Lecture 1 Introduction

- examples of equations: what and why
- "intrinsic" view, physical origin, probability, geometry

Intrinsic/abstract

$$
F\left(x, D u, D^{2} u, D^{3} u, \cdots\right)=0
$$

Recall algebraic equations such as linear (algebra) one and quadratic one: $x^{2}+y^{2}=z^{2}$, $x^{2}+y^{2}=1, x^{2}-y^{2}=1, y=x^{2}$. Now just replace the variables with derivatives, we have partial differential equations, PDE in short.

1st order $b \cdot D u=0,|D u|=1$
2 nd order $u_{11}=0, u_{12}=0$
u first derivatives $D u$ and double derivatives $D^{2} u \sim\left[\begin{array}{ll}\lambda_{1} & \\ & \\ & \lambda_{n}\end{array}\right]$
coordinate free ones
Laplace $\triangle u=\sigma_{1}=\lambda_{1}+\cdots+\lambda_{n}=c$

$$
\sigma_{k}=\lambda_{1} \cdots \lambda_{k}+\cdots=c
$$

$\mathrm{M}-\mathrm{A} \quad \operatorname{det} D^{2} u=\sigma_{n}=\lambda_{1} \cdots \lambda_{n}=c$
$\lambda_{1}-\lambda_{2}$ or $\lambda_{1} \lambda_{2}-\lambda_{2} \lambda_{3}-\lambda_{3} \lambda_{1}$ hardly make sense.
Adding time, $u_{t t}=\triangle u, u_{t}=\triangle u$
3rd order?
4 th order $\triangle^{2} u=0$
combinations of the above.
Concrete
Transport equation $u_{t}=-\operatorname{div}(u \mathrm{~V}) \stackrel{V}{\xlongequal{c} \text { const }}-V \cdot D u$
$u(x, t)$ moisture density
$V(x, t)$ wind velocity field

figure

moisture changing rate over domain $\Omega: \frac{d}{d t} \int_{\Omega} u d x=\int_{\Omega} u_{t} d x$.
Via its boundary with exterior unit normal $\gamma:-\int_{\partial \Omega} u V \cdot \gamma d A=-\int_{\Omega} \operatorname{div}(u V) d x$ As Ω is arbitrary, we have $u_{t}=-\operatorname{div}(u \mathrm{~V})$.

Heat conduct $u_{t}=\triangle u$
$u(x, t)$ temperature/heat
heat changing rate over domain $\Omega: \frac{d}{d t} \int_{\Omega} u d x=\int_{\Omega} u_{t} d x$.
Via boundary, as heat flows from high temp to low along $-D u$ direction: $\int_{\partial \Omega} D u$. $\gamma d A=\int_{\Omega} \operatorname{div}(D u) d x$

[^0]Again, as Ω is arbitrary, we have $u_{t}=\operatorname{div}(D u)=\triangle u$.
Probability
Brownian motion
Let us test it by function $f(x)$
$u(x, t)=E\left[f\left(B_{t}(x)\right)\right]$ expectation/average of f at Brownian motion position B_{t} after time t, starting from x. Say we in 1-d case

$$
\begin{aligned}
u\left(x, t+\varepsilon^{2}\right) & =E\left[f\left(B_{t+\varepsilon^{2}}(x)\right)\right]=\frac{1}{2} E\left[f\left(B_{t}(x-\varepsilon)\right)\right]+\frac{1}{2} E\left[f\left(B_{t}(x+\varepsilon)\right)\right] \\
& =\frac{u(x-\varepsilon, t)+u(x+\varepsilon, t)}{2}
\end{aligned}
$$

it follows that

$$
\frac{u\left(x, t+\varepsilon^{2}\right)-u(x, t)}{\varepsilon^{2}}=\frac{u(x-\varepsilon, t)+u(x+\varepsilon, t)-2 u(x, t)}{2 \varepsilon^{2}}
$$

Let ε go to 0 , we have $u_{t}=\frac{1}{2} u_{x x}$. Similarly $u_{t}=\frac{1}{2^{n}} \triangle u$ in n-d.
Random walk, when hits boundary, the pay off is $\varphi(x)$.

$$
\left\{\begin{array}{l}
\frac{1}{2} u_{x x}+\frac{1}{2} u_{y y}=0 \quad \text { in } \Omega \\
u=\varphi(x) \text { on } \partial \Omega
\end{array}\right.
$$

figure

Let $u(x)$ be the expectation of pay off, starting from interior point $x \in \Omega$, with directional probability $p_{h}=1 / 2$ and $p_{v}=1 / 2$, say we are in 2 d case.

$$
\begin{gathered}
u(x)=\frac{1}{2}\left[\frac{u\left(x+\varepsilon e_{h}\right)+u\left(x-\varepsilon e_{h}\right)}{2}\right]+\frac{1}{2}\left[\frac{u\left(x+\varepsilon e_{v}\right)+u\left(x-\varepsilon e_{v}\right)}{2}\right] \\
\Rightarrow \quad 0=p_{h} u_{h h}+p_{v} u_{v v}=\frac{1}{2}\left(u_{x x}+u_{y y}\right)
\end{gathered}
$$

Wave equation $u_{t t}=\Delta u$
"Vertical" oscillation of string and drum usually can be modelled by 1-d and 2-d wave equation respectively. Sound wave in the air can be conveniently described by a scalar, density or pressure of the air (not clear about other vector ways).
$u(x, t)$ air/gas density at (x, t)
$p=p(u)$ pressure is in terms of u
$V(x, t)$ local average velocity of the air/gas (average velocity makes more sense than "individual" one for each air/gas particle)

As in the above transport equation, the mass conservation law says $\frac{d}{d t} \int_{\Omega} u d x=$ $-\int_{\partial \Omega} u V \cdot \gamma d A$ or

$$
u_{t}=-\operatorname{div}(u V)
$$

Newton's second law of force is $m a=F$. The force comes from the pressure, along $-D p$. But as the mass density is changing, ma should be changed to the changing rate of the (average) momentum $(u V)_{t}$. That is

$$
\text { Newton (momentum version): }(u V)_{t}=F=-D p
$$

Eliminate $u V$, we have

$$
u_{t t}=\operatorname{div}(D p)
$$

When the air/gas is ideal, the pressure is proportional to the density u and temperature, the sound wave equation is (all constants are 1)

$$
u_{t t}=\triangle u=u_{x x}+u_{y y}+u_{z z}
$$

When there is no (time for) heat change (called adiabatic), the pressure is nonlinearly proportional to the density $p(u)=u^{\beta}$, the sound wave equation is quasilinear

$$
u_{t t}=\operatorname{div}\left(D u^{\beta}\right)
$$

Schrodinger's wave equation

$$
i \hbar u_{t}=-\frac{\hbar^{2}}{2 m} \triangle u+V u \quad \hbar=\frac{h}{2 \pi} \text { Planck's constant }
$$

Water wave (along river) Korteweg-de Vries equation

$$
u_{t}+u u_{x}+u_{x x x}=0
$$

Scalar curvature equation of $\left(M, u^{4 /(n-2)} g_{0}\right)$
$n \geq 3 \quad R\left(u^{4 /(n-2)} g_{0}\right)=u^{-\frac{n+2}{n-2}}\left(-\triangle_{g_{0}} u+c(n) R_{0} u\right)$
$n=2 R\left(e^{2 u} g_{0}\right)=e^{-2 u}\left(-\triangle_{g_{0}} u+R_{0}\right)$
Variational
$E[u]=\int_{\Omega} F(D u) d x$
$\varphi \in C_{0}^{\infty}(\Omega)$

$$
\begin{aligned}
&\left.\frac{d}{d t} \int F(D u+t D \varphi) d x\right|_{t=0}=\int \sum F_{p_{i}}(D u) \frac{\partial \varphi}{\partial x_{i}} d x \\
&=\int-\sum \frac{\partial}{\partial x_{i}}\left[F_{p_{i}}(D u)\right] \varphi d \\
& \sum \frac{\partial}{\partial x_{i}}\left[F_{p_{i}}(D u)\right]=0
\end{aligned}
$$

eg1. $F(D u)=|D u|^{2}$ Energy $F_{p_{i}}=2 D u \rightarrow \Delta u=0$.
eg2. $F(D u)=\sqrt{1+|D u|^{2}}$ Area $F_{p_{i}}=\frac{D u}{\sqrt{1+|D u|^{2}}} \rightarrow$ mean curvature $H=$ $\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0$.
eg3. $E[u]=\int \sigma_{k-1}(\kappa) \sqrt{1+|D u|^{2}} d x$, E-L equation $\sigma_{k}(\kappa)=0$ (Reilly).
RMK. One obvious thing
1 d principle curvature of curve $(x, f(x))$
$\kappa=\frac{f_{x x}}{\left(\sqrt{1+f_{x}^{2}}\right)^{3}}=\left(\frac{f_{x}}{\sqrt{1+f_{x}^{2}}}\right)_{x}$
also $\int \kappa d s=\int \frac{f_{x x}}{\left(\sqrt{1+f_{x}^{2}}\right)^{3}} \sqrt{1+f_{x}^{2}} d x=\int\left(\arctan f_{x}\right)_{x} d x=\left.\arctan f_{x}\right|_{\partial}$
2d

$$
H=\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\frac{1}{\sqrt{1+|D u|^{2}}}\left[\left(1+u_{y}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1+u_{x}^{2}\right) u_{y y}\right]
$$

RMK. Equation for 2 d steady, adiabatic, irrotational, isentropic flow $u \rightarrow \sqrt{-1} u$

$$
\left(1-u_{y}^{2}\right) u_{x x} a+2 u_{x} u_{y} u_{x y}+\left(1-u_{x}^{2}\right) u_{y y}=0
$$

Q. In nd similar thing should happen to the total Gauss curvature

$$
\int \sigma_{n}(\kappa) \sqrt{1+|D u|^{2}} d x ?
$$

More variationals
$\operatorname{Eg} \sigma_{k}: E[u]=-\frac{1}{k+1} \int u \sigma_{k}\left(D^{2} u\right) d x+\int u d x$
E-L equation $\sigma_{k}\left(D^{2} u\right)=1$. This can be derived using the following divergence structure.

$$
\begin{aligned}
k \sigma_{k} & =D_{\lambda} \sigma_{k} \cdot \lambda=\frac{\partial \sigma_{k}\left(D^{2} u\right)}{\partial m_{i j}} D_{i j} u \\
& =\frac{\partial}{\partial_{x_{i}}}\left[\frac{\partial \sigma_{k}\left(D^{2} u\right)}{\partial m_{i j}} \partial_{x_{j}} u\right]+\underbrace{\frac{\partial}{\partial_{x_{i}}}\left[\frac{\partial \sigma_{k}\left(D^{2} u\right)}{\partial m_{i j}}\right]}_{0} \partial_{x_{j}} u .
\end{aligned}
$$

Eg Slag: $A[D U]=\int \sqrt{\operatorname{det}\left(I+(D U)^{T} D U\right)} d x, U: \Omega \rightarrow R^{n}$.
Insist minimizer irrotational, i.e. $U=D u$, then $\mathrm{E}-\mathrm{L}$

$$
\begin{array}{r}
D \sum \arctan \lambda_{i}=0 \Leftrightarrow \sum \arctan \lambda_{i}=c . \\
A[D U]=\int \sqrt{\operatorname{det}\left(I-(D U)^{T} D U\right)} d x, U: \Omega \rightarrow R^{n} .
\end{array}
$$

Insist maximizer irrotational, i.e. $U=D u$, then E-L

$$
D \sum \ln \frac{1+\lambda_{i}}{1-\lambda_{i}}=0 \Leftrightarrow \sum \ln \frac{1+\lambda_{i}}{1-\lambda_{i}}=c \nLeftarrow-\cdots \sum \ln \bar{\lambda}_{i}=c .
$$

figure?
Explicit solutions

- $H=0$
catenoid: $|(x, y)|=\cosh z$
helicoid: $z=\arctan \frac{y}{x}$
Sherk's surface: $z=\ln \frac{\cos y}{\cos x}$
- $H_{k}=$ const.
unit sphere
- $\triangle u=0$
complex analysis in even d: $u=\operatorname{Re} z^{k}, z^{-k}, e^{z}, z_{1}^{3} e^{z_{2}}, \cdots$
algebraic n-d $u=\sigma_{k}\left(x_{1}, \cdots, x_{2}\right)$
radial

$$
\triangle u=\partial_{r}^{2} u+\frac{n-1}{r} \partial_{r} u+\frac{1}{r^{2}} \triangle_{S^{n-1}} u
$$

$u_{r r}+\frac{n-1}{r} u_{r}=0$
$r^{n-1} u_{r r}^{r}+(n-1) r^{n-2} u_{r}=0$ or $\left(r^{n-1} u_{r}\right)_{r}=0$
$u_{r}=\frac{c}{r^{n-1}}$

$$
u=\frac{c}{r^{n-2}}, \ln \left|\left(x_{1}, x_{2}\right)\right|, \text { or }\left|x_{1}\right|
$$

Fluid mechanics
vector field $\vec{V}(x, t) \stackrel{\text { steady state }}{\underline{=}} \vec{V}(x)$
incompressible $\operatorname{div}(\vec{V})=0$
irrotational $\operatorname{curl} \vec{V}=0 \Longleftrightarrow D \vec{V}=(D \vec{V})^{T} \Longrightarrow \vec{V}=D \varphi$
$\Rightarrow \Delta \varphi=0$
Navier-Stokes equation (incompressible)

$$
\left\{\begin{array}{c}
u_{t}+u \cdot D u-\Delta u+D p=0 \\
\operatorname{div} u=0
\end{array}\right.
$$

Vector $u(x, t)$ velocity field, $p(x, t)$ pressure
$m a=F$ and $X_{t}=u(X, t)$
Acceleration, $X_{t t}=u_{t}+X_{t} \cdot D u=u_{t}+u_{t} \cdot D u$
Force comes from two parts: pressure $=-D p$, and viscosity $\triangle u$ "ad-hoc" due to sheer stress caused by difference of velocity.

Heuristic derivation

$$
\text { viscosity }=\frac{\text { average velocity in } B_{r}(x)-\text { velocity at } x}{r^{2}} \approx \Delta u
$$

Physical derivation

$$
\text { sheer force }=c \delta_{A} \frac{\delta u}{\delta x_{i}}=c \delta_{A} \partial_{i} u
$$

viscous force/per unit volume $=\sum_{i} \frac{\delta \text { sheer force in } x_{i} \text { direction }}{\delta A \delta x_{i}}=c \sum_{i} \partial_{i i} u=c \Delta u$

Maxwell equation
electric field $\vec{E}=\left(E^{1}, E^{2}, E^{3}\right)$
magnetic field $\vec{H}=\left(H^{1}, H^{2}, H^{3}\right)$

$$
\left\{\begin{array}{l}
\varepsilon \vec{E}_{t}=\operatorname{curl} \vec{H} \\
\mu \vec{H}_{t}=\operatorname{curl} \vec{E}
\end{array}\right.
$$

RMK. $\operatorname{div} \vec{E}=0$, since $(\operatorname{div} \vec{E})_{t}=\operatorname{div}(\operatorname{curl} \vec{H})=0$ and $\operatorname{div} \vec{E}=0$ at $t=0$. Similarly $\operatorname{div} \vec{H}(t)=0$ for $\operatorname{div} \vec{H}=0$ at $t=0$.

Lame elastic wave

$$
\vec{U}_{t t}-\mu \triangle U-(\lambda+\mu) D(\operatorname{div} \vec{U})=0
$$

Harmonic maps

Consider the energy of vector m-valued function of n-variables, let us look at critical point(s) of the energy functional with pointwise constraint

$$
E(w)=\int_{\Omega} \frac{1}{2}|D w|^{2} d x \text { with } w \cdot w=1
$$

the Euler-Lagrangian equation is

$$
-\triangle u=|D u|^{2} u
$$

For a critical point, function $u: \Omega \rightarrow S^{m-1} \subset R^{m}$ now, we take a variation $\eta \in$ $C_{0}^{\infty}\left(\Omega ; R^{m}\right)$, but to the sphere $(u+\varepsilon \eta) /|u+\varepsilon \eta|$

$$
\begin{aligned}
\frac{d}{d \varepsilon} E(u+(u+\varepsilon \eta) /|u+\varepsilon \eta|) & =\int_{\Omega}\left\langle D \frac{u+\varepsilon \eta}{|u+\varepsilon \eta|}, D\left(\frac{\eta}{|u+\varepsilon \eta|}-(u+\varepsilon \eta) \frac{(u+\varepsilon \eta) \cdot \eta}{|u+\varepsilon \eta|^{3}}\right)\right\rangle d x \\
& \stackrel{\varepsilon=0}{=} \int_{\Omega}\langle D u, D(\eta-u u \cdot \eta)\rangle d x \\
& =\int_{\Omega}\langle D u, D \eta-D u u \cdot \eta-u D(u \cdot \eta)\rangle d x \\
& =\int_{\Omega}\langle D u, D \eta-D u u \cdot \eta\rangle d x \quad\left(u \cdot u=1 \text { implies } \sum u^{\alpha} D u^{\alpha}=0\right) \\
& =\int_{\Omega} \operatorname{div}\left(\eta^{T} D u\right)-\langle\triangle u, \eta\rangle-|D u|^{2} u \cdot \eta d x
\end{aligned}
$$

thus the equation.
For general constraint such as ellipsoid, hyperboloid, paraboloid, etc, we employ Lagrangian multiplier to get the critical equation. Say now the constraint is $S(u)=0$. The critical equations are critical points of augment functional

$$
E(w)-\int_{\Omega} \lambda(x) S(w) d x
$$

The variation w.r.t. $w+\varepsilon \eta$ and $\lambda+\delta f\left(f \in C_{0}^{\infty}\left(\Omega ; R^{1}\right)\right)$ leads to respectively

$$
-\langle\Delta u, \eta\rangle=\lambda\left\langle\nabla_{u} S, \eta\right\rangle \quad \text { and } S(u)=0
$$

In order to pin down $\lambda(x)$, we take η as $\nabla_{u} S$, or rather $f \nabla_{u} S$ with f being one near any fixed interior point of Ω and zero near its boundary. Then near the fixed interior point, we have

$$
\lambda\left\langle\nabla_{u} S, \nabla_{u} S\right\rangle=-\left\langle\triangle u, \nabla_{u} S\right\rangle=-\operatorname{div}\left\langle D u, \nabla_{u} S\right\rangle+\left\langle D u, D \nabla_{u} S\right\rangle=\left\langle D u, D \nabla_{u} S\right\rangle
$$

where we used $0=D[S(u)]=\left\langle D u, \nabla_{u} S\right\rangle=\partial_{u^{\alpha}} S D u^{\alpha}$ and the notation $\left\langle D u, D \nabla_{u} S\right\rangle=$ $D_{x_{i}} u^{\alpha} D_{x_{i}} \partial_{u^{\alpha}} S$. Then

$$
\lambda=\frac{\left\langle D u, D \nabla_{u} S\right\rangle}{\left\langle\nabla_{u} S, \nabla_{u} S\right\rangle}
$$

and our equation becomes

$$
-\triangle u=\frac{\left\langle D u, D \nabla_{u} S\right\rangle}{\left\langle\nabla_{u} S, \nabla_{u} S\right\rangle} \nabla_{u} S
$$

Reality check ...
Einstein equation
Canonical metric Ric $(g)=c g$
g Riemannian

$$
\operatorname{Ric}(g)=-g^{i j} D_{i j} g+(D g, g)
$$

g pseudo Riemannian (general relativity) such as $d x^{2}-d t^{2}$

$$
\operatorname{Ric}(g)="-\triangle_{x} g+D_{t t} g^{\prime \prime}
$$

Ricci flow

$$
g_{t}=-\operatorname{Ric}(g)=\overbrace{-g^{i j} D_{i j} g}^{\text {diffusion }}+(D g, g) .
$$

RMK. The "heat" equation $g_{t}=\triangle_{g} g=0$ is static.
Observation: The most frequent combination is $\triangle u$. So we study

- $\Delta u, u_{t}=\Delta u, u_{t t}=\triangle u$
. " $\Delta^{\prime \prime} u, u_{t}=" \Delta^{\prime \prime} u, u_{t t}=" \Delta^{\prime \prime} u$ general linear methods
- nonlinear methods.

[^0]: ${ }^{0}$ November 22, 2016

