functor. Assume: G : D -

C is a left adjoint for F-then G is triangulated. 

[Note: The same conclusion obtains if G is a right adjoint for F. Proof: GOP is a left adjoint for 

FOP, hence GOP is 'triangulated, which implies .that G is triangulated.] 
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Let C, D be triangulated categories-then a triangulated functor F : C ~ D is said 

to be a triangulated equivalence if there exists a triangulated functor G : D ~ C and nat
GFEX (\lfF)o(G4». EGFX 

a! . hi {JJ : ide ~ G 0 F h h th di I I ur Isomorp sms F G 'd suc t at e agramsP"£X I:px, 
v: 0 ~l D 

FGEY (4)G)o(F\If). EFGY 
EX EX 

lillY 1 1 I:lly commute. 

EY EY 
[Note: <P and W are the natura! isomorphisms implicit in the definition of F and G.] 

FACT Let C, D be triangulated categories, F : C -+ D an additive functor. Suppose that there 

exists a natural trarisformation C) : FoE -+ Eo F such that X ~ Y ~ Z ~ EX exact =? F X ~ FY ~ F Z 
·x oFw 
---+. EF X exact-then C) is a natural isomorphism. 

-'idIlX 
[For any X E ObC, the triangle X --+ 0 --+ EX • EX is exact.] 

FACT Let C, D be triangulated categories, F : C --+ D a triangulated functor. Assume: F is an 

equivalence-then F is a triangulated equivalence. 

{
P.:idC-+GOF 

[Given G and natural isomorphisms , consider the inverse of (GEv) 0 (Gc)G) 0 
v: FoG-+idD 

(p.EG).] , 

Let C be a triangulated category-then C is said to be strict if its suspension functor 

E is an isomorphism (and not just an equivalence). 

[Note: When C is strict, the role of n is played by E-1.] 

Example: For any abelian category A, K(A) is a strict triangulated category. 

EXAMPLE Let C be a strict triangulated category. Suppose that X ~ Y ~ Z ~ EX is exact-
_Il-1w '" 11 

then E-I Z - X --+ Y -+ Z is exact (cf. p. 15-2). 

Given a triangulated category C, let ZC be the additive category whose objects 

are the ordered pairs (n,X) (n E Z,X E ObC), the morphisms from (n,X) to (m,Y) 
being colim Mor (E,-n X, E,-m Y). Composition in ZC comes from composition in C : 

,~n,m 

E,-n X ~ E,-my ~ E,-k Z. To equip ZC with the structure of a strict triangulated 

category, take for the suspension functor the isomorphism (n,X) ~ (n - 1,X) and take 

for the exact triangles the (n,X) ~ (m,Y) ~ (k,Z) ~ (n -l,X) associated with the 
E,-n X ~ E,-my 4 E,-k Z ~ EE,-n X such that (u, v, (-l)'w) is exact. 

PROPOSITION 8 The functor F : C ~ ZC that sends X to (0, X) is a triangulated 

equivalence of categories. 
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{Note: The natural isomorphism ~ : Fo:E --+ :EoF is defined by letting ~ x : (0, :EX) --+ 

(-1, X) be the canonical image of id!:x in Mor((O, :EX), (-1,X)).] 

(Octahedral Axiom) Let C be a triangulated category. Suppose given exact 1£ v vou 
triangles X --+ Y --+ Z' --+ :EX, Y --+ Z --+ X' --+ :EY, X -. Z --+ yl --+ :EX-then there 

exists an exact triangle Z' --+ Y' --+ X' --+ :EZ' such that the diagram 

X 
1£ 

Y ZI :EX --+ --+ --+ 

II 1v 1 II 
X --+ Z --+ Y' --+ :EX vou 

1£1 II 1 1 
Y --+ Z --+ x' --+ :EY v 
1 1 II 1 
z' --+ Y' --+ x' --+ :EZ' 

commutes. 

[N ote: An explanation for the term "octahedral" is the diagram 

Here U -e-+ V stands for an arrow U --+ :EV.] 

Example: Let A be an abelian category-then the triangulated category K(A) satis

fies the octahedral axiom. 

The stable homotopy category is a triangulated category satisfying the octahedral axiom. 

EXAMPLE Let C be a triangulated category satisfying the octahedral axiom. Suppose that 0 is 

the object class of a triangulated subcategory of C and write So for the class of morphisms X ~ Y which 

can be completed to an exact triangle X ~ Y .!,. Z ~ :EX with Z in O-then So admits a calculus of left 

and right fractions. 

[So contains the identities of C (V X E ObC, XI~ X -+ 0 -+ :EX is exact and 0 EO). To check 

that So is closed under composition, let X ~ Y -+ ZI -+ :EX and Y .!,. Z -+ X, -+ :EY be exact triangles 
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~ou ~ou 

with Z', X' E O. Choose a completion of X -- Z to an exact triangle X -- Z - y' - EX (d. TR3)-

then by the octahedral axiom, there exists an exact triangle ZI - Y' - X' - EZ'. Since Z', X, EO, it 

follows f~om Proposition 6 that yl E O. The remaining verifications do not involve the octahedral axiom.] 

[Note: So contains the isomorphisms of C.] 

EXAMPLE Let C be a triangulated category satisfying the octahedral axiom. Given classes 

01,02 C Ob C, denote by 01 * O2 the class consisting of those X which occur in an exact triangle 

Xl - X - X2 - EXl (Xl E 0t,X2 E 02)-then the octahedral axiom implies that operation * is 

associative. 

[Note: Given a class 0 C Ob C, an extension of objects of 0 is an element of Ext 0 = U 0 * ... * 0 
l~O 

(I factors), the elements of 0 * ... * 0 being the extensions of objects of 0 of length I.] 

FACT Let C be a triangulated category with finite coproducts satisfying the octahedral axiom

then, in the notation of TRs, 3 an h : Z - Z, such that (/, g, h) is a morphism oftriangles and the triangle 

( ~ ~v ). ( ~ :w) ( :' _E:u) 
X, II Y I Y' II Z I Z' II EX I EX' II EY is exact. 

PROPOSITION 9 Let C be a triangulated category satisfying the octahedral axiom
X --+ Y 

then every commutative square 1 1 can be completed to a diagram 
X, --+ Y' 

X --+ Y --+ Z· --+ EX 

1 1 1 1 
x' --+ Y' --+ Z' --+ ~X' 

1 1 1 1 
X" --+ Y" --+ Z" --+ ~X" 

1 1 1 1 
EX --+ EY --+ EZ --+ E2 X 

in which the first three rows and the first three columns are exact and all the squares 

commute except for the one marked with a minus sign which anticommutes. 

EXAMPLE Let C be a triangulated category satisfying the octahedral axiom. Suppose that 0 
u ~ w u'~, w' 

is the object class of a triangulated subcategory of C. Let X - Y - Z - EX, X, - yl - Z, - EX' be 

X ~ Y ~Z 
w 

---+ EX 

exact triangles. Assume: There is a diagram 1 J l'IJJ, where I,g E So 

X' ---+ y' ---+ Z, ---+ EX' 
v.' ~, w' 

and go u = u' 0 I-then 3 an h : Z - Z' in So such that (/,g, h) is a morphism of triangles. 
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[Note: The metacategory sole is triangulated and satisfies the octahedral axiom. For instance, 

consider K(A), where A is an abelian category. Let 0 = {X : H"(X) = 0 V n}-then So is the class of 

quasiisomorphisms of A (i.e., the f such that H"(I) is an isomorphism V n or, equivalently, the f such 

that H"(C,) = 0 V n) and the derived category D(A) of A is the localization SolK(A). But there is a 

problem with the terminology. Reason: A priori, D(A) is only a metacategory. However, the assumption 

that A is Grothendieck and has a separator suffices to ensure that D(A) is a category (Weibelt ). One can 

also form D+(A), D-(A), and Db(A). Here D+(A) will be a category if A has enough injectives and 

D- (A) will be a category if A has enough projectives.] 

The derived category D(A) of Freyd'st "large" abelian category A is not isomorphic to a category, 

hence exists only as a metacategory. Therefore one cannot find a model category structure on A whose 

weak equivalences are the quasiisomorphisms (cr. p. 12-32). 

Let C be a triangulated category-then a subcategory D of C is said to be thick 

provided that it is triangulated and for any pair of morphisms i : X ...... Y, r : Y ...... X with 

r 0 i = idx, Y E ObD => X E ObD. 

PROPOSITION 10 Let C be a triangulated category with finite coproducts-then a 

triangulated subcategory D of C is thick iff every object of C which is a direct summand 

of an object of D is itself an object of D, i.e., Y E ObD & Y ~ X II Z => X E ObD. 

[Necessity: Since D is isomorphism closed, X II Z E Ob D, so one only has to consider 
inx prx 

X~XIIZ~X. 

Sufficiency: There exists an isomorphism Y ...... X II Z and a commutative diagram 
X ~Y 

~ 1 (cf. p. 15-5), hence X E Ob D.] 

XIIZ 

PROPOSITION 11 Let C be a triangulated category with finite coproducts satis

fying the octahedral axiom-then a triangulated subcategory D of C is thick iff every 
X 11 I Y 

morphism X ..!. Y in C admitting a factorization ~ ;; through an object W of D 

W 
and contained in an exact triangle X..!. Y ~ Z ~ EX, where Z E ObD, is a morphism in 

D, i.e., X, Y E Ob D. 

t An Introduction to Homological Algebra, Cambridge University Press (1994), 386-387. 

Abelian Categories, Harper & Row (1964), 131-132. 
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[Necessity: Complete X..t W to an exact triangle X t, W ~ W' ~ EX (cf. TRa)-

(i~Y !w ) (O-~/) ( _~:) 
then the triangle Y II W I Y II W' I EX I EY II EW is exact (cf. 

( ¢u ) (i~Y!w ) (O-~I) 
p. 15-5 if.), thus the triangle X I Y II W I Y II W' ---+ EX is exact (d. 
TR&). On the other hand, the triangle YIIW -t Y ~ EW -t EYIIEW is exact (d. p. 15-

5), as is the triangle X ::: Y =: Z ~ EX (cf. p. 15-1). So, in the notation of the octahedral 

axiom, taking Z' = Y II W', X' = EW, and Y' = Z, one concludes that there is an exact 

triangle Y II W' -t Z -t EW -t EY II EW'. But Z, EW E ObD => Y II W' E ObD (cf. 

Proposition 6) => Y E Ob D (cf. Proposition 10) => X E Ob D (cf. Proposition 6). 

Sufficiency: Suppose that Y E Ob D & Y R:I X II Z-then the triangle X -t X II Z -t 

Z ~ EX is exact (d. p. 15-5), thus the triangle nz ~ X -t X II Z -t EnZ is exact (cf. p. 
nz 0 IX 

15-2). But 0 E Ob D and there is a factorization "\ / . Our assumption implies 

o 
that X E ObD, so D is thick (cf. Proposition 10).] 

FAOT Let 0 be a triangulated category with finite coproducts satisfying the octahedral axiom. 

Suppose that 0 is the object class of a thick subcategory ofO-then u E So iff 3 I, 9 E MorO : uol E So, 

gou E So. 

[Complete X ~ Y to an exact triangle X ~ Y ~ Z"!?":nX (cf. TRs), the claim being that Z E O. By 
uo/ gou 

hypothesis, there are exact triangles X, --+ Y -+ Z/ -+ :nX', X --+ yl -+ Zg -+ :nX, where Z/. Zg EO. 

Since v 0 (u 0 f) = (v 0 u) 0 1= 0 (d. Proposition 3) and Mor(Z/,Z) -+ Mor(Y,Z) -+ Mor(X',Z) 

Y Z 

is exact (cf. Proposition 4), 3 a factorization "\ / . Complete Y J4 Y' to an exact triangle 

Z/ 
Y J4 Y' -+ W -+ :ny (d. TR3) and use the octahedral axiom on X ~ Y -+ Z -+ :nX, Y J4 Y' -+ W -+ :nY, 

X ~ Y' -+ Zg -+ :nX to get an exact triangle Z -+ Zg -+ W -+ :nZ or still, an exact triangle 

W -+ :nZ -+ :nZg -+ :nW. From the above, the arrow W -+ :nz factors through :nZ/ E O. But also 

:nZg E 0, thus, as 0 is thick, EZ E 0 (d. Proposition 11). i.e., Z EO.] 

[Note: The condition implies that So is saturated: So = So (d. p. 0-30), hence X E 0 iff LsoX 

is a zero object.] 

Given a triangulated category 0, call a class S C Mor 0 multiplicative if (1) S admits a calculus of left 

and right fractions and contains the isomorphisms of OJ (2) u E S =? Eu & Ou E Sj (3) I, 9 E S =? 3 h E S 

(data as in TR6)i (4) u E S iff3/,g E MorO: uol E S, gou E S. 
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Example: Let C be a triangulated category with finite coproducts satisfying the octahedral axiom

then So is multiplicative provided that 0 is the object class of a thick subcategory of C. In fact, the 

assignment 0 -+ So establishes a one-to-one correspondence between the object classes of thick subcate

gories of C and the multiplicative classes of morphisms of C. 

[Note: To place this conclusion in perspective, recall that in an abelian category there is a one-to-one 

correspondence between the Serre classes and the saturated morphism classes which admit a calculus of 

left and right fractions (Schubertt ).] 

PROPOSITION 12 Let C be a triangulated category. Assume: C has coproducts

then for any collection {Xi -+ Yi -+ Zj -+ EXi} of exact triangles, the triangle 11 Xi -+ 
i 

11 Yi -+ 11 Zi -+ 11 EX; is exact. 
iii 

[Note: The suspension functor preserves coproducts, so E 11 Xi ~ 11 EX;.] 
i ; 

Let C be a triangulated category with coproducts-then an X E Ob C is said to be 

compact if V collection {Xd of objects in C, the arrow EBMor(X,Xi) -+ Mor(X, 11 Xi) 
i i 

is an isomorphism. 

[Note: X compact => EX & OX compact.] 

EXAMPLE Let A he a commutative ring with unit-then the compact objects in D(A- MOD) 

are those objects which are isomorphic to bounded complexes of finitely generated projective A-modules 

(Bokstedt-Neemant). 

FACT If C is a triangulated category with coproducts, then the class of compact objects in C is 

the object class of a thick subcategory of C. 

Notation: Let C be a triangulated category with coproducts. Suppose given an object 

(X, f) in FIL( C)-then teleX, f) is any completion of 11 Xn ~ 11 X n to an exact triangle 
n n 

. (~~) 
(d. TR3 ), the nth component of sf being the arrow X n ) X n 11 X n+l· 

PROPOSITION 13 Let C be a triangulated category with coproducts. Fix an (X, f) 
in FIL(C)-then V compact X, the arrow colim Mor(X,Xn ) -+ Mor(X, teleX, f) is an 

isomorphism. 

t Categories, Springer Verlag (1972), 276. 

t Compositio Math. 86 (1993), 209-234. 
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[First consider the exact sequence Mor (X, Il Xn) ~ Mor (X, teleX, f) -+ Mor (X, 
n 

Il EXn) -+ Mor(X, II EXn) (cf. Proposition 4). Due to the compactness of X, in the 
n n 

EaMor(X, EXn) ---? EaMor(X, EXn) 
n n 

commutative diagram 1 1, the vertical arrows are 
Mor(X, II EXn) ---? Mor(X, II EXn) 

n n 
isomorphisms. Because the horizontal arrow on the top is injective, the same holds for 

the horizontal arrow on the bottom. Therefore ~ is surjective. Now write down the 

commutative diagram 

Mor(X,IlXn) ---? Mor(X,IlXn) ~ Mor(X,tel(X,f) ---? 0 
n n 

and observe that colim Mor (X, Xn) can be identified with the cokernel of q).] 

FACT Let C be a triangulated category with coproducts. Fix an (X,t) in FIL(C)-then "Y, 
there is an exact sequence 0 _liml Mor(EX", Y) - Mor(tel(X,t), Y) -limMor(X", Y) - O. 

A triangulated category C is said to be compactly generated if it has coproducts and 

Ob C contains a set U = {U} of compact objects such that Mor (U, X) = 0 VUE U =} 

X=O. 

[Note: The closure U = {U} of U is the set U{Enu : n ~ O} u u{nnu : n > O}.] 
U U 

The stable homotopy category is a compactly generated triangulated category. 

EXAMPLE Let X be a scheme, Ox its structure sheaf. Denote by Ox-MOD the category of 

Ox-modules and write QC/X for the full subcategory whose objects are quasicoherent-then Ox-MOD 

and QC/X are abelian categories and the inclusion QC/X - Ox-MOD is exact. In addition, Ox

MOD is Grothendieck and has a separator, thus the derived category D(Ox-MOD) exists. When X 

is quasicompact (= compact) and separated, QC/X is Grothendieck and has a separator, thus in this 

situation, the derived category D(QC/X) also exists. Mo~over, D(QC/X) is compactly generated, the 

compact objects being those objects which are isomorphic to perfect complexes (Neemant ). 

BROWN REPRESENTABILITY THEOREM Let C be a compactly generated tri

angulated category-then an exact cofunctor F : C -+ AB is representable iff it converts 

coproducts into products. 

t J. Amer. Math. Soc. 9 (1996), 205-236. 
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[The condition is clearly necessary and the proof of sufficiency is a variation on the 

argument used in Proposition 27 of §5. Thus setting Xo = IIFU . U, one has FXo = 
U 

I1(FU)FU. Call eo that element of the product defined by eo u = idFU 'V U and let 20 : - , 
U 
Mor(-,Xo) ~ F be the natural transformation associated with eo via Yoneda. Note that 

2 0 ,u : Mor(U,Xo) ~ FU is surjective 'V U. Proceeding inductively, we shall construct an 

object (X, f) in FIL(C) and natural transformations 2n : Mor (-, Xn) ~ F such that 'V n, 
Mor(-,Xn ) 

the triangle 1 ~ commutes. To this end, put K n = II (ker 2n u)· U and - , 
U 

Mor(-,Xn+l)~F 
-n+1 f 

complete the canonical arrow Kn ~ Xn to an exact triangle Kn ~ Xn ~ X n+1 ~ I:::Kn 

(cf. TR3)' If en E FXn corresponds to 2 n) then en E ker(FXn ~ FKn) and since the 

sequence FXn+1 ~ FXn ~ FKn is exact, 3 en+l E FXn+1 : en+l ~ en. Definition: 

2n+l +-+ en+l' which finishes the induction. Abbreviating teleX, f) to X w, there is a 
Mor(-,Xn) 

natural transformation 2w : Mor (-, Xw) ~ F rendering the triangle 1 ~ 
Mor (-, Xw) --:;:;+ F 

-w 

FXw -+ F(IIXn) ~ F(IIXn) 
n n 

commutative 'V n. Proof: Consider the diagram II II 
I1FXn -+ I1FXn 
n n 

Because n en lies in the kernel of n FXn ~ n FXn, exactness gives a ew E FXw : ew ~ 
n n n 

I1 en, hence 2w +-+ ew has the stated property. The final step is to establish that 2w,x : 
n 

Mor(X,Xw) ~ FX is bijective 'V X. But it is certainly true that 2w u is bijective 'V U , 
(injectivity follows from the construction of Xw (cf. Proposition 13» while Mor (U, Xo) ~ 
FU surjective => Mor(U,Xw) ~ FU surjective) and this turns out to be enough (cf. 
infra).] 

The assumption that Mor (U, X) . = 0 'V U E U => X = 0 has yet to be employed. 

To do so, let CF be the full, isomorphism closed subcategory of C whose objects are 

those X such that 2 w ,EnX : Mor(I:::nX,Xw ) ~ FI:::nx is bijective 'V n > 0 and 2 w ,nnX : 

Mor(nnX,Xw ) ~ FnnX is bijective 'Vn;::: O. Obviously, CF contains 0 andU. 

Claim: C F is stable under I::: & n. 

[To check stability under I:::, fix an X E Ob CF-then 'V n ;::: 0, Mor(I:::nI:::X,Xw ) = 
Mor(I:::n+l X,Xw) ~ FI:::n+l X = FI:::nI:::X. On the other hand, the arrow of adjunction 

X ~ nI:::X is an isomorphism, thus one sees inductively from the commutative diagram 
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Mor (onEX, Xw) ----+ Mor(On-1X,Xw) 

1 1 that Mor (onEX, Xw) ::::::I FonEX. Therefore 

FonEX FOn-lX 

EX E CF.] 

Claim: If X...!; Y...!. Z ~ EX is an exact triangle with X, Y E Db CF, then Z E 

ObCF· 
[Use the five lemma.] 

Claim: C F is closed under the formation of coproducts in C. 

[E.g.: Mor(En llXi,Xw)::::::I Mor(IlXi,OnXw)::::::I TIMor(Xi,OnXw)::::::I TIMor(EnXi, 
iii i 

Xw)::::::I TIFEnXi ::::::I F(ll En Xi)::::::I F(En II Xi).] 
iii 

In summary, C F is a triangulated subcategory of C containing U and closed under 

the formation of coproducts in C. To conclude that Sw,x : Mor(X,Xw) -t FX is bijective 

V X, it need only be shown that CF = C, which is a special case of the following result. 

PROPOSITION 14 Let C be a compactly generated triangulated category. Suppose 

that D is a triangulated subcategory of C containing U and closed under the formation of 

coproducts in C-then D = C. 

[Let D be the smallest triangulated subcategory of C containing U and closed under 

the formation of coproducts in C. Fix an X in C-then the restriction of Mor (-, X) to D 
is an exact cofunctor. Applying what has been proved above about Brown represent ability 

to Mor (-, X), one concludes that there exists an X w in D and a natural isomorphism 

Mor (-, X w) -t Mor (-, X) (the minimality of D enters the picture at this point). Accord

ingly, 3 a morphism X w -t X such that V X in D, the arrow Mor (X, X w) -t Mor (X, X) 
is bijective. Complete X w -t X to an exact triangle X w -t X -t Y -t EX w in C (cf. 

TRa)-then V X in D, Mor(X, Y) = 0 => VUE U, Mor(U, Y) = 0 => Y = O. Conse

quently, the morphism X w -t X is an isomorphism (cf. p. 15-6), so X E Db D (D is 

isomorphism closed), hence D = C => D = C.] 

Application: Let C be a compactly generated triangulated category. Suppose that 

.::. : Mor (-, Y) -t Mor (-, Z) is a natural transformation such that V U E U, Su is 

bijective-then for all X in C, Sx : Mor (X, Y) -t Mor (X, Z) is bijective. 

[Note: H S/ : Mor(-, Y) -t Mor(-, Z) is the natural transformation corresponding 

to f : Y -t Z, then f is an isomorphism whenever S/,u is bijective V U E U.] 

Example: Suppose that C is a compactly generated triangulated category. Let 6. : 

I -t C be a diagram-then a weak colimit L of 6. is said to be a minimal weak colimit 
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provided that 'if U E U, colim Mor (U, Ai) ~ Mor (U, L). If L is a minimal weak colimit of 

A and if K is an arbitrary weak colimit of A, there are arrows L ~ K ~ L and 'if U E U, 

S",of/l,U : Mor (U, L) -t Mor (U, L) is bijective, thus by the above, tP 0 ¢ is an isomorphism. 

Corollary: L is a direct summand of K (c!. p. 15-5). 

[Note: L & K minimal::} L ~ K. Example: 'if (X, f) in FIL(C), teleX, f) is a minimal 

weak colimit of (X, f) (cf. Proposition 13).] 

EXAMPLE Suppose that C is a compactly generated triangulated category. Fix a compact object 

X-then for any divisible abelian group A, Hom(Mor(X,-), A) is an exact cofunctor which converts 

coproducts into products, thus is representable. 

EXAMPLE (Idempotents Split) Suppose that C is a compactly generated triangulated category. 

Let e E Mor (Y, Y) be idempotent-then 3 X, Z and an isomorphism Y - X II Z such that the diagram 
Y e )Y 

1 1 commutes. 

XIIZ~X--?XIIZ 

[Using suggestive notation, write Mor(-, Y) as a direct sum eMor(-, Y)e(l- e)Mor (-, Y) of two 

exact cofunctors which convert coproducts into products and choose X,Z : eMor(-, Y) ~ Mor(-, X), 

(1- e)Mor(-, Y) ~ Mor(-,Z).] 

[Note: Defining r : Y - X and i : X - Y in the obvious way, one has e = i 0 r and r 0 i = idx. 

Moreover, r : Y - X is a split coequalizer of e, idy : Y - Y, as can be seen from the diagram 
idy 

£ 1£ 
Y~Y~X] 

idy ~F 

Y 

EXAMPLE (The Eilenberg Swindle) Suppose that C is a compactly generated triangulated cat

egory. Let D be a triangulated subcategory of C. Assume: D is closed under the formation of coproducts 

in C-then D is thick. 

[Fix a pair of morphismsi : X - Y, r : Y - X with roi = idx and Y E ObD. Put e = ior. Sincee 

is an idempotent, by the preceding example Y ~ XIIZ for some Z. Write W = XII(ZIIX)II( ZIIX) II ... ~ 

(X II Z) II (X II Z) II . .. to get W E Ob D. But W ~ X II W ~ W II X =? W II X E Ob D. Because the 

triangle W - W II X - X ~ EW is exact (d. p. 15-4 fr.), it follows that X E ObD.] 

EXAMPLE Suppose that C is a compactly generated triangulated category-then C has prod

ucts. Proof: Given a set of objects Xi, apply the Brown represent ability theorem to the exact cofunctor 

Y - II Mor(Y, Xi). 
i 
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[Note: The morphism t : Il Xi - n Xi of p. 0-34 is an isomorphism iff V U E U : #{i 
i i 

Mor (U, Xi) :f: o} < w. To see this, consider the arrow Mor (U, Il Xi) = E9 Mor(U,Xi) - n Mor(U,Xi) = 
iii 

Mor (U, n Xi).] 
i 

PROPOSITION 15 Let C be a compactly generated triangulated category and let D 

be an arbitrary triangulated category. Suppose that F: C -oJ. D is a triangulated functor 

which preserves coproducts-then F has a right adjoint G: D -oJ. C. 

[Given aYE ObD, the cofunctor X -oJ. Mor(FX, Y) is exact and converts coproducts 

into products, thus is representable: Mor(F-, Y) ~ Mor(-, GY).] 

FACT Let C be a compactly generated triangulated category and let D be an arbitrary triangulated 

category. Suppose that F : C - D is a triangulated functor which preserves coproducts-then its right 

adjoint G : D - C preserves coproducts iff VUE U, FU is compact. 

[Necessity: E9 Mor (FU, Yj) ~ E9 Mor (U, GYj) ~ Mor (U, Il GYj) ~ Mor (U, G Il Yj) ~ Mor (FU, 
j j j j 

Il Yj). 
j 

Sufficiency: The natural transformation S : Mor (-, Il GYj) - Mor (-, G Il Yj) corresponding to 
j j 

the arrow Il GYj - G Il Yj has the property that Su is bijective V U E U, hence Il GYj ~ G Il Yj (cf. 
j j j j 

p. 15-16).] 

Notation: U+ is the class of objects in C that are coproducts of objects in U. 

Definition: An object (X, f) in FIL(C) is completable in U+ if Xo E U+ and V n ~ 0, 

there is an exact triangle Xn ~ X n+1 -oJ. Zn -oJ. EXn with Zn in U+. 

PROPOSITION 16 Let C be a compactly generated triangulated category. Suppose 

that F : C -oJ. AB is an exact cofunctor which converts coproducts into products-then 3 
an object (X, f) in FIL(C), completable in U+, such that teleX, f) represents F. 

[This is implicit in the proof of the Brown represent ability theorem. Thus by defini

tion, Xo E U+. Consider the exact triangle Kn -oJ. Xn ~ Xn+I -oJ. EKn. Since EKn = 
E(Il(kerSn,u)'U) ~ Il(kerSn,u)·EU, there is an exact triangle Xn ~ X n+1 -oJ. Zn -oJ. EXn 

u u 
with Zn E U+.J 

[Note: If U = onu (n ~ 1), then EU = Eonu = Eo(on-lU) ~ on-1U E U.] 

Application: Fix an X E Ob C-then 3 an object (X, f) in FIL(C), completable in 

U+, such that X ~ teleX, f). 

[In Proposition 16, take F = Mor(-,X).] 
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Let C be a compactly generated triangulated category satisfying the octahedral axiom

then one may form ExtU and ExtU+ (cf. p. 15-10). Example: Using the notation of 

Proposition 16, V n ;:::: 0, Xn E ExtU+. 

LEMMA Let C be a compactly generated triangulated category satisfying the oc

tahedral axiom. Fix a compact object X and suppose that Z' --+ Z --+ ZIt --+ EZ' is an 
X 

exact triangle with ZIt E Ext U+-then every diagram . 1 can be completed 

Z' --+ Z 
--+ X X' 

to a commutative diagram 1 
Z' 

1 in such a way that there is an exact triangle 
--+ Z 

X' --+ X --+ X" --+ EX' with X" E Ext U. 

[Argue by induction on the length 1 of Z". 

Case 1: 1 = 1. Here ZIt E U+. Since X is compact, the composition X --+ Z --+ 
X --+ X" 

ZIt factors through a finite coproduct X" C ZIt and 1 1 
Z' --+ Z 

X --+ X" 
--+ zIt --+ EZ' 
--+ EX' X' 

extends to a morphism of exact triangles 1 
Z' --+ 

1 1 
Z --+ ZIt 

1 (cf. Propo

--+ EZ' 
sition 1). 

Case 2: 1 > 1. By assumption, ZIt occurs in an exact triangle Z~' --+ ZIt --+ Z{' --+ 

EZ~', where Z~', Z~' E Ext U+ and have length < 1. Complete the composite Z --+ ZIt --+ Z~' 

to an exact triangle Z --+ Z{' --+ W --+ EZ (cf. TR3).Using the octahedral axiom on 
Z' ---+Z 

Z --+ ZIt --+ EZ' --+ EZ ZIt --+ ZIt --+ EZ" --+ EZ" construct a factorization , 1 0 , 

of Z' --+ Z and exact triangles Z' --+ Z --+ Z~' --+ EZ', Z --+ Z --+ Z{' --+ EZ. 
X' --+ X --+ 

to the induction hypothesis, there is a commutative diagram 1 
Z' --+ 

1 
Z --+ 

~l 
Z 

Owing 

X 

1 and 

Z 

exact triangles X' --+ X --+ X~' --+ EX', X --+ X --+ X~' --+ EX, where X~', X~' E Ext U. 

Complete the composite X' --+ X --+ X to an exact triangle X' --+ X --+ X" --+ EX' (cf. 

TR3)-then the octahedral axiom implies that X" E ExtU.] 

PROPOSITION 17 Let C be a compactly generated triangulated category satisfying 

the octahedral axiom-then every compact object X in C is a direct summand of an object 

in ExtU. 
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[Write X ~ teleX, f) (cf. supra). Since colim Mor (X, Xn) ~ Mor (X, X) (cf. Proposi-
X idx ~ X 

tion 13), idx factors through some Xn: ~ /r On the other hand, Xn E ExtU+ 

Xn 
X 

WXn 1 and 0 -+ X n --+ X n -+ 0 is exact. One may therefore apply the lemma to 

X, ---+ X 

and produce a commutative diagram 1 1 plus an exact triangle X' -+ X -+ 

o ---+ Xn 
X" -+ EX' with X" E Ext U. But the arrow X' -+ X is the zero morphism, thus 

X" ~ X II EX' (cf. p. 15-5).] 

Notation: cpt C is the thick subcategory of C whose objects are compact. 

THEOREM OF NEEMAN-RAVENEL Let C be a compactly generated triangulated 

category satisfying the octahedral axiom-then the thick subcategory generated by U is 

cptC. 

[This is a consequence of Proposition 10 and Proposition 17.] 

[Note: The thick subcategory generated by U is, of course, the intersection of the 

conglomerate of thick subcategories of C containing U.] 

The proof of the Neeman-Ravenel theorem depends on the octahedral axiom (by way 

of Proposition 17) but its use can be eliminated. Thus let A be the thick subcategory 

generated by U and fix a skeleton A of A-then A is small (since U is a set) and for any 

X in C, AI X is the category whose objects are the arrows K -+ X and whose morphisms 
K ~L 

(K -+ X) -+ (L -+ X) are the commutative triangles ~ / (K, Lin A). 

X 

LEMMA V X, the category AI X is filtered. 

[Note: The assignment X -+ A/X defines a functor C -+ CAT.] 

In what follows, colim stands for a colimit calculated over AI X. 
X . 

PROPOSITION 18 Let C be a compactly generated triangulated category. Suppose 

that F: A -+ AB is an exact functor. Given an X E abC, put FX = colimFK-then 
x 

'........... F: C -+ AB is an exact functor which converts coproducts into direct sums. 
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[Note: V K in A, FK ~ FK.] 

Remark: Suppose that F : C -+ AB is an exact functor which converts coproducts 

into direct sums-· then the natural transformation FIA -+ F is a natural isomorphism. 

{ 
FIA~nx -+ F~nx. . 

Proof: The X such that the arrows FIAon X -+ Fon X are lsomorphlsms V n ~ 0 

constitute the object class of a triangulated subcategory of C containing U and closed 

under the formation of coproducts in C, thus is all of C (cf. Proposition 14). 

THEOREM OF NEEMAN-RAVENEL (bis) Let C be a compactly generated trian

gulated category-then the thick subcategory generated by U is cpt C. 

[V compact X, the exact functor Mor (X, -) converts coproducts into direct sums. 

Therefore, by the above remark, Mor{X,-)IA ~ Mor{X,-), so idx factors through some 
X idx ) X 

Kin A: ~ /r .J 
K 

PROPOSITION 19 Let C be a compactly generated triangulated category-then 

cpt C has a small skeleton. 

Let C be a compactly generated triangulated category-then the additive functor cat

egory [{cpt C)OP, AB]+ is a complete and cocomplete abelian category and has enough pro

jectives (cf. p. 0-38). Call EX[(cpt C)OP,AB]+ the full subcategory of [(cpt C)OP, ABJ+ 

whose objects are the exact cofunctors F : cpt C -+ AB. 

PROPOSITION 20 Let C be a compactly generated triangulated category-then all 

the projective objects of [{cpt C)OP, AB]+ lie in EX[{ cpt C)OP, AB]+. 

[Every projective object of [(cpt C)OP, AB]+ is a direct summand of a coproduct of 

representable cofunctors. J 

PROPOSITION 21 Let C be a compactly generated triangulated category-then 

~very object in [{cpt C)OP,AB]+ of finite projective dimension belongs to EX[(cpt C)OP, 

AB]+, 

Notation: Write hx for the restriction Mor(-,X)lcpt C and write hI : hx -+ hy for 

the natural transformation induced by the morphism f : X -+ Y. 

FACT Let C be a compactly generated triangulated category-then the functor h : C -+ [(cpt C)OP , 

AB]+ is exact, conservative, and preserves products & coproducts. 
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Let C be a compactly generated triangulated category-then C is said to admit 

Adams represent ability if the following conditions are satisfied. 

(ADR1 ) Every exact cofunctor F : cpt C -+ AB is representable in the large, 

i.e., 3 an X E ObC and a natural isomorphism hx -+ F. 

(ADR2 ) Every natural transformation hx -+ hy is induced by a morphism 

f: X -+ Y. 

FACT Suppose that C admits Adams represent ability-then IND(cpt C) is equivalent to 

EX[(cpt C)OP, AB]+. 

LEMMA Let C be a compactly generated triangulated category. Assume: C admits 

Adams represent ability-then hx :::::: hy => X :::::: Y, thus an object representing a given 

exact cofunctor F : cpt C -+ AB is unique up to isomorphism. 

Suppose that C admits Adams represent ability-then V X, Y E Ob C, there is a 

surjection Mor(X,Y) -+ Nat(hx,hy), viz. f -+ hI' Definition: f is said to be a 

phantom map provided that hI = O. So, if Ph( X, Y) is the subgroup of Mor (X, Y) 
consisting of the phantom maps, then the sequence 0 -+ Ph(X, Y) -+ Mor(X, Y) -+ 

Nat(hx,hy) -+ 0 is short exact. 

[Note: Let f E Ph(X, Y)-then for any ifJ : X, -+ X, f 0 ifJ E Ph(X', Y), and 

for any 'IjJ : Y -+ Y', 'IjJ 0 f E Ph(X, Y'). This has the consequence that it makes 

sense to form the quotient category C/Ph, where the set of morphisms from X to Y 

is Mor(X, Y)/Ph(X, Y).] 

LEMMA Let C be a compactly generated triangulated category. Assume: C admits 

Adams representability-then hx is projective iff X is a direct summand of a coproduct 

of compact objects. 

EXAMPLE Consider any exact triangle W ~ 11 X,..!.. II Xi --+ EW (t as on p. 0-34)-then w is 
i 

a phantom map. 

FACT Suppose that C admits Adams representability-then f : X --+ Y is a phantom map iff V 

compa.ct K and every q, : K --+ X, the composite f 0 q, vanishes. 

EXAMPLE Given an X E ObC, complete 11 K --+ X to an exact tria.ngle 11 K --+ X ~X--+ 
A/X A/X 

11 EK (cf. TRa)-then e is a. phantom map. Moreover, every f E Ph(X, Y) factors through e. 
A/X 
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Corollary: All phantom maps out of X vanish iff e = O. And, when e = 0, X is a direct summand of 

II K. 
A/X 

[Note: Therefore e is a "universal" phantom map (cf. p. 5-90).] 

FACT Suppose that C admits Adams represent ability-then f : X -+ Y is a phantom map iff V 

exact functor F : C -+ AB which converts coproducts into direct sums, Ff = O. 

PROPOSITION 22 Let C be a compactly generated triangulated category. Assume: 

C admits Adams represent ability. Let .6. : I -+ C be a diagram, where I is filtered and 

\;f i E Db I, .6.. is compact-then .6. has a minimal weak colimit. 

[Put F = colim ht:..; (thus \;f compact K, FK = colim Mor(K,~.». Since AB is 

Grothendieck, F is exact, so by ADR1 , 3 an X E Db C and a natural isomorphism hx -+ F. 

Claim: X is a minimal weak colimit of ~. Indeed, \;f i, there is a natural transformation 

2.: ht:..; -+ hx and, by ADR2 , 21 = hI; (3 /i:.6.1 -+ X). Moreover, /i is determined 

up to an element of Ph(~i'X), But.6.1 compact:::} Ph(.6.i,X) = 0, hence /i is unique. 

Consequently, {.6.i A X} is a natural sink. If now {.6. i ~ Y} is another natural sink, then 

32 E Nat(hx,hy): \;f i, hg; = B 0 hI .. However B = hljJ for some </>: X -+ Y (cf. ADR2 ) 

and this means that 9i = </> 0 /i. Therefore X is a weak colimit of~. Minimality is obvious.] 

EXAMPLE Suppose that C admits Adams representability. Fix an X E Ob C and consider the 

functor AI X -+ C that sends K -+ X to K. Since AI X is filtered, this functor has a minimal weak colimit 

Lx (cf. Proposition 22). There is an arrow Lx -+ X and V U E U, Mor(U,Lx) ~ colim Mor(U,K) ~ 
X· 

Mor(U,X) => Lx ~ X (cf. p. 15-16). 

FACT Let C be a compactly generated triangulated category. Assume: Every functor from a 

filtered category I to C with compact values has a minimal weak colimit-then C admits Adams repre

sent ability. 

LEMMA Let C be a compactly generated triangulated category. Assume: C admits 

Adams represent ability-then for any X in C, there is an exact triangle P -+ Q -+ X -+ 

EP such that hp & hQ are projective and the sequence 0 -+ hp -+ hQ -+ hx -+ 0 is short 

exact. 

[The functor AI X -+ C that sends K -+ X to K has a minimal weak colimit, viz. X 

(see the preceding example). It also has a weak colimit Y constructed via the procedure 

on p. 15-4: II K -+ II K -+ Y -+ II EK. Since X is minimal, 3 arrows </> : X -+ Y, 
'-' K-L A/X K-L 
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11 K >X 

tP : Y ~ X such that tP 0 ¢ is an isomorphism and the triangles AI X ~ 1,p , 

Y 
11 K • Y 

A/ X ~ 1'" commute (cf. p. 15-16 ff.). Define P by requiring that P ~ Jl K ~ 
~ A/x 

X . 
X ~ 'EP be exact. Using Proposition 1, determine arrows f : P ~ 11 K, g: 11 K ~ 

K--L K--L 
P such that the diagram 

P ---1-1 11 K ----+ X ---1-1 EP 
A/X 

commutes-then 9 0 f is an isomorphism (cf. p. 

of 11 hK which implies that hp is projective. 
K--L 

o ~ hp ~ hQ ~ hx ~ 0 is short exact.] 

15-4), hence hp is a direct stlmmand 

And with Q = 11 K, the sequence 
A/x 

Remark: The arrow X ~ EP is a phantom map and if f : X ~ Y is a phantom map, 
X ----+EP 

then there is a commutative triangle f 1 / (cf. p. 15-22 ff.). 

Y 
Example: f E Ph(X, Y) & 9 E Ph(Y, Z) => go f = O. Proof: hp projective => hEP 

projective => Ph(EP, Z) = o. 

PROPOSITION 23 Let C be a compactly generated triangulated category. Assume: 

C admits Adams represent ability-then EX[( cpt C)OP ,AB]+ is the full subcategory of 

[(cpt C)OP ,AB]+ whose objects have projective dimension :5 1. 

[On account of Proposition 21, it need only be shown that every Fin EX[( cpt C)OP, 

AB]+ has projective dimension < 1. But by ADR1 , 3 X : hx ~ F and the lemma implies 

that hx has a projective resolution of length :5 1.] 

FACT Suppose that C admits Adams represent ability-then V X, Y E ObC, Ph(OX, Y) ~ 

Ext(hx, hy ). 
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LEMMA Let C be a compactly generated triangulated category-then every exact 

cofunctor F : cpt C --+ AB of projective dimension :5 1 has a projective resolution 0 --+ 

H --+ G --+ F --+ 0, where G, H are coproducts of representable cofunctors. 

[By hypothesis, there is a projective resolution 0 --+ F" --+ F' --+ F --+ O. Here F' 

is a coproduct of representable cofunctors, while F" is a direct summand of a coproduct 
00 00 

of 'representable cofunctors, say F" II F" ~~. Noting that II ~ ~ F" II ll~, consider 
1 1 

00 00 

0--+ F" II II ~ --+ F' II II ~ --+ F --+ 0.] 
1 1 

PROPOSITION 24 Let C be a compactly generated triangulated category. Assume: 

Every exact cofunctor F : cpt C --+ AB has projective dimension :5 I-then C admits 

Adams represent ability. 

[It is a question of checking the validity of ADRI and ADR2 • 

Re: ADR1 • Fix an exact cofunctor F : cpt C --+ AB and resolve it per the 

lemma: 0 --+ H --+ G --+ F --+ O. Write G = II Mor (-, K), H = II Mor (-, L )-then the 

arrow H --+ G gives rise to a morphism ilL --+ ilK which can be completed to an exact 

triangle ilL --+ ilK --+ X --+ Ilr:L (d. TRa) and hx ~ F. 

Re: ADR2 • Fix a natural transformation::: : hx --+ hy. Choose projective 

resolutions 0 --+ Hx --+ Gx --+ hx --+ 0, 0 --+ Hy --+ Gy --+ hy --+ 0 per the lemma and lift 
o --+ Hx --+ Gx --+ hx --+ 0 

::: to a commutative diagram 1 1 1= . Write Gx = 

o --+ Hy --+ Gy --+ hy --+ 0 
IlMor(-,Kx), Hx = IlMor(-,Lx), Gy = IlMor(-,Ky), Hy = IlMor(-,Ly)

IlLx --+ IlKx 

then there is a commutative diagram 1 1 in C. Complete it to a morphism 

ilLy --+ ilK y 
IlLx --+ IlKx --+ X' --+ Ilr:Lx 

1 1 1 of exact triangles (d. TRa & TRs). The 

ilLy --+ ilK y --+ y' --+ Ilr:Ly 
o --+ Hx --+ Gx --+ hx, --+ 0 

rows in the commutative diagram 1 1 1 hl' are short 
o --+ Hy --+ Gy --+ hy, --+ 0 

exact. Working with x, the composite IlLx --+ IlKx --+ X is a phantom map, hence 
IlKx --+X' 

vanishes, thus 3 a commutative triangle 1 ~ and hq, : hXI --+ hx is a natural 

X 
isomorphism, so <p : X' --+ X is an isomorphism (h is conservative (d. p. 15-21». 
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hx' 
Similar considerations apply to Y. Since h

"
l 

hyl 

htPof'oif/-l.] 

~ hx 

18 commutes, it follows that E = 

---+ hy 
h", 

Let C be a compactly generated triangulated category-then Propositions 23 and 24 

tell us that C admits Adams represent ability iff every object of EX[( cpt C)OP, AB]+ has 

projective dimension:$ 1 in [(cpt C)OP, AB]+. And this condition can be realized. Indeed, 

it suffices that cpt C possess a countable skeleton ( cf. infra).· 

[Note: Recall that in any event cpt C has a small skeleton (cf. Proposition 19).] 

NEEMAN'S COUNTABILITY CRITERION Let C be a triangulated category with 

finite coproducts and a countable skeleton-then every object of EX[CoP, AB]+ has pro

jective dimension :$ 1 in [CoP, AB]+. 

[Note: EX[CoP, AB]+ is the full subcategory of [CoP, AB]+ whose objects are the 

exact cofunctors F: C -+ AB.] 

The stable homotopy category is a compactly generated triangulated category and its full subcategory 

of compact objects has a countable skeleton. Therefore the stable homotopy category admits Adams 

represent ability. 

The proof of Neeman's count ability criterion requires some preparation. Call an object 

of [CoP, AB]+ free if it is a coproduct of representable cofunctors. Definition: 'V F in 

[CoP, AB1+, #(F) is the smallest infinite cardinal ,.. for which there is a free presentation 

F" -+ F' -+ F -+ 0, where F', F" are coproducts of :$ ,.. representable cofunctors. 

Observation: If 0 -+ F" -+ F' -+ F -+ 0 is a short exact sequence in [CoP, AB1+ and 

if #(F") :$ ,.., #(F') :$ ,.., then #(F) :$ ,... 

Let ,.. be an infinite cardinal-then C is said to satisfy condition,.. if for any F in 

EX[CoP,AB1+ and any morphism cP -+ F, where #(cp) :$ ,.., there is a factorization 

cP -+ '11 -+ F such that '11 -+ F is a monomorphism and '11 has a free resolution 0 -+ '11" -+ 

'11' -+ 'II -+ 0, where '11', '11" are coproducts of :$ ,.. representable cofunctors (:::} #('11) :$ ,..). 

Observation: Suppose that C satisfies condition ,..-then every object F of EX[CoP, 

AB]+ with#(F) '5 ,.. has a free resolution 0 -+ F" -+ F' -+ F -+ 0, where F', F" are 

coproducts of '5 ,.. representable cofunctors. In particular: The projective dimension of F 

is'51. 

LEMMA Suppose that C satisfies condition ,... Let F -+ G be a monomorphism of 

exact cofunctors, where #(F) :$ ,.., #( G) :$ ,..-then for any free resolution 0 -+ F" -+ 
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F' ~ F ~ 0 of F, there exists a free resolution 0 ~ G" ~ G' ~ G ~ 0 of G and 
o -I> F" -I> F' -I> F -I> 0 

a commutative diagram ! ! ! 
o -I> G" -I> G' -I> G -1>. 0 

F' ~ G' are split monomorphisms. 

such that F" ~ Gil , 

[Complete F ~ G to a short exact .sequence 0 ~ F ~ G ~ H ~ O. Since F, G are 

exact, so is H. Moreover, #(F) ~ K, #(G) ~ K ::;. #(H) ~ K (cf. supra). Fix a free 
resolution 0 ~ H" ~ H' ~ H ~ 0, where H', H" are coproducts of ~ K representable 

cofunctors, and extend 0 

! 
0 -I> F" -I> F' -I> F -I> 0 

! 
G 

! 
0 -I> H" -I> H' -I> H -I> 0 

! 
0 

in the obvious way: 0 ~ F" EI1 H" ~ F' EI1 H' ~ G ~ 0.] 

[Note: Therefore if F', F" are coproducts of ~ K representable cofunctors, then 

G' = F' EI1 H', G" = F" EI1 H" are coproducts of ~ x: representable cofunctors.] 

MAIN LEMMA Let C be a countable triangulated category with finite coproducts

then C satisfies condition x: for every x:, hence Neeman's countability criterion is valid. 

[Fix an Fin EX[CoP,AB]+ and a morphism ~ ~ F. 

#( ~) = w. There is a free presentation ~" ~ ~, ~ ~ ~ 0, where ~', ~" are 

countable coproducts of representable cofunctors. Accordingly, one can assume without 

loss of generality that ~ is a countable coproduct of representable cofunctors (replace 
00 

~ ~ F by ~' ~ ~ ~ F), say ~ = 11 Mor (-, Xi), the morphism ~ ~ F corresponding 
o 

to a sequence of natural transformations Mor(-,Xi) ~ F. Put Xf = Xi. Since C 
k 

is countable, V X E Db C, Mor(X, 11 Xf) is countable, thus its subset SX,k consisting 
i=O 

k 
of the arrows for which the composite Mor (-, X) ~ 11 Mor (-, xf) ~ F vanishes is 

i=O 
k 

countable. Enumerate the elements of U SX,k' Supposing that X ~ 11 Xf is the Ith 
X,k i=O 

k 
such, define Xl by the exact triangle X ~ 11 X? ~ Xl ~ EX (cf. TR3). The natural 

i=O 
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k k 
transformation II Mor(-,Xp) --+ F determines an element x E FII Xp that, under the 

*=0 ;=0 
k 

arrow F II Xp --+ F X, is sent to O. Since F is exact, 3 an element of F Xl mapping to x. 
i=O 

k k 
This means that II Mor(-,Xp) --+ F factors as II Mor(-,Xp) --+ Mor(-,Xl) --+ F. 

i=O .=0 
Iterate the procedure: From the set {Xl} one can produce the set {Xl}. Continuing, the 

upshot is a countable filtered category I whose objects are the xt and whose morphisms 

X ,k --+ X~' are the identities and the composites arising from the construction. There 

is a functor 1--+ [C, AB]+ that sends xt to Mor(-, xt). The natural transformations 

Mor (-, Xf) --+ F constitute a natural sink and the arrow coHm Mor (-, Xf) --+ F is a 

monomorphism. Definition: q, = coHm Mor(-,Xf). It is clear that the Mor(-,X.) --+ F 
factor through q,. To show that q, has a free resolution 0 --+ q," --+ q,' --+ q, --+ 0, 

where q,', q," are countable coproducts of representable cofunctors, :fix a final functor 

V : [N] --+ I (see below)-then q, ~ coHm Mor (-, V n) and there is a short exact sequence 

o --+ II Mor (-,V n) ~ II Mor (-, V n) --+ q, --+ O. Here the nth component of sf is the 
n n 

( 
id ) 

-in 
arrow Vn I Vn II V n+1 (fn : Vn --+ V n+1). 

#(ifJ) = K (> w). The induction hypothesis is that C satisfies condition K' for 

all infinite cardinals K' < K. One can assume from the start that ifJ is a coproduct of < K 

representable cofunctors. If ifJ is the coproduct of < K representable cofunctors, we are 

done. Suppose, therefore, that if1 = II Mor (-, Xa). The idea then is to define for each 
O<a<1< 

a E [w, K[ a subobject q, a C F such that a < (3 => q, a C ifJp and which has a free resolution 

o --+ q,~ --+ q,~ --+ q,a --+ 0, where q,~, q,~ are coproducts of ::5 #(a) representable 

cofunctors. Matters will be arranged so as to ensure that II Mor(-,Xi) --+ F factors 
i<a 

as II Mor(-,Xi) --+ q,a --+ F. In addition, when a < (3, there will be a commutative 
i<a 

o ~ q,~ ~ q,~ ~ q,a ~ 0 

diagram 1 1 1 with q,~ --+ q,p, q,: --+ q,p split 
o ~ q," ~ q,' ~ q, p ~ 0 

monomorphisms, an! when a <P(3 < " the composite 

0 ~ q," a ~ q,' a ~ q,a ~ 0 

1 1 1 
0 ~ q," P ~ q,' P ~ q,p ~ 0 

1 1 1 
0 ~ q," .., ~ q,' .., ~ q,.., ~ 0 



15-29 

o \It" a \It' a --+ 0 

will equal 1 1 1 Thus determine' \It w by applying 

o --+ \It~ --+ \It~ --+ \It "y --+ 0 
the above to the arrow II Mor (-, Xi) -+ F. Proceeding, let w < a, the supposition 

i<w 
being that the \It i have been defined "I i < a. H a is a successor ordinal, say a = f3 + 1, set 

r;;' = #( \It 1') and consider the morphism \It I' E9 Mor (-, XI') -+ F. Appeal to the induction 

hypothesis secures a factorization \Itp E9 Mor(-, XI') -+ \ItP+l -+ F. \Itp is obviously 

a sub object of q, 1'+1 and since C satisfies condition r;;', the lemma guarantees that the 

free resolution 0 -+ \It~ -+ \It~ -+ \It I' -+ 0 can be extended to a map of free resolutions 
o --+ \It~ --+ \It~ --+ \It I' --+ 0 

1 1 1 with \It~ -+ \It~+1' \It~ -+ \It~+1 split 

o --+ \It~+1 --+ \It~+1 --+ \It 1'+1 --+ 0 
monomorpliisms and \It~+1' \It~+1 (as well as \It~+d\It~, \It~+d\It~) a coproduct of ~ r;;' 

representable cofunctors. H a is a limit ordinal, put \It a = colim \Iti, \It~ = colim \It~, 

\It~ = colim \It~'. That \It~, \It~ are in fact coproducts of ~ #( a) representable cofundors 

follows upon observing that \It~ = \It~ E9 { II \It~+1/\Itn, \It~ = \It~ E9 { II \Iti+1/\Itj'}· 
w$i<a w$i<a . 

Conclusion: C satisfies condition r;;.] 

LEMMA Suppose that I is a countable filtered category-then 3 a final functor [N] -+ I. 

[One can find a directed set (J, $) and a final functor J -+ I (cf. p. 0-11). Since I is countable, so 

is J (this fact is contained in the passage from I to J (Cordier-Portert». Arrange the elements of J in a 

sequence io,it, ... ,and take Ito = io, It'll ~ It'll-I, in (n ~ 1) to get a final functor [N] -+ J.] 

EXAMPLE Consider D(A-MOD), where A is commutative and noetherian-then ifD(A-MOD) 

admits Adams represent ability, every flat A-module has projective dimension $ 1 (Neeman~). Example: 

Take A = O[z, g]-then the projective dimension of O(z, g) is 2, therefore in this case D(A-MOD) does 

not admit Adams representability. 

[Note: Recalling the characterization of compact objects in D(A-MOD) mentioned on p. 15-13, 

Neeman's countability criterion implies that D(A-MOD) admits Adams representability provided that A 

is countable.] 

Let C be a compactly generated triangulated category. Suppose that D is a reflective 

subcategory of C, R a reflector for D. Put T = i 0 R, where i : D -+ C is the inclusion, 

t Shape Theory, Ellis Horwood (1989), 42-44. 

Topology 36 (1997), 619-645. 
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and let (5, D) be the associated orthogonal pair (cf. p. 0-22)-then T is said to be a 

localization functor if T is a triangulated functor. 

[Note: The elements of 5 are the T-equiva.lences. The elements of D (i.e., the X such 

that fX : X -+ TX is an isomorphism) are the T-Iocal objects and the elements of ker T 

(i.e., the X such that TX = 0) are the T-acyclic objects.1 

Observation: IT X is T-acyclic and if Y is T-Iocal, then { ~~~~~: i: ~~ ~ (n ~ 0). 

PROPOSITION 25 Let C be a compactly generated triangulated category. Suppose 

that Tis a localization functor-then V X E ObC, 3 an exact triangle XT -+ X ~TX -+ 

~XT' where XT is T-acyclic. 
[Place X ~ TX in an exact triangle XT -+ X ~ TX -+ EXT and apply T to get an 

exact triangle TXT -+ TX T..:..f T2 X -+ ~TXT' Since Tfx is an isomorphism, TXT = 0.1 

The following lemma has been implicitly used in the proof of Proposition 25. 

LEMMA Let C be a triangulated category. Suppose that X ~ Y ~ Z ~ EX is an exact triangle, 

where tI is an isomorphism-then X = O. 

[The triangle Y ~ Z -+ 0 -+ EY is exact (cf. p. 15-6), thus the triangle 0 -+ Y ~ Z -+ 0 is exact 
O---+Y~ 

(cf. p. 15-2) and (d. Proposition 3). Therefore the diagram 1 II { tlOu=o~u=o WOtl=O~w=O 
X ---+ Y ---+ 

o 11 
Z ---+ 0 

II 1 commutes, so 0 -+ X is an isomorphism (cf. p. 15-4).] 

Z ---+ EX 
o 

PROPOSITION 26 Let C be a compactly generated triangulated category. Sup

pose that T is a localization functor-then the T-a.cyclic objects are the object class of a 

coreflective subcategory of C, the coreflector being the functor that sends X to XT . 

[Note: There is a natural isomorphism (~X)T -+ ~XT and X -+ Y -+ Z -+ ~X exact 

=> XT -+ YT -+ ZT -+ ~XT exact.] 

PROPOSITION 27 Let C be a compactly generated triangulated category. Suppose 

that T is a localization functor-then X is T-Iocal iff Mor (Y, X) = 0 for all T-a.cyclic Y 

and X is T-acyclic iff Mor(X, Y) = 0 for a.ll T-Iocal Y. 

[To see that the condition characterizes the T-Iocal objects, take Y = XT. Thus 

the arrow X T -+ X is the zero morphism, so the isomorphism (X T)T -+ X T is the zero 

morphism, hence XT = 0, which implies that fX : X -+ TX is an isomorphism.] 
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Using the notation of p. 15-48, take for 7 the class of T-acyclic objects and take for :F the class of 

T-local objects-then AnnL:F = 7 and AnnR 7 = :F (cf. Proposition 27), i.e., the pair (7,:F) is a torsion 

theory on C. 

PROPOSITION 28 Let C be a compactly generated triangulated category. Suppose 

that T is a localization functor-then the class of T-Iocal objects is the object class of a 

thick subcategory of C which is closed under the formation of products in C. 

[Given an exact triangle X -+ Y -+ Z -+ ~X, there is a commutative diagram 
X --+ Y --+ Z --+ ~x 

1 EX 1 Ey 1 EZ 1 EEX of exact triangles, thus if two of EX, Ey, EZ are 

TX --+ TY --+ TZ --+ ~TX 
isomorphisms, so is the third (cf. p. 15-4). Therefore D is a triangulated subcategory 

of C (cf. Proposition 7). Next, for any pair of morphisms i : X -+ Y, r : Y -+ X with 

r 0 i = idx, there is a commutative diagram 

I 
--+ 

r 
--+ 

TX --+ TY --+ TX 
Ti Tr 

. Accordingly, 

EX is a retract of €y (cf. p. 12-1) and if €y is an isomorphism, then the same is true of 

EX, hence D is thick.] 

[Note: Analogously, the class of T-acyclic objects is the object class of a thick subcat

egory of C which is closed under the formation of coproducts in C.] 

Remark: D is not necessarily compactly generated. In fact, there may be no nonzero 

compact objects in D at all. 

EXAMPLE Suppose that C is a compactly generated triangulated category. Let 1\:. = {K} be a 

set of compact objects. Denote by K the thick subcategory generated by 1\:. and denote by L the smallest 

triangulated subcategory of C containing K, and closed under the formation of coproducts in C-then K is 

a subcategory of L (via the Eilenberg swindle) and there is a localization functor TIC whose acyclic objects 

are the objects of L. Moreover, every compact object in C which lies in L must lie in K. 

[Write K, = {K} for the set U{~n K : n ~ O} u U{nn K : n ~ O} and let 1\:.+ be the class of objects 
K K 

in C that are coproducts of objects in K,-then V X E Ob C, 3 an object (X,1') in FIL(C), completable 

in K,+ (obvious definition), and an arrow tel(X,1') - X such that Mor (Y, tel(X, 1') ~ Mor (Y, X) for all 

Y in L (proceed as in the proof of the Brown represent ability theorem) (cf. Proposition 16». Taking 

XIC = teleX, f), define T",X by the exact triangle X", - X - TICX - ~XIC.] 

[Note: The T", are the compact localization functors.] 

Let C be a compactly generated triangulated category-then a localization functor T is said to be 
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smashing if it preserves coproducts or, equivalently, if D is closed under the formation of coproducts in C 

(recall Proposition 12). 

Example: A compact localization functor is smashing. 

[Note: The telescope conjecture is said to hold for C if every smashing localization functor is compact. 

In the stable homotopy category, the telescope conjecture is false but in the derived category D(A-MOD), 

where A is commutative and noetherian, the telescope conjecture is true.] 

FACT Suppose that C is a compactly generated triangulated category. Let T be a localization 

functor-then T is smashing iff K compact in C ~ RK compact in D. 

Application: If T is smashing, then D is a compactly generated triangulated category. 

FACT Suppose that C admits Adams representability. Let T be a localization functor-then D 

admits Adams represent ability provided that T is smashing. 

Notation: Let C be a triangulated category with products. Suppose given an object 
sf 

(X,i) in TOW(C)-then Emic(X,i) is any completion of IIXn--+IIXn to an exact 
n n 

triangle (cf. TRa), where pr nO sf - pr n - / n 0 pr n+l' 

EXAMPLE Suppose that C is a compactly generated triangulated category. Let T be a local

ization functor and let (X,f) be an object in TOW(C) such that V n, Xn is T-Iocal-then mic(X,f) is 

T-Iocal. 

Let C be a compactly generated triangulated category. Suppose that F : C --+ AB is 

an exact functor. Let SF be the class of morphisms X ~ Y such that 'V n ~ 0, {~~:~ is 

an isomorphism-then (1) SF admits a calculus ofleft and right fractions and contains the 

isomorphisms of Cj (2) u E SF => Eu & Ou E SF; (3) /, g E SF => 3 h E SF (data as in 

TRs); (4) u E SF iff 3 /,g E MorC : u 0/ E SF, go u E SF. Therefore the metacategory 

S;lC is triangulated and LSF : C --+ S;lC is a triangulated functor. 

[Note: In the terminology of p. 15-12, SF is multiplicative.] 

PROPOSITION 29 Let C be a compactly generated triangulated category. Suppose 

that F : C --+ AB is an exact functor which converts coproducts into direct sums. Assume: 

The metacategory S;lC is isomorphic to a category-then Sj;; is the object class of a 

reflective subcategory of C. 

[Argue as in the example on p. 5-79. Thus the triangulated functor LSF : C --+ S;lC 

.......... preserves coproducts, so 'V Y E Ob S;lC, Mor(LsF -, Y) is an exact cofunctor C --+ AB 
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which converts coproducts into products, hence by the Brown represent ability theorem, 

3 Ysp E ObC : Mor(LspX, Y):::::: Mor(X, Ysp).) 

[Note: The procedure generates an idempotent triple TF = (TF' m, f) in C (TF : C-t 

C is a localization functor, SF is the class of TF-equivalences, and OF = kerTF (i.e., X is 
. . {FEnx =0 

TF-acyclic Iff V n ~ 0, Fnn X = 0 (cf. p. 15-7»).] 

Maintaining the assumption that C is a compactly generated triangulated category, 

given any X E ObC, put KX = E#(Mor(U,X» and for K an infinite cardinal > KU = 
U 

E KU, let CI\: be the full subcategory of C whose objects are the X such that KX :5 K-then 
U 
CI\: is a thick subcategory of C which is closed under the formation of coproducts in C 

indexed by sets of cardinality :5 K and C = U C tc • 

I\: 
[Note: C tc contains U, hence C tc contains cpt C (by the theorem of Neeman-Ravenel).] 

Notation: ut is the class of objects in C that are coproducts of :5 K objects in U. 

LEMMA Let {Gn } be a sequence of abelian groups. Assume: V n, #(Gn ) :5 K, 

where K is an infinite cardinal-then the cardinality of E9 Gn is bounded by K. 
n 

[Note: Another triviality is the fact that if G' -t G -t G" is an exact sequence 

of abelian groups and if #( G') :5 K, #( Gil) :5 K, where K is an infinite cardinal, then 

#(G) :5 K2 = K.] 

PROPOSITION 30 Let C be a compactly generated triangulated category. Fix an 

infinite cardinal K > Ku-then X E Ob C tc iff X :::::: teleX, f), where (X, f) is completable 
. U+ In 1\:' 

[The sufficiency is clear (d. Proposition 13) and the necessity can be established by 

reworking the proof of Proposition 16 (with F = Mor (-, X».J 
[Note: It is a corollary that CI\: has a small skeleton CI\:'] 

LEMMA Let C be a compactly generated triangulated category. Suppose that F : 
C -t AB is an exact functor which converts coproducts into direct sums. Put H = 

E9 F 0 En E9 E9 F 0 nn-then H : C -t AB is an exact functor which converts coproducts 
n~O n>O 

into direct sums and a morphism X ~ Y is in SF iff H u : H X -t HY is an isomorphism. 

PROPOSITION 31 Let C be a compactly generated triangulated category. Suppose 

that F : C -t AB is an exact functor which converts coproducts into direct sums-then 

V infinite cardinal K > > KU, 3 an infinite cardinal 6( K) ~ K such that V Y : #( HY) :5 K, 

3 X E ObC6(1\:) & X ~ Y with Hu: HX -t HY an isomorphism. 
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[Bearing in mind that cpt C has a small skeleton cpt C (c!. Proposition 19), fix an 

infinite cardinal KH > sup{#(HK): K E ObcptC} and take 1'0, = 00(1'0,) > max{KH,KU}' 
Since HY R:: colimHL (c!. p. 15-21), V y E HY, 3 an object L -+ Y in A/Y : y E 

Y 

im(H L -+ HY). Therefore one can choose objects Li -+ Y in A/Y indexed by a set Iof 
cardinality ~ 00(1'0,) such that Huo : HXo -+ HY is surjective. Here Xo = IILi and Uo : 

[ 

Xo -+ Y is the coproduct of the Li -+ Y. Because the Li are compact and #(I) S 00(1'0,), , 
Xo E ObC60 (1C)' Embed Xo~Y in,an exact triangle Y'~Xo~Y -+ EY'. Claim: 3 

an infinite cardinal 01(1'0,) > 00(1'0,) for which #(HY') S 01(1'0,) independently of the choices 

(i.e., the bound is a function only of the initial supposition that #(HY) ~ 1'0,). To see 

this, note that #(Hr/'y) ~ 1'0" #(Hony) < 1'0, and #(HEnxo) ~ Kn, #(Honxo) ~ Kn 

and use the long exact sequence generated by H. Repeat the process: u~ : II L~, -+ 
[I 

u' ou~ 
Y' (#( I') ~ 01 (1'0, » and place u' 0 u~ in an exact triangle Z -+ II L~I ----+0) Xo -+ 

, I [' 

X ~Z II ~L' -:E(u oUo) ~X o ----+ .t...t ----+ .t...t i' ~.t...t 0 
l' 

EZ. Consider now the diagram II 1:Eu~ II The rows being 
Xo ---.;;--1>0 Y -----7 EY' ----:---l-~ EX 0 

g -:Eu' 

in 6., one can find a filler Ul : EZ -+ Y (cf. Proposition 2). Put Xl -

Xo 
Xl E ObC61 (1C» and let 10 be the arrow Xo -+ Xl. By construction,uo1 

Y 

EZ (thus 

~ Xl 

1 U1 

Y 
commutes and ker H 10 = ker Huo. Continuing, one produces V n a commutative diagram 

X I .. X 
n ----+ n+l 

un 1 1u"+1, where kerHln = kerHun and Xn E C6 .. (IC) (On(K) ~ On+l(K». 

Y - Y 
Definition: X = tel(X,f)-then X E ObC6(1C) (0(1'0,) > (SUP{On(K)})"" (cf. infra», HX R:: 

colim H Xn and there is an arrow X ~ Y with H u : H X -+ HY an isomorphism (injectivity 

from the condition on the kernels, surjectivity from the surjectivity of Huo).] 

Thanks to Proposition 13, "I U E U, colim Mor(U,Xn ) ~ Mor(U, tel(X , f'), hence #(Mor(U, tel(X, 

f')) $ n #(Mor(U,Xn» $ n 6n (lI:) $ (sup{6n (II:)})w. 
n n 

BOUSFIELD-MARGOLIS LOCALIZATION THEOREM Let C be a compactly gen

erated triangulated category. Suppose that F : C -+ AB is an exact functor which converts 

coproducts into direct sums-then there exists a localization functor TF such that S -j; is 

the class of TF-local objects. 
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[In view of Proposition 29, the point is to show that the metacategory SFIC is iso

morphic to a category. Thus fix X, Y E Ob SF1 C (= Ob C) and ,.. > > "'u : X, Y E Ob CII: 

& #(HX) ::; ,.., #(HY) ::; ,... By definition, Mor(X, Y) is a conglomerate of equivalence 

classes of pairs (s,f) : X Ly' t-y (cf. p. 0-31). Given such a pair (s,f), consider 

an exact triangle Z -+ X II Y -+ Y' -+ EZ. Since HY ~ HY', #( HZ) ::; ,... Using 

Proposition 31, choose W E Ob C6(1I:) & W ~ Z with HtI. : HW -+ HZ an isomorphism. 

W --+ 

There is a diagram 1 u 

Z --+ 

XIIY 

II 
XIIY 

'If" 
--+ 

--+ 
'lfl 

Y" --+ :EW 

lEu and a filler </> : Y" -+ Y' 

Y' --+ EZ 

(cf. TRs) which is necessarily in SF. Note too that Y" E ObC6(1I:)' Put 9 = 7r" 0 inx, 

t = 7r" 0 iny-then if> 0 9 = /, if> 0 t = s, and t E SF, so the pair (s, f) is equivalent to the 

pair (t,g). But C 6(1I:) has a small skeleton C 6(1I:) (cf. Proposition 30) and there is just a 
i-"t -,,-set of diagrams of the form X -+ Y ~ Y, where Y E ObC6(1I:)'] 

EXAMPLE Take for C the stable homotopy category HSPEC and fix an X E Ob C-then 

Hx(Y) = [SO, X" Y] is an exact functor C - AD which converts coproducts into direct sums and by 

the Bousfield-Margolis localization theorem, Si: is the object class of a reflective subcategory of C, where 

Sx is the class of morphisms yl - yll such that V nez, [sn, X" Y'l ::::; [sn, X" Y"l. 

Given a closed category C, the dual DX of an object X is hom(X, e). 

(DUt) V X, X' E ObC, 3 a natural morphism DX ® DX' -+ D(X ®X'). 

[In the pairing hom(X, Y)®hom(X', Y') -+ hom(X ®X', Y ® Y'), specialize and take 

Y = e, Y' = e.] 
(DU2 ) V X E Ob C, 3 a natural morphism X -+ D2 X. 

[Mor(X,D2X) ~ Mor(X,hom(DX,e» ~ Mor(X®DX, e) ~ Mor(DX,hom(X, e» ~ 
Mor (DX, DX).] 

LEMMA Suppose that C is a closed category-then there is an arrow hom(X, Y) 0 

Z -+ hom(X, Y 0 Z) natural in X, Y, Z. 

Given a closed category C, an object X is said to be dua1izable if V Y E Ob C, the 

arrow DX 0 Y -+ hom(X, Y) is an isomorphism. Example: e is dualizable. 

[Note: When X is dualizable, DX 0- is a right adjoint for 0X, hence DX 0- ~ 

bom(X,-).] 

EXAMPLE Let A be a commutative ring with unit-then an object X in A-MOD is dualizable 

iff X is finitely generated and projective. 
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Let C be a closed category-then an object X in C is invertible if there is an object X-I in C and 

an isomorphism X ® X-I -+ e. 

FACT Every invertible element X in C is dualizable and DX ::::: X-I. 

PROPOSITION 32 Suppose that C is a closed category. Assume: X is dualizable

then DX is dualizable and the morphism X -+ D2X is an isomorphism. 

Remark: If C has coproducts, then V Y, II Y ®Xi ::::: Y ® II Xi. If C has products, then 
i i 

V dualizable X, X®TIYi::::: TIX®Yi. Proof: X®TIYi::::: D2X®TIYi::::: hom(DX,TIYi)::::: 
iii i i 

TIhom(DX, Yi)::::: TI D2X ® Yi::::: TIX ® Yi. 
iii 

LEMMA Suppose that C is a closed category-then the prurmg hom(X, Y) ® 

hom(X', Y') -+ hom(X ® X', Y ® Y') is an isomorphism if X and X' are dualizable 

or if X (X') is dualizable and Y = e (Y' = e). 

PROPOSITION 33 Suppose that C is a closed category-then X, X' dualizable =} 

X ® X' dualizable. 

[VY, D(X®X')®Y::::: DX®DX'®Y::::: DX®hom(X',Y)::::: hom(X,hom(X',Y))::::: 

hom(X ® X', Y).] 

LEMMA Suppose that C is a closed category-then the arrow hom(X, Y) ® Z -+ 

hom(X, Y ® Z) is an isomorphism if either X or Z is dualizable. 

PROPOSITION 34 Suppose that C is a closed category-then X, X' dualizable =} 

hom(X, X') dualizable. 

[V Y, Dhom(X, X') ® Y ::::: hom(hom(X,X'),e) ® Y ::::: hom(DX ® X',e) ® Y::::: 

hom(DX,hom(X',e)) ® Y ::::: hom(DX,DX') ® Y ::::: hom(DX,DX' ® Y) ::::: hom(DX, 

hom(X', Y))::::: hom(DX ® X', Y) ::::: hom(hom(X,X'), Y).] 

FACT Let C be a closed category. Assume: X is dualizable-then X is a retract of X ® DX ® X. 

Let C be a category with finite coproducts. Assume: C is closed and triangulated

then C is said to be a closed triangulated category (CTC) if there is a natural isomorphism 

(, where (x,Y : EX ® Y -+ E(X ® Y), subject to the following assumptions. 

[Note: From the existence of (, one derives the existence of a natural isomorphism 11, 

where 11X,Y : nhom(X, Y) -+ hom(EX, Y).] 
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EX ® e 'x, .. ~ E(X ® e) 

(CTCt) The diagram ~ lERx commutes. 

EX 
(CTC2 ) The diagram 

(EX ® Y) ® Z 'x.y®idz • E(X ® Y) ® Z 'X®y,Z I E«X ® Y) ® Z) 

Al lEA 

EX ® (Y ® Z) -----...,..'x-,y-®-Z-----+I E(X ® (Y ® Z» 

commutes. 

(CTC3 ) If X ~ Y ~ Z ~ EX is an exact. triangle, then Y W E ObC, the 
u®idw v®idw 'x,wo(w®idw) 

triangle X ® W I Y ® W I Z ® W I E(X ® W) is exact. 

(CTC4 ) If X ~ Y ~ Z ~ EX is an exact triangle, then Y WE Ob C, the trian-
-1 • 

-(w·OI1X,w) v. "hom(X,W)ou 

gle nhom(X, W) I hom(Z, W) -+hom(Y, W) I Enhom(X, W) is 

exact. 
Ee® Ee E2e 

(CTCs) The diagram T 1 1-1 commutes. 
Ee ® Ee --+ E2e 

1=:::1 

Remarks: (1) If (e,X is the composite ETx,e 0 (X,e 0 Te,EX, then the diagram 

e ® EX ,''ox. E( e ® X) 

LEX 1 ~ commutes; (2) The additive functor - ® W : C -. C is a tri-

EX 

angulated functor (this is the content of CTC3); (3) The additive functor hom(-, W) : 

C -. CoP is a triangulated functor (this is the content of CTC,); (4) If m, n EN, then 

Effle®Ene Effl+ne 

the diagram T 1 1(-I)mn commutes. 
Ene®Effle Effl+ne 

Example: D: C -. CoP is a triangulated functor. 

Since the additive functor hom(W,-) : C - C is a right adjoint for - ® W, it is necessarily 

triangulated (cf. p. 15-7). 

Notation: du C is the full, isomorphism closed subcategory of C whose objects are 

dualizable. 
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PROPOSITION 35 Let C be a CTC-then du C is a thick subcategory of C. 

[Observe first that 0 is dualizable. This said, take any morphism X ~ Y in du C and 

complete it to an exact triangle X ~ Y ~ Z ~ EX (cf. TR3 )-then 'V W E Ob C, there is 

a commutative diagram 

nDX®W ----+ DZ ® W ----+ DY ® W ----+ E(nDX ® W) 

1 1 1 1 
nhom(X, W) ----+ hom( Z, W) ----+ hom(Y, W) ----+ Enhom(X, W) 

where, by CTC3 & CTC4 , the rows are exact. Specialized to the case X = X, Y = X, 

Z = 0, u = idx (cf. TR2 ), it follows that the arrow nDX ® W -+ nhom(X, W) is an 

isomorphism (cf. p. 15-4), i.e., that the arrow hom(EX, e) ® W -+ hom(EX, W) is an 

isomorphism, so X dualizable =* EX dualizable. Next, X dualizable =* nx dualizable. 

Proof: X ~ hom( e, X) =* nx ~ n hom( e, X) ~ hom(Ee, X) and e dualizable =* Ee du

alizable, hence Proposition 34 is applicable. Returning to X ~ Y, one concludes that the 

arrow DZ ® W -+ hom( Z, W) is an isomorphism (cf. p. 15-4), thus Z is dualizable. There

fore du C is a triangulated subcategory of C. Finally, suppose given a pair of morphisms 

i : X -+ Y, r : Y -+ X with r 0 i = idx and Y dualizable-then 'V W E Ob C, there is 

DX®W 

a commutative diagram 1 
hom(X, W) 

Dr 
----+ 

r* 

DY®W 

1 
hom(Y, W) 

Di 
----+ 

----+ 
i* 

DX®W 

1 , which shows 
hom(X,·W) 

that the arrow DX ® W -+ hom(X, W) is a retract of the arrow DY ® W -+ hom(Y, W). 

But the retract of an isomorphism is an isomorphism and this means that X is dualizable. 

Therefore du C is a thick subcategory of C.] 

EXAMPLE Suppose that C is a CTC-then e dualizable ::::} ~e dualizable and D~e = hom(~e, e) 

::::: 0 hom( e, e) = Oe. Therefore Mor (Y, X ® Oe) ::::: Mor (Y, D~e ® X) ::::: Mor (Y, hom(~e, X» ::::: Mor (Y ® 

~e, X) ::::: Mor (~Y, X) ::::: Mor (Y, OX) ::::} X ® Oe ::::: OX. Consequently, hom(~X, Y) ::::: hom(X, hom(~e, 

Y» ::::: hom(X, D~e ® Y) ::::: hom(X, Oe ® Y) ::::: hom(X, OY). 

Suppose that C is a CTC-then C is said to be a compactly generated CTC if C is 

compactly generated and every U E U is dualizable. 

PROPOSITION 36 Let C be a compactly generated CTC-then X compact =* X 

dualizable. 

[The thick subcategory generated by U is cpt C (theorem of Neeman-Ravenel). On 

the other hand, du C is thick (cf. Proposition 35) and contains U.] 
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FACT Suppose that C is a compactly generated CTC-then X is dua.lizable iff V collection {Xl} 

of objects in C, the arrow Il hom(X, Xi) -+ hom(X, Il Xi) is an isomorphism. 
i i 

[Necessity: Il hom(X, Xi) ~ Il DX ® Xi ~ DX ® Il Xi ~ hom(X, Il Xi). 
iii i 

Sufficiency: Let D be the full, isomorphism closed subcategory of C consisting of those Y for which 

the arrow D X ® Y -+ hom( X, Y) is an isomorphism-then D is triangul&ted and closed under the formation 

of coproducts in C. Moreover, D conta.ins &II the du&liz&ble objects, so U C ObD. Therefore D = C (d. 

Proposition 14).] 

LEMMA Let C be a eTC with coproducts-then X compact and Y dualizable 

~ X ® Y compact. 

[EJ:)Mor(X®Y,Zi) ~ EJ:)Mor(X,hom(Y,Zi» ~ EJ:)Mor(X,DY®Zi) ~ Mor(X,IIDY 
iii i 

® Zi) ~ Mor (X, DY ® II Zi) ~ Mor(X ® Y, II Zi).] 
i i 

Application: Let C be a compactly generated CTC-then X compact ~ DX com

pact. 

[X is dualizable (cf. Proposition 36), so DX is dualizable (cf. Proposition 32), hence 

DX is a retract of DX ® D2 X ® DX (cf. p. 15-36) or still, is a retract of DX ® X ® DX 
(cf. Proposition 32) and the lemma implies that DX ® X ® DX is compact.] 

Suppose that C is a compactly generated CTC-then C is said to be unital provided 

that e is compact. 

PROPOSITION 3'7 Let C be a unital compactly generated CTC-then X dualizable 

~ X compact. 

[By the lemma, e ® X is compact.] 

Consequently, in a unital compactly generated CTC, "compact" "dualizable" . 

The stable homotopy c&tegory is II. unit&l compactly generated CTC. 

EXAMPLE Let A be a commutative ring with unit-then D(A-MOD) is a unit&l compactly 

generated CTC (Bokstedt-Neemant ). 

Suppose that C is a compactly generated CTC-then a cohomology theory is an exact 

cofunctor F : C -+ AB which converts coproducts into products and a homology theory is 

t Compositio Math. 86 (1993), 209-234. 
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an exact functor F : C -+ AB which converts coproducts into direct sums. According to 

the Brown represent ability theorem, every cohomology theory is representable. The situa

tion for homology theories is different. Put He(X) = colimMor(e,K) (= Mor(e,-)IAX) x 
and Hx(Y) = He(X ® Y)(X, Y E Ob C). Proposition 18 guarantees that He is a ho-

mology theory, thus Hx is also a homology theory (d. CTC3 ), and there is an arrow 

Hx(Y) -+ Mor(e,X ® Y). 
[Note: When C is unital, Hx(Y) ~ Mor(e,X ® Y).] 

LEMMA The arrow Hx(Y)-+ Mor(e,X ® Y) is an isomorphism if X is compact. 

[X compact ~ X dualizable (cf. Proposition 36) ~ Mor (e, X ® Y) ~ Mor (e, D2 X ® 

Y) ~ Mor(e,D(DX)®Y) ~ Mor(e,hom(DX,Y» ~ Mor(DX,Y). Since DX is compact 

(cf. p. 15-39), Mor (DX, -) is a homology theory. Therefore Mor (e, X ®-) is a homology 

theory. But Y compact .~ X ® Y compact ~ Hx(Y) ~ Mor (e, X ® Y). In other words, 

the arrow H x -+ Mor ( e, X ® -) is an isomorphism for compact Y, hence for all Y.] 

FACT Suppose that C is a compactly generated CTC. Fix X E Ob C-then X ® Y = 0 iff V Z, 

Hx(Y®Z)=O. 

PROPOSITION 38 Let C be a compactly generated CTC. Assume: C admits Adams 

represent ability. Suppose that F : C -+ AD is a homology theory-then 3 an X E Ob C 

and a natural isomorphism Hx -+ F. 

[The composite F 0 D : cpt C -+ AD is an exact cofunctor, thus by ADR1 , 3 an 

X E ObC and a natural isomorphism hx -+ F 0 D. And: V compact K, Hx(K) ~ 

HK(X) ~ Mor(e,K ®X) ~ Mor(DK,X) ~ hx(DK) ~ FD2K ~ FK.] 

[Note: It follows from ADR2 that Nat(Hx,Hy) ~ Mor(X, Y)/Ph(X, Y). Of course, 

Hx ~ Hy ~ X ~ Y.] 

EXAMPLE Suppose that C is a compactly generated CTC which admits Adams represent ability. 

Let A : 1-+ C be a diagram, where I is filtered-then a weak colimit L of A is a minimal weak colimit iff 

for every homology theory F : C -+ AB, the arrow colim FAi -+ FL is an isomorphism. 

Suppose that C is a compactly generated CTC. Let T be a localization functor-then 

T is said to have the ideal property (IP) if TX = 0 ~ T(X ® Y) = 0 V Y. 

PROPOSITION 39 Let C be a compactly generated CTC. Suppose that T is a 

localization functor with the IP-then X T-acyclic and Y T-Iocal ~ hom(X, Y) = O. 

[V Z, Mor(Z,hom(X, Y» ~ Mor(Z®X, Y) ~ Mor(X®Z, Y) ~ Mor(T(X®Z), Y) = 

0.] 
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[Note: Conversely, X is T-locaJ. if hom(Y,X) = 0 for all T-acyclic Y. In fact, 

Mor(Y,X) ~ Mor(e ® Y,X) ~ Mor(e,hom(Y,X)) ~ hom(Y,X) = 0, so Proposition 

27 is applicable. Example: X T-locaJ. ~ hom(Y,X) T-locaJ. V Y.] 

Assuming still that T is a localization functor with the IP, consider the exact triangle 

eT -+ e ~ Te -+ EeT (cf. Proposition 25)-then by CTC3 , V X E Ob C, the triangle 
~.®idx 

eT ® X -+ e ® X I Te ® X -+ E(eT ® X) is exact. But T(eT ® X) = 0, hence 
TX ~ T(Te ® X). On the other hand, Te ® X is T-local if X is dualizable. Proof: 

Te(i!)X ~ hom(DX,Te) and 'IT-acyclic Y, hom(Y,hom(DX, Te)) ~ hom(Y(i!)DX,Te) = 0 

(cf. Proposition 39). 

EXAMPLE Suppose that C is a compactly generated CTC. Let T be a localization functor with 

the IP-then T is smashing iff V X, the composite Te ® X - T(Te ® X) ~ T X is an isomorphism. 

[By the above, U is contained in the class of X for which the composite in question is an isomorphism.] 

FACT Suppose that C is a compactly generated CTC. Let T be a localization functor with the 

IP-then there is a canonical arrow TX ® TY - T(X ® Y). 

[Working with the exact trianglesX®YT - X®Y - X®TY - ~(X®YT)' XT®TY - X®TY

TX ® TY - ~(XT ® TY), one finds that T(fX ® fy) : T(X ® Y) - T(TX ® TY) is an isomorphism.] 

FACT Suppose that C is a compactly generated CTC. Let T be a localization functor with the 

IP-then D is a CTC. 

[Define ®T : D X D - D by X ®T Y = R(X ® Y). Thus Re serves as the unit and the internal hom 

functor homT : DOP X D - D sends (X, Y) to hom(X, Y) (which is automatically T-Iocal).] 

[Note: X dualizable in C => RX dualizable in D.] 

EXAMPLE Suppose that C is a compactly generated CTC. Let T be a localization functor with 

the IP. Assume: T is smashing-then D is a compactly generated CTC. In addition, D is a coreflective 

subcategory of C. 

[The coreflector C - D is the assignment X - hom(Te, X).] 

Suppose that C is a compactly generated CTC-then C is said to be monogenic if C 

. . at d { Mor (ERe, X) = 0 u 0 X 0 
IS unit an Mor(!lRe,X) = 0 v n 2:: ~ =. 

The stable homotopy category is monogenic. 

FACT Suppose that C is a monogenic compactly generated CTC. Let D be a thick subcategory 

of C-then V compact X, X ® ObD C ObD. 
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Notation: When C is monogenic, write S in place of e and E-l in place of 0, letting 
s±n = E±n S( => Sic ® S' ::::::I SIc+1 V k, I E Z), so V X, E±l X ::::::I X ® S±l. 

[Note: The nta homotopy group '1rn(X) of X (n E Z) is Mor(Sn,X).] 

LEMMA Let C be a monogenic compactly generated CTC-then a morphism f : 
X ...... Y in C is an isomorphism iff V n, '1rn(J) : '1rn(X) ...... '1rn(Y) is bijective. 

EXAMPLE Let A be a commutative ring with unit-then D(A-MOD) is monogenic. Here the 

role of 8 is played by A concentrated in degree 0 and ,.-,,(X) = H-ft(X). 

PROPOSITION",O Let C be a monogenic compactly generated CTC. Suppose that 

F : C ...... AB is a homology theory-then TF has the IP (notation per the Bousfield

Margolis localization theorem). 

[The class of TF-acyclic objects coincides with OF, the class of X such that FEnx = 
o V n E Z (cf. p. 15-33). Therefore the claim is that for all such X, F(En(x ® Y» 
(= F(En X ® Y» = 0 V n E Z. To see this, note that F(Eri X ® -) : C ...... AB is a 
homology theory with the property that F(En X ® Sic) = F(En+1c X) = 0 V k E Z, thus, 

as C is monogenic, F(En X ® -) = 0.] 

FACT Suppose that C is a monogenic compactly generated CTC. Let T be a localization functor. 

Assume: T is smashing-then T has the IP. 

[Fix an X in kerT and consider the class of Y : T(X ® Efty) = 0 V n E Z. This class is the object 

class of a triangulated subcategory of C containing the 8 ft and is closed under the formation of coproducts 

in C (T being smashing), hence equals C (cf. Proposition H).] 

Suppose that C is a monogenic compactly generated CTC. Fix an X E Ob C-then 

an object Y is said to be X-acyclic if X ® Y = 0 and an object Z is said to be X-local if 

hom(Y,Z) = 0 for all X-acyclic Y. The Bousfield class (X) of X is the class of X-local 

objects. 

Example: Let T be a localization functor. Assume: T is smashing-then (TS) is the 

class of T-local objects. 

[Since T has the IP, TS ® Y ::::::I TY (cf. p. 15-41), thus Y is TS-acyclic iff Y is 
T -acyclic.] 

[Note: Another point is that V X E ObC, (TX) = (TS) n (X).] 

LEMMA (X) is a thick subcategory of C which is closed under the formation of 

products in C. And: V Y E Ob C & V Z E (X), hom(Y, Z) E (X). 
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[Note: To interpret (X), define a homology theory Hx : C -+ AB by the rule 

Hx(Y) = 1I"o(X ® Y)-then Y is X-acyclic iff Hx(Y ® Z) = 0 V Z (cf. p. 15-40). Let
ting Tx be the localization functor attached to H x by the Bousfield-Margolis localization 
theorem and taking into account Proposition 40, it follows that Y is X -acyclic iff Y is 

Tx-acyclic. Therefore (X) is the class of Tx-Iocal objects.} 

Write (X) < (Y) if (X) ~ (Y), calling X, Y Bousfield equivalent when (X) = (Y). 

PROPOSITION 4.1 (X) $ (Y) iff Y ® Z = 0 => X ® Z = O. 

[Note: Consequently (S) is the largest Bousfield class and {O} is the smallest.] 

Notation: (X) IT (Y) = {X IT Y} and (X) ® (Y) = (X ® Y). 
[Note: Both operations are welldefined. Examples: (1) (X) IT {O} = (X), (X) IT (S) = 

(S); (2) (X) ® (0) = (O), (X) ® (S) = (X).] 

FACT If X -+ Y -+ Z -+ :EX is an exact triangle, then (Y) :5 (X) u (Z). 

Maintaining the assumption that C is monogenic, let (C) be the conglomerate whose 

elements are the Bousfield classes. Denote by DL(C) the sub conglomerate of (C) consist

ing of those (X) with (X) ® (X) = (X) and denote by BA(C) the sub conglomerate of (C) 
consisting of those (X) that admit a complement, i.e., for which 3 (Y) : (X) ® (Y) = (0) 

and (X) IT (Y) = (S). 
[Note: DL(C} is a "distributive lattice" and BA(C} is a "boolean algebra".] 

Complements, if they exist, are unique. Thus suppose that (X) admits two complements (Y') and 

{ylI)-then {Y'} = (Y')®{S) = (Y')®«X)U{ylI» = «Y')®(X»U«Y')®(ylI» = (O)U«Y')®(Y"» = 
(Y') ® (ylI) = (ylI) (by symmetry). 

Notation: Given (X) E BA(C), let {X}C be its complement. 

LEMMA BA(C} is contained in DL{C}. 
[(X) = {X} ® «(X) IT (X)C) = ((X) ® (X)) IT «(X) ® (X}C) = (X) ® (X).] 

Examples in the stable homotopy category show that the inclusions BA{C) C DL{C) C (C) are 

strict (Bousfieldt ). 

t Comment. Math. Helv. 54. (1979), 368-377. 
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EXAMPLE Let T be a loealization functor-then there is an exact triangle ST - S ~ T S - EST, 

where ST is T-acydic (d. Proposition 25), hence (S) = (ST) U (TS). If further T is smashing, then 

(ST) ® (TS) = (ST ® TS) = (TST) = (0) => (ST)C = (TS). 

[Note: Take for C the stable homotopy category-then X compact => (X) E BA(C) and Ty«Y) = 

(X)C) is smashing (Bousfield (ibid.».] 

EXAMPLE If X is dualizable, then (X) = (DX). Indeed, X is a retract of X ® DX ® X (cr. 

p. 15-36), thus (X) ~ (X ® DX ® X) ~ (DX). But DX is dualizable, so (DX) ~ (D2 X) = (X) (d. 

Proposition 32). 

Suppose that C is a monogenic compactly generated CTC-then a ring object in 

C is an object R equipped with a product R ® R -+ R and a unit S -+ R such that 
R®R®R ---t R®R S®R---+R®R..--R®S 

1 1 and ~l/ commute. A ring object R 
R®R R R 

R®R T ,R®R 

is commutative if "'- / commutes. 

R 
Example: 'V X E Ob C, hom(X, X) is a ring object, hence DX ® X is a ring object if 

X is dualizable. 

EXAMPLE If R is a ring object, then (R) ® (R) = (R) (R is a retract of R ® R). 

LEMMA H R is a ring object, then 'Ir",(R) is a graded ring with unit which is graded 

commutative provided that R is commutative. 

Given a ring object R, a (left) R-module is an object M equipped with an arrow 
R®R®M ---t R®M 'S®M---+R®M 

R ® M -+ M such that 1 1 and ~ 1 commute. 

R®M ---t M M 
Example: 'V X E Ob C, R ® X and hom(X, R) are R-modules. R-MOD is the category 

whose objects are the R-modules. 

[Note: H f : M -+ N is a morphism of R-modules and if M LN -+ OJ -+ ~M is 
exact, then OJ need not admit an R-module structure.] 

EXAMPLE If R is a ring object and if M is an R-module, then (M) ~ (R) (M is a retract of 

R®M). 

[Note: M is necessarily TR-Iocal.] 
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EXAMPLE Let T be a localization functor with the IP-then TS is a commutative ring object 

(via TS ® TS -10 T(S ® S) = TS and f.s : S -10 TS). Moreover, every T-Iocal object X is a TS-module 

(via TS®X = TS®TX -10 T(S®X) = TX = X). 

EXAMPLE If R is a ring object with the property that the product R®R -10 R is an isomorphism, 

then Tn is smashing. Proof: V X E Ob C J R ® X is Tn-local a.nd here TnX = R ® X (since R ® R R:I R), 

thus Tn preserves coproducts. 

Definitions: (1) An R-module M is free if it is isomorphic to a coproduct II En, R; (2) 
i 

A nonzero ring object R is a skew field object if every M in R-MOD is free; (3) A skew 

field object R is a field object if R is commutative. 

PROPOSITION 42 Let C be a monogenic compactly generated CTC. Suppose that 

R is a nonzero ring object in C. Assume: The homogeneous elements of 1I".(R) are 

invertible-then R is a skew field object. 

[Fix an M in R-MOD. Owing to our assumption, 7r.(M) ~ EB En, 11". (R), where 
i 

(En'7r.(R»n = Mor(Sn-ni,R) = Mor(sn,ETliR) = 7rn(En i R). Thus there is a morphism 

II En; R -t M of R-modules inducing an isomorphism EB 7r.-ni (R) -t 7r.(M) in homotopy, 
i i 

hence II En'R ~ M.J 
i 

In the stable homotopy category, the nth Morava K-theory spectrum K(n) at the prime p is a skew 

field object. 

EXAMPLE Let R be a skew field object. Assume: (R) E BA(C)-then (R) is minimal among 

nontrivial Bousfield classes. 

[Note: In the stable homotopy category, the Eilenberg-MacLane spectrum H(F,) is a field object 

but (H(It' p») is not minimal.] 

Suppose that C is a monogenic compactly generated CTC. Given X E Ob C and 

I E Mor (En X, X), let X/I be a completion of En X -L X to an exact triangle (cf. TR3) 

and write I-IX for tel(X, f), where (X, f) is the object in FIL(C) defined by X -t 

E-nx -t E- 2nx -t .••• 

LEMMA If I : ETI X -t X is an isomorphism, then X ~ 1-1 X. 

PROPOSITION 43 For every I: EnX -t X, (X) = (X/I) II (I-IX). 
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[To prove that (X) ~ {XI J)Jl(f-1 X}, one must show that xII®Z = 0 & 1-1 X®Z = 
o => X ® Z = O. But L;nx.Lx -+ XII -+ L;(Enx) exact => L;nx ® Z -+ X ® Z -+ 

XI I ® Z -+ L;(L;n X ® Z) exact (cf. CTC3) => L;n X ® Z :::::: X ® Z (cf. p. 15-6) 

=> X®Z :::::: (/®idz)-I(X®Z) (by the lemma). And: (/®idz)-I(X®Z) = 1-1 X®Z = 0.] 

FACT Suppose that X is compact-then /-1 X = 0 iff 3 Ie such that the composite /0 En /0'" 0 
Ie 

E(A:-l)n / : ERn X L. X vanishes. 

cw®idR 
FACT Let R be a ring object. Fix a E 1rn(R) and let abe the map Sn®R I R®R -+ R-

then a is nilpotent in 1r,.(R) iff a-1 R = O. 

FACT Given / : s -+ X, write X}oo) for teleX,!), where (X,!) is the object in FIL(e) defined by 

J J®id J®id (00) (00) 
S -+ X --X ® X -- .. " and let t< 00) be the arrow S -+ X J -then X J = 0 iff t< 00) = o. 

Let C be a triangulated category; let C:S;o, C;::o be full, isomorphism closed subcat

egories of C containing 0 and denote by C:S;-I, C2!:1 the isomorphism closure of L;C:S;o, 

nC2!:o-then the pair (C~o, C2!:O) is said to be a t-structure on C if the following conditions 

are satisfied. 

(t-sh) C~-l is a subcategory of C:S;o and C2!:1 is a subcategory of C2!:o. 

(t-st2) V X E ObC~o, V Y E ObC2!:I, Mor(X, Y) = O. 

(t-st3) V X E Ob C, 3 an exact triangle Xo -+ X -+ Xl -+ EXo with Xo E 

Ob C~o, Xl E Ob C2!:l. 

[Note: H(C) = C~o n C2!:o is called the heart of the t-structure.] 

Remark: If (C~O, C2!:o) is a t-structure on C, then «C2!:O)OP, (C~o)OP) is at-structure 
on Cop. 

EXAMPLE Let A be an abelian category. Given an X in CXA, V nEZ, define the nth 

truncated cochain complexes 1'~n X &. 1'~n X of X by ... -+ xn-2 -+ xn-l -+ kerdx -+ 0 -+ ... &: 

... -+ 0 -+ coker d~-1 -+ xn+l -+ xn+2 -+ .... So, the cohomology of 1'~n X is trivial in degree 

> n and the cohomology of 1'~n X is trivial in degree < n and there is an arrow 1'~n X -+ X which 

induces an isomorphism in cohomology in degree $ n and there is an arrow X -+ 1'~n X which induces 

{ 
1'~n : CXA -+ CXA 

an isomorphism in cohomology in degree ~ n. The functors pass through K(A) 
1'~n : CXA -+ CXA 

to the derived category D(A) : and V X, 3 an exact triangle 1'~n X -+ X -+ 
{ 

1'~n : D(A) -+ D(A) 

1'~n : D(A) -+ D(A) 
1'~n+1x -+ E1'~nx. Write D~O(A) for the full subcategory of DCA) consisting of those X such that 

BIl(X} = 0 (q > 0) and write D~O(A) for the full subcategory of D(A) consisting of those X such that 
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H9(X) = 0 (q < O)-then the pair (D~O(A), D~O(A» is a t-structure on D(A) and its heart is equivalent 

to A. 

Given at-structure (C:5o, C~o) on C, let {~~: be the isomorphism closure of 

{ 
nnc:50 { C:5n { ElnicSO 
nnc~O (n > 0) and let C~n be the isomorphism closure of Elnlc~O (n < O)-then 

V nEZ, the pair (C:5n, c~n) is a t-structure on C. 

PROPOSITION 44 Suppose that (C:5o, C~O) is a t-structure on C-then V nEZ, 

C:5n is a corefiective subcategory of C with corefiector r:5n X -+ X and C~n is a reflective 

subcategory of C with refiector X -+ r~n X. 

[It suffices to construct r:5o. Thus for any X E Ob C, 3 an exact triangle Xo -+ X -+ 

Xl -+ EXo, where Xo E ObC:5O & Xl E Obc~l (cf. t-sta), so V Y E ObC:5o, there 

is an exact sequence Mor(Y,nXd -+ Mor(Y,Xo) -+ Mor(Y,X) -+ Mor(Y,Xd. Here 

Mor(Y,XI ) = 0 (cf. t-st2). In addition, Mor(Y,nXd ~ Mor(EY,Xd and EC:5o C 

C:5-1 C C:5o (cf. t-std:::} Mor(EY,Xd = 0 (cf. t-st2). Therefore, V Y E ObC:5O, 

Mor(Y,Xo) ~ Mor(Y,X) and we can let r:5°X = X o.] 

[Note: Similar reasoning gives r~l X = Xl.] 

The functors r:5n, r~n figuring in Proposition 44 are called the truncation functors 

of the t-structure. 

[Note: V X, 3 an exact triangle r:5n X -+ X -+ r~n+l X -+ Er:5n X and since 

Mor (Er:5n X, r~n+l X) = 0, the arrow r~n+l X -+ Er:5n X is unique (cf. p. 15-6).] 

EXAMPLE Let A be an abelian category. Working with the t-structure on D(A) spelled out 

above, D~n(A) is the coreflective subcategory of D(A) consisting of those X such that H9(X) = 0 

(q > n) and D~n(A) is the reflective subcategory of D(A) consisting of those X such that H9(X) = 0 

(q < n). 

Observations: Let m, nEZ-then (1) m :5 n =? T~n 0 T~m ~ T~m 0 T~n ~ T~n and T~n 0 T~m ~ 

T~m 0 T~n ~ T~mj (2) m > n =? T~n 0 T~m = 0 and T~m 0 T~n = o. 

FACT If m :5 n, then V X E Ob C, 3 a unique arrow T~mT~n X - T~nT~m X such that the 
T~nx ) X ) T~mx 

diagram 1 r commutes. 
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[Note: The arrow r~mr~n X -+ r~nr~m X is an isomorphism provided that C satisfies the octa

hedral axiom. To see this, consider the exact triangles r~m-l X -+ r~n X -+ r~mr~n X -+ Er~m-l X, 

r~nx -+ X -+ r~n+lx -+ Er~nx, r~m-lx -+ X -+ r~mx -+ Er~m-1X.] 

. . {c<n. { C:S;n-l {r<n . { r:S;n-l 
NotatIon: Write c>n III place of c;:::n+1 and r>n III place of r;:::n+1' 

{ 
Obc:S;n. {r>nx = 0 

LEMMA Let X E Ob C-then X E Ob C2:n Iff r<n X = 0 . 

PROPOSITION 45 Suppose that (C:S;o, C;:::O) is a t-structure on C. Let X' -+ X -+ 

X" -+ ~X' be an exact triangle-then {i:, E Ob C:s;o => X E Ob C:S;O & {i:, E 

ObC;:::o => X E ObC;:::o. 

Let A be an additive category. Given a class 0 C ObA, the L of 0 is {
left a.nnihila.tor Ann 0 

right annihilator AnnR 0 

{ 
{Y : Mor(Y, X) = 0 V X E O} . 

{Y : Mor(X, Y) = 0 V X E O} 

EXAMPLE Let A be an additive category. Suppose that T, :F are subclasses of Ob A-then the 

pair (T,:F) is said to be a torsion theory on A if AnnL:F = T and AnnRT =:F. Example: V t-structure 

(C~O, C~O) on C, AnnLC~l = C~o and AnnRC~o = C~l, i.e., (C~O, C~l) is a torsion theory on C. 

LEMMA Let C .be a triangulated category satisfying the octahedral axiom. Suppose 

that (C:S;o, C;:::o) is a t-structure on C-then V X E Ob C, r;:::or:S;o X ~ r:S;°r;:::o X. 

THEOREM OF THE HEART Let C be a triangulated category with finite coprod

uets satisfying the octahedral axiom. Suppose that (C:S;o, C;:::o) is a t-structure on C-then 

its heart H(C) is an abelian category. 

[H(C) is closed under the formation of finite coproducts in C (use the exact tri

angle X -+ X II Y -+ Y ~ ~X and quote Proposition 45). To prove that H(C) has 

kernels and cokernels and that parallel morphisms are isomorphisms, take an arrow f : 
X -+ Y in H( C) and place it in an exact triangle X .L Y -+ Z -+ ~X (=> Z E 

Ob C:s;o n Ob C;:::-l (cf. Proposition 45)). For any W E Ob H( C), there are exact se

quences Mor(W,ny) -+ Mor(w,nZ) -+ Mor(W,X) -+ Mor(W,Y), Mor(~X, W) -+ 

Mor(Z, W) -+ Mor(Y, W) -+ Mor(X, W). Since Mor(W,ny) = 0, Mor(~X, W) = 

o and Mor(W,nZ) ~ Mor(W,r:S;°nZ), Mor(Z, W) ~ Mor(r;:::oZ, W), it follows that 

ker f ~ r:s;onz, coker f ~ r;:::oZ. In this connection, note that Z E ObC:S;o => r;:::oZ ~ 

r;:::or:S;o Z ~ r:S;°r;:::o Z => coker f E Ob H(C) and Z E Ob C;:::-l => nz E Ob C;:::o => 
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TSonz I=o'::l TSOT2!°nZ I=o'::l T2!°TSOnZ ~ kerf e ObH{C). Now fix an exact triangle 

1-+ Y -+ T2!OZ -+ EI {~ I e ObC2!o (cf. Proposition 45». Applying the octahedral 

axiom to Y -+ Z -+ EX -+ EY, Z -+ T2!OZ -+ ET<OZ -+ EZ, Y -+ T2!OZ -+ EI -+ EY, 
one gets an exact triangle EX -+ EI -+ ET<O Z -+ E2 X, which leads to an exact tri

angle TSonZ -+ X -+ I -+ ETSonZ, thus I e ObCSo (cf. Proposition 45) and so 

I E Ob H{ C). Finally, I I=o'::l coim f (consider ker f -+ X -+ I -+ E ker J) and I r::::: im f 
(consider I -+ Y -+ coker f -+ EI). Therefore H{C) is abelian.] 

[Note: In general, there is no a priori connection between C and the derived category 

ofH{C).] 

{ 
c~o = {X : 1I"q(X) = 0 (q > on 

EXAMPLE Take for C the stable homotopy category and let < -
C_o = {X: 1I"q(X) = 0 (q < On 

then (C$O, C~O) is a t-structure on C. Its heart is equivalent to AD (cf. p. 17-2). 

[Note: r$OX is called the connective cover of X (the arrow r$OX -+ X induces an isomorphism 

1I"n (r~OX) -+ 1I"n (X) for n ~ 0).] 

Let C be a triangulated category with finite coproducts satisfying the octahedral axiom. Suppose 

that (C~O, C~O) is a t-structure on C-then HO : C -+ H(C) is the functor that sends X to r~Or$O X ~ 

r~or~o X. 

FACT HO is an exact functor. 

[Fix an exact triangle X -+ Y -+ Z -+ EX and proceed in stages. 

(I) Assume that X, Y,Z E ObC~O-then 0 -+ HO(X) -+ HO(y) -+ HO(Z) is exact. 

(II~O) Assume that Z E ObC~O-then 0 -+ HO(X) -+ HO(y) -+ HO(Z) is exact. 

[For r<o X ~ r<Oy and the octahedral axiom furnishes an exact triangle r~o X -+ r~Oy -+ Z -+ 

Er~o X.] 

(II~O) Assume that X E ObC$O-then HO(X) -+ HO(y) -+ HO(Z) -+ 0 is exact. 

Reduce the general case to II~o & II~o .] 

{ 
HO(EqX) (q > 0) 

Notation: Hq : C -+ H(C) is the functor that sends X to 
HO(OqX) (q < 0) 

FACT Assume: TheintersectionsnObC~n, nObc~n contain only zero objects-then Hq(X) = 
n n 

o V q => X = 0, thus the Hq comprise a conservative system of functors (i.e., I is an isomorphism iff Hq (f) 

is an isomorphism V q). 

[Note: The objects of c~n are characterized by the condition that Hq(X) = 0 (q > n) and the 

objects of c~n are characterized by the condition that Hq(X) = 0 (q < n).] 
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§16. SPECTRA 

In this §, I shall give a concise exposition of the theory of spectra, concentrating on 

foundational issues and using model category theoretic methods whenever possible to ease 

the way. 

A prespectrum X is said to be separated if V q, a q : X q -+ nx q+ 1 is a CG embedding. 

SEPPRESPEC is the full subcategory of PRESPEC whose objects are the separated 

prespectra. 

Notation: Given a continuous function f : X -+ Y, where X & Y are compactly 

generated, write imf for kf(X) (so f : X -+ Y factors as X -+ imf -+ Y and imf -+ Y 

is a CG embedding). 

PROPOSITION 1 SEPPRESPEC isa reflective subcategory of PRESPEC. 

[We shall construct the reflector Eoo by transfinite induction. 

Claim: There is a functor E : PRESPEC -+ PRESPEC and a natural transfor

mation E : id -+ E such that V X, Ex : X -+ EX is a levelwise surjection, X being 

separated iff Ex is a levelwise homeomorphism. In addition, if f : X -+ Y is a morphism 

of prespectra and if Y is separated, then f factors uniquely through Ex. 

[Let (EX)q = im(Xq ~ nXq+d and determine the arrow (EX)q -+ n(EX)q+l from 
Xq (1'" • nXq+l 

Ex .• ! !QEX.,,+l 
the commutative diagram (EX)q ----+ n(EX)v+1. It is clear that E is functorial and E 

n n 
is natural.] 

Claim: For each ordinal a, there is a functor Ea : PRESPEC -+ PRESPEC 
and for each pair a ~ fJ of ordinals, there is a natural transformation Ea,f1 : E a -+ Ef1 

such that V X, S~f1 : Eax -+ Ef1X is a levelwise surjection, Eax being separated iff 

S~a+l : EaX -+ E a+1 X is a levelwise homeomorphism. In addition, if f: X -+ Y is a 

morphism of prespectra and if Y is separated, then f factors uniquely through s~t . 
[Here, EO = id, El = E, SO,l = S, sa,a = id, Ea+l = Eo Ea, and sa,f1+1 = So Ea,f1 

(a ~ fJ). At a limit ordinal A, put EAX = colimEaX and define E~A : Eax -+ EAX in 
a<A 

the obvious manner.] 

[Note: H Eax is separated, then V fJ > a, S~f1 : Eax -+ Ef1X is a levelwise 

homeomorphism.] 
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To finish the proof, it suffices to show that V X, 3 an ax such that EQx X is separated. 

But for this, one can take ax to be any infinite cardinal greater than the cardinality of 

(II Xq x Xq) II (II r(Xq)) (r(Xq) the set of open subsets of Xq ).] 
q q 

[Note: The arrow of reHection X -+ EooX is a levelwise surjection. It is a levelwise 

homeomorphism iff X is separated.] 

The existence of the reflector EOO can be established by applying the general adjoint functor theorem: 

SEPPRESPEC is a priori complete, the inclusion SEPPRESPEC -+ PRESPEC preserves limits, and 

the solution set condition is satisfied. The drawback to this approach is that it provides no information 

about the behavior of EOO with respect to finite limits, a situation that can be partially clarified by using 

the iterative definition of Eoo in terms of the EO . 

LEMMA Suppose that (I, ~) is a nonempty directed set, regarded as a filtered category I. Let 

~', ~" : I -+ A-CG be diagrams-then the arrow colim(~' X ~") -+ colim(~' x Ie colim(~" is a 

homeomorphism. 

[Note: A directed colimit in A-CG. is formed by assigning the evident base point to the correspond

ing directed colimit in A-CG, thus the lemma is valid in A-CG. as well.] 

FACT E oo preserves finite products. 

[Note: Eoo does not preserve equalizers.] 

LEMMA Suppose that (I, ~) is a nonempty directed set, regarded as a filtered category I. Let 

~ : I -+ A-CG be a diagram such that Y i!.. j, ~6 : ~i -+ ~j is an injection-then colim( ~ in 

A-CG= colim( ~ in CG (= colim( ~ in TOP) and Y i, the canonical arrow ~i -+ colim( ~ is one-to-one. 

[Note: The set underlying colim( ~ is therefore the colimit of the underlying diagram in SET.] 

LEMMA In A-CG, directed colimits of diagrams whose arrows are injections commute with finite 

limits. 

[Note: A finite limit in A-CG. is formed by assigning the evident base point to the corresponding 

finite limit in A-CG, thus the lemma is valid in A-CG. as well.] 

A prespectrum X is said to be injective ifY q, C1'q : Xq -+ OXq+l is an injection. INJPRESPEC is 

the full subcategory of PRESPEC whose objects are the injective prespectra. 

[Note: SEPPRESPEC is a full subcategory of INJPRESPEC.] 

FACT The arrow of reflection X -+ EOOX is a levelwise injection iff X is injective. 

[If X is injective, then so are the EOX; Moreover, Ei'tI : EOX -+ EtiX (Q ~ f3) is one-to-one.] 
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[Note: It therefore follows that the arrow of reflection X - EOOX is a levelwise bijection iff X is 

injective.] 

FACT The restriction of EOO to INJPRESPEC preserves finite limits. 

LEMMA Suppose given a sequence {Xn, in}, where Xn is a A.-separated compactly 

generated space and in : Xn -+ X n+1 is a CG embedding-then V compact Hausdorff 

space K, colimX~ ~ (colimXn)K (exponential objects in a-CG). 

[Note: There is an analogous assertion in the pointed category.] 

PROPOSITION 2 SPEC is a reflective subcategory of SEPPRESPEC. 

[The reflector sends X to eX, the latter being defined by the rule q -+ colim on X n+q .] 

LEMMA Suppose that (I,~) is a nonempty directed set, regarded as a filtered category I. Let 

6. : I - 4-CG be a diagram such that V i ~ j, 6.6 : 6.. - 6.; is a CG embedding-then V i, the canonical 

arrow 6.. - coliml6. is a CG embedding. 

[Note: Changing the assumption to "closed embedding" changes the conclusion to "closed embed

ding" .] 

FACT The arrow of reflection X - eX is a levelwise CG embedding. 

FACT e preserves finite limits. 

PROPOSITION 3 SPEC is a reflective subcategory of PRESPEC. 

[This is implied by Propositions 1 and 2.] 

[Note: The composite PRESPEC ~ SEPPRESPEC ~ SPEC is the spectrifica

tion functor: X -+ sX (s = eo EOO).] 

Application: SPEC is complete and cocomplete. 

[Note: The colimit of a diagram A. : I -+ SPEC is the spectrification of its colimit in 

PRESPEC. Example: The coproduct in PRESPEC or SPEC is denoted by a wedge. 

If {Xi} is a set of spectra, then its coproduct in PRESPEC is separated, so e(V Xi) is 
i 

the coproduct V Xi of the Xi in SPEC.] 
I 

FACT Spectrification preserves finite products and its restriction to INJPRESPEC preserves 

finite limits. 

EXAMPLE Let X be in 4-CG.-then the suspension prespectrum of X is the assignment q -

EqX, where EqX - OEEqX R:i OEq+1X (a CG embedding). Its spectrification is the suspension spec-
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trum of X. Thus, in the notation of p. 14-59, the suspension spectrum of X is Q 00 X (Q 00 X)q = 
colimnnI;n+qX = nooI;ooI;qx. 

EXAMPLE Fix q ~ o. Given an X in 4-CG., let Q~ X be the spectrification of the prespectrum 

p -+ {I;P-qX (p ~ q) , where I;p-qX -+ nI;I;p-qx ~ nI;p+l-qx (p ~ q) (if p < q, the arrow is the 
* (p < q) 

inclusion of the base point). Viewed as a functor from 4-CG. to SPEC, Q~ is a left adjoint for the qth 

space functor U~ : SPEC -+ 4-CG. that sends X = {Xq} to X q. Special case: Qgo = Qoo, Ugo = U oo . 

" , [Note: V X, q' ~ q" ~ Q;'f X ~ Q;'f,I;q -q X.] 

FACT Suppose that X is a prespectrum-then aX ~ colim Q~ X q • 

[For any spectrum Y, Mor(colimQ~Xq,y) ~ lim Mor(Q~Xq,y) ~ lim Mor(Xq,Yq) ~ Mor(X, 

Y) ~ Mor(aX, Y).] 

FACT Let (X,I) be an object in FIL(SPEC) (cf. p. 0-10). Assume: V n, fn : Xn -+ X n+l 

is a levelwise CG embedding-then V pointed compact Hausdorff space K, colim Mor (Q~ K, Xn) ~ 

Mor(Q~ K,colim Xn). 

[The assumption guarantees that the prespectrum colimit of (X, I) is a spectrum. Therefore colim 

Mor(Q~K,Xn) ~ colim Mor(K, U~Xn) ~ Mor(K,colim U~Xn) ~ Mor(K, U~colim Xn) ~ 

Mor (Q;c' K, colim Xn).] 

FACT. Let {Xi} be a set of spectra, K a pointed compact Hausdorff space-then every morphism 

f : Q;c' K -+ V Xi factors through a finite subwedge. 
i 

[Since Mor (Q~ K, V Xi) ~ Mor (K, U~(V Xi», f corresponds to an arrow 9 : K -+ U~(V Xi) 
iii 

(= (V Xi)q), i.e., to an arrow 9 : K -+ colim nn(V(Xi)n+q), which factors through nn(V(Xi)n+q) for 
i i 

K ~ nn(V(Xi)n+q) 

some n: ~;l . The adjoint Un : I;n K -+ V (Xi )n+q factors through a finite subwedge 

(VXi)q 
i 

V(Xi,,)n+q, so ffactors through VXi".] 

" " 
Notation: Given X, Y in PRESPEC, write HOM(X, Y) for Mor (X, Y) topologized 

via the equalizer diagram Mor (X, Y) ~ n YqX'=t n(S1Yq+1 )X,. 
q q 

PROPOSITION 4 Spectrification is a continuous functor in the sense that V X, Y in 

PRESPEC, the arrow HOM(X, Y) ~ HOM(sX, sY) is a continuous function. 
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(0 and A) Fix a K in .6.-CG •. Given an X in PRESPEC, let XoK be the 

prespectrum q ~ Xq#/(K, where Xq#/(K ~ n(Xq+l #/(K) is Xq#/(K ~ nXq+1 #/(K ~ 
n(Xq+1#/(K), and given an X in SPEC, let X A K be the spectrification of XDK. 

Examples: (1) rx = XD[O, 1] or XA[O, 1], the cone of X; (2) EX = XDS1 or XAS\ 

the suspension of X. 

(HOM) Fix a Kin .6.-CG •. Given an X in PRESPEC, let HOM(K,X) be the 

prespectrum q ~ Xf, where Xf ~ nX~l is Xf ~ (nXq+1)K R$ nX~l' 
[Note: H X is a spectrum, then HOM(K,X) is a spectrum.] 

Example: V X, nx = HOM(Sl, X) (cf. p. 14-75). 

PROPOSITION 5 For X, Y in PRESPEC and K in .6.-CG., there are natural 

homeomorphisms HOM(XDK, Y) R$ HOM(X, y)K R$ HOM(X,HOM(K, V»~. 

[Note: Consequently, the functor XD- :.6.-CG. ~ PRESPEC has a right adjoint, 

viz. HOM(X,-), and thefunctor-DK: PRESPEC ~ PRESPEC has aright adjoint, 

viz. HOM(K,-).] 

PROPOSITION 6 For X, Y in SPEC and K in .6..CG., there are natural homeo

morphisms HOM(X A K, Y) R$ HOM(X, y)K R$ HOM(X,HOM(K, Y». 

[Note: Consequently, the functor X A - :.6.-CG. ~ SPEC has a right adjoint, 

viz. HOM(X, -), and the functor - A K : SPEC ~ SPEC has a right adjoint, viz. 

HOM(K,-).] 

Examples: (1) Q~(K#/(L) R$ (Q~K) A L and U~HOM(K,X) R$ (U~X)Kj (2) 

s(XDK) R$ sX A K. 

Example: (E, n) is an adjoint pair. 

EXAMPLE (1) X /\ SO ~ Xj (2) HOM(SO, X) ~ Xj (3) (X /\ K) /\ L ~ X /\ (K#leL)j (4) 

HOM(K#leL, X) ~ HOM(K, HOM(L, X». 

FACT Suppose that X is an injective prespectrum-then V K, XoK is an injective prespectrum. 

FACT Suppose that X is a separated prespectrum-then V nonempty compact Hausdorff space 

K, XoK+ is a separated prespectrum. 

p ~ y 

LEMMA Suppose that (! !g is a pullback square in A-CG. Assume: 9 is a closed 

X ---t Z 
J 

embedding-then e is a closed embedding. 
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EXAMPLE Let f : X - Y be a morphism of prespectra-then the mapping cylinder Mr of f 
Xc{Oh ---+ Yc{O}+ 

is defined by the pushout square ! ! (1+ = [0,1] II * (d. p. 3-28». There is 

X ---+ Mr 

a natural arrow Mr - Ycl+ and the commutative diagram ! ! is a pullback square. 

Y ---+ Ycl+ 
Definition: f is a prespectral cofibration if Mr - YcI+ has a left inverse. Every prespectral cofibration 

is a levelwise closed embedding. 

FACT Let f: X - Y be a morphism of prespectra. Assume: {~ are injective-then Mr is 

injective. 

EXAMPLE Let f : X - Y be a morphism of spectra-then the mapping cylinder Mr of f is 

X A {O}+ ---+ Y A {O}+ 

defined by the pushout square ! ! (1+ = [0,1] II * (d. p. 3-28». There is a 

Mr 
X ---+ Mr 

natural arrow Mr - YAl+ and the commutative diagram ! ! is a pullback square. Indeed, 

Y ---+ YAI+ :: :P~::~::(;nr~w th~;)~:::~:~::·;~~:~l:::S:::;:d~ 
Y ---+ Ycl+ 

is a spectral cofibration if Mr - Y A 1+ has a left inverse. Every spectral cofibration is a levelwise closed 

embedding. 
X A {O}+ ---+ 

[Note: The arrow f: X - Y is a spectral cofibration iff the commutative diagram ! 
XA 1+ ---+ 

Y A {O}+ 

! is a weak pushout square or, equivalently, iff V Z, f has the LLP w.r.t. HOM(I+,Z)~Z. 

YAI+ 
Example: Suppose that L - K is a pointed cofibration-then V X, X A L _ X A K is a spectral 

cofibration.] 

Notation: For n ;::: 0, put Sn = QooSn and for n > 0, put s-n = Q~So. 

[Note: V n & V m ;::: 0, EmSn(= Sn A Sm) R:: Sm+n and V n > ° & V m > 0, 

S-m A Sn R:: (Q:SO) A sn R:: Q:(SO#ksn) R:: Q:sn R:: Sn-m.] 
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EXAMPLE V X, Q~ X ~ s-q "X. So, the arrow of adjunction id - U~ 0 Q~ is given by 

X - (S-q "X)q and the arrow of adjunction Q~ 0 U~ - id is given by s-q "Xq - X. 

PROPOSITION 7 The qth space functor U~ : SPEC -+ a-CG* is represented by 
s-q. 

['v'X, Mor(S-q,X) = Mor(Q~SO,X) ~ Mor(SO, U~X) = U~X.l 

A homotopy in SPEC is an arrow X 1\ 1+ -+ Y. Homotopy is an equivalence rela

tion which respects composition, so there is an associated quotient category SPEC / ~: 

[X, Y]o = Mor (X, Y)/~, i.e., [X, Y]o = 1ro(HOM(X, V»~. 

EXAMPLE (Homotopy Groups of Spectra) Let X be a spectrum-then the nih homotopy 

group lI'n(X) of X (n E Z) is [sn, X]o. The lI'n(X) are necessarily abelian. And: V n :;:: 0, lI'n(X) = lI',,(Xo), 

while lI'_n(X) = 11'0 (Xn). Therefore X is connective iff lI'n(X) = 0 for n ~ -1. Example: V X in 4-

CG.o , the suspension spectrum Qoo X of X is connective. Proof: EX is path connected and well pointed 

(=> E2 X simply connected), thus V n :;:: 1, lI'q(Eq+n X) = • (by the suspension isomorphism and Hurewicz), 

so lI'_n(Qoo X) = 11'0 (000 EooEn X) = colim lI'q (Eq+n X) = •. 

[Note: The stable homotopy groups lI'~(X) (n :;:: 0) of X are the lI'n(QooX) (= lI'n(OooEooX». 

Example: lI'o(X) ~ Ho(X).] 

FACT Let (X,f) be an object in FIL(SPEC) (cf. p. 0-10). Assume: V n, f" : Xn -

X n+1 is a levelwise CG embedding-then V pointed compact Hausdorff space K, colim[Q~ K, Xn]O ~ 

[Q~ K,colimXn]o (cf. p. 16-4). 

EXAMPLE Imitating the construction in pointed spaces, one can attach to each object (X, f) in 

FIL(SPEC) a spectrum tel(X,f), its mapping telescope. Thus teleX, f) = colim teln(X,f) and the arrow 

tel,,(X,f) - te1n+l(X,f) is a spectral cofibration (hence is a levelwise closed embedding (cf. p. 16-6)). 

Since there are canonical homotopy equivalences tel" (X, f) - X n , it follows that V pointed compact 

Hausdorff space K, colim[Q~ K, X"Jo ~ [Q~ K, teleX, f)Jo. 

LEMMA Suppose that f: X -+ Y is a homotopy equivalence-then V q, fq : Xq -+ Yq 

is a homotopy equivalence. 

[The qth space functor U~ : SPEC -+ a-CG* is a V-functor (V = a-CG*), hence 

preserves homotopies.l 

FACT SPEC is a cofibration category if weak equivalence=homotopy equivalence, cofibration= 

spectral cofibration. All objects are cofibrant and fibrant. 
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[Note: One way to proceed is to show that SPEC is an I-category in the sense of Bauest.J 

A prespectrum X is said to satisfy the cofibration condition if 'V q, the arrow EXq ~ 

X q+1 adjoint to O'q is a pointed cofibration. An X which satisfies the cofibration condition 

is necessarily separated (for then O'q is a closed embedding). Example: 'V X, MX satisfies 

the cofibration condition (cf. p. 14-71). 

EXAMPLE Equip PRESPEC with the model category structure supplied by Proposition 56 in 

§14-then every cofibrant X satisfies the cofibration condition. 

[Note: The converse is false. To see this, take any X in 4-CG. and consider the prespectrum whose 

spectrification is Q~ X, bearing in mind that the inclusion of a point is always a pointed cofibration.] 

A spectrum X is said to be tame if it is homotopy equivalent to a spectrum of the 

form s Y, where Y is a prespectrum satisfying the cofibration condition (=} s Y ~ e V). 

LEMMA Let f: X ~ Y be a morphism of spectra. Assume: f is a level wise pointed 

homotopy equivalence-then 'V tame spectrum Z, f. : [Z, X]o ~ [Z, Y]o is bijective. 

Application: A levelwise pointed homotopy equivalence between tame spectra is a 

homotopy equivalence of spectra. 

FACT Let I: X -+ Y be a morphism of prespectra.. Assume: {~ satisfy the cofibration condition 

and 1 is a levelwise pointed homotopy equivalence--then al : aX -+ BY is a homotopy equivalence of 

spectra. 

Equip .6.-CG. with its singular structure. 

LEMMA Let f: X ~ Y be a morphism of spectra-then f is a levelwise fibration iff 

fhas the RLP w.r.t. the spectral cofibrations s-q A [0, 1]+. ~ s-q A 1[0, 1]+. (n ;?: O,q 0). 

LEMMA Let f : X ~ Y be a morphism of spectra-then f is a levelwise acyclic 

fibration iff f has the RLP w.r.t. the spectral cofibrations s-q A S+-l ~ s-q A D+ 

(n;?: O,q;?: 0). 

t Algebraic Homotopy, Cambridge University Press (1989), 18-27. 
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Q:OL ----7 X 

Since (Q~, U~) is an adjoint pair, the lifting problem Qqa / 1 /,,/" lfis equivalent to the lift-

L ----7U~X 

ing problem /1 /"",/r 1 Uqaf. 

K ----+u~Y 

Q~K----+Y 

PROPOSITION 8 Equip a-CG. with its singular structure-then SPEC is a model 

category if weak equivalences and fibrations are levelwise, the cofibrations being those 

morphisms which have the LLP w.r.t. the levelwise acyclic fibrations. 

[The proof is basically the same as that for the singular structure on TOP (cf. p. 

12-101£.). Thus there are two claims. 

Claim: Every morphism f : X -+ Y can be written as a composite fw 0 i"", where 

i"" : X -+ X"" is a weak equivalence and has the LLP w.r.t. all fibrations and fw : X"" -+ Y 

is a fibration. 

[In the small object argument, take So = {S-q A [0,1]+ -+ s-q A 1[0,1]+ (n ~ 0, q ~ 

O)-then \I k, the arrow Xl: -+ Xl:+1 isa spectral cofibration, hence is a levelwise closed 

embedding (cf. p. 16-6). Since Q~[O, 1]+ ~ s-q A [0, 1]+, it follows that colim Mor(S-q A 

[0,1]+, Xl:) ~ Mor (S-q A [0,1]+, X",,) \I n (cr. p. 16-4), so fw has the RLP w.r.t. the 

s-q A [0,1]+ -+ s-q A 1[0,1]+, i.e., is a fibration. The assertions regarding i"" are implicit 

in its construction. J 
Claim: Every morphism f: X -+ Y can be written as a composite fw 0 i"", where iw : 

X -+ X"" has the LLP w.r.t. levelwise acyclic fibrations and f"" is both a weak equivalence 

and a fibration. 

[Run the small object argument once again, taking So = {S-q A S+.-1 -+ s-q AD+. 

(n > O,q ~ 0).] 

Combining the claims gives MC-5 and the nontrivial half of MC-4 can be established 

in the usual way. J 

[Note: All objects are fibrant and every cofibration is a spectral cofibration.] 

True or false: The model category structure on SPEC is proper. 

HSPEC is the homotopy category of SPEC (cr. p. 12-24 1£.). In this situation, 

IX = X A 1+ is a cylinder object when X is cofibrant while PX = HOM(I+, X) serves as 

a path object. And: It can be assumed that the "cofibrant replacement" .eX is functorial 

in X, so .e : SPEC -+ SPECc . 
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[Note: Recall too that the inclusion HSPECc -+ HSPEC is an equivalence of cate

gories (cf. §12, Proposition 13).J 

Remark: Suppose that X is cofibrant-then for any Y, [X, YJo ~ [X, Y] (cf. p. 12-25) 
(all objects are fibrant), thus if Y -+ Z is a weak equivalence, then [X, Y]o ~ [X, Z]o. 

Example: Let (K, ko) be a pointed CW complex-then Q;;o K is cofibrant. 

FACT Let f : X -+ Y be a morphism of spectra-then f is a weak equivalence iff Y n, 1I'n(f) : 

1I'n (X) -+ 1I'n (Y) is an isomorphism. 

LEMMA HSPECc has coproducts and weak pushouts. 

[Note: The wedge V Xi is the coproduct of the Xi in HSPECc:. Proof: V Xi is cofibrant 
i 

and for any cofibrant Y, [V Xi, Y] ~ [V Xi, Y]o ~ 
i i 

TI 11'0 (HOM(Xi, Y» ~ TI[X,;, Y]o ~ TI[X,;, Y].] 
iii 

11'0 (HOM(V Xi, V»~ 
i 

i 

~ 1I'o(TI HOM (Xi , Y» ~ 
i 

BROWN REPRESENTABILITY THEOREM A cofunctor F : HSPECc: -+ SET is repre

sentable iff it converts coproducts into products and weak pushouts into weak pullbacks. 

[In the notation ofp. 5-79, let U = {S" : n E Z}. Iff: X -+ Y is a morphism such that Y n, the arrow 

[S", Xl -+ [sn, Y] is bijective, then f is a weak equivalence (cf. supra), thus is a homotopy equivalence (cf. 

§12, Proposition 10). ThereforeUt holds. As for U2 , given an object (X,f) in FIL(HSPECc:), tel(X,f) is 

a weak coli mit and Y n, the arrow colim[S", Xk] -+ [sn ,tel(X, f)] is bijective (d. p. 16-7).] 

EXAMPLE HSPECc has products. For if {Xi} is a set of cofibrant spectra, then the cofunctor 

Y -+ TI[Y, Xi] satisfies the hypotheses of the Brown represent ability theorem. 
i 

PROPOSITION 9 Suppose that A -+ Y is a cofibration and X -+ B is a fibration

then the arrow HOM(Y, X) -+ HOM(A, X) xHOM(A,B) HOM(Y, B) is a Serre fibration 

which is a weak homotopy equivalence if A -+ Y or X -+ B is acyclic. 

Proposition 9 implies {and is implied by} the following equivalent statements (cf. §l3, Propositions 

31 and 32). 

FACT If A -+ Y is a cofibration in SPEC and if L -+ K is a cofibration in A-CG., then the 

arrow A 1\ K u Y 1\ L -+ Y 1\ K is a cofibration in SPEC which is acyclic if A -+ Y or L -+ K is acyclic. 
AIIL 

FACT If L -+ K is a cofibration in A-CG. and if X -+ B is a fibration in SPEC, then the 

arrow HOM{K, X) -+ HOM(L, X} xHOM(L,B) HOM(K, B} is a fibration in SPEC which is acyclic if L -+ K 

or X -+ B is acyclic. 
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The shift suspension is the functor A : SPEC --+ SPEC defined by (AX)q = X q+l 

(q > 0) and the shift desuspension is the functor A-I : SPEC --+ SPEC defined by 

(A-IX) _{Xq-l (q>O) 
q - nxo (q = 0) . 

PROPOSITION 10 The pair (A, A-I) is an adjoint equivalence of categories. 

EXAMPLE A9 is a left adjoint for A -9 and, by Proposition 10, A -9 is a left adjoint for A'l. On 

the other hand, Q OQ is a left adjoint for U OQ • Therefore A -'I 0 Q OQ is a left adjoint for U OQ 
0 A'l. But 

UOQ 0 Ai = U~, thus V q ~ 0, A -9 0 Q OQ 
A:I Q~. 

Remarks: (1) A preserves weak equivalences, so QoA : SPEC --+ HSPEC sends weak 
SPEC QoA) HSPEC 

equivalences to isomorphisms and there is a commutative triangle Q 1 ~ 
HSPEC 

LA the total left derived functor for A; (2) A-I preserves weak equivalences, so Q 0 A-I: 

SPEC --+ HSPEC sends weak equivalences to isomorphisms and there is a commutative 
SPEC QoA-\ HSPEC 

triangle Ql ./ , RA -1 the total right derived functor for A-I. 
/RA-1 

HSPEC 

PROPOSITION 11 The pair (LA, RA -1) is an adjoint equivalence of categories. 

[A -1 preserves fibrations and acyclic fibrations (the data is levelwise). Therefore 

A preserves cofibrations and the TDF theorem implies that (LA, RA -1 )is an adjoint 

pair. Consider now the bijection of adjunction Bx,Y : Mor (AX, Y) --+ Mor(X, A -ly), so 
A-If 

Bx,yf is the composition X --+ A-I AX I A-I Y. Since the arrow X --+ A-I AX is 

an isomorphism, Bx,yf is a weak equivalence iff A -If is a weak equivalence, i.e., iff f is a 

weak equivalence. Therefore the pair (LA, RA -1) is an adjoint equivalence of categories 

(cf. p. 12-29).] 

A -1 is naturally isomorphic to n. Here (nX)q = nxq, the arrow of structure nXq --+ 

nnxq+1 being naq. Therefore the difference between nand n is the twist T (cf. p. 14-75). 

Define a pseudo natural weak equivalence Bx : nx --+ nx by letting BX,q : nXq --+ nXq 
be the identity for even q and the negative of the identity for odd q (i.e., coordinate 

reversal). 

LEMMA Let C be a category and let F, G : C --+ PRESPEC be functors. Suppose 

given a pseudo natural weak equivalence B : F --+ G-then in the notation of the conversion 

principle, there are natural transformations sFX t!-sMFX ~sMGX ~sGX. 
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[Note: sM2 is a weak equivalence. Moreover, the sr are weak equivalences if F, G 

factor through SEPPRESPEC.] 

Application: 'V X in SPEC, nx is natura.lly weakly equivalent to nx or still, is 

naturally weakly equivalent to A-I X. 

Example: In HSPEC, S-n ~ nnso (n ~ 0). 

PROPOSITION 12 The total left derived functor LE for E exists and the total right 

derived functor Rn for n exists. And: (LE, Rn) is an adjoint pair. 

[E preserves cofibrations and n preserves fibrations. Now quote the TDF theorem.] 

[Note: Since n, n preserve weak equivalences, there are commutative triangles 

SPEC QoG. HSPEC SPEC QoD. HSPEC 

Q 1 ~ Q 1 ~ and, by the above, natural isomor-

HSPEC HSPEC 
phisms, Rn ~ Rn, Rn ~ RA-1.] 

E preserves weak equivalences between cofibrant objects. So, unra.veling the definitions, one finds 

tha.t LE( = L( Q 0 E» "is" L(E 0' 0 C) (L(E 0 , 0 C) 0 Q = Q 0 Eo, 0 C), , : SPECc -+ SPEC the inclusion. 

In particular: V X, LEX = ECX. 

PROPOSITION 13 The pair (LE, Rn) is an adjoint equivalence of categories. 

[According to Proposition 11, the arrows of adjunction id ~ RA -loLA, LAoRA -I ~ 
id are natural isomorphisms and the claim is that the arrows of adjunction id ~ Rn 0 LE, 
LE 0 Rn ~ id are natural isomorphisms. Thus fix a natural isomorphism Rn ~ RA -1_ 

then there exists a unique natural isomorphism LA ~ LE characterized by the com-
[LEX, Y] ---t [X, Rny] 

mutativity of 1 1 'V x, Y. It remains only to note that the 

[LAX, Y] ---t [X,RA-Iy] 

id " RA-1oLA LAoRn ---t LA 0 RA-l ---t 

diagrams "1 1 1 1" of natural transfor-

RnoLE ---t RA-IoLE LEoRn ---t id 
" mations commute.] 

Application: HSPEC is an additive category and LE is an additive functor. 

[Note: HSPEC has coproducts and products (since HSPECe does (cf. p. 16-

10)). Standard categorical generalities then imply that the arrow X V Y ~ X x Y is an 

isomorphism for all X, Yin HSPEC (cf. p. 0-36).] 
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Notation: Write {~ in place of {i~ and { ~ -1 in place of { i~ -1 . 

PROPOSITION 14 HSPEC is a triangulated category satisfying the octahedral 

axiom. , , , 
[Working in HSPECc , stipulate that a triangle X' ~ y' ~ Z' ~ EX' is exact if it is 

isomorphic to a triangle X .!.. y L Cr ~ EX for some f (Cr = mapping cone of f) (obvious 

definition). Since TRI-TRs are immediate, it will be enough to deal just with the octa

hedral axiom. Suppose given exact triangles X ~ Y --+ Z' --+ EX, Y ~ Z --+ X' --+ EY, 
YOU, • .", 

X ---+ Z --+ Y --+ EX, where WIthout loss of generality, Z = C u , X = Cy , Y = C YO u. 

Starting at the prespectrum level, define a pointed continuous function In : CUn --+ CVnOUn 

by letting In be the identity on r Xn and Vn on Yn and define a pointed continuous func

tion 9n : CVnOUn --+ CVn by letting 9n be rUn on rXn and the identity on Zn-then 

the In and the 9n combine to give morphisms of prespectra, so applying s, 3 morphisms 

f: Z' --+ Y' and g : Y' --+ X' of spectra. By construction, the composite Z' .!.. Y' --+ EX 

is the arrow Z' --+ EX and the composite Z --+ Y' ~ X' is the arrow Z --+ X'. Letting 

h : X' --+ EZ' be the composite X --+ EY --+ EZ', one sees that all the commutativ

ity required of the octahedral axiom is present, thus the final task is to establish that 

the triangle Z' .!.. Y' ~ X' ~ EZ' is exact. But there is a canonical commutative diagram 

Z' ~ Y' ~ X' ~ EZ' 

II 
z' ---+ 

r 

II 
Y' ---+ 

j 

II . And: tP is a homotopy equivalence.] 
EZ' 

Application: An exact triangle X ~ Y ~ Z ~ EX in HSPEC gives rise to along exact 

sequence in homotopy··· --+ 1I"n+I(Z) --+ 1I"n(X) --+ 1I"n(Y) --+ 1I"n(Z) --+ 1I"n-I(X) --+ •••• 

EXAMPLE If f: X - Y, g : Y - Z are morphisms in HSPEC, then there is an exact triangle 

Cf - C"of - CIt - ECf· 

Remark: HSPEC is compactly generated (take U = {sn : n E Z}) and admits Adams 

represent ability (by Neeman's count ability criterion). 

EXAMPLE The homotopy groups of a compact spectrum are finitely generated. 

[The thick subcategory of HSPEC whose objects are those X such that 1I"q(X) is finitely generated 

V q contains the S" .J 

It is also true that HSPEC is a closed category (indeed, a CTC) but the proof requires 

some preliminary work which is best carried out in a more general context. 
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The main difficulty lies in equipping HSPEC with the structure of a closed category (cf. p. 16-30). 

Granted this, the fact that HSPEC is a CTC can be seen as follows. 

Recall that if / : X -+ Y is a map in the pointed category, then there is a homotopy commutative 

diagram 
EOX ---+ EOY ---+ EE, ---+ EX 

! ! 1 II 
OY ---+ E, ---+ X ---+ Y ---+ C, ---+ EX, 

II ! ! ! 
OY ---+ OC, ---+ OEX ---+ OEY 

a formalism which also holds in the category of prespectra or spectra. Of course, when viewed in HSPEC, 

the arrows Et -+ OC{, EEr -+ C{ are isomorphisms (d. Proposition 13). Turning to the axioms for a 

CTC, the only one that is potentially troublesome is CTC ... In order not to obscure the issue, we shall 

proceed informally, omittins all mention of C. and the underlying total derived functors. Thus given 
( J .. -("-O'lX,z) J-

X -+ V -+ C{-+ EX, one has to show that V Z, the triangle 0 hom(X, Z) ) hom(C{, Z)-+ 
-1 ,. 

" hom(X,Z) 0 

homeY, Z) • EO hom(X, Z) is exact. Consider the commutative diagram 

nv 
OJ 

---+ nCr 

II II 
nv ---+ OC{ 

OJ 

OEX 

1 -1 I'x 

X 

l'i100
" 

1I-101'-100E{ Y Y 
EOV 

II 
• }Jnv 

1I-1 0{ Y 
Since the triangle on the bottom is exact (d. p. 15-2), so is the triangle on the top. But then, on the 

basis of the commutative diagram 

-1 

Er 
( lIy 

---+ X ---+ V Env nv ---+ 

II 1 ll'x 1l'Y II 
OC, ---+ nEX ---+ OEV Env 

OE{ 11-1 01'-1 Y Y 
OV ---+ 

1I-1 0{ 
Y 

the triangle nv -+ Et -+ X ---...... EnV is exact. In particular: The triangle 0 hom(X, Z) -+ 
-1 ,. 

" hom(X,Z)o 
E,. -+ hom{V, Z) --------+. En hom(X, Z) is exact. However, there is an isomorphism Er -+ 

hom(C{, Z) and a commutative diagram 

Ohom(X,Z) Er 

-1 ,. 

hom(V,Z) 
" hom(X,Z)

0 

EOhom(X,Z) 

II 1 II II 
hom(V,Z) Enhom(X,Z) 

-1 ,. 
" hom(X,Z) 0 
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hence the triangle on the bottom is exact, this being the case of the triangle on the top. 

~::::l' :S:U:::I: :m{p~~ g;::::~eC:~' §IS, Proposition 35). But trivially the unit 
OX 

SO is dualizable, thus V n > 0, sn ~ 1::"So &; s-n ~ O"So are dualizable, i.e., all the elements of 

U = {sn : n E Z} are dualizable.] 

[Note: Observe too that V n, DS" ~ S-".] 

Remark: HSPEC is a unital compactly generated CTC (since SO is compact). Accordingly, 

duHSPEC = cptHSPEC (el. p. 15-39), the thick subcategory generated by the S" (theorem of 

Neeman ... Ravenel). 

[Note: It is clear that HSPEC is actually monogenic.] 

EXAMPLE The compact objects in HSPEC are those objects which are isomorphic to a Q;o K, 

where K is a pointed finite CW complex. 

Notation: Given a real finite dimensional inner product space V, let S V denote its one 

point compactification (base point at 00) and for any X in A-CG"" put :Ev X = X#kSv, 
{}vX =Xsv. 

[Note: If V and Ware two real finite dimensional inner product spaces such that V c 
W, write W - V for the orthogonal complement of V in W-then V X, :E W - v:Ev X ~ :E W X 
and {}v{}w-vX ~ {}WX.] 

A universe is a real inner product space U with dimU = w equipped with the finite 

topology. UN is the category whose objects are the universes and whose morphisms are the 

linear isometries. An indexing set in a universe U is a set A of finite dimensional subspaces 

of U such that each finite dimensional subspace V of U is contained in some U E A. The 

standard indexing set is the set of all finite dimensional subspaces of U. Example: Take 

U = ROO-then {Rf : q ~ O} is an indexing set in ROO. 

Let A be an indexing set in a universe U-then a (U, A ) ... prespectrum X is a collection 

of pointed .6, ... separated compactly generated spaces Xu (U E A) and a collection of pointed 
I7v.W I7v.v 

continuous functions X v ---+ {} W - v X W (V, W E A & V c W) such that X v ---+ Xv 

Xu ~ {}V-UXv 

is the identity and for U eVe W in A, the diagram I7U.W 1 ln v - u I7V.W 

{}w-u Xw= {}v-u{}w-v Xw 

commutes. PRESPECu,A is the category whose objects are the (U, A)-prespectra and 

whose morphisms f: X -+ Y are collections of pointed continuous functions fu : Xu -+ Yu 
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such that the diagram 1 
{lW-VXw 
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Yv 

1 
---+ {lw-vyw 

gw-vlw 

commutes for V C W in A. A 

(U,A)-prespectrum X is a (U,A)-spectrum if the O"V,W are homeomorphisms. SPECU,A 

is the full subcategory of PRESPECu,A with object class the (U,A)-spectra. Example: 

Take U = Roo, A = {Rf : q ~ OJ-then PRESPECu,A = PRESPEC, SPECU,A = 
SPEC. 

[Note: When A is the standard indexing set, write PRESPECu, SPECu in place 

of PRESPECu,A, SPECU,A.} 

What has been said earlier can now be said again. Thus introduce the notion of 

a separated (U,A)-prespectrum by requiring that the O"v,w : Xv -+ {lw-v Xw be CG 

embeddings. This done, repeat the proof of Proposition 1 to see that SEPPRESPECu ,A 

is a reflective subcategory of PRESPECu,A with re:B.ector EOO. Next, as in Proposition 

2, SPECU,A is a re:B.ective subcategory of SEPPRESPECu,A (the re:B.ector sends X to 

eX, where (eX)v = ~gW{lW-VXw). Conclusion: SPECU,A is a re:B.ective subcategory 

of PRESPECu,A (d. Proposition 3), hence is complete and cocomplete. 

[Note: The composite PRESPECu,A ~ SEPPRESPECu,A ..!. SPECU,A is the 

spectrification functor: X -+ 8X (8 = eo EOO).} 

EXAMPLE Fix U e A. Given an X in ~-CG., let Qff X be the spectrification of the pre-

spectrum V _ , where :r:v-uX _ Ow-v:r:w-v:r:v-uX ~ Ow-v:r:w-uX 
{ 

:r:v-u X (V::> U) 

* (V tJ U) 
(V, w e A &; U eVe W) (otherwise, the arrow is the inclusion of the base point). Viewed as a 

functor from ~-CG. to SPECU,A. Qff is a left adjoint for the Uth space functor Uff : SPECU,A -

~-CG. that sends X = {Xu} to Xu. 

FACT If X is & (U, A)-spectrum and if dim VI = dim V2 (Vi, V2 e A), then XVI ~ XV2' 

[Embed Vi and V2 in a common finite dimensional W e A and observe that X VI ~ 0 W - VI X W ~ 

OW-V2XW ~ Xv2.J 

Notation: Given X, Yin PRESPECu,A, write HOM(X, Y) for Mor(X, Y) topolo

gized via the equalizer diagram Mor(X, Y) -+ TI y;v:4 TI ({lw-vyw)Xv. 
VeA V,weA 

vcw 
So, just as before, spectrification is a continuous functor (cf. Proposition 4) and there 

are analogs of Propositions 5 and 6 (0 (A) and HOM being defined in the obvious way). 

Remark: PRESPECu,A and SPECU,A are V-categories, where V = .d-CG •. Ac

cordingly, to say that 8 is continuous simply means that 8 is a V-functor. 
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[Note: The interpretation of 0 (A) and HOM is that PRESPECu,.4. and SPECu,.4. 
admit a closed A-CG* action (the topological parallel of closed simplicial action).] 

LEMMA Let A and B be indexing sets in a universe U with A C B-then the arrow 

of restriction i* : PRESPECu,B -+ PRESPECu,.4. has a left adjoint i* and a right 

adjoint i,. 
[For X in PRESPECu,.4. and W an element of B, (i*X)w is the coequalizer of 

II Ew-v'Ev'-v"XvlI::; II EW-VXvand(itX)wistheequalizerof n nv-wxv 
v"ev' V V 
v'ew vew wev 
::t n nV'-wnv"-v'XVII (V, V', V" E A).] 

V'ev" 
wev' 

The formulas figuring in the lemma can be understood in terms of "enriched" Kan extensions. Thus . {SVII_V I (V" V') 
let IA be the category whose objects are the elements of A, with Mor (V' ) V") = :::> 

. * (V" 7J V') 
(composition comes from the identification Sv-u#.Sw-v ~ Sw-u)-then IA is a small V-category 

and PRESPECu.A "is" V[lA, .A.-CG.] (d. p. 0-42) (V = .A.-CG.). So, if A e Band i : IA - 18 is 

the inclusion, i. = Ian l.t i! = ran, i.e., i.X = Ian X (the left Kan extenaion of X along i) l.t i!X = ran X 

(the right Kan extension of X along i). 

PROPOSITION 15 Let A and 8 be indexing sets in a universe U with A C 8-then 

the arrow of restriction i* : SPECU,B -+ SPECu ,.4. is an equivalence of categories. 

[The functor so i* is a left adjoint for i* and the arrows of adjunction id ~ i* 0 (s 0 i*), 
(80 i*) 0 i* ~id are natural isomorphisms.] 

Application: Let U be a universe-then V indexing set A in U, SPECu,.4. is equivalent 

to SPECu. 

EXAMPLE (Thorn Spectra) If U is a universe and if G n (U) is the grassmannian of n-dimension

alsubspace8 of U, then Gn(U) is topologized as the colimit of the Gn(U) (U C U l.t dimU < cu), so every 

compact subspace of Gn(U) is contained in some Gn(U). Let K be a compact Hausdorff space and 

suppose that I : K - Gn(U) is a continuous function. Write A/ for the set of U : I(K) C Gn(U)-then 

A/is an indexing set in U. Given U E A /' call KU - / the Thorn space of the vector bundle defined by the 

r'1*' --+ "'I*' 
pullback square 1 1 ("'{n the canonical n-plane bundle over Gn(U». The assignment 

K ---+ Gn(U) 
/ 

U - K U 
- / defines an object in PRESPECu.A /. Pass to its spectrmcation in SPECU.A /' thence by 

the above to an object in SPECu, say K- /. In general, an arbitrary X in .A.-CG can be represented 
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as the coIimit of its compact subspaces K : X ::::: colim K. Accordingly, for f : X - G" (U) a continuous 

function, put X-I = colim K-/IK, the Thom spectrum of the virtual vector bundle - f. Example: An 

n-dimensional U determines a map * ~ G,,(U) and *-u ::::: S-u. 

The Uth space functor U u : SPECu -+ .6-CG. is represented by S-u, where S-u = 
QuSo (cf. Proposition 7). Equipping .6-CG. with its singular structure, if f: X -+ Y is 
a morphism of U-spectra, then f is alevelwise fibration iff f has the RLP w.r.t. the spectral 
cofibrations S-u A [0,1]+ -+ S-u 1\1[0,1]+ and fis alevelwise acyclic fibration iff fhas the 

RLP w.r.t. the spectral cofibrations S-u AS+.-1 -+ S-u AD+. (n ~ 0, U C U & dimU < w) 
(cf. p. 16-8). Using this, it follows that SPECu is a model category if weak equivalences 

and fibrations are level wise, the cofibrations being those morphisms which have the LLP 

w.r.t. the levelwise acyclic fibrations (d. Proposition 8) (bear in mind that a spectral 

cofibration is necessarily alevelwise closed embedding (cf. p. 16-6». Proposition 9 and 

its variants go through without change. 

[Note: HSPECu is the homotopy category of SPECu (d. p. 12-24 ff. ).] 
Remark: The functor U u preserves fibrationa and acyclic fibrations, thus the TDF 

theorem implies that LQu and RUu exist and (LQu, RUu ) is an adjoint pair (the 

requisite assumptions are validated by the generalities on p. 12-3 ff.). 

EXAMPLE Take U = ROO-then i· : SPECu - SPEC preserves fibrations and acyclic fibra.

tions, so the hypotheses of the TDF theorem are satisfied (cf. p. 12-3 ff.). Therefore Li. and Ri· exist and 

(Li., Ri·) is an adjoint pair. Dissecting the bijection of adjunction Ex,Y : Mor(i.X, Y) - Mor(X, i·Y), 

it follows that Ex,yf is a weak equivalence ifffis a weak equivalence, thus the pair (Li., Ri·) is an adjoint 

equivalence of categories (cf. p. 12-29). 

Let U, U' be universes, f : U -+ U' a linear isometry-then there is a functor 

f· : PRESPECu' -+ PRESPECu which assigns to each X' in PRESPECu' the 

U-prespectrum f·X' specified by (f·X')u = Xj(U)' where (f·X')v -+ nW-V(f·X')w 

is the composite Xj(V) -+ n!(W)-!(V) Xj(W) -+ nW-v Xj(W)' It has a left adjoint 

f. : PRESPECu -+ PRESPECu', viz. (f.X)u' = rP'-!(U)Xu (U = f- 1(U'», where 
(f.X)v' -+ nw'-v'U.X)w' is the composite EV'-!(V)Xv -+ nW'-v'Ew'-V'EV'-!(V)Xv 
-+ nW'-V'EW'-!(W)E!(W)-!(V)Xv -+ nW'-V'EW'-!(W)EW-VXv -+ nW'-V'EW'-!(W) 

X W (V = f- 1 (V'), W = f- 1 (W'». Since f· sends U'-spectra to U-spectra, there is an 

induced functor f· : SPECu' -+ SPECu and a left adjoint for it is so f., denoted still 

by f •. 

Let Iu, lu' be the small V -categories associated with the standard indexing sets in U, U'-then the 



16-19 

linear isometry 1 : U -+ U' determines a continuous functor Ff : Iu -+ Iu,. Viewing PRESPECu as 

V[Iu, 4-CG.] and PRESPECu ' as V[Iu" 4-CG.], r becomes precomposition with Ff and I. = Ian. 

EXAMPLE I.(X to. K) ~ (I. X) to. K and I.(Q~ X) ~ Qicu)X. 

FACT Let U, U' be universes, I: U -+ U' a linear isometric isomorphism-then the pair (I.,r) 

is an adjoint isomorphism of categories. 

[Note: Here, of course, it is a question of spectra, not prespectra.] 

Let U, U' be universes-then a (U', U)-spectrum X' is a collection of U'-spectra 

X~ indexed by the finite dimensional subspaces U of U and a collection of isomor-
w V , pw, v, ) , pv, V , 

phisms E - Xw ---:-+ Xv (V C W such that Xv ---:-+ Xv is the identity and for U C 
Ev-uEw-vX~ __ EW-uX~ 

V C W, the diagram };V-U pw,vl lpw,u commutes. SPEC(U',U) 
EV-uX~ ~ X~ 

pv,U 

is the category whose objects are the (U', U)-spectra and whose morphisms f : X' -+ 

Y' are collections of morphisms of U'-spectra f~ : X~ -+ Y~ such that the diagram 

EW-Vy~ 

1 commutes for V C w. 

f~ 
y~ 

[Note: It makes sense to suspend a U'-spectrum by a finite dimensional subspace of 

U (this being an instance of smashing with an object in b.-CG.).] 

EXAMPLE Let U, U' be universes, f : U -+ U' a linear isometry. Given an X in 4-CG., let 

Q,X be the object in SPEC(U',U) defined by (Q,X)u = Qicu)X, where EW-V(Q,X)w -+ (Q,X)v 

is the identification Ew-vQicw)X ~ Ef(W)-f(V)Qicw)X ~ Qicv)X, 

Notation: Given X', Y' in SPEC(U', U), write HOM(X', Y') for Mor (X', Y') topolo

gized via the equalizer diagram Mor (X', Y') -+ n HOM(X~, Y~):::t n HOM(EW-vX~, 
v V,W 

vew 

(A) Fix a K in b.-CG •. Given an X' in SPEC(U', U), let X' AK be the (U' ,U)

spectrumU -+ X~AK, whereEW-V(X~AK) ~ (X~AK)ASw-v ~ (X~ASw-v)AK ~ 

X~AK. 

PROPOSITION 16 For X', Y' in SPEC(U',U) and K in b.-CG., there is a natural 

homeomorphism HOM(X' A K, Y') ~ HOM(X', y')K. 
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(HOM) Fix an X' in SPEC(U',U). Given a y' in SPECU" let HOM(X', V') 

be the U-spectrum U -+ HOM(X~, V'), where HOM(X~, V') ~ HOM(EW-vXw, V') ~ 
HOM(Xw, nW-Vy') ~ nW-VHOM(Xw , V'). 

Observation: V X in SPECu, Mor(X, HOM(X', V'»~ ~ limMor(Xu,HOM(X~, V'»~ 

~ limMor(X~ A Xu, V') ~ Mor(colim X~ A Xu, V'), the colimit being taken over the 
arrows X~ A Xv ~ EW-VXw A Xv ~ Xw A EW-v Xv -+ Xw A Xw. 

Definition: X' A X is the U'-spectrum colim X~ A Xu. 

PROPOSITION 11 For X in SPECu, Y' in SPECU', and X' in SPEC(U',U), 

there is a natural homeomorphism HOM(X' A X, V') ~ HOM(X, HOM(X', Y'». 

EXAMPLE (1) X, A Q~X ~ X~ AX; (2) (X' A X) AK ~ X' A(X A K) ~ (X' AK) A X. 

Notation: Given a vector bundle e : E -+ B, T( e) is its Thom space. 

[Note: If Sf. is the sphere bundle obtained from e by fiberwise one point compactifica

tion, then T( e) = sf. I Soo, where Soo is the section at infinity. Example: If V is the trivial 

vector bundle B x V -+ B, then T(e E9 V) ~ EVT(e).] 
Let U, U' be universes. Fix an object A ~ I(U,U') in A-CGII(U,U') (I(U,U') 

topologized as on p. 14-52). Given finite dimensional U c U, U' c U', define Au,ul by the 

Au,u' I I(U, U') 

pullback square 1 1 (so Au,u' = {a E A : a(a)U C U'}, 

A at • I(U,U') ---+I(U,U') 
which can be empty). Write e( a )u,ul for the vector bundle over Au,u' with total space 

{(a, u') E Au,u' x U' : u' .1.a(a)U} and let Tau,u' be the associated Thom space (if Au,u' 

is empty, then the Thom space is a singleton). For each U, the assignment U' -+ Tau,u' 

specifies aU' -prespectrum, call it T' au (the arrow Tau, v' -+ n W'-Vi Tau, w' is the adjoint 

of the arrow E Wi - Vi Tau, v' -+ Tau, w' induced by the morphism e( a )u, v' E9 (W' - V') -+ 

e(a)u,WI of vector bundles). Let M'au be the spectrification of T'au-then there are 

morphisms Ew-vM'aw -+ M'av of U'-spectra arising from the morphisms e(a)w,v' E9 

(W - V) -+ e(a)v,v' of vector bundles. 

PROPOSITION 18 The morphisms Ew-vM'aw -+ M'av are isomorphisms, thus 

the collection M' a = {M' au} is an object in SPEC(U' ,U). 
[Since all constructions are natural in .6.-CG II(U, U') and commute with colimits, 

one can assume that A is compact. But then, for V C W, 3 V' : Av,vl = Aw,v' = A, 
hence Ew-vM'aw ~ Ew-vQv,TaW,VI ~ Qy,Ew-VTaw,vl ~ Qy,Tav,vl ~ M'av.] 

Example: There is an isomorphism M'a{o} ~ Q~}A+ natural in a. 
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[In fact, e(a){O},u' is the trivial vector bundle A x U' -+ A.] 

EXAMPLE Suppose that a is the constant map at I E I(U,U')-then M'a s::::: QfA+. 

Let U,U' be universes. Fix an A ~I(U,U') in a-CG/I(U,U'). 

(~) Given an X in SPECu, let a ~ X be the U'-spectrum M'a A X. 

(1tOM) Given a Y' in SPECu', let 1tOM[a, V') be the U-spectrum HOM(M'a, 

V'). 
Remark: a ~ X ~ colim alK ~ X and 1tOM[a, V') ~ lim1tOM[aIK, V'), where K 

runs over the compact subs paces of A. 
[Note: ~ : a.CG/I(U,U') x SPECu -+ SPECu' and 1tOM: (a-CG/I(U,U'»OP x 

SPECu' -+ S'PECu are continuous functors of their respective arguments. Moreover, 

a ~ X preserves colimits in a and X, while 1tOM[a, V') converts colimits in a to limits 

and preserves limits in Y'.] 

PROPOSITION 19 For X in SPECu, Y' in SPECu', and a in a.CG/I(U,U'), 

there is a natural homeomorphism HOM( a ~ X, V') ~ HOM(X, 1tOM[a, Y'» (cf. Propo

sition 17). 

Example: Fix a linear isometry I : U -+ U', viewed as an object in * -+ I(U, U' )-then 

I ~ X ~ I*X and 1tOM[/, V') ~ I*Y' (cf. p. 16-18). 

[E.g.: M' lu ~ Qj(U)So ~ 1tOM[/, V') ~ HOM(Qj(u)So, V') ~ Y}(U).] 
Examples: (1) (a~X)AK ~ a~(XAK); (2) HOM(K,1tOM[a, Y'» ~1tOM[a,HoM(K, 

Y'». 

Addendum: Let HOM(X, V') be the set of ordered pairs (I, f), where I E I(U,U') 

and f: X -+ I*Y' is a morphism of U-spectra, and let f: HOM(X, V') -+ I(U,U') be the 

projection (I, f) -+ I-then Elmendorf't has shown that one may equip HOM(X, V') with 

the structure of a ~-separated compactly generated space in such a way that f is contin

uous (and f-l(1) ~ HOM(X, I*Y') V I). Moreover, there are natural homeomorphisms 

HOM(a ~ X,Y') ~ HOM(a,f) ~ HOM(X,1tOM[a,Y'». 
A ------+. HOM(X, V') 

[Note: HOM(a, f) is the set of continuous functions ~ ;. re-

I(U,U') 
garded as a closed subspace of HOM(X, y')A (viz., the fiber of HOM(X, y')A ~ I(U, U')A 

over a).] 

t J. Pure Appl. Algebra 54 (1988), 37-94. 
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FACT Suppose given a : A - I(U, U'). Let B be in 4-CG and call 11' the projection A x Ie B - A

then (a 0 11') ~ X ~ (a ~ X) 1\ B+ and 'HOM [a 011', y') ~ HOM(B+, 'HOM [a, Y'». 

FACT Suppose given a : A - I(U,U') and f3 : B - I(U',U"). Let f3 Xc a be the composite 
~Xlea c 

B xIeA-I(U',U") xIeI(U,U') -I(U,U")-then (f3 xca) ~ X ~ f3 ~ (a ~ X) and 'HOM[/3 Xca, Y") ~ 

'HOM[a, 'HOM [/3 , Y"». 

PROPOSITION 20 Fix an a in 6.-CG/I(U,U')-then for X in SPECu and Y' 

in SPECU', a morphism q, : a ~ X -+ y' determines and is determined by morphisms 

q,(a) : X -+ a(a)*Y' (a E A) such that the functions Tau,u'#"Xu -+ EUI-o(a)uY~(a)U -+ 

YUI are continuous, the first arrow being the assignment (a,u')#"x -+ q,(a)u(x)#A:U' 

(a E Au,u',u' E U' - a(a)U,x E Xu). 

[Write M' au = colimul QU: Tau,u' to get Mor (a ~ X, V') ~ Mor (colimu M' au " 

Xu, V') ~ limu Mor (M' au " Xu, V') ~ limu Mor (colimul QU: (TaU,UI #"X u), V') ~ 

limu limul Mor(QU:(Tau,ul#"Xu), V') ~ limulimul Mor(Tau,ul#"Xu, YUI )' Take now 

a q, : a ~ X -+ Y' and let q,(a) be the adjoint of the composite a(a).X -+ a ~ X.t V'. 

Projecting from the double limit thus gives rise to continuous functions Tau,ul #"X U -+ 

YUI as stated. Conversely, a collection ofmorphisms q,(a) : X -+ a(a)·Y' (a E A) satisfying 

the hypotheses define continuous functions compatible with the maps in the double limit, 

hence specify a morphism q, : a ~ X -+ Y'.] 

Given a universe U, O(U) is its orthogonal group, so topologically, O(U) = colim O(U), 

where O(U) is the orthogonal group of the ambient finite dimensional subspace U of U. 

LEMMA Let U be a universe-then Y finite dimensional U C U, the arrow of re

striction O(U) -+ I(U,U) is a Serre fibration. 

Application: secI(U,U)(O(U)) is not empty. 

[I(U,U) is a CW complex and, being contractible (cf. p. 14-52), the identity map 

I(U,U) -+I(U,U) admits aliftingI(U,U) -+ O(U) (cf. p. 4-7).] 

UNTWISTING LEMMA Let U, U' be universes. Fix U C U, U' C U' such that 

U ~ U'-then there is an isomorphism M' au ~ QU:A+ natural in a. 

[Choose a linear isometric isomorphism f : U -+ U' and a section s' : I(U',U') -+ 

A[U, V'I • O(V') 

O(U'). Put s = s' oU· )-1. Define A[U, V'I by the pullback square 1 1 
A oW. I(U,U') ~ O(U') 
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if U' C V' and let A[u,Y'1 = ., otherwise (thus A[u,YI) C Au,vl). Write e(a)[U,Y') for the 

trivial vector bundle AWl V'] x (V' - U') and, passing to Thom spaces, let T' a[U] be the 

U'-prespectrum V' -+ T(e(a)W.~']) J:.::j EY'-u' A[u,Y']+' Call M'a[U] the spectrification of 

T'a[U]-then there are two claims: (1) M'a[U] J:.::j Qu.~; (2) M'a[U] J:.::j M'au. For the 

first, one can assume that A is compact, in which case AWl V'] = A for V' large enough and 

the claim follows. Turning to the second, define a morphism e(a)[u,YI] -+ e(a)u,YI of vec
tor bundles by sending (a,v') to (a,s(a(a)IU)(v'». These morphisms lead to a morphism 

T' a[U] -+ T' au of U' -prespectra or still, to a morphism M' a[U] -+ M' au of U' -spectra. 

But when A is compact and AWl YI] = A, the bundle map is an isomorphism.] 

PROPOSITION 21 Let U, U' be universes. Fix U c U, U' C U' such that U J:.::j U'

then there is an isomorphism aIX QuX ~ QU.(A+#lX) natural in a and X. 
[For a IX Qu X = M' a A Qu X ~ M' au AX and, by the untwisting lemma, M' au AX 

~ Qu.A+ AX.] 

EXAMPLE Fix U C U, U' CU' such that U ~ U'-then the functor M'-u :Il.-CG/I(U,U')

SPECu ' has for a right adjoint the functor M-u' : SPECu ' - Il.-CG/I(U,U') that sends yl to 

I(U,U') Xk y~, - I(U,U'). 

[Mor(M'au, yl) ~ Mor(Q~A+, y,) ~ Mor(A+, Y~,) ~ Mor(A, y~,) ~ Mor(a, MY~/).1 

FACT Suppose that A is a OW complex-then the functor 'HOM[a,-) preserves weak equiva

lences. 

[Let l' : X, - yl be a weak equivalence of U'-spectra and consider the induced morphism 

'HOM[a, X') - 'HOM [a, V') of U-spectra. Given U C U, 3 U' C U' : U ~ U' => 'HOM[a, X')u ~ (X~I )A+, 

'HOM [a, y/)U ~ (y~,)A+ (d. Proposition 21). Since A+ is a OW complex and X~, - Y~, is a weak 

homotopy equivalence, (X~,)A+ _ (y~,)A+ is also a weak homotopy equivalence (d. p. 9-39).1 

Rappel: A-CG/I(U,U') is a model category (singular structure) (d. p. 12-3). 

A-----...... B 

PROPOSITION 22 H X -+ Y is a cofibration in SPECu and if ~ ~ 
I(U,U') 

is a cofibration in A-CG/I(U,U'), then the arrow fJ IX X U a IX Y -+ fJ IX Y is a cofi-
. aKX 

A -------+. B 

brat ion in SPECu' which is acyclic if X -+ Y or ~ ~ is acyclic (d. §13, 

I(U,U') 
Proposition 31). 
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A --------? B 

PROPOSITION 23 H ~ ~ is a cofibration in a-CG/I(U,U') and if 

I(U,U') 
y' --+ X' is a fibration in SPECu', then the arrOW1iOM[,B, V') --+ 1iOM[a:, V') X"'OM[Q,X') 

A .B 
1iOM[,B, X') is a fibration in SPECu which is acyclic if ~ ~ or Y' --+ X' 

I(U,U') 
is acyclic (cf. §13, Proposition 32). 

Propositions 22 and 23 are formally equivalent. To establish the fibration contention in Proposition 

23, use Proposition 21 and convert the lifting problem 

S-u A [0,1]+ -------+. ?tOM [,8, y/) 

1 _--------------l 1 
S-u A 1[0, 1]+ ---+?toM[a, y/) x",oM[a,X/) ?tOM [,8 , X') 

in SPECu to the lifting problem 

in A-CG. 

A -------+. B 

LEMMA Let A, B be cofibrant objects in A-CG and suppose that ~ /. IS an 

I(U,U/) 
acyclic cofibration in A-CG/I(U, U/). Fix a cofibrant X in SPECu and consider the commutative 

X --+ ?toM[a,a~ X) 

diagram 1 1 -then the arrow of adjunction X -+ ?toM[a, a~ X) is 

?tOM [,8 , ,B ~ X) --+ ?tOM[a,,8 ~ X) 
a weak equivalence iff the arrow of adjunction X -+ ?tOM[j3,,8 ~ X) is a weak equivalence. 

[Since the arrow,8 ~ X -+ • is a fibration, it follows from Proposition 23 that ?tOM[j3,,B ~ X) -+ 

?toM[a,,B ~ X) is an acyclic fibration. On the other hand, since the arrow * -+ X is a cofibration, it 

follows from Proposition 22 that the arrow a ~ X -+ ,B ~ X is an acyclic cofibration. But from the 

assumptions, a ~ X and ,8 ~ X are cofibrant, thus as fibrancy is automatic, the arrow a ~ X -+ ,B ~ X 

is a homotopy equivalence (cf. §12, Proposition 10). Therefore ?tOM [a, a~ X) -+ ?toM[a,,B ~ X) is a 

homotopy equivalence.] 
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EXAMPLE Let U,U' be universes, I: U -+ U' a linear isometry-then r : SPECu ' -+ SPECu 

preserves fibrations and acyclic fibrations, so the hypotheses of the TDF theorem are satisfied (d. p. 

12-3 ff.). Therefore L/. and Rr exist and (L/.,Rr) is an adjoint pair. Claim: V cofibrant X in 

SPECu, the arrow of adjunction X -+ r I.X is a weak equivalence. To see this, choose a linear isometric 

isomorphism tP E I(U,U') and a path H: (0,1] -+ I(U,U') such that H 0 io = tP and H 0 i1 = I. Because 

* '0 • (O,I] 

~ ~ is an acyclic cofibration in A.CG/I(U, U') with *, [0,1] cofibrant and because the 

I(U,U') . 
arrow of adjunction X -+ tP·tP.X is an isomorphism, the lemma implies that the arrow of adjunction 

* '1 • {O,I] 

X -+ ?(oM[H, H ~ X) is a weak equivalence. Another application of the lemma to ~ ~ 
I(U,U') 

then leads to the conclusion that the arrow of adjunction X -+ r I.X is indeed a weak equivalence. 

Since X' -+ y' is a weak equivalence iff rX' -+ ry' is a weak equivalence, the pair (L/.,Rr) is an 

adjoint equivalence of categories (see the note on p. 12-29 to the TDF theorem). Example: V universe U, 

HSPECu "is" HSPEC. Proof: HSPECu "is" HSPECROO which jjis" HSPEC (cf. p. 16-18). 

[Note: The functors L/. : HSPECu -+ HSPECu ' obtained from the IE I(U, U') are naturally iso

morphic. Thusletg E I(U,U') and choose a path H : [0,1] -+ I(U,U') such that Hoio = I and Hoil = 9-

then for cofibrant X, there are natural homotopy equivalences I.X -+ H ~ X -- g.X and the natural 

isomorphism L/. ~ Lg. is independent of the choice of H. In efFect, if tT, r : (0,1] -+ I(U, U/) are paths 

in I(U,U/) such that {tT(O) = I , {r(o) = I and if. : [0,1]2 -+ I(U,U') is a homotopy between tT,r 
tT(l) = 9 r(l) = 9 

I.X ----i' I.X 1\ 1+ L--i>/.X . 

! 1 ! 
through paths from I to g, then there is a commutative diagram tT ~ X ----? ~ X +-- r ~ X of nat-

T T T 
g.X ----i'g.XI\I+ r---tg.X 

ural homotopy equivalences, where ---)0 0 ----.. = id. Similar remarks apply to the Rr : HSPECu ' -+ 

HSPECu·] 

FACT H X -+ Y is a cofibration in SPECu and if yl -+ X, is a fibration in SPECu " then the 

arrow HOM(Y, V') -+ HOM(X, V') xHOM(X,X') HOM(Y,X') is a fibration in A-CG/I(U,U') which 

is a weak equivalence if X -+ Y or Y' -+ X' is acyclic (the notation is that of the addendum on p. 16-21). 

PROPOSITION 24 Suppose that A is a cofibrant object in .6.-CG-then the functor 

'HOM[a,-) preserves fib rations and acyclic fibrations (c!. Proposition 23). Therefore the 

assumptions of the TDF theorem are met (cf. p. 12-3 fr.), so La~ - and R1tOM[a,-) 
exist and (La~ -,RHOM[a,-» is an adjoint pair. 
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FACT Fix a cofibrant object in A in A.-CG andlet H : IA - I(U,U') be a homotopy-then V 

cofibrant X in SPECu, the arrow H ° it I)( X - H I)( X is a homotopy equivalence (t e {O,1}). 

[Note: Consequently the fUncto1'8 La I)( - : HSPECu - HSPECu ' corresponding to the a : A -

I(U,U') are naturally isomorphic, as are the functo1'8 R'Ho.M[a.-) : HSPECu ' - HSPECu.] 

FACT Let A, B be cofibrant objects in A.-CG and suppose that 4> : A - B is a homotopy 

equivalence--then V /3 : B - I(U, U'), the arrow /3 04>1)( X - /3 I)( X is a homotopy equivalence provided 

that X is cofibrant. 

{ 
Hoio = idA 

[Fix a homotopy inverse 1/1 : B - A for 4>, choose H : I A - A such that " 
Hoh =1/104> 

{ 
Goio = ids 

G : I B - B such that , and, keeping in mind the preceding result, use the commutative 
G 0 il = 4> 0 1/1 

diagrams 

/3 I)( X === /3 I)( X 

to deduce that the arrow /3 ° 4> I)( X - /3 I)( X is a weak equivalence, hence a homotopy equivalence.] 

[Note: The cofibrancy assumption on A, B can be dropped. Thus let Y' be any U'-spectrum. Given 

U C U, 3 U' C U' : U ~ U' ~ 1(O.M(,8 04>, Y')u ~ (y~,)A+ I 'HO.M [/3 , Y')u ~ (y~,)s+ (d. Proposition 

21). Because 4> : A - B is a homotopy equivalence, it follows that 1(O.M[/3, Y')u - 'HOM (,8 0 4>, V')u is a 

homotopy equivalence V U. But X is cofibrant, so [X,-]o ~ [X, -] (d. p. 12-26) (all objects are fibrant). 

Therefore [X ,'HO.M [/3, V')lo ~ [X,'HO.M[/3 04>, V')]o ~ [/3 I)( X, V']o ~ [/3 04>1)( X, V']o (d. Proposition 

19). And this means that the arrow /3 0 4> I)( X - /3 I)( X is a homotopy equivalence (V' being arbitrary). 

Variant: The same conclusion obtains if X is tame.] 

EXAMPLE Take U = U'-then V f e I(U,U). there is a commutative diagram 

* I(U,U) 

~ ;. , thus V cofibrant X, the arrow f.X - id I)( X is a homotopy equivalence. 

I(U,U) 
[Note: The point here is this: I(U, U) is contractible but it is unknown whether.it is a cofibrant 

object in A-CG.] 

FACT Let A, B be objects in A-CG and suppose that 4> : A - B is a closed cofibration-then 

V /3 : B - I(U, U'), the arrow /3 04>1)( X - /3 I)( X is a spectral cofibration provided that X is cofibrant. 
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[Given a U'-spectrum yl, finding a filler for the diagram 

amounts to finding a filler for the diagram . However, the arrow ?t:OM [.8 , V') 

X A 1+ ---..?t:OM[.8 0 tP, V') 
-10 ?t:OM[.80tP, V') is a levelw:ise CG fibration, therefore is a levelwise Serre fibration, and, as X is cofibrant, 

the arrow X -10 X A 1+ is an acyclic cofibration in our model category structure on SPECu (d. p. 12-16 

fr.).] 

EXAMPLE Take U = U'-then V f E X(U,U), there is a commutative diagram 
,.. J • X(U,U) 

J. ' thus V cofibrant X, the arrow f.X -10 id D< X is a spectral cofibration. 

X(U,U) 
[In fact, X(U, U) is A-cofibered (d. p. 14-52), so V f E X(U,U), {f} -10 X(U,U) is a closed cofibration 

(d. p. 3-15).] 

Let U, V be universes. Put A E9 B = {U E9 V : U C U & dimU < w, V C V & 
'- dim V < w} (which is not the standard indexing set in U E9 V). 

(/\) Given X in SPECu and Y in SPECv, the data {XU#iYV} defines a 

(U E9 V, A E9 B)-prespectrum. Spectrify and let X/\ Y be its image in SPECUE9V under the 

canonical equivalence SPECUE9V,.A.E9S -+ SPECUE9V provided by Proposition 15. 

Examples: (1) Q~X/\QvY ~ Q~E9V(X#iY); (2) (X /\ K)/\Y ~ (X/\Y) /\ K ~ 

X/\(Y /\ K). 
[Note: Take X = Y = SO in (1) to get S-u /\S-v ~ S-(UE9V).J 

Remark: It is not literally true that /\ is an associative, commutative operation. 

Consider, e.g., commutativity. H T : U E9 V -+ V E9U is the switching map, then T ... (X/\ Y) 

is naturally isomorphic to Y 6.X. The situation for associativity is analogous (consider the 

isomorphism U E9 (V E9 W) ~ (U E9 V) E9 W of universes). 

XxV 
Another way to proceed is this. Write XOY for the composite Iu x Iv -- 4-CG. x 4-CG. 

#11: 
--+ 4-CG.-then, relative to the arrow Iu x Iv -10 Iuev«U, V) -10 U EJ:) V),lanXDY is aU EJ:) V-

prespectrum, i.e., an object of V[Iuev, 4-CG.], and its spectrification can be identified with X,6.Y. 

Therefore,6.: SPECu x SPECv -10 SPECuev is a continuous functor. 

FACT Suppose given a : A -10 X(U,U') and (3 : B -10 XCV, V'). Let a xe (3 be the composite 
aXII:P e 

A XII: B 'X(U, U') XII: X(V, V') -IoX(U EJ:) V,U' EJ:) V')-then (a xED (3) D< (X,6.Y) ~ (aD< X),6.«(3 D< V). 
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Given Y in SPECv and Z in SPECuQ)v, let ZY be the U-spectrum U -+ HOM(S-U A 

Y, Z)-then there is a natural homeomorphism HOM(XA Y, Z) r:::1 HOM(X, ZY). 
Example: (ZS-v)u = HOM(S-u AS-v,Z) r:::1 HOM(S-(UfIN) ,Z) r:::1 ZUe.N' 

PROPOSITION 25 If A -+ X is a cofibration in SPECu and if B -+ Y is a cofibra

tion in SPECv, then the arrow AA Y A~B XAB -+ XA Y is a cofibration in SPECu(9v 

which is acyclic if A -+ X or B -+ Y is acyclic. 

PROPOSITION 26 If B -+ Y is a cofibration in SPEC v and if Z -+ C is a fibration 

in SPECu(9v, then the arrow ZY -+ ZB Xoa CY is a fibration in SPECu which is acyclic 

if B -+ Y or Z -+ C is acyclic. 

Propositions 25 and 26 are formally equivalent. To establish the fibration contention in Proposition 

26, one can assume that B - Y has the form S-v "L - S-v "K, where L - K is a cofibration 

in A-CG.. The fact that Z - C is a fibration in SPECu(DY implies that the arrow HOM(K, Z) -

HOM(L, Z) xuow(L,C) HOM(K, C) is a fibration in SPECu(DY which is acyclic if L - K or Z - C is 

acyclic (d. p. 16-10). But the functor (_)S-v preserves fibrations and acyclic fibrations and V X, 

HOM(X, Z)S-v ~ Zs-v I\X, thWl the arrow Zs-v I\K _ ••• is a fibration in SPECu which is acyclic if 

L - K or Z - C is acyclic. 

[Note: The functor Q~ = S-v ,,- preserves cofibrations and acyclic cofibrations.] 

Example: {~ cofibrant => X"Y cofibrant (d. Proposition 25). 

PROPOSITION 21 Suppose that Y is a cofibrant object in SPECv-then the func

tor (-) Y preserves fibrations and acyclic fibrations (d. Proposition 26). Therefore the 

aSsumptions of the TDF theorem are met (d. p. 12-3 fr.), so L(-A Y) and R(-) Y exist 

and (L(-A V), R(-)Y) is an adjoint pair. 

[Note: Since all objects are fibrant, (-)Y necessarily preserves weak equivalences (d. 
p. 12-28).] 

If C and D are model categories, then C x D becomes a model category upon imposing 

the obvious slotwise structure. In particular: SPECu x SPEC v is a model category. 

PROPOSITION 28 The functor A : SPECu x SPECv -+ SPECuQ)v sends weak 

equivalences between cofibrant objects to weak equivalences, thus the total left derived 

functor LA : HSPECu x HSPECv -+ HSPECuQ)v exists (cf. §12, Proposition 14). 

[Suppose that A -+ X is an acyclic cofibration in SPECu and B -+ Y is an acyclic 

cofibration in SPECv, where A & B (hence X & Y) are cofibrant. Factor the arrow 
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A"B -; X" Y as the composite AllB -; XllB -; Xll Y. Owing to Proposition 25, 

A"B -; X"B and X"B -; Xll Y are acyclic cofibrations. Therefore AllB -; X" Y 
is an acyclic cofibration. The lemma on p. 12-28 then implies that II preserves weak 

equivalences between cofibrant objects.] 

[Note: L"(X, Y) = CXllCY, the value of the total left derived functor of -"CY at 
X (cf. Proposition 27).] 

Take in the aboveU = V and choose any / E I(U2,U) (U2 = U$U). De:Bnition: X"I 

Y = /.(X"Y), hom/(Y,Z) = (/·Z)Y.So: HOM(X "I Y,Z) = HOM(f.(X"Y),Z) ~ 
HOM(X"Y,f·Z) ~ HOM(X,(f·Z)Y) = HOM(X,homj{Y,Z». 

[Note: While each of the functors - "I Y has a right adjoint Z -; hom I(Y, Z), 

SPECu is definitely not a symmetric monoidal category under ® = "I'] 

EXAMPLE Write Qoo in place of Q{o} and put S = QooSo. Letting.: U - U ED U be the 

inclusion ofU onto the firstsummand, one has i.(XASO) ~ XllS, thus (foi).(XASO) ~ I. oi.(XASO) ==:; 

1.(XllS) = X AI S. And, when X i.e cofibrant, X A SO ==:; (f 0 i).(X A SO) in HSPECu, Le., X ==:; X AI S 

in HSPECu. 

Definition: X" Y = Lf.(L"(X, V»~, homeY, Z) = R(Rf·Z)'cY(= U·Z)'cY, all 

objects being fibrant). 

[Note: This apparent abuse of notation is justified on the grounds that, up to natural 

isomorphism, these functors are independent of the choice of f (d. p. 16-25). Terminology: 

Call " the smash product.] 
Observation: Since f. sends cofibrant objects to cofibrant objects and CX"CY is 

cofibrant (cf. p. 16-28), [X " Y,Z] = [Lf.(L"(X, Y»,Z] ~ [Lf.(CX"CY),Z] ~ 

[f. (CX"CY), Z] ~ 1ro(HOM(f.(CX"CY), Z» ~ 1ro(HOM(CX"CY, f·Z» ~ 1ro(HOM(C 
X, U·Z)'cY» ~ [CX, U·Z)'cY] ~ [X, U·Z)'cY] ~ [X, R(Rf·Z)'cYJ = [X,hom(Y, Z)J. 

FACT In HSPECu, XA Y ==:; XAQooy, hence QOO(K#lL) ~ (QOOK) A L ==:; QooK AQoo Land 

HOM(K, X) ==:; hom(Qoo K, X). 

PROPOSITION 29 HSPECu is a monoidal category. 

[Taking ® = " and e = S (= QooSo), one has to define natural isomorphisms 

{ f: : ~ ,," i : i and Ax,Y,z : X " (Y " Z) -; (X " Y) " Z satisfying MC I and MC2 

on p. 0--24. The de:Bnitions of Rx and Lx are clear (d. supra). Letting q; be the 

isomorphism (U EB U) EB U -; U EB (U EB U), define Ax,Y,z for cofibrant X, Y, Z via the fol

lowing string of natural isomorphisms in HSPECu : X" (Y " Z) = Lf.(L"(X, Y " 



16-30 

Z)) R:: L/.(XAC(Y A Z)) R:: L/.(XAC(L/.(L/l(Y, Z)))) R:: L/.(XAC(L/.(YAZ))) R:: 

L/.(X/::J.(YAZ)) R:: /.(X/::J.(Y/lZ)) R:: /. 0 (idu EB I). 0 CI.«XLlY)AZ) R:: /. 0 (/ EB 
idu).«XAY)/lZ) R:: /.(/.(XAY)LlZ) R:: (X A Y) A Z (reverse the steps). That MC I and 
MC:z obtain can then be established by using the contractibility of I(Un ,U).] 

[Note: HSPECu admits an evident compatible symmetry, thus is a symmetric monoid
al category (d. p. 0-25). Since each of the functors - A Y : HSPECu ~ HSPECu has 
a right adjoint Z ~ homey, Z), it follows that HSPECu is a closed category.] 

Therefore HSPEC is a closed category. 

EXAMPLE If f: X - Y, g : Z - W are morphisms in HSPEC, then there is an exact triangle 

X " C" - C'"'' - Cf" W - E(X " C,,).] 
[Consider the factorization f" g = f" idw 0 idx" g and use the result on p. 16-13.] 

FACT X" Y is connective if X &t Y are connective. 

Given a finite dimensional subspace U ofU, put EUX=XASu, OUX=HOM(Su,X)

then (EU, OU) is an adjoint pair. 

PROPOSITION 30 The total left derived functor LEU for EU exists and the to

tal right derived functor Rnu for OU exists. And: (LEU, RnU) is an adjoint pair (cf. 

Proposition 12). 

PROPOSITION 31 The pair (LEU, ROU) is an adjoint equivalence of categories (cf. 
Proposition 13). 

[Suppose that X is co:6.brant-then in HSPECu there are, on the one hand, natural 
isomorphisms EU (X A S-U) R:: /.(X/lS-U) A SU R:: f.«XAS-U) A SU) R:: f.(XA(S-U A 

SU)) R:: /.(XAQCXlSO) R:: X and, on the other, natural isomorphisms EUX A S-u R:: 

f.(EUXAS-U) R:: f.«X A SU)AS-U) R:: /.(XA(S-U A SU) R:: f.(XAQCXlSO) R:: X. There

fore LEU is an equivalence of categories and - A S-u R:: ROu.] 

Fix a universe U-then Sn operates to the left on un by permutations, hence V cr E Sn 

there are functors cr. : SPECu" ~ SPECu". Agreeing to write Sn I>< - for the functor 

corresponding to the arrow Xn : Sn ~ I(Un ,un), one has Sn I>< X R:: V cr.X. The 
tTES .. 

multiplication and unit of Sn induce natural transformations mn : Sn I>< Sn I>< - ~ Sn I>< -

& En : id ~ Sn I>< -, so (Sn I>< -, mn, En) is a triple in SPECu'" Its associated category of 

algebras is called the category of Sn-spectra (relative to U):Sn-SPECUft. An Sn-spectrum 
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is therefore a Un-spectrum X equipped with a morphism e: Sn ~ X -+ X satisfying TAl 

and TA2 (d. p. 0-27 if.), i.e., equipped with morphisms elJ' : u.X -+ X such that ee = idx 

and elT 0 u.(e,.) = elT,.· 
[Note: Given (X,e),(Y,q) in Sn-SPECU", write Sn-HOM(X, Y) for Mor((X,e),(Y, 

q» topologized via the equalizer diagram Mor((X,e), (Y,q» -+ HOM(X, Y)=4HOM(Sn ~ 

X,Y).] 
Example: \I X in SPECu, X(n) = XA··· AX (n factors) is an Sn-spectrum. 
[Note: V X in~-CG., x(n) == X#,· .. #,X (n factors) and (Qoo x)(n) RI Qoo(x(n».] 

The functor 8", ~ - is a left adjoint, hence preserves colimits. Since SPECu '" is complete and 

cocomplete, specialization of the following generality allows one to conclude that 8",-SPECu '" is complete 

and cocomplete. 

LEMMA Suppose that C is a complete and cocomplete category. Let T = (T, m, E) be a triple in 

C. Assume: T preserves filtered colimita-then T·ALG is complete and cooomplete. 

[A proof can be found in Borceuxt.] 

LEMMA Suppose that A is a right Sn-space in a-CG. Let a : A -+ I(Un , U) be 
Sn-equivariant-then for every Sn-spectrum X, there is a coequalizer diagram a ~ Sn ~ 

,-,. X=4a ~ X -+ a ~S .. X. 

[One of the arrows is ida ~ e. As for the other, a ~ Sn ~ X RI (a Xc Xn) ~ X 
A X Sn '" I A 

(cf. p. 16-22) and the diagram axcx~ /a commutes (1I'(a, u) = a . u). 

I(Un,U) 
Proof: a Xc Xn(a,u) = a(a) 0 Xn(u), a 0 1I'(a,u) = a(a· u) = a(a) . u and \I 1.4 E un, 
(a(a) 0 Xn(u»(u) = a(a)(u . 1.4) = (a(a) . u)(u) (by the very definition of the right action 

of Sn on I(Un ,U».] 

Remark: a ~s .. - is a functor from Sn-SPECU" to SPECu. On the other hand, 

1l0M[a, -) is a functor from SPECu to Sn-SPECU". And: HOM( a ~ Sft X, Y) RI Sn

HOM(X,1l0M[a, Y». 

It is sometimes necessary to consider G-spectra, where G is a subgroup of 8" (the objects of G

SPECu '" are thus the algebras per G ~ -). Given a subgroup K of G, there is a forgetful functor G

SPECu " - K-SPECu'" and, in obvious notation, it has a left adjoint G ~K -, so that G-HOM(G ~K 

X, Y) ~ K-HOM(X, V). 

t Handbook of Cat.egorical Algebra 2, Cambridge University Press (1994), 206-211. 
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FACT Let U: G-SPECu. - SPECu. be the forgetful functor. Call a morphism f: X _ Y of 

G-spectra a weak equivalence if Uf is a weak equivalence, a fibration if Uf is a fibration, and a cofibration 

if f has the LLP w.r.t. acyclic fibrations-then with these choices, G-SPECu" is a model category. 

[Note: This is the external structure. To define the internal structure, stipulate that f : X - Y 

is a weak equivalence or a fibration if for each finite dimensional G-stable U C U", and each subgroup 

KeG, the induced map of fixed point spaces Xlf - Yrf is a weak equivalence or a fibration and let 

the cofibrations be the f which have the LLP w.r.t. acyclic fibrations. Example: Take G = S,,-then V 

cofibrant X in SPECu, X(·) is cofibrant in the internal structure on S.-SPECu ".] 

The preceding formalities are the spectral counterpart of a standard topological setup. 

Thus given a right Sn-space A in A-CG and a left Sn-spa.ce X in A-CG., define A~s .. X by 

the coequalizer diagram (A x Sn)+#kX=:A+#"X -+ A~s .. X«A x Sn)+ ~ A+#"Sn+)

then A ~ s .. - is a functor from the category of pointed ~-separated compactly generated 

left Sn-spaces to the category of pointed ~-separated compactly generated spaces. It has 

a right adjoint, viz. the functor that sends Y to yA+«O' . f) (a) = f(a . 0'), with trivial 

action on the disjoint base point). 

Example: Let C be a ~-separated creation operator, i.e., a functor C : r~P -+ A

CG such that Co = *-then in the notation of §14, Proposition 27, the filtration quotient 

Cn[X]/Cn- 1 [X] is homeomorphic to Cn ~s .. x(n). 

EXAMPLE (Extended Powers) Take A = XS" (which is SIt-universal) and fix an equivariant 

arrow XS" - %(U" ,U). Using suggestive notation, the assignment X - XS" ~s"X<,,) specifies a functor 

D" : SPECu - SPECu (conventionally, DoX = S), the nth extended power. Defining D" : 4-CG. _ 

4-CG. in exactly the same way, one h ... D"Qoo X = XS" ~s. (Qoo X)(·) ~ Qoo(XS" ~s" X<,,» = 

Qoo(D"X). Example: D"So = BS,,+ (~ V D"So = BMoo+, Moo the permutative category of p. 
,,~o 

14-28).] 

[Note: Extended powers have many applications in homotopy theory. For an account, see Brunert 

et a1..] 

Let C be a ~-separated creation operator-then V X in A-CG., the realization C[X] 

of C at X is In Cn x" Xn (d. p. 14-38 (the assumption there that (X, xo) be wellpointed 

has been omitted here)), so C[X] can be described by the coequalizer diagram II Cn x" 
-y:m-n 

t SLN 117'6 (1986). 
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xm:; II Cm Xk xm -+ C[X] (on the term indexed by -y : m -+ D, U is the arrow Cn Xk ' 
v m~O 

xm -+ Cn X k xn and v is the arrow Cn X k xm -+ Cm X k xm). It is this interpretation of 

C[X] that carries over to spectra provided they are unital. 

Definition: A unital U-spectrwn is a pair (X, e), where e : S -+ X is a morphism ofU

spectra. Therefore the unital U-spectra are simply the objects of the category S \ SPECu. 

Example: 'V X in A.-CG., map SO to X+ by { ~ :: :0 -then Qoo X+ is unital. 

[Note: Morphisms in S \ SPECu are termed unital.] 

Let X be a unital U-spectrwn. Viewing U as an object in A.-CG. with base point 

0, each -y : m -+ D in riD induces a linear isometry -y : U m -+ un and -y.x(m) can be 

identified with XIA··· AXn , Xj being X if -y-IU) :F 0 and S if -y-IU) = 0. There is an 

arrow -y.x(m) ~ XIA··· AXn -+ X(n) which is idx or e according to whether Xj = X or 

S. 

Suppose now that tP : C -+ C, is a morphism of creation operators, where C, is the 

linear isometries operad attached to our universe (recall that C, extends to a A-separated 

creation operator (cf. §14, Proposition 35»-then 'V n, tPn : Cn -+ c'n (= I(Un,U» 

is Sn-equivariant. Given a morphism -y : m -+ D in riD' let tP.., : Cn -+ c'm be either 
Cn ----+Cm 

"-- composite in the commutative diagram 1 ""'''' 1 and for X in S \ SPECu, put C.., ~ 
c'n --+c'm 

X(m) = tP.., ~ x(m), Cm ~ x(m) = tPm ~ x(m) to get an arrow C.., ~ x(m) -+ Cm ~ X(m). 

The realization C[X] of C at X is then defined by the coequalizer diagram V C.., ~ 
..,:m-+n 

X(m):; V Cm ~ X(m) -+ C[X] (on the term indexed by -y : m -+ D, U is the arrow 
vm~O 

C.., ~ X(m) ~ Cn ~ -y.X(m) -+ Cn ~ X(n) and v is the arrow C.., ~ X(m) -+ Cm ~ x(m». 

[Note: The isomorphism C.., ~ x(m) ~ Cn ~ -y.x(m) is an instance of the "composition 

rule" on p. 16-22. To see this, consider *..!. I(Um ,un) and Cn ~ I(Un ,U) : tPn Xc -y = 

tP.., => tP.., ~ x(m) ~ tPn ~ -y.x(m).] 

Remark: C[X] is unital (since S = Co ~ X(O» and'C[?] is functorial. 

PROPOSITION 32 Let C be a A-separated creation operator, augmented over C, via 

tP : C -+ c'-then 'V X in A.-CG., C[Qoo X+] ~ QooC[X]+. 

[Apply Qoo to the coequalizer diagram V Cn+#k(X+ )(m)~ V Cm+#k(X+ )(m) -+ 
..,:m-+n m~O 

C[X]+.] 

[N ote: The isomorphism is natural in X.] 
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The coequalizer diagram describingC[X] can be reduced to II II Cn+! Xkxn::; II 
n>O O<i<n v n>O 

Cn X S" xn -+ C[X] and the coequalizer diagram describing -C[X] ~an be reduced to 
V V CO', I)( X(n):; V Cn I)(s" X(n) -+ C[XJ, the (n, i)th term being indexed on tTi : 

n>O O<i<n Y n>O 
n--+ -n -+ 1 (0 ~ i < n) (notation as in the proof of Proposition 35 in §14). There is 

also a coequalizer diagram II II Cm+l Xi xm::; II Cm Xs". xm -+ Cn[X] (d. 
mSn-1 OS;Sm v mSn 

§14, Proposition 27). Here Co[X] = *, C[X] = colimCn[X], and the arrows Cn[X] -+ 

Cn+I[X] are closed embeddings. Proceeding by analogy, define Cn[X] by the coequal

izer diagram V V CO'l I)( x(m)~ V Cm I)(s". X(m) -+ Cn[XJ-then Co[XJ = S, 
mSn-1 0SiSm Y mSn 

C[XJ = colimCn[X], and the arrows Cn[X] -+ Cn+![X] are levelwise closed embeddings if 

e : S -+ X is a levelwise closed embedding. 

RecaJ.ling that X:+l is the subspace of X n+l consisting of those points having at least 
Cn+1 X S,,+1 X:+l ~ Cn[X] 

one coordinate the base point Zo, the commutative diagram 1 1 
Cn+! X S"+1 xn+! ~ cn+! [X] 

is a pushout square. To formulate its spectral analog, one first has to define xin+1). The 
arrow X(n) I\S -+ X(n+l) is a morphism of Sn-spectra (Sn C Sn+l), hence determines 

by adjointness a morphism' : Sn+l I)(s" (x(n) I\S) -+ X(n+l) of Sn+l-spectra. Noting 
that Sn+l I)(s" (x(n) I\S):::::: V XCi) I\SAx(n-i), the arrows X(n-l) I\SI\S -+ x(n) I\S C 

OSiSn 
Sn+l I)( s" (x(n) I\S), X(n-l) I\SI\S -+ x(n-I) I\SllX C Sn+l I)(s,. (x(n) llS) are morphisms 

of Sn-I-spectra (Sn-l C Sn C Sn+!), hence determine by a.djointness morphisms f,g : 
Sn+l ll<S,,_1 (x(n-l) I\SI\S) -+ Sn+! ll<s" (x(n) llS) of Sn+l-spectra. One then defines x~n+!) 

by the coequalizer diagram Sn+l ll<S"_l (x(n-l) I\SI\S) ~Sn+l ll<s" (x(n) I\S) -+ xin+!) 
• (calculated in Sn+!-SPECu "+1 (cf. p. 16-31)). Since' coequalizes (f,g), there is a mor-

phism xin+1) -+ X(n+l) of Sn+!-spectra (which is alevelwise closed embedding if this is 

the case of e : S -+ X). FinaJ.ly, the composites Cn+l ll< (X(i) I\Sl\x(n-i») :::::: CO'i ll< x(n) -+ 

Cn ll< x(n) -+ Cn[X] give rise to an arrow Cn+! ll<Sn+l xin+!) -+ Cn[X] and the commutative 
Cn+1 ll< S,,+1 xin+1

) ~ Cn[X] 

diagram 1 1 is a pushout square. 

Cn+l ll<S,,+l X(n+l) ~ Cn+![X] 
Observation: The forgetful functor S \ SPECu -+ SPECu has a left adjoint X -+ 

S V X (e : S -+ S V X is the inclusion of the wedge summand S). 

PROPOSITION 33 Let C be a 6.-separated creation operator, augmented over £, via 

tP : C -+ £'-then there is an isomorphism C[S V X]:::::: V Cn ll<s" x(n) natural in X. 
. n~O 
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[In fact, (S V x)(n+l) ~ (S V X)~n+l) V X(n+l) as Sn+l-spectra, thus by induction, 

Cn[S V X] ~ V Cm ~Sm X(m) (n ~ 0).] 
m~n 

The spacewise version of Proposition 33 is the relation C[X+1 ~ 11 C" xs" X". 
"2:0 

LEMMA Suppose that (X, .xo) is A-separated and wellpointed-then there are unital 
morphisms Qoo X+ -t S V Qoo X and S V Qoo X -t Qoo X+ which are unital homotopy 

equivalences. 

[Note: A homotopy H is unital if V t, H t is unital.] 

PROPOSITION 34: Let C be a A-separated creation operator, augmented over £ 

via 4> : C -t £-then V A-separated, wellpointed X, there is a natural weak equivalence 

QooC[X] -t V QOO(Cn ~S .. x(n» of U-spectra. 
n>1 

[C[X] is ~-separated and wellpointed (cf. §14, Proposition 27). The lemma thus 

provides a weak equivalence S V QooC[X] -t QooC[X]+ ~ C[Qoo X+] (d. Proposition 32). 

But C[?] : S \ SPECu -t S \ SPECu is a continuous functor, so it's homotopy preserving. 

Accordingly, there is a weak equivalence C[Qoo X+l-t C[SVQoo X] ~ V Cn ~s .. (Qoo x)(n) 
n~O 

(d. Proposition 33). And: V Cn ~s .. (Qoox)(n) ~ S V V Cn ~sn (Qoox)(n) ~ S V 
n>O n>1 

V QOO(Cn ~s .. x(n» (cf. p. 16-32). The weak equivalence i; question now follows upon 
n>1 
q~otienting out by S.] 

Application: QooC[X] and V QOO(Cn [X1!Cn _ 1 [X]) are isomorphic in HSPECu. 
n~l 

LEMMA Let X, Y be in 4-CG lItC and let f : X -t Y be a pointed continuous 

function. Assume: f is a weak homotopy equivalence-then Qoo f : Qoo X -t Qooy is a 

weak equivalence. 

[Since it suffices to work in SPEC, one has only to show that the 7r:(f) : 7r:(X) -t 

7r:(Y) (n ~ 0) are bijective (Qoo X, Qooy being connective (cf. p. 16-7». But 7r:(X) = 

colim 7rn+f(EfX), 7r:(Y) = colim 7rn+fCEfY) and Ef f : EfX -t EfY is a weak homotopy 

equivalence (d. p. 14-35).] 

PROPOSITION 35 Let {; be creation operators, where V n, {i;n is a compactly 

generated Hausdorff space and the action of Sn is free. Suppose given an arrow 4> : C -t 'D 

such that V n, 4>n : Cn -t 'Dn is a weak homotopy equivalence-then V A-separated, 

wellpointed X, there is a weak equivalence QooC[X] -t Qoo'D[X]. 
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[C[X] and V[X] are ..6.-separated and wellpointed (d. §14, Proposition 27). But the 

hypotheses imply that tJ; induces a weak homotopy equivalence C[X] -+ V[X] (d. p. 

14-54).] 

Application: Let C be a creation operator, where V n, Cn is a compactly generated 
Hausdorff space and the action of Sn is free-then V ..6.-separated, wellpointed X, there is 
a natural weak equivalence QooC[X] -+ V QOO(Cn I)(s" x(n)} of U-spectra. 

n~l 

[The projection C x .e -+ .e augments C x .e over.e. On the other hand, V n, the 

projection Cn Xk .en -+ Cn is a weak homotopy equivalence. Quote Propositions 34 and 

35.] 
[Note: To justify the tacit use of the lemma, it is necessary to observe that (Cn Xk 

.en) I)( s" x(n), Cn I)(s" x(n) are wellpointed and the arrow (Cn Xk.en)~S"x(n) -+ Cn I)(s"x(n) 

is a weak homotopy equivalence.] 

Example: In HSPECu, QooBYf[X] ~ V QOO(BY(R(q), n) ~s" x(n». 
n~1 

[Note: BY9[X] can be replaced by 09E9X if X is path connected (May's approxima-

tion theorem).] 

Example: In HSPECu, QooBYOO[X] ~ V QOO(BY(R(oo),n) ~s" x(n». 
n>1 

[Note: BYOO[X] can be replaced by oooEoOX if X is path connected and ..6.-cofibered 

(d. §14, Proposition 33) (X ..6.-cofibered => oooEooX wellpointed (d. p. 14-44».] 

EXAMPLE Take C = PER-then in HSPECu, QooPER[X1 s::::1 V QOO(XS" ~sn x(n» ~ 
n~l 

V DnQoo X (ce. p. 16-32). 
n~l 

LEMMA Let S be a triple in a category C and let T be a triple in the category S

ALG of S-algebras-then the category T-(S-ALG) ofT-algebras in S-ALG is isomorphic 

to the category T 0 S-ALG of T 0 S algebras in C. 

Let 0 be a reduced operad in ~-CG, augmented over .e via tJ; : 0 -+ .e-then 0 
determines a triple To = (To,m,e) in S\SPECu (d. §14, Proposition 36) (ToX = O[X], 
the realization of 0 at X). But 0 also determines a triple To = (To,m,E') in SPECu, 

where ToX = V On ~s" X(n). To explain the connection between the two, note that 
n~O 

S \ SPECu = S-ALG, S the functor that sends X to S V X. And, according to Proposition 

33, To 0 S "is" To, so by the lemma, the categories To-ALG, To-ALG are isomorphic. 
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§17. STABLE HOMOTOPY THEORY 

A complete treatment of stable homotopy theory would require a book of many pages. 

Therefore, to avoid getting bogged down in a welter of detail, I shall admit some of the 

results without proof and keep the calculations to a minimum. Despite working within 

these limitations, it is nevertheless still possible to gain a reasonable understanding of the 

subject in the "large". 
Recapitulation: The stable homotopy category HSPEC is a triangulated category 

satisfying the octahedral axiom (cf. §16, Proposition 14). FUrthermore, HSPEC is a 

monogenic compactly generated CTC (cf. p. 16-15) and admits Adams represent ability 

(by Neeman's count ability criterion). 

[Note: S is the unit in HSPEC and E-1 stands for n (cf. p. 15-42), so Nt1 ~ E±l 

(recall the convention on p. 16-13).] 

EXAMPLE (Complex K-Theory) Let U = colimU(n) be the infinite unitary group-then U 

is a pointed CW complex and there is a pointed homotopy equivalence U -+ 02U (Bott periodicity). 

Therefore the prescription Xq = OkU (q:: 1 - Ie mod 2 (O:S Ie :s 1» defines an O-prespectrum X and 

by definition, KU = eMX (cf. p. 14-71) is the spectrum of complex K-theory. 

EXAMPLE (Real K-Theory) Let 0 = colim O(n) be the infinite orthogonal group-then 0 is a 

pointed CW complex and there is a pointed homotopy equivalence 0 -+ 0 8 0 (Bott periodicity). Therefore 

the prescription Xq = OkO (q:: 7 -Ie mod 8 (O:S Ie :s 7» defines an O-prespectrum X and by definition, 

KO = eMX (cf. p. 14-71) is the spectrum of real K-theory. 

A Z-graded cohomology theory E* on SPEC is a sequence of exact cofunctors En : 

HSPEC -+ AB and a sequence of natural isomorphisms (Tn : En+l 0 E -+ En such 

that the En convert coproducts into products. CTz(SPEC) is the category whose ob

jects are the Z-graded cohomology theories on SPEC and whose morphisms :::* : E* -+ 
F* are sequences of natural transformations :::n : En -+ Fn such that the diagram 

En+l 0 E 
o;;on+l:r: 
---+ Fn+1 0 E 

17n 1 117n commutes V n. 
En --+ Fn 

En 

Definition: TheZ-graded cohomology theory E* on SPEC attached to a spectrum E 

is given by En(x) = [X,EnE] (= 7r_n(hom(X, E))). 

[Note: The coefficient groups of E* are the En(S) (= 7r_n(E)), i.e., E*(S) = 7r_*(E) 

(= 7r*(E)OP).] 
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Remark: Owing to the Brown represent ability theorem (cf. p. 15-14), every Z-graded 

cohomology theory on SPEC is natura.lly isomorphic to some E*, thus HSPEC is the 

represented equivalent of CTz(SPEC). 
[Note: Needless to say, Mor (E*, F*) ::::1 [E, Fl.] 

EXAMPLE Take E = S-then the corresponding Z-graded cohomology theory on SPEC is called 

{ 

0 (n > 0) 

stable cohomotopy, the coefficient groups being Z (n = 0) . 

. 1r~n (n < 0) 
[Note: As on p. 14-61, the 1r: are the stable homotopy groups of spheres.] 

{
1rn (X)=O (n<O) 

LEMMA If , then 1ro : [X, y] -+ Hom(1ro(X), 1ro(Y» is an isomorphism. 
1rn (Y)=O (n>O) . 

EXAMPLE HSPEC carries at-structure (cf. p. 15-49) and the elements of its heart are the 

Eilenberg-MacLane spectra. An explanation for the terminology is that 1ro : H(HSPEC) -+ AD is an 

equivalence of categories. To see this, consider the functor H : AD -+ H(HSPEC) that sends Z to 

r~or:S°S :::; r:S°r~oS! defining H(1r) for an arbitrary abelian group 1r by the exact triangle V H(Z) -+ 
i 

V H(Z) -+ H(1r) -+ V EH(Z), where 0 -+ €a Z -+ €a Z -+ 1r -+ 0 is a presentation of 1r (the lemma 
j iii 

implies that 1ro : [V H(Z), V H(Z)] -+ Hom(€a Z, €a Z) is an isomorphism). Therefore 1ro(H(1r» = 1r, 
iii i 

1rn(H(1r» = 0 (n::l: 0) and [H(1r'),H(1r")] = Hom(1r',1r"). Example: [E-1H(1r'),H(1r")] = Ext(1r',1r") 

but Ph(E-l H(1r'), H(1r"» = PurExt(1r', 1r") (Christensen-Stricklandt ). 

[Note: Given 1r, ~ an O-prespectrum K(1r) such that K(1r), = K(1r, q) (realized as a pointed CW com

plex with K(1r,O) = 1r (discrete topology». Since 1rn(eMK(1r» = colim1rn+g(K(1r),) = {1r (n = 0) I 

o (n > 0) 
eMK(1r) "is" H(1r) (M the cylinder functor of p. 14-71).] 

EXAMPLE Lint has shown that S·(H(Fp» = 0, hence DH(Fp) is trivial and [H(Fp), K] = 0 

for all compact K. Therefore the stable cohomotopy S·(H(1r» of H(1r) vanishes if 1r is torsion (but not 

in general (consider 'If = Z». 

[Note: Ph(H(Fp), Y) is a vector space over Fp which is nonzero for some Y. Reason: If the contrary 

held, then hH(Fp) would be projective and since [H(Fp), K] = 0 for all compact K, it would follow that 

H(Fp) = 0.] 

PROPOSITION 1 The graded abelian group E*(E) is a graded ring with unit. 

t 

Proc. Amer. Math. Soc. 56 (1976), 291-299. 
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[Given f E ER(E), g E Em(E), let f· g E En+m(E) be the composite E.J4 EmE 

Em~ ER+mE (idE E EO(E) thus serves as the unit).] 

[Note: V X, E*(X) is a graded left E*(E)-module.] 

EXAMPLE The Fp-algebra H{Fp)*(H(Fp» is isomorphic to Ap, the mod p Steenrod algebra. 

PROPOSITION 2 Fix a spectrum E-then V n and V X, there is a short exact 
sequence 0 -+ liml En+q-l(QOOXq) -+ ER(X) -+ limER+Il(QooXq) -+ O. 

Specialized to the case n = 0, the conclusion is that the homomorphism [X,E] -t lim[Xq,Eq] is 

surjective with kernellim1 [EXq, Eq]. 

[Note: This is a recipe for the calculation of morphisms in HSPEC by means of morphisms in 

HA-CG •. ] 

A Z-graded cohomology theory E* on CW * is a sequence of cofunctors En : CW * -+ 
AB and a sequence of natural isomorphisms un : E n+1 0 E -+ ER such that the En convert 

coproducts into products and satisfy the following conditions. 

(Homotopy) If /,g : X -+ Y are homotopic, then En(f)= En(g) : ER(y) -+ 
En(x) Vn. 

(Exactness) If (X, A, xo) is a pointed CW pair, then the sequence En (X / A) -+ 
En(x) -+ En(A) is exact V n. 

(Isotropy) If / : X -+ Y is a homotopy equivalence, then En (f) : En (Y) -+ 
En(x) is an isomorphism V n. 

[Note: The homotopy axiom implies that a Z-graded cohomology theory on CW * 

passes to HCW *, thus the isotropy axiom is redundant.] 

Example: Given a spectrum E, the assignment X -+ En(Qoo X) defines a Z-graded 

cohomology theory on CW *. 

CTz(CW*) is the category whose objects are the Z-graded cohomology theories on 

CW * and whose morphisms 2* : E* -+ F* are sequences of natural transformations 
;::,,+1,... 

En+l 0 E ---+"" Fn+l 0 E 

sn : En -+ Fn such that the diagram commutes V n. 

Let E* be a Z-graded cohomology theory on CW *_. then the coefficient groups of E* 

are the En(So). Example: Reduced singular cohomology with coefficients in an abelian 

group rr is a Z-graded cohomology theory on CW * whose only nontrivial coefficient group 

is rr itself. 
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[Note: E"(*) = 0 V n. Proof: * ~ */*, so the composite E"(*) -+ E"(*) -+ E"(*) is 

both the identity map and the zero map.] 

FACT Let 11" be an abelian group. Suppose that E;, E; are Z-graded cohomology theories on 

OW", such that ~(SO) = 11", ~(SO) = 11" and Ef(SO) = 0, Er;(SO) = 0 (n ¢ O)-then E;, E; are 

naturally isomorphic. 

EXAMPLE The Z-graded cohomology theory on OW", determined by H(1I") is naturally isomor

phic to reduced singular cohomology /i'" (-; 11"). 

Notation: Let T: CW2 -+ CW2 be the functor that sends (X, A) to (A, O). 
[Note: The lattice of (X, A) is the diagram 

(X,0) 
~ ~ 

(O, O) ---;. (A, O) (X, A) ~ (X, X).] 
~ ~ 

(A, A) 

A Z-graded cohomology theory H* on CW2 is a sequence of cofunctors H" : CW2 -+ 

AB and a sequence of natural transformations d" : H"-l 0 T -+ H" such that the H" 

convert coproducts into products and satisfy the following conditions. 

(Homotopy) If /,g : (X,A) -+ (Y,B) are homotopic, then H"(f) = H"(g) : 

H"(Y, B) -+ H"(X, A) V n. 

(Exactness) If (X,A) is a CW pair, then the sequence .. · -+ H"-1(A,0) ~ 
4"+1 

H"(X, A) -+ H"(X,0) -+ H"(A,0)--+H"+1(X,A) -+ ... is exact. 

(Excision) If A,B are sub complexes of X, then the arrow H"(A U B,B) -+ 

H"(A,A n B) is an isomorphism V n. 

(Isotropy) If / : (X, A) -+ (Y, B) is a homotopy equivalence, then E"(f) : 

H"(Y, B) -+ H"(X, A) is an isomorphism V n. 

[Note: The homotopy axiom implies that a Z-graded cohomology theory on CW2 
passes to HCW2

, thus the isotropy axiom is redundant.] 

CTz(CW2) is the category whose objects are the Z-graded cohomology theories on 

CW2 and whose morphisms 2* : H* -+ G* are sequences of natural transformations 
:n-1 T 
- ) G"-l 0 T 

2" : H" -+ G" such that the diagram 14ft commutes V n. 

G" 
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PROPOSITION s CTz(CW.) and CTz(CW2) are equivalent categories. 

[On objects, consider the functor CTz(CW.) -t CTz(CW2) that sends E· to H., 

where Hn(X,A) = En(X+/A+), and the functor CTz(CW2) -t CTz(CW.) that sends 

H· to E*, where En(x) = Hn(x, {xo} ).] 
[Note: Consult Whiteheadt for a verification down to the last detail.] 

The definition of a Z-graded homology theory E. on CW *, CW2 is dual and, in 

obvious notation, the categories HTz(CW.), HTz(CW2) are equivalent (cf. Proposition 

3). 

FACT Fix a Z':graded cohomology theory H* on CW2 • Let (X, A) be a CW pair. Suppose given 

a sequence {Xq} of sub complexes of X such that A C Xo , Xq C Xq+l I and X = coIimXq-then V n, 

there is a short exact sequence 0 -t liml H",-l(Xq,A) -t H"'(X,A) -t lim H"'(Xq, A) -t O. 

[Note: Modulo some additional assumptions on H*, one can establish a variant involving the finite 

subcomplexes of X which contain A (Huber-Meier~).] 

PROPOSITION 4 Let E be an O-prespectrum-then the prescription En(x) -

{
[X, En] (n 2: 0) 
[X, o-n Eo] (n < 0) specifies a Z-graded cohomology theory on CW •. 

[Note: When E is a spectrum, En(x) = En(QooX) (cf. p. 17-3).] 

PROPOSITION 5 Every Z-graded cohomology theory E* on CW. is represented 

by an O-prespectrum E. 

ILet U : AB -t SET be the forgetful functor-then V n, U 0 En is representable (cf. 

p. 5-81 ff.): U 0 En(x) ~ [X, En]. And: The En (n 2: 0) assemble into an O-prespectrum.] 

The precise connection between O-prespectra, spectra, and Z-graded cohomology theories on CW * 

can be pinned down. Thus let WPRESPEC be the category whose objects are the prespectra and 

whose morphisms f: X -t Yare sequences of pointed continuous functions fq : Xq -t Yq such that the 

Xq .!.:!. Yq 

1 is pointed homotopy commutative V q. Denote by HWPRESPEC the 

OYq+l 

localization of WPRESPEC at the class of levelwise weak homotopy equivalences (there is no difficulty 

t Elements of Homotopy TheoT1J, Springer Verlag (1978), 571-600. 

~ Comment. Math. Helv. 53 (1978), 239-257; see also Yosimura, Osaka J. Math. 25 (1988), 881-890, 

and Ohkawa, Hiroshima Math. J. 23 (1993), 1-14. 
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in seeing that this procedure leads to a category). Write HWO-PRESPEC for the full subcategory of 

HWPRESPEC whose objects are the O-prespectra-then Mor(X, Y) = lim[Xq , Y q], where the limit is 

taken with respect to the composites [Xq+l, Yq+1] -+ [OXf+l, OYq+l] -+ [Xq, Yq]. 

FACT HWO-PRESPEC is the represented equivalent of CTz (CW.). 

Let HWSPEC be the full subcategory of HWO-PRESPEC whose objects are the spectra. 

FACT The inclusion HWSPEC-+ HWO-PRESPEC is an equivalence of categories. 

[Consider the functor that on objects sends an O-prespectrum X to eMX (M as on p. 14-71).] 

[Note: If E· is a Z-graded cohomology theory on CW. which is represented by an O-prespectrum 

E, then eME is a spectrum which also represents E· .] 

Summary: HSPEC f+ CTz(SPEC), HWSPEC f+ CTz(CW.) and there is a functor HSPEC 

-+ HWSPEC that on morphisms is the arrow [X, Y] -+ lim[Xq, Y,]. Accordingly, every Z-graded coho

mology theory on CW. lifts to a Z-graded cohomology theory on SPEC and every morphism of Z-graded 

cohomology theories on CW. lifts to a morphism of Z-graded cohomology theories on SPEC (hut not 

uniquely due to the potential nonvanishing of liml [EX" Yq] (cf. Proposition 2». 

A Z-graded homology theory E .. on SPEC is a sequence of exact functors En : 

HSPEC ~ AB and a sequence of natural isomorphisms Un : En ~ E n+1 0 E such 

that the En convert coproducts into direct sums. HTz(SPEC) is the category whose 

objects are the Z-graded homology theories on SPEC and whose morphisms S .. : 

E.. ~ F .. are sequences of natural transformations Sn : En ~ Fn such that the diagram 

En Sn) Fn 

(Tn 1 1 (Tn commutes V n. 

E n+1 0 E ) Fn+1 0 E 
Sn+1 E 

Definition: The Z-graded homology theory E .. on SPEC attached to a spectrum E 

is given by En(X) = 7rn(E" X). 

[Note: The coefficient groups of E. are the En(S) (= 7rn(E», i.e., E .. (S) = 7r .. (E).J 

Remark: Because HSPEC admits Adams represent ability, every Z-graded homology 

theory on SPEC is natura.lly isomorphic to some E .. (cf. §15, Proposition 38), thus 

HSPECjPh (cf. p. 15-22) is the represented equivalent of HTz(SPEC). 

[Note: Here Mor(E.,F .. ) ~ [E, FJjPh(E, F).] 
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EXAMPLE Take E = S-then the corresponding Z-graded homology theory on SPEC is called 

{ 

'II"~ (n > 0) 

stable homotopy, the coefficient groups being Z (n = 0) . 

o (n < 0) 

EXAMPLE For any two spectra E,F, the arrow 'II".(E) ® '11"* (F) ® Q -+ 'II".(E A F) ® Q is an 

isomorphism. 

[Fix E and let F vary-then the arrow 'II".(E) ® '11".(-) ® Q -+ 'II".(E A -) ® Q is a morphism of 

Z-graded homology theories on SPEC. But 'll"g(S) = Z and 'II":'(S) is finite if n > 0 (cf. p. 5-44), hence 

'11". (E) ® 'II".(S) ® Q ~ 'II".(E AS) ® Q.] 

PROPOSITION 6 Let {~, {~ be spectra-then there is an external product 

E*(X) ® F*(Y) -+ (E" F)*(X" Y) in cohomology. 

[Work with the arrow hom(X, E) "hom(Y, F) -+ hom(X" Y, E" F).] 

PROPOSITION 7 Let {~, {~ be spectra-then there is an external product 

E*(X) ® F *(Y) -+ (E" F)*(X" Y) in homology. 

[Work with the arrow E" X" F" Y -+ E" F" X" Y.] 

PROPOSITION 8 Let { ~ , {~ be spectra-then there is an external slant product 

E*(X" Y) ® F *(X) -4(E" F)*(Y). 

[Use the commutative diagram 

hom(X" Y,E)" F" X -4 hom(Y,E" F) 

! T .] 
hom(X,hom(Y, E))" X" F --+ hom(Y, E) "F 

. PROPOSITION 9 Let { ~ , {~ 
E*(X" Y) ® F*(X) --4(E" F)*(Y). 

[Use the commutative diagram 

be spectra-then there is an external slant product 

E " X " Y " hom(X, F) ~ E " F " Y 

1 /.] 
E" hom(X, F) "X" Y 
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The external products are morphisms of graded abelian groups but this is not the case of the slant 

products. Explicated: En (XI\.Y)®Fm (X) -4(EI\.F)n-m(y) and En (XI\.Y)®Fm(x) ~(EI\.F)n-m(Y), 
thus to get a morphism of graded abelian groups one must give F.(X) and F·(X) the opposite gradings. 

A ring spectrum is a ring object in HSPEC. Example: S is a commutative ring 

spectrum and every spectrum is an S-module. 

EXAMPLE Let k be a cOIIlmutative ring with unit-then H(k) is a cOIIlIIlutative ring spectrum 

and for any k-module M, H(M) is an H(k)-module. 

EXAMPLE McClure t has shown that KU is a commutative ring spectrum. The homotopy 

11". (KU) of KU has period 2 and 11"0 (KU) = Z, 11"1 (KU) = O. In addition, there exists a multiplica

tively invertible generator bu E 11"2 (KU) ~ Z inducing the homotopy periodicity and as a graded ring, 

1I".(KU) ~ Z[bu, bii]. 

[Note: KO is also a commutative ring spectrum.] 

EXAMPLE For any X in A-CG., (OX)+ (= OX n-) is wellpointed, QOO«OX)+) is a ring 

spectrum, and 11"0 (000 I; 00 (OX) + ) ~ Z[lI"l (X)] (as rings). 

[~ro define the product, note that QOO(OX)+ I\. QOO(OX)+ ~ QOO«OX)+#A:(OX)+) (d. p. 16-29), 

which is isomorphic to QOO«OX XA: OX)+).] 

FACT IfE is a connective ring spectrum, then Hom(lI"o(E), 1I"0(E» ~ [E,H(lI"o(E»] and the arrow 

E -+ H(lI"o(E» realizing the identity 1I"0(E) -+ 1I"0(E) is a morphism of ring spectra. 

FACT If E is a ring spectrum and e(= rSOE) is its connective cover, then e admits a unique ring 

spectrum structure such that the arrow e -+ E is a morphism of ring spectra. 

If E is a ring spectrum and F is an E-module, then the products figuring in the 

preceding propositions can be made "internal" through E 1\ F -+ F. 

Example: Take E = F and fix an X-then Proposition 8 furnishes an arrow E* (X) ® 

E*(X) -4(E 1\ E)·(S) -+ E*(S) = 11"_* (E) and Proposition 9 furnishes an arrow E*(X) ® 

E*(X) -4(E 1\ E)*(S) -+ E*(S) = 1I"*(E). 

EXAMPLE Let E be a ring spectrum-then for spectra F & X, the Hurewicz homomorphism 

F.(X) -+ (E I\. F).(X) is defined by the arrow Fn(X) = lI"n(F I\. X) ~ lI"n(8 I\. FI\. X) -+ lI"n(E I\. F I\. 

t SLN 1176 (1986), 241-242. 
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X) = (E 1\ F) .. (X) and the Boardman homomorphism F·(X) ~ (E 1\ F)*(X) is defined by the arrow 

F"(X) = [X,E"F] ~ [X,E"(S 1\ F)] ~[X,E"(E 1\ F)] = (E 1\ F)" (X). Assuming that both E and F 
F .. (X) ® Fm(x) --+ lI" .. _m(F) 

are ring spectra, the commutative diagram 1 1 serves to 

relate the two. 

{ 
S.(X) ~ E.(X) 

[Note: In particular, there are arrows .J 
S·(X) ~ E·(X) 

{ 
F·(X) . 

H E is a ring spectrum and F is an E-module, then V X, F .(X) IS a graded 

{ 
E·(S)-module .. 
E.(S)-module (cf. PropOSItIOns 6 and 7). 

[Note: The structure is on the left. Observe, however, that {~:~~~ is a graded left 

. {E*(S)-module. {E*(X) . {E*(S)-bimodule 
and rIght E.{S)-module' In fact, E*{X) IS a graded E.{S)-bimodule .J 

{ 
E·(X) ® E*(Y) ~ E·(X 1\ Y) 

In view of the associativity of the operations, the arrows 
E. (X) ® E. (Y) ~ E. (X 1\ Y) 

. . . . {E. (X) ®E.(8) E·(Y) ~ E·(X 1\ Y) 
the quotIent, thereby glvmg arrows . 

E. (X) ®E* (8) E. (Y) ~ E. (X 1\ Y) 

pass to 

PROPOSITION 10 Suppose that E is a ring spectrum. Let {~ be spectra. Assume: 

Either E.(X), as a graded right E.(S)-module, is fiat or E.(Y), as a graded left E.{S)

module, is fiat-then the arrow E. (X) ®E. (S) E. (Y) -+ E* (X A Y) is an isomorphism. 

[The situation being symmetric, take Y fixed and E* (Y) fiat-then the arrow 

E*(-) ®E.(S) E*(Y) -+ E.(- A Y) is a morphism of Z-graded homology theories on 

SPEC. But E.(S) ®E.(S) E.(Y) ~ E.(S A Y).] 

FACT Let E be a ring spectrum, FanE-module. Assume: lI"*(F), as a graded left tr.(E)-module, 

is flat-then \IX, the arrow E.(X) ®If.(E) 1I".(F) ~ F.(X) is an isomorphism. 

Notation: Given an abelian group 11", put H.(X;lI") = H(lI").(X) and H*(X;lI") = H(lI")·(X). 

EXAMPLE Let A be a PID, M an A-module-then \I X, there is an exact sequence 0 ~ 

H .. (X;A) ®A M ~ H .. (X;M) ~ TorA(H .. _I(X;A),M) ~ O. 

[Since A is a PID, the projective dimension of Mis :5 1, so 3 an exact sequence 0 ~ Q ~ P ~ M ~ 0, 

where P and Q are projective, hence flat. Applying the above result then gives H.(XjA)®AP ~ H.(X; P) 
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and H.(X;A) ®A Q ~ H.(X;Q). On the other hand, the exact triangle H(Q) ~ H(P) ~ H(M) ~ 

:r;H(Q) leads to an exact sequence Hn(XjQ) ~ Hn(XiP) ~ Hn(X;M) ~ Hn-dXiQ) ~ Hn-dXjP).] 

[Note: Under the same hypotheses, there is an exact sequence 0 ~ ExtA(Hn_dX; A), M) ~ 

Hn(XjM) ~ HomA(Hn(XiA),M) ~ 0.] 

FACT Suppose that A is a PID-then V X, X /\ H(A) ~ V :r;nH(Gn ), where Gn = Hn(Xi A). 
110 

[Here V :r;nH(Gn ) ~ IT :r;nH(Gn ) (d. p. 15-171£.), thus it suffices to specify arrowsfn : X/\H(A) ~ 
"110 110 

:r;nH( Gn) such that 11'110 (fn) is an isomorphism V n.] 

EXAMPLE Let A be a PID-then V X, Y & V i,j, there is an exact sequence 0 ~ Hi(X;A) ®A 

Hj(YjA) ~ Hi(X;Hj(Y;A» ~ TorA(Hi_dXiA), Hj(YjA» ~ O. Now sum over all (i,j) : i + j = 
k. Setting aside the flanking terms and putting Gj = Hj(Y;A), the middle term assumes the form 

ED Hi(Xi Hj(Yj A» = ED 1I'k(X /\ :r;jH(Gj» = 1I'k(X /\ V:r;jH(Gj» = 1I'k(X /\ Y /\ H(A» = Hk(X /\ 
i+j=k j j 

YjA). 

In a category C with pushouts, one has the notion of an internal cocategory (or 

a cocategory object) (cf. p. 0-42), which can be specialized to the notion of an in

ternal cogroupoid (or a cogroupoid object). Definition: Let k be a commutative ring 

with unit-then a graded Hopf algebroid over k is a' cogroupoid object in the category of 

graded commutative k-algebras with unit. So, a graded Hopf algebroid over k consists 

of a pair (A, r) of graded commutative k-algebras with unit and morphisms 'fJR : A -+ r 

(right unit="cosource"), 'fJL : A -+ r (left unit="cotarget"), E : r -+ A (augmenta

tion="coidentity"), ~ : r -+ r ®A r (diagonal="cocomposition"), c : r -+ r (conjuga

tion= "coinversion") satisfying the dual of the usual category theoretic relations (cf. infra). 

Therefore (A, r) attaches to a graded commutative k-algebra T with unit a groupoid GT, 

where Db GT = Hom( A, T) and Mor GT = Hom(r, T). Example: (k, k) is a graded Hopf 

algebroid over k (trivial grading). 

[Note: When' A = k and 'fJL = 'fJR, r is a graded commutative Hopf algebra over k or 

still, a cogroup object in the category of graded commutative k-algebras with unit.] 

Remark: Graded Hopf algebroids over k can be organized into a (large) double cate

gory (Borceuxt ). 
A r 

.R®hlr 1 
There is a coequalizer diagram r ®k A ®k r I r ®k r ~ r ® A r and • L 

idr®.L 
r 

is a pushout square. 

t Handbook of Categorical Algebra 1, Cambridge University Press (1994), 327-328. 
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[Note: Tacitly, one uses '1R to equip r with the structure of a graded right A-module and '1L to equip 

r with the structure of a graded left A-module.] 

As for '1R, '1L, E, ~, and c, they must have the following properties: EO '1R = idA = EO '1L, 

~0'1R = inL0'1R, ~0'1L = inR0'1L, (id["'®E)o~ = id["" (E®id["')o~ = id["" (id["'®~)o~ = (~®id["')o~, 

c0'1R = '1L, CO'1L = '1R, (c®id["') 0 ~ = '1R ° E, and (id['" ® c) 0 ~ = '1L ° E. 

[Note: The formulas relating c to the other arrows are the duals of those on p. 13-36 (the role of X 

in the groupoid object situation is played here by c). Corollaries: (1) co c = id["'; (2) EO c = E.] 

EXAMPLE The dual of the mod p Steenrod algebra is isomorphic to H(Fp).(H(Fp», a graded 

commutative Hopf algebra over Fp. One has H(F2).(H(F2» ~ F:d6,e2," .], where leI: I = 21: - 1 
I: . 

and ~(el:) = E eLi ® ei, and for p > 2, H(Fp).(H(Fp» ~ Fp[6,6, ... ] ®Pp I\(ro, rl,' .. ), where 
i=O 

I: . I: . 

lel:l = 2(P1: -1), Irl:l = 2pl: -1, and ~(el:) = E er~i ®ei, ~(rl:) = rl: ® 1 + E er~i ® ri. The unit and 
i=O i=O 

I: i 
augmentation are isomorphisms in degree 0 and the conjugation c is given recursively by E et_ic(ei) = 0 

;=0 
I: i 

(k> 0) and rl: + E et_ic(rd = 0 (k ::: 0). 
;=0 

[Note: In the above, it is understood that eo = 1.] 

PROPOSITION 11 Suppose that E is a ring spectrum. Assume: E is commutative 

and E.(E), as a graded right E.(S)-module, is flat-then the pair (E.(S), E.(E» is a 

graded Hopf algebroid over Z. 

[E.(E) is a graded commutative Z-alge~ra with unit. Proof: The product is de

fined by E.(E) ® E.(E) -+ (E 1\ E).(E 1\ E) -+ E.(E 1\ E) -+ E.(E) and the unit 

Z -+ Eo(E) is defined by sending 1 to the arrow S = S 1\ S -+ E 1\ E. This said, let 

{ 
TlR : E.(S) R:l1T'.(S 1\ E) -+ 1T'.(E 1\ E) = E.(E) d' E (E) - (E 1\ E) (E) _ 
TlL : E.(S) R:l1T'.(E 1\ S) -+ 1T'.(E 1\ E) = E.(E) an e.. - 11". -+ 11". -

E.(S). Next, take for ~ the composite E.(E) = 1T'.(E 1\ E) R:l 1T'.(E 1\ S 1\ E) -+ 
1T'.(EI\EI\E) = E.(EI\E) R:l E.(E)®E.(s)E.(E) (cf. Proposition 10). Finally, c : E.(E) = 
1T'.(E 1\ E) -+ 1T'.(E 1\ E) = E.(E) is induced by the interchange T : E 1\ E -+ E 1\ E.] 

[Note: Due to the presence of c and the relations {c 0 TlR = TlL , E.(E), as a graded 
. co TlL = TlR 

right E.(S)-module, is flat iff E.(E), as a graded left E.(S)-module, is flat (the E.(S)-

module structures on E.(E) per TlR and TlL are the same as those introduced on p. 17-9). 
Example: The flatness assumption is met if E 1\ E R:l V En, E (isomorphism of E-modules) 

i 
(for then 1T'.(E 1\ E) R:l E91T'.-n; (E), thus is a graded free 1T'.(E)-module).] 

i 

Tied to the definitions are various diagrams and a complete proof of Proposition 11 entails checking 
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that these diagrams commute, which is straightforward if tedious (a discussion can be found in Adamst). 

EXAMPLE KU.(KU) is a graded free KU.(S)-module (Ada.ms-Clarket), thus the hypotheses 

of Proposition 11 are met in this case. 

[Note: The structure of KU.(KU) has been worked out by Adams-Harris-Switzerll .] 

Given a graded Hopf algebroid (A, r) over k, a (left) (A, r)-comodule is a graded left 
A-module M equipped with a morphism M -+ r ® A M of graded left A-modules such that 

M ---7- r®AM M-----+r®AM 

1 1 and ~ 1 commute. 

r®AM ---7- r®Ar®AM A®AM 

PROPOSITION 12 Suppose that E is a ring spectrum. Assume: E is commutative 

and E.(E), as a graded right E.(S)-module, is flat-then 'r/ X, E.(X) is an (E.(S), E*(E»

comodule. 

[The arrow E.(X) -+ E.(E) ®E.(S) E.(X) is the composite E*(X) = 7r*(E A X) ~ 

7r.(E A S A X) -+ 7r.(E A E A X) = E*(E A X) ~ E*(E) ®E.(S) E.(X) (cf. Proposition 10).] 

Rappel: A spectrum E defines a Z-graded cohomology theory E· on CW. (cf. Propo

sition 4) and 'r/ X in CW *, En(x+) ~ En(x) ED En(sO). 

[Note: When E is a ring spectrum, there is a cup product U, viz. the composite 

E*(X) ® E*(X) -+ E*(X#It;X) -+ E*(X), where X -+ X#kX is the reduced diagonal. 

Therefore E*(X) is a graded ring and E*(X+) is a graded ring with unit (both are graded 

commutative if E is commutative).] 

Let E be a commutative ring spectrum-then E is said to be complex orient able if 3 an 

element XE E E2(pcx>(C» with the property that the arrow of restriction E2(pcx>(C» -+ 
E2(pl(C» ~ 7ro(E) sends XE to the unit S -+ E ofE. One calls XE a complex orientation 

ofE. 

[Note: 7ro(E) = [S, E] ~ [So, Eo] ~ [SO, 0 2 E2] ~ [~2S0, E2] = E2(S2) and S2 ~ 
pI (C).] 

Remark: Identify io(E) = [S, EJ with [Q~S2n, EJ ~ [S2n, E2n] and let top: pn(C) -+ 
S2n(= pn(C)/pn-I(c» be the top cell map-then the arrow of restriction E2n(pcx>(c» 

t SLN 99 (1969), 56-71. 

t Illinois J. Math. 21 (1977), 826-829. 

II Proc. London Math. Soc. 23 (1971), 385-408. 
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Remark: Identify 1ro(E) = [S, E] with [Q~S2n, E] ~ [S2n, E2n] and let top: pn(C) -+ 
s2n(= pn(C)/pn-l(C)) be the top cell map-then the arrow of restriction E2n(poo(c)) 

-+ E2n(pn(c)) sends xE to the image of the unit of E under the precomposition arrow 
[S2n, E2n] top·) [pn(C), E2n]. 

pn(c) -t 

[Th~ diagram top 1 

tive.] 

pn(c)#" ... #"pn(C) 

1 is pointed homotopy commuta-

Example: Let A be a commutative ring with unit-then H( A) is complex orient able. 

[Recall that H*(POO(C); A) ~ A[x], Ixl = 2.] 

PROPOSITION 13 Suppose that E is a commutative ring spectrum. Assume: E is 

complex orient able with complex orientat,ion xE-then E*(POO(C)+) ~ E*(S)[[XE]]. 

[Note: E*(S)[[XE]] is the graded E*(S)-algebraofformal power series in XE (IXEI = 2). 
00 . • 

So: A typical element in Ef(S)[[XE]] has the form E AjXi;, where Ai E Ef-21 (S).] 
j=O 

PROPOSITION 14 Suppose that E is a commutative ring spectrum. Assume: E 

is complex orient able with complex orientation xE-then E*((POO(C) X" POO(C))+) ~ 

E*(S)[[XE ® 1,1 ® XE]]. 

Colet has given a proof of these propositions which does not involve the Atiyah-Hirzebruch spectral 

sequence. 
" [Note: The method is to show from first principles that there are splittings E" P"(C) = V ;E2'E, 

i=1 

" HOM(P"(C), E) ~ n n2i E in E-MOD.] 
'=1 

EXAMPLE If E is complex orientable, then E.(POO(C)+) is a graded free E.(S)-module and 

E.(POO(C)+) ®E.(S) E.(POO(C)+) ~ E. (POO(C)+#A:Poo (C)+) (cf. Proposition 10). 

The standard reference for the theory of formal groups is HazewinkeP. There the 

reader can look up the proofs but to establish notation, I shall review some of the defini

tions. 

Let A be a graded commutative ring with unit. Consider A[[x,y]], where {I;I ; 
then a formal group law (FGL) over A is an element F( x, y) E A[[ x, y]] of the form x + y + 

t Ph.D. Thesis, University of Chicago, Chicago (1996). 

t Formal Groups and Applications, Academic Press (1978); see also Ravenel, Complez Cobordism and 

Stable Homotopy Groups of Spheres, Academic Press (1986), 364-379. 
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E aijxivi , where aij E A2- 2i-2;, such that F(x,F(V,z» = F(F(x,V),z) (associativity) 
i.j~l 

and F(x, V) = F(V, x) (commutativity). 

[Note: In algebra, one does not usually work in the graded setting, the standing 

assumption being that A is a commutative ring with unit (as, e.g., in Hazewinkel). Of 

course, if A is a graded commutative ring with unit, then Aeven (= E9 A2n ) is a commutative 
n 

ring with unit and every FGL over A is a FGL over Aeven. Example: F( x, V) = x + V + '/LXV 
('/L E A_2) is a FGL over A, hence over Aeven, while F(x, V) = x + V + xV is not a FGL 

over A (but is a FGL over Aeven).] 

Notation: Write F(x,V) = x +F V, so {~~: ~ =: ' x +F (V +F z) = (x +F V) +F z, 

and x +F V = V +F x. 

Definition: An element ¢(x) = E ¢ixi E A[[x]] (Ixl = 2) is said to be homogeneous if 
i~l 

FACT If F(z, y) is a FGL over A, then there is a unique homogeneous element t(z) e A[[z]] such 

that z +F t(z) = 0 = t(z) +F z. 

[There exist unique homogeneous elements e A[[z]] such that , thus 
{ 

tL(Z) {tdZ) +F z = 0 

tR(Z) z +F tR(Z) = 0 
tdz) = tdz) +F 0 = tL(Z) +F (z +F tR(Z» = (tdz) +F z) +F tR(Z) = O+F tR(X) = tR(X) and one can 

take ,(x) = tdz) = 'R(Z),] 

PROPOSITION 15 Let m: (POO(C) Xk POO(C»+ -t POO(C)+ be the multiplication 

classifying the tensor product of complex line bundles-then V complex orient able E, 

FE = m*(xE) is a FGL over E*(S). 

Example: The FGL attached to H(k) by Proposition 15, where k is a commutative 

ring with unit, is the "additive" FGL, viz. x + V. 

EXAMPLE: KU is complex orientable and the associated FGL is Z + y + buxy (cf. p. 17-8). 

Let A be a graded commutative ring with unit. Suppose that F, G are formal group 

laws over A-then a homomorphism ¢ : F -t G is a homogeneous element ¢ E A[[x]] 

such that ¢(x +F V) = ¢(x) +G ¢(V), i.e., ¢(F(x, V» = G(¢(x), ¢(V». A homomorphism 

¢ : F -t G is an isomorphism if ¢' (0) (the coefficient of x) belongs to A;. An isomorphism 

¢ : F -t G is a strict isomorphism if ¢' (0) = 1. 

[Note: A homomorphism ¢ : F -t G is an isomorphism iff 3 a homomorphism '¢ : 

G -t F such that ¢('¢(x» = x = ,¢(¢(x».] 
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FGLA is the set of formal group laws over A and FGLA is the category whose objects 

are the elements of FGLA and whose morphisms are the homomorphisms. 

[Note: HI: A -+ A' is a homomorphism of graded commutative rings with unit, then 

1 induces a functor I. : FGLA -+ FGLA' (on objects, I.F(x,y) = x+y+ E I(aij)xiyj, 
',j';?:,l 

and on morphisms, 1.4>(x) = E 1(4).)xi .] 
'';?:,l 

FACT If E is complex orientable and if z~, z~ are two complex orientations of E, then the 

associated formal group laws FE' FE over E·(S) are strictly isomorphic. 

Let A be a graded commutative ring with unit. Write IPSA for the set of homoge

neous elements 4> in A[[x]] such that 4>'(0) = I-then IPSA is a group under composition, 

functorially in A. 

Notation: B = Z[bl ,b2 , •• • ], where Ib.1 = -2i. 

PROPOSITION 16 B is a graded Hopf algebra over Z. 

[In fact, Hom(B, A) ~ IPSA, so B is a cogroup object in the category of graded 

commutative rings with unit.] 

Remark: IPSA operates to the left on FGLA, VIZ. (4),F) -+ 4>. F - F4>, where 

F4>(x,y) = 4>(F(4>-l(X),4>-l(y»). 

Let A be a graded commutative ring with unit-then A is said to be graded coherent if each finitely 

generated graded ideal of A is finitely presented. Example: A graded noetherian => A graded coherent. 

[Note: 'II".(S) is not graded coherent (Cohent).] 

Remark: Suppose that A is graded coherent-then a finitely generated graded A-module M is finitely 

presented iff it and its finitely generated graded submodules are finitely presented. 

EXAMPLE Let k be a commutative ring with unit. Consider k[Zlo Z2 •... ]. where Izd = -2.

then k[Zl, Z2, ... ] is not graded noetherian but is graded coherent provided that k is noetherian. 

LAZARD'S THEOREM The functor from the category of graded commutative rings 

with unit to the category of sets which sends A to FGLA is representable. Accordingly, 

there is a graded commutative ring L with unit and a FGL FL over L such that V A and 

V F E FGLA, 311 E Hom(L, A) : I.FL = F. 

t Comment. Math. Helv. 44 (1969), 217-228. 
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[Note: The structure of L can be determined, viz. L = Z[XI, X2,"']' where IXil = -2i, 

hence L is graded coherent (cf. supra).] 

The mere existence of L is a formality. Thus fix indeterminates ti; of degree 2 - 2i - 2j and put 

J.'(z, y) = z + y + E ti;ziyi. Define homogeneous polynomials Pi;1c in the ti; by writing J.'(z, J.'(Y, z))
i,;>l 

J.'(J.'(z,y),z) = E- Pi;1c zi y;z1c-then L = Z[ti; : i,j ~ 1]/1, where 1 is the graded ideal generated by 
i,;,1c>l 

the ti; - t;i and the Pi;1c, and I' induces a FGL FL over L having the universal property in question. 

Determining the structure of L is more difficult and depends in part on the following construction. 

Fix indeterminates bi of degree -2i and consider, as above, B = Z[b1 , b2 , ••• ]. Let expz = z + E biZi+1 E 
i>l 

B[[z]] (Izl = 2) and let logz be its inverse (so exp(logz) = z = log(expz»-then FB(Z,y) = ;xp(logz + 
log y) is a FGL over B and the homomorphism L -t B classifying FB is injective. 

FACT If A -t A' is a surjective map of graded commutative rings with unit, then any FGL over 

A' lifts to a FGL over A. 

Put LB = L[bI,~, ... ], where bi is an indeterminate of degree -2i (:::} LB = L ®z 

Z[bI,~, ... ] = L ®z B). 

PROPOSITION IT The pair (L, LB) is a graded Hopf algebroid over Z. 

[Let A be a graded commutative ring with unit. Denoting by GA the groupoid whose 

objects are the formal group laws over A and whose morphisms are the strict isomorphisms, 

the functor from the category of graded commutative rings with unit to the category of 

groupoids which sends A to G~p is represented by (L, LB). For Lazard gives Hom(L, A) H 

FGLA = Db GA (= Db G~p) and this identifies the objects. Thrning to the morphisms, 

suppose that f E Hom(LB, A). Put F = UIL).FL and 4>(X) = x + E f(bi)xi+ 1-then 
i>l 

4>0P : G -+ F is a strict isomorphism, where G(x,y) = 4>(F(4>-l(x),4>-i(y))).] 

[Note: 1]L is the inclusion L -+ LB but there is no simple explicit formula for 1]R. 

However, using definitions only, one can write down explicit formulas for f, ~, and c.] 

A groupoid G is said to be split if there exists a group G and a left G-set Y such that G is isomorphic 

to tranY, the translation category of Y (cf. p. 0-45). 

Example: Take G = IPSA, Y = FGLA-then the translation category of FGLA is isomorphic to 

G A , i.e., G A is split. 

I shall now review the theory of MU, referring the reader to Adams t for the details 

and further information. 

t Stable Homotopy and Generalized Homology, University of Chicago (1974), 32-93. 
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Let Gn(Coo ) be the grassmannian of complex n-dimensional subspaces of Coo, "Yn the 

canonical complex n-plane bundle over Gn(Coo). Put MU(n) = T(--Yn), the Thorn space 

of "Yn-then i·(--Yn+l) = "Yn E9 C (Gn(Coo) 2t G n+1 (Coo)) and T(--yn E9 C) ~ r:2 T(--yn) = 
r:2 MU(n), so there is an arrow r:2 MU(n) -+ MU(n+ 1). The prescription X2n = MU(n), 

X 2n+1 = r:MU(n) thus defines a separated prespectrum X and by definition, MU = eX. 

EXAMPLE MU and KU are connected by the fact that the arrow MU. (X)®MU. (5) KU. (S) ~ 

KU.(X) induced by the Todd genus is an isomorphism of graded KU.(S)-modules for all X (Conner

Floydt ). 

MU THEOREM MU is a commutative ring spectrum with complex orientation 

XMU. And: The map L -+ MU·(S) classifying FMU is an isomorphism of graded com

mutative rings with unit. 

[Note: The pair (MU.(S), MU.(MU)) satisfies the hypotheses of Proposition 11 

(MU.(MU) is a graded free MU.(S)-module), hence is a graded Hopf algebroid over Z. 

As such, it is isomorphic to (L, LB)OP (reversal of gradings).] 

An arrow f: EnX ~ X is said to be composition nilpotent if:1 Ie such that the compositefoEnfo ... o 

E(A:-l)nr: Eknx ~ X vanishes. Example: Take X compact-then r is composition nilpotent iffrl X = 0 

(cf. p. 15-46). 

[Note: The same terminology is used in the category of graded abelian groups. Example: Take X 

compact and let E be a ring spectrum-then E.(f) is composition nilpotent iff E 1\ rlx = '0.] 

An arrow r : X ~ Y is said to be smash nilpotent if 3 Ie such that the Ie-fold smash product 

t<k) : X(k) ~ y(k) vanishes. Example: r: S ~ Y is smash nilpotent iff y~oo) = 0 (d. p. 15-46). 

FACT (MU Nilpotence Technology) Let E be a ring spectrum and consider the Hurewicz homo

morphism S.(E) ~ MU.(E) (cf. p. 17-8 ff.)-then the homogeneous elements of its kernel are nilpotent 

(Devinatz-Hopkins-Smitht). 

Application: If X is compact and if r : E"X ~ X is an arrow such that MU .(f) = 0, then r is 

composition nilpotent. 

[MU.(f) = 0 ~ MU 1\ rlx = 0 ~ 3 Ie : EknX~X ~ MU 1\ X vanishes. Calling r E 

1I'kn(DX 1\ X) the adjoint of r and noting that DX 1\ X is a ring spectrum (cr. p. 15-44) (X compact 

The Relation of CobordilJm to K-TheorielJ, Springer Verlag (1966); see also Hopkins-Hovey, Math 

Zeit. 210 (1992), 181-196. 

t Ann. of Math. 128 (1988), 207-241. 
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=> X dualizable), MU nilpotent technology secures a d such that (Skn)(d) r A ... Ar, (DXI\X)(d) -+ DXI\X 

is trivial, so EdknX ~ X is trivial.] 

[Note: The compactness assumption on X cannot be dropped (Ravenel t ).] 

A corollary to the foregoing is that every element of positive degree in 11'. (S) is nilpotent. Proof: The 

elements of lI'n(S) (n> 0) are torsion and MU.(S) has no torsion. 

Application: If X is compact and if f: X -+ Y is an arrow such that idMu 1\ f = 0, then f is smash 

nilpotent. 

[Suppose that f : S -+ DX 1\ Y corresponds to f under the identifications [X, Y] ~ [S 1\ X, Y] ~ 

[S, hom(X, V)] ~ [S, DX 1\ Y] (X compact => X dualizable)-then f is smash nilpotent iff f is smash 

nilpotent and idMU 1\ f = 0 iff idMU 1\ f = O. This allows one to reduce to the case when X = S, the 

assumpti~n becoming that the composite S ~ Y -+ MU 1\ Y vanishes. Put EY = V y(i) (y(O) = S) 
i>O 

and view EY as a ring spectrum with multiplication given by concatenation. MU niipotence technology 

now implies that the element of 11'. (EY) determined by f is nilpotent.] 

FACT Suppose that E is complex orient able-then the set of complex orientations of E is in a 

one-to-one correspondence with the set of morphisms MU -+ E of ring spectra. 

[Note: If f: MU -+ E corresponds to ZE, then f.FMU = FE.] 

Notation: Given F E FGLA, define homogeneous elements [n]F(x) E A[[x]] by 

[1]F(X) = x, [n]F(x) = x +F [n - 1]F(X) (n > 1), and for each prime p, write [P]F(X) = 
vox + ... + VIXP + ... + VnXpn + ... (::::} Vo = p,Vn E A2(1-pn»). 

Specialized to A = MU·(S), F = FMU, the Vn can and will be construed as elements 

of MU.(S). 

EXACT FUNCTOR THEOREM Let M be a graded left MU.(S)-module-then 

MU.(-) ®MU.(S) M is a Z-graded homology theory on SPEC if V pEn, the sequence 

{vn} is M-regular, i.e., multiplication by Vo . P on M and by Vn on M/(voM + .. ·+vn-1M) 
for n ~ 1 is injective. 

[Note: This result is due to Landweber f .] 

Remark: Since HSPEC/Ph is the represented equivalent of HTz(SPEC) (cf. p. 

17-6), the exact functor theorem implies that 3 a spectrum EM such that EM. (X) ~ 

MU.(X) ®MU.(S) M V X(::::} EM.(S) ~ M). 

tAmer. J. Math. 106 (1984), 351-414 (cf. 400-401). 

Amer. J. Math. 98 (1976), 591-610; see also Rudyak, Math. Notes 40 (1986), 562-569. 
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[Note: EM is unique up to isomorphism (but is not necessarily unique up to unique 

isomorphism). To force the latter, it suffices that M be countable and concentrated in 
even degrees (Franke t).] 

Remark: Franke (ibid.) has shown that if R is a countable graded MU.(S)-algebra 

with unit which, when viewed as a graded left MU.(S)-module, satisfies the hypotheses 

of the exact functor theorem, then ER is a ring spectrum (commutative if R is graded 

commutative ). 

Suppose given an FE FGLA-then the homomorphism I : MU*(S) -t A classifying F serves to 

equip AOP with the structure of a graded left MU*(S)-module and the I(vn } E A are the Vn E A per F. 

EXAMPLE 'Thke A = Q (trivial grading) and let I: MU*(S) -t Q classify the FGL :r:+y-then 

V pEn, I(vo) = p is a unit and I(vn ) = 0 (n ~ 1). Therefore the sequence {f(vn )} is Q-regular and the 

spectrum produced by the exact functor theorem is H(Q). 

[Note: This would not work if Q were replaced by Z.] 

EXAMPLE Take A = Z[u,u-1] (lui = -2) and let I : MU*(S) -t Z[u,u-1] classify the FGL 

:r: + y + u:r:y. Here I(vo} = p, I(vil = up - 1 , I(vn ) = 0 (n > 1), thus the conditions of the exact functor 

theorem are met and the representing spectrum is KU (d. p. 17-14). 

Let A be a divisible abelian group-then Hom([S, -, A) is an exact cofunctor which 

converts coproducts into products, thus is representable (cf. p. 15-17) (S is compact). So: 

3 a spectrum S[A] such that V X, [X, S[A]] ~ Hom(1To(X), A) .. Definition: The A-dual 

V AX of X is hom(X, S[AD. 

Observation: There is a canonical arrow X -+ V~X, and V n, S[A]n(x) ~ 
Hom(1Tn(X), A). 

PROPOSITION 18 There are no nonzero phantom maps to V AX. 

[Written out, the claim is that Ph(Y, V AX) = 0 V Y, i.e., that the kernel of the 

arrow [V, V AX] -+ Nat(hy, hVAX) is trivial. But hy = colimhL => Nat(hy, hv AX) ~ 
y 

limNat(hL,hvAX) ~ lim[L, V AX]. On the other hand, there is an arrow Hom(1To(Y A y y 

X),A) -+ limHom(1To(L A X),A) and a commutative diagram 
y 

t Math. Nachr. 158 (1992), 43-65. 

[V, VAX] 

1 
lim[L, VAX] 
y 
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Hom(1ro(Y" X), A) 

l . The horizontal arrows are isomorphisms, as is the vertical ar-
lim Hom ( 1ro(L " X), A) 

y 
row on the right (cr. §15, Proposition 18 and subsequent remark). Therefore the vertical 

arrow on the left is an isomorphism, hence Ph(Y, V AX) = 0.] 

EXAMPLE Take A = Q/Z-then V Q/Z X is the Brown-Comenetzt dual of X and, thanks to the 

Pontryagin duality theorem, the canonical arrow X -+ VQ/zX is an isomorphism if the homotopy groups 

of X are finit~. Example: VQ/zH(Z/pZ) ~ H(Z/pZ). 

[Note: In homotopy, the canonical arrow 'lrn(X) -+ 'lrn(VQ/zX) is the inclusion of 'lrn(X) into its 

double dual per Q/Z and if 'lrn(X) is finitely generated, then 'lrn(VQ/zX) = pro'lrn(X), the profinite 

completion of 'lrn(X).] 

FACT Take C = HSPEC-then Y X, hvQ/zx is an injective object of [(cpt C)OP, AD]+. 

[It follows from the definitions (and Yoneda) that this is true if X is compact. In general, there are 

compact objects K. and an arrow VQ/ZX~ n VQ/zK, such that hr is a monomorphism (Q/Z is an 
i 

injective coseparator in AD). Consider now the exact triangle Y l.. VQ/ZX..!. n VQ/zK, -+ ~Y. Since 
i 

f 0 f» = 0 (d. § 15, Proposition 3), hr 0 h. = 0 => h. = 0 => f» E Ph(Y, V Q/Z X) => f» = 0 (d. Proposition 

18), so VQ/zX is a retract of n VQ/ZKi.] 
i 

EXAMPLE Define S[Z] by the exact triangle S[Z] ~ S[Q]..:'!+ S[Q/Z] ~ ~S[Z], where v.. : 

'lro(S[Q]) -+ 'lro(S[Q/Z]) corresponds to the projection Q -+ Q/Z-then 'lro(S[Z]) ~ Z and u .. : 'lro(S[Z]) -+ 

'lro (S[Q]) corresponds to the inclusion Z -+ Q. Definition: The Anderson dual V zX of X is hom(X, S[Z]). 

There is a canonical arrow X -+ Vi X which is an isomorphism if the homotopy groups of X are finitely 

generated. Examples: (1) VzH(Z) ~ H(Z); (2) VzKU ~ KU. 

FACT Suppose that the homotopy groups of X are finite-then ~VzX ~ VQ/zX, 

Given an abelian group G, define the Moore spectrum of type G by the exact triangle 

V S -+ V S -+ S( G) -+ V ES, where 0 -+ E9 Z -+ E9 Z -+ G -+ 0 is a presentation of 
j i j j i 

G-then S(G) is connective and 1ro(S(G)) = G. Example: S(Z) = S. 

PROPOSITION 19 Given a spectrum X and an abelian group G, there are short 

tAmer. J. Math. 98 (1976), 1-27. 
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exact sequences 

-1rn(X A S(G)) - Tor(1rn_l(X), G) --+ 0 

{

o - 1rn(X) ® G 

o -Ext(G,1rn+l(X))- [EnS(G),X] _ Hom(G,1rn(X)) -0 

Application: H(Z) A S(G) r::::l H(G), the Eilenberg-MacLane spectrum attached to G 
(cf. p. 17-2). 

EXAMPLE Take G = Zp-then S(Zp) is a commutative ring spectrum. 

[Note: seq) R:: H(Q) (since 1I",,(S) ® Q = 0 for n =F 0).] 

EXAMPLE Take G = Z/pZ, where p is odd-then S(Z/pZ) A S(Z/pZ) R:: S(Z/pZ) V ES(Z/pZ) 

and S(Z/pZ) is a commutative ring spectrum if p > 3. 

[Note: When p = 3, S(Z/3Z) admits a commutative multiplication with unit but associativity breaks 

down.] 

EXAMPLE Take G = Z/2Z-then S(Z/2Z) has no multiplication with unit (S(Z/2Z) is not a 

retract of S(Z/2Z) A S(Z/2Z». 

[Note: Hom(Z/2Z, Z/2Z) = Z/2Z whereas [S(Z/2Z), S(Z/2Z)] = Z/4Z. Because of this, one cannot 

construct an additive functor AB.!. HSPEC such that FG = S(G) (there is no ring homomorphism 

Z/2Z -+ Z/4Z).] 

EXAMPLE Fix p ED-then S(Z/pOOZ) R:: tel(S(Z/pZ) -+ S(Z/p2Z) -+ ... ) =? E-:-1S(Z/pOOZ) 

R:: tel(E-1S(Z/pZ) -+ E-1S(Z/p2Z) -+ ... ). But since S ~ S -+ S(Z/pflZ) -+ ES is exact, S(Z/p"Z) R:: 

EDS(Z/pflZ), 80 E-1S(Z/pOOZ) R:: tel(DS(Z/pZ) -+ DS(Z/p2Z) -+ ... ). Accordingly, V X, 

hom(E-1 S(Z/pOOZ), X) ~ mic(hom(DS(Z/pZ), X) f- hom(DS(Z/p2Z), X) f- ... ). However, V n, 

S(Z/pflZ) is compact, hence dualizable =? DS(Z/p"Z) dualizable (cf. §15, Proposition 32) =? 

hom(DS(Z/p" Z), X) R:: S(Z/p" Z) A X. Thus, V X, hom(E-1 S(Z/poo Z), X) R:: mic(S(Z/pZ) A X f

S(Z/p2Z) A Xf-"')' Example: mic(S(Z/pZ) f- S(Z/p2Z) f- ... ) R:: S(Zp) =? EDS(Z/pOOZ) R:: S(Zp). 

Fix a spectrum E-then a morphism f : X -+ Y in HSPEC is said to be an 

E.-equivalence if f. : E.(X) -+ E.(Y) is an isomorphism. Denoting by BE the class 

of E.-equivalences, the Bousfield-Margolis localization theorem guarantees the existence 

of a localization functor TE such that st is the class of E.-local (= TE-local) spectra. In 

this connection, recall that X is E.-local iff [y, X] = 0 for all E.-acyclic (= TE-acyclic) 

Y (cf. §15, Proposition 27) and the class of E.-local spectra is the object class of a thick 
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subcategory of HSPEC which is closed under the formation of products in HSPEC (cf. 

§15, Proposition 28). Let us also bear in mind that TE has the IP (cf. §15, Proposition 

40). 

Notation: HSPECE is the full subcategory of HSPEC whose objects are the E.

local spectra, LE : HSPEC -t HSPECE is the associated reflector, and IE : X -t LEX 
is the arrow of localization. 

[Note: The objects of HSPECE are the objects of (E), the Bousfield class of E, and 

LE ~ Lp iff (E) = (F). HSPECE is a CTC (cf. p. 15-41) but need not be compactly 

generated (Stricklandt ).] 

Remark: Ohkawat has shown that the conglomerate (HSPEC) whose elements are 

the Bousfield classes is codable by a set. 

LEMMA Given spectra E and F, suppose that (E) < (F)-then V X, TETpX ~ 

TEX ~ TpTEX. 

EXAMPLE Suppose that X is connective-then X = 0 iff X is H(Z).-a.cyclic. 

[Note: VQ/zS (= S[QjZ]) is H(Z).-a.cyclic and nonzero (although VQ/zSA VQ/zS = 0).] 

Instead of working with E.-equivalences, one could work instead with E·-equivalences and then 

define the E·-local spectra in the obvious way. Problem: Do the E·-local spectra constitute the object 

class of a reflective subcategory of HSPEC? While the answer is unknown in general, one does have the 

following partial result due to Bousfleldll. 

COHOMOLOGICAL LOCALIZATION THEOREM Suppose that E has the following prop

erty: V n, ZjpZ ® 1!"n(E) and Tor(ZjpZ,1!"n(E» are finite V p E U-then there exists an F such that the 

E·-equivalences are the same as the F ... -equivalences, so cohomologicallocalization with respect to E exists 

and is given by homological localization with respect to F. 

[Note: When the 1!"n(E) are finitely generated, one can take F = VzE.] 

Given an abelian group G, call S(G) the class of abelian groups A such that A®G = 
o = Tor(A, G) (cf. p. 9-30). 

PROPOSITION 20 S(G') = S(G") iff (S(G')) = (S(G")). 

t No Small Objects, Preprint. 

f Hiroshima Math. J. 19 (1989), 631-639. 

II Cohomological Localizations of Spaces and Spectra, Preprint. 
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This result reduces the problem of inventoring the LS(G) to when G = Zp or G = 
Ee ZjpZ. 

pEP 

EXAMPLE (S(Zp» = (S(Q» v V (S(Z/pZ»(=> (S) = (S(Q» v V (S(ZjpZ»). And: (S(Q» 1\ 
pEP p 

(S(ZjpZ» = (0) &: (S(ZjpZ) 1\ (S(ZjqZ» = (0) (P =F- q). 

PROPOSITION 21 Let G = Zp-then Ls(zp)X = S(Zp) 1\ X and 1r.(Ls(zp)X) = 
Zp ® 1r.(X). 

[S(Zp) is a commutative ring spectrum with the property that the product S(Zp) 1\ 

S(Zp) ~ S(Zp) is an isomorphism, thus Ts(zp) is smashing (cf. p. 15-45) and X R:; 

S 1\ X ~ S(Zp) 1\ X is the arrow of localization.] 

FACT Suppose that X is connective-then Ls(zp)X t:::$ LH(Zp)X. 

[Note: Take P = n to see that Ls(z)X t:::$ LH(Z)X, i.e., X t:::$ LH(z)X.] 

Write HSPECp for the full subcategory of HSPEC whose objects are P-Iocal (= 
S(Zp).-local) (use the symbol HSPECQ if P = 0)-then the objects of HSPECp are 

those X which are P-Iocal in homotopy, i.e., 't/ n, lrn(X) is P-Iocal and HSPECp is a 

monogenic compactly generated CTC. 

FACT The category HSPECQ is equivalent to the category of graded vector spaces over Q. 

[Note: The objects of HSPECQ are the rational spectra.] 

PROPOSITION 22 Let G = ZjpZ-then Ls(z/pz)X = hom(E-1S(ZjpOOZ), X) 

and there is a split short exact sequence 0 -+ Ext(ZjpOOZ, 11'. (X)) ~ 1r.(Ls(z/pz)X) -+ 

Hom(ZjpOOZ, 11'.-1 (X)) -+ O. 

[Consider the exact triangle hom(S(Z [~] ),X) -+ hom(S,X) -+ hom(E-1S(ZjpOOZ), 

X) -+ Ehom(S(Z [~]),X). On the one hand, hom(E-1S(ZjpOOZ),X) is S(ZjpZ).

local (for S(ZjpZ) = S(ZjpOOZ)) and, on the other, hom(S(Z [~] ,X) is S(ZjpZ).

acyclic (its homotopy groups are uniquely p-divisible). Therefore X ~ hom(S, X) -+ 

hom(E-1S(ZjpOOZ), X) is the arrow of localization.] 

[Note: The S(ZjpZ).-local spectra are those X such that 't/ n, lrn(X) is p-cotorsion. 

Proof: hom(S(Z [~]), X) = 0 iff't/ n, Hom(Z [~] , 11' n(X)) = 0 & Ext(Z [~] ,11' n(X)) = 0.] 

If the homotopy groups of X are finitely generated, put Xp = Ls(z/pz)X and call Xp 

the p-adic completion of X. Justification: 't/ n, lrn(Xp) R:; lrn(X); (cf. p. 10-2). Example: 
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Sp = Ls(z/pz)S = hom(E-lS(Z/pOOZ),S) = DE-1S(Z/pOOZ) = EDS(Z/pOOZ) = S(Zp) 

(cf. p. 17-21). 

PROPOSITION 23 The arrow of localization per EB Z/pZ is X -+- Il Ls(z/pZ)X 
pEP pEP 

(cf. §9, Proposition 22). 

FACT V X, there is an exact triangle hom(S(Q), X) -+ X -+ Il hom(E-1 SZ/pOOZ), X) -+ 
p 

Ehom(S(Q), X). 

FACT V X, there is an exact triangle VX" E-ISZ/pOOZ) -+ X -+ X" S(Q) -+ VE(X" 
p p 

PROPOSITION 24 Let G, K be abelian groups such that S(G) - S(K)-then 

V X, (X 1\ S(G)) = (X 1\ S(K)). 

EXAMPLE Let G, K be abelian groups such that S(G) = S(K)-then (H(G» = (H(K». In 

{ 
H(G) ~ H(Z) " S(G) 

fact, (cf. p. 17-21). 
H(K) ~ (Z" S(K) 

FACT Suppose that E" S(Q) ¢ O-then V X, LEAS(Q)X ~ LS(Q)X. 

LEMMA Given a connective spectrum E, put 7rE = EB 7rn(E)-then (H(7rE)) ~ 
n 

(E) ~ (S(7rE)). 
[(H(7rE)) .~ (E): Since E is connective, S(7rE) = S(EB Hn(Ej Z)), so (H(7rE)) = 

n 

(H(EB Hn(Ej Z))) = (V EnH(Hn(Ej Z))) = (E 1\ H(Z)) (cf. p. 17-20), which is ~ (E). 
n n 

(E) ~ (S(7rE)): Let G1 be the direct sum of the groups in the set {Q, Z/pZ(p E II} 
with S(Gt} = S(7rE) and let G2 be the direct sum of what remains-then (S(Gt}) 1\ 

(S(G2 )) = (0) & (S(Gt}) V (S(G2 )) = (S). And: E 1\ S(G2 ) = 0, hence (E) = (E) 1\ (S) = 
(E) 1\ ((S(Gt}) V (S(G2 ))) = ((E) 1\ S(Gt})) V ((E) 1\ (S(G2 ))) = (E) 1\ (S(Gt}) = (E) 1\ 

(S(7rE)) ~ (S(7rE)).] 

PROPOSITION 25 Let E, X be connective-then LEX ~ LS(7I'E) X, where 7rE = 

EB 7rn (E). 
n 

[The lemma implies that the arrow of localization X -+- LS(7I'E)X is an E.-equivalence. 

But LS(7I'E)X = LH(7I'E)X (cf. infra) and LH(7I'E)X is E.-local (by the lemma).] 

LEMMA Let E, X be spectra and let G be an abelian group-then the arrow LS(G)LEX -+ 

LEAS(G)X is an isomorphism if G is torsion or if E" S(Q) ¢ o. 
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[Suppose first that G is torsion, say G = E9 Z/pZ (this entails no loss of generality). Since 
pEP 

LS(G)LEX -t LEAS(G)X is an (E 1\ S(G».-equivalence, it suffices to prove that LS(G)LEX is (E 1\ 

S(G».-loca.l or still, that [Y,Ls(G)LEX] = 0 for all (E 1\ S(G».-acyclic Y. But [Y,LS(G)LEX] = 
[y,hom( V E-1S(Z/pOOZ),LEX)] = [Y 1\ V E-1S(Z/pOOZ),LEX] and Y 1\ V E-1S(Z/pOOZ) is E.-

pEP pEP pEP 

acyclic (S( E9 Z/pOOZ) = S(G». To discuss the other case, viz. when E 1\ seq) #= 0, one can take 
pEP 

G = Zp. Because LEAS(G)X is S(G).-loca.l, it need only be shown that LEX -t LEAS(G)X is an 

S(G).-equivalence. However (S(G» = (S(Q)} V V (S(Z/pZ», which reduces the problem to show
pEP 

ing that LEX -t LEAS(G)X is an· S(Q).-equivalence and an S(Z/pZ).-equivalence for each pep. 

Due to our assumption that E 1\ seq) #= 0, just the second possibility is at issue. For this, con-

LEX • LEAS(G) 

sider the commutative triangle ~ 1 . Here, the arrow LEAS(G) -t LEAS(Z/pZ) is 

LBAS(Z/pZ) . 
an S(Z/pZ).-equivalence (Ls(z/pz)LEAS(G)X ~ LEAS(G)AS(Z/pZ) ~ LEAS(Z/pZ», as is the arrow 

LEX -t LEAS(Z/pZ) (LS(Z/pz)LEX ~ LEAS(Z/pZ». Therefore the arrow LEX -t LEAS(G)X is an 

S(Z/pZ).-equivalence.] 

[Note: The assumption that E 1\ seq) #= 0 cannot be dropped. Example: LS(Q)Ls(z/pZ)H(Z) #= 0, 

yet LS(Z/pZ)AS(Q)H(Z) = 0.] 

To tie up the loose end in the proof of Proposition 25, observe that H(Z) 1\ seq) ~ H(Q) #= 0 

(d. p. 17-21). In addition, since X is connective, X ~ LH(Z)X (cf. p. 17-23), hence LS(1rE)X ~ 

LS('II'E)LH(Z)X ~ LH(Z)AS( ... E)X ~ LH( ... E)X (cf. p. 17-21). 

LEMMA Let A be a ring with unit, M a left A-module-then SeA) = SeA (!) M). 

Application: Suppose that E is a ring spectrum-then S(1I'o(E)) = S(E911'n(E)). 
n 

Example: Take E = MU-then S(Z) = S(E911'n(MU)), thus for any connective X, 
n 

LMU X ~ Ls(z)X ~ LsX ~ X. 

[Note: It follows that all compact spectra are MU.-Iocal. Indeed, a compact object 

in HSPEC is isomorphic to a Q~ K, where K is a pointed finite CW complex (cf.p. 
16-15). And: Q~ K ~ s-q A K ~ s-q A Qoo K (cf. p. 16-29). But Qoo K is connective 

(cf. p. 16-7) (K is wellpointed). Therefore Qoo K is MU.-Iocal, hence s-q A Qoo K is too 

(cf. p. 15-41) (S-q is compact and HSPEC is a monogenic compactly generated CTC).] 

FACT Let X, Y be spectra with Y· (X) = O. Assume: The homotopy groups of Yare finite-then 

1r.(X 1\ VQ / z Y) = O. 
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One also has a good understanding of homological localization with respect to KU. 

Here though I shall merely provide a summary (proofs can be found in Bousfield t). 
[Note: There is no need to distinguish between LKU and LKO since (KU) = (KO) 

(Meiert ).] 

Put M(p) = S(Z/pZ)-then there is a KU.-equivalence Ap : ~dM(p) -t M(p), 

where d = 8 if p = 2 & d = 2p - 2 if p > 2. Using the notation of p. 15-45, the arrow 

M(p) -t A;lM(p) is 'a KU.-equivalence and A;lM(p) is KU.-Iocal (~ LKUM(p) = 

A;lM(p)). 

[Note: Define coAp by the exact triangle ~dM(p) ~ M(p) -t coAp -t ~d+lM(p)_ 
then "(KU) = (V coAp)c.] 

p 

Remark: TKU is smashing and the 7rn (LKUS) can be calculated in closed form (LKUS 

is not connective, e.g., 7r_2(LKUS) = Q/Z). 

Examples: (1) LKU(X 1\ M(p)) ~ LKUS 1\ X 1\ M(p) ~ X 1\ LKUS 1\ M(p) ~ X 1\ 

LKUM(p) ~ X 1\ A;lM(p)(; (2) LEAM(p)X ~ LM(p)LEX (cf. p. 17-?). 

BOUSFIELD'S FIRST KU THEOREM Fix an X-then X is KU .-local iff V p & 
V n, the arrow [~nM(p), X] -t [~n+dM(p), X] induced by Ap is bijective or, equivalently, 

iff V p & V n, the arrow 7rn (M(p) 1\ X) -t 7rn+d(M(p) 1\ X) induced by Ap is bijective. 

[Note: Therefore X is KU.-Iocal iff 7r.(M(p) 1\ X) ~ 7r.(A;lM(p) 1\ X) under the 

KU.-equivalence M(p) -t A;lM(p). 

BOUSFIELD'S SECOND KU THEOREM Fix an f : X -t Y-then f is a KU.

equivalence iff f. : 7r.(X) (6) Q -t 7r.(Y) (6) Q is bijective and V p, f. : 7r.(A;lM(p) 1\ X) -t 

7r.(A;lM(p) 1\ Y) is bijective. 

FACT Let ku be the connective cover of KU-then ku is a ring spectrum (cf. p. 17-8) and 
--1 

K ~ b u ku (cf. p. 15-46). 

Fix a prime p-then the objects of HSPECp (= HSPEC{p}) are the p-Iocal spectra 

and one writes Xp in place of Ls(zp)X, Xp being the p-Iocalization of X. Example: M(p) 
is p-Iocal. 

[Note: In HSPECp, X 1\ -pY = (X 1\ Y)p (cf. p. 15-41), i.e., X I\p Y = X 1\ Y 

(Ts(zp) is smashing), and Sp is the unit. Example: (Sp) = (M(p)) V (S(Q)).] 

t Topology 18 (1979), 257-281; see also J. Pure Appl. Algebra 66 (1990), 121-163. 

J. Pure Appl. Algebra 14 (1979), 59-71. 
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EXAMPLE Consider KUp-then Adamst has shown that there is a splitting KUp ~ KUp (l) V 

:E2KUp (1) v··· V :E2(p-2)KUp (1), where KUp (l) is a p-Iocal spectrum with 1r.(KUp(l» ~ Zp[VI, vII] 

(ivil = 2(p - 1». 
PROPOSITION 26 Suppose that Xp = 0 V p-then X = o. 
[Xp = 0 V P => Zp ® 7t".(X) = 0 V P => 7t".(X) = 0 (cf. p. 8-3) => X = 0.] 

[Note: The converse is trivial.] 

The objects of cpt HSPECp are the p-compact spectra. 

FACT A p-Iocal spectrum is p-compact iff it is isomorphic to the p-Iocalization of a compact 

spectrum. 

EXAMPLE Take X compact-then f: :E"X -t X is composition nilpotent iff V p, fp : :E"Xp -t 

Xp is composition nilpotent. 

[f is composition nilpotent iff r-IX = 0 (cf. p. 15-46). But r-1X = 0 iff V p, (r-IX)p = 0 (cf. 

Proposition 26). And: (r-IX)p = r;IXp .] 

BP THEOREM Formal group law theory furnishes a canonical idempotent ep E 

[:MUp , MUp ] (the Quillen idempotent) which is a morphism of ring spectra. Thus, since 

idempotents split (cf. p. 15-17),3 a commutative ring spectrum BP (called the Brown

Peterson spectrum at the prime p) and morphisms i : BP -+ MU p, r : MU p -+ BP 

of ring spectra such that r 0 i = idBP and Ep = i or. BP is complex orient able and 

BP·(S) = Zp[Vl' V2,"']' where IVil = _2(pi -1). And: MUp is isomorphic to a wedge of 

suspensions of BP, hence (MUp ) = (BP). 
[Note: The construction is spelled out in Adams* (a sketch of the underlying ideas is 

given below).] 

Notation: A is a commutative Zp-algebra with unit, FGLA is the set of formal group laws over A, 

and FGLA,p is the set of p-typical formal group laws over A. 

[Note: Initially, it is best to keep the graded picture in the background.] 

CARTIER'S THEOREM There is an idempotent EA : FGLA -t FGLA,p, functorial in A, such 

that EA(FGLA) = FGLA,p' Furthermore, there is a natural strict isomorphism F -t EAF such that if F 

is p-typical, then EAF = F and F -t EAF is the identity. 

t SLN 99 (1969), 77-98; see also Bousfield, Amer. J. Math. 107 (1985), 895-932. 

Stable Homotopy and Generalized Homology, University of Chicago (1974), 104-116; see also Wilson, 

CBMS Regional Conference 48 (1982), 1-86. 
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Notation: A is a commutative Zp-algebra with unit, FGLA is the set of formal group laws over A, 

and FGLA,p is the set of p-typicaJ formal group laws over A. 

[Note: Initially, it is best to keep the graded picture in the background.] 

CARTIER'S THEOREM There is an idempotent £A : FGLA -+ FGLA,p, functorial in A, such 

that £A(FGLA) = FGLA,p' Furthermore, there is a natural strict isomorphism F -+ £AF such that if F 

is p-typical, then £AF = F and F -+ £AF is the identity. 

Using this result, one can establish a p-typical variant of Lazard's theorem: The functor from the 

category of commutative Zp-algebras with unit to the category of sets which sends A to FGLA,p is rep

resentable. Proof: Let £p : L ® Zp -+ L ® Zp be the homomorphism classifying £L®Zp FL -then £p is 

idempotent, Fv = £L®zpFL is defined over V = im£p, and Fv is the universal p-typical FGL. 

[Note: Structurally, V = Zp[Vl. V2," .], a polynomial algebra on generators Vi of degree -2(pi -1).] 

Remark: To explain the origin of the Quillen idempotent, identify L ® Zp with MU·(S) ® Zp, so 

FL H FMU. Let t/Jp : FMU -+ Fv be the natural strict isomorphism provided by Cartier, put ZMU p = 

t/Jp(ZMU) E MU;(POO(C» (a complex orientation of MUp), and let ep : MUp -+ MUp be the unique 

morphism of ring spectra such that ep OZMU = ZMU P -then from the definitions, ep oep OZMU = epozMU , 

hence ep is idempotent: ep 0 ep = ep. 

[Note': BP is a commutative ring spectrum with complex orientation ZBP. The associated FGL 

FBP is p-typical and the map V -+ Bp· (S) classifying FBP is an isomorphism of graded commutative 

Zp-algebras with unit. Therefore 11'. (MUp) = 11'. (BP)®zp ZP[Zb'" ,Zp_l, zp,'" ,Zp2 -1' Zp2'" .]. Now 

let S be the set of monomials drawn from {ZI: : k '# pi -1 V i}. Given an ZJ E S, write dJ for its degree and 

call fJ the composite SdJ 1\ BP -+ MUp 1\ MUp -+ MUp-then the wedge of the fJ defines a morphism 

V EdJBP -+ MUp which induces an isomorphism in homotopy.] 
3:JES 

Rappel: If F E FGLA,p and if t/J(z) = I: t/Jizi E A[[z]] with t/J'(O) = 1, then the formal group law 
i~1 

G(z, y) = t/J(F(t/J-l (z), t/J-l (y))) is p-typical iff t/J-l (z) has the form Z +F al zP +F a2zP2 +F ... (ai E A). 

Set VT = V[tl' t2,"']' a polynomial algebra on indeterminates ti (Itil = _2(Pi -1»-then the pair 

(V, VT) is a Hopf algebroid over Zp, i.e., is a cogroupoid object in the category of commutative Zp-algebras 

with unit (cf. Proposition 17). Thus let A be a commutative Zp-algebra with unit. Denoting by GA,p the 

groupoid whose objects are the p-typical formal group laws over A and whose morphisms are the strict 

isomorphisms, the functor from the category of commutative Zp-algebras with unit to the category of 

groupoids which sends A to G~~ is represented by (V, VT). Indeed, Hom(V, A) H FGLA,p = Ob GA,p 

(= ObG~~) and this identifies the objects. Turning to the morphisms, suppose that! E Hom(VT,A). 

Put F = (f1V).Fv and let t/J: F -+ G be the morphism with t/J-l(z) = Z+F !(tl)ZP +F !(t2)ZP2 +F"', 

so t/J0P : G -+ F is a strict isomorphism, where G(z, y) = t/J(F( t/J-l (z), t/J-l (y))) is again p-typical. 
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[Note: flL is the inclusion V -+ VT but there is no simple explicit formula for fiR' Incidentally, the 

groupoid GA,p is not split.] 

To understand the grading on V and VT, define an action A x x Ob G~!;. -+ Ob G~!;. by (u, F) -+ F", 

where FU(z,lI) = uF(u-1z,u-11l), and define an action AX x MorG~!;. -+ MorG~!;. by (u,qPP) -+ 

(t,bu )OP, where t,bu (z) = ut,b( u-1 X)-then this action grades V and VT and one can check that Iv;! = 

_2(pi -1) = ltd. Because the five arrows of structure fiR, flL, £, d, c are gradation preserving, it follows 

that (V, VT) is a graded Hopf algebroid over Zp. 

[Note: Therefore (V, VT)OP is but another name for (BP.(S), BP.(BP» and BP.(BP) is a graded 

free BP. (S)-module.] 

FACT (BP Nilpotence TechnololY:) Let E be a p-Iocal ring spectrum and consider the Hurewicz 

homomorphism S.(E) -+ BP.(E) (cf. p. 17-8 ff.)-then the homogeneous elements of its kernel are 

nilpotent (Devinatz-Hopkins-Smith t). 

Application: If X is p-compact and if f: E"X -+ X is an arrow such that BP.(f) = 0, then f is 

composition nilpotent (d. p. 17-17 ff.). 

Application: If X is p-compact and Y is p-Iocal and if f : X -+ Y is an arrow such that idBP A f = 0, 

then f is smash nilpotent (cf. p. 17-18). 

[Note: Write X = XI" where X is compact (cf. p. 17-27)-then hom(X, Y) ~ hom(X, Y) ~ 

DX A Y ~ DX A Sp A Y ~ hom(X, Sp) A Y ~ hom(Xp, Sp) A Y ~ hom(X, Sp) A Y and hom(X, Sp) is 

the dual of X in HSPECp.] 

There are two particularly important classes of spectra attached to BP, viz. the K( n) 

and the P(n) (0 < n < 00) with 7r.(K(n» = Fp[vn , v;l] and 7r.(P(n» = Fp [vn , Vn+1""]' 

Both are p-Iocal ring spectra (commutative if p > 2) and BP-module spectra but the 

exact details of their construction need not detain us since all that really counts are the 

properties possessed by them, which will be listed below. Example: P(I) ~ BP A M(p). 

[Note: The theory has been surveyed by Wiirglert.] 

The role of the P(n) is basically technical. Since Vn E 7r2(pn_l)(P(n», one can form 
Un : E2(pn-l)P(n) -+ P(n) (cf. p. 15-46)-then there is an exact triangle E2(pn-1)P(n) 

~P(n) -+ P(n + 1) -+ E2pn-lP(n). Moreover, (K(n») ~ (U;lP(n») and H(Fp) ~ 
tel(P(l) -+ P(2) -+ ... ). On the other hand, (BP) = (H(Q») V (P(1» and (P(n») = 

(K(n») V (P(n + 1») (cf. §15, Proposition 43), hence (BP) = (H(Q») V (K(1») V ... V 

t Ann. of Math. 128 (1988), 207-241. 

SLN 1474 (1991), 111-138. 
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(K(n)) V (P(n + 1»). In addition, (H(Q») A (P(I») = (0), (K(i») A (P(n + 1») = (0) 

(i = 1, ... ,n). 
By contrast, K(n) (called the nth Morava K-theory at the prime p) is a major player. 

(MOl) K(n) is a skew field object in HSPEC. 

[This is because the homogeneous elements of 1r.(K(n» are invertible (d. §15, Propo

sition 42).] 

(M02) ';f X, K(n) A X is isomorphic to a wedge of suspensions of K(n). 
[K(n) A X is a K(n)-module, thus the assertion follows from the definition of a skew 

field object (to accommodate K(n) A X = 0, use the empty wedge).] 

(Mo3 ) ';f X & ';f Y, K(n).(X) ®K(n).(S) K(n).(Y) ~ K(n).(X A Y). 
[This is a special case of Proposition 10.] 

(Mo4 ) (K(n») A (K(m») = (0) (m =f:. n). 
[Suppose that n < m-then (K(m») ::; (P(m») ::; (P(n+l») and (K(n»)A{P(n+l)) = 

(0).] 
(Mos) (H(Q») A (K(n») = (O) & (H(Fp») A (K(n») (0). 

[(H(Q») A (P(I») = (0) and (K(n») ::; (P(n») * (H(Q») A (K(n)) = (0). And: 

H(Fp) ~ tel(P(I) -+ P(2) -+ ... ) * (H(Fp») ::; (P(n + 1») * (H(Fp») A (K(n») = (0).] 

(Mo6 ) ';f compact X, K(n).(X) ~ K(n).(S) ®Fp H.(Xj Fp) ';f n» o. 
[Apply the Atiyah-Hirzebruch spectral sequence.] 

Remarks: (1) K(n) is complex orient able if p is odd; (2) K(I) can be identified with 

KUp (l) A M(p) (d. p. 17-27). 

EXAMPLE (Algebraic K-Theory) Suppose that A is a ring with unit and let WA be the 0-

prespectrum attached to A by algebraic K-theory (cf. p. 14-72). Consider KA = eMWA-then Mitchent 

has shown that V p &: V n ~ 2, the connective cover of KA is K(n).-acyclic. 

FACT Let ken) be the connective cover of K(n)-then ken) is a ring spectrum (d. p. 17-8) and 

K(n) ~ v;lk(n) (d. p. 15-46). 

[Note: There is an exact triangle !l2(p"-1)k(n) un, ken) -+ H(Fp) -+ !l2pn - 1k(n), so by §15, 

Proposition 43, (k(n» = (H(Fp» V (K(n».] 

LEMMA Any retract of a K( n )-module is a K( n )-module. 

EXAMPLE A spectrum Y is indecomposable if it has no nontrivial direct summands, i.e., Y ~ 

X V Z => X = 0 or Z = O. Since idempotents split (cf. p. 15-17), Y is indecomposable iff [Y. Y] has no 

nontrivial idempotents. Example: K(n) is indecomposable. 

t K-Theory 3 (1990), 607-626. 
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[Note: One can also prove that BP is indecomposable.] 

Notation: For uniformity of statement, it is convenient to put K(O) = H(Q), K( 00) = 
H(Fp). 

Hoveyt has shown that (K(n» is minimal if n < 00 (but this is false if n = 00). 

LEMMA Given f: X --+ Y, suppose that K(n).(C) = 0, where n E [0, oo]-then the 
composite X 4. Y ~ SAY --+ K( n) A Y vanishes. 

[For any K(n)-module E, {E:(X) ~ Hom'lr.(K(n»(K(n).(X), 1r.(E» , hence the in
E (Y) ~ Hom'lr.(K(n»(K(n).(Y), 1r.(E» 

duced map E·(Y) --+ E·(X) is the zero map. Now specialize to E = K(n) A Y.] 

PROPOSITION 27 If X is p-compact and Y is p-Iocal and if f : X --+ Y is an arrow 

such that K(n).(f) = 0 'r/ n E [0,00], then f is smash nilpotent. 

[It is enough to prove that idBP A t<k) = ° (3 k » 0) (cf. p. 17-29) and for this, 

one can take X = Sp. So, passing to y~oo) (defined by Sp instead of S (cf. p. 15-46», 

it suffices to show that BP A y~oo) = O. But (BP) = (K(O» V ... V (K(n» V (P(n + 1» 

and from our hypotheses and the lemma, K(m) A y~oo) = 0 (m ~ n), thus we are left with 

proving that P(n) A y~oo) = 0 (n » 0), which however is clear since H(Fp) A y}oo) = 0 

and H(F p) ~ tel(P(I) --+ P(2) --+ ... ).] 

Application: HE =1= 0 is a p-Iocal ring spectrum, then for some n E [0,00], K(n).(E) =1= 

O. 
[Consider the unit Sp --+ E.] 

Let R be a ring spectrum-then R is said to detect nilpotence if for any ring spectrum E, the 

homogeneous elements of the kernel of the Hurewicz homomorphism S.(E) -+ R.(E) are nilpotent. 

Example: MU detects nilpotence (d. p. 17-17). 

LEMMA R detects nilpotence iff for all compact X and any f: X -+ Y such that idR " f = 0, f 

is smash nilpotent. 

[Necessity: Argue as on p. 17-18, with MU replaced by R. 

Sufficiency: Given a ring spectrum E, fix a homogeneous element f: Sf!. -+ E in the kernel of the 

Hurewicz homomorphism S.(E) -+ R.(E)-then idR" f= 0, so fis smash nilpotent, thus nilpotent.] 

t Contemp. Math. 181 (1995), 230. 
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Remark: For a compact X, f: X -+ Y is smash nilpotent iff f: S -+ DX /\ Y is smash nilpotent (cf. 

p. 17-18). This said, the problem of determining the smash nilpotency of f: S -+ Y is local, i.e., one has 

only to check that fp : Sp -+ Y I' is smash nilpotent V p. Proof: f: S -+ Y is smash nilpotent iff Y~ (0) = 0 

(cf. p. 15-46). But Y~oo) = 0 iff (Y~oo»p = 0 V p (cf. Proposition 26). And: (Y~oo»p = Y~;). 

EXAMPLE A ring spectrum R detects nilpotence iff V p &; V n e {o, 00], K(n).(R) ¢ O. 

{Consider an f: S -+ Y such that idR/\f= O. Fixingp, one has K(n).(fp) = 0 V n e [0,00] (K(n)/\R 

is isomorphic to a wedge of suspensions of K (n», thus by Proposition 27, fp is smash nilpotent. Therefore 

R detects nilpotence.] 

FACT Suppose that E is a skew field object in HSPEC-then E is isomorphic to a wedge of 

suspensions of some K(n) (3 n e {O, 00]). 

[3 p : Ep ¢ 0 (cf. Proposition 26) ::::} K(n). (E) ¢ 0 (3 n e {O,oo]) (cf. p. 17-31). Since K(n) and E 

are both skew field objects, K(n) /\E ¢ 0 is simultaneously a wedge of suspensions of K(n) and a wedge of 

suspensions of E. Deduce that E is a retract of a wedge of suspensions of K(n), hence is a K(n)-module 

(cf. p. 17-30).] 

A skew field object in HSPEC is said to be prime if it is indecomposable. The K(n) (n e {O,oo]) 

for pen are prime and the preceding result implies that, up to isomorphism, they are the only primes in 

HSPEC. 

EXAMPLE Suppose that p is odd-then KUp (l) /\ M(P) is a field object (being isomorphic to 

K(l) V E2K(1) V··· V E2(p-2)K(1) (cf. p. 17-27» bllt it is not prime. 

PROPOSITION 28 Fix a prime p-then H(F p) is K(n).-acyclic (n E [O,ooD. 
[Trivially, H( Q) " H(F p) = O. Proceeding by contradiction, assume that K( n) " 

H(F p) =1= 0 for some n E [1,00[. Since H(F p) is a field object, H(F p) is isomorphic to a 

wedge of suspensions of K(n) (cf. supra), an impossibility.] 

FACT Let X be a spectrum with the property that 3 N : 11'" (X) = 0 (n > N)-then X is 

K(n).-acydic (n e [1,000. 

[Using Proposition 28, prove it first under the assumption that 11'. (X) is torsion. To handle the general 

case, smash S 1+ S -+ M(p) -+ ES with K(n)/\X to see that 11'. (K(n)/\X) injects into 11'. (K(n)/\X/\M(p». 

But Proposition 19 implies that X /\ M(P), like X, is "bounded above", and 11'. (X /\ M(P» is torsion.] 

[Note: In particular, K(n) /\ H(1I') = 0 (n e [1,000, 11' any abelian group.] 

Application: If X is a spectrum and x (= rSOX) is its connective cover, then the arrow x -+ X is a 

K(n).-equivalence (n e [1,00[). 
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[For K(n) A F = 0, where F is defined by the exact triangle F -+ x -+ X -+ EF.] 

[Note: Let A be a ring with unit-then II p &; II n ?: 2, the connective cover of KA is K(n).-acyclic 

(cf. p. 17-30), hence so is KA itself.] 

PROPOSITION 29 If X is p-compact and if f : EtfX ~ X is an arrow such that 

K(n).(f) = 0 \;/ n E [0,00[, then f is composition nilpotent. 

[This is a consequence of Proposition 27 (one doesn't need the n = 00 case).] 

EXAMPLE If X is p-compact and if K(n).(X) = 0 (ll n E [O,oo[), then X = 0 (in Proposition 

29, take f = idx). 

[Note: Accordingly, if X is compact and ifll p &; II n E [0,00[, K(n).(X) = 0, then X = O. In fact, 

K(n).(X) = 11'. (K(n) A X) = 11'. (K(n) A Xp) = K(n).(Xp) ~ Xp = 0 II p ~ X = 0 (cf. Proposition 26).] 

Given a prime p, write C(O) for cpt HSPECp and let C(n) be the thick subcategory 

of C(O) whose objects are those X such that K(n-1).(X) = 0 (n E [1,ooD (conventionally, 

the objects of C(oo) are the zero objects)-then C(n + 1) C C(n), i.e., K(n).(X) = 0 => 
K(n - 1). (X) = 0 (RaveneIt) and the containment is strict (MitcheU t ). 

[Note: A p-compact X is said to have type n if n = minim : K(m).(X) #- O} (X = 0 

has type (0). The objects of type n are the objects in C( n) which are not in C( n + 1). 

Examples: (1) Sp has type OJ (2) M(p) has type 1; (3) coAp has type 2.] 

LEMMA Let X be a p-compact spectrum, E a p-Iocal ring spectrum. Suppose given 

a p-Iocal spectrum Z and a morphism f: X ~ E A Z in HSPECp such that K(n).(f) = 
o \;/ n E [O,oo]-then the composite X(N) i-

N
» (E A Z)(N) ~ E(N) A Z(N) ~ E A Z(N) 

vanishes if N > > 0 (cf. Proposition 27). 

Application: Let X, Y be p-compact spectra. Suppose given a p-local spectrum Z 

and a morphism f: X ~ Z in HSPECp such that K( n). (f A idy ) = 0 \;/ n E [0,00 ]-then 
rN) A idy : X(N) A Y ~ Z(N) A Y vanishes if N > > O. 

[One has [XAY,ZAy] ~ [X,hom(Y,ZAY)]. ButYisp-compact,sohom(Y,ZAY) ~ 
hom(Y, Sp) A Y A Z ~ hom(Y, Y) A Z. Now specialize the lemma to E = hom(Y, Y).] 

THICK SUBCATEGORY THEOREM The thick subcategories of C(O) are the C(n). 

tAmer. J. Math. 106 (1984), 351-414 (ct. 366-367). 

t Topology 24 (1985), 227-246; see also Palmieri-Sadofsky, Math. Zeit. 215 (1994), 477-490. 
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[Pix a thick subcategory C of C(O) and let no = min{n : C(n) c C}. Claim: If 

X E ObC has type n, then C(n) c C (* C = C(nc)). Define F,fby the exact triangle 

F~Sp -t hom(X, X) -t I;F. Because HSPECp is monogenic (* unital), hom(X,Sp) 

is p-compact, so hom(X,X) ~ hom(X,Sp) I\. X E ObC (C being thick (cf. p. 15-

41)). Putting Cr = hom(X, X), one thus concludes that F I\. Cr E ObC (here again 

the assumption that C is thick comes in). But there is an exact triangle F I\. C{(N-l) -t 

C{(N) -t Cr I\. S~N-l) -t I;(F I\. C{(N-1l) (cf. p. 16-30), from which inductively, C{(N) E 

Ob C V N 2:: 1. Take a Y in C(n). Since K(m)*(f I\. idy) = a V m E [0, oo](K(m)*(X) i= 
a V m 2:: n), V N» 0, rN

) /\.idy = a (cf. supra). Working with the exact triangle 

F(N) I\. Y r<N) Aidy ) Sf") I\. Y -t C{(N) I\. Y -t I;(F(N) I\. Y), it then follows that C{(N) I\. Y ~ 
(S~N) I\. Y) V I;(F(N) I\. Y) (cf. p. 15-5). And: C{(N) I\. Y E Ob C * S1N) I\. Y E Ob C * 
Y E ObC.] 

EXAMPLE Fix a spectrum E and write ACY p (E) for the class of p-compact X such that EAX = 

O-then ACYp(E) is the object class of a thick subcategory of C(O), hence ACYp(E) = ObC(n) for 

some n. 

FACT (Class Invariance Principle) Let X, Y be p-compact. Suppose that X has type nand Y 

has type m-then (X) = (Y) iff n = m. 

[The necessity is obvious. To establish the sufficiency, note that the full, isomorphism closed subcat

egory of cpt HSECp whose objects are the Z with (Z) ~ (X) is thick.] 

Given a prime p and a p-compact X, an arrow f: I;dX -t X is said to be a vn-map 

(n E [O,oo[) if K(n)*(f) is an isomorphism and K(m)*(f) = a V m i= n (m E [O,oo[) (cf. 
Proposition 29). Example: x.4 X is a Va-map. 

[Note: For m» 0, K(m)*(f) = H(Fp)*(f) ®Fp idK(m). * H(Fp)*(f) = 0.] 

Example: Ap : I;dM(p) -t M(p) is a vI-map (d = 8 if p = 2 & d 2p - 2 if p > 2 (cf. 

p. 17-26)). 

PROPOSITION 30 Let X be p-compact and fix n 2:: 1. Suppose that X admits a 

vn-map-then X belongs to C(n), i.e., K(n -l)*(X) = O. 

[Defining Y by the exact triangle I;dX ~ X -t Y -t I;d+1 X, one has K( n)* (Y) = 0, 

thus 0= K(n - l)*(Y) = K(n - l)*(X) EB K(n - l)*(I;d+lX) * K(n - l)*(X) = 0.] 

I shall omit the proof of the following result as it is quite involved. 
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HOPKINS-SMITHt EXISTENCE THEOREM Given n 2: 1, :3 ap-compact X oftype 

n which admits a vn-map. 

[Note: In fact, X admits a vn-map f: LjpN2(pn-l)X -t X such that K(n)*(f) V~N 

(N » 0).] 

Remark: A p-compact X admits a vn-map iff X is in C(n). To see this, call V n the 

full, isomorphism closed subcategory of C(O) (= cpt HSPECp ) whose objects are those X 

which admit a vn-map. Owing to Proposition 30, C(n) ::) V n' On the other hand, X ~ X 

is a vn-map if K(nh(X) 0, so Vn ::) C(n + 1). However V n is thick (cf. p. 17-36), 

hence by the thick subcategory theorem, either V n = C(n) or V n = C(n + 1). Since the 

containment C(n + 1) C C(n) is proper, the Hopkins-Smith existence theorem eliminates 

the second possibility. 

Notation: Write [X, X]* for the graded ring with unit defined by [X, X]n = [Ljnx, X] 

(cf. Proposition 1). 

[Note: An arrow f: Ljnx -t X is composition nilpotent iff fk 0 for some k or still, 

is nilpotent when viewed as an element of [X, X]*.] 

PROPOSITION 31 Let X be p-compact and fix n 2: 1. Suppose that f: LjdX -t X, 

g: Lj€X -t X are vn-maps-then :3 i,j : fi = gi. 

The proof of Proposition 31 rests on the following considerations. 

Given a p-compact X in C(n) (n 2:: 1), put RX = hom(X,Sp) /\ X (~hom(X,X))-then RX is a 

p-compact ring spectrum, H(Q) /\ RX 0, and [X, X]* ~ 1i.(RX). 

Definition: An element a E 1id(RX) is a vn-element provided that its image K(m)*(a) under the 

Hurewicz homomorphism S*(RX) --+ K(m). (RX) is a unit if m = n and vanishes otherwise (m E [1, ooD. 
[Note: By contrast, if K(m). (a) = ° V mE [0,00[' then a is nilpotent.] 

Example: The adjoint f E 1id(RX) of a vn-map f E [X, X]d is a vn-element (and conversely). 

Claim: Fix a vn-element a-then :3 i such that K(n)*(a i ) = vr;' for some N. 

[The ungraded quotient K(n)*(RX)/(vn - 1) is a finite dimensional Fp-algebra, thus its group of 

units is finite.] 

Claim; Fix a Vn -element a-then :3 i such that a i is in the center of 1i * (RX). 

[There is no loss of generality in supposing that K(mh (a) is in the center of K(m)* (RX) V m E 

[0,00[. Letting ad(a) ; EdRX --+ RX be the composite Sd /\ RX Q'Aid I RX /\ RX id- T ) RX /\ RX --+ 

Ann. of Math. ; see also Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Prince-

ton University Press (1992), 53-68. 
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RX, ad(a).(,8) = 0',8 -,80' and V i, ad(ai ) .. (,8) = L: G)adi (a)*(,8)a i - j . Since pka = 0 for some k 
'.........., j 

and ad(a) E [RX, RX]. is nilpotent (cf. Proposition 29), one can take i = pN (N » 0) to get that 

a i ,8 - ,80'; = 0 V ,8 E 11'. (RX).] 

Claim: Fix vn-elements a, ,8-then 3 i, j such that a i = ,8j. 

[Assuming, as is permissible, that 0',8 ,80' and K(rn). (a - ,8) = 0 V rn E [0,00[' use the binomial 

theorem on a pN = (,8 + (a - ,8»pN (N)> 0), observing that 0'-,8 is both torsion and nilpotent,] 

The last claim serves to complete the proof of Proposition 31. 

PROPOSITION 32 Let X, Y be p-compact and fix n ~ 1. Suppose that f: EdX -+ 

X, g Eey -+ Yare vn-maps-then 3 i,j such that V h E [X, Y] the diagram 

EidX 

fil 
X 

Eta h=Eje h 
____ -+) Ejey 

19i commutes. 
y 

[Pass to hom(X, Sp) A Y and apply Proposition 31.] 

To round out the discussion on p. 17-35, we shall now verify that V n is thick. 

Obviously, V n contains 0 and is stable under E±l. Next, let X, Y be objects of V n with V n -

maps f: EdX -+ X, g: Eey -+ Y. Choose i,j per Proposition 32 and put k = id (= je). 

Take X ~ Y and complete it to an exact triangle X ~ Y ~ Z ~ EX-then the claim is 

EidX ~ Ejey ~ Ek Z 

that Z admits a Vn -map. For consider the diagram ft 1 
X ----+ 

u 

19i 
y ----+ z 

v 

Since 

. Ekv k 'd Eku . , k ' EJey > E Z is a weak cokernel ofE! X --+ EJey and since y ogJ oE U YOU of! 

0, 3 an arrow h : EkZ -+ Z such that h OEky = Y ogj (cf. p. 15-3 ff.). The five lemma 

gives that K(n).(h) is an isomorphism. And: V m :f. n (m E [O,oo[), K(m).(h2) = O. 
Therefore h 2 is a vn-map, so Z is in V n, which means that V n is triangulated. Finally, 

if y E Ob V nand Y ~ X V Z with i : X -+ y, r : Y -+ X and r 0 i = idx, then 

X E Ob V n. Thus fix a vn-map g : Eey -+ y. By raising g to a sufficiently high power, 
Eey Ee(i or) > Eey 

it can be arranged that the diagram sl ls commutes (cf. Proposition 
y Y 

i or 

Eex E"i Eey Eer EeX ----+ --+ 
32). Applying K(n)* to if 19 if , where f = r 0 g 0 Ee i, and using 

X ----+ Y --+ X 
i r 
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the fact that the retract of an isomorphism is an isomorphism, one concludes that f is a 

vn-map. Accordingly, V n is thick. 

PROPOSITION 33 If E is p-Iocal, then V X, LEXp ~ LEX ~ (LEX)p. 

[Since E is p-Iocal, E ~ E A S(Zp), hence (E) ::; (S(Zp)), and the lemma on p. 17-22 

can be quoted.] 

[Note: In order that X be E*-local, it is therefore necessary that X be p-Iocal.] 

Application: If E is p-Iocal and if LEX ~ X A LESp V p-Iocal X, then TE is smashing. 

[Given an arbitrary X, LEX ~ LEXp ~ Xp A LESp ~ X A S(Zp) A LESp ~ X A 

(LESp)p ~ X A LE(Sp)p ~ X A LESp ~ X ALES.] 

Recall that for any E and any compact X, LEX ~ XALES (cf. p. 15-41). Corollary: 

For any p-Iocal E and any p-compact X, LEX ~ X A LESp. Proof: Write X = X P1 where 

X is compact (cf. p. 17-27)-then LEX ~ LEXp ~ LEX ~ X A LES ~ X A LESp ~ 

X A S(Zp) A LESp ~ Xp A LESp ~ X A LESp. Example: Taking E = S(Z/pZ) M(p)), 

Ls(z/pz)X ~ X A Sp if X is p-compact. 

EXAMPLE Let E '# 0 be p-Iocal and suppose that there exists an E .. -Iocal object in C(n) for 

some n < 00. Case 1: H(Q) 1\ E '# O-then LEX::::: X V p-compact X. Case 2: H(Q) 1\ EO-then 
.-. 

LEX::::: X 1\ Sp V p-compact X. 

[The class of all p-Iocal X which are E .. -Iocal must contain ObC(l). In addition, Sp is E .. -Iocal 

(consider the exact triangle Sp -.!t Sp -t M(p) -t ESp) and if F is defined by the exact triangle F -t Sp -+ 

Sp -t EF, then F is E.-local or E .. -acyclic depending on whether H( Q) 1\ E '# 0 or H( Q) 1\ E = 0 (F is ra-
F ---+ Sp ---+ Sp ---+ EF 

tional). Working now with the commutative diagram 1 1 1 1 
TEF ---+ TESp ---+ TESp ---+ ETEF 

one thus sees that in case 1, Sp is E.-local (::;. LEX::::: X 1\ LESp ::::: X 1\ Sp ::::: X) while in case 2, 

LESp ::::: Sp (::;. LEX::::: X 1\ LESp ::::: X 1\ Sp).] 

EXAMPLE Let E,# 0 be a p-Iocal ring spectrum with the property that ACYp(E) O. Case 1: 

H(Q)I\E'# O-then LEX::::: X V p-compact X. Case 2: H(Q)I\E == O-then LEX::::: XI\Sp V p-compact 

X. 

[In view of the preceding example, one has only to exhibit an E.-local object in C(l). Choose 

n E [0,00]: K(n).(E) '# 0 (cf. p. 17-31). If K(oo). (E) = H(Fp),.,(E) '# 0, then (H(Fp» :::; (E) and M(p) 

is H(Fp).-local, hence is E.-local. So suppose that H(Fp) 1\ E == O. Claim: 3 a sequence kl < k2 < ... 

such that E 1\ K(k;) '# 0 (i == 1,2, ... ). Proof: V n < 00, 3 a p-compact ring spectrum Xn of type n 
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and Et\Xn =f:. 0 (by hypothesis)::::} K(m)*(Et\Xn ) = 0 (m < nor m = oo)::::} K(m)*(Et\Xn ) =f:. 0 

(3 mE [n,ooD. But (K) ~ (E) and M(p) is K .. -local, where K = V K(kd.] 
i 

FACT Let E =f:. 0 be p-local. Assume: ACYp(E) = 0 and TE is smashing-then (E) = (Sp). 

[Since TE is smashing, (E) (LES) = (LESp), However LESp =f:. 0 is a p-Iocal ring spectrum with 

the property that ACYp(LESp) O. Therefore LLESpSp >::::: LESp >::::: Sp or Sp. And: (Sp) = (Sp) ::::} 

(E) = (Sp).] 

Let X( n) be a p-compact spectrum of type n-then by the class invariance principle, 

(X(n)) depends only on n. Write T(n) for r1X(n), where f: ~dX(n) -+ X{n) is a vn-map. 

Thanks to Proposition 31, T(n) is independent of the choice of f. Moreover, its Bousfield 

class (T( n)) is independent of the choice of X( n) and applying Proposition 43 in § 15 

repeatedly, one obtains a decomposition (Sp) = (T(O)) V (T(1)) V··· V (T(n)) V (X(n + 1)) 

with (T(i)) A (X(n + 1)) = (0) (i 0,1, ... , n), (T(n)) A (T(m)) = (0) (m =I n) (here, 

T(O) = H(Q)). Examples: (1) (BP) A (X(n)) (P(n)); (2) (BP) A (T(n)) = (K(n)). 

Notation: Put T( S n) = T( 0) VT( 1) V· .. VT( n), call Tl the corresponding localization 

functor, and let L~ be the associated reflector. 

PROPOSITION 34 Tl is smashing, so \:j X, L!X ~ X A L!S. 

[The Bousfield classes of L!Sp (= L~S) and T(S n) are one and the same.) 

FACT Suppose that X is p-compact and has type n-then L!X >::::: rlx, f: EdX --t X a vn-map. 

Notation: Put K(S n) = K(O) V K(1) V··· V K(n), call Tn the corresponding local

ization functor, and let Ln be the associated reflector. 

There are similarities between the "L~-theory" and the "Ln-theory" (but the proofs 

for the latter are much more difficult). Thus, e.g., it turns out that Tn is smashing (cf. 
Proposition 34). Moreover, one can attach to any X a tower LoX ~ L1X ~ ... and 

X ~ mic(LoX ~ L1X ~ ... ) if X is p-compact (it is unknown whether the analog of this 

with Ln replaced by L! is true or not). On the other hand, L! and Ln are connected by 

a natural transformation L! -+ Ln and \:j X, L!X -+ LnX is a BP .. -equivalence. 

[N ote: These assertions are detailed in RaveneIt. They represent the point of departure 

for the study of the "chromatic" aspects of HSPEC.] 

FACT Suppose that X is p-compact and has type n-then L!X >::::: LT(n)X and LnX >::::: LK(n)X, 

t Nilpotence and Periodicity in Stable Homotopy Theory, Princeton University Press (1992), 81-98. 



,-, 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

§ 17 

BOOKS 

Adams, J., Stable Homotopy and Generalized Homology, University of Chicago (1974). 

Devinatz, E., A Nilpotence Theorem in Stable Homotopy, Ph.D. Thesis, MIT, Cambridge (1985). 

Hu, S-T., Homology Theory, Holden-Day (1966). 

Hu, S-T., Cohomology Theory, Markham (1968). 

Landweber, P. (ed.), Elliptic CUM/e, and Modular FOrm! in Algebraic Topology, Springer Verlag 

(1988). 

Margolis, H., Spectra and the Steenrod Algebra, North Holland (1983). 

Ravenel, D., Complez Cobordum and Stable Homotopy GroUPIf 0/ Spherelf, Academic Press 

(1986). 

Ravenel, D., Nilpotence and Periodi.city in Stable Homotopy Theory, Princeton University Press 

(1992). 

Switzer, R., Algebraic Topology-Homotopy and Homology, Springer Verlag (1975). 

Vogt, R., Boardman', Stable Homotopy Category, Aarhus Universitet (1970). 

ARTICLES 

[1] Bauer, F., Classifying Spectra for Generalized Homology Theories, Ann. Mat. Pura Appl. 164 

(1993), 365-399. 

[2] Boardman, J., Stable Operations in Generalized Cohomology, In: Handbook 0/ Algebraic Topol

ogy, I. James (ed.), North Holland (1995), 585-686. 

[3] Bott, R., The Periodicity Theorem for the Classical Groups and Some of its Applications, Ad'll. 

Math. 4 (1970), 353-411. 

[4] Bousfield, A., The Localization of Spectra with respect to Homology, Topology 18 (1979), 257-

281. 

[5] Bousfield, A., Uniqueness of Infinite Deloopings for K-Theoretic Spaces, Pacific J. Math. 129 

(1987), 1-31. 

[6] Connell, E., Characteristic Classes, Illinois J. Math. 14 (1970), 496-521. 

[7] Dldlrlat, M. and N~methi, A., Shape Theory and (Connective) K-Theory, J. Operator Theory 

23 (1990), 207-291. 



§ 17 

[8] Devinatz, E., K-Theory and the Generating Hypothesis, Amer. J. Math. 112 (1990), 787-804. 

[9] Devinatz, E., Morava's Change of Rings Theorem, Contemp. Math. 181 (1995),83-118. 

[10] Devinatz, E., The Generating Hypothesis Revisited, Fields Institute Communications 19 (1998), 

73-92. 

[11] Devinatz, E., Hopkins, M., and Smith, J., Nilpotence and Stable Homotopy Theory I, Ann. of 

Math. 128 (1988),207-241. 

[12] Dold, A., Chern Classes in General Cohomology, Symposia Mathematica V (1969-70), 385-410. 

[13] Giffen, C., Bott Periodicity and the Q-Construction, Contemp. Math. 199 (1996), 107-124. 

[14] Hopkins, M., Global Methods in Homotopy Theory, In: Homotopy Theory, E. Rees and J. Jones 

(ed.), Cambridge University Press (1987), 73-96. 

[15] Hopkins, M. and Ravenel, D., Suspension Spectra are Harmonic, Bol. Soc. Mat. Mexicana 37 

(1992), 271-279. 

[16] Hopkins, M. and Smith, J., Nilpotence and Stable Homotopy Theory II, Ann. of Math. 

[17] Hovey, M., Sadofsky, H., and Strickland, N., Morava K-Theories and Localization, 

[18] Kahn, D., Kaminker, J., and Schochet, C., Generalized Homology Theories on Compact Metric 

Spaces, Michigan Math. J. 24 (1977), 203-224. 

[19] Kuhn, N., Morava K-Theories and Infinite Loop Spaces, SLN 1370 (1989), 243-257. 

[20] Landweber, P., A Survey of Bordism and Cobordism, Math. Proc. Cambridge Philos. Soc. 100 

(1986), 207-223. 

[21] Landweber, P., Ravenel, D., and Stong, R., Periodic Cohomology Theories Defined by Elliptic 

Curves, Contemp. Math. 181 (1995),317-337. 

[22] Mahowald, M. and Ravenel, D., Toward a Global Understanding of the Homotopy Groups of 

Spheres, Contemp. Math. 58 (1987), 57-74. 

[23] Milnor, J., On Axiomatic Homology Theory, Pacific J. Math. 12 (1962), 337-341. 

[24] Ravenel, D., Localization with respect to Certain Periodic Homology Theories, Amer. J. Math. 

106 (1984),351-414. 

[25] Ravenel, D., Life After the Telescope Conjecture, In: Algebraic K- Theory and Algebraic Topology, 

P. Goerss and J. Jardine (ed.), Kluwer (1993),205-222. 

[26] Ravenel, D., Wilson, W., and Yagita, N., Brown-Peterson Cohomology from Morava K-Theory, 

[27] Sklyarenko, E., Homology and Cohomology Theories of General Spaces, In: General Topology, 

EMS 50, Springer Verlag (1996), 119-246. 



§ 17 

[28J Strickland, N., Functorial Philosophy for Formal Phenomena, 

[29] Taylor, J., Banach Algebras and Topology, In: Algebras in Analysis, J. Williamson (ed.), Aca

demic Press (1975), 118-186. 

[30] Totaro, B., Torsion Algebraic Cycles and Complex Cobordism, J. Amer. Math. Soc. 10 (1997), 

467-493. 

[31] Whitehead, G., Generalized Homology Theories, Trans. Amer. Math. Soc. 102 (1962), 227-283. 



18-1 

§18. ALGEBRAIC K-THEORY 

My objective in this § is to provide an introduction to algebraic K-theory, placing the 

emphasis on its homotopical underpinnings. 

Consider a skeletally small category C equipped with two composition closed classes 

of morphisms termed weak equivalences (denoted ..:+) and coUbrations (denoted >-+), each 
containing the isomorphisms of C-then C is said to be a Waldhausen category provided 

that the following axioms are satisfied. 

(WC-I) C has a zero object O. 

(WC-2) All the objects of Care cofibrant, i.e., V X E ObC, the arrow 0 -+ X 

is a cofibration. 

(WC-3) Every 2-source X I- z .!... Y, where f is a cofibration, admits a pushout 

X ~ p :J... Y, where '1 is a cofibration. 

X J- z ~ Y 

(WC-4) IT 1 1 
X' +-- Z' +--

1 is a commutative diagr~, where {~, 
Y' 

I' fI' 

are cofibrations and the vertical arrows are weak equivalences, then the induced morphism 

p -+ P' of pushouts is a weak equivalence. 

[Note: The opposite of a Waldhausen category need not be Waldhausen.] 
O---+Y 

Remark: C has finite coproducts (define X II Y by the pushout square 1 
X 

(=> inx &iny are cofibrations». 

[Note: Every cofibration X >-+ Y has a cokernel Y/X, viz. YUO.] 
X 

1 
---+X II Y 

Example: A finitely cocomplete pointed skeletally small category is Waldhausen if the 

weak equivalences are the isomorphisms and the cofibrations are the morphisms. 

EXAMPLE Take for C the category whose objects are the pointed finite sets-then C is a Wald

hausen category if weak equivalence = isomorphism, cafibration = pointed injection. 

EXAMPLE Take for C the category whose objects are the pointed finite simplicial sets-then 

C is a Waldhausen category if weak equivalence = weak homotopy equivalence, cofibration == pointed 

injective simplicial map. 

EXAMPLE Let A be a ring with unit. Denote by peA) the full subcategory of A-MOD whose 

objects are finitely generated and projective-then peA) is a Waldhausen category if weak equivalence = 
isomorphism, cofibration = split injection. 
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EXAMPLE Let A be a ring with unit. Denote by F(A) the full subcategory of A-MOD whose 

object. are finitely generated and free-then F(A) is a Waldhauaen category if weak equivalence = iso

morphism, cofibration = split injection with free quotient. 

FACT The cofibrant objects in a pointed skeletally small cofibration category are the objects of a 

Waldhausen category (cf. §l2, Proposition 3 and p. 12-32). 

PROPOSITION 1 Any skeleton of a Wa.ldha.usen category is a sma.ll Wa.ldhausen 

category. 

There are two other conditions which are sometimes imposed on a Wa.ldhausen cate

gory. 

(Saturation Axiom) Given composable morphisms /,g, if any two of /,g, go/ 

are weak equivalences, so is the third. 
X>---+Y ----+ Y/X 

(Extension Axiom) Given a commutative diagram 1 1 ! , if 
X' >---+ yl --+ y' / X' 

X -+ X' & Y / X -+ y' / X' are weak equivalences, then Y -+ y' is a weak equivalence. 

Neither the saturation axiom nor the extension axiom is a consequence of the other axioms. 

Observation: If C is a Wa.ldhausen category, then its arrow category C( -+) is a 

Wa.ldhausen category. 

[The weak equivalences and cofibrations are levelwise.] 

Let C be a Wa.ldhausen category-then a mapping cylinder is a functor M : C( -+ ) -+ 

C together with natura.l transformations i : S -+ M, j : T -+ M, r : M -+ T, where 

S: C( -+) -+ C is the source functor and T : C( -+) -+ C is the target functor, a.ll subject 

to the following assumptions. 

[Note: Spelled out, M assigns to each object X 1. Yin C(-+) an object Mj in C and 

to each morphism (4),'f/J): I -+ f' in C(-+) a morphism M ... tP : Mj -+ Mp in C.] 
. j 

X -4Mj Mj-t- Y 

(MCYl) For every object X 1. Y in C( -+), the diagrams ~ 1 r, r 1/ 
Y Y 

commute and i IIj : X II Y -+ Mj is a cofibration (hence i & j are cofibrations). 

(MCY2) For every object Yin C, Mo_y = Y with r = idy and j = idy. 

(MCYa) For every morphism (4),'f/J): I -+ I' in C(-+), M ... tP : Mj -+ Mp is a 
weak equivalence if 4>, 'f/J are weak equivalences. 
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(MCY4) For every morphism (</1,""): I -+ I' in C(-+), Mt;,,,: Mf -+ Mf' is a 

cofibration if </1, tP are cofibrations. 

MI' 

XIIY 

(MCY5) For every morphism (</1, tP) : I -+ J'in C( -+), the diagram ! 

r 
---+ Y 

X'IIY' 

IIlj 
---+ 

---+ 
IIlj 

! commutes and if </1, "" are cofibrations, then the arrow (X' II Y') U Mf 
XIIY 

---+ Y' 
r 

-+ Mf' is a cofibration. 

Example: The cone functor r : C -+ C sends X to r X, where r X = Mx -0 and the 

suspension functor E: C -+ C sends X to EX = rx/x (per X .!..rX). 

EXAMPLE The category of pointed finite simplicial sets, where weak equivalence = weak homo

topy equivalence and cofibration = pointed injective simplicial map, has a mapping cylinder. 

(Mapping Cylinder Axiom) Assume that C admits a mapping cylinder-then 

\:f X .L. Y E Ob C( -+), r : Mf -+ Y is a weak equivalence. 

EXAMPLE The category of pointed finite simplicial sets, where weak equivalence = isomorphism 

and cofibration = pointed injective simplicial map, has a mapping cylinder which does not satisfy the 

mapping cylinder axiom. 

In a Waldhausen category, an acyclic cofibration is a morphism which is both a weak 

equivalence and a cofibration. 

PROPOSITION 2 If X I- z 4 Y is a 2-source, where I is an acyclic cofibration, then 
Y ...!. P is an acyclic cofibration. 

Z 
[Bearing in mind WC-3, consider the commutative diagram f! 

X 

and apply WC-4.] 

jdz Z 

II 
+-- Z 

f 

~y 

II 
---+ Y 

9 

[Note: Therefore 0 -+ Y / X is an acyclic cofibration if X -+ Y is an acyclic cofibration.] 

Remark: If C satisfies the saturation axiom and the mapping cylinder axiom, then j is 

an acyclic cofibration and i is an acyclic cofibration provided that I is a weak equivalence. 
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Notation: Given a Waldhausen category C, wC is the subcategory of C having mor

phisms the weak equivalences, coC is the subcategory of C having morphisms the cofibra

tions, and wcoC is the subcategory of C having morphisms the acyclic cofibrations. 

PROPOSITION 3 Suppose that C is a small Waldhausen category satisfying the 

saturation axiom and the mapping cylinder axiom-then the inclusion t : wcoC --+ wC 

induces a pointed homotopy equivalence B t : BwcoC --+ BwC. 

[Owing to Quillen's theorem A, it suffices to show that t is a strictly initial functor, 

i.e., that V Y E ObwC, the comma category t/Y is contractible. An object of t/Y is a 

pair (X, I), where f : X --+ Y is a weak equivalence. Specify a functor m : t/Y --+ t/Y 

by sending (X, I) to (M" r )-then i defines a natural transformation id, / y --+ m and j 

defines a natural transformation K(y,id y ) --+ m. Therefore Bt/Y is contractible (cf. p. 

3-15).] 

[N ote: The base point is the O-cell corresponding to 0.] 

Let C be an additive category-then a pair of composable morphisms X ~ Y ~ Z is 

exact if i is a kernel of p and p is a cokernel of i, a morphism of exact pairs being a triple 

X 

(f, g, h) such that the diagram 1 f 
x' 

i 
--+ 

--+ Y' --+ Z' 
i' p' 

commutes. 

[Note: The first component of an exact pair is called an inflation (denoted >-+), the 

second component a deflation (denoted -) (terminology as in Gabriel-Roiter t ).] 

Let C be a skeletally small additive category-then C is said to be a category with 

exact sequences (category WES) if there is given an isomorphism closed class E of exact 

pairs satisfying the following conditions. 

(ES-1) The pair 0 ~ 0 ~ 0 is in E. 
(ES-2) The composition of two inflations is an inflation and the composition 

of two deflations is a deflation. 

(ES-3) Every 2-source X L Z ~ Y, where f is an inflation, admits a pushout 

X ~ P ;!.... Y, where TJ is an inflation, and every two sink X L Z !- Y, where 9 is a deflation, 

admits a pullback X L p ~ Y, where e is a deflation. 

[Note: The opposite of a category WES is again a category WES.] 

A full, additive subcategory C of an abelian category D is closed under extensions if 

for every short exact sequence 0 --+ X --+ Y --+ Z --+ 0 in D, where X, Z E Ob C, :3 an 

t Representations of Finite Dimensional Algebras, Springer Verlag (1992). 
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object in C which is isomorphic to Y. 
[Note: Such a C necessarily has finite coproducts.] 

Example: Let C be a full, skeletally small additive subcategory of an abelian category 

D. Assume: C is closed under extensions. Declare a sequence X ...!. Y .!... Z in C to be 

exact iff' 0 -+ X ...!. Y .!... Z -+ 0 is short exact in D-then C is a category WES. 

[Note: This example is prototypical. Thus suppose that C is a category WES-then 

3 an abelian category G-Q and an additive functor t : C -+ G-Q which is full and faithful 

such that X ...!. Y .!... Z is exact iff 0 -+ tX ~ tY $ tZ -+ 0 is short exact. And: tC is closed 

under extensions. Specifically: G-Q is the full subcategory of [CoP, AB]+ whose objects 

are those F such that X ...!. Y .!. Z exact => 0 -+ F Z -+ FY -+ F X exact and t is the 

Yoneda embedding. For a proof, consult Thomason-Trobaught (G-Q = Gabriel-Quillen).] 

LEMMA Let C be a category WES-then V X E Ob C, idx is both an inflation and 

a deflation. 
o 

[Consider the pushout square 1 
o 

X 

to see that idx is an inflation and 

consider the pullback square idx 1 1 to see that idx is a deflation.] 

X --+ 0 
[Note: Similarly, 0 -+ X is an inflation and X -+ 0 is a deflation. Therefore 0 -+ 

'd id Xl!,4 X and X ~ X -+ 0 are exact.] 

Application: Every isomorphism tP : X -+ Y is both an inflation and a deflation. 

X~ 
[By assumption, E is isomorphism closed and there are commutative diagrams II 

Y --+ 0 

ltJ>-l II 
X --+ 0 

o 
, II 

X~ 

II 
o --+X--+X 

idx 

PROPOSITION 4: A category WES is a Waldhausen category. 

X --+ 
idx 

[Take for the weak equivalences the isomorphisms and take for the cofibrations the 
inflations. ] 

t The Grothendieck Felluchrijt, vol. III, Birkhi.user (1990), 247-435 (d. 399-406); see also Keller, 

ManUllcripta Math. 61 (1990), 379-417 (d. 408-409). 
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(Note: This interpretation entails a loss of structure.] 

Remark: Any skeleton of a category WES is a small category WES (d. Proposition 

1). 

Let C be a category WES. 

z ..!.... Y 

FACT Consider a pushout square f1 
(,f) 

1", where f is an inflation-then Z - X ED 

«(,,,) . 
Y - P 18 exact. 

X - p ( 

P ...!.. y 

FACT Consider a pullback square (1 ((") 1 I, where 9 is a deflation-then P - X ED 

(1,1) • 
Y - Z IS exact. 

X - Z f 

FACT If f : X - Y has a cokernel and if 90 f is an inflation for some morphism 9, then f is an 

inflation. 

FACT If f : X - Y has a kernel and if f 0 9 is a deflation for some morphism g, then f is a 

deflation. 

loX pry 
FACT V X,Y E ObC, X -XEDY -Y is exact. 

EXAMPLE Let A be a ring with unit-then P(A) and F(A) are categories WES. 

EXAMPLE Let X be a scheme, Ox its structure sheaf-then the category of locally free Ox

modules of finite rank is a category WES. 

EXAMPLE Let X be a topological space-then the category of real or complex vector bundles 

over X is a category WES. 

Let C be a category WES-then a pair (A, t), where A is an abelian category and 

, : C -+ A is an additive functor which is full and faithful, satisfies the embedding condition 

provided that X ..!.. y ~ Z is exact iff 0 -+ ,X ~ ,y ~ ,Z -+ 0 is short exact. And: tC is 

dosed under extensions. Example: The pair (G-Q, ,) satisfies the embedding condition. 
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(E :::::> D Axiom) Under the assumption that the pair (A, t) satisfies the em

bedding condition, an / E Mor C is a deflation wheneveJ;' t/ E Mor A is an epimorphism. 

EXAMPLE Let X be a scheme, Ox its structure sheaf. With C the category of locally free 

Ox-modules of finite rank, let A be either the abelian category of Ox-modules or the abelian category of 

quasicoherent Ox-modules-then in either case, the pair (A, ,) satisfies the embedding condition and the 

E => D axiom. 

A pseudoabelian category is an additive category C with finite coproducts such that 

every idempotent has a kernel. Example: Let A be a ring with unit-then P(A) is pseu

doabelian (but this need not be the case of F(A». 
[Note: If C is pseudoabelian and if e : X -+ X is an idempotent, then X ~ kere EB 

ker(l - e) and e +-+ 0 EB 1.] 

LEMMA Let C be a category WES. Assume: C is pseudoabelian-then / E Mor C 

is a deflation if / has a right inverse. 

Remark: Let C be a category WES-then, while the pair (G-Q, t) satisfies the 

embedding condition, it is not automatic that the E :::::> D axiom holds. To ensure this, 

it suffices that retracts be deflations (Thomason-Trobaugh (ibid.» which, by the lemma, 

will be true if C is pseudoabelian. 

EXAMPLE Let X be a topological space-then the category of real or complex vector bundles 

over X is pseudoabelian. 

Rappel: Let C be an additive category with finite coproducts-then there exists a 

pseudoabelian category Cpa and an additive functor. : C -+ Cpa which is full and faithful 

such that for any pseudoabelian category D and any additive functor F : C -+ D, there 

exists an additive functor Fpa : Cpa -+ D such that F ~ Fpa 0 •• And: Cpa is unique up 
to equivalence. 

[One model for Cpa is the category whose objects are the pairs (X, e), where X E Ob C 

and e E Mor(X, X) is idempotent, and whose morphisms (X,e) -+ (X',e') are the / E 

Mor(X,X') such that / = e'%e. Herei<l(x.e) = e and (X,e)EB(X',e') = (XEBX',eEBe'). 
As for. : C -+ Cpa, it is defined by .X = (X,idx) &; ./ = /. 

[Note: Every object in Cpa is a direct summand of an object in .C. Indeed, (X, e) EB 

(X, 1- e) = (X EBX,e EB (1- e» ~ (X,idx) = .X.] 
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FACT If D is a pseudoabelian category and F : C -+ D is an additive functor which is full and 

faithful such that every object in D is a direct summand of an object in FC, then Fpa. : Cpa. -+ D is an 

equivalence of categories. 

EXAMPLE Suppose that X is a compact Hausdorff space. Let C be the category of real or 

complex trivial vector bundles over X-then Cpa. is equivalent to the category of real or complex vector 

bundles over X. 

[Since X is compact Hausdorff, V E -+ X 3 E' -+ X such that E $ E' is trivial.] 

Let C, D be categories WES. Assume: C is a full, additive subcategory of D with the 

property that a pair X ~ Y ~ Z is exact in C iff it is exact in D-then C is said to be 

cofinal in D if for every exact pair X ~ Y ~ Z in D, where X, Z E Ob C, :3 an object in 

C which is isomorphic to Y, and V X E ObD, :3 Z E ObD such that X EB Z is isomorphic 

to an object in C. Example: Given a ring A with unit, F(A) is cofinal in peA). 

EXAMPLE Let C be a category WES. Viewing C as a full, additive subcategory of Cpa., stipulate 

that the elements of epa. are those pairs which are direct summands of elements of e-then Cpa. is a category 

WES and C is cofinal in Cpa.. 

If {~ are Waldhausen categories and if F : C ---+ D is a functor, then F is said to be 

a model functor provided that FO = 0, F sends weak equivalences to weak equivalences 

and cofibrations to cofibrations, and F preserves pushouts along a cofibration, i.e., for any 

2-source xL Z ~ Y, where f is a cofibration, the arrow FX U FY ---+ F(X U Y) is an 
FZ Z 

isomorphism. 

FACT Let {~ be categories WES viewed as Waldhausen categories (cf. Proposition 4)-then an 

additive functor F : C -+ D is a model functor iff X ~ Y ..!. Z exact ~ F X !1 FY ~ F Z exact. 

[Note: In this context, a model functor is called an exact functor.] 

WALD is the category whose objects are the small Waldhausen categories and whose 

morphisms are the model functors between them. 

EXAMPLE Let C be a small Waldhausen category-then the functor category [[n], C] is again in 

WALD (the weak equivalences and cofibrations are levelwise) and Ob[[n],C] = nernC. WritewC(n) for 

the full subcategory of [[n], C] consisting of those functors that take values in wC, i.e., the diagrams of the 
fo fn-l 

form Xo -+Xl -+ ... -+ Xn-l ---+Xn , where the Ii are weak equivalences (thus ObwC(n) = nernwC 
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and [[n],wC] is a subcategory ofwC(n». Since pushouts are levelwise, wC(n) inherits the structure of a 

Waldhausen category from [[n], C]. 

[If X L z .!!.. Y is a 2-source in wC(n), where f is a cofibration, then there are commutative diagrams 
g' 

Zi ~ Yi 

"I l"i and the claim is that Po -+ PI -+ •.. -+ Pn-I -+ Pn E ObwC(n). But this is implied by 

Xi ~ Pi 

WC-4.] 

Let C be a small Waldhausen category. Recalling that [n]( -+) is the arrow category 

of [n] (cf. p. 0-3), denote by SnC the full subcategory of [[n]( -+), C] consisting of those 

functors F : [n]( -+) -+ C such that F(i -+ i) = 0 (0 ::; i ::; n) and for every triple 

i ::; j ::; k in [n], F(i -+ j) -+ F(i -+ k) is a cofibration and the commutative diagram 
F(i -+ j) ----+ F(j -+ j) 

1 1 is a pushout square-then the assignment [n] -+ SnC defines 

F(i -+ k) ----+ F(j -+ k) 
an internal category in SISET, call it SC. 

[Note: Each a : [m] -+ [n] in Mor ~ determines a functor a( -+) : [m]( -+) -+ [n]( -+) 

from which a functor SnC -+ SmC, viz. F -+ F 0 a( -+ ).] 

LEMMA Sn C is a small Waldhausen category. 

[The weak equivalences are those natural transformations 3 : F -+ G such that 

3i-+j : F(i -+ j) -+ G(i -+ j) is a weak equivalence and the cofibrations are those natural 

transformations 3 : F -+ G such that 3i-+j : F( i -+ j) -+ G( i -+ j) is a cofibration and 

for every triple i ::; j ::; k in [n], the arrow F(i -+ k) ~. G(i -+ j) -+ G(i -+ k) is a 
F(I-+J) 

cofibration. ] 

[Note: SoC ~ 1 and SI C ~ C.] 

Given a C in WALD, define a simplicial set WC by putting WnC = ObSnC. 

FACT Suppose that {~ are small Waldhausen categories. Let F: C -+ D be a model functor

then F induces a simplicial map W F : WC -+ WD. 

FACT Suppose that {C are small Waldhausen categories. Let F, G : C -+ D be model functors 
D ' 

:=: : F -+ G a natural isomorphism-then:=: induces a simplicial homotopy between W F and WG. 

EXAMPLE Let C be a small Waldhausen category. Denote by iC( -+) the full subcategory of 

C( -+) whose objects are the X 1.. Y such that f is an isomorphism-then there is a model functor F : C -+ 
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idX . f 
iC(-+) , viz. FX = X ----+X, and a model functor G : iC(-+) -+ C, viz. G(X -+ Y) = X. Obviously, 

Go F = idc and FoG ~ idic(_), so IWCI and IWiC(-+)1 have the same pointed homotopy type. 

PROPOSITION 5 Let C be a small Waldhausen category-then SC is a simplicial 

object in WALD. 

[The d; and the Sj are model functors.] 

[Note: A model functor C --+ D induces a model functor SC --+ SD. Therefore S is a 

functor from WALD to SIWALD (= [AoP,WALD]).] 

Given a small Waldhausen category C, let BwSC = I[n] --+ BwSnCI-then BwSC 

is path connected and there is a closed embedding EBwC --+ BwSC. Now iterate 

the process, i.e., form S(2)C = SSC, a bisimplicial object in WALD, and in general, 

S(q)C S··· SC, a multisimplicial object in WALD. WritewS(q)C for the weak equiv

alences in S(q)C. If BwS(q)C is its classifying space (see below), then BwS(q)C is 

(q I)-connected (q > 1) and there is a closed embedding EBwS(q)C --+ BwS(q+1)C 

whose adjoint BwS(q)C --+ flBwS(q+l)C is a pointed homotopy equivalence (cf. p. 18-

17). The data can be assembled into a separated prespectrum WC, where (WC)o = 
BwC and (WC)q = BwS(q)C (q ~ 1). Definition: The spectrum KC = eWC is 

the algebraic K-theory of C, its homotopy groups 1rn(KC) (:::: 1rn(flBwSC)) being the 

algebraic K-groups Kn(C) of C. 

[Note: KC is connective. In addition, KC is tame (since WC satisfies the cofibration 

condition).] 

Remark: A model functor F : C --+ D determines a morphism WC --+ WD of 

prespectra, hence a morphism KC --+ KD of spectra. Therefore K : WALD --+ SPEC is 

a functor. 

[Note: H BwSC --+ BwSD is a weak homotopy equivalence, then V q, BwS(q)C --+ 

BwS(q)D is a weak homotopy equivalence or still, a pointed homotopy equivalence, so 

KC --+ KD is a homotopy equivalence of spectra (cf. p. 16-8).] 

Convention: H C is an arbitrary Waldhausen category, then C is not necessarily small. 

However C is skeletally small (by definition) and all of the above is applicable to a skeleton 

C, thus KC == KC and Kn(C) = Kn(C). 

[Note: H C is small to begin with, then BwSC and BwSC have the same pointed 

homotopy type, so this is a consistent agreement.] 

If x; (A x··· x A)OP -+ CG is a compactly generated multisimplicial space, then its geometric reali

zation is the coend X@4X"'X4(A? Xk" 'XkA?), which is homeomorphic to IdiXI, the geometric realization 

of diX (the diagonal of X (cf. p. 14-14». 
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EXAMPLE If C is an internal category in SISET, i.e., a simplicial object in CAT, then nerC 

is a bisimplicial set or still, a functor (A x A)OP - SET( C CG) and its geometric realization is the 

classifying space BC of C (thus BC ~ I[n.] - BC" I). 

[Note: Analogous considerations apply to multisimplicial objects in CAT.] 

EXAMPLE If C is an internal category in CAT, i.e., a double category, then the classifying space 

BC of C is the geometric realiza.tion of the bisimplicial set ner(nerC) (d. p. 13-~J7). Example: Let A 

be a subcategory of B, where B is small. Call A . B the double category whose objects are those of 

B, with horizontal morphisms= Mor B and vertical morphisms= Mor A, and whose bimorphisms are the 

commutative squares with horizontal arrows in B and vertical arrows in A. View B as the double category 
• --+ • 

II II-then the inclusion B - A . B induces a homotopy equivalence BB - BA . B. 

• --+ • 

FACT If C is a small Waldhausen category, then there is a pointed homotopy equivalence IWCI -

BisoSC. 

EXAMPLE Let C be the Waldhausen category whose objects are the pointed finite sets, where 

weak equivalence=isomorphism and cofibration=pointed injection-then r is a skeleton of C, hence is 

a small Waldhausen category (d. Proposition 1), and a model for Iwrl in the pointed homotopy cat

egory is noo:r::oos1 . Proof: Thanks to the homotopy colimit theorem, noo:r::oos1 can be identified with 

hocolimpowSl. But, in the notation of p. 14-68, hocolimpowS1 R:I powS1 ®r "(00 R:I hoolr ~ BIMool ~ 

Iwrl, where IMool = II BS". Therefore the loop space of BbIoSr is pointed homotopy equivalent to 
"'2:0 

nnoo:r::oos1 ~ noo:r::oo So, 80 the algebraic K-groups K.(r) of r "are" the ,...:, the stable homotopy groups 

of spheres. 

[Note: More is true, namely Kr and S, when viewed .. objects in HSPEC, are isomorphic 

(Rognest ).] 

EXAMPLE Let C be a small category WES, CXCb the category of bounded cochain complexes 

over C. Suppose that (A, ,) is a pair satisfying the embedding condition and the E => D axiom. Equip 

CXCb with the structure of a small Waldhausen category by stipulating that the weak equivalences are the 

arrows in CXCb which are quasiisomorphisms in A and the conbrations are the levelwise inflations-then 

the exact functor C - CXCb sending X to X concentrated in degree 0 induces a homotopy equivalence 

KC - KCXCb of spectra (Thomason-Trobaught ). 

t Topolog,31 (1992), 813-845. 

t The Grothena.ied Fesuchrijt, vol. III, Birkhauser (1990), 247-435 (d. 278--283). 
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[Note: The definition of weak equivalence is independent of the choice of (A, ,). Recall that when C 

is pseudoabelian one can take for (A, ,) the pair (G-Q, ,) (d. p. 18-7).] 

PROPOSITION 6 Let C be a small Waldhausen category-then Ko(C) is the free 

abelian group on generators [Xl (X E Ob C) subject to the relations (i) [X] = [Y] if 3 a 

weak equivalence X -t Y and (ii) [Y] = [X] + [YIX] for every sequence X ...... Y -t YIX. 
[Since Ko(C) ~ 'll"l(BwSC), Ko(C) is the free group on generators [X] (X E ObC) 

subject to the relations (i) [X1 = [Y1 if 3 a weak equivalence X -t Y and (ii) [Y] = 
iJlX 

[X]· [Y I X] for every sequence X ...... Y -t Y I X. Applying the second relation to X ---+ xn 
pry iJly prx 

Y ---+ Y & Y ---+ X II Y ---+ X gives [X II Y] = [X] . [Y] & [X II Y] = [Y] . [X], thus 

Ko(C) is abelian and one uses additive notation ([0] = 0).] 
[Note: If X I- Z .!. Y is a 2-source, where f is a cofibration, then [P] = [Y] + [PlY] = 

[Y] + [XIZ] = [X] + [Y] - [Z].] 

Example: Suppose that C satisfies the mapping cylinder axiom-then Y X E Ob C, 

there is a weak equivalence rx -t 0, hence [X] = -[EX]. 
[Note: Under these circumstances, every element of Ko(C) is a [X] for some X E Ob C. 

Proof: [Y] - [Z] = [Y II EZ].] 

EXAMPLE Let C be the category whose objects are the pointed finite CW complexes and whose 

morphislll8 are the pointed skeletal maps-then C is a Waldhauaen category if the weak equivalences are 

the weak homotopy equivalences and the cofibrations are the closed cofibrations which are isomorphic to 

the inclusion of a subcomplex. Put A( *) = nBwSC (the algebraic K4heory of a point )-then the reduced 

Euler characteristic i defined by K - X(K) - 1 is an isomorphism from 1I"o(A(*» onto Z. 

[Note: Dwyert has shown that the homotopy groups of A( *) are finitely generated. Structurally, in 

the pointed homotopy category there exists a splitting A(*) ~ nooEooSo X WhD1FF (*) (Waldhausen*), so 

1I"9(A(*» ~ 11": E!l1l"9(WhD1FF (*». Here WhD1FF (*) is the Whitehead space of a point. It has the property 

that there is a pointed homotopy equivalence n2WhDIFF(*) - P(*), the stable smooth pseudoisotopy 

space of *. Rationally, it is known that 1I"9(WhD1FF (*» ® Q = Q if q == 5 mod 4 and is zero otherwise, 

but the explicit determination of the torsion is difficult and unresolved.] 

EXAMPLE Let C be a small category WES--then C has finite coproducts (=finite products), 

thus C can be viewed as a symmetric monoidal category. Therefore the isomorphism classes of C constitute 

t Ann. of Jlath. 111 (1980), 239-251. 

t Ann. of Math. Studie& 113 (1987), 392-417. 



18-13 

an abelian monoid, call it M. Definition: K$(C) = M, the group completion of M. So: Ko(C) is a 

quotient of Kf(C), the two being the same if every exact pair X..!.. Y..!...Z splits (i.e., is isomorphic to 

Xi~ X ED zP..:,f Z). 

FACT Let C, D be small categories WES. Assume: Cis cofinal in D-then Ko(C) is a subgroup 

of Ko(D). 

[Observe first that K$(C) is a subgroup of K$(D). This said, suppose in addition that C is 

isomorphism closed in D. Given an exact pair X..!.. Y ..!...ZinD, choose X', ZI in D such that XEDX', ZEDZ' 
are in C-then X ED X, -+ ZI ED Y ED X, -+ ZI ED Z is exact in D, hence ZI ED Y ED X, e Ob C. Consequently, 

in K$(D), [Z'EDYEDX/]-[XEDX/]-[Z'EDZ] = [Z']+[Y]+[X/]_[X]_[X/]_[Z']-[Z] = [Y]-[X]-[Z], 

thus the kernel of Kf(C) -+ Ko(C) equals the kernel of Kf(D) -+ Ko(D), which implies that the arrow 

Ko(C) -+ Ko(D) is one-to-one.] 

EXAMPLE Let C be a small category WE8-then Cis cofinal in Cpa. (cf. p. 18-8), so Ko(C) is 

a subgroup of Ko(Cpa.). 

[Note: Let A be a ring with unit-then Ko(P(A» = Ko(A) and F(A) is cofinal in peA). The arrow 

Z~o -+ peA) that sends n to An induces a homomorphism Z -+ Ko(A) of groups (injective iff A has the 

invariant basis property (i.e., m :/; n => Am ¢ An». Since F(A)pa. = P(A), it follows that the cyclic 

group Ko(F(A» is a subgroup of Ko(A).] 

PROPOSITION 7 Suppose that {~ are small Waldhausen categories. Let F, G : 

C -+ D be model functors, .3 : F -+ G a natural transformation such that V X E Ob C, 

.3x : FX -+ GX is a weak equivalence in D-then.3 induces a spectral homotopy between 

KF and KG (cf. p. 13-15 and §14, Proposition 12). 

[Note: One starts from the pointed homotopy BwSF ~ BwSG.] 

EXAMPLE Suppose that C satisfies the mapping cylinder axiom-then V X e ObC, there is a 

weak equivalence r X -+ O. But r : C -+ C is a model functor, hence the induced map BwSC -+ BwSC 

is nullhomotopic. 

Let C, C', C" be small Waldhausen categories. Assume: C' and C" are subcategories 

of C with the property that the inclusions C' -+ C, C" -+ C are model functors. Denote 
X' ---+ 0 

by E(C',C,C") the category whose objects are the pushout squares r 1 in C, 

X --joo X" 
where X, E Ob C', X E Ob C, X" E Ob C", and whose morphisms are the commutative 
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x' >---+ X ---'jo X" 
diagrams 1 1 1 in C, where X' -+ Y' E Mor C', X -+ Y E Mor C, X" -+ 

y' >-----+ Y ---+ y" 
Y" E Mor C" . 

[Note: When C' = C and C" = C, put EC = E(C, C, C).] 

LEMMA E(C', C, C") is a small Waldhausen category. 

[A morphism in E(C', C, C") is a weak equivalence if X, -+ Y' is a weak equivalence 

in C', X -+ Y is a weak equivalence in C, X" -+ Y" is a weak equivalence in C" and a 

morphism in E( C' , c, C") is a cofibration if X' -+ Y' is a cofibration in C', Y' III X -+ Y 

is a cofibration in C, X" -+ Y" is a cofibration in C". 

[Note: X -+ Y is then a cofibration in C (being the composite X' U X >-+ Y' U X >-+ 
XI XI 

Y (cf. §12, Proposition 4».] 

There are model functors s : E(C',C,C") -+ C', t : E(C',C,C") -+ C, Q : 

E(C', C,C") -+ C", viz. s(X' >-+ X -+ X") = X', t(X' >-+ X -+ X") = X, Q(X' >-+ X-+ 

X") = X". In the other direction, there is a model functor I : C' X C" -+ E(C', C, C") 

which sends (X' ,X") to X' >-+ X'IIX" -+ X". Agreeing to write (s, Q) for the model func

tor E(C',C,C") -+ c' x C" defined by sand Q, viz. (s,Q)(X' >-+ X -+ X") = (X' ,X"), 

one has (s, Q) 0 I = idcl xC". 

RELATIVE ADDITIVITY THEOREM The model functor (s,Q) induces a homo

topy equivalence K(s, Q) : KE(C', C, C") -+ KC' x KC" of spectra. 

ABSOLUTE ADDITIVITY THEOREM The model functor (s, Q) induces a homo

topy equivalence K(s, Q) : KEC -+ KC x KC of spectra. 

It is a question of proving that (s, Q) induces a weak homotopy equivalence 

BwSE( C', c, C") -+ BwSC' x Ie BwSC" of classifying spaces. To this end, we shall 

proceed via a series of lemmas. 

HOMOTOPY LEMMA Grant the truth of the absolute additivity theorem-then 

BwSt : BwSEC -+ BwSC is pointed homotopic to BwS( s II Q) : BwSEC -+ BwSC. 

[Note: Here (s II Q)(X' >-+ X -+ X") = X' II X".] 

TRIAD LEMMA Grant the truth of the absolute additivity theorem. Suppose given 

a small Waldhausen category D, model functors G, G', G" : D -+ C, and natural transfor

mations G' -+ G, G -+ G". Assume: (i) For every object X in D, the arrow G' X -+ GX 
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G'X ---+ 0 
is a cofibration and the commutative diagram I 1 is a pushout square; (ii) 

GX ---+ G"X 
For every cofibration X >-+ Y in D, the arrow G'Y U GX -t GY is a cofibration-then 

G'X 
BwSG is pointed homotopic to BwS( G' II Gil). 

[There exists a model functor ~ : D -t EC with G' = s o~, G = t o~, G" = Q o~. 
The assertion thus follows from the homotopy lemma by naturality.] 

EXAMPLE Let C be the Waldhausen category whose objects are the pointed finite CW complexes 

and whose morphisms are the pointed skeletal maps-then the arrow BwSC - BwSC induced by:E is a 

pointed homotopy equivalence. 

(In the triad lemma, take C = D and let G' = ide' G = r, Gil = :E.] 

[Note: The full subcategory Co of C whose objects are path connected is Waldhausen (WC-3 is 

BwSC BwSI:) BwSC 

a consequence of AD1 (cf. p. 3-1». Since there is a commutative diagram B'i 
BwSCo BwSi! BwSCo 

it follows that BL is a pointed homotopy equivalence. Therefore the a.lgebraic K-theory of a point can 

be defined using path connected objects. If now C1 is the full subcategory of Co whose objects are 

simply connected, then C1 is Waldhausen (WC-3 is implied by the Van Kampen theorem). Repeating 

the argument, one concludes that the algebraic K-theory of a point can be defined using simply connected 

objects. As an aside, observe that C1 satisfies the extension a.xiom (via the Whitehead theorem) but C 

does not.] 

LEMMA OF REDUCTION The absolute additivity theorem implies the relative ad

ditivity theorem. 

[Since (8, Q)oI = idc' xC", it suffices to show that BwS(Io(s, Q)) is pointed homotopic 

to the identity. Accordingly, to apply the triad lemma, define model functors G', G, Gil : 
idx ' 

E( C', C, C") -t E(C', C, C") by G'(X' >-+ X -t X") = X' >-+ X' -t 0, G(X' >-+ X -t 

idx " 
X") = X' >-+ X -t X", G"(X' >-+ X -t X") = 0 >-+ X" >-+ X" and note that BwS(Io 

(8, Q)) = BwS(G' II G").] 

ADDITIVITY LEMMA The simplicial map W(s,Q): WEC ~ WC x WC induced 

by (8, Q) is a weak homotopy equivalence (notation as on p. 18-9). 

The additivity lemma implies the absolute additivity theorem. To see this, introduce 

wC(n) (cf. p. 18-8 ff.)-then V n, the arrow WEwC(n) -t WwC(n) x WwC(n) is 
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a weak homotopy equivalence. Therefore the diagonal of the bisimplicial map ([n) -t 

WEwC(n» -t ([n)-t WwC(n» X ([n] -t WwC(n» is a weak homotopy equivalence (cf. 

§13, Proposition 51) or still, the induced map of geometric realizations is a weak homotopy 

equivalence. It remains only to observe that ObSmwC(n) ~ nern wSmC. 

LEMMA The projection WEC ~ WC induced by s is a homotopy fibration (cf. 

infra). 

This result leads to the additivity lemma. In fact, \I n & \I x E WnC, the pull-
Fz ---t WEC 

back square 1 
~[n] 

lp 
---t WC 
..0.., 

(Fz = WEC z) is a homotopy pullback (cf. p. 12-16). 

Now take n = 0 and recall that WoC = *-then Fo -t WEC ~ WC is a homotopy 

pullback and Fo can be identified with WFoC, FoC being the full subcategory of EC 

whose objects are the 0 >-+ X -t X" (~ X ~ XU). But the model functor FoC -t C 
o >-+ X ---t X" 

defined by 1 gives rise to a homotopy equivalence WFoC -t WC 

X 
of simplicial sets. Therefore the sequence WC -t WEC ~ WC is a homotopy pull

back (the arrow W C -t WEC corresponds to the insertion C -t EC which sends X 
WC ---t WC X WC ---t WC 

idx 
to 0 >-+ X ----t X). Consider the diagram II 1 II ,where 

WC ---t WEC ---t WC 
the vertical arrow is determined by I. Passing to geometric realizations, the top and 

bottom rows become fibrations up to homotopy (per CGH (singular structure) (cf. p. 

13-75», thus IWII : IWCI Xk Iwcl -t IWECI is a pointed homotopy equivalence. Since 

IW(s, Q)I 0 IWII = idlwclxl.!wcl, it follows that IW(s, Q)I is also a pointed homotopy 

equivalence, the assertion of the additivity lemma. 

Put X = WEC, B = WC-then to prove the lemma, one must show that for every commutative 

Xbl ---t Xb ---t X 

diagram 1 1 
6[n'J ---t 6[n] 

lp , the arrow Xbl - Xb is a weak homotopy equivalence (d. p. 

---7 B 
ab 

[0] 

13-64). Since any map [n'] - [n] can be placed in a commutative triangle I \ ' there is no 

I f I·· . h I [n'J ) [n] 
oss 0 genera lty m supposmg t at n = 0, thus our objective may be recast. 
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LEMMA Fix an element b E Bn and let Vj : X b' -+ Xb be the simplicial map attached to the ith 

vertex operator Ei : [0] -+ [n] (0 :; i :; n)-then Vi is a homotopy equivalence. 

[From the definitions, z E Xm (= WmEC) +-+ F' >-+ F -+ F" E ObESmC. And: An element of 

(Xb)m consists of an element of Xm plus a map a : [m] -+ [n] such that F' is equal to the composite 

[m]( -+) ~[n]( -+) ~ C. There is an evident homotopy equivalence WC L X b' and 'v'i, q 0 Vi 0 f = idwc, 

where q : Xb -+ WC is induced by the functor that takes F' >-+ F -+ F" to F". It will be enough to show 

that q is a homotopy equivalence and for this it will be enough to show that idxb ~ Vn 0 f 0 q. Let X; be 

the composite (A/[I])OP -+ A OP ~ SET and define a natural transformation H : X; -+ X; by assigning 

to /3: [m] -+ [1] the function HfJ E MOr«Xb)m,(Xb)m) which sends (FI >-+ F -+ FII,a: [m] -+ [n]) to 

(F' >-+ F -+ F", a: [m] -+ [nD. Here a is the composite [m] ~[n] X [1] .2.[n] (-y(j, 0) = j, -y(j, 1) = n) 

and F' = boa.. Because a :; a, 3 a natural transformation a. -+ a., hence 3 a natural transformation 

FI ~ F' 

FI -+ FI and F is given by the pushout square r ! in SmC with F" = F/F1
• Needless to say, 

F ~ F 
this procedure involves certain choices and it is necessary to check that they can be made in such a way 

that H really is natural. Leaving this as an exercise, let us note only that matters can be arranged so that 

the homotopy starts at the identity (viz., if F' -+ F' is the identity, choose F -+ F to be the identity) and 

that the image of Vn 0 f is fixed under the homotopy (viz., if FI = 0, choose F -+ F" to be the identity).] 

Rappel: Given a simplicial set X, TX is its translate (c!. p. 14-12). 

[N ote: ToX = Xl, so there is a simplicial map siX 1 ~ T X. On the other hand, the 

do : X n+l ~ Xn define a simplicial map TX ~ X.] 

Example: If C is a simplicial object in CAT, then TC H (TM, TO), where C H 

(M,O) (an internal category in SISET) and there is a sequence siC I ~ TC ~ C. 

[Note: This applies to wSC, where C is a small Waldhausen category. Since WSI C 

is isomorphic towC, there is a sequence siwC ~ TwSC ~wSC and since BwSoC = *, 
BTwSC is contractible (cf. p. 14-12). Thus one is lead again to the arrow BwC ~ 

OBwSC whose adjoint EBwC ~ BwSC is the closed embedding on p. 18-10. By natu

rality, C can be replaced by SC, which produces another sequence siwSC ~ TWS(2)C ~ 

WS(2)C. It follows from Proposition 8 below that the sequence BwSC ~ BTwS(2)C ~ 
BWS(2)C of classifying spaces is a fibration up to homotopy (per CGH (singular struc

ture)). Therefore the arrow BwSC ~ OBWS(2)C is a weak homotopy equivalence or still, 

a pointed homotopy equivalence. Continuing,one sees that BwS(q)C ~ OBWS(q+l)C is 

a pointed homotopy equivalence 'V q (cf. p. 18-10).] 

Let {~ be small Waldhausen categories, F : C ~ D a model functor. Define 
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S(CLD) ---. TSD 
F S( C -+ D) by the pullback square 1 1 In [6.oP

, CAT], so V n, 

SC ---. SD 

---. Sn+l D 
1 is a pullback square in CAT. 

SnC ---. SnD 

[Note: There is a sequence siD -+ S(C L D) -+ SC.] 

LEMMA Sn(C L D) is a small Waldhausen category. 

[The weak equivalences are given by the pullback square 

wSnC 
coSn(C L D) ---. 

and the cofibrations are given by the pullback square 1 

[Note: S(C L D) is a simplicial object in WALD.] 

'd 
EXAMPLE Taking C = D and F = ide gives nothing new (S( C ~ C) = TSC) but there 

GC ----+ TSC 

is a variant which is of some interest. Thus define GC by the pullback square 1 1 -then 

TSC ----+ SC 
GnC is a small Waldhausen category and GC is a simplicial object in WALD. The significance of GC 

lies in the fact that the arrow BwGC -+ OBwSC is a weak homotopy equivalimce if C is a category WES 

(Gillet-Grayson t). 

PROPOSITION 8 Let {~ be small Waldhausen categories, F : C -+ D a model 

functor-then the sequence BwSD -+ BwS(2)(C L D) -+ BwS(2)C of classifying spaces 

is a fibration up to homotopy (per .CGH (singular structure)). 

[It suffices to verify that V n, the sequence BwSD -+ BwSSn(C 2: D) -+ BwSSnC is 

a fibration up to homotopy (per CGH (singular structure)) (cf. p. 14-9) (7ro(BwSSnC) = 
* V n). Do this by comparing it with the sequence BwSD -+ BwSD XII: BwSSnC -+ 

BwSSnC, using the triad lemma to establish that the arrow BwSD XII: BwSSnC -+ 

BwSSn(C L D) is a "retraction up to homotopy".J 

t Illinois J. Math. 31 (1987), 574-597; see also Gunnarsson et al., J. Pure Appl. Algebra 19 (1992), 

255-270. 
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LEMMA Equip CGH with its singular structure. Suppose given a commutative dia-

~ X Y A 

gram 1 
A' 

11/1 II of pointed compactly generated Hausdorff spaces. Assume: 
---+ XI ---+ Y 

gl I' 

A 

The rows are fibrations up to homotopy-then the square 1 
A' 

pullback. 

~ X 

11/1 is a homotopy 
---+ X, 

gl 

[The claim is that the arrow A --+ W g , ,1/1 is a weak homotopy equivalence. Consider 

A' ...i.. X, .!- X 

II II . By hypothesis, the arrow A' --+ Ef' the commutative diagram 1 
Ef' ---+ X, +-- X 

'If' 1/1 
is a weak homotopy equivalence, so the induced map Wg, ,1/1 --+ W'If' ,1/1 is a weak homotopy 

equivalence (cf. p. 4-48). On the other hand, the projection 1r' : Ef' --+ X' is a pointed 

CG fibration (cf. p. 4-32), hence is a CG fibration (cf. p. 4-7). Therefore the arrow 

Ef' Xx' X --+ W'If',1/I is a homotopy equivalence (cf. §4, Proposition 18). But Ef' Xx' X = 

{yo} Xy WI' XX' X = {yo} Xy WI = EI and by hypothesis, the arrow A --+ EI is a weak 

homotopy equivalence.] 

PROPOSITION 9 Let C /, C, C" be small Waldhausen categories. Suppose given 
BwSC ---+ BwS(2)(C' --+ C) 

model functors C' --+ C, C --+ C"-then the square 1 1 IS 

BwSC" ---+ BwS(2)(c' --+ C") 
a homotopy pullback (per CGH (singular structure)). 

[Bearing in mind Proposition 
BwSC ---+ BWS(2)(C' --+ C) 

1 1 
BwSC" 

8, apply the lemma to the commutative diagram 
---+ BWS(2)C' 

. Suppose given a small category C carrying the structure of two Waldhausen categories, both having 

the same subcategory of cofibrations but potentially distinct subcategories of weak equivalences, say vC 

and wC, with vC C wC (e.g., vC might be iso C). Let C W be the full subcategory of C whose objects are 

the X such that 0 - X is inwC, put vCw = vCnCw &wCw=wcncw, and coCw= coCnCW-then 

C W is Waldhausen relative to either notion of weak equivalence. 

LOCALIZATION THEOREM Assume that C admits a functor M C(-} _ C that is 
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a mapping cylinder in the v-structure and the w-structure. Suppose further that in the w-structure, 

'-' the saturation axiom, the extension axiom, and the mapping cylinder axiom all hold-then the square 
BvSCw ----+ BwSCw 

1 1 is a homotopy pullback (per CGH (singular structure». 

BvSC ----+ BwSC 
[The proof, which depends on Proposition 9, is detailed in Waldhausent .] 

[Note: V n, wS n C W has an initial object, thus BwSCw is contractible.] 

Remark: Proposition 3 enters into the proof through the assumption that the w-structure on C 

satisfies the saturation axiom and the mapping cylinder axiom. As for the role of the extension axiom, 

recall that if X -+ Y is an acyclic cofibration, then 0 -+ Y / X is an acyclic cofibration (cf. Proposi

tion 2), i.e., Y/X E ObCw . Conversely, if X -+ Y is a cofibration for which Y/X E ObCw , then 

the extension axiom implies that X -+ Y is a weak equivalence (consider the commutative diagram 
X-X----+ 0 

II 1 1 ). 
X ----+ Y ----+ Y / X 

[Note: For an interesting application of the localization theorem to the algebraic K-theory of a ring 

with unit, see Weibel-Yao t .] 

PROPOSITION 10 Let {~ be small Waldhausen categories, F : C ---+ D a model 

functor-then there exists a long exact sequence··· ---+ 7rn +l(BwS(2)(C ~D» ---+ 

7rn (BwSC) ---+ 7rn (BwSD) ---+ 7rn (BWS(2)(C ~ D» ---+ ••• ---+ 7r2(BwS(2)(C ~ D» ---+ 

7rl(BwSC) ---+ 7rl(BwSD) ---+ 7rl(BwS(2)(C ~ D» ---+ 7ro(BwSC) ---+ 7ro(BwSD) in homo

topy. 
'd 

BwSC ----+ BWS(2)(C ~ C) 

[Proposition 9 implies that the square 1 1 is a homo-
F 

BwSD ----+ BWS(2)(C ---+ D) 
topy pullback (per CGH (singular structure», thus the Mayer-Vietoris sequence is appli-

cable (cf. p. 4-37). And: BWS(2)(C ~ C) is contractible.] 

COFINALITY PRINCIPLE Let C, D be small categories WES. Assume: Cis cofinal in D

then Ko(C) is a subgroup of Ko(D) (cf. p. 18-13) and V n ~ 1, Kn(C) ~ Kn(D). 

[Since by definition, Kn(C) ~ 1rn+l (BwSC) & Kn(D) ~ 1rn+l (BwSD), one can invoke Propo

sition 10 if the higher homotopy groups of BwS(2)(C ~ D) are trivial. This is established by showing 

SLN 1126 (1985), 350-352. 

Contemp. Math. 126 (1992), 219-230. 
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that BwS(2)(C":" D) has the same pointed homotopy type as B(Ko(D)/Ko(C», the classifying space of 

Ko(D)/Ko(C).] 

[Note: All the particulars can be found in Staffeldtt .] 

EXAMPLE Let C be a small category WES-then C is cofinal in Cpa (cf. p. 18-8), hence 

'<I n 2:: 1, Kn(C) :=::: Kn(Cpa ). 

[Note: Let A be a ring with unit-then F(A) is cofinal in P(A), so the higher algebraic K..:groups of 

F(A) can be identified with the higher algebraic K-groups of P(A).] 

Let C, D be small Waldhausen categories, F : C ........ D a model functor-then F is said 

to have the approximation property provided that the following conditions are satisfied. 

(AppJ) A morphism I in C is in wC if FI is in wD. 

(ApP2) Given X E ObC and IE Mor(FX, Y), there is agE Mor(X, X') and 
FX Y 

a weak equivalence h : F X' ........ Y such that I = h 0 Fg: Fg 1 /. . 
FX' 

Remarks: (1) Since F is a model functor, FI is in wD if I is in wC; (2) When C 

X~Mg 
satisfies the mapping cylinder axiom, 3 a commutative triangle ~ 1 r, where r is a 

X' 
weak equivalence, hence in this case one can assume that the "g" is a cofibration. 

APPROXIMATION THEOREM Let C, D be small Waldhausen categories satisfying 

the saturation axiom, F: C ........ D a model functor. Suppose that C satisfies the mapping 

cylinder axiom and F has the approximation property-then BwSF : BwSC ........ BwSD 

is a pointed homotopy equivalence. 

[This result is due to Waldhausen*. I shall omit the proof (which is long and technical) 

but by way of simplification, it suffices that BwF: BwC ........ BwD be a pointed homotopy 

equivalence. Reason: SnC and SnD inherit the assumptions made on C and D, thus 

\f n, BwSnF : BwSn C ........ BwSnD is a pointed homotopy equivalence and so BwSF : 

BwSC ........ BwSD is a pointed homotopy equivalence (d. p. 14-8). One then proceeds 

to the crux, viz. the verification that wF : wC ........ wD is a strictly initial functor, and 

concludes by appealing to Quillen's theorem A.] 

t K-Theory 1 (1989), 511-532; see also Grayson, Illinois J. Math. 31 (1987),598-617. 

* SLN 1126 (1985), 354-358. 
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EXAMPLE Let C be the Waldhausen category whose objects are the pointed finite CW complexes 

and whose morphisms are the pointed skeletal maps. Let D be the category whose objects are the 

wellpointed spaces with closed base point which have the pointed homotopy type of a pointed finite CW 

complex and whose morphisms are the pointed continuous functions-then D satisfies the axioms for a 

Waldhausen category if weak equivalence = weak homotopy equivalence, cofibration = closed cofibration. 

However, while C is skeletally small, D is definitely not. Still, it will be convenient to ignore this detail since 

the situation can be rectified by the insertion of some additional language. We claim that the inclusion 

£ : C _ D has the approximation property. ApPl is, of course, trivial. To check the validity of ApP2, fix 

a K in C and suppose given a pointed continuous function f : K - X, where X is in D. By definition, 3 

an L in C and pointed continuous functions IjJ : X - L, ,p : L - X such that ,p 0 IjJ ~ idx, IjJ 0 ,p ~ idL. 

Using the skeletal approximation theorem, choose a pointed skeletal 9 : K - L for which 9 ~ IjJ 0 f. 
K--4Mg ~L 

Display the data in a commutative diagram ~ lr./ and consider the composite Mg.!:.LJ:.X. 

L 
Since ,p 0 r 0 i = ,p 0 g, ,p 0 r 0 j = ,p, the restriction of,p 0 r to K V L equals ,p 0 9 V ,p (identify K & i(K), 

L & j(L». But 9 ~ IjJ 0 f ~ ,p 0 9 ~ ,p 0 IjJ 0 f ~ f ~ ,p 0 9 V ,p ~ f v,p. Because K V L - Mg IS a 

K--4Mg~L 
closed cofibration, it follows that f V ,p admits an extension to M g, call it h: ~ 1 h/.' From the 

X 
triangle on the right, one sees that h is a weak homotopy equivalence. On the other hand, f = hoi and i 

is skeletal. 

EXAMPLE Let C be the Waldhausen category whose objects are the pointed finite simplicial 

sets with weak equivalence = weak homotopy equivalence, cofibration = pointed injective simplicial map 

and let D be as in the preceding example. We claim that the geometric realization I?I : C - D has the 

approximation property. APPI is true by definition. Turning to ApP2, fix an X in C and suppose given 

a pointed continuous function f : IXI - Y, where Y is in D. Let us assume for the moment that it is 

possible to fulfill APP2 up to homotopy, i.e., that 3 a pointed finite simplicial set X', a simplicial map 

9 : X - X', and a weak homotopy equivalence h : IX'I - Y such that f 7 h 0 Igl-:-:-then APP2 holds 

IXI ~ Migi Jil- IX'I 

on the nose. Indeed, IMgl ~ Migi and there is a commutative diagram I~ l'r~ . Obviously, 

IX'I 
h 0 Irl 0 Ii,! = h 0 I~I, h 0 Irl 0 iii = h, and h 0 Igl V h ~ f V h, hence f V h can be extended to Mlg l , call it 

IXI ~ Migi J!llx'i 

H : ~ 10 . But H is a weak homotopy equivalence and f = H 0 Iii, as desired. Proceeding, 

Y 
there exists a pointed finite CW complex having the pointed homotopy type of Y and without loss of 
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generality, one can assume that it is the geometric realization of a pointed finite simplicial set K (cf. §5, 

Proposition 3 and use the barycentric subdivision of the relevant vertex scheme), thus Y may be replaced 

by IKI. Because X is finite, the argument employed in the proof of the simplicial approximation theorem 

produces a simplicial map U : X -to EXfl K(3 n) for which lui:::::: le1<1 0 f. And: le1<1 : IKI -to IExfl KI is a 

pointed homotopy equivalence (cf. p. 13-12). 

Remark: The above considerations therefore imply that the algebraic K-theory of a point can also 

be defined in terms of pointed finite simplicial sets. 

Let A be a ring with unit-then it is clear that Ko(P(A» = Ko(A). 

CONSISTENCY PRINCIPLE There is a pointed homotopy equivalence OBwSP(A) 

~ Ko(A) x BGL(A)+, hence V n > 1, Kn(P(A» R: Kn(A). 

[Note: Recall that Kn(A) = 1rn(BGL(A)+) (cf. p. 5-73 ff.).] 

This is not obvious and the existing proofs are quite roundabout in that they do not 

directly involve BwSP(A). Instead, one replaces it with BQP(A), where QP(A) is the 

"Q construction" on peA) (cf. infra), and then introduces yet another artifice, namely 

the "S-l S construction" which, in effect, is a bridge between these two very different 

ways of defining the higher algebraic K-groups of A. For the "classical" approach to these 

matters, consult the seventh chapter of Srinivast (a sophisticated variant has been given 

by J ardinet). 

Example: Form the monoid II BAutP, where P runs through the objects in P(A)
p 

then in the pointed homotopy category, OB 11 BAutP R: Ko(A) x BGL(A)+ (cf. p. 14-22 
p 

ff.). 

Let C be a small category WES-then QC is the category with the same objects as C, a morphism 

from X to Y in QC being an equivalence class of diagrams of the form X ~ A>-+ Y, where X ~ A' >-+ Y 

X +E-- A' >---? Y 

&; X ~ A" >-+ Y are equivalent if 3 an isomorphism A' -to A" rendering II ! II commu-

X· ~ A" >---i- Y 
tative. To compose X ~ A>-+ Y and Y ~ B>-+ Z, form the pullback A Xy B and project to X and 

t Algebraic K-Theory, Birkhii.user (1991); see also Gillet-Grayson, Illinois J. Math. 31 (1987), 574-597 

(cf. 591-593). 

t J. Pure Appl. Algebra 75 (1991), 103-194; see also Thomason, Comm. Algebra 10 (1982), 1589-1668. 



18-24 

AXyB )---70 B )---70 Z 

! ! 
Z, i.e., A >---+ Y 

! 
X 

Observation: If C, D are small categories WES and if F ; C -+ D is an exact functor, then there is 

an induced functor QF: QC -+ QD. 

PROPOSITION W Let C be a small category WES-then BwSC and BQC have the same 

pointed homotopy type. 

The proof of Proposition W depends on an auxiliary device. 

Let sd ; 4 -+ 4 be the functor that sends [n] to [2n + 1] and a : [m] -+ [n] to the arrow [2m + 1] -+ 

[2n + 1] defined by the prescription 0 -+ a(O), ... ,m -+ a(m), m + 1 -+ 2n + 1 - a(m), ... ,2m + 1 -+ 

2n + 1 - a(O). 

Given a simplicial space X, put sdX = Xosd°P , the edgewise subdivision of X. So, (sdX)n = X2n+l 

{
di {diOd2n+l-i (O:5i:5n,n>O) 

and the per sdX are the per X. 
8i 8,082nH-' (0:5 i:5 n,n ~ 0) 

LEMMA Specify a continuous function 8n : (sdX)n x an -+ X2n+l X a 2n+1 via the formula 

8 .. (x, to, ... , tn ) = (x, ito, ... ,itn, itn, ... ,ito)-then the 8 .. induce a homeomorphism IsdXl-+ IXI. 

Let C be a small category WES-then the weak equivalences are isomorphisms (el. Proposition 4), 

hence BwSC = BisoSC and there is a pointed homotopy equivalence IWCI -+ BisoSC (cf. p. 18-

11). On the other hand, from the lemma, IsdWCI ~ IWCI, thus to prove Proposition W, it suffices to 

construct a pointed homotopy equivalence IsdWCI-+ BQC. An element F of (sdWC)n is an element of 

W2n+l C = ObS2n+1 C. Writing Fi,i for F(i -+ i). send F to that element ofner .. QC represented by the 

diagram , i.e., to the string Fn,n+l -+ 

Fn,n+l Fn- 1,n+2 F1,2n FO,2n+l 
F .. - 1,n+2 -+ ... -+ F1 ,2n -+ FO,2 .. +1 in nernQC. This assignment defines a simplicial map sdWC -+ 

ner QC and the claim is that its geometric realization is a pointed homotopy equivalence. 

Introduce the double category iQC == isoQC . QC and recall that there is a pointed homotopy 

equivalence BQC -+ BiQC (cf. p. 18-11). Call iQn C the category whose objects are the func

tors [n] -+ QC and whose morphisms are the natural isomorphisms (=> iQn C = iso[[n], QC])-then 

V n, the functor isosdSnC -+ iQnC is an equivalence of categories. Contemplation of the diagram 
IsdWCI ----t BQC 

1 1 finishes the argument. 

BisosdSC ----t BiQC 
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Let A be a ring with unit-then by definition, W A is the O-prespectrum with qth 

space Ko(EfA) x BGL(EfA)+ (cf. p. 14-72) and KA = eMW A (cf. p. 17-30), thus 

7rn(KA) = Kn(A) (n ~ 0). And: 7r_n(KA) = Ko(En A) = (Ln Ko)(A) (n > 0), the 

negative algebraic K-groups of A in the sense of Bass (compare, e.g., Karoubi t ). 

[Note: The 7r_n(KA) vanish if A is left noetherian and every finitely generated left 

A-module has finite projective dimension.] 

The consistency principle can be generalized: 3 a morphism of spectra KP(A) -+ KA such that the 

induced map 'If" (KP(A» -+ 'If" (KA) is an isomorphism V n ~ O. 

To conclude this §, I shall say a few words about topological K-theory. 

[Note: A reference is the book of Karoubit.] 

Let A be a Banach algebra with unit over k, where k = R or C. Write GL(A)top for 

GL(A) in its canonical topology-then GL(A)top is a topological group and 7ro(GL(A)toP) 

is abelian. Definition: 'V n > 0, K!OP(A) = 7rn (BGL(A)toP), the nth topological K-group 

of A (put K~OP(A) = Ko(A». 

BOTT PERIODICITY THEOREM Let A be a Banach algebra with unit over k. 

(k = C) 'V n ~ 0, K!OP(A) ~ K!+2(A). 

(k = R) 'V n ~ 0, K!OP(A) ~ K!+8(A). 

For instance, one can take for A the Banach algebra with unit whose elements are the real or complex 

valued continuous functions on a compact Hausdorff space X. 

The identity GL(A) -t GL(A)top induces a map BGL(A) -t BGL(A)iOP, from which 

an arrow BGL(A)+ -t BGL(A)iOp. Passing to homotopy, this gives a homomorphism 

Kn(A) -t K!OP(A) that connects the algebraic K-groups of A to the topological K-groups 
of A. 

[Note: The fundamental group of BGL(A)top is abelian (7rl(BGL(A)toP) ~ 

7ro(OBGL(A)toP) ~ 7ro(GL(A)toP», thus BGL(A)top is insensitive to the plus construc
tion.] 

t Ann. Sci. Ecole Norm. Sup. 4 (1971), 63-95. 

f K-Theory: An Introduction, Springer Verlag (1978); see also N. Wegge-Olsen, K-Theory and C.

Algebr/18, Oxford University Press (1993). 
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THEOREM OF FISCHERt .PRASOLOVt Let A be a commutative Banach algebra 

over k with unit-then V n ;::: 1, the arrow 1rn(BGL(A)+j Z/kZ) -t 1rn(BGL(A)toP j Z/kZ) 

is an isomorphism. 

[Note: The notation is that of p. 9-2 (BGL(A)+ and BGL(A)top are H spaces).] 

Therefore, in the commutative case, the algebraic and topological K-groups of A are 

indistinguishable if one sticks to finite coefficients. 

t J. Pure Appl. Algebra 69 (1990), 33-50. 

tAmer. Math. Soc. 'Pransl. 154 (1992), 133-137. 
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§19. DIMENSION THEORY 

Dimension theory enables one to associate with each nonempty normal Hausdorff 

space X a topological invariant dim X E {O, 1, ... } U {oo} called its topological dimension. 

Classically, there are two central theorems, namely: 

(1) The topological dimension of R n is exactly n, hence as a corollary, R n and 

R m are homeomorphic iff n = m. 

(2) Every second countable normal Hausdorff space of topological dimension n 
can be embedded in R 2n+ 1 • 

Although I shall limit the general discussion to what is needed to prove these re

sults, some important applications will be given, e.g., to the "invariance of domain" and 

the "superposition question". On the theoretical side, Cech cohomology makes an initial 

appearance but it does not really come to the fore until §20. 

Let X be a nonempty normal Hausdorft' space. Consider the following statement. 

(dimX < n) There exists an integer n = 0,1, ... such that every finite open 

covering of X has a finite open refinement of order ~ n + 1. 

If dimX ~ n is true for some n, then the topological dimension of X, denoted by 

dimX, is the smallest value of n for which dimX < n. 

[Note: By convention, dimX = -1 when X = 0. If the statement dimX ~ n is false 

for every n, then we put dimX = 00.] 
Our primary emphasis will be on spaces of finite topological dimension. A simple 

example of a compact metrizable space of infinite topological dimension is the Hilbert cube 

[0,1]"', 

Why work with finite open coverings? Answer: The concept of dimension would be very different 

otherwise. Example: 'lake X = [O,O[-then dim[O,O[= ° (d. p. 19--4). But the open covering HO, a[: 

° < a < O} has no point finite open refinement, so [0, O[ would be "infinite dimensional" if arbitrary open 

coverings were allowed. 

Why work with normal X? A priori, this is not necessary since the definition evidently makes sense 

for any CRB space X. But observe: If dim X = 0, then X mWlt be normal. So, no new spaces of "dimension 

zero" are produced by jWlt formally extending the definition to nonnormal X. Such an agreement would 

also introduce a degree of pathology. Example: The topological dimension of X = [0,0] X [0, w] is zero 

(cf. p. 19--4) but the "topological dimension" of X - HO,w)}. the Tychonoffplank (which is not normal), 

is one. The escape from this predicament is to reformulate the definition of dim in such a way that it is 

naturally applicable to the cl8S8 of all non empty CRB spaces. The topological dimension of the Tychonoff 

plank then turns out to be zero, &8 might be expected (d. p. 19--4). 
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Let X be a nonempty CRR space. Consider the following statement. 

(dimX S n) There exists an integer n = 0,1, ... such that every finite numerable open 

covering of X has a finite numerable open refinement of order S n + 1. 

If dimX S n is true for some n, then the topologica.l dimension of X, denoted by dimX, is the 

smallest value of n for which dim X S n. 

[Note: By convention, dimX = -1 iff X = e. If the statement dimX S n is false for every n, then 

we put dimX = 00.] 

Since a nonempty CRR space X is normal iff every finite open covering of X is numerable, this 

agreement is a consistent extension of dim. On the other hand, the price to pay for increasing the 

generality is that more things can go wrong (e.g., every subspace of X now has a topological dimension). 

Because of this, my policy will be to concentrate on the normal case and simply indicate as we go along 

what changes, if any, must be made to accommodate the completely regular situation. The omitted details 

are invariably straightforward. 

[Note: By repeating what has been said above verbatim, an arbitrary nonempty topological space X 

acquires a "topological dimension" dimX. One can then show that dimX = dimcrX, where crX is the 

complete regularization of X (d. p. 1-26). Example: dim(O, 1]/[0, 1( = 0.] 

PROPOSITION 1 The topological dimension of X is equal to the topological dimen

sion of {3X. 
[dim{3X :5 n ::} dimX :5 n : Let U = {U} be a finite open covering of X. Since U is 

numerable, one can assume that the U are cozero sets. The collection {{3X - clpx(X - Un 
is then a finite open covering of {3X, thus admits a precise open refinement of order :5 n + 1 

which, when restricted to X, is a precise open refinement of U of order :5 n + 1. 

dimX < n ::} dim{3X :5 n : Let U = {U} be a finite open covering of {3X. Choose 

a partition of unity {KU} on {3X subordinate to U. The collection {X n KU1(]O, I])} 

is a finite op~ covering of X, hence has a precise open refinement V. {V} of order 

:5 n + 1. Let {KV} be a partition of unity on X subordinate to V-then the collection 

{{3X - clpx(X - KVI (JO, I]))} is a precise open refinement of U of order < n + 1.] 

The argument used in Proposition 1 carries over directly to the completely regular situation, so the 

result holds in that setting too. 

A nonempty Hausdorff space is said to be zero dimensional if it has a basis consist

ing of clopen sets. Every zero dimensional space is necessarily completely regular. The 

class of zero dimensional spaces is closed under the formation of nonempty products and 

coproducts. 
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[Note: Recall that for nonempty LCR spaces, the notions of zero dimensional and 

totally disconnected are equivalent.] 

A nonempty subepace of the real line is zero dimensional ift'it contains no open interval. 

The Isbell-MrOwka space, the van Douwen line, the van Douwen space, and the Kunen line are all 

zero dimensional. But of these, only the Kunen line is normal. 

FACT Let X be a zero dimensional normal LCH space. Suppose that X is metacompact-then X 

is subparacompact. 

Any metric space (X, d) for which d(z,.I") :5 max(d(z, 11), d(1I,.I"» is zero dimensional. Such a metric 

is said to be nonarchimedean. They are common fare in algebraic number theory and p-adic analysis. 

Example: Suppose that X is zero dimensional and second countable-then X admits a compatible nonar

chimedean metric. Indeed, let U = {U,,} be a clop en basis for X and put d(z, 11) = m:x {lxn(.):x,,(J/}! }, 

X" the characteristic function of U", 

[Note: Suppose that X is metrizable-then de Groott hu shown that dimX = ° ift' X admits a 

compatible nonarchimedean metric.] 

EXAMPLE Let IC be an infinite cardinal-then the Cantor cube CII. is the space {O, 1}1I., where 

{OJ I} hu the discrete topology. It is a compact Hausdorff space of weight IC and is zero dimensional. 

Of course, the Cantor cube associated with IC = WI is homeomorphic to the usual Cantor set. Every zero 

dimensional space X of weight IC can be embedded in C,,' hence has a zero dimensional compactification 

(X of weight IC. 

[Let U = {Ui : i E I} be a clopen basis for X such that #(/) = IC. Agreeing to denote by Xi the 

characteristic function of Ui, call X the diagonal of the Xi-then X : X -+ C" is an embedding. The 

closure (X of the image of X in C" is a zero dimensional compactification of X of weight IC. Viewing X 

as a subspace of (X, to within topological equivalence (X is the only zero dimensional compactification 

of X with the property: For every zero dimensional compact Hausdorff space Y and for every continuous 

function I: X -+ Y there exists a continuous function (I: (X -+ Y such that (/IX = I.] 
[Note: Consider the Cantor cube Cw • Since Cw Y R, it follows that if X is zero dimensional and 

second countable, then there is an embedding X -+ R.] 

Suppose that dim X = o-then it is clear that X is zero dimensional. To what extent 

is the converse true? 

t Proc. Amer. MoUt.. Soc . ., (1956), 948-953; see also Nagata, An.d. MoUt.. 55 (1964), 181-194. 
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LEMMA H for every pair (A, B) of disjoint closed subsets of X there exists a clopen 

set U C X such that A cUe X - B, then dimX = O. 

[Let U = {Uj : i E I} be a finite open covering of X of cardinality #(1) = Ie. To 

establish the existence of a finite refinement of U by pairwise disjoint clopen sets" we shall 

argue by induction on Ie. For Ie = 1, the assertion is trivial. Assume that Ie > 1 and that 

the assertion is true for all open coverings of cardinality Ie - 1. Enumerate the elements 

of U : UI, ... , U" and pass to {U1, ... , U"-1 U U,,}, which thus has a precise refinement 

{V; Vi} b .. di" IN' th { V"-1 - U"-1 di .. 
1, ••• , "-1 Y p8.1rwtse sJolnt c open sets. otmg at Vi U are sJomt 

"-1 - " 
{ 

V"-1 - U"-1 C U 
closed subsets of X, choose a clopen set U eX: U c (X _ V"-I) u U" . Consideration 

of the covering {VI, ... , V"-1 - U, V"-1 n U} then finishes the induction.] 

PROPOSITION 2 Suppose tha.t X is zero dimensional and Lindelof-then dim X = O. 

[Let (A,B) be a pair of disjoint closed subsets of X. Given x E X, choose a clopen 

neighborhood Us C X of x such that either A nus = 0 or B nus = 0. Let {US1 } be 

a countable sub cover of {Us}-then the Uj = US1 - U Us; are pairwise disjoint clopen 
. i<i 

subsets of X and U Uj = X. Put U = st(A, {Ui}): U is clopen and A cUe X -'B. The 
j 

lemma. therefore implies that dimX = 0.] 

Take X = [0, OJ-then X is zero dimensional and compact, thus in view of Proposition 

2, dim[O,O] = O. Take next X = [O,O[-then {3X = [0,0], so dim [0 , 0[= 0 too (cf. 

Proposition 1). 

LEMMA Let X be a nonempty CRH space-then dim X = 0 iff for every pair of disjoint zero sets 

in X there exists a elopen set in X containing the one and not the other. 

Consequently, Proposition 2 is valid as it stands in the completely regular situation. Example: 

Consider [0,0] x [0, w] and conclude that the topological dimension of the Tychonoff plank is zero. 

LEMMA Let X be a nonempty CRH space-then dim X = 0 iff every zero set in X is a countable 

intersection of elopen sets. 

EXAMPLE Let" be a cardinal-then NIC is paracompact if " is countable but is neither normal 

nor submetacompact if " is uncountable. Claim: V ", dim N" = O. For this, it can be assumed that 

" is uncountable. Let Z(f> be a zero set in N"-then there exists a countable subproduct through 

which f factors, i.e., there exists a continuous 9 : NW -+ R such that f = gop, p : NIC -+ NW the 
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projection. Obviously, Z(g) = p(Z(f». Choose a sequence {V .. } of elopen sets in N'" : Z(g) = nv". Put 
Ol 

U" = p-l(V,,)-then U" is elopen in N'" and Z(f) = nu". 
" [Note: Suppose that" is uncountable-then every open subspace of N'" has topological dimension 

zero but this need not be the case of closed subspaces (cf. p. 19-10).] 

FACT Let X be a nonempty CRH space-then dim X = ° iff the real valued continuous functions 

on X with finite range are uniformly dense in BC(X). 

[There is no loss of generality in assuming that X is compact. If X is totally disconnected, use 

Stontr Weierstrass; if X is not totally disconnected, consider the functions constant on some connected 

subset of X that has more than one point.] 

It is false that unconditionally: X zero dimensional =} dimX = 0, even if X is a 

metric space (Royt). 

[Note: The topological dimension of Roy's metric space is equal to 1. Does there exist 

for each n > 1 a zero dimensional metric space X such that dim X = n? The answer is 

unknown.] 

EXAMPLE (Dowker's Example "Mit) In [0,1], write z ,... 11 iff z -11 E Q, so [0,1]/"", = II Qa . .. 
There are 2'" equivalence classes Q... Each is a countable dense subset of [0,1]. Take a subcollection 

{Qa : oe < OJ, where V oe < ° : Qa :f:. Q n [0,1]. Put Sa = [0,1] - U{Q" : oe S /3 < O} and consider the 

subspace X = {(oe,s): oe < 0,8 E Sa} of [O,O[x[O,I]-then X is zero dimensional and the claim is that 

X is normal, yet dimX > 0. To see this, form X· = Xu ({O} X [0,1]), a subspace of [0,0] x [0,1] which 

is normal. In addition, if A and B are disjoint closed subsets of X, then their closures A· and B· in X· 

are also disjoint. It follows that X is normal. If dim X = 0, then there exists a elopen set U C X such 

that [O,O[x{O} C U and [O,O[x{l} C X - U. But U· n(X - U)· =. It • and this { 
(0,0) E U· 

(0,1) E (X - U)· 
contradicts the connectedness of {O} x [0, 1]. Therefore dim X > 0. One can be precise: dim X = 1. For 

if {U} is a finite open covering of X, then V t E [0,1], there exists a neighborhood 0 of t and an oe such 

that X n (]oe, O[xO) is contained in some U, which implies that there exists a finite open covering {O} of 

[0,1] of order S 2 and an oe such that each X n (]oe, O[xO) is contained in some U. Therefore dimX S 1. 

[Note: X has a zero dimensional compactification eX and the latter has topological dimension zero 

(d. Proposition 2). So: A compact Hausdorff' .pace of zero topological dimension can have a normal 

subspace of positive topological dimension. Another aspect is that while X is zero dimensional, /3X is not. 

In fact, dimX = dim/3X (d. Proposition 1), which i. > 0, thus Proposition 2 is applicable. Here i. a final 

t 'Irans. Amer. Math. Soc. 134 (1968), 117-132; see also Kulesza, Topology Appl. 35 (1990), 

109-120. 
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remark: By appropriately adjoining to X a single point, one can destroy its zero dimensionality or reduce 

its topological dimension to zero without, in either case, losing normality.] 

Modify the preceding construction, replacing and conclude that there exists a 
{ 

[0,1] by [0,1]'" 

So by S~ 
compact Hausdorff space of zero topological dimension with a normal subspace of infinite topological 

dimension. 

FACT Suppose that dimX = 0 and X is paracompact. Let A be a closed subset of Xj let Y be a 

complete metric space--then every (bounded) continuous function f : A - Y has a (bounded) continuous 

extension F : X - Y. 

[For n = 1,2, ... , let V" be the covering of Y by open l/n balls. Let A" = {Ai,,, : i E I,,} be an open 

partition of A that refines f-1(V,,). Inductively determine an open partition U" = {Ui,,, : i E I,,} of X that 

refinesU,,_l and Vi E I" : AnUi,,, = Ai,,,. Assign to a given z E X an index i(z,n) E I,,: z E Ui(s,,,),,,. 

Choose points Yi,,, E f(Ai,,,). Observe that {Yi(s,,,),,,} is Cauchy. Put F(z) = limYi(s,,,),,,.] 

Provided that Y is a separable complete metric space, the preceding result retains its validity if only 

dim X = 0 and X is normal. 

PROPOSITION 3 Suppose that X is a nonempty paracompact LCH space-then X 

is zero dimensional iff dim X = o. 
[Since X is paracompact, X admits a representation X = 1I Xi, where the Xi are 

i 
nonempty pairwise disjoint open O'-compact (=Lindelof) subspaces of X (cf. p. 1-2). But 

obviously, X is zero dimensional iff each of the Xi is zero dimensional. Now use Proposition 

2.] 

Proposition 3 can fail for an arbitrary normal LCH space. Consider the space X of Dowker's Example 

"Mil. It is not locally compact. To get around this, let p : X - [0, O[ be the projection, form (3p : (3X -

(3[0,0[= [0,0] and put A = «(3p)-l ([0, O[). One can check that A is normal and zero dimensional. And: 

X CAe (3X ~ (3A = (3X ~ dimA = dimX > 0 (d. Proposition 1). But A, being open in (3A, is a LCH 

space. 

[Note: A zero dimensional ~ Aoo zero dimensional ~ dim(Aoo) = 0 (d. Proposition 2). So: A 

compact Hausdorff space of zero topological dimension can have an open subspace of positive topological 

dimension.] 

Let X be a CRH space. Suppose that A is a collection of subsets of X closed under the formation 

of finite unions and finite intersections. A subcollection :F C A is said to be an A-filter if (i) 0 ~ :F, (ii) 

A E :F & A C B E A ~ B E :F, and (iii) V A, B E :F : An B E:F. Example: A = all zero sets in X or 
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A = all elopen sets in X, the associated A-filters then being the zero set filters and the elopen set filters, 

respectively. 

(Fih) An A-filter F is said to be an A-ultrafilter if F is a maximal A-filter. The maximality 

of F is equivalent to the condition: IT B E A and if An B :# • V A E F, then B E F. An A-ultrafilter F 

is prime, i.e., if A and B belong to A and if AuB E F, then A E For B E F. Every A-filter is contained 

in an A-ultrafilter. 

(FiI2) An A-filter F is said to be fixed if nF is nonempty. 

(Fi13) An A-filter F is said to have the countable intersection 

{An} C F, nAn:# 0. 
n 

if for every sequence 

[Note: The zero sets in X are elosed under the formation of countable intersections. Therefore every 

zero set ultrafilter on X with the countable intersection property is closed under the formation of countable 

intersections.] 

The following standard characterizations illustrate the terminology. 

(R) Let X be a CRR space-then X is R-compact iff every zero set ultrafilter on X with 

the countable intersection property is fixed. 

(N) Let X be a CRR space. Suppose that X is zero dimensional-then X is N-compact iff 

every elopen set ultrafilter on X with the countable intersection property is fixed. 

LEMMA Let X be a nonempty CRR space. Suppose that dimX = 0 and X is R-compact-then 

X is N-compact. 

[Let U be a elopen set ultrafilter on X with the countable intersection property-then the elaim is 

that U is fixed. Choose a zero set ultrafilter Z on X : Z :J U. Take any sequence {Zn} C Z and write 

Zn = n Um", Urn" elopen. Each Umn meets every element of U, thus each Umn is in U. But U has the 
m 

countable intersection property, so n Z" = n n Urn" :# 0. Therefore Z has the countable intersection 

" " m property, hence is fixed, and this implies that U is fixed as well.] 

The converse to this lemma is false: There exist N-compact spaces of positive topological dimension. 

EXAMPLE (Mysior Space) Let X be the subspace of l2 consisting of all sequences {:n}, with 

:n rational-then X is the textbook example of a totally disconnected space that is not zero dimensional 

(ErdOs). Fix a countable dense subset D of X. For each 5 CD with #(8 n D - 5) = 2W1, choose a point 

:s E 8nD - 5 subject to: 5' :# 511 ;:; :SI :# :S"' In addition, given: EX -D, let {SI:(:)} be a sequence 

in D having limit: such that if: =:S for some 5 CD, then both 5 and D - 5 contain infinitely many 

terms of {s I: (:)}. Topologize X as follows: Isolate the points of D and take for the basic neighborhoods 

of: E X - D the sets KI:(:) = {:} U {Sl(:) : I ~ k} (k = 1,2, ... ). The resulting topology l' on X is 

finer than the metric topology. And the space X T thereby produced is a nonnormal zero dimensional LCR 
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space possessing a basis comprised of countable elopen compact sets. To see that X.,. is N-comPac:t, let 

U be a elopen set ultrafilter on X.,. with the countable intersection property. The collection {U e U : U 

elopen in X} is a elopen set ultrafilter on X with the countable intersection property, hence there exists 

a point Zo in its intersection (X is Lindelof). This Zo is then the intersection of countably many elements 

of U, thus U is fixed and 80 X.,. is N-compact. Still, dimX.,. > 0. Observe first that since D is dense in 

X.,., the frontier in X of any elopen subset of X.,. has cardinality < 2"". Consider the disjoint zero sets 

{ 
Zl = {z : IIzl/ S I} 

. Let U be a elopen subset of X.,. : Zl cUe X - Z2-then its frontier in X 
Z2 = {z : IIzll ~ 2} 

necessarily has cardinality 2'" . 

FACT Let X be a nonempty CRB space-then X is N-compact iff X is zero dimensional and there 

exists a elosed embedding X -+ II (N X [0,1]). 

There exist zero dimensional R-compact normal LCB spaces that are not N-compact. Owing to the 

lemma, such a space must have positive topological dimension (d. Proposition 3). 

EXAMPLE [Assume CH] (The Kunen Plane) The construction of the Kunen line starting from 

X = R can be carried out with no change whatsoever starting instead with X = R 2, the upshot being 

the Kunen plane Xo, a space with the same general topological properties as the Kunen line. So: Xo is a 

zero dimensional perfectly normal LCB space that is not paracompact but is first countable, hereditarily 

separable, and collectionwise normal. The topology 'To on Xo is finer than the usual topology on R2. 

And, V 5 C R2 : #(e1a 2 (5) - c1n(5» S w. It follows from this that if A and B are disjoint elosed subsets 

of Xo, then #(A n B) S w, the bar denoting elosure in R2. 

Claim: Xo is R-compact. 

[Let Zo be a zero set ultrafilter on Xo with the countable intersection property. Let Z C Zo 

be the subcollection consisting of the R 2-closed elements of Zo. Fix a point Zo e nZ and choose a 

{ 
fi-l([O, l/n]) 

continuous function fi : R2 -+ [0,1] such that fi-1(0) = {zo}. The sets· 1 are zero 
fi- ([1./n, 1]) 

sets in R2, hence are zero sets in Xo. Of course, Xo = fi- 1 ([0, l/n]) U fi- 1 ([l/n, 1]). But obviously, 

fi- 1([1/n,l]) ~ Z, thus fi-1([1/n,l]) ~ Zo and 80 fi- 1([0,1/n]) e Zo, Zo being prime. Consequently, 

{zo} = nfi-1([0, l/n]) e Zo, which means that Zo is fixed.] 
n 

Claim: Xo is not N-compact. 

[Let U C Xo be elopen-then #(U n Xo - U) S w. Therefore the plane R2 is not disconnected by 

U n Xo - U, 80 either #(U) S w or #(Xo - U) S w. Consider the collection U of all elopen U C Xo for 

which #(Xo - U) S w-then U is a e10pen set ultrafilter on Xo with the countable intersection property 

such that nU =. (every z e Xo has a countable elopen neighborhood).] 

[Note: The Kunen line Xo is R-compact (saine argument as above) but, in contrast to the Kunen 

plane, it is al80 N-compact. For this, it need only be shown that dimXo = 0. 
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Claim: Let A C Xo be countable and closed-then there exists a countable open U C Xo : A C 

U &l U = U, the bar denoting closure in a. 

[One can assume that A is closed in a. Write A = nO" = no", where the 0" are a-open and 

" " V n : 0" ::> On+1. Enumerate A: {an}, and for each n choose a compact countable open U" C Xo : a" e 
Un and Un CO". Consider U = UUn .] 

n 
To prove that dim Xo = 0, it suffices to take an arbitrary pair (A, B) of disjoint elosed subsets of Xo 

and construct a pair (U A, UB) of disjoint clopen subsets of Xo : { A C U A . Since #(A n B) :::; w, by the 
BCUB 

claim there exists a countable open 0 C Xo: AnB C 0 &l 0 = O. Pick disjoint a-open sets OA and 0B: 

. _ , with #«a - 0) - (OA UOB» :::; W (possible because it is a question {
A-OCA-OCOAca-o 

B - 0 C B - 0 C 0B C a - 0 
of a as opposed to a 2 ). Pass to a - (0 A U 0 B) and use the claim once again to choose a countable 

_ _ _ {(OAUP)n(a-o) 
open P C Xo : a - (OA U OB) C P C a - «A - 0) U (B - 0» &l P = P-then 

(OB -p)n(a-O) 

are disjoint elopen subsets of Xo containing· { A - 0 ,respectively. On the other hand, 0 is a normal 
B-O 

subspace of Xo of zero topological dimension (el. Proposition 2), so we can find disjoint elopen sets PA 

. {AnOCPACO {UA=«OAUp)n{a-O»UPA] 
and PB m Xo: . Now put . 

BnOCPBCO UB=«OB-p)n(a-O»UPB 

EXAMPLE (The van Douwen Plane) The object is to equip X = a 2 with a first countable, 

separable topology that is finer than the usual topology (hence Hausdorff) and under which X = a 2 is 

locally compact and normal and zero dimensional and R-compact but not N-compact. Let {Un} be a 

countable basis for a 2 with Uo = a 2 • Assign to each Z e a 2 the sets Ojr(z) = n{Un : n :::; Ie&lz E Un }-
n 

then the collection {Ojr(z)} is a neighborhood basis at Z in a 2 • Obviously, Z e O,(y) => Ojr(z) C 

O,(y) (V Ie ~ I). Let {za : a < 2""} be an enumeration of a 2 and put Xa = {zlI : (J < a}-then 

Xc. = a 2 (c = 2""). We shall assume that X"" = Q2. Fix an enumeration {(Aa, Ba) : a < 2""} of 

the set of all pairs (A, B), where A and B are countable subsets of a 2 with #(A n B) = 2"", arranging 

matters in such a way that each pair is listed 2"" times. Here (and below) the bar stands for closure in a 2 , 

while clc will denote the closure operator relative to the upcoming topology Tc on Xc. Define an injection 

r : 2'" - 2'" - w by the prescription 

r("Y) = min({a E 2'" - w: A-y U B-y C Xa,za E A-y n B-y} - {r«(J) : (J < "YD· 

Given a E 2'" -w, choose a sequence {Bjr(a)} C Xa : V Ie, Bjr(a) E Ojr(Za), having the property that if a = 

rC"Y), then {Bjr(a)} C Q 2 UA-yUB-y and each of Q2, A-y, and B-y contains infinitely many terms of{Bjr(a)}, 

otherwise {sjr(a)} C Q2. Topologize X = a 2 as follows: Inductively take for the basic neighborhoods of 

Za the sets Kjr(za), KJr(za) being {Za} if a e w and {za} U U K,(z",(a» if a e 2'" - w (Ie = 1,2, ... ). 
,>jr 

Needless to say, Va: Kjr(za) C Ojr(Za), and Va,(J: Za e K,(ZII) => Kjr(za) C K,(zlI) (3 Ie). Observe 

too that the Kjr(za) are compact and countable. Therefore Xc is a zero dimensional LCH space that is 

in addition first countable and separable. 
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Claim: Let S, T C Xc' Suppose that S n T is uncountable-then clc(S) n clc(T) is uncountable. 

{
ACSCA 

[There are countable A,B C R2 : _ . From the definitions, (A, B) = (Aa,Ba) for 21.11 
BCTCB 

ordinals a and, by construction, Zr(a) e clc(Aa) nclc(Ba). But r is one-to-one.] 

To establish that Xc is normal, it suffices to show that if A and B are two disjoint closed subsets 

of Xc, then there exists a countable open covering 0 = {O} of Xc such that V 0 eO: clc(O) n A = • 
or clc(O) n B = •. In view of the claim, An B is countable. Let Z e An B-then Z ~ AU B, so by 

regularity there exists an open set O~ C Xc containing Z : clc(O~) n (A U B) = t. It is equally plain 

that for any Z e R2 - An B there exists an R 2-open set 011& containing z : 011& n A = t or 011& n B = •. 
Select a countable sub collection of {011& : Z e R2 - An B} that covers R 2 - An B and combine it with 

{O~ : z e AnB}. 

Arguing as before, one proves that Xc is R-compact but not N-compact. 

[Note: The van Douwen plane exists in ZFC. But unlike the Kunen plane, it is not perfect. Reason: 

Q2 U {zr(a) : Aa U Ba C Q2} is not a normal subspace of Xc. However, every closed discrete subspace of 

Xc is countable, so Xc, like the Kunen plane, is collectionwise normal. Of course, Xc is not ,Lindelof, thus 

is not paracompact (being separable), although Xc is countably paracompact. By the way, if the same 

procedure is applied to X = R, then the endproduct is a space very different from what was termed the 

van Douwen line in §1.] 

Is it true that for every normal subspace Y eX, dim Y < dim X? In other words, 

is dim monotonic? On closed subspaces, this is certainly the case but, as has been seen 

above, this is not the case in general. 

,It is false that dim is monotonic on closed subspaces of a nonnormal X. For example, the topological 

dimension of the Mysior space is positive but it embeds as a closed subspace of some N" and dim N" = O. 

LEMMA Let X be a nonempty CRR space. Suppose that A is a subspace of X which has the EP 

w.r.t. [0, I)-then dim A $; dimX. 

PROPOSITION 4: Suppose that X is hereditarily normal-then dim is monotonic iff 
for every open U eX: dim U :5 dim X. 

One might conjecture that dim is monotonic if X is hereditarily normal. This is false: 

Pol-PoP have given an example of a hereditarily normal X that has topological dimension 

zero but which contains for every n = 1,2, ... a subspace Xn : dimXn = n. Since fiX 

t Fund. Math. 102 (1979), 137-142. 



19-11 

also has topological dimension zero (d. Proposition 1), dim is dramatically nonmonotonic 

even for compact Hausdorff spaces. 

Consider the Kunen plane Xo-then its one point compactification is hereditarily normal and has 

topological dimension zero, although Xo appears as an open subspace of positive topological dimension. 

EXAMPLE The Isbell-Mrowka space W(N} is a nonnormal LCH space. While zero dimensional, 

its ''finer" topological properties definitely depend on the choice of S. Claim: 3 S for which dim w(N) > O. 

To this end, replace N by Q[O,1] == Q n [0, 1]. Attach to each r,O < r < 1, a bijection 'r : {q E Q[O,1] : q < 
r} - {q E Q[O,1] : q > r} such that q' < q" iff 'r(q'} > 'r(q"}. Let SEQ be the collection of all sequences 

a of distinct elements of Q[O,1] satisfying one of the following two conditions: (i) lim a = 0 or lim a = 1 j (ii) 

a = t U 'r(t}(O < r < I}, where t converges to r from the left. Because [0,1] is compact, there is a maximal 

infinite collection S C SEQ of almost disjoint infinite subsets of Q[O,1]' Consider the corresponding Isbell

Mrowka space X = W(Q[O,1]}' i.e., X = S U Q[o,1]-then dimS = 0 and dim Q[O,1] = 0, yet dimX > o. 

h · d fi . f' / X [1] b {/(q) = q (q E Q[O,1]) Vi 'f h h . To see t lS, e ne a contmuous unction : - 0, y . . erl y t at t ere lS no 
/(a) = hma (a E S) 

elopen subset of X containing /-1(0} and missing /-1(1}. 

[Note: Mrowkat has shown that for certain choices of S, ~(w(N» = w(N}oo, hence dimw(N} = O. 

At the opposite extreme, Terasawa* proved that for any n = 1,2, ... or 00, it is possible to find an S such 

that the associated w(N} has topological dimension n but at the same time is expressible as the union of 

two zero sets, each having topological dimension zero.] 

LEMMA Let U be a finite open covering of X-then U has a finite open refinement 

of order :5 n + 1 iff U has a finite closed refinement of order :5 n + 1. 

[Suppose that U = {UI , •.• , Uk}. Let V = {VI,"" Vk} be a precise open refinement 

of U of order :5 n + I-then V has a precise open refinement W = {WI, . .. , Wk} such that 

'V i : Wi C Vi. And the order of W is :5 n + 1. To go the other way, let A = {AI, ... ,Ak} 

be a precise closed refinement of U of order :5 n + I-then it will be enough to produce 

a precise open refinement V = {VI"'" Vk} of U such that 'V i : Ai C Vi C Ui and 

Ail n ... n Aim #- 0 iff Vii n ... n Vim #- 0. Here i l , ... , im are natural numbers, each 

:5 k. This can be done by a simple iterative procedure. Denote by BI the union of all 

intersections of members of the collection {AI, ... , Ak} which are disjoint from Al and 

choose an open set VI : { ¢~ ~ ~I & BI n V I = 0. Denote by B2 the union of all 

t Fund. Math. 94 (1977), 83-92. 

f Topology Appl. 11 (1980), 93-102. 
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intersections of members of the collection {U I, A2, ... , Ak} which are disjoint from A2 and 

choose an open set V2 : { ¢: ~ ~ & B2 n V 2 = 0. ETC.] 

00 

COUNTABLE UNION LEMMA Suppose that X = U Aj, where the Aj are closed 
1 

subspaces of X such that V j,dimAj ~ n-then dimX ~ n, hence dim X = supdimAj. 

[Let U = {Ui} be a finite open covering of X. Put Ao = 0. Claim: There exists a 

sequence Uo,U}, ... of finite open coverings Uj = {Ui,j} of X such that Ui,O CUi but 

Ui,j C Ui,j-I & ord( {Aj n Ui,j}) ~ n + 1 

if j ~ 1. To prove this, we shall proceed by induction on j, setting Uo = U and then 

assuming that the Uj have been defined for all j < jo, where jo ~ 1. Since {Ajo n Ui,jo-d 

is a finite open covering of Ajo and since dimAjo ~ n, there exist open subsets V; C Ajo n 
Ui,jo-I of Ajo such that Ajo = UV; andord({V;}) ~ n+1. Let Wi = (Ui,jo-I-Ajo)UV;-

i 
then {Wi} is a finite open covering of X and ord( {Ajo n Wi}) ~ n + 1. The induction is 

completed by choosing the elements Ui,jo of Ujo subject to Ui,jo C Wi. By construction, 

the collection { n Ui,j} is a precise closed refinement of U = {Ui} of order ~ n + 1, so 
'>1 ,_ 

from the lemma dim X ~ n.] 

Example: dim[O,1] = 1 =? dimR = 1. 

FACT Suppose that X is normal of topological dimension n ~ I-then there exists a sequence of 

pairwise disjoint closed subspaces Aj of X such that V ;,dimAj = n. 

A CRB space X is said to be strongly paracompact if every open covering of X has a star finite open 

refinement. Any paracompact LCB space X is strongly paracompact (cf. §1, Proposition 2). Also: X 

Lindelof => X strongly paracompact and X connected + strongly paracompact => X Lindelof. Not every 

metric space is strongly paracompact (consider the star space S(IC), IC > w). 

FACT Suppose that X is normal and Y is a strongly paracompact subspace of X-then dimY ~ 

dimX. 

[The assertion is trivial if dimX = 00, so assume that dimX = n is finite. Let {U,} be a finite 

open covering of Y; let 0, be an open subset of X such that U, = Y n 0, and put 0 = U 0,. Assign , 
to each y E Y a neighborhood 0" of y in X : 0" CO-then {Y n O,,} is an open covering of Y, 

thus has a star finite open refinement 'P. Write 'P = II 'Pj, the equivalence relation corresponding to 
j 
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this partition being pi "'" P" iff there exists a finite collection of sets PI, ... , Pr in 'P with PI = pI, 

Pr = p" and PI n P:l :t= I, ... , Pr-l n Pr :t= I. Since'P is star finite, e8.ch of the 'P; is countable. Let 

Yj = U{P: P E 'P;}, where P is the closure of Pin X. Being an F(1, Yj is normal and therefore, by the 

countable union lemma, dim Yj ~ n. But Yj is contained in 0 = U 0 •. so there exists an open covering 
i 

{O.,;} of Yj such that 'V i : 0.,; C 0. ~ ord( {O.,; }) ~ n + 1. Let Vi = Y n U( Oi,; n V'P; )-then {Vi} is 
j 

a precise open refinement of {U.} of order ~ n + 1. 1 

The preceding result is false if "paracompact" is substituted for "strongly paracompact". Example: 

Consider Roy's metric space X sitting inside its zero dimensional compactification (X. 

The countable union lemma retains its validity in the completely regular situation provided the 

A; are subspaces of X which have the EP w.r.t. [0,1]. Proof: The closure of Aj in fJX is fJAj, so if 
00 

Y = U fJAj, then Y is normal and therefore, by the countable union lemma, dim Y ~ n, from which 
1 

dimX = dimfJX = dimfJY = dimY :5 n. 

[Note: According to Terasawa (cf. p. 19-11), there exists a completely regular X of topological 

dimension n such that X = Xl U X2, where Xl and X 2 are zero sets with . Therefore the {
dimXI = 0 

dimX2 = 0 
countable union lemma can fail even when the hypothesis "closed set" is strengthened to "zero set" .] 

LEMMA Let X be a nonempty CRB space. Suppose that A is a Z-embedded subspace of X-then 

dim A ~ dimX. 

[Assume that dimX ~ n. Let {Ui} be a finite cozero set covering of Ai let 0. be a cozero set in 

fJX such that Ui = An Oi and put 0 = U Oi-then 0 is a cozero set in fJX, so by the countable union 
i 

lemma, dimO :5 dimfJX = dimX :5 n. Therefore there exists a cozero set covering {Pi} of 0 of order 

:5 n + 1 such that 'V i : Pi C Oi. Consider the collection {A n Pi}.] 

Recall: Every subspace of a perfectly normal space is perfectly normal. So: X perfectly 

normal => X hereditarily normal. The conjunction perfectly normal + paracompact is 

hereditary to all subspaces. Reason: Every open set is an F". and an F". in a paracompact 

space is para.compa.ct. For example, the class of stratifiable spaces or the class of CW 

complexes realize this conjunction. 

[Note: The ordinal space [0,0] is hereditarily normal but not perfectly normal and its 

product with [0,1] is normal but not hereditarily normal.'] 

4.] 

PROPOSITION S Suppose that X is perfectly normal-then dim is monotonic. 

[Apply the countable union lemma to an open subset. of X and then quote Proposition 
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Working under CH, the procedure for manufacturing the Kunen line or the Kunen plane is just a 

specialization to R or R 2 of a general "machine" for refining topologies. Thus suppose that X is a set 

of cardinality {} equipped with a Hausdorff' topology -r which is first countable, hereditarily sep~able 

and perfectly normal-then a Kunen modification of -r is a topology K -r on X finer than -r which is 

zero dimensional, locally compact, first countable, hereditarily separable and perfectly normal (but not 

Lindelof) lIuch that each z E X has a countable clopen neighborhood and V sex: #(cl,.(S) -clK,.(S» ~ 

w. 

[Note: Any -r having the stated properties admits a Kunen modification K-r (d. p. 1-16).] 

FACT [Assume CH] If dim(X,-r) ;:: n, then dim(X,K-r) ;:: n -1 and if dim(X,-r) ~ n, then 

dim(X,K-r) ~ n. 

PROPOSITION 6 The statement dimX < n is true iff every neighborhood finite 

open covering of X has a numerable open refinement of order ~ n + 1. 

[Let U be a neighborhood finite open covering of X-then U is numerable, hence has a 

numerable open refinement that is both neighborhood finite and O"-discrete, say V = UVn 
n 

(cf. §1, Proposition 12). Choose a partition of unity {ltv} on X subordinate to V. Put 

In = E ltV: The collection {/;I(]O, I])} is a countable cozero set covering of X, thus 
VEV,. 

has a countable star finite cozero set refinement {Ok} (cf. p. 1-25). Fix a sequence of 

integers 1 = nl < n2 ... : Ok n 0, = 0 if k ~ ni and I > ni+2 (i = 1,2, ... ). The subspace 

U Ok is a cozero set and so by the countable union lemma its topological dimension is 
k<n2 
~-n. Accordingly, there exists a covering WI = {Wt, ... , Wn1 , W~l+1"'" W~2} of U Ok 

k~n2 

{ 
Wk C Ok (k < nl) . 

by cozero sets of order ~ n+ 1 such that WL C Ok (nl-< k ~ n2)" Next, there eXlsts a 

covering W2 = {Wn1+1,"" Wnu W~2+1"'" W~a} ofW~l+1 U .. ·UW~2 UOn2 +1 U·· 'UOna 

. {Wk C WL (nl < k < n2) 
by cozero sets of order ~ n + 1 such that WL COle (n2 < k < ns)' Iterate to get a 

covering W = {Wle} of X by cozero sets of order < n + 1 such that V k : Wle C Ole. The 

collection U U n Wle is a numerable open refinement of U of order ~ n + 1.] 
le 

Suppose that X is paracompact-then it follows from Proposition 6 that dimX ~ n 

iff every open covering of X has an open refinement of order ~ n + 1. 

Since cozero sets are Z-embedded and since dim is monotonic on Z-embedded subspaces, Proposition 

6 goes through without change in the completely regular situation provided one works with numerable 

open coverings and numerable open refinements. 



19-15 

SUBLEMMA The statement dim X :5 n is true iff every open covering {UI , ••• , Un+2} 
n+2 

of X has a precise open refinement {VI, ... , Vn+2} such that n Vi = 0. 
I 

[When turned around, the nontrivial assertion is that if dim X > n, then there exists 

an open covering {UI,"" Un+2} of X, every precise open refinement {Vi, ... , Vn+2} of 
n+2 

which satisfies the condition n Vi =F 0. But dim X > n means that there exists an open 
I 

covering { 0 1, ... ,Ok} of X that has no precise open refinement of order :5 n+ 1. By making 

at most a finite number of replacements, matters can be arranged so as to ensure that if 

{PI, ... , Pk} is a precise open refinement of {O l , ... ,Ok}, then Pil n· .. nPim =F 0 whenever 

Oil n·· ·nOim =F 0. Here i l , ... , im are natural numbers, each:5 k. We can and will assume 
n+2 k 

that n Oi =F 0. Put Ui = Oi (i :5 n+ 1), Un+2 = U Oi-then {UI,"" Un+2} is an open 
I n~ 

covering of X with the property in question. In fact, let {VI, ... , Vn+2} be an open covering 

of X such that \f i : Vi CUi. The covering {VI, ... , Vn+I, Vn+2 n On+2, ... , Vn+2 n Ok} is 
n+2 n+1 

a precise open refinement of {Ob"" Ok} and n Vi :::> ( n Vi) n (Vn+2 n On+2) =F 0.] 
I I 

LEMMA The statement dimX :5 n is true iff for every collection {(Ai, Bi) : i = 

1, ... ,n + I} of n + 1 pairs of disjoint closed subsets of X there exists a collection {4>i : 

i = 1, ... , n + I} of n + 1 continuous functions 4>i : X -+ [0, If such that { ~: I~: ~ and 

n+1 n 4>-;1 (1/2) = 0. 
I 

n+1 n+2 
[Necessity: Put Bn+2 = U Ai-then n Bi = 0, so there exists an open covering 

I I 
n+2 

{UI,"" Un+2} of X such that Bi C Ui and n Ui = 0. Since Ai C Un+2, we can replace 
I 

Ui by Ui - Ai and force Ai C X - Ui. Fix a precise closed refinement {CI , ... , Cn+2} 

of {UI , ••• , Un+2 } with Bi C Ci. Let 4>i : X -+ [0,1] be a continuous function such that 
. { 4>i IAi = 0 nH -I 

4>ilX - Ui = 0 and 4>ilCi = 1. ObViously, 4>ilBi = l' And finally, Q 4>i (1/2) C 

n+1 n+2 n (Ui - Ci) C n Ui = 0. 
I I 

Sufficiency: Let {UI , ••• , Un+2 } be an open covering of X. Fix a precise closed refine-

ment {CI , ... , Cn+2 } for it and let {~: ~i - Ui (i = 1, ... , n + 1). The pairs (Ai,Bi) 

t · f h h h h"l.. h d h I { Oi = {x : 4>i(X) < 1/2} sa IS y our ypot eses, so c oose t e oyi as t ere an t en et Pi = {x : 4>i(X) > 1/2} . 

n+1 n+1 n+1 n+1 
Note that n (X - (Oi U Pi)) = n 4>-;1(1/2) = 0, hence that X = U Oi U U Pi. Put 

I I I I 
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n+l 
Vi = Pi (i :5 n+l), Vn+2 = un+2n U Oi-then {Vi, ... , Vn+2 } is a precise open refinement 

1 
n+2 

of {Ul, ... , Un+2 } such that n Vi = 0. The 8ublemma therefore implies that dimX :5 n.] 
1 

The characterization of dim X =:; n given by the lemma extends to the completely regular situation 

so long as it is formulated in terms of disjoint pairs (Ai, Bi) of zero sets. 

When the context dictates, we shall abuse the notation and write S n for the frontier 
of [0,1]"+1. 

ALEXANDROFF'S CRITERION The statement dim X :5 n is true iff every closed 

subset A c X has the EP w.r.t. S". 

[ . G' I C(A Sn) I (/ +) I {Ai = {x : li(X) = O} h NeceSSIty: lven E , : = 1,· .. ,In+l ,et Bi = {x : li(X) = 1}-t en 

A is the union U(Ai UBi) and the preceding lemma is applicable to the pairs (Ai,Bi). 
i 

The corresponding 4>; : X -+ [0, 1] combine to determine a continuous function 4> : X -+ 
[o,l]n+t, the restriction of which to A defines an element t/J E C(A, sn). Put H(x, t) = 
(1- t)t/J(x) + tl(x) «x,t) E IA)-then H E C(IA,Sn), so t/J and I are homotopic. On 

the other hand, Sn is a retract of [0,1]n+1 punctured at its center (1/2, ... ,1/2). Since 
n+l n 4>-;1(1/2) = 0, it follows that t/J has an extension'll E C(X, Sn). But A has the HEP 

"-- 1 
w.r.t. Sn (cf. p. 6-41), therefore I has an extension FE C(X,S"). 

Sufficiency: Consider an arbitrary collection {(Ai, Bi) : i = 1, ... , n + I} of n + 1 pairs 

of disjoint closed subsets of X. Put A = U(Ai UBi). Choose Ii E C(A, [0, 1]) such that 
i { ~: I~: ~ and then combine the Ii to determine a continuous function I : A -+ Sn. By 

assumption, I has an extension F E C(X,S"). Write 4>i for the ith component of F-then 
n+l 

4>ilA = Ii and n 4>-;1(1/2) = 0. That dimX :5 n is thus a consequence of the preceding 
1 

lemma.] 

EXAMPLE 'lake for X the long ray L+-then dimX = 1. 

[Since dim X > 0, one need only show that dim X =:; 1. But real valued continuous functions are 

constant on "tails", so Alexandroff's criterion is applicable.] 

00 

FACT. Let X be a compact Hausdorff space. Suppose that X = U Aj, where the Aj are closed 
1 

subspaces of X such that V i '¢ j : dim(Ai n Aj) < n-then each Aj has the EP w.r.t. sn. 
00 

[Recall that if X is a connected compact Hausdorff space admitting a disjoint decomposition U Aj 
1 

by closed subspaces Aj, then Aj = X for some j.] 
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Application: Because the identity map sn -+ sn cannot be extended continuously over [0, l]n+l, 

Rn+l cannot be covered by a sequence {Kj} of compact sets such that V i ¢ j : dim(Ki n Kj) < n. 

[Note: With more work, one can do better in that "compact" can be replaced by "closed" (d. 

p.I9-24).] 

The compactness assumption on X in the preceding result is essential. Example: Take for X a one 
00 

dimensional connected locally compact subspace of the plane admitting a disjoint decomposition U Aj 
.. 1 

by nonempty closed proper subspacee Aj, fix two indices i ¢ j, and consider the continuous function 

I : Ai U Aj -+ SO which is 0 on Ai and 1 on Aj. 

Using Alexandroff's criterion, CantweUt proved that the statement dim X ~ n is true iff the closed 

unit ball in BC(X, Rn+l) is the convex hull of its extreme points (n = 1,2, ... ). 

[Note: Let X be a nonempty CRH space-then the extreme pointe of the closed unit ball in 

BC(X, Rn+l) are the functions whose range is a subset of sn and it is always true that the closed 

unit ball in BC(X, Rn+l) is the closed convex hull of its extreme points (n = 1,2, ... ), a purely topolog

ical assertion. By contrast, the closed unit ball in BC(X) is the closed convex hull of its extreme points 

iff dimX = 0.] 

In the completely regular situation, there is only a partial analog to Alexandroff's criterion. 

(1) Suppose that every zero set A C X has the EP w.r.t. Sn-then dimX 5 n. Proof: 

Since for any pair (A, B) of disjoint zero sets there exists a continuous function I : X -+ [0,1] such that 

{ IIA = 0, the argument used in the normal case can be transcribed in the obvious way. 
liB =1 

(2) Suppose that dimX ~ n-then every subset A C X which has the EP w.r.t. [0,1] has 

the EP w.r.t. sn. Proof: Since dim X = dim,8X, ,8A, the closure of A in ,8X, has the EP w.r.t. sn. 

[Note: This need not be true if A is a zero set. Example: Take, after Terasawa (d. p. 19-11), 

X = Xl U X" where dimX = 1 and Xl and X, are zero sets with -then either Xl or { 
dim Xl = 0 

dimX, = 0 
X, fails to have the EP w.r.t. [0,1] (otherwise dimX = max{dimX1,dimX,}). To be specific, assume 

that it is Xl. Put A = Xl and choose a continuous function t/J : A -+ [0,1] that does not extend to a 

continuous function ~ : X -+ [0, 1]-then I = (t/J, 0) is a continuous function A -+ S1 that does not extend 

to a continuous function F : X -+ S1.] 

Let Y be a topological space-then a map I E C(X, Y) is said to be universal if 

V 9 E C(X, Y) 3 x EX: I(x) = g(x). A universal map is clearly surjective. Note too that 

if there is a universal map X -+ Y, then every element of C(Y, Y) must have a fixed point. 

t Proc. Amer. Math. Soc. 19 (1968), 821-825. 
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LEMMA A continuous function I : X -+ [0,1]"+1 is universal iff the restriction 

1-1(S") -+ S" has no extension F E C(X,S"). 
[Necessity: To get a contradiction, suppose that there exists a continuous function 

F: X -+ S" which agrees with I on 1-1(S") and then postcompose F with the antipodal 

map S" -+ S". 

Sufficiency: To get a contradiction, suppose that there exists a continuous function 

g : X -+ [0,1]"+1 such that I(x) =1= g(x) for every x E X and define a continuous function 
F: X -+ S" by setting F(x) equal to the intersection of S" with the ray containing I(x) 

which emanates from g(x).] 

It therefore follows that dimX ;::: n iff there exists a universal map I : X -+ [0,1]". 

Example: dim[O, 1]" ;::: n. Indeed, the Brouwer fixed point theorem says that the identity 

map [0,1]" -+ [0,1]" is universal.. Example: dim[O, 1]" > n ::} dimR" > n. 

The equivalence dim X ~ n iff there exists a universal map I : X - [0,1]" holds for any completely 

regular X. 

LEMMA Let A be a closed subset of X. Suppose that dim B :5 n for every closed 

subset B C X which does not meet A-then each I E C(A, S") has an extension F E 

C(X,S"). 
[Choose an open U :> A and a 4> E C(U,S") such that 4>IA = I. Choose an open 

V: A eVe V c U-then V - V is closed in X - V, so Alexandroff's criterion says there 

exists a ~ E C(X - V, S") : ~IV - V = 4>IV - V. Consider the function F E C(X, S") 

( ) _ { 4>( x ) (x E V) ] 
defined by F x - ~(x) (x E X - Vr 

CONTROL LEMMA Let A be a closed subset of X. Suppose that dimA < nand 

that dim B :5 n for every closed subset B C X which does not meet A-then dim X :5 n. 

[Fix a closed subset Ao C X and take an 10 E C(Ao,S"). Claim: 10 has an extension 

I E C(A U Ao, S"). Assuming that An Ao :j:. 0, in view of Alexandroff's criterion, the 

restriction 10lAnAo has an extension Fo E C(A,S"). Define I E C(AUAo,S") piecewise: 

{~I:t ~o' Now let B be a closed subset of X disjoint from AU Ao. By hypothesis, 

dimB :5 n so the lemma implies that I has an extension F E C(X,S"). But FIAo = lo. 
Invoke Alexandroff's criterion to conclude that dimX < n.] 

Suppose that A c X is closed-then the quotient X/A is a normal. Hausdorff space 

and it follows from the control lemma that dimX = ma.x{dimA,dimX/A}. 
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[Note: H A is a closed G6, then X - A is an open F", thus is normal, and dimX/A = 

dim(X - A).] 

The position o( quotients in the completely regular situation is complicated by the (act that X/A 

need not be completely regular even under favorable circumstances, e.g., when A has the EP w.r.t. [0,1] 

or A is closed. Still, dimX/A is meaningful (cf. p. 19--2) and nothing more than that is really needed. 

Given a nonempty A C X, write *A (or the image of A under the projection p : X - X/A. 

LEMMA Let X be a nonempty CRH space. Suppose that A is a nonempty subspace of X-then 

dim X/A :s dimX. 

[Assume that dimX :s n. Take a finite cozero set covering U = {Ul, ... , Uk} of X/A. Choose a 

continuous (unction <p : X/A - [0,1] such that <p-l(]O, 1]) = n{Ui : *A E Ui}. Let q = <P(*A). Put 
i 

Vo = {z : <p(z) > q/2}, Vi = Uj - {z : <p(z) ~ q} (i > O)-then V = {Vo, ... , Vk} is a finite cozero 

set refinement of U and *A ¢ Vi (i > 0). The collection p-l(V) = {p-l(Va), ... ,p-l(Vk)} is a finite 

cozero set covering of X, hence has a precise cozero set refinement W = {Wo, ... , Wk} of order :s n + 1, 

which in turn has a precise zero set refinement Z = {Zo •... , Zk} of order :s n + 1. Since Zi and X - Wi 

are disjoint zero sets, there exists a continuoWl function <Pi : X - [0,1] with I I - • But {
<P'IZ'-1 

<piIX-Wj =0 
A C Zo and A n Wi =. (i > 0). Therefore each <Pi factors through X/A to give a continuous function 

Wi : X/A - [0,1]. The collection {wil GO, I])} is a finite cozero set refinement of U of order :s n + 1.] 

LEMMA Let X be a nonempty CRH space. Suppose that A is a nonempty subspace of X which 

has the EP w.r.t. [O,I]-then dimX = max{dimA,dimX/A}. 

[The point here is that every finite cozero set covering of A is refined by the restriction to A of a 

finite cozero set covering of X (d. §6, Proposition 4).] 

The relation dim X = max{ dim A, dim X/A} need not hold if A is merely Z-embedded in X. Indeed, 

Polt has constructed an example of a completely regular X having the following properties: (i) dimX > 0; 

{ 
dimXl = 0 { Xl = Ul U D 

(ii) X = Xl UX2, where Xl and X2 are zero sets with. ; (iii) , where Ul and 
d1mX2 = 0 X2 = U2 U D 

U2 are cozero sets and D is discrete; (iv) Ul U U2 is a countable dense subset of X. Consider A = Ul U U2. 

PROPOSITION., Suppose that X = Y U Z, where Y and Z are normal-then 

dimX ~ dimY +dimZ + 1. 

[There is nothing to prove if either dimY = 00 or dimZ = 00, so assume that 

dim Y ~ r and dim Z < 8. Owing to the controllemma, it will be enough to show that 

t Fund. Math. 102 (1979), 29--43. 
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dim Y ~ r + s + 1. Let U = {U.} be a finite open covering of Y. Since dim Y ~ r, 

there exists a collection V = {V;} of open subsets of Y such that V; CUi, Y C U V;, and 
i 

ord( {Y n V;}) ~ r + 1. Put D = Y - U V;. Because dim D ::; s, there exists a closed 
i 

covering A = {Ai} of D of order < s + 1 such that Ai CUi. Without changing the order, 

expand A to a collection W = {Wi} of open subsets of Y such that Ai C Wi CUi. The 

union V U W covers Y, refines U, and is of order < r + 1 + s + 1.] 

[Note: When X is metrizable, there is another way to argue. Assume: {:: ~ : -

{
y {s" then every closed subset of Z has the EP w.r.t. Sr , thus every closed subset of X 

has the EP w.r.t. S .. * Sr = S .. +r+l (d. p.6-43).] 

n 

By way of an application, suppose that X is hereditarily normal and X = U Xi, where 
o 

Vi: dimXi ~ ~then dim X < n. 

This remark can be used to prove that dimRn ~ n, from which dimRn = n (d. 
p. 19-18). Thus suppose that n > 1 and that 0 ~ m ~ n. Denote by Q:!t the subspace of 

R n consisting of all points with exactly m rational coordinates-then R n = Q~ U ... U Q:. 

Claim: \1m, dimQ:!t = O. This is immediate if m = n (cf. Proposition 2), so assume that 

m < n. For any choice of m distinct natural numbers it, ... , im , each ~ n, and any choice 
n 

of m rational numbers rl, ... , r m, the space n Ri, where Rij = {r j} for j = 1, ... ,m and 
i=1 

n 

Ri = R for i -f:. i j, is a closed subspace of R n. Therefore Q:!t n n Ri is a closed subspace of 
i=l 

n 

Q:!t. On the other hand, Q:!t n n Ri is homeomorphic to the subspace of R n
-

m consisting 
i=1 

n 
of all points with irrational coordinates, hence dim(Q:!t n n Ri) = 0 (cf. Proposition 2). 

i=l 
n 

Since the collection of all sets of the form Q:!t n n Ri is a countable closed covering of 
i=1 

Q:!t, the countable union lemma implies that dim Q:!t = o. 

FUNDAMENTAL THEOREM OF DIMENSION THEORY The topological dimension 

of R n is exactly n. 

One consequence is the evaluation dim[O,1]n = n. Corollary: Take X = Sn-then 

dimX = n. In fact, X = Xl U X 2 , where Xl and X 2 are closed and homeomorphic to 

[o,1]n. . 
. . {dim(Q: U··· U Q:!t) = m 

Another consequence IS the evaluatIon dim(Q:!t U ... U Q:) = n _ m' 
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EXAMPLE [Assume CH] Take X = [0, 1]"-then the topological dimension of X in any Kunen 

modification of its euclidean topology is n - 1 (d. p. 19--14). 

FACT Let X and Y be normal. Let A - X be a closed embedding and let 1 : A - Y be a 

continuous function. Assume: dimX :5 n II; dim Y :5 n-then dim(X UJ Y) :5 n. 

[Use the conbollemma (X UJ Y is a normal Hausdorff space (d. p. 3-1».] 

Application: If X is obtained from a normal A by attaching n-cells, then dim X = n provided that 

dim A :5 n and the index set is not empty. 

[X contains an embedded copy of B" which is strongly paracompact, thus a priori, dim X ~ n (d. 

p. 19--12).] 

EXAMPLE (CW Complexes) Let X be a CW complex-then by the countable union lemma, 

dimX = supdimX(") and V n,dimX(") :5 n. Therefore the combinatorial dimension of X is equal to 

the topological dimension of X. 

FACT Suppose that X is normal. Let.4. = {Aj : j E J} be an absolute closure preserving closed 

covering of X such that V j, dimAj :5 n-then dim X :5 n, hence dim X = supdimAj. 

[Use Alexandroft"s criterion. Let A be a closed subset of X, take an 1 E C(A, S"), and let :F be 

the set of continuous functions F that are extensions of 1 and have domains of the form A U XI. where 

XI = UAi (1 C J). Order:F by writing F' :5 F" iff F" is an extension of F'. Every chain in:F has an 
i 

upper bound, so by Zorn. :F has a maximal element Fo. But the domain of Fo is necessarily all of X and 

FolA = I.] 

EXAMPLE (Vertex Schemes) Let K = (V, E) be a vertex scheme-then one can attach to Kits 

combinatorial dimension dim K. as well as the topological dimensions of IKI (Whitehead topology) and IKlb 

(barycentric topology). The claim is that these are all equal. Note that in any event, if tT is an n-simplex of 

{
dim IKI > dimK 

K, then dim ItTl = n, so, ItTl being a closed subspace of both IKI and IKIIi. . -. . Regarding 
dim IKlb ~ dim K . 

the inequalities in the opposite direction, first observe that {ltTl} is an absolute closure preserving closed 

covering of IKI, thus in this case the preceding result is immediately applicable. Turning to IKIIi. {ltTl} 

is still closure preserving. To exploit this, conside~ the n-skeleton K("). Assertion: V n, dim IK(") I" :5 n. 

Obviously, dim IK(O)III = o. Suppose that n ~ 1 and dim IK(,,-l)lb :5 n - 1. Let E" be the set of 

n-simplexes of K. The collection {(tT) : tT e E,,} is an open covering of IK(")\I, -IK(,,-l)III' Write (tT) = 

U Acri, where the Acrj C ItTl are compact. The collection {Acr; : tT e E,,} is discrete. Let Aj be its union
j 

then dimAj :5 n. Finish the induction via the countable union lemma: IK(")lb = IK(,,-l)lb U UAj. 
j 
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[Note: It is therefore a corollary that the combina.torial dimension of IKI viewed as a CW complex 

is equal to dim K.] 

Let X be an n-manifold. Since compact subsets of a nonempty CRB space have the EP w.r.t. [0,1] 

and since X contains a compact subset homeomorphic to [0,1]", of necessity dimX ~ n, the euclidean 

dimension of X. To reverse the inequality dimX ~ n when X is paracompact or, equivalently, metrizable 

(cf. §1, Proposition 11), one can assume that X is connected. But then X is second countable (d. p. 1-

2), thus admits a covering by a countable collection of closed sets, each of topological dimension n, 80 

dimX:5 n. 

[Note: Using the combinatorial principal ¢, Fedorchukt has constructed a perfectly normal n

manifold X such that n < dimX.] 

LEMMA R n is homogeneous with respect to countable dense subsets, i.e., if A and B 
are two countable dense subsets of R n, then there exists a homeomorphism f : R n ~ R n 

such that f(A) = B. 

PROPOSITION 8 Let X be a subspace of Rn-then dimX = niff X has anonempty 

interior. 

[Suppose that the interior of X is empty. Since R n - X is dense in R n, there exists a 

countable set A eRn - X : A = R n. Choose a homeomorphism f : R n ~ R n such that 

f(A) = Q:-then f(X) C U Q~, which gives dimX ~ n - 1.] 
m<n 

It follows from this result that if X is a subspace of [0, l]n or sn, then dimX = n iff 

X has a nonempty interior. 

SUBLEMMA Suppose that X is Lindelof. Let 0 = {OJ be a basis for X-then for 

every pair (A, B) of disjoint closed subsets of X there exists an open set P C X and a 

sequence {OJ} C 0 such that A C P c P C X - Band frP C UfrOj. 
j 

[Given x E X, choose a neighborhood Oz E 0 of x such that either An Oz = 0 
or B n Olll = 0. Let {OJ} be a countable subcover of {Oz}' Divide {OJ} into two 

sub collections {On and {O~'} according to whether OJ does or does not meet A. Put 

{ Pi=O~- uo; {P=UPi 
j<i ~ -then Q U' Q are disjoint open subsets of X and A C P C PC· 

Q. = O~I - U O· = i , , .<. J i J_' 
X - B, with fr P eX - (PU Q). Let x EX - (PU Q). Denote by S the first element of the 

t Topology Appl. 64 (1993), 221-239; see also Math. SbomiJ: 186 (1995), 151-162. 
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sequence ~, a;, 0;, a;, ... that contains x. H S = 0:, then x ¢ Pi and x ¢ a; (j < i), 
so x E fr 0ii if S = 0:', then x ¢ Qi and x ¢ l1; (j ~ i), so x E fr 0i'. Therefore 

x E U fr 0i u U fr 0i' or still, x E U fr OJ.] 
i i j 

LEMMA Suppose that X is Lindelof. Let 0 = {O} he a basis for X such that 

V 0: dimfrO ~ n -I-then dimX ~ n. 

[Let U = {Ui} be a finite open covering of Xi let A = {Ai} be a precise closed 

refinement of U. Use the sublemma and for each i, choose an open set Pi C X and a 

sequence {Oi,j} C 0: Ai C Pi C Pi C Ui and frPi C UfrOi,j. Put D = UfrPi. The 
j i 

countable union lemma implies that dimD ~ n - 1, so there exists a collection V = {Vi} 
of open subsets of X such that Vi CUi, D c U Vi, and ord( {Vi}) ~ n. Write Bi in 

i 

place of Pi - (uV U U Pj). Since the Bi are pairwise disjoint, it follows that the collection 
j<i 

{Bi} U {Vi} is a finite closed refinement of U of order ~ n + 1.] 

PROPOSITION 9 Let U be a nonempty, nondense open subset of R R-then dim fr U = 

n-1. 

[Suppose that U is bounded. In this case, U has a basis consisting of sets 

homeomorphic to itself, so if dimfrU < n - 1, then by the lemma, dimU ~ n - 1, a 

contradiction. 

Suppose that U is not bounded. Fix a point x in the interior of the complement 

of U and choose an open ball B centered at x which is entirely contained therein. The 

associated inversion R R - {x} -+ R R - {x} carries U onto a nonempty open set 0 C 

B. Obviously, frO - {x} is homeomorphic to frU. On the other hand, by the above, 

dim fr 0 = n - 1. So, from the control lemma, dim fr U = n - 1.] 

LEMMA The following conditions are equivalent. 

(1) X can be disconnected by a closed subset of topological dimension ~ n. 

(2) X contains a nonempty, nondense open subset whose frontier has topological 

dimension ~ n. 

(3) X - Au B, where A and B are closed proper subsets of X such that 

dim(A n B) ~ n. 

Take X = RR-then, in view of Proposition 9, RR cannot he disconnected. by a closed 

subset of topological dimension ~ n - 2. The same is true of [0, I]R of SR. 
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Let X be a LCH space. Suppose that X is connected and locally connected-then X is said to be 

n-solid (n ~ 1) if for every z E X and for every neighborhood U of z there is a connected relatively 

{
VCU -

compact neighborhood V of z such that _ and V cannot be disconnected by a closed subset 
dim V > n 

of topological dimension :S n - 2. Examples: Rill, [O.I]Il. and Sill aze n-solid. 

[Note: A LCH space X that is both connected and locally connected is necessazily I-solid. Special

ization of the azgument infra then leads to the conclusion that X does not admit a disjoint decomposition 
00 

U Aj by nonempty closed proper subspaces Aj. If X is compact, then the assumption of local connected-
1 

ness is unnecessazy but simple examples show that it is not superfluous in general.] 

FACT Suppose that X is n-solid and perfectly normal-then X cannot be covered by a sequence 

{Ai} of nonempty closed proper subsets such that Vi ¢ ; : dim(Ai n Ai) :S n - 2. 
00 

[Proceed by contradiction, so X = U Ai, where the Ai satisfy the conditions set forth above. Claim: 
1 

There exists a sequence {zo. Z1 •.•• } C X subject to: (1) Zi E Vs, Vs as in the definition of "n-solid" i (2) 

- -..:..- - { V_I = X nOO 
-V; : Vi rt. Ai; (3) Vi C Vi-Ii (4) Vi nAi = •. Here . Granted the claim, Vi =', an 

Ao =. 0 
impossibility. The z, can be constructed inductively. Start by fixing an index ;0 such that the interior of 

Aio is not empty (Bai",e). Choose a point Zo in the frontier of the interior of Ajo and take a neighborhood 

Vo of zo as in the definition of "n-solid"-then the pair (zo, Vo) satisfies (1)-(4). Given Zi and Vs (i > 0), 

look at a component Y of Vs - Ai+!. Show that Y is not a subset of any Ai and then get Zi+! and Vs+! 

by repeating the process used to get Zo and Vo.] 

[Note: Proposition 5 is tacitly used at several points. When n = 1, the assumption of perfect 

normality plays no role, hence can be dropped.] 

LEMMA Let X be a closed subspace of R Rj let Z EX-then z belongs to the frontier 

of X iff z has a neighborhood basis {U} in X such that V U : X - U has the EP w.r.t. 
SR-l. 

[Necessity: Let z be an element of the frontier of X. Assuming that z is the origin, 

put U = X n EBR (E > 0). To simplify, take E = 1. Fix a point Zo E BR - X and write 

ro for the radial retraction DR - {zo} -+ SR-l. Choose an f E C(X - U,SR-1). Since 

A = (X - U) n SR-1 is a closed subset of SR-1, Alexandroff's criterion implies that flA 
can be extended to a continuous function g : SR-l -+ SR-l. The function F : X -+ SR-l 

defined by {FFIIXU - U = f is then a continuous extension of f to X. 
= goro 

Sufficiency: Let z be an element of the interior of X. Assuming that z is the origin, 

fix an E > 0 : f DR eX. Let U be a neighborhood of z in X : U C f BR-then the claim 

is that there exists an f E C(X - U,SR-l) that has no extension F E C(X,SR-l). To see 

this, identify the frontier of E DR with SR-1 and consider the projection X - U -+ SR-l 
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determined by x which, if extendible, would lead to a retraction of t. DR onto its frontier.] 

Let X and Y be closed subspaces of R R-then the characterization provided by the 

lemma tells us that any homeomorphism f : X -+ Y necessarily carries the frontier of X 
onto the frontier of Y .. 

THEOREM OF INVARIANCE OF DOMAIN Let U be an open subset of Rn-then 
every continuous injective map U -+ R R is an open embedding. 

This result does not extend to' an infinite dimensional normed linear space X. Indeed, for such an 

X, there always exists an embedding 1 : X - X that is not open and there always exists a bijective 

continuous map I: X - X that is not a homeomorphism (van Millt). 

FACT Let 1 : R" - R" be continuous and locally one-to-one. Assume that II/(z)1I - 00 as 

IIzll - oo-then I(R") = R". 

Let X and Y be n-manifoldsj let {~~;. and suppose that f : U -+ V is a 

homeomorphism-then from the domain invariance of R n, U open in X => V open in 

Y. Corollary: Homeomorphic topological manifolds ha.ve the same euclidean dimension. 

Let X be a CRH space. Suppose that dimX = n (n ~ I)-then X is said to be a Cantor n-sp&Ce 

if X cannot be disconnected by a closed subset of topological dimension ~ n - 2. Since dime = -1, a 

Cantor n-space is necessarily connected. For example, R" is a Cantor n-sp&ee. So too are [0,1]" and S". 

The tubular arrangement 

is a Cantor 2-space. It remains connected after removal of the origin but what's left is no longer path 

connected. 

FACT Suppose that X is compact, with dimX = n (n ~ I)-then X contains a Cantor n-space, 

thus X has a component of topological dimension n. 

[There exists a closed subset A C X and a continuous function I: A - S,,-l that has no continuous 

extension F : X - S,,-l. Use Zorn and construct a closed subset BJ C X such that (i) 1 does not have 

a continuous extension to A U B J and (ii) 1 does have a continuous extension to A U B for each closed 

t Proc. Amer. Ma.th. Soc. 101 (1987), 173-180. 
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proper subset B of B /. In view of condition (i), dim B / = n. Claim: B I is a Cantor n-space. Assume not 

and write B I = B' U B", where Bt and B" are closed proper subsets of B I with dim(B' n B") :S n - 2. 

On account of condition (ii), I has a continuous extension { I' to Au B' . Therefore I has a continuous 
I" to AUB" 

extension to Au B I (d. Proposition 15). Contradiction.] 

[Note: One cannot expect in general that a noncom pact X will contain a compact Cantor n-space. 

Reason: For each n ~ 1, there exists a zero dimensional X of topological dimension n (consider an 

"n-dimensional" variant of Dowker's Example "M").] 

Suppose that X is compact and perfectly normal, with dim X = n (n ~ 1). Denote by Cx the union 

of all Cantor n-spaces in X-then dim(X - Cx) :S dimX but if n > 1 equality can obtain even when X 

is metrizable (Polt). 

FACT Suppose that X is a compact connected homogeneous ANR of topological dimension n ~ 1-

then X is a Cantor n-space. 

[Note: Is such an X actually an n-mamfold? This is true if n = 1 or 2 (Bing-Borsukt ) but is a 

mystery if n > 2. The three dimensional case is related to the Poincare conjecture (Jakobschell ).] 

MARDE§IC FACTORIZATION LEMMA Let X and Y be compact Hausdorff spaces

then for every f E C(X, Y) there exists a compact Hausdorff space Z with { ~~Z~ ~~j~ X 

and functions { ~ ~ g~;::~ such that f = hog and g( X) = Z. 

[Assume that dimX = n is finite and wt Y ~ w. Fix a basis V for Y of cardinality 

wt Y. Denote by V the collection of a.ll finite open coverings of Y made up of members of 

V and put Uo = ,-I (V). Inductively define a sequence UJ, U2, ... of collections of finite 

open coverings of X by assigning to each pair {~:, E Ui-l a finite open covering U of X 

of order ~ n + 1 that is a star refinement of both U' and U" and write U i for {U}. The 
00 

declaration x '" 'II iff'll E [x] = n n{st(x,U) : U E Ui} is an equivalence relation on X and 
1 

for any open set U C X and any [x] C U,3 Us E Ui.: 

[x] c st(x,Us ) c U [y] c st(st(x,Us),Us ) c U. 

t Fund. Math. 136 (1990), 127-131. 

t Ann. of Math. 81 (1965), 10D-ll1. 

II Fund. Math. 106 (1980), 127-134. 

st(s,u.) 
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Therefore the union of the equivalence classes that are contained in U is open in X. Give 

Z = X /,..., the quotient topology. Since the projection 9 : X ~ Z is a closed map, Z is a 

compact Hausdorff space. By construction, f is constant on equivalence classes so there 

is a continuous factorization f = hog. Assign to each U = {U} in U i the collection 

U* = {U*}, where U* = Z - g(X - U)-then U* is a finite open covering of Z of order 

~ n + 1. Moreover, every finite open covering P = {P} of Z has a refinement of the 

form U*, hence dimZ < n. In fact, V z e X 3 P~ e P : [z] C g-l(P~). Choose 

U~ e Ui. : O~ = st(st(z,U~),Uz) C g-l(pz ). Let {O~J} be a finite subcover of {Oz}' 

Take aU e Ui that refines the U~j and consider the associated U*. Finally, the collection 
00 

U U{U* : U e Ui} is a basis for Z of cardinality ~ wt Y.] 
1 

PROPOSITION 10 X has a compactification ll.X such that { ~mll.~X~ ~w~i~ X . 

[Assume that wt X ~ w. Choose an embedding X ~ [0, l]W1; X and denote by f its ex

tension {3X ~ [0, 1 ]W1; x. Apply the Mardeaic factorization lemma to get a compact Haus-
. {g e C({3X,ll.X) {dimll.X < dim{3X = dimX 

dorff space ll.X and functlons he C(ll.X,[O,l]W1;X): wtll.X ~-wt[O,l]W1;X =wtX 

and f = hog (g({3X) = ll.X). Look at gIX.] 

Since the normality of X was not used in the proof, Proposition 10 is true in the completely regular 

situation. 

FACT For every integer n ~ 0 and for every cardinal " ~ w. there exists a compact Hausdorff 

space K(n, ,,) : - having the property that if X is a nonempty CRB space of topological {
dimK(n,,,) < n 

wt K(n, ,,} ~ " 
dimension ~ n and weight ~ ", then there is an embedding X - K(n,,,). 

[Consider the collection {X. : i e I} of all subspaces Xi C [P, 1J", where dimX. ~ n. Let 1 be the 

natural map II Xi - [0, 1J". Work with I3I.J 
i 

Does every subspace X C R" have a dimension preserving compactification that embeds in R"? 

This is an open question. 

A set S eRn is said to be in general position if every subset T C S of cardinality 

~ n + 1 is geometrically independent. 

LEMMA R n contains a countable dense set in general position. 

Suppose that X is second countable-then there is an embedding X ~ R iii. H 

dimX = n, then one can say more: There is an embedding X ~ R2n+l. 
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St~ with an initial reduction: Take X compact (d. Proposition 10). Fix a compatible 

metric d on X. Attach to each I E C(X,R2n+1 ) its "injectivity deviation" 

Given e > 0, put Df. = {I : devl < e}. Claim: V E > 0, DE is open and dense in 
00 

C(X, R2n+l). Admit this-then n Dllk is dense in C(X, R2n+l) (Baire), thus is nonempty. 
1 

00 

But nDl/k is the set of embeddings X -+ R2n+l. 
1 

(1) D" is open in C(X,R2n+l). Proof: Let IE Df.' Choose r : devl < r < E. 

Set Ar = ((x,y) : d(x,y) > r}. Call Of the minimum of ill/(x) - l(y)1I on Ar-then 

{g: III - gil < of} C Df.' 
(2) Df. is dense in C(X,R2n+l). Proof: Fix I E C(X,R2n+1

). Given 0> 0, let 

U = {Uj} be a finite open covering of X of order ~ n + 1 : Vi, {:::~([~/~20/2 and 

denote by {lti} a partition of unity on X subordinate to U. Choose a point Xi E Uj and 

then choose a point Pi E R 2n+1 within 0/2 of I(xi), using the lemma to arrange matters 

so that in addition {Pi} is in general position. Put g = E ltiPi-then 
i 

I(x) - g(x) = Llti(X)(/(Xi) - Pi) + Llti(x)(/(x) - I(xi», 
i i 

hence III - gil < o. There remains the verification: g E DE' For this, it need only be shown 

that if g(x) = g(y), then 3 i : X,y E Ui. Consider the relation E(lti(X) - lti(Y»Pi = 0. 
i 

Because the order of U is :;5 n + 1, at most 2n + 2 of these terms are nonzero. However, 

E(lti(X) - lti(Y» = 0, from which lti(X) - lti(Y) = ° V i, {Pi} being in general position. 
s 

But 3 i : lti(X) > 0. Therefore both X and Y belong to Ui. 

EMBEDDING THEOREM Every second countable normal Hausdorff space of topo

logical dimension n can be embedded in R 2n+ 1. 

EXAMPLE The exponent "2n + 1" is sharp. Indeed, if K = (V, E), where #(V) = 2n + 3 and E 

is the set of all nonempty subsets of V, then IK(n)1 cannot be embedded in R2n. 

{Assuming the contrary, work with the cone rIK(n)1 of IK(n)1 (which would embed in R2n+l) and 

construct a continuous function f : s2n+1 - R2n+1 that does not fuse antipodal points, in violation of 

the Borsuk-U1am theorem.] 

EXAMPLE Suppose that X and Y are second countable normal Hausdorff spa.ces of finite topo

logical dimension-then the coarse join X *c Y is a second countable normal Hausdorff spa.ce of finite 
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topological dimension. In fact, there exist positive integers p and q such that X embeds in S1' and Y 

embeds in S9. Therefore X *c Y embeds in S1' *c S9 = S1'+9+1. 

Suppose that X is a second countable compact Hausdorff space of topological dimension n > I-then, 

from the proof of the embedding theorem, the set of embeddings X -+ R2ft.+1 is dense in C(X, R 2n+1). 

What can be said about the set of embeddings X -+ R2ft.? Answer: This set can be empty (~f. supra) 

or nonempty and nowhere dense (d. infra) or nonempty and dense. As regards the latter point, there is 

a characterization (Krasinkiewkz t , Spiezt ): The set of embeddings X -+ R2ft. is dense in c(x,R2n) iff 

dim(X x X) < 2n. Examples of spaces satisfying this condition are given in §20 (d. p. 20-20). 

[Note: It can happen that V E > 031 E C(X, R2ft.) with devl < E and yet X does not embed in R 2ft.. 
00 

Here is an example when n = 1. Identify R2 with the set of (z, y, z) in R S 
: z = O. Put A = U(I/n)Sl, 

1 
B = {(z, 0, 0) : Izl ~ I} U {(O, tI, 0) : Iyl ~ I}, 0 = {(O, 0, z) : 0 ~ z ~ I} and set X = Au B U O. Given 

E> 0, select k : 1/2k <E. Denote by XI: the quotient X/K, K the subset of A U B consisting of those 

points whose distance from the origin is ~ 1/2k. Let p be the projection X -+ X 1:, choose an embedding 

II: : XI: -+ R2 and consider I = II: 0 p. Nevertheless, X cannot be embedded in R 2.J 

EXAMPLE The set of embed dings [0, 1]ft. -+ R2n is nonempty and nowhere dense in 0([0, l]n ,R2ft.); 

[Show that there exists a function 10 E 0([0, l]n, R2n) and an £0 > 0 such that if I E 0([0, l]n, R2n) 

and if 11/0 - III < £0, then I is not one-to-one.] 

FACT Suppose that X is a second countable normal Hausdorff space of topological dimension 

n. Equip the function space O(X, R2n+1) with the limitation topology-then the set of embeddings 

X -+ R2ft.+1 contains a dense G6 in 0(X,R2n+l). 

Suppose that dimX = n-then there is a closed embedding X -l> R 2n+I iff X is 

second countable and locally compact. For Xoo is second countable and dim X = dimXoo 

(by the control lemma). Embed Xoo in R2n+I. Add to R 2n+1 a point at infinity and 

remove the point corresponding to Xoo - X. This gives another copy of R 2n+I containing 

X as a closed subset. 

Put N!n+l = Q~n+l U ... U Q!n+l, the subspace of R 2n+I consisting of all points with 

at most n rational coordinates-then dimN!n+l = n. 

LEMMA Every second countable normal Hausdorff space of topological dimension 

n can be embedded in N!n+l. 

Fund. Math. 133 (1989), 247..,.253. 

t Fund. Math. 134 (1990), 105-U5j see also Fund. Math. 135 (1990), 127-145. 
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00 

[The complement R 2n+1 
- N!n+l has the form U Hie, where V k, Hie is a plane of 

1 
euclidean dimension n. Take X compact, let D1/1e(HIe) = DIlle n {I : I(X) n Hie = 0}, 

00 

and consider n DI lie (Hie).] 
I 

Application: Every second countable normal. Hausdorff space of topological. dimension 

n can be written as a union of n + 1 subspa.ces, each of topological. dimension ::::; O. 

[Note: Filippovt has constructed an example of a compact perfectly normal X : 

dimX = 1, which cannot be written as a union Xl U X 2 , where {~:i: ~.] 

When n = 0, the space N!n+1 becomes the set of irrationals, the latter being homeomorphic to 

N"'. The Cantor cube 0", embeds in N'" and, as has been noted on p. 19-3, if , then X {
dimx=o 

wtX~w 
embeds in 0",. There is a higher dimensional counterpart to this in that one can construct a compact 

subspace M!n+1 C R 2n+1 of topological dimension n which embeds in N!n+1 and hBlll the property that 

if { dim X = n, then X embeds in M!n+1. In a word: Subdivide [0, 1]2n+1 into cubes of side length 1/3, 
wtX<w 

retain th~ that meet the n-faces of [0, 1]2"+1, repeat the process on each element of their union Ko and 
00 

continue to the limit: M!,,+l = nKi (Bothet ). 
o 

Denote by Nn(lC) the subspace of S(IC)'" consisting of those points which have at most n nonzero 

{ 
wtNn(lC) = IC 

rational coordinates-then . 
dimNn(lC) = n 

FACT Every metrizable space X of weight ~ IC and of topological dimension ~ n can be embedded 

in Nn(IC). 

[Note: By comparison, recall that every metrizable space X of weight ~ IC can be. embedded in S(IC)'" 

(cf. p. 6-37).] 

Suppose that X is metrizable (completely metrizable) of weight IC. Equip the function space O(X, 

S(IC)"') with the limitation topology-then Polil hBlllshown that the set of embeddings (closed embeddings) 

X -I> S(IC)'" contains a dense G6 in O(X, S(IC)"'). 

Can one characterize dim by a set of axioms on the class e, the subspaces of euclidean 

spaces? The answer is "yes". 

t Soviet Math. Dol.:l. 11 (1970), 687-691. 

t Fund. Math. 52 (1963), 209-224; see also Bestvina, Memoir, Amer. Math. Soc. 380 (1988), 1-110. 

n Topology Appl. 39 (1991), 189-204. 
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Consider a function d: e -+ {-1,0, I, ... } subject to: 

(d1 ) (Normalization Axiom) d(0) = -1, d([O, l]ft) = n (n = 0,1, ... ). 

(d2 ) (Topological Inva.riance Axiom) If X, Y E e and are homeomorphic, then 

d(X) = d(Y). 
(d3 ) (Monotonicity Axiom) If X, Y E e with X c Y, then d(X) :5 d(Y). 
(<1.) (Countable Union Axiom) If X E e is the union of a sequence of closed 

subspaces Xi, then d(X) :5 SUpd(Xi)' 
i 

(ds ) (Compactification Axiom) If X E e, then there is a compactification X E e 
of X such that d(X) = d(X). 

(<lG) (Decomposition Axiom) If X E e and d(X) = n, then there exist n+ 1 sets 
ft 

Xi C X such that X = U Xi and V i, d(X.) < 0. 
o 

Hayashi t has shown that these axioms are independent and serve to characterize the 

topological dimension dim on the class e. 
[Note: The key here is the last axiom on the list. The first five are satisfied by the 

cohomological dimension dilDG with respect to a nonzero finitely generated abelian group 

G.] 

While it is not true in general that an arbitrary normal X of topological dimension n 

can be written as a union of n + 1 normal subspaces, each of topological dimension :5 0, 

there is nevertheless a partial substitute in that every neighborhood finite open covering 

of X of order < n + 1 has an open refinement that can be written as a union of n + 1 

collections, each of order :5 1. This is a consequence of the following statement. 

DECOMPOSITION LEMMA Let U = {U. : i E I} be a neighborhood finite open 

covering of X of order < n + I-then there exists an open covering V of X which can be 

represented as a union of n + 1 collections Vo, ... , V ft , where Vj = {l'j,j : i E I} consists of 

pairwise disjoint open sets such that Vi: l'j,j C U •. 

[There is nothing to prove if n = 0. Proceeding by induction, assume the validity 

of the assertion for all normal spaces and for all neighborhood finite open coverings of 

order < n + 1 (n ;::: 1). Choose a precise open refinement 0 = {OJ: i E I} of U = {Ui : 
i E I} : V i, Ai = 0. CUi. Put:F = {F : F C I & #(F) = n + I}. Assign to each 

{

OF = n 0. 
FE :F: UF = n u. and A _ 'nEFA.' Select a point iF E F and let l'j,ft = U{UF : 

iEF F - I 
iEF 

t Topology Appl. 31 (1990), 83-92. 
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iF = i}-then the order of Vn = {Vi,n : i E I} is < 1 and Vi: Vi,n CU •. The subspace 

Y = X - U OF is closed, hence normal. Since the order of the neighborhood finite open 
F 

covering {Y n 0. : i E I} of Y is ~ n, there exists an open covering V' of Y which can be 

represented as a union of n collections V~, ... , V~_l' where Vi = fV.~j : i E I} consists of 

pairwise disjoint open sets such that Vi: v.~j C Y n Oi. The subspace Z = X - UAF 
. F 
is open ({AF} is neighborhood finite) and is contained in Y. For i = 0, ... , n - 1, let 

n 

Vi,j = Z n Vi~j and Vj = {Vi,j : i E I}. Consideration of the union V = U Vj completes 
o 

the induction.] 

PROPOSITION 11 Suppose that dimX ::5 n. Let U = {Ui : i E I} be a neighborhood 

finite open covering of X-then there exist sequences { ~~, VW1' • • • of discrete collections 
"'0, 1,··· 

of open subsets Vj = {Vi,j : i E I} & Wj = {Wi,j : i E I} of X such that any n + 1 of the 

Vj cover X and Vi: Vi,j C Wi,j CU •. 

[Bearing in mind Proposition 6, normality and the decomposition lemma provide us 

with the Vj and Wj for i < n. Now argue by induction, assuming that the Vj and Wj 

have been defined for i ::5 m - 1, m - 1 being ~ n. Assign to each M C {O, ... , m - I} 

of cardinality n the closed subset AM = X- U UVj-then the AM are pairwise disjoint 
jEM 

because any n + 1 of the Vj cover X. Determine open {~ : AM C VM C V M C WM, 

where M' "I M" => W M' n W Mil = 0. Select a point iM < m - 1 : iM f/. M. Note that 

{ 

Vi,m = U VM n Vi,jM 
AM C UVjM' Put W,' _ MU Wnw,.. . The associated collections Vm and Wm are 

I,m - M I,JM 
M 

discrete and open with V.,m C Wi,m CUi. And since any n of the Vj (j ::5 m - 1) cover 

X - UAM, any n+ 1 of the Vj (j:S m) cover X.] 
M 

The Kolmogorov superposition theorem, which resolved Hilbert's 13th problem in the 

negative, says that for each n ~ 1 there exist functions ¢>}, ... , ¢>2n+l in c([o,l]n) such 

that every f E C([O, l]n) can be represented in the form f = E gi 0 ¢>' for certain g. E C(R) • • 

(depending on f). Objective: Isolate the dimension theoretic content of this result. 

Suppose that X is a second countable compact Hausdorff' space. Let ¢>i E C(X) 

(i = 1, ... , k )-then the collection {¢>.} is said to be basic if for every f E C(X) there exist 

continuous functions gi : R -4 R such that f = Egi ° ¢>i. A basic embedding of X in Rk 
i 

is an embedding X -4 Rk corresponding to a basic collection {¢>il. So, e.g., according to 

Kolmogorov, X = [0, l]n can be basica.lly embedded in R2n+l. 
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BASIC EMBEDDING THEOREM Every second countable compact Hausdorff space 

of topological dimension n can be basically embedded in R 2n+l. 

[Note: Sternfeldt has shown that if dim X = n (n > 1), then X cannot be basically 

embeddedinR2n. Example: Let X = ((x, 0) : Ixl ~ l}U{(O,y): Iyl ~ l}-thendimX = 1 

and X can be basically embedded in R 2.] 

The proof of the basic embedding theorem is not a general position argument. It 
depends instead on Proposition 11 and some elementary functional analysis. 

There is a simple interpretation of what it means for {¢d to be basic in terms of the 

dual C(X)* of C(X). Thus put Yi = ¢i(X) and let Y = 11 Yi-then the collection {¢d 
j 

determines a bounded linear operator T : C(Y) -+ C(X), viz. T(g}, ... ,glc) = Egj 0 ¢i, 
i 

with adjoint T* : C(X)* -+ C(Y)*, viz. T* p. = E P.i, P.i the image of p. under ¢,. Note , 
that IIT*p.1I = E 1Ip.,II. Obviously, {¢d is basic iffT is surjective or still, iff:3 A : 0< A ~ 1 

i 
such that 'V p. E C(X)* :3 i : IIp.ill > Allp.lI. When this occurs, call {¢i} A-basic. 

Fix a compatible metric d on X. Given a finite discrete collection U = {U} of open 

subsets of X, we shall write d(U) for sup{ diam U : U E U} and agree that a function 

¢ E C(X) separates U if 'V U i= V in U : ¢(U) n ¢(V) = 0. 

LEMMA Let ¢i E C(X) (i = 1, ... , k). Suppose that 'V E > ° and 'V i, there exists a 

finite discrete collection Ui of open subsets of X with d(Ui) < E such that ¢i separates Ui 

and 

'V x EX: ~ord(x)Ui) ~ [~l + 1. 
, 

Then {¢i} is 1/ k-basic. 

[The set of p. E C(X)* for which spt(p.+) n spt(p.-) = 0 is dense in C(X)* (Hahn 

plus regularity). Therefore take a p. E C(X)* of norm one, assume that E = d(spt(p.+), 

spt(p.-)) > 0, and choose the Uj accordingly. If as usual 1p.1 = p.+ + p.-, then 1p.1 is 

a probability measure on X and E 1p.I(u Ui) ~ [k/2] + 1, implying that for some io, 
i 

1p.I(UUio) ~ (l/k)([k/2] + 1) ~ 1/2+ 1/2k. On the other hand, 'V U E Uio' 1p.I(U) = 1p.(U)I, 

thus 1p.I(U Uio) = E 1p.(U)1 and so 1Ip.,0 II ~ 1/2 + 1/2k -1p.I(X - U Uio) ~ l/k.] 
U ' 

Let U(p) be a finite discrete collection of open subsets of X with d(U(p)) < l/p 

(p = 1,2, ... ). Claim: There exists a dense set of ¢ E C(X) separating U(p) for infinitely 

t Israel J. Math. SO (1985), 13-53; see also Levin, Israel J. Math. 70 (1990), 205-218. 
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many p. To see this, let +q be the set of ¢> E C(X) separating U(p) for some p ;::: q 

(q = 1,2, ... )-then it need only be shown that V q, +q is open and dense in C(X) 
(Xl 

(consider n+q and quote Baire). 
I 

(1) +q is open in C(X). Proof: Let ¢> E +q. Choose p per ¢>. Let 2€ = 

inf{dis(¢>(U),¢>(V)) : U f:. V in U(p)}. Suppose that II¢> - III < el4-then U f:. V in 

U(p) => dis(/(U), I(V)) > E. 

(2) +q is dense in C(X). Proof: Fix f E C(X). Given e > 0, choose p ;::: q : 

osc(fIU) < el2 (U E U(p)). Define a continuous function 9 : UU -+ R by picking distinct 

, . {giU = Cu . - . constants cu· II/IU _ glUIl < E' Use Tietze and extend II U U - 9 to an h E C(X) . 

IIhll < E. Put ¢> = 1- h: ¢> E +q & III - ¢>II < E. 

To prove the basic embedding theorem, take k = 2n + 1-then, in view of Proposition 

11, there exist finite discrete collections Ui(P) (i = 1, ... , k) of open subsets of X with 

d(U.(p)) < lip (p = 1,2, ... ) such that for each p the union of any n + 1 of the Ui(p) is a 

covering of X, so 

V x EX: ~ ord(x,Ui(p)) ~ [~l + 1. 

• 
Thanks to the preceding remarks, it is possible to select integers PI < P2 < ... and functions 

¢>. E C(X) (i = 1, ... , k) having the property that ¢>i separates Ui(p;) (j = 1,2, ... ). Apply 

the lemma and conclude that {¢>i} is 11k-basic (k = 2n + 1). 

When X = [0,1]", one can explicate, at least to some extent, the analytic structure of the tPi. 
Precisely put: Given rationally independent real numbers rl,' .. , r", there exist increasing continuous 

functions tPl, ... ,tP2"+1 on [0,1] such that the 

tPi(ZI, ... ,z,,) = L:;=1 rjtPi(Zj) (1 ~ i ~ 2n + 1) 

constitute a 11k-basic collection (k = 2n + 1). Moreover, the gi can be chosen independently of i, so 

VIE C([O, 1]") there exists agE C(R): 

l(zl,'" ,z,,) = L:;:t 9 (L:;=1 rjtPi(Zj»). 

[Note: The "inner functions" can even be taken in Lipl ([0,1]). Reason: There exists a homeomor

phism £ : [0,1] -+ [0,1] such that V i, tPi 0 £ E Lipl ([0,1]). Consider, e.g., the inverse to the assignment 

Z -+ C(z + L:(tPi(Z) - tPi(O))), where C is the reciprocal of 1 + L:(tPi(l) - tPi(O».] 
i i 

To avoid trivialities, assume that n> 1. There are then three steps to the proof. 

(I) For p = 1,2, ... , partition [0,1] into p closed subintervals 1 of length lip indexed by the. 

natural order and for 1 ~ i ~ k, let Ii(P) denote the collection of closed subintervals of [0,1] obtained by 

removing from [0,1] the interior of those 1 whose index is congruent to imodk. Write Ci(P) for the set of 



19-35 

all products C.(p) = Jt{p) x ... x J7&(P) : V j,lj(p) E I;(P). It is clear that C.(p) is a discrete collection of 

closed n-cubes in [0,1]". Furthermore, every z E [0,1]7& belongs to at least [k/2] + 1 == n+ 1 of the UCi(P). 

(II) Let'" stand for the set of increasing continuous functions on [0,1], equipped with the 

uniform norm. Attach to each E > ° : 0 < E < 1/2k, and to each I E C([O, 1]") : 11/11 '# 0, the set 0, (E) 

of all {,p.} E ",k for which there exists an h E C(R) : IIhll ~ 11/11 & III - Eh(L>j,pi)1I < (1 - E)II/II. 
i j 

Claim: O,(E) is open and dense. Of course, only the density is at issue. And for this, it suffices to fix a 

nonempty open 0 C ",k and show that OnO,(E) '# 0. Let ",k(P) be the subset of '11k consisting of the {,pi} 

such that Vi: ,pi is constant on the elements of Ii (p). Choose p » ° : 0 n ",k(p) '# 0 & osc(Jla. (p» < 
EII/II V Ci(P) E C.(p). Fix {,pd EOn 'IIk(P). Because the rj are rationally independent, there is no loss 

of generality in supposing that <Pi == E rj,pi takes different values on different elements of Ci(P) and that 
j 

in addition these values are distinct for distinct i. We shall now construct an h E C(R) in terms of the <Pi 

and deduce that {,pi} E O,(E). Call Mi the value of I at the center of Ci(P). Let h(<Pi(C.(P») = 2EMi 

and extend h continuously to all of R : IIhll ~ 2*'11/11. Using the fact that every z E [0,1]7& belongs to at 

least n + 1 of the UCi (p), one has 

I/(z) - Eh(<Pi(Z»1 ~ (1 - 2(n + I)E)I/(z)1 + 2(n + 1)*,211/11 + 2nEII/II 
i 

~ (1 - 2E + 2(n + I)E2)1I/1I < (1 - E)II/II. 

Therefore {,pi} E O,(E). 

(III) Let D = {f d} be a countable dense subset of C([O, 1]"), not containing the zero function-
00 00 

then n O'd(E) is dense in '11k (Baire). Fix {,pd E nO'd(E). Let I E C([O,I]") : 11111 '# 0. Choose 
1 1 

Id ED: 11(1 - E/4)1 - Idll < (E/4)1I/11, so and choose hd E C(R) : IIhdll < {
lIldli ~ 11/11 
III - Idll < (E/2)1I/11 -

II/dli I.e II/d - E hd(E rj,p;) II < (1- E)lI/dll· Conclusion: 3 h = -r(J) E C(R) such that IIhll ~ 11/11 I.e 111-
i j 

Eh(Erj,pi)1I (1- E/2)1I/1I· Recursively define a sequence Xo,Xt. ... in C([O, 1]") by XO = I, Xm+l = 
i j 

00 

Xm - E hm(E rj,pi), where hm = -r(Xm) (-r(0) = 0). The series E hm is uniformly convergent, thus its 
i j ° 

sum 9 is continuous and satisfies the relation 1= E9(E rj,p.). 
i j 

[Note: Let Cl ([0,1]7&) be the set of continuously differentiable functions on [0, 1]7&-then Kaufman t 

has shown that for n > 1, no finite subset of Cl ([0, 1]") can be basic.] 

FACT There exist real valued continuous functions <Pi (i = 1, ... , 2n + 1) on R7& such that V IE 

BC(R") 3 9 E C(R) : I = E9 0 <Pi . 

• 

t Proc. Amer. Math. Soc. 46 (1974), 360-362. 



19-36 

[Note: This result remains true if R" is replaced by & noncompact second count&ble LCH space X 

of topological dimension n.] 

H X and Y are nonempty normal Ha.usdorff spaces, what is the rela.tion between 

dim(X x Y) and {::;? An initial difficulty is that X x Y need not be normal so 

formally dime X x Y) can be undefined. 

This is not & serious problem. Reuon: X X Y is &t least completely regul&r, therefore in this context 

dim(X X Y) is me&ningful (cf. p. 19-2). 

Examples: (1) Take X = Y = Sorgenfrey line-then X is perfectly normal and 

paracompact but X x X is not normal (cf. p. 5-11); (2) Take X = [0,11[, Y = [0, 11]-then 

X is normal and Y is compact but X x Y is not normal; (3) Take X = Michael line, 

Y = P-then X is para.compact and Y is metrizable but X x Y is not normal (cf. p. 6-8 

if.); (4) Take X = Rudin's Dowker space, Y = [0, I]-then X x [0,1] is not normal. 

Here are some conditions on X and Y that ensure that the product X x Y is normal. 

(1) Suppose that X is perfectly normal (perfectly normal and paracompact) and 

Y is metrizable-then X x Y is perfectly normal (perfectly normal and para.compact). 

(2) Suppose that X is normal and count ably compact and Y is metrizable-then 

X x Y is normal. 

(3) Suppose that X is normal and count ably para.compact and Y is metrizable 

and O'-locally compact-then X x Y is normal. 

(4) Suppose that X is para.compact and Y is paracompact and O'-locally compact

then X x Y is para.compact. 

[Note: A CRH space is said to be O'-locally compact if it can be written as a countable 

union of closed locally compact subspaces. Example: Every CW complex is O'-locally 

compact.] 

H enough pathology is built into X and Y, then it can happen that dim X +dimY < 
dim(X x Y) .. Examples illustrating the point are given below. Because of this, one looks 

instead for conditions on X and Y that serve to force dim(X x Y) ~ dimX + dimY. 

PRODUCT THEOREM Suppose that X is normal and Y is paracompact and 0'

locally compact. Assume: X x Y is normal-then dim(X x Y) ~ dimX + dimY. 

[Note: Tacitly, X :f:. 0 & Y :f:. 0.] 
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The inequality in the product theorem can be strict even if X and Yare compact ARB (Dranishnikovt). 

The proof of the product theorem is carried out in stages under the supposition that 

{
n = dimX 
m = dimY < 00. 

PROPOSITION 12 Suppose that both X and Y are compact-then dim(X x Y) ~ 

dim X +dimY. 

[Let W be a finite open covering of X x Y. Choose finite open coverings {~ of 

{: : U x V refines W. Attach to {~ sequences { ~:: ~ll,'::: of discrete collections of 

open subsets of {: having the properties delineated in Proposition 11. In particular: 

Each x E X can fail to belong to at most n of the UOk and each y E Y can fail to belong 

to at most m of the U1'k. The union 00 x 1'0 U···· U On+m X 1'n+m is therefore an open 

refinement of U x V of order ~ n + m + 1.] 

If X and Y are compact and metrizable and if f : X - Y is continuous and surjective, then there 

exists a Baire class one function 9 : Y -X such that fog = idy (Engelking~). Since go f is a function of 

the first'Baire class, its graph is a G§ in X X X, which implies that the range of g, viz. {:z: : g(/(:z:» = :z:}, 

is a G 6 in X that intersects each fiber of f in exactly one point. 

EXAMPLE Let A: be the collection of all nonempty closed subsets of [0, 1] x [0, 1] equipped with the 

Vietoris topology, so A: is compact and metrizable. Write p for the vertical projection-then the collection 

C of all compact connected subsets of [0,1] X [0,1] that meet both p-l(O) and p-l(l) is a closed subspace 

of A:, hence is compact. Therefore there exists a continuous surjection r from the Cantor set e c [0,1] to 

C. BeCause ex e is homeomorphic to e, one can assume that the fibers of r have cardinality 2"". If now 

X = U{p-l(t) n r(t) : tEe}, then X is a compact subspace of [0,11 X [0,1] and f == piX: X - e is 

surjective. From the remark above, there exists a Baire class one function 9 : e - X such that fog = ide. 

Define tP : e - [0,1] by g(t) = (t, tP(t» : tP is a function of the first Baire class and its graph gr.; is a G6 . 

in X that intersects each fiber of f in exactly one point. Consequently, gr tj; is completely metrizable, thus 

is a G§ in e x [0,1]. Note too that grtj; is totally disconnected and intersects each element of C in a set of 

cardinality 2"". Claim: dimgrtj; = 1. In fact, by Proposition 12, dimgr.; ~ dime + dim[O, 1] = 0+1 = 1. 

t Soviet Math. Do/d. 37 (1988), 169-773. 

Bull. Acad. Polon. Sci. 18 (1968), 277-282. 
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{
A = gr.; n q-1 ([0,1/7]) 

To see that dimgr.; > 0, write q for the horizontal projection, put -1 [/ ]) and let U be 
B=gr.;nq (67,1 

{
ACU 

any open subset of gr.; : _ -then #(fr U) = 2 .... 
. BnU=' 

[Note: Working instead with [0,1]"+1 = [0,1] x [0, 1]" , one can modify the preceding construction and 

produce an example of a second countable completely metrizable totally disconnected space of topological 

dimension n. Such a space cannot contain a compact Cantor n-space (el. p. 19-25).] 

FACT Let X and Y be nonempty CRa spaces. Suppose that X x Y is strongly paracompact-then 

dim(X x Y) S dim X +dimY. 

[View X x Y as a subspace of (JX x (JY to get dim(X x Y) S dim«(JX x (JY) (el. p. 19-12), which 

is S dim(JX +dim(JY (el. Proposition 12) or still, S dim X +dimY (cf. Proposition 1).] 

[Note: Is it sufficient that X x Y be paracompact? The answer is unknown.] 

Application: Suppose that X and Y are second countaJ>le and metrizable--then dim(X x Y) S 
dim X +dimY. 

EXAMPLE Take for X the subspace of 12 consisting of all sequences {:t,,}, with :t" rational-then 

dimX = 1. But X is homeomorphic to X x X, so dim(X x X) = 1, which is < 2 = dim X +dimX. 

[Note: Given any n E N, there exists an Xc R,,+l such that dimX = dim(X x X) = n (Anderson

Keislert )·l 

FACT Let X and Y be nonempty CRa spaces. Suppose that X and Y are infinite and X x Y is 

pseudo compact-then dim(X x Y) S dim X + dim Y. 

[Glicksberg's theorem says that if X and Y are infinite CRa spaces, then the product X x Y is 

pseudo compact iff (J(X x Y) = (JX x (JY, the equal sign meaning that the two compactifications of X x Y 

are equivalent (and not just homeomorphic). Recall that the product of two pseudo compact spaces need 

not be pseudo compact but this will be the case if one of the factors is compactly generated. Example: 

dim([O, O[x[O,OD = 0.] 

PROPOSITION 13 Suppose that X is a CW complex and Y is compact-then 

dim(X x Y) < dimX + dimY. 

[Argue by induction on dimX. There is nothing to prove if dim X = O. H dim X > 0, 

then, since the combinatorial and topological dimensions of X coincide (d. p. 19-21), 
00 

X = x(n). Thus one can write X = x(n-l)UUAi, where each Ai is closed and expressible 
1 

t Proc. Amer. Math. Soc. 18 (1967), 709-713. 
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as a disjoint union U Ki,j, {Ki,j} being a discrete collection of compacta, with dim Ki,j :5 n. 
i 

From the induction hypothesis, dim(X(n-1) x Y) :5 dimX(n-1) + dim Y < n - 1 + m. On 

the other hand, Proposition 12 implies that dim(Ki,j x Y) :5 dim Ki,j + dimY :5 n + m, 
so dim(Aj x Y) < n + m. Now apply the countable union lemma.] 

STACKING LEMMA Let X and Y be nonempty CRB spaces. Suppose that Y is 

compact-then for every numerable open covering W of X x Y, there exists a numerable 

open covering U = {Ui : i E I} of X and ViE I, a finite open covering Vi = {Vi,j : j E Jd 
of Y such that the collection {Ui x Vi : i E I} refines W. 

[The assertion is trivial if X is paracompact. In general, there exists a metric space 

Z, an open covering Z of Z, and a continuous function I : X x Y -+ Z such that 1-1(Z) 
refines W (cf. p. 1-25). Define e : C(Y,Z) x Y -+ Z by e(~,y) = ~(y)-then e-1(Z) is a 

numerable open covering of C(Y, Z) x Y. Since C(Y, Z) x Y is paracompact, one can find 

a numerable open covering 0 = {OJ: i E I} of C(Y, Z) and ViE I, a finite open covering 

Vi = {Vi,j : j E Ji} of Y such that the collection {Oi x Vi : i E I} refines e-1(Z). Put 

F(x)(y) = I(x, y) : F E C(X, C(Y, Z» & I = eo (F x idy). Consider U = {Ui : i E I}, 

where Ui = F-1(Oi).] 
[Note: The complete regularitY'of X plays no role in the proof.] 

To establish the product theorem, first employ the countable union lemma and make 

the obvious reductions to the case when Y is compact. This done, let W be a finite 

open covering of X x Y. According to the stacking lemma, there exists a neighborhood 

finite open covering U = {Uj : iE I} of X and for each i E I, a finite open covering 

Vi = {Vi,j : j e Ji} of Y such that the collection {Uj x Vi : i E I} refines W. Fix a 

precise open refinement 0 = {OJ: i E I} of U of order < n + 1 (cf. Proposition 6)-then 

dimIN(O)1 < n, N(O) the nerve of O. Choose an O-map I, i.e., a continuous function 

I : X -+ IN(O)I with the property that V OJ EO: (bOi 0 f)-1 (JO,1]) C OJ (cf. p. 5-3). 

Put F = I x idy. Since dim(IN(O)1 x Y) :5 n + m (cf. Proposition 13), the open covering 

{bo:(JO,1]) x Vi : i E I} of IN(O)I x Y has an open refinement P of order :5 n + m + 1. 

Consider F-1(P). 

The product theorem holds if X is merely completely regular. Indeed, once the reductions to the 

case "Y compact" ha.ve been carried out, the argument proceeds as when X is normal. The reductions 

depend in turn on the counta.ble union lemma which retains its validity in the completely regular situation 

provided the subspaces in question have the EP w.r.t. [0,1] (d. p. 19-13). Two results are relevant for 

the transition. 
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LEMMA Let X be a topological space. Let B be a compact subspace of a CRH space Y-then 

X X B, as a subspace of X X Y, has the EP w.r.t. [0,1]. 

[Recalling that BeY has the EP w.r.t. [0,1] (cC. p. 6-4), let 0 be a finite numerable open covering 

of X X B. Use the stacking lemma and conatruct a numerable open coverins W of X X Y such that 

W n (X X B) is a refinement of O. Apply §6, Proposition 4 (the proof of sufficiency does not require a 

cardinality assumption on W).] 

LEMMA Let X be a topological space. Let B be a closed subspace of a paracompact LCH space 

Y-then X X B, as a subspace of X X Y, has the EP w.r.t. [0,1]. 

[Note: Paracompactness of Y alone is not enough. Example: Take X = p, Y = Michael line and 

B = Q-then X X B, as a subspace of X X Y, does not have the EP w.r.t. [0,1]. One can, however, drop 

local compactness if some other assumption on Y is imposed, e.g., stratifiability.] 

Its utility notwithstanding, there are limitations to the product theorem. For example, it is not 

necessarily applicable if both factors are metrizable. However, this possibility (and others) can be readily 

placed in a general framework. 

Let X and Y be nonempty CRH spaces--then a cozero set rectangle in X X Y is a set of the form 

U X V, where {~ is a cozero set in { : . 

LEMMA X X Y is Z-embedded in X X {JY iff every cozero set in X X Y can be written as the 

union of a collection of cozero set rectangles U X V, where {U} is cr-neighborhood finite. 

[Use the stacking lemma and the fact that the union of a cr-neighborhood finite collection of cozero 

sets is a cozero set.] 

[Note: X X Y is Z-embedded in {JX X (JY iff every cozero set in X X Y can be written as the union 

of a countable collection of cozero set rectanglesU X V.] 

The following conditions are equivalent. 

(a) Every cozero set in X X Y can be written as the union of a collection of cozero set rectangles 

U X V, where {U} is cr-neighborhood finite. 

(b) Given any I E C(X X Y) and any £ > 0, there exists a covering of X X Y by cozero set 

rectangles U X V such that osc(f1U X V) < £ and {U} is cr-neighborhood finite. 
QO 

[(a) => (b): Fix a sequence of open intervals ]a,." b,.,[, each oflength < £/2 : R = U ] a,., , b,.,[-then 
1 

00 

X X Y = U/- l a a,., , b,.,[). Write 1-1 a a,., , b"D as the union of a collection of cozero set rectangles Ui X Vi. 
1 

00 

where {Ui : i E J,.,} is cr-neighborhood finite. Obviously, osc(flUi X Vi) < £ and U{Ui : i E J,.,} is 
1 

cr-neighborhood finite. 
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(b) => (a): Take an 1 E C(X x Y). Pick a cozero set rectangle covering W,. = {U X V} of X x Y 

such that osc(f1U x V) < l/n and {U} is u-neighborhood finite. Denote by W,.(f) the subset of W,. 
co 

consisting of the U x V that are contained in X x Y - Z(f)-then UW,,(f) covers X x Y - Z(f).] 
1 

Assume: Every open subset of {: is Z-embedded in { : -then (a) and (b) above are equivalent 

to the following conditions. 

(a)z Every cozero set in X x Y can be written &8 the union of a collection of open rectangles 

U x V, where {U} is u-neighborhood finite. 

(b)z Given any 1 E C(X x Y) and any f: > 0, there exists a covering of X x Y by open 

rectangles U X V such that osc(fIU x V) < f: and {U} is u-neighborhood finite. 

[That (a) => (a)z is clear, &8 is (a)z => (b)z. To prove that (b)z => (b), let 1 E C(X x Y) and 

f > 0 but with osc(f1U x V) < f:/2. The &88umption on {: implies that the interior of { ~ is a cozero 

set in { : . The corresponding collection of cozero set rectangles thereby produced covers X x Y and the 

oscillation of Ion anyone of them is < f:.] 

In a CRB space, every open subset is Z-embedded iff every open subset which is the interior of its 

closure is cozero. The latter property is evidently a weakening of perfect normality and, e.g., is possessed 

by an arbitrary product of metrizable spaces (~epint) but not by [0, O[ or PRo 

LEMMA Suppose that X is metrizable and that every open subset of Y is Z-embedded in Y -then 

X x Y is Z-embedded in X x pY. 

[It suffices to check (b)z, so let 1 E C(X x Y) and f: > O. Enumerate Q : {q,,} and put 1,. = 
]q,. - f:/3,q,. + f:/3[. Fix a u-neighborhood finite basis {U} for X. Let Y(U,n) be the subset of Y 

made up of those points which admit a neighborhood V : I(U x V) C I,,-then Y(U,n) is open in Y, 

osc(f1U x Y(U,n» < f:, and since V (%,1/) E X x Y 3 q,. E Q: 1/(%,1/) - q,.1 < f:/6, the open rectangles 

U x Y(U,n) cover X x Y.] 

FACT Let X and Y be nonempty ORB spaces. Suppose that X x Y is Z-embedded in X x pY -then 

dim(X x Y) ~ dimX +dimY. 

[Simply note that dim(X x Y) ~ dim(X x pY) (d. p. 19-13), which, by the product theorem, is 

~ dimX +dimPY = dimX +dimY.] 

Application: Suppose that X and Y are metrizable-then dim(X x Y) ~ dim X + dim Y. 

t Soviet Math.. Dokl. IT (1976), 152-155; see also Blair-Swardson, Topology Appl. 36 (1990), 73-92. 
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EXAMPLE Let X and Y be nonempty M complexes-then X x Jr Y is an M complex and 

dim(X Xl: Y) $ dim X + dimY. 

[Assume first that X is an Mn space and Y is an Mm space, proceeding by induction on n + m.] 

That dim is monotonic on Z-embedded subspaces is the key to the preceding method. But one can 

get away with even less. In general, a subspace A of a topological space X is said to be weakly Z-embedded 

in X if for any cozero set 0 in A there exists a v-neighborhood finite collection {Oi : i E J} of cozero sets 

0. in A, each of which is the intersection of A with a cozero set in X, such that 0 = U 0 •. 
i 

LEMMA Let X be a nonempty CRH space. Suppose that A is a weakly Z-embedded subspace of 

X-then dimA $ dimX. 

Let X and Y be non empty CRH spaces-then X X Y is said to be rectangular if every cozero set in 

X X Y can be written as the union of a v-neighborhood finite collection of cozero set rectangles U xV. If 

X X Y is Z-embedded in X X pY, then X X Y is rectangular (the converse is false). 

EXAMPLE Suppose that X and Y are paracompact Hausdorff' spaces aatisfying Arhangel'skii's 

condition-then X X Y is rectangular. 

FACT Let X and Y be nonempty CRH spaces. Suppose that X X Y is rectangular-then 

dim(X X Y) $ dim X +dimY. 

[Indeed, X X Y, as a subspace of PX x pY, is weakly Z-embedded.] 

EXAMPLE Rectangularity of X x Y is not a necessary condition for the validity of the relation 

dim(X x Y) $ dimX +dimY. 

(1) (The Sorgenfrey Plane) Let X be the Sorgenfrey line-then X is zero dimensional and 

Lindelof, hence dimX = 0 (cf. Proposition 2). The Sorgenfrey plane X x X is zero dimensional but not 

normal and is "asymmetrical" in that every line with negative slope is discrete but every line with positive 

slope is homeomorphic to X. Moreover, it is not rectangular as may be seen by considering the points on 

or above the line z +" = 1. Still, dim(X x X) = O. As a preliminary, show that if 0 is any open subset 

of X xX, then there exists a sequence of dopen sets On such that 0 C UOn C 0 and from this deduce 

" that every cozero set in X x X is a countable union of dopen sets (d. p. 19--4). 

(2) (The Michael Line x The Irrationals) Let X be the Michael line-then X is hereditarily 

paracompact, hence hereditarily normal, so it follows from the control lemma that dim X = O. The product 

X x P is zero dimensional but not normal. Nor is it rectangular: Otherwise, P would be an F(f in R. 

'-, However, one can show that dim(X x P) = O. 
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Let X ana Y be nonempty CRH spaces-then X x Y is said to be piecewise rectangular if every 

cozero set in X x Y can be written as the union of a v-neighborhood finite collection {W}, where each 

W is a clopen subset of some cozero set rectangle U x V. In this terminology, Pasynkovt proved that if 

{
dimX = 0 

, then dim{ X x Y) = 0 iff X x Y is piecewise rectangular. 
dimY =0 

[Note: For every pair of positive integers (n, m), Tsuda* has constructed a normal . {
X :dimX=n 

Y:dlmY=m 
for which X x Y is also normal with dim{X x Y) = n+m but such that X x Y is not piecewise rectangular.] 

EXAMPLE [Assume CH] There exist nonempty perfectly normal locally compact {: : X x Y 

is a perfectly normal LCH space and dimX + dim Y < dim{X x Y). For this, use the notation of the 

example following Proposition 12, letting l!!..e be the diagonal of C in C'J, which will then be identified 

with C when convenient. Transfer the topology on grefl back to C to get a second countable completely 

metrizable topology Tefl on C finer than the euclidean topology T. 

Claim: There exists a second countable metrizable topology A on C'J finer than the euclidean topology 

T'J with AIl!!..e = Tefl & AIC'J-tl.e = T'JIC'J-tl.e such that every element of A containing a point (z, z) E tl.e 

also contains the intersection with C'J of two disjoint open disks, tangent to tl.e at (z, z). 
00 

[Fix a countable basis {Ui} for Tefl. Since t/> is Baire one, each Ui is a euclidean FtT : Ui = UAii' Aii 
1 

T-closed. Enumerate the Aii : {K,,}. Given r > 0, let K,,{r) be the union of all Br n C'J, where Br is an 

open disk of radius r tangent to tl.e at some point of K". Recursively determine a sequence of positive 

real numbers r" : r" > r,,+l & limr" = 0, subject to Kn n Km = 0 =? K,,{rn ) n Km{rm) = e. Put 

Oi = U{Kn{2-irn) : Kn CUi}. Consider the topology on C'J generated by the Oi and a countable basis 

for the euclidean topology on C'J - tl.e.] 

Construct Kunen modifications T' and Til of T such that T' x Til is a perfectly normal locally compact 

topology finer than A whose restriction T' x T"ltl.e is a Kunen modification of Tefl (cf. p. 1-16). In so 

doing, work with an enumeration {Za : a < O} of C, letting {Ca : a < O} be an enumeration of the 

countable subsetS of C'J such that Va: Ca C {ztI : (3 < ap. While T' x Til is not a Kunen modification 

of A, local compactness is, of course, automatic. AB for perfect normality, the essential preliminary is that 

V S C C'J 3 a < 0 : clA{S) n {ztI : (3 > ap = clr'xrll{S) n {ztI : (3 > ap. This said, let S C C'J 

be T' x Til-closed and choose a sequence {On} of A-open sets: clA{S) ~ n On = n clA{On)-then 
n n 

3 a < 0: clA{S) n {ztI : (3 > ap = n clr'xr"{On) n {ztI : {3 > ap. On the other hand, for each {3 5 a 
n 

{ 

{P.' «(3)} { {C x {ztI})n (C'J - S) C UP~{(3) 
there are countable collections {P:{(3)} of T' x Til-open sets: {{ztI} x C) n (C'J - S) C 9p:{(3) 

t London Math. Soc. Lecture Note6 93 (1985), 227-250. 

Can ad. Math. Bull. 30 (1987), 49-56. 
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{
dr' X r" (P~ ({J» n S = It { O~ ({J) = C2 - dr' X rll (P~ ({J» . { O~ ({J) 

" II • Form II 2 . II and combme the , ({J ~ a) 
dr'xr"(Pn.({J»ns=1t 0n.({J)=C -dr'xr"(Pn.({J» O'n({J) 

with the On. to obtain a single countable collection {Un} of r' X r"-open sets: S = nUn. = n clr , xr"(Un). 
n n 

{
X = (C, r') { dimX = 0 

Claim: Let -then (d. p. 19--14) and dim(X x Y) > o. 
Y = (C,r") dimY = 0 

[It is enough to show that de C (C x 0, r' x r") has positive topological dimension. Return to 

C, which thus carries three topologies, namely r, r~, and r· == r' x rille, a Kunen modification of r~. 

{A = 4>-1([0 1/7]) {A. = 4>-1([0 1/3]) 
Let '; let 1'. To arrive at a contradiction, suppose that O· is a 

B = 4>-1([6/7, 1]) B· = 4>- ([2/3,1]) 

{
A. C O· . - { An V - • 

r·-clopen set: . If the bar denotes closure in r~ and if V = 0 - 0·, then -" 
B· nO· =It Be V 

#(fr V) > w. But fr V C O· nO - O· and #(0· nO - 0·) 5 w.] 

[Note: ca is not necessary here. Examples of this type exist in ZFC (Przymusinskit ), the main dif

ference being that the product X x Y is not perfectly normal but rather is a normal countably paracompact 

Lca space.] 

One final point: The product theorem holds if X is an arbitrary nonempty topological space. In fact, 

if A C X has the EP w.r.t. [0,1], then its image crA in crX "is" the complete regularization of A and as 

such has the EP w.r.t. [0,1]; so dim A = dimcrA ~ dimcrX = dim X (d. p. 19--2). The countable union 

lemma is therefore applicable provided the Ai C X have the EP w.r.t. [0,1] (cf. p. 19--13). It is then easy 

to fall back to the completely regular case since for any LCa space Y, cr(X x Y) = crX x Y. 

LEMMA Suppose that X is a compact Hausdorff space. Let I,g E C(X,Sn) and put 

D = {x : I(x) :f:. g(x)}. Assume: dimD < n -I-then I ~ g. 
[Since I D is an FIT in IX, hence is normal, it follows from the product theorem that 

dimID < n. Set Y = ioXUI(X -D)UhX and define h: Y -+ Sn by {~~::~~ ~i:j & 

h(x, t) = I(x) = g(x)-then his continuous and has a continuous extension H E C(IX,sn) 
(cf. p; 19-18).] 

PROPOSITION 14 Let I,g E C(X,sn) and put D = {x : I(x) :f:. g(x)}. Assume: 

dimD < n -I-then I ~ g. 
00_ 

[The subset of f3X on which f3l:f:. f3g can be written as a countable union U U;, each 
1 

Uj being open in f3X. And: dim(Uj n X) :5 n -1 => dimUj = dimf3(Uj n X) < n -1 => 
00_ 

dimU Uj :5 n - 1, thus from the lemma, 131 ~ f3g,] 
1 

t Proc. Amer. Math. Soc. 76 (1979), 315-321; see also Tsuda, Math. Japon. 27 (1982), 177-195. 
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Application: If dimX ~ n - 1, then [X, SA] = *. 

FACT Suppose that X is normal and dimX is finite-then the natural map [8X, sn] _ [X, Stl] 

is bijective if n > 1 but if n = 1 and X is connected, there is an exact sequence 0 - C(X)/ BC(X) -

[8X,Sl] _ [X,Sl] - o. 
[To discuss the second assertion, observe that X connected ill'tJX connected and form the commu

tative diagram 

o --+ C(f3X)/Z ex» I C(f3X, Sl) --+ 0 

1 1 
o --+ C(X)/Z ---+ C(X,Sl) --+ 0 

exp 

Since the rows are exact and the middle vertical arrow is an isomorphism, the ker-coker lemma gives 

ker([8X,Sl] - [X,Sl]) ~ coker (C(,9X)/Z - C(X)/Z) ~ C(X)/BC(X). As for the need of the connect

edness assumption, take X = N : dimN = 0 =? [N, S1] = * = [8N,S1].] 

[Note: The exact sequence 0 - C(X)/ BC(X) - [8X, S1] - [X, S1] - 0 translates to 0 -

C(X)/BC(X) - 1I1(,9X) - 1I1(X) _ O. Because the quotient C(X)/BC(X) is torsion free and di

visible when nontrivial, it follows that if X is not pseudocompact, then 111 (,9X) ~ EDQ and is in fact 

uncountable. Proof: Let / : X - R be an unbounded continuous function, put /r = r· / (r E R) and 

consider the /r + BC(X). Example: 111 (,9R) ~ C(R)/BC(R).] 

Let Y be a connected CW space-then Bartikt has shown that the arrow [8X, y] - [X, Y] is 

bijective for every nonempty CRB space X with dimX finite ill' 1r1(Y) is finite and V q > 1, lrq(Y) is 

finitely generated or still, ill' 11'1 (Y) is finite and Y has the homotopy type of a connected CW complex K 

such that V n, K(tl) is finite (cf. p. 5-23). 

Application: Suppose that 11' is a finitely generated abelian group. Let X be a nonempty CRB space 

of finite topological dimension-then V n > 1,lIn(,9Xjlr) ~ lIn (X; 11'). 

EXAMPLE Take X = Y = POO(C)-then dim X' = 00 and the natural map [8X,X] - [X,X] is 

not surjective (consider idx). 

DOWKER EXTENSION THEOREM Let X be normal with dimX :::; n + 1 (n ~ 1) and 

let A be a closed subspace of X. Suppose that / E C(A,Sn)-then 3 F E c(x,sn) : FIA = / iff 

r(lIn(sn» C ie(lItl(X», i : A - X the inclusion. 

[The argument splits into two parts. 

t Quart. J. Math.. 29 (1978), 77-91; see also Calder-Siegel, 'lran.s. Amer. Math.. Soc. 235 (1978), 

245-270 and Proc. A mer. Math.. Soc. 18 (1980), 288-290. 
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(n = 1) In this case, [X,AjSl,Bl] ~ Hl(X,A), so one can proceed directly (A has the HEP 

w.r.t. SI (ct. p. 6-41». 

(n > 1) To reduce to the compact situation, use the fact that the extend ability of I: A - sn 

to X is .equivalent to the extendability of PI : PA - S" to px and consider the commutative diagram 

Hn(px) --+ H"(PA) +- Hn(sn) 

1 1 II .] 
Hn(x) --+ Hn(A) +- Hn(sn) 

DOWKER CLASSIFICATION THEOREM Let X be normal with dimX S n (n ~ 1) and 

let A be a c1~ subspace of X. Fix a generator" E Hn (sn , Bn j Z)-then the assignment [I] - r" defines 

a bijection [X, Aj S", B,,] - Hn(x, Aj Z). 

[Show that V n > 1, [{JX, PAj S", Bn] ~ [X, Aj S", Bn].] 

PROPOSITION 15 Suppose that X = A U B, where A and B are closed. Let 

{
IE C(A,sn) 
9 E C(B, sn) and put D = {x E An B : I(x) =F g(x)}. Assume: dimD ~ n -I-then 

3 { F E C(X, S:) : FIA = 1 & F ~ G. 
G E C(X, S ): GIA = 9 

[Using Proposition 14, fix a homotopy h : I(A n B) -+ S" such that { ~~:: ~~ :~;~ 
(x E AnB). Since AnB as asubspa.ceof {~ has the HEP w.r.t. sn, there exist continuous 

functions { ::: ~~:~: with { :~::~~ ~~:~~: ~ ~~ and ¢II(AnB) = h = tPII(AnB). 

D fin H C(IX S") b {HilA = ¢ d 'd {F(X) = H(x,O) ( X)] 
e e E , Y HIIB = tP an conSI er G(x) = H(x,l) x E . 

00 

FACT Let A be a closed subset of X and let I E C(A,sn). Assume: X = UOj, where the OJ are 
1 

open, dimfrOj S n-l, and V j, I has a continuous extension to AUOj-then 3 F E C(X,sn) : FIA = I. 

Suppose that dimX = n is positive. Let 1 : X -+ [0,1]" be universal-then the 

restriction 1-1(S"-I) -+ S,,-1 has no continuous extension to X, thus is essential. Put 

XI = X/I- 1(S"-I), identify S" with [O,l]"/S,,-1 and let FI: XI -+ S" be the induced 

map. 

LEMMA FI is essential, hence dim XI = n. 
[Put A = 1-1(S"-1 )-then there is a commutative diagram 

(X, A) ~ (X/A,*A) 
I! !F/ 

([0,1]", S"-I) --+ (S", 8 n ) 
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(n = 1) To get a contradiction, assume that F, is inessential. Choose 4> E 

C(X,) : F,(x) = exp(21ri4>(x». Since F,(x) = 1 only if x = *A, 4>(x) E Z only if 

x = *A. Normalize and take 4>(*A) = 0. Let S = /-1(0) U p-l (4)-1 (]O, 1[). Noting that 

/(x) = 4>(p(x» mod 1, write S = /-1([0,1/2]) np-l(4)-I([O, 1/2]) U p-l(4)-I([1/2, 1]) to 

see that S is closed and write S = /-1 ([0, 1/2[)np-l( 4>-1(] -1/4, 1/2[)Up-l( 4>-1 (]1/4, 1[) 

to see that S is open. The characteristic function of the complement of S is thus a 

continuous extension to X of the restriction /-1 ({O, I}) --+ {O, I}. 
(n > 1) The commutative diagram 

b"([o, 1]", S"-l) 

v T 
Hn.-l (Sn.-l) 

bn.(x, A) 

v T 
H"-I(A) 

displays the data (cf. p. 20-1). In view of the Dowker extension theorem, f* is not the 

zero homomorphism. Since the arrow bn.(s", 8n.) --+ bn.(fo, 1]n., S"-I) is an isomorphism, 

it follows that F, is essential.] 

Suppose that I X is normal-then by the product theorem, dim IX::; dim X + 1. 

One can also go the other way: dim I X ~ dim X + 1. This is obvious if dim X = 0, so 

assume that dimX = n is positive. Claim: dimIX, ~ n + 1. Indeed, if dim IX, < n, 

then Alexandroff's criterion would imply that the continuous function 4> : ioX, U ilX, --+ 

Sn. defined by {:~::~j ~:(x) (x E X,) has a continuous extension to IX" meaning 

that F, is homotopic to a constant map and this contradicts the lemma. Now write 
00 

X - /-I(Sn.-l) = UAj, where the Aj are closed subspaces of X. Let *, be the image of 
1 

00 00 

/-I(Sn.-l) in X,-then X, = {*,} U UAj ::} IX, = I{*,} U UIAj::} 3 j : dimIX, = 
1 1 

dimIAj::} dim IX ~ dimIAj = dimIX, ~ n + 1 = dim X + 1. 

Application: Suppose that X x [0, l]m is normal-then dim(X x [0, l]m) = dim X +m. 

PROPOSITION 16 Suppose that X is normal and Y is a CW complex. Assume: 

X x Y is normal-then dim(X x Y) = dim X + dim Y. 

[If B is a compact subspace of Y which is homeomorphic to [0, 1] m, where m = dim Y, 

then dim(X x B) = dim X + m.] 
[Note: The same conclusion obtains if Y is a metrizable topological manifold.] 

EXAMPLE Let X and Y be nonempty OW complexes-then X x I: Y is a. OW complex and 

dim(X XI: Y) = dim (X x Y). 
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PROPOSITION 11 Suppose that X is normal with dimX = 1 and Y is paracompact 

and cr·loca.lly compact. Assume: X x Y is normal-then dim(X x Y) = dimX + dimY. 

[Switch the roles of X and Y and reduce to the case when X is compact. Since 

dim Y = 1, there exist disjoint closed sets {;:, ~ ~ such that V - V -I ., for any 

open V C Y : B' eVe Y - Btl. Arguing as above, it need only be shown that 

dim(XI x Y) > n + 1 (n > 0). IT instead. dim(XI x Y) ~ n, define a continuous function 

4>: X x (B'UBtI) -+ S" by {4>(x,'II) = FI(x) «x, 'II) E XI x B') and use Alexandroil"s 
I 4>(x,'II) = 8" «x,'II) E XI x Btl) . 

criterion to get a continuous extension ~ : X I x Y -+ S". Let V c Y be the set of a.ll 11 

with the property that the section ~, : {XI -:(S" ) is essential-then B' eVe Y - B" 
x -+ "i:" x, 'II 

and V is clopen, XI being compact. Contradiction.] 

EXAMPLE Take, after Anderson· Keisler (d. p. 19-38), an Xc R2 : dimX = dim(X x X) = 1-

then dim,8(X x X) = 1 but dim(,8X x ,8X) = dim,8X +dim,8X = 2 (d. Proposition 17). 

While there is no reason to suppose that X, is completely regular if X is, nevertheless the lemma 

and Propositions 16 and 17 are still true in this setting, although some changes in the proofs are necessary 

(Moritat ). Consider, e.g., Proposition 17. Having made the reduction and the switch (so X is compact 

and dim Y = 1), choose a continuous function h : Y - [0,1] such that V - V :;: e for any open V C Y : 

h-1 (0) eVe Y - h- 1 (1). Define H : X, x Y - [0,1],,+1 by H(III,,) = (1 - h(II)}F,(III) + h(II)B". If 

dim(X X Y) ~ n (where n ~ 1), then dim(X, x Y) ~ n, therefore H is not universal. Accordingly (d. p. 

19-18),3. E C(X, x Y,S"): {.(III'II) = F,(III) (II Eh-
1

(0)} and this suffices . 
• (111, II) = B" (II E h-1(1» 

EXAMPLE Let X be an arbitrary nonempty topological space-then dimIX = dim crIX = 

dimIcrX = dimcrX + 1 = dim X + 1. This fact can be used to compute dimrX and dimEX, both 

of which have the value dim X + 1. Observe first that the two lemmas on p. 19-19 hold "in general". 

Therefore dim X + 1 = dimIX = ma.x{dimi1X, dim IX/i1 X} = ma.x{dimX,dimrX} = dimrX. And 

then dimrX = ma.x{dimX,dimrX/X} = ma.x{dimX, EX} = dim EX. Corollary: If f : X - Y is a 

continuous function and if M, is its mapping cylinder, then dimM, = ma.x{1 + dim X, dim Y}. 

[Note: Recall that a cofibered subspace has the EP w.r.t. R, hence w.r.t. [0,1] (cf. p. 6-40).] 

LEMMA Let X be normal. Suppose tha.t there exists a sequence Ul, U2, ... of open 

coverings of X such that UHl is a refinement of Ui, the collection {st(U,U.) : U E Ui 

(i = 1,2, ... )} is a basis for X, and Vi: ord(Ui) ~ n + I-then dimX < n. 

t Fund. Math. 81 (1976), 31-62. 
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[Let U = {U1, ... ,Ui} be a finite open covering of X. Denote by Xi the union of 

all U E Ui : st(U,Ui) is contained in some element of U. Each Xi is open; moreover, 
X = UXi. Fix a map 1;+1 : Ui+l -+ Ui such that VUE Ui+1 : I;+I(U) ::> U. Set 

i 

If = idui and for i < i, put If = 1;+1 0 ••• 0 Ij_I' Introduce 

U(j) = {U E Uj : Un Xj :f 0} and V(j) = {U E U(j) : un ( U Xi) = 0}. 
i<j 

Obviously, V(j) C U(j) C Uj and j' :f i" ~ V(j') n V(j") = 0. Given U E U(j), let i(U) 

be the smallest integer i ~ i : If(U) n Xi :f 0, so l!cu)(U) E V(i(U». Corresponding to 

any V E V( i) is the open set 

V'" = U U{U n Xj : U E U(j),I!(U) = V & i(U) = i}. 
j~i 

Note that V'" C V and VUE U(j), U n Xj c li(u) (U)'" . In addition, 3 U E Ui 

Un V :f 0 and 3 keY) ~ k : V C st(U,U.) C Ui(V), hence V'" C Uk(V). The collection 

V'" = {V'" : V E U V(iH is therefore an open refinement of U. The claim then is that 
i 

ord(V"') ~ n + 1. To this end, consider a generic nonempty intersection Vi'" n ... n V;, 
where VI E V(i l ), ••• , Vp E V(ip) are distinct elements ofUV(i). Take an x in Vi"'n·· ·nvp• 

i 
and choose i : x E Xj - U Xi (* i l ~ i, .. . , ip ~ j). From the definitions, there exist 

i<i 

U U( ') {f/1(UI)=Vi& U X U U(') {lip(Up)=¥,,& U X I E JI: .(IUI). x E In ju'''' p E Jp: .(p). x E pn jp, 
, I = 'I ,Up = 'p 

But x E Ijl(UI) n .. · n IJp(Up) and since Ijl(UI), ... ,IJp(Up) are all different, the claim 

is thus seen to follow from the fact that ord(Uj) ~ n + 1.] 

Application: Let X be normal. Suppose that X admits a development {Ui} such that 

{Ui} is a star sequence and Vi: ord(Ui) < n + I-then dimX < n. 

PASYNKOV FACTORIZATION LEMMA Suppose that X is normal and Y is 

metrizable.-then for every I E C(X, Y) there exists a metrizable space Z with { d:; ~ 
::UyX and functions {~ ~ g~;:;j such that I = hog with h uniformly continuous and 

g(X) = Z. 

[Assume that dimX = n is finite and wt Y ~ w. Fix a sequence {Vi} of neighborhood 

finite open coverings of Y such that Vi: leVi) ~ wt Y, arranging matters so that the di

ameter of each V E Vi is < Iii. Inductively construct a star sequence {Ui} of neighborhood 
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fini . f X ch th \.J' { ord(Ui) < n + 1 d U . efin te open covermgs 0 su at v ,: #(U,) <-wt Y an , IS a star r ement 

of 1-1 (Vi). Justification: Quote Proposition 6 and recall §1, Proposition 13 (the proof of 

which allows one to say that the cardinality of Ui remains ~ wt Y). Let 6 be a continuous 

pseudometric on X associated with {Ui} as on p. 6-37. The claim is that one can take 

for Z the metric space X6 obtained from X by identifying points at zero distance from 

one another. Granted this, it is clear what 9 and h have to be. Denote by X(5) the set 

X equipped with the topology determined by 5. Given U E Ui, write U(5) for its interior 

in X(5) and put Ui(6) = {U(5) : U E Ui}-then {Ui(5)} is a development for X(6) and 

is a star seq!lence such that 'V i : ord(U,(5» < n + 1. The projection p : X(5) ~ Z is 

an open map (every open subset of X(6) is p-saturated), thus. Wi == P(Ui(5» is an open 

covering of Z. Furthermore, {Wi} is a development for Z and is a star sequence such that 

'V i : ord(Wi) ~ n + 1. Therefore dim Z ~ n. As for the assertion wt Z ~ wt Y, note that 
00 

the Wi are point finite and the collection U{st(z, Wi) : z E Z} is a basis for Z.] 
1 

There are two related results, applicable to pairs (X, A). 
(A) Suppose that X is normal and Y is metrizable of weight < K. Let A be 

a subspace of X having the EP w.r.t. B(K)-then for every I E C(A, Y) there exists 

a metrizable space ZA of weight < K and functions {~~ ~h(~f..tl, Y) such that I = 

hA 0 (gIA) with hA uniformly continuous and g(X) = ZA. 

[Argue as in §6, Proposition 15 (proof of sufficiency).] 

(X/ A) Suppose that X is normal and Y is metrizable of weight < K. Let A 

be a closed subspace of X : rumeX/A) ~ n-then for every I E C(X, Y) there exists a 

metrizable space Z of weight < K and functions { ~ ~ ~~~:;j such that I = hog with h 

uniformly continuous and g(X) = Z, dim(Z - g(A» ~ n. 

[This is the relative version of the Pasynkov factorization lemma. The proof is the 

same as for the absolute case modulo the following remark: Every neighborhood finite 

open covering U = {Ui : i E I} of X has a neighborhood finite open refinement Osuch 

that the order of the collection {O,st(A,O) : 0 E ° & 0 n A = 0} is ~ n + 1. Proof: 

Assuming that the Ui are cozero sets, let Z = {Zi : i E [} be a precise zero set refinement 

of U (cf. p. 1-25). Define 10 = {i E [ : Ui n A =F 0} and put {~~ ~~~: ; ; ~ ~~~-
then {~o is a {zero set t (cf. p. 1-24). Choose 4> E C(X, [0, 1]) : Zo = 4>-1(0) & 

vo cozero se 
X - Uo = 4>-1(1). Let Xo = {x : 4>(x) ~ 1/2}. Since A is contained in Zo and Zo is 

contained in the interior of X o, the collection {Ui - X o, Uo : i E [- [o} is the inverse 
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image of a neighborhood finite cozero set covering of X/A under the projection X -+ X/A. 
Therefore there exists a neighborhood finite cozero set covering {O., 0 0 : i E I - Io} of X 
whose order does not exceed n + 1 such that 0. CUi - Xo(i E 1- 10 ) and A C 0 0 c Uo. 
H ° = {O,: i E 1- Io} U {Oo n Ui: i E Io}, then 0 0 = st(A,O) and ° is a neighborhood 
finite cozero set refinement of U with the stated property.] 

PROPOSITION 18 Suppose that X is normal and Y is completely metrizable of 
weight < N. and locally n-connected (n-connected and locally n-connected). Let A be a 

closed subspace of X having the EP w.r.t. B(N.). Assume: dimX/A < n + I-then A has 

the NEP (EP) w.r.t. Y. 

[Take an I E C(A, Y) and write I = hA 0 (gIA). Since 9 E C(X, ZA) and since 

wtZA ~ It, 9 can in turn be factored: 9 = 't/J 0 4>, where { : ~ ~~~: ~~)' Here, of course, 

dim(Z - 4>(A» < n + 1. On the other hand, hA 0 ('t/JI4>(A» is uniformly continuous, hence 
extends to a continuous function BA : 4>(A) -+ Y. Now apply the results of Dugundji cited 

on p. 6-15.] 

PROPOSITION 19 Suppose that IX is normal and Y is completely metrizable of 

weight ~ It and locally n-connected. Let A be a closed subspace of X having the EP w.r.t. 

B(It). Assume: dimX/A ~ n-then.A has the HEP w.r.t. Y. 

[Let I : ioX U I A -+ Y be continuous. Since ioX U I A, as a subspace of IX, has 

the EP w.r.t. B(It) (el. §6, Proposition 16) and since dim IX/ioX U IA < dimIX/IA ~ 
dimI(X/A) < dimX/A + 1 < n + 1, Proposition 18 implies that there exists a cozero 

set 0 C IX: 0 :::> ioX U I A and a continuous function 9 : 0 -+ Y extending f. Fix a 

{ 
4>IA = 1 cozero set U eX: IA c IU c O. Choose 4> E C(X, [0, 1]): 4>IX _ U = O. Define 

FE C(IX, Y) by F(z, t) = g(z, 4>(z)t) : F is a continuous extension of I.] 

The normality of X can be dispensed with in Pasynkov's factorization lemma: Everything goes 

through in the completely regular situation. 

[Note: Pasynkov's factorization lemma is then valid for an arbitrary topological space as may be seen 

by passing to its complete regularization.] 

Ail for Propositions 18 and 19, they too are trlle if X is a nonempty CRH space. The assumption 

that A is closed was made only to ensure that the quotient X/A is normal. Therefore it can be dropped. 

Likewise, the assumption that IX is normal was made only to use the product theorem. This, however, is 

of no real consequence, as the product theorem holds for an arbitrary nonempty topological space (d. p. 

19-44). 
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For another application of these methods, SUpp08e that Y is completely metrizable of weight S " 

and is n-connected and locally n-connected. Assume: dimX/A S n. Let be continuous {
J:X-+Y 

g:X-+Y 
functions such that JIA oi glA-then J :: g. Corollary: If X is IC-<:ollectionwise normal with dimX S n, 

then [X, Y] = •. 

FACT SUPPO/ile that X is a nonempty metriaable space. Let A be a nonempty closed subspace of 

X: dim(X - A) = o--then there exists a retraction r : X -+ A. 

A compact connected ANR Y is said to be a test space for dimension n (n > 1) 

provided that the statement dim X < n is true iff every closed subset A C X has the EP 

w.r.t. Y. Example: Sn is a test space for dimension n (Alexandroff's criterion). 

[Note: No compact connected AR Y can be a test space for dimension n.] 

{
Y' 

LEMMA Let Y" be compact connected ANRs of the same homotopy type-then 

Y' is a test space for dimension n iff Y" is a test space for dimension n. 

[H X is normal and A C X is closed, then A has the HEP w.r.t. {~:, (d. p. 6-41).] 

A finite wedge V Sn of n-spheres is a test space for dimension n. Indeed, V Sn is a 

compact connected ANR of topological dimension n. Moreover, V Sn is (n -I)-connected 

(since for n > 1, 1r,(V sn) . EB1r,(sn) (q < 2n -1)), thus Proposition 18 implies that if 

dim X :5 n and if A c X is closed, then A has the EP w.r. t. V S n. Here it is necessary to 

recall that A has the EP w.r.t. B(w) (d. p. 6-37). On the other hand, there is a retraction 

r : V Sn -+ Sn so if A c X is closed and has the EP w.r.t. V Sn then A has the EP w.r.t. 

Sn, from which dimX < n. 

TEST SPACE THEOREM Let Y be a compact connected ANR of topological dimen
sion n (n > 1 )-then Y is a test space for dimension n iff Y has the homotopy type of a 

finite wedge of n-spheres . 

. [Only the necessity need be dealt with. There are two cases: n = 1 or n > 1. H 

n = 1, then 1rl(Y) -:f:. 1 (otherwise, Y would be an AR), hence Y has the homotopy type 

of a finite wedge of I-spheres (d. p. 6-21). H n > 1, then for q > n, H,(Y) -:- 0 (cf. 

p. 6-21) and Y must be (n - I)-connected (d. p. 6-15 & p. 19-18). Accordingly, by 

Hurewicz, H,(Y) = 0 (0 < q < n) and Hn(Y) = 1rn(Y)' a nontrivial finitely generated 

free abelian group. Picking a set of base point preserving maps Sn -+ Y which generate 

1rn(Y) then leads to a homology equivalence V Sn -+ Y that,. by the Whitehead theorem, 

is a homotopy equivalence.] 
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If Y is a compact connected ANR which is a test space for dimension n, then dim Y ~ n (look at 

the proof of the test space theorem). There are test spaces for dimension n of topological dimension n + Ie 

(Ie> o). Consider, e.g., [0, 1]"H V S". 

EXAMPLE Let a E w,,+,,(S"} (Ie > O,n ~ 1). Choose a representative f E a and put Yo = 
D,,+l+1 u/ S"-then Yo is a compact connected. ANR (d. p. 6-29) with dimYo = n + Ie + 1 (d. p. 

19-21) and Dranishnikovt has shown that Yo is a test space for dimension n. 

[Note: The preceding considerations break down if Ie = O. Example: p2(R) is not a test space for 

dimension 1.] 

t T,ukuba J. Math.. 14: (1990), 247-262. 
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§20. COHOMOLOGICAL DIMENSION THEORY 

Cohomological dimension theory enables one to associate with each nonempty normal 

Hausdorff space X and every nonzero abelian group G a topological invariant dimG X E 

{O, I, ... } U {oo} called its cohomological dimension with respect to G. It turns out that 

dimz X = dim X if dim X < 00 (but this can fail if dim X = 00) and when X is a CW 

complex, dimG X = dim X V G =F 0. 
Let G be an abelian group-then for any topological pair (X, A), bn(X, Aj G) is the 

nih Cech cohomology group of (X, A) with coefficients in G calculated per numerable open 

coverings (rather than arbitrary open coverings). 

[Note: As was shown by Moritat , [X,AjK(G,n),kG,n] ~ bn(X,AjG) (cf. p. 5-30) 

which, however, need not be true if the usual definition of "bn
" is employed (Bredont ). 

Bear in mind that when n = 0, the agreement is that K(G,O) = G (discrete topology).] 

LEMMA H A is a nonempty subspace of X, then V n > 1, b n (X, Aj G) ~ b n (X/Ai G). 

Let A be a subspace of X -then A is said to be numerably embedded in X if for every numerable 

open covering 0 of A there exists a numerable open covering U of X such that UnA is a refinement of 

o (cf. §6, Proposition 15). Example: If X is a collectionwise normal Hausdorff space, then every closed 

subspace A of X is numerably embedded in X (d. p. 6-37). 

LEMMA Suppose that A is numerably embedded in X-then V G, there is a long exact sequence 

... -+ lIn-l (A; G) -+ lIn (X, A; G) -+ IIn(X;G) -+ lIn (A; G) -+ .... 

Remark: If G = Z (or, more generally, is finitely generated), one can get away with less, viz. it 

suffices that A have the EP w.r.t. R. 

[Note: Working with countable numerable open coverings, an appeal to Proposition 4 in §6 leads to 

the definition ofthe coboundary operator lIn-l (A) -+ lIn (X, A).] 

Example: If X is a normal Hausdorff space and if A C X is closed, then there is a long exact sequence 

... -+ lIn-l(A) -+ lIn (X,A) -+ lIn (X) -+ lIn(A) -+ .... 

FACT Suppose that A is numerably embedded in X-then lA is numerably embedded in IX. 

t Fund. Math 87 (1975), 31-52. 

Proc. Amer. Math. Soc. 19 (1968), 396-398. 
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It is known that 1:1*(-; G), restricted to the full subcategory of TOP2 whose objects are the pairs 

(X, A), where A is closed and numerably embedded in X, satisfies the seven axioms of Eilenberg-Steenrod 

for a cohomology theory (Watanabet ). 

PROPOSITION 1 Let X be a nonempty normal Hausdorff space. Assume: dimX < 
n-theni/q(X; G) = 0 (q > n). 

[This is a consequence of the definitions (cf. §19, Proposition 6).] 

PROPOSITION 1 (bis) Let A be a nonempty closed subspace of X. Assume: 

dimX/A ~ n-then i/q(X, A; G) = 0 (q > n). 

If X is a locally contractible paracompact Hausdorff space (e.g., a CW complex or an ANR), then 

Y n, IIfl(X;G) :::::: Hfl(XjG). In general, though, Cech cohomology and singular cohomology can differ 

even if X is compact Hausdorff (Barratt-Milnort ). 

[Note: Proposition 1 is a key property of Cech cohomology. It is not shared by singular cohomology.] 

Fix an abelian group G =F 0 and let X be a nonempty normal Hausdorff space. 

Consider the following statement. 

(dimG X ~ n) There exists an integer n = 0,1, ... such that i/q (X, Ai G) = 0 

(q > n) for all closed subsets A of X. 

If dimG X ~ n is true for some n, then the cohomological dimension of X with respect 

to G, denoted by dimG X, is the smallest value of n for which dimG X ~ n. 

[Note: By convention, dimG X = -1 when X = 0 or when G = O. If the statement 

dimG X ~ n is false for every n, then we put dimG X = 00.] 

EXAMPLE Let X be a metrizable compact Hausdorff space of finite topological dimension, K a 

simply connected CW complex-then dimHq(K) X ~ q Y q?: 1 iff dim"'q(K) X ~ q Y q ?: 1 and both are 

equivalent to every closed subset A C X having the EP w.r.t. K (Dranishnikov ll ). Example: One can 

take K = M(G, n) (n?: 2) (realized as a simply connected CW complex) provided that dimG X ~ n. 

PROPOSITION 2 Suppose that dimX ~ n-then dimG X ~ n. 

[In fact, for A =F 0, dimX ~ n => dimX/A ~ n (cf. p. 19-18) => i/q(X, Aj G) = 0 

(q > n) (cf. Proposition 1 (bis» => dimG X ~ n (Proposition 1 covers the case when 

A = 0).] 

t Glas. Mat. 22 (1987), 187-238; see also SLN 1283 (1987), 221-239. 

t Proc. Amer. Math. Soc. 13 (1962), 293-297. 

II Math. Sbor:nik 14 (1993), 47-56; see also Dydak, 1rans. Amer. Math. Soc. 331 (1993), 219-234. 
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PROPOSITION 3· Suppose that dimX < co-then dimzX = dimX. 

[In view of Proposition 2, dimz X ~ dimX. Now argue by contradiction and assume 

that dimz X < n, dimX = n + 1. Choose a universal map I : X -+ [0,1]n+l (cf. p. 19-

18)-then on the basis of the Dowker extension theorem, the arrow b n+1([0, 1]n+l, snj Z) 

.4 b n+1 (X, 1-1 (sn); Z) is not the zero homomorphism. But dimz X ~ n => b n+1 (X, 
1-1 (Sn)j Z) = 0.] 

Application: If the topological dimension of X is finite, then V G, dima X ~ dimz X. 
[Note: For any compact Hausdorff space X (possibly of infinite topological dimension), 

one has dimaX ~ dimzX (immediate from the universal coefficient theorem (cf. infra)).] 

EXAMPLE The validity of the relationdimz X = dimX depends on the assumption that dim X < 
00. Indeed, Dranishnikov t has given an example of a compact metric space X such that dim X = 00, while 

dimzX < 00. 

[Note: According to Watanabet I dimz X = dimX if X is a compact ANR (no restriction on dim X).] 

There is not a great deal that can be said about dimG X if X is merely normal, so we 

shall restrict ourselves in what follows to paracompact X and begin with a review of Cech 

cohomology in this situation (all open coverings thus being numerable). 

MAYER-VIETORIS SEQUENCE Let X be a paracompact Hausdorff space. Sup

pose that A, B are closed subsets of X with X = A U B-then the sequence ... -+ 
bn(Xj G) -+ bn(Aj G) E9 bn(B; G) -+ bn(A n Bj G) -+ b n+1(Xi G) -+ ... is exact. 

BOCKSTEIN SEQUENCE Let X be a paracompact Hausdorff space, A a closed 

subset. Suppose that 0 -+ G' -+ G -+ Gil -+ 0 is a short exact sequence of abelian 

groups-then there is a long exact sequence··· -+ bn(X, Ai G') -+ bn(X, Ai G) -+ 

bn(X, Ai Gil) -+ b n+1 (X, Aj G') -+ .... 

UNIVERSAL COEFFICIENT THEOREM Let X be a compact Hausdorff space, 

A a closed subset-then there is a split short exact sequence 0 -+ bn(X, Aj Z) ® G -+ 

bn(X, Aj G) -+ Tor(bn+1 (X, Ai Z), G) -+ O. 

t Math. Sbornik 63 (1989), 539-545; see also Chigogidze, Inverse Spectra, North Holland (1996), 

100-116. 

t Proc. Amer. Math. Soc. 123 (1995), 2883-2885. 
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KUNNETH FORMULA Let X be a paracompact Hausdorff space, A a closed subsetj 

let Y be a compact Hausdorff space, B a closed subset-then bR((X, A) x (Y, B)j G) ~ 
R '" '" E9 Hq(X, Aj HR-q(y, Bj G». 

q=O 
[Note: The product X x Y is a paracompact Hausdorff space and, as usual, (X, A) x 

(Y,B) = (X x Y,X x BUA x Y).] 

Let X be a paracompact Hausdorff space of finite topological dimension. Suppose that G is finitely 

generated-then Bartikt has shown that for every closed subset A of X, the arrow lIn ({JX,{JA; G) -+ 

lIn (X, A; G) is surjective for n = 1 and bijective for n > 1. 

[Note: More is true if G is finite: The arrow lIn ({JX, (JA; G) -+ lIn (X, A; G) is bijective V n ~ 0.] 

EXAMPLE Let X be a paracompact Hausdorff space of finite topological dimension-then 

dima X :$ dima {JX provided that G is finitely generated. 

[This is clear if dima X :$ 0, so let n = dima X be positive and choose a closed subset A of X such 

that lIn (X, A; G) ::f. O. By the above, lIn ({JX, (JA; G) ::f. O. thus n :$ dima (JX.] 

Notation: Let X be a paracompact Hausdorff space, A C X a closed subset. Given 

e E bR(X; G), write elA for the image of e under the arrow bR(Xj G) ---+ bR(Aj G). 

RESTRICTION PRINCIPLE Let e be an element of bR(X; G). Assume: elA = 0-

then 3 an open U :J A : e I U = o. 

EXTENSION PRINCIPLE Suppose that 0: E bR(A; G)-then 3 an open U :J A and 

an e E bR(Uj G) : elA = 0:. 

These two principles date back to Wallace' who used them to establish the following 

result. 

RELATIVE HOMEOMORPHISM THEOREM Let {~ be paracompact Hausdorff 

spaceSj let {~ ~: be closed subsets. Suppose given a closed map f : (X, A) ---+ (Y, B) 

such that fiX - A is a homeomorphism of X - A onto Y - B-then r : bR(Y, Bj G) ---+ 

bR(X, Aj G) is an isomorphism. 

t Quart. J. Math. 29 (1978), 77-91. 

Duke Math J. 19 (1952),177-182. 
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Application: Let X be a paracompact Hausdorff space; let {~ C X be closed 

subsets-then the arrow H"(AUB,A) ---7 H"(B,AnB) induced by the inclusion (B,An 
B) ---7 (A U B, A) is an isomorphism. 

It is possible to expand the level of generality and incorporate sheaves (of abelian groups) into the 

theory. While this is definitely of interest, I shall limit the discussion to a few elementary observations. 

Let X be a para.compa.ct Hausdorff spa.ce. Given a sheaf :F :f; 0 on X, write dim", X :$ n if 3 

an integer n = 0,1, ... such that H9(X; :FlU) = 0 (q > n) for all open subsets U of X. Example: 

dim X :$ n => dim", X :$ n (cf. Proposition 2). 

Remark: Let G :f; 0 be an abelian group, G the constant sheaf on X determined by G-then V closed· 

subset A ex, k"(X,A;G) ~ H"(X; GIX - A) (Godementt ). 

FACT Let:F:f; 0 be a sheaf on X-then dim", X :$ n iff :F admits a soft resolution 0 -+ :F -+ 

SO -+ S 1 -+ ... -+ S" of length n. 

LEMMA Let {:Fa} be a collection of soft subshea.ves of a sheaf:F which is directed by inclusion. 

Assume: :F = colim:Fa-then:F is soft. 

FACT Let {:Fa} be a collection of subshea.ves of a sheaf:F which is directed by inclusion. Assume: 

:F = colim:Fa-then dim", X:$ n if Va, dim"'a X :$ n, hence dim", X :$ supdim"'a X. 

[Work with the canonical (=Godement) resolution of the :Fa.] 

If:F =:F1 ff):FII
, then H"(X;:F) = H"(X; :F/) ff) H"(X;:FII

). Therefore dim",1 X :$ n & dim",11 X :$ 

n => dim", X :$ n. 

Suppose now that {:F;} is a collection of sheaves indexed by a set 1. Given a finite subset Fe I, 

put :F F = $ :F;-then :F == $:F; = colim:F F. SO, under the assumption that dim",; X :$ n Vi, one has 
;EF ; 

dim", X :$ n as well. 

Fix an abelian group G and let X be a paracompact Hausdorff space--then X is said 

to satisfy Okuyama's condition at n if \:I q ~ n and each closed subset A of X, the arrow 

Hfl(X; G) ---7 Hfl(Aj G) is surjective. 

SUBLEMMA Suppose that X satisfies Okuyama's condition at n-then every closed 

subspace A of X satisfies Okuyama's condition at n. 

t Theone des Faisceaux, Hermann (1964), 234-236. 
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fIq (X; G) ---i- fIq (B; G) 
[Given a closed subset B of A, consider the commutative triangle 1 / .J 

fIq(Aj G) 

LEMMA Suppose that X satisfies Okuyama's condition at n. Let {~ be closed 

subspaces of X and let e be an element of fIq(X; G) such that {:I~ ~ for some q > n

then elAUB = O. 
[Consider the Mayer-Vietoris sequence· .. -+ fIq-1 (Aj G) ffi fIq-1 (Bj G) -4 fIq-l (A n 

B; G) -+ fIq(A U B; G) 4fIq(Aj G) ffi fIq(B; G) -+ .... Thanks to the sublemma, i is 

surjective. Therefore j is injective. But j(elA U B) = 0, so elA U B = 0.] 

PROPOSITION 4 Let X be a paracompact Hausdorff space--then dima X ~ n iff 

X satisfies Okuyama's condition at n. 

[Necessity: Inspect the exact sequence··· -+ fIq(X, Aj G) -+ fIq(Xj G) -+ fIq(A; G) 
-+ fIq+I(X, A; G) -+ .... 

Sufficiency: Fix q ~ n-then since fIq (X; G) -+ fIq (Aj G) is surjective, fIq+ 1 (X, Aj G) 
-+ fIq+I(X; G) is injective, thus it need only be shown that fIq+I(Xj G) = O. Take an 

e E /{q+l(X; G). Because fIq+l( {x}j G) = 0,3 a neighborhood U:c of x such that elU:c = 0 

(restriction principle) and by paracompactness, the open covering {U:c : x E X} admits 

a u-discrete closed refinement A = U Ak. Put Ak = UAk and inductively determine a 
k 

sequence {Uk} of open sets: Ak U U k-l C Uk & elU k = 0, where Uo = 0. Noting that 

elAk = 0 't/ k, proceed as follows. First, 3 an open U1 ::::> Al : elU I = 0, hence elA2 U U 1 = 0 

(apply the preceding lemma). Assuming that Uk Ak U U k-l with elU k = 0 has been 

constructed, one has again e I Ak+ I U Uk = 0, so 3 an open set U k+1 : U k+ I ::::> Ak+1 U Uk = 0 

& elU k+l = 0, which pushes the induction forward~ Now let Wk = Uk - Uk-I: Wk is 

closed, elWk = 0, and X = U Wk. On the other hand, the collections {WI, Wa, ... }, 
k 

{W2' W4 , ••• } are discrete. Therefore the restriction of e to their respective unions must 

vanish, thus from the lemma, e = 0.] 

Notation: Write K (G, q) for an Eilenberg-MacLane space of type (G, q) realized as an 

ANR in NES(paracompact) (cf. p. 6-43). 

PROPOSITION IS Let X be a paracompact Hausdorff space--then X satisfies Oku

yama's condition at n iff every closed subset A C X has the EP w.r.t. K(G,q) 't/ q ~ n. 

[There are two points: (1) /{q(X;G) ~ [X,K(G,q)], /{q(A;G) ~ [A,K(G,q)]; (2) A 
has the HEP w.r.t. K(G, q) (cf. p. 6-46).] 
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Application: Let X be a paracompa.ct Hausdorff space-then dimG X :5 n iff every 

closed subset A C X has the EP w.r.t. K(G,q) V q 2: n. 

PROPOSITION 6 The following conditions on a paracompact Hausdorff space X 

are equivalent. (1)n V closed A eX: kq(x, A; G) = 0 (q > n)j (2)n V closed A eX: 
fIn+l(X, Aj G) = OJ (3)n V closed A eX: kn(x; G) - kn(A; G). 

[Trivially, (l)n => (2)n, (2)n => (3)n. And: (4)n => (3)n+l, (3)n 1\ (4)n => (2)n, where 
(4)n is the condition kn+l(A; G) = 0 V closed A C X. In addition, (l)n = A (2)q. 

q~n 

Suppose that (3)n holds-then the claim is that (3)q 1\ (4)q holds V q 2: n, hence that (l)n 

holds. Here is the pattern for the argument: (3)n => (4)n => (3)n+l => (4)n+l => .... 
Therefore one has to show that (3)q => (4)q V q 2: n. But (3)q gives kq+l(X; G) = 0 (see 

the proof of sufficiency in Proposition 4) and since (3)q is inherited by A, fIq+l(A; G) = 0 

too.] 

Application: Let X be a paracompact Hausdorff space-then dimG X :5 n iff every 

closed subset A C X has the EP w.r.t. K(G,n). 
[Note: This result is the cohomological counterpart to Alexandroff's criterion. If X is 

compact or stratifiable, then one can take K(G,n) as a CW complex (cf. p. 6-43).J 

EXAMPLE Suppose that X is an ANR and let G = n Gi be the direct product of abelian groups 
i 

G. =fi O-then dimG X = supdimG. X. 

[Since each G. is a direct summand of G, dima X ;::= dimGi X V i, so if supdimG. X = 00, we are 

done. Assume therefore that sup dimG. X = n. Consider the product Y = n K (G i, n )-then every closed 
i 

subset A C X has the EP w.r.t. Y, hence every closed subset A C X has the EP w.r.t. IsinYI (d. p. 

6-46). But I sin YI is a CW complex and, as such, is an Eilenberg-MacLane space of type (G, n).] 

PROPOSITION 1 Let X be a nonempty paracompact Hausdorff space-then 

dim X = 0 iff dimG X = 0 V G =1= O. 

[By Proposition 2, dimX = 0 => dimG X = O. Conversely, since G (discrete topology) 

= K( G, 0) E NES(paracompact) contains SO as a retract (G being nontrivial), every closed 

subset A C X has the EP w.r.t. So, hence dimX :5 0 (Alexandroff's criterion).] 

Examples: V G =1= 0, (1) dimG[O, 1] = Ij (2) dimG R = Ij (3) dimG SI = 1. 

EXAMPLE Let X be a paracompact Hausdorff space of finite topological dimension-then 

dimG 13X :5 dima X provided that G is finitely generated. 
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[It suffices to show that dimG X :5 n => dima f3X :5 n. This is trivial if X = " or G = 0, 80 take 

X nonemptyand G nonzero. Because dimf3X = dimX (d. §19, Proposition I), from Proposition 7, 

dima X = 0 => dimX = 0 => dimf3X = 0 => dima f3X = o. Suppose now that n is positive and let A 

be a closed subset of f3X. Claim: kn+l(AjG) = 0, which is enough (d. Proposition 6: (l)n ¢> (4)n). 

To verify this, fix an a E kn+l (Aj G) and, using the extension principle, choose an open U ::> A and an 

e E kn+1(Uj G) : elA = a. Since f3(U n X) = cl,sx(U n X) = U, kn+1(UjG) ~ kn+l(U n Xj G) (cf. p. 

20-4). But dima X :5 n => k n +1 (U n Xj G) = 0, 80 e = 0, thus a = 0.] 

[Note: Consequently, under the stated hypotheses on X and G, dima X = dima f3X (d. p. 20-4).] 

Remark: If the topological dimension of X is infinite, then one can find examples for which dimz X '# 
dimz f3X (Dranishnikovt). 

EXAMPLE For any nonempty paracompact Hausdorff space X, dimz X = 1 iff dim X = 1. 

[If dimz X = 1, then every closed subset A C X has the EP w.r.t. S1 = K(Z, 1), hence dimX :5 1 

(Alexandroff's criterion) and dimX = 0 is untenable (cf. Proposition 7).] 

PROPOSITION 8 Let X be a paracompact Hausdorff space-then for any closed 

subspace A of X, dima A :5 dima X. 

EXAMPLE Let X be a paracompact LCH space--then dimG X = supdima K, where K C X is 

compact. 

[Since dima X 2:: dimG K V K (d. Proposition 8), supdimG K = 00 => dimG X = 00. So suppose 

that sup dimG K = n. Write X = U K., where K. is compact and {K. : i E I} is neighborhood finite. Well 
i 

order I and deduce by transfinite induction that every closed subset A C X has the EP w.r.t. K(G, n), 

hence that dimG X :5 n.] 

FACT Let X be a closed subset of Rn-then dimX = n -1 iff dima X = n -1 V G '# o. 

PROPOSITION 9 Let X be a paracompact Hausdorff space. Suppose that X -
00 

U Aj, where the Ai are closed subspaces of X such that V j, dimG Ai :5 n-then dimG X :5 
I 
n, hence dima X = sup dima Ai' 

[Fix a closed subset A C X and a continuous function I : A -+ K(G,n). Put 

Uo = A and Fo = I-then since dima Al :5 n, FolUo n Al has a continuous extension 

<1»0 : Al -+ K(G, n). Define a continuous function It : Uo UAI -+ K(G, n) by ItIUo = Fo & 

t C.R. Acad. Bulgare Sci. 41 (1988), 9-10j see al80, Dydak-Walsh, Proc. Amer. Math. Soc. 113 

(1991), 1155-1162 and Dydak, Topology Appl. 50 (1993), 1-10. 
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ItIAI = ~o. Recalling that K(G,n) E NES(paracompact), choose an open UI :::> Uo U Al 

and a continuous function FI : U I -+ K( G, n) such that FIIUo U Al = It. Since dima A2 ::; 

n, F I lu1 nA2 has a continuous extension ~I : A2 -+ K(G,n). Define a continuous function 

h : UI UA2 -+ K(G,n) by hlU1 = FI & hlA2 = ~I' Choose an open U2 :::> UI UA2 and 

a continuous function F2 : U 2 -+ K ( (}, n) such that F21 U 1 U A2 = h. Continue the process 

to get a sequence of open sets Uj (j ~ 1) : Uj U Aj+1 C Uj+1 and a sequence of continuous 

functions Fj : Uj -+ K(G,n) (j ~ 1) : Fj+llUj = Fj. Finally, if F : X -+ K(G,n) is 

defined by FIUj = Fj, then F is a continuous extension of f (X = U Uj has the final 

topology corresponding to the inclusions U j -+ X).J 
j 

Proposition 9 is the analog for cohomological dimension of the countable union lemma 

for topological dimension but there are instances where the parallel breaks down. Here is 

a case in point. Suppose that X = Y U Z is metrizable-then dimX ::; dim Y + dimZ + 1 

(cf. §19, Proposition 7). The situation for cohomological dimension is more complicated. 

(R) For any ring R with unit, dimR X ::; dimR Y + dimR Z + 1. 

( G) For any abelian group G =f:. 0, dima X ::; dima Y + dima Z + 2. 

[Note: These estimates cannot be improved. See Dydakt for details and references.] 

FACT Suppose that X is a paracompact Hausdorff space. Let A = {Aj : j E J} be an absolute 

closure preserving closed covering of X such that V j, dime Aj ::; n-then dimG X ::; n, hence dime X = 

supdime Aj. 

LEMMA If K is a finite CW complex, then dime K = dim K V G ::f:. O. 

[On general grounds, dimG K ::; dimK (cf. Proposition 2). Taking K ::f:. 0, let n = dimG K >.0 

(cf. Proposition 7), and suppose that Ie = dimK > n. Fix a Ie-cell e C Kand let S" be an n-sphere 

contained in e. Since G ::f:. 0, 3 a map I : S" -t K(G, n) which induces a nontrivial homomorphism 

Z = 1I',,(S") -t 1I',,(K(G,n» = G. But I admits a continuous extension K -t K(G,n). Therefore 11',,(1) 

is trivial, S" being contractible in K. Contradiction.] 

EXAMPLE Let X be a CW complex-then the collection {K} of finite subcomplexes of X is 

an absolute closure preserving closed covering of X, thus dim X = supdim K (d. p. 19-21). On the 

other hand, V G ::f:. 0, dimG X = supdime K (cf. supra) and by the lemma, dime K = dim K. Therefore 

dimG X = dimX. 

Examples: V G::f:. 0, (1) dime [0, 1]" = nj (2) dime R" = nj (3) dimG S" = n. 

t 1Tans. Amer. Math. Soc. 348 (1996), 1647-1661. 
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EXAMPLE Let X be a paracompact n-manifold-then V G #: 0, dimG X = n (cf. p. 19-22). 

PROPOSITION 10 Let X be a paracompact Hausdorff space. Assume: X is hered

itarily paracompact-then for any subspace Y of X, dima Y ::5 dima X. 

PROPOSITION 11 Let X be a paracompact Hausdorff space. Suppose that Y is a 

strongly paracompact subspace-then dima Y ::5 dima X. 

EXAMPLE Suppose that X contains an embedded copy of Rn-then V G #: 0, dimG X ~ n. 

LEMMA Let X be a nonempty paracompact Hausdorff space, Y a nonempty com

pact Hausdorff space. Assume: {~:: < oo-then 'V G :F 0, dima(X x Y) is the largest 

integer n such that j{"«A', A) x (B', B); G) :F 0 for certain closed sets {~ ~ ~, ~ ~ . 
[By the product theorem, dim(X x Y) ::5 dimX + dimY, so Proposition 2 implies 

that dima(X x Y) is finite. This said, to prove the lemma, it suffices to show that 
v {ACNCX whenever m > n and Hm«A',A) x (B',B); G) = 0 for all closed sets Be B' C Y' 

then dima(X x Y) ::5 n. Thus let W C X x Y be closed. Fix a continuous function 

1 : W -+ K (G, n )-then 3 an open U ::> W : 1 is continuously extendable over U. The 

open covering W = {U, X x Y - W} is numerable, hence by the stacking lemma, there 

exists a neighborhood finite open covering U = {Ui : i E I} of X and 'V i E I, a finite 

open covering Vi = {Vi,; : j E Ji} of Y such that the collection {Ui x Vi : i E I} 

refines W. Choose a neighborhood finite open covering 0 = {O). : A E A} of X of order 

::5 dimX + 1 such that {st(x,O) : x E X} is a refinement of U (cf. §19, Proposition 

6). Given e = (AI, ... ,Ap) E AP, put Ae = X - U {O). : A :F Ai (1 ::5 i ::5 p)} if 
).EA 

p d 

nO).; :F 0, otherwise put Ae = 0. The covering A = U Ap, where Ap = {Ae : eE AP} 
i=1 p=l 

and d = dimX + 1, is a neighborhood finite closed refinement of U. For each Ae E A, 
determine Ui(e) E U : Ae C Ui(e)' Let 8; = {Bi,; : j E Ji} be a precise closed refinement of 

Vi. The collection {Ae x Bi(e),i : Ae E A,j E Ji(e)} is therefore a neighborhood finite closed 

refinement of W = {U,X x Y - W}. Set Ao = U{Ae x Bi(e),; : W n (Ae x Bi(e),;) :F 0}. 
Since W C Ao c U,3 a continuous function 10 : Ao -+ K(G,n) such that lolW = I. 
Now put Ap = Ao U {Ae x Y : e E AP} (1 ::5 p ::5 d) and assume that 10 has a continuous 

extension Ip-l : Ap- 1 -+ K(G, n) for some p 2:: 1. Claim: Ip-l can be continuously 

extended over Ap. To see this, note first that e, e E AP & e :F e' => Ae nAe, E Ap- h so it 

will be enough to establish that fp-l,e = Ip_t!(Ap- 1 n(Ae x Y)) is continuously extendable 

over Ae x Y for each e E AP. Write Ji(e) = {j : 1 ::5 j ::5 ji(e)}' Suppose inductively that 
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1,,-1,( has been continuously extended over (A,,-l n (A( x Y» U U A( x Bi«(),j for 
l$j$k-l 

some k < ii«()' Let A' = A(, A = A(n ( U A(,), B' = Bi«(),k, B = U Bi«(),k n 
('EAP-l 1$;$k-l 

Bi«(),j U U{Bi«(),k n Bi«('),j : W n (A(, x Bi«'),j) :/: 0}-then from the exact sequence 
.,. -+ fIn(A' x B'j G) -+ fIn(A' x B U A x B'j G) -+ fIn+1((A', A) X (B', B); G) -+ 

"', it follows that the arrow fIn(A' x B'" G) -+ fIn(A' x B U A x B'j G) is surjective. 

Accordingly, every continuous function A' x B U A X B' -+ K(G, n) can be extended to a 

continuous function A' x B' -+ K(G, n). In particular: 1,,-1,( is continuously extendable 

over (A,,-1 n (A( x Y» U U A( x Bi«(),j, which completes the induction. Consequently, 
l$j$k 

1,,-1 extends to a continuous function I" : A" -+ K(G, n), hence by induction once again, 

I extends to a continuous function Iii. : X x Y -+ K(G, n).] 

PROPOSITION 12 Let X be a nonempty paracompact Hausdorff space, Y a non

empty compact Hausdorff space. Assume: {~:: < oo-then V G:/: 0, dima(X x Y) is 

the largest integer n such that fIn((x, A) x (Y, B); G) :/: 0 for certain closed sets {~ ~ -;. . 

[Suppose that n = dima(X x Y). Using the lemma, choose closed sets {~ ~~, ~-;. 
such that fIn((A',A) x (B',B)jG) :F O. Put C = A' x B' U X x B U A x Y-then 

(A' x B') n (X x B U A x Y) = A' x B U A x B', thus by the relative homeomorphism 

theorem, fIn(C, XxBUAxYj G)~ fIn (A' xB', A' xBUAxB'; G) :/: O. Consider the exact 

sequence··· -+ fIn((x,A)x(Y, B); G) -+ fIn(C,XxBUAxY;G) -+ fIn+l(XxY,CiG)-+ 

... corresponding to the triple (X x Y, C,X x B U A x Y). Since n = dima(X x Y), 

fIn+l(X X Y,CiG) = 0, hence fIn((x,A) x (Y,B);G):/: 0.] 

Application: Under the preceding hypotheses on X &Y, dimG(X x Y) < n iff 
v . {ACX 

Hf((X,A) x (Y,B);G). 0 V q > n and for all closed sets B C Y' 

EXAMPLE With X & Y as in Proposition 12, suppose that 3 k : dimiiAo-'(y,B;G) X ~ i V i ~ 0 

and all closed subsets BeY-then dima(X x Y) ~ k. 

[It is a question of verifying that il' «X, A) x (Y, B)j G) = 0 V I ~ k+ 1. But by the Kunneth formula, 
I 

h'«X, A) x (Y, B)j G) R:: Ealfll(X. Ai h'-q(y, Bj G» ~ hq(X, Aj hAo-(q-I+Ao)(y, Bj G» = 0.] 
q=O 

EXAMPLE With X & Y as in Proposition 12, suppose that dimkm(y,B;G) X ~ n for some 

closed subset BeY-then dima (X x Y) ~ n + m. 

[Choose a closed subset A eX: IIn(X,AjlIm(Y,BjG» t: 0 => IIn+m«x,A) X (Y,B)jG) ~ 
n+m 
E9 IIq(x, Aj IIn+m-q(y, BiG» t: 0, hence dimG(X x Y) ~ n + m.] 
q=O 
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PROPOSITION 13 Let X be a nonempty paracompact Hausdorff space of finite 

topological dimension-then V G =1= 0, dimG IX = dimG X + 1. 

[dima IX ~ dimG X + 1: Choose a closed subset A eX: fIn (X, Ai G) #- 0, where 

n = dimG X. Applying the Kiinneth formula, we have fIn+I((X, A) x ([0,1], {O, I}); G) :::= 
n+l v v v v v ffi Hf(X,A;Hn+l -f([O,I],{O,I}jG»:::= Hn(X,AjHI([O,I],{O,I}jG»:::= Hn(X,A;G) #-
f=O 
0, which implies that dimG I X ~ dimG X + 1. 

dimGX + 1 > dimG IX: Fix m ~ n + 2 (n = dimGX) and let {~~; be closed 

(I = [0,1]). Utilization of the Kiinneth formula then gives fIm((x, A) x (I, B); G) :::= 

fIm(x, A; fIO(I, B; G» Ef:7 fIm-1 (X, Ai fII (I, Bj G». Case 1: B = 0. Here, fIO(I, 0; G) = 

G, iII (I, 0; G) = 0, hence iIm((x, A)x(I, B); G) = 0. Case 2: B =f. 0. Here, fIO(I, Bj G) = 
0, fII(I, Bj G) = fII(I, B; Z)0G (by the universal coefficient theorem), hence iIm((x, A) x 

(I,B)iG):::= fIm-l(x,A;HI(I,BiZ)0G) = ° (cf. Proposition 18 (m-l ~ n+l». 

Therefore dimG X + 1 ~ dimG IX.] 

Application: Let X be a nonempty paracompact Hausdorff space, Y a nonempty CW 

complex. Assume: {::: < oo-then V G #- 0, dimG(X x Y) = dimGX + dimGY 

(= dimG X + dimY (cf. p. 20-9». 

[If B is a compact subspace ofY which is homeomorphic to [0, l]m, where m = dimG Y, 

then dimG(X x B) = dimG X + m = dimG X + dimG Y.] 

[Note: Y is paracompact and O"-locally compact, thus X x Y is paracompact (cf. p. 

19-36).] 

FACT Let X be a nonempty paracompact Hausdorff space, Y a nonempty compact Hausdorff 

space. Assume: dimX < 00 & dimY = O-then V G:#; 0, dimG(X x Y) = dima X. 

[It is clear that dima(X x Y) 2: dima X (cf. Proposition 8). With n = dima X, fix m 2: n+ 1 and let 

{
ACX m 

be closed. From the Kunneth formula, km((x, A) x(Y, B)j G) ~ EB k 9(X,Aj km-,,(y, BjG». 
B C Y 9=0 

But dim Y = 0 :::;> dima Y = 0 (cf. Proposition 2), so k m- 9 (Y, B; G) = 0 if q ~ m "":'1, thus km«x, A) X 

(Y,B)jG) ~ km(X,AjkO(y, BjG» ~ km(X,A;kO(Y,BiZ) ® G) = 0 (cf. Proposition 18). Therefore 

dimG(X x Y) ~ n.] 

PROPOSITION 14 Let X be a paracompact Hausdorff space. Suppose that {Ga } 

is a collection of subgroups of an abelian group G which is directed by inclusion. Assume: 

G = colimGa-then dimGX::; n if 'v' Q, dimG .. X::; n, hence dimGX < supdimGa X. 

[This is a special case of the generalities on p. 20-5.] 



20-13 

DIRECT SUM CRITERION Let X be a paracompact Hausdorff space-then 

<limEB Gi X = sup dimG. X. 
i 
[Apply Proposition 14 (d. p. 20-5).] 

EXAMPLE Since Zp/Zp is a vector space over Q, dirnzp/Zp X = dimq X. 

PROPOSITION 15 Let X be a paracompact Hausdorff space. Suppose that 0 -+ 
G' -+ G -+ Gil -+ 0 is a short exact sequence of abelian groups-then dimG X < 
max{ <limG' X, dimGII X}, <limG' X < max{ <limG X, <limG" X + I}, and dimG" X < 
max{dimGX,dimG' X -I}. 

[Use the Bockstein sequence.] 

EXAMPLE (Bockstein's Inequalities) Let X be a paracompact Hausdorff space and fix a prime p. 

(BOl) dimz/pz X = dimz/p"z X .. 

[From the short exact sequence 0 -+ Z/p"Z -+ Z/pfl+l Z -+ Z/pZ -+ 0, it follows that 

dimz/pfl+l Z X :::; max{dimz/pflZ X,dimz/pz X} and dimz/pz X :::; max{diIDz/pfl+lZ X,dimz/pflZ X 

- I}. Now argue by induction.] 

(B02) dimz/pooz X:::; dimz/pz X. 

[Since Z/pooZ = colimZ/pflZ, Proposition 14 implies that dimz/pooz X < supdimz/pflZ X = 

dimz/pz X.] 

(BOs) dimz/pz X:::; dimz/pooz X + 1. 

[Consider the short exact sequence 0 -+ Z/pZ -+ Z/pooZ -4 Z/pooZ -+ 0.] 

(B04) dimz/pz X:::; dimzp X. 

[Consider the short exact sequence 0 -+ Zp -4 Zp -+ Z/pZ -+ 0.] 

(BOl» dimQ X :::; dimzp X. 

[Consider the short exact sequence 0 -+ Zp -+ Q -+ Z/pooZ -+ 0.] 

[Note: In addition, dimzp X :::; max{dimq X,dimz/pooz X + I}, dimz/pooz X :::; max{dimq X, 

dimzp X - I}.] 

Warning: Bockstein's inequalities are used without citation in the sequel. 

FACT Let X be a compact Hausdorff space. Suppose that 0 -+ G' -+ G -+ Gil -+ 0 is a short 

exact sequence of abelian groups. Assume: Gil is torsion free-then dima X = max{dima' X,dimG " X}. 

EXAMPLE Let X be a compact Hausdorff space-then dimzp X = di~ X. 
zp 

[From the short exact sequence 0 -+ Zp -+ Zp -+ Zp/Zp -+ 0, we have dim-- X = max{dimzp X, zp 
dirnz /Z X}. But dirnz /z X = dimQ X and dimq X:::; dimzp X.] p p p p 
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A Bockstein function is a function D defined on {Q} U U{Zp, Z/pZ, Z/pOOZ} with values in 
p 

Z~o U {oo} such that D(Z/pOOZ) :$ D(Z/pZ), D(Z/pZ) :$ D(Z/pOOZ) + 1, D(Z/pZ) :$ D(Zp), D(Q) :$ 

D(Zp), D(Zp) :$ max{D(Q), D(Z/pOOZ) + I}, D(Z/pOOZ) :$ max{D(Q), D(Zp) - I}, and D is == 0 if 

D(G) = 0 (3 G) (cf. Proposition 7). 

Example: Every nonempty paracompact Hausdorff space X gives rise to a Bockstein function Dx I 

viz. Dx(G) = dimG X. 

DRANISHNIKov'st REALIZATION THEOREM Given a Bockstein function D, 3 a 

metrizable compact Hausdorff space X such that D = D X and dim X = sup D. 

EXAMPLE The fundamental compacta are those metrizable compact Hausdorff spaces which 

realize the Bockstein functions defined by the table below. 

D Zp Z/pZ Z/pooZ Q Z'1 Z/qZ Z/qOOZ 

4>(Q, n) n 1 1 n n 1 1 

4>(Zp,n) n n n n n 1 1 

4>(Z/pZ, n) n n n-l 1 1 1 1 

4>(Z/pooZ, n) n n-l n-l 1 1 1 1 

[Note: Here P, q are primes, q runs over all primes #: p, and 4>(G, n) is the Bockstein function 

corresponding to the pair (G, n), where G = Q, Zp, Z/pZ, Z/pooZ.] 

Notation: Given an abelian group G, Gtor is its torsion subgroup and Gtor(p) is the 

p-primary component of Gtor (so Gtor ~ ffi Gtor(p)). 
p 

[Note: Accordingly, for a paracompact Hausdorff space X, dima'or X = sup dima,or(P) 

X (direct sum criterion).] 

Given an abelian group G, its Bockstein basis O'(G) is the subset of {Q}uU{Zp, Z/pZ, 
p 

Z/pOOZ} defined as follows. 

(Q) Q E O'(G) iff G/Gtor ¥= O. 

(Zp) Zp E O'(G) iff G/Gtor is not divisible by p. 

(Z/pZ) Z/pZ E O'(G) iff Gtor(p) is not divisible by p. 

t Siberian Milth. J. 29 (1988), 24-29, 30 (1989), 74-79, and 32 (1991), 145-147; see also Dydak, 

Topology Appl. 65 (1995), 1-7. 
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(Z/pOOZ) Z/pOOZ E O'(G) iff Gtor(p) =f:. 0 is divisible by p. 

Examples: (1) O'(Q) = {Q}j (2) O'(Z1') = {Q,Zp}; (3) O'(Z/pZ) = {Z/pZ}; (4) 
O'(Z/pOOZ) = {Z/pOOZ}j (5) O'(Z) = {Q} U U{Z1'}j (6) O'(Z1') = {Q, Z1'}' 

l' 
Remark: V G =f:. 0, O'(G) is nonempty. Indeed, if G =f:. Gtor , then Q E O'(G) and if 

G = Gtor , then 3 p: Gtor(p) =f:. 0, so either Z/pZ E O'(G) or Z/pooZ E O'(G). 

ofG. 

LEMMA Given an abelian group G, O'(G) = O'(G/Gtor ) U UO'(Gtor(p)). 
l' 

FACT If Gtor (p) is not divisible by p, then 3 n ~ 1 : Z/p"'Z is a direct summand of G. 

FACT If Gtor(P) #- 0 is divisible by p, then Gtor(P) ~ $Z/pooZ and Gtor(P) is a direct summand 

PROPOSITION 16 Let X be a paracompact Hausdorff space. Suppose that G =f:. 0 

is torsion-then dimG X = sup dimB X. 
BEtT(G) 

[From what has been said above, one can assume that G = G(p) (3 p). 

(Z/pZ) If Z/pZ E O'(G), thendimzl1'z X = max dimB X. But Z/pnz is a 
BEtT(G) 

direct summand of G for some n ~ 1, thus dimGX ~ dimzl1'nzX = dimzl1'zX, On the 

other hand, G is a colimit of its finite subgroups. As these are direct sums of groups of 

the form Z/p"Z, dimG X ~ dimzl1'z X by Proposition 14. 

(Z/pOOZ) In this case, G is isomorphic to a direct sum of copies of Z/pooZ and 

the direct sum criterion is applicable.] 

PROPOSITION 11 Let X be a paracompact Hausdorff space-then for any G =f:. 0, 

dimG X = max{ dimGIGsor X, dimG'"r X}. 
[The short exact sequence 0 -+ Gtor -+ G -+ G / Gtor -+ 0 leads to the inequalities 

dimG X ~ max{ dimGsor X, dimGIGtor X}, dimGIGtor X ~ max{ dimG X, dimGtor X-I} (cf. 

Proposition 15), thus it suffices to prove that dimG X ~ dimGs"r X. But if Z/pZ E O'(G), 
then Z/pnz is a direct summand of G (3 n ~ 1), while if Z/pooZ E O'(G), then Z/pooZ is 

a direct summand of G. Therefore dimG X ~ dimGto• X (cf. Proposition 16).] 

PROPOSITION 18 Let X be a paracompact Hausdorff space-then dimG®K X ~ 

dimG X for any two abelian groups G & K. 

[This is obvious if either G or K is trivial, so assume that G =f:. 0 & K =f:. O. 

(I) K = Z" (k ~ 1). Here G® Z" is a direct sum of copies of G, thus the direct 

sum criterion is applicable. 
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(II) K = Z/pkZ (k ;?: 1). Case 1: Gtor(p) = O. Since G ® Z/pkZ = G/pkG, 
" < 

the exactness of 0 -+ G 4 G -+ G / pk G -+ 0 gives dimG®K X $ dimG X (cf. Proposition 

15). Case 2: Gtor(p) i= O. There ar~ two possibilities: Z/pZ E cr(G) or Z/pooZ E cr(G). 

If Z/pZ E cr(G}, then dimz/pzX $ dimGX (cf. Proposition 17). And: dimG®KX $ 
dimz/pz X (G®Z/pkZ is p-torsion and Z/pZ E cr(G®Z/pkZ) (see the proof of Proposition 

16)). If Z/pooZ E cr(G), then G = Gtor(p)$H, where G';::!, $Z/pooZ, so G®K = H®K. 
Because Htor{p) = 0, it follows that dimG®K X = dimH®K X $ dimH X $ dimG X. 

(III) Taking into account the direct sum criterion, parts I and II cover the case 

when K is finitely generated. Finally, an arbitrary K is a colimit of its finitely generated 

subgroups, thus this situation can be handled by an appeal to Proposition 14.] 

EXAMPLE If G =f; Gtor. then dimq X::S dime X. 

[Proposition 18 implies that dimel8)Q X ::s dime X. But G ® Q contains Q as a direct summand.] 

EXAMPLE Suppose that X is an ANR-then dimz/pz X = dimzp X. 

[Since Zp ® Z/pZ ~ Zp/pZp ~ Fp and Z/pZ e D'(Fp) , one has dimz/pz X ::s dimzpl8)z/pz X ::s 
00 

dirnz X. To establish the inequality in the other direction, put G = II Z/p"Z-then dimz/pz X = 
p 1 

dime X (cf. p. 20-7) and dime X ~ dirnzp X (G/Gtor is not divisible by p).] 

[Note: If X is compact, then dimz/pz X = dimzp X (cr. p. 20-13).] 

EXAMPLE Suppose that X is an ANR-then dimq X ::s dime X V G =f; O. 

BOCKSTEIN THEOREM Let X be a compact Hausdorff' space-then for any G =F 0, 

dimGX = sup dimHX. 
HEI7(G) 

[One can suppose for this that G is torsion free (cf. Propositions 16 and 17), hence 

that the elements of cr( G} are Q and the Zp : pG =F G. We then claim that dimG X $ n 

iff dimQ X $ n & dimz" X $ n 'r/ p : pG =F G. Indeed, for a given closed subset A of 

X, by the universal coefficient theorem, jfn+l(x,A;G} = 0 iff jfn+l{x,A;Z) ® G = 0 

or still, iff jfn+l (X, A; Z) ® Q = 0 & jfn+! (X, Ai Z) ® Zp = 0 'r/ p : pG =F G, i.e., iff 

jfn+l(X, Aj Q) = 0 & jfn+l(X, Aj Zp) = 0 'r/ p: pG =F G, as claimed.] 

[Note: The compactness assumption on X in the Bockstein theorem can be relaxed to 

"paracompact & cr-locally compact" (Gotot). However the Bockstein theorem is not true 

t Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10 (1969), 17-23. 
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for an arbitrary metrizable X, even if X has finite topological dimension (Dranishnikov

Repovs-Scepint).] 

To illustrate the Bockstein theorem, take G = Z. Since u(Z) = {Q} U U{Zp} and 
p 

dilllQ X ~ dimzp X V p, it follows that dimz X = dimzp X (3 p). 

[Note: If dim X < 00, then dim X = dimzX (cf. Proposition 3) and either dimX -

1 ~ dimQ X or dim X -·1 ~ dimz/pz X (3 p). Thus fix p : dimz X = dimzp X. There are 
now two possibilities: dimzp X = dimQ X, from which dim X-I < dimQ X or dimQ X < 
dimzpX, from which dimzpX ~ max{dimQX, dimz/poozX + 1} = dimz/poozX + 1 ~ 

dimz/pzX + 1 => dim X - 1 ~ dimz/pzX.] 

EXAMPLE If X is a compact ANR, then dimX = dimz/pz (3 p). 

[For dimz X = dimzp X (3 p) and, as noted above, dimzp X = dimz/pz X. But here dimz X = 
dimX (cf. p. 20-3).] 

EXAMPLE Let {: be compact Hausdorff spaces. Assume: dime X ~ n-thendimki(Y;G) X ~ 
n + 1 Vi ~ O. 

[Consider the short exact sequence 0 -+ ki(y;Z) ® G -+ ki(Y;G) -+ 'Ibr(ki+1(Y;Z),G) -+ 

o coming from the universal coefficient theorem. By Proposition 18, dimki(y;z)®G X ~ dimG X ~ 

n, so it suffices to show that diIItror(ki+1 (Y;Z),G) X ~ n + 1 (cr. Proposition 15). Assuming that 

Tor(ki+l(Y;Z),G) ::f; 0, 3 p : Gtor(P) ::f; 0, hence either Z/pZ E O'(G) or Z/pooZ E O'(G). But 

dimz/pz X ~ dimG X & dimZ/pooZ X ~ dimG X (Bockstein theorem). And: dimz/pooZ X ~ dimz/pz X, 

dimz/pz X ~ dimz/pooZ X + 1 ~ n + 1.] 

FACT Let X be a paracompact Hausdorffspace--then for any G::f; 0, ma.x{dime X,dimq X +1} ~ 

sup dimHX, 
H€cr(G) . 

[Take G torsion free and consider the case when H = Zp (pG ::f; G). One has dimzp X ~ 

max{dim-:-z X,dim ..... z /z X +1} = max{dim ..... z X,dimq X +1}. Moreover, dime X ~ n => dim-:- X < n.] p p p p zp -

PROPOSITION 19 Let {: be nonempty compact Hausdorff spaces. Assume: 

{ ~~:: < oo-then dima (X X Y) ~ dima X + dima Y if G is torsion free. 

[With n = dimaX & m = dimaY, put k = n + m : dima(X x Y) ~ k if 

dimh"-;(y,B;a) X ~ i V i ~ 0 and all closed subsets BeY (cf. p. 20-11). Case 1: . 

t Topology Proc. 18 (1993), 57-73. 



20-18 

i :5 n - 1. Since k - i ~ m + 1, we have jJk-i(y, B; G) = O. Case 2: i ~ n. By the uni

versal coefficient theorem, jJk-i(y, Bj G) ::::::: jJk-i(y, Bj Z) ® G, hence dimk"-'(y,B;G) X :5 
dimG X :5 i (cf. Proposition 18).] 

[Note: This inequality is also true if G = Z/pZ. For u(jJk-i(y,Bj G)) C {Z/pZ, 

Z/pOOZ} and by the Bockstein theorem, dimk"-i(y,B;Z/pZ) X = dimz/pz X (because 

dimz/pooz X < dimz/pz X).] 

{
X {mmX LEMMA Let y be nonempty compact Hausdorff spaces. Assume: dim Y < 

oo-then dimG(X x Y) > dimG X + dimG Y if G is a field. 

[Let n = dimG X, m = dimG Y and choose closed subsets A eX, BeY such 

that jJR(X, Aj G) i= 0, jJm(y, B; G) i= O. The universal coefficient theorem then gives 
jJR(x,AjjJm(y,BjG)) ::::::: jJR(X,AjZ) ® jJm(y,B;G). But j[m(y,BjG) ::::::: EDG, so 

j[R(x,Ajj[m(y,BjG)) i= 0, which means that dimkm(y,B;G)X ~ n, thusdimG (XxY) ~ 
n + m (d. p. 20-11).] 

PROPOSITION 20 Let {: be nonempty compact Hausdorff spaces. Assume: 

{ ~~:: < CX)-then dimG(X x Y) = dimG X + dimG Y for any field G. 

[This is implied by Proposition 19 and the lemma.] 

PROPOSITION 21 Let {: be nonempty compact Hausdorff spaces. Assume: 

{~!:: < CX)-then V G i= 0, dimG(X x Y) :5 dimG X + dimG Y + 1. 

[With n = dimGX & m = dimGY, put k = n + m + 1 : dimG(X x Y) < kif 

dimk"-i(y,B;G)X < i V i ~ 0 and all closed subsets BeY (cf. p. 20-11). The case 

i :5 n being trivial, suppose that i ~ n + 1. Taking j ~ i and A C X closed, repeated 

use of the universal coefficient theorem leads to jJj(X, Aj jJk-i(y, Bj G» ::::::: jJj(X, Aj Z)® 

jJk-i(y, Bj G) ED Tor(jJj+l (X, A, Z), jJk-i(y, B, G)) ::::::: jJj(X, Aj Z)®[jJk-i(y, B; Z)®GED 

Tor(jJk-Hl(y, Bj Z), G)] ED Tor(j[j+l (X, A, Z), jJk-i(y, Bj Z)®GEDTor(Hk-i+l(Y,B, Z), 

G» ::::::: [jJj(X,A,Z) ® jJk-i(Y,BjZ) ® G ED Tor(jJi+1 (X,A;Z), jJk-i(Y,B,Z) ® G)] ED 

[jJi(X, A, Z)®Tor(jJk-Hl(y, Bj Z), G) ED Tor(j[i+1 (X, Aj Z), Tor(jJk-Hl(y, Bj Z), G))] ::::::: 

jJi(X,Ajj[k-i(Y,BjZ) ® G) ED j[j(X,AjTor(j[k-iH(Y,BjZ),G)). By Proposition 18, 
• " . ... k . 

dlmk"-'(y,B;Z)®G X :5 dimG X < i, so H' (X, Aj H -I (Y, B; Z) ® G) = O. On the other 

hand, diIILror(k"-'+l(y,B;Z) ,G) X :5 dimG X + 1 :5 i (imitate the argument used in the 
second example on p. 20-17), thus jJj(X,AjTor(jJk-Hl(Y,BjZ),G» = O. Therefore 

dimk"-'(y,BiG) X :5 i, as desired.] 



20-19 

Let X, Y be nonempty compact Hausdorff spaces of finite topologica.l dimension. 

FACT dimz/pooz(X x Y) = dimz/pooz X + dimz/pooz Y if dimz/pooZ X = dimz/pz X or 

dimz/pooz Y = dimz/pz Y, otherwise dimz/pooz (X x Y) = dimz/pooz X + dimz/pooz Y + 1 = 

dimz/pz (X X Y) - 1. 

[If the second eventuality obtains, then dimz/pooz X < dimz/pz X&; dimz/pooz Y < dimz/pz Y => 

dimz/pz X + dimz/pz Y - 1 = dimz/pz(X x Y) - 1 (cr. Proposition 20) ::; dimz/pooZ(X x Y) ::; 

dimz/pooz X + dimz/pooz Y + 1 (cf. Proposition 21)= (dimz/pooz X + 1) + (dimz/pooz Y + 1) - 1 = 

dimz/pz X + dimz/pz Y - 1.] 

FACT dimzp (X x Y) = dimzp X + dimzp Y if dimz/pooz X = dimzp X and dimz/pooz Y = 
dimzp Y, otherwise dimzp(X x Y) = max{dimQ(X x Y),dimz/pooz(X x Y) + I}. 

[If the first eventuality obtains, then dimzp X + dimzp Y ~ dimzp (X x Y) (cr. Proposition 19) 

which is ~ dimz/pz(X x Y) = dimz/pz X + dimz/pz Y (cf. Proposition 20), which is ~ dimz/pooz X + 

dimz/pooz Y = dimzp X +dimzp Y.] 

EXAMPLE Given m, n, and q such that n ::; m < q ::; n + m, 3 metrizable compact Hausdorff 

spaces Xm,Xn : dimXm = m, dimXn = n, and dim(Xm x Xn) = q. 

[Specify two Bockstein functions Dm , Dn by the following table 

Z/2Z Q Z/pZ 

m 1 1 m m 1 1 

n n n-l q-m q-m q-m q-m 

and consider the metrizable compact Hausdorff spaces produced by the Dranishnikov realization theorem.] 

PROPOSITION 22 Let X be a nonempty compact Hausdorff space of finite topo

logical dimension. Assume: dimX = dimQX or dimX = dimz/pzX (3 p)-then 

dimXn = n· dimX. 

[If dim X = dima X, where G = Q or Z/pZ (3 p), then n· dim X ~ dimxn (product 

theorem) ~ dima xn (cf. Proposition 2)= n· dima X (cr. Proposition 20)= n· dim X.] 

EXAMPLE If X is a compact ANR of finite topological dimension, then dimxn = n· dimX. 

[This is because dimX = dimz/pz (3 p) (cf. p. 20-17).] 

FACT Let X be a nonempty compact Hausdorff space of finite topological dimension. Assume: 

dimX > dimG X for G = Q and G = Z/pZ (V p)-then dimxn = n· dimX - (n -1). 
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EXAMPLE Suppose that X realizes the Bockstein function 4t(Z/pooZ,n) (cf. p. 26-14)-then 

dim X = n and X satisfies the assumption of the preceding result. Therefore dim(X x X) = 2n - 1 < 2n 

(cf. p. 19-29). 

PROPOSITION 23 Let {~ be nonempty compact Hausdorff spaces. Assume: 

{~:~ < oo-then V G,K =F 0, dimG®K(X x Y) :s; dimGX + dimK Y. 

[Take k = dimGX + dimKY and show that dimk"-'(y,B;G®K) X :5 i V i :2: 0 and all 
closed subsets BeY (cf. p. 20-11).] 

Application: Under the assumptions of the preceding proposition, dimIi(X x Y) :s; 
dimR X + dimR Y for any ring R with unit. 

[In fact, R is a retract of R ®z R, thus is a direct summand, so dimR(X x Y) < 
dimR®zR(X x Y) :s; dimR X + dimR Y.] 

PROPOSITION 24 Let {~ be nonempty compact Hausdorff spaces. Assume: 

{~:~ < oo-then V G, K =F 0, dimTor(G,K)(X x Y) :s; dimG X + dimK Y + 1. 

[Since Tor(G,K) = Tor(Gtor,Ktor), one can assume that G and K are torsion (cf. 
Proposition 17). Making the obvious reductions, one can assume further that G and K 

are p-primary (tacitly, Tor(G,K) =F 0). Case 1: Tor(G,K) is not divisible by p. In this 

situation, either G or K is not divisible by p. And: dimTor(G,K)(X x Y) = dimz/pz(X x Y) 

(Bockstein theorem) :s; dimz/pz X + dimz/pz Y. But either dimz/pz X = dimG X or 

dimz/pz Y = dimK Y and at worst, dimz/pz X :s; dimG X + 1 & dimz/pz Y :s; dimK Y + 1, 

G & K being p-primary. Case 2: Tor(G,K) is divisible by p. Here, dimTor(G,K)(X x 

Y) = dimz/p""z(X x Y) (Bockstein theorem) :s; dimz/p""z X + dimz/p""z Y + 1. But 

dimz/pooz X :s; dimG X & dimz/pooz Y :s; dimK Y, G & K being p-primary.] 
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