Lecture 1 Introduction

o examples of equations: what and why
o “intrinsic” view, physical origin, probability, geometry

Intrinsic/abstract

F (z,Du,D*u, D*u,---) =0

Recall algebraic equations such as linear (algebra) one and quadratic one: z%+y? = 22,
2?2 +y? = 1,22 —y? = 1,y = 2%. Now just replace the variables with derivatives, we
have partial differential equations, PDE in short.
Ist order b- Du =0, |Du| =1
2nd order uq; =0, w12 =0
A1
u first derivatives Du and double derivatives D?u ~

coordinate free ones

Laplace Au=o01 =M +---+ A\, =c
Uk:)\l"')\k:“‘"'zc

M-A detD*u=o0,=X\ -\, =c¢C

A1 — Az or A\ A2 — Ao A3 — A3\ hardly make sense.

Adding time, uy = Au, uy = Au

3rd order?
4th order A%u =0

combinations of the above.

Concrete
Transport equation u; = — div (u'V) Vet _y. Dy
u (x,t) moisture density
V (z,t) wind velocity field
figure

moisture changing rate over domain Q : & [ udz = [, u,dz.
Via its boundary with exterior unit normal v : — [, u V-ydA = — [, div (u V) dz
As Q is arbitrary, we have u; = —div (u'V).

Heat conduct u; = Au

u (x,t) temperature/heat

heat changing rate over domain Q : 4 [ udz = [, wdz.

Via boundary, as heat flows from high temp to low along —Du direction: |, oo Du-
vdA = [, div (Du)dzx
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Again, as () is arbitrary, we have u; = div (Du) = Au.

Probability

Brownian motion

Let us test it by function f (x)

u(z,t) = E[f (B (x))] expectation/average of f at Brownian motion position B,
after time ¢, starting from z. Say we in 1-d case

w (et +e?) = BIf (B (2)] = 5B (Bu(o = )] + 5 BLF (B (o +2))]

u(x —e,t) +u(x+e,t)
N 2

it follows that

u(z,t+¢e?) —u(z,t) u(x—g,t)—l—u(x—i—é,t)—2u(x,t)‘

g2 2e2
Let € go to 0, we have u; = %um Similarly u; = zin A v in n-d.
Random walk, when hits boundary, the pay off is ¢ (z) .

%um+%uyy:0 in
u=p(r) on 0N

figure
Let u (x) be the expectation of pay off, starting from interior point = € €0, with

directional probability p, = 1/2 and p, = 1/2, say we are in 2d case.

1 [u(z+eep) +u(x—cep) 1 [u(zr+ece,) +u(x—cey)
(@) =3 - 2 h]+§{ 2

1
0= DhUnh + PylUypy = 5 (uxx + uyy)

Wave equation uy; = Au

“Vertical” oscillation of string and drum usually can be modelled by 1-d and 2-d
wave equation respectively. Sound wave in the air can be conveniently described by
a scalar, density or pressure of the air (not clear about other vector ways).

u(x,t) air/gas density at (z,t)

p = p(u) pressure is in terms of u

V (z,t) local average velocity of the air/gas (average velocity makes more sense
than “individual” one for each air/gas particle)

As in the above transport equation, the mass conservation law says % fQ udr =
— faﬂ uV - ydA or

up = —div (uV).



Newton’s second law of force is ma = F. The force comes from the pressure, along
—Dp. But as the mass density is changing, ma should be changed to the changing
rate of the (average) momentum (uV');. That is

Newton (momentum version): (uV), = F = —Dp.

Eliminate uV, we have
Ut = le (Dp) .

When the air/gas is ideal, the pressure is proportional to the density u and temper-
ature, the sound wave equation is (all constants are 1)

U = AU = Ugy + Uyy + U

When there is no (time for) heat change (called adiabatic), the pressure is nonlinearly
proportional to the density p (u) = u”, the sound wave equation is quasilinear

Uy = div (Duﬁ) )

Schrodinger’s wave equation

2 h
thuy = —— A u+Vu h = — Planck’s constant
2m 21

Water wave (along river) Korteweg-de Vries equation

U + U Uy + Uggy = 0

Scalar curvature equation of (M L ut/(=2) go)
_n+2

n>3 R(u’"Vg) =u 2 (= Ay u+c(n) Rou)
n=2R(e*gy) = e 2" (— Ay u+ Rp)

Variational

Eu] = [, F (Du)dx

p € C5° ()
d Iy
7 | F(Du+1Dy) drlimg = /ZF (Du) 8—%653;

~ [-% o (B (Dw) g

> 5 1 (Du)] =0

egl. F(Du) = |Du|* Energy F,, = 2Du --» Au = 0.



_ 2 _ Du __ =
eg2. F(Du) = /14 |Du|” Area F, = T » mean curvature H

v Du —
v/ 1+|Du?
eg3. Flu] = [ 041 (k) 1/1+ |Dul’dz, E-L equation oy, (k) = 0 (Reilly).
RMK. One obvious thing
1d principle curvature of curve (x, f (x))

(\/1+fx)3 (\/ 1+f2>
also [ kds = ( f“f ) s/ 1+ f2dx = [ (arctan f,) dx = arctan f,|y
1 x
2d

Hediv | 2% ) = (14 2) e — 2ustyy + (14 42) )]

\/1+|Dul? \/1+ |Dul®

RMK. Equation for 2d steady, adiabatic,irrotational, isentropic flow u --+ /—1u
(1 - ui) Ugpg @ + 2Up Uy Uzgy + (1 — ui) Uyy = 0.

Q. In nd similar thing should happen to the total Gauss curvature
/an (k)\/1+ | Du|*dz?

More Variationals

Eg oy : E[u] = k+f u)dz + [udzx
E-L equatlon o (D*u) = ThlS can be derived using the following divergence
structure.
oy, (D?
kIUk = l)>\(71C A= MDMU
8mij
0 80'k (DQ’LL) 0 &fk (D2u)
= — | —————20,. — | ———|0;.u.
o, { omy M e [T omy O

Eg Slag: A[DU] = [ \/det (I +(DU)” DU)d:c, U:Q— R

Insist minimizer irrotational, i.e. U = Du, then E-L

D Z arctan \; = 0 < Z arctan \; = c.

ADU] = [ \/det (I— (DU)” DU) dz, U:Q — R".



Insist maximizer irrotational, i.e. U = Du, then E-L

DZln1+)\ Zln1+>\ ZCe————+Zln5\i:c.

figure?

Explicit solutions
oH=0
catenoid: |(z,y)| = cosh z
helicoid: z = arctan £
Sherk’s surface: z = In 2>¢
o H; = const.
unit sphere
o Au=0
complex analysis in even d: u = Re z¥, 27F, ¢?, e ...
algebraic n-d u = oy, (z1, -+ ,x3)
radial )

Au = 02 — Agn-1u

n—1 _
Uy + Tur -
"y 4+ (n— 1) r"2u, =0 or (r"tu,) =0
u _ C
L=

rn—1

C

u=——7, In|(x1,72)|, or |7

rn—
Fluid mechanics o
vector field V' (z,t) steady state 7 (z)
incompressible div ({7) —0

- . N\ T .
irrotational curlV = 0 <= DV = (DV) — V = Dy
= Np =0

Navier-Stokes equation (incompressible)

U+ u-Du—Au+ Dp=0
divu =0

Vector u (x,t) velocity field, p (z,t) pressure

ma = F and X; = u (X,1)

Acceleration, Xy = uy + Xy - Du = uy + uy - Du

Force comes from two parts: pressure = —Dp, and viscosity Au “ad-hoc” due to
sheer stress caused by difference of velocity.

Heuristic derivation

average velocity in B, () — velocity at x

viscosity = 5 ~ Au
r




Physical derivation

sheer force = cdy gu = ¢cd40;u

dsheer force in z; direction
0A 0x;

viscous force/per unit volume = E

%

:cZ@-iu:cAu

Maxwell equation
electric field £ = (E', E? E?)
magnetic field H = (H*, H*, H?)

eﬁt — curl H
uf[t = curl E

RMK. div E = 0, since <div E) = div (curl ﬁ) —0anddivE =0at¢=0. Similarly
t

div H (t) = 0 for div H = 0 at t = 0.
Lame elastic wave

U;t—uAU—(Hu)D(divﬁ) —0

Harmonic maps
Consider the energy of vector m-valued function of n-variables, let us look at
critical point(s) of the energy functional with pointwise constraint

1
E(w) = / §\Dw|2da: with w-w =1,
Q
the Euler-Lagrangian equation is
— Au=|Dul|*u.

For a critical point, function u : @ — S™™1 C R™ now, we take a variation n €
Cg° (€; R™), but to the sphere (u+en) / |u + 7]

LBt (e /furen) = [ (DI (o (e WS g,

|u+en|’ |u+ en| B |u+5n|3

Eio/ﬂ(Du,D(n—uu~77)>dJ:
:/Q<Du,D77—Duu-n—uD(u-n)>dw
—/g(Du,Dn—Duu~n>d:v (u-u =1 implies Zuo‘Du”‘:O)
= /Qdiv (n" Du) — (Au,n) — |Dul?u -7 dx

6



thus the equation.

For general constraint such as ellipsoid, hyperboloid, paraboloid, etc, we employ
Lagrangian multiplier to get the critical equation. Say now the constraint is S (u) = 0.
The critical equations are critical points of augment functional

E (w) —/Q)\(:B) S (w) dx.

The variation w.r.t. w+en and A+ d0f (f € C5° (; R)) leads to respectively
—(Au,m) =X (V,S,n) and S (u) = 0.

In order to pin down A (z), we take n as V.9, or rather f V,S with f being one near
any fixed interior point of {2 and zero near its boundary. Then near the fixed interior
point, we have

A(V,S, VoS) = — (Au, V,S) = — div (Du, V,,S) + (Du, DV,.S) = (Du, DV,S) ,

where we used 0 = D [S (u)] = (Du, V,,S) = 0,«.S Du® and the notation (Du, DV, S) =
D, u®* D, 04S. Then
(Du, DV,S)
(VS V,5)

and our equation becomes

CAue (Du, DV,S)

(Du, DVuS) & o
A

Reality check ....

Einstein equation
Canonical metric Ric(g) = cg
g Riemannian

Ric(g) = =g D;jg + (Dg, g)

g pseudo Riemannian (general relativity) such as dz? — dt?

Ric(g) = “— Npg + Dug”.

Ricci flow
diffusion

gt = —Ric(g) = —g" Dijg + (Dg, g)
RMK. The “heat” equation g, = Ayg = 0 is static.

Observation: The most frequent combination is Au. So we study
- Au, up = Au, uy = Au

AN uyug = A"y uy = A" u general linear methods

- nonlinear methods.



