Sec6.1 Area between curves

I Cut along horizontal direction(each slice is along v. dir.) $\int_{a}^{b} T(x)-B(x) d x$
II Cut along vertical direction(each slice is along h. dir.) $\int_{c}^{d} R(y)-L(y) d y$
I'/II' geometric area $\int_{a}^{b}|T(x)-B(x)| d x, \quad \int_{c}^{d}|R(y)-L(y)| d y$.

eg. Find the area of region bounded above by $y=e^{x}$, below by $y=x$, and bounded on two sides by $x=0$ and $x=1$.

$$
\begin{aligned}
A & =\int_{0}^{1}\left(e^{x}-x\right) d x \\
& =\left.\left(e^{x}-\frac{1}{2} x^{2}\right)\right|_{0} ^{1} \\
& =\left(e^{1}-\frac{1}{2}\right)-\left(e^{0}-\theta\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(e^{\prime}-\frac{1}{2}\right)-\left(e^{0}-\theta\right) \\
& =e^{-\frac{3}{3}}
\end{aligned}
$$

eg. Find the area of the region enclosed y the parabola $y=x^{2}$ and $y=2 x-x^{2}$.

Comparison. Area between x-axis \& $y=x^{2}$ from u, th 1

eg. Find the area of the region bounded by the curves $y=\sin x, y=\cos x$, $x=0, x=\pi / 2$.

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{2}}|\cos x-\sin x| d x=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}-(\cos x-\sin x) d x \\
& =\left.(\sin x+\cos x)\right|_{0} ^{\frac{\pi}{4}}+\left.[-(\sin x+\cos x)]\right|_{\frac{\pi}{4}} ^{\pi / 2}+[-\left(\sin \frac{\pi}{2}+6 \frac{\pi}{2}\right)+\underbrace{\left.\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right)\right]} \\
& =\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)-(\sin \Delta+\cos 0)+\frac{\sqrt{2}}{2} \\
& =2 \sqrt{2}-2
\end{aligned}
$$

eg6. Find the area enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.

Hurijotal way. $\quad 2 \sqrt{2 x+6}$

$$
\begin{aligned}
A & =\int_{-3}^{5} T(x)-B(x) d x=\int_{-3}^{-1}[\sqrt{2 x+6}-(-\sqrt{2 x+6})] d x+\int_{-1}^{5} \sqrt{2 x+6}-(x+1) d x \\
& =\left.\frac{2}{2}(2 x+6)^{\frac{3}{2}}\right|^{-1}+\left.\left[\cdot \frac{1}{3}(2 x+6)^{\frac{3}{2}}-\frac{1}{2} x^{2}-x\right]\right|^{5}=\cdots=11
\end{aligned}
$$

$$
=\left.\frac{2}{3}(2 x+6)^{\frac{3}{2}}\right|_{-3} ^{-1}+\left.\left[-\frac{1}{3}(2 x+6)^{\frac{3}{2}}-\frac{1}{2} x^{2}-x\right]\right|_{-1} ^{5}=\cdots \cdot 18
$$

