
Lecture 2 Laplace equations

◦ invariance, explicit solutions
◦ mean value formula

maximum principle,
(higher order) derivative estimates,
regularity—analyticity
Harnack
Liouville

◦ Green’s functions for balls & half space
◦ weak formulations
mean value
weak or weaker/distribution
viscosity
◦ Energy method, uniqueness, Dirichlet principle, Neumann version

Invariance for Harmonic functions, solutions to 4u = 0
· u (x+ x0)
· u (Rx)
· u (tx)
RMK. Equations don’t know/care which coordinates they are in.
· u+ v, au, where 4v = 0
·
∫
u (x− y)ϕ (y) dy

·u(x+εe)−u(x)
ε

→ Deu, so is Dku

·u(Rεx)−u(x)
ε

→ Dθu = xiuj − xjui
· u((1+ε)x)−u(x)

ε
→ Du (x) · x = rur, so are r∂r (rur) = rur + r2urr, r

3urrr, · · ·
· |x|2−n u

(
x
|x|2

)
Kelvin transformation

RNK. “Kelvin”transformation for the heat equation ut−4u = 0, 1
tn/2

e−
|x|2
4t u

(
x
t
, −1
t

)
.

Example of harmonic functions
· σ1 (x) = x1 + · · ·+ xn, σ2 (x) = x1x2 + · · · , · · · , σn (x) = x1 · · · xn.
· Re / Im f (z) on C1 or Cn, ln z = ln r + iθ
· radial ones 

1
rn−2 n ≥ 3 = |x|2−n 1

(
x/ |x|2

)
ln r n = 2 ∂nr

2−n|n=2 = − ln r
r n = 1

u (x) = u (r)
D1u = ur

x1
r

D11u = 1
r
ur +

(
ur
r

)
r
x1
r
x1 = urr

x21
r2
− ur x

2
1

r3
+ 1

r
ur

(D12u =
(
ur
r

)
r
x2
r
x1 = urr

x1x2
r2
− ur x1x2r3

)
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4u = urr −
ur
r

+ n
ur
r

= urr + (n− 1)
ur
r

=
1

rn−1

(
rn−1ur

)
r

= 0 for the above.

RMK. Fourier way: 4u = δ − |ξ|2 û = 1

u (x) = −
∫
Rn

1

|ξ|2
eix·ξdξ

satisfies

u (Rx) = u (x) radial

u (tx) = −
∫
Rn

t2

|tξ|2
eitx·ξ

d (tξ)

tn
=

1

tn−2
u (x) homogeneous order 2− n.

So u = cnr
2−n + 9.9999 n 6= 3; n = 2 is a different story.

More harmonic functions.
eg1.

D1r
2−n = (2− n) r1−nx1

r
= (2− n) r−nx1 = (2− n)

x1

rn

D11r
2−n = (2− n)

[
−nr−n−1x1

r
x1 + r−n

]
= (2− n)

r2 − nx2
1

rn+2

D12r
2−n = (2− n)

−nx1x2

rn+2

Let Pk (x) be any homogeneous polynomial of degree k, Pk (D) r2−n = Hk(x)
rn−2−2k . For

example, σk (D) r2−n = σk(x)
rn−2−2k . Note Hk 6= Pk in general, but Hk (x) = r2−n Hk( x

r2
)

| x
r2
|n−2−2k

is the Kelvin transform of harmonic function Pk (D) r2−n, thus harmonic.
Exercise: Hk (x) are ALL harmonic polynomials of degree k.
n = 2, zk 99K rk cos kθ, rk sin kθ

n = 3 k = 2 r4
(
xy
r4
, yz
r4
, zx
r4
, x

2−y2
r4

, y
2−z2
r4

)
spherical harmonics named by Lord

Kelvin.
eg2. Harmonic function

|x− x0|2−n − |x|2−n
∣∣∣∣ x|x|2 − x0

∣∣∣∣2−n |x|=1
= |x− x0|2−n − |x− x0|2−n = 0,

is Green’s function (up to a multiple) for the unit ball.

Mean value equality
Recall the divergence formula (the fundamental theorem of calculus)∫

Ω

div
(
~V
)
dx =

∫
∂Ω

〈
~V , γ

〉
dA.
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~V = Du, then 0 =
∫
∂Ω
uγdA.

~V = vDu, then
∫

Ω
〈Dv,Du〉+ v4 u =

∫
∂Ω
vuγdA.

~V = uDv, then
∫

Ω
〈Du,Dv〉+ u4 v =

∫
∂Ω
uvγdA.∫

Ω

v4 u− u4 v =

∫
∂Ω

vuγ − uvγdA.

Mean value case. For harmonic function u

u (0) =
1

|∂Bl|

∫
∂Bl

ud.

Now 4u = 0 in B1, take v = |x|2−n , Ω = B1\Bε,

B1\Bε figure

we then have 0 =
∫
∂Ω
vuγ − uvγdA, or

0︷ ︸︸ ︷∫
∂(B1\Bε)

vuγdA =

∫
∂(B1\Bε)

uvγdA =

∫
∂B1

u
(2− n)

rn−1
dA−

∫
∂Bε

u
(2− n)

rn−1
dA. (*)

We get
∫
∂B1

udA =

∫
∂Bε

u
1

εn−1
dA

ε→0→ |∂B1|u (0) . So u (0) = 1
|∂B1|

∫
∂B1

udA. Also for

all other radius l by scaling w (x) = u (lx) .

RMK. In hindsight one just takes v =
−1

(n− 2) |∂B1|
1

|x|n−2

def
= Γ.

“Solid”formulations:

u (0) =
1

|B1|

∫
B1(0)

udx

Take a weight function nrn−1, from 1 =
∫ 1

0
nrn−1dr we have

u (0) =

∫ 1

0

nrn−1

[
1

|∂B1| rn−1

∫
∂Br(0)

udA

]
dr =

1

|B1|

∫ 1

0

∫
∂Br(0)

udAdr =
1

|B1|

∫
B1(0)

udx.

Also scaled version

u (0) =
1

|Br|

∫
Br(0)

udx.
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Take another weight 2nr2n−1, from 1 =
∫ 1

0
2nr2n−1dr we have

u (0) =

∫ 1

0

2nr2n−1

[
1

|∂B1| rn−1

∫
∂Br(0)

udA

]
dr =

2

|B1|

∫ 1

0

∫
∂Br(0)

rnudAdr

=
2

|B1|

∫
B1(0)

|x|n udx.

Take a radial weight ϕ (x) = ϕ (r) ∈ C∞0 (B1 (0)) such that 1 =
∫
Rn
ϕdx =

∫ 1

0
ϕ (r) |∂B1| rn−1dr,

then we have

u (0) =

∫ 1

0

ϕ (r) |∂B1| rn−1

[
1

|∂B1| rn−1

∫
∂Br(0)

udA

]
dr =

∫ 1

0

∫
∂Br(0)

ϕudAdr =
1

|B1|

∫
B1(0)

ϕudx.

RMK1. Tracing the sign of 4u and noticing
∫
∂Bε

vuγdA
ε→0→ 0, one gets mean

value inequalities for superharmonic functions 4u ≤ 0 : u (0) ≤
∫
−u and subharmonic

functions 4u ≥ 0 : u (0) ≤
∫
−u.

RMK2. “· · · all the women are strong, all the men are good-looking, and all the
children are above average.”—A Prairie Home Companion with Garrison Keillor.
RMK3. Also for u ∈ C∞0 (Rn) , after applying Green’s formula,

u (x) =

∫
Rn

−1

(n− 2)n |B1|
1

|x− y|n−2 4 u (y) dy = Γ ∗ u.

Here the singular integral
∫
Rn
|x− y|2−n f (y) dy is defined as limε→0

∫
Rn\Bε(x)

|x− y|2−n f (y) dy

for any f ∈ C∞0 (Rn) .
Green case. Still 4u = 0 in B1, but

v = G (x, x0) =
−1

(n− 2) |∂B1|

(
|x− x0|2−n − |x|2−n

∣∣∣∣ x|x|2 − x0

∣∣∣∣2−n
)
,

Ω = B1\Bε (x0) .
B1\Bε (x0) figure

Taking limits on two ends of (*), we get Poisson formula

u (x0) =

∫
∂B1

∂G (x, x0)

∂γx
u (x) dA =

1

|∂B1|

∫
∂B1

1− |x0|2

|x− x0|n
u (x) dA.

Note u (x) =
∫
∂B1

∂G(y,x)
∂γy

ϕ (y) dAy, as sum of harmonic functions 1−|x|2
|y−x|n , is harmonic—

smooth, analytic in terms regularity– -for ϕ ∈ C0, L1, · · · .

Application 1. Strong maximum principle (No toughing).

4u1 = 4u2 = 0

u1 ≥ u2, “ =′′ at 0

4



then

0 = u1 (0)− u2 (0) =
1

|Br|

∫
Br

(u1 − u2) dx ≥ 0.

It follows that u1 ≡ u2.
Application 2. Smooth effect and derivative test.
Take radial weight ϕ (y) = ϕ (|y|) ∈ C∞0 (Rn) such that 1 =

∫
ϕ (y) dy =

∫∞
0
ϕ (r) |∂Br| dr.

Then ∫
Rn
u (y)ϕ (x− y) dy =

∫ ∞
0

∫
∂Br(x)

u (y)ϕ (x− y) dAdr

=

∫ ∞
0

u (x)ϕ (r) |∂Br| dr = u (x)

∫
ϕ (y) dy

= u (x) .

Consequence u (x) =
∫
Rn
u (y)ϕ (x− y) dy is smooth for continuous “initial”u (y) ,

and

Dku (0) =

∫
u (y)Dk

xϕ (x− y) dy = (−1)k
∫
u (y)Dk

yϕ (x− y) dy.

Thus ∣∣Dku (0)
∣∣ ≤ C (k, n, ϕ) ‖u‖L1(B1) ≤ C (k, n, ϕ) |B1| ‖u‖L∞(B1)

Scaled and positive versions

v : BR → R harmonic

u (x) = v (Rx) : B1 → R

|Dαu (0)| =
∣∣Dαv (0)R|α|

∣∣ ≤ C (k, n, ϕ)
‖v‖L1(BR)

Rn
≤ C (k, n, ϕ) |B1| ‖v‖L∞(BR) ,

that is

∣∣Dkv (0)
∣∣ ≤ { C(k,n,ϕ)‖v‖L1(BR)

Rn+k
, also C(k,n,ϕ)|B1|

Rk
v (0) , provided u ≥ 0

C(k,n,ϕ)‖v‖L∞(BR)
Rk

.

RMK. The larger the domain, the flatter the harmonic graph.
Sharper estimates for analyticity
“Direct”way: try concrete ϕ, calculate its derivatives, to have

C (n, |α|) ≤ |α|!C |α|, have not found any ϕ yet.

“Canonical”way:
|Dαu (0)| ≤ (|α|n)|α| ‖u‖L∞(B1) .

Step 1.

D1v (0) =
1

|BR|

∫
BR

D1vdx =
1

|BR|

∫
BR

div (v, 0, · · · , 0) dx =
1

|BR|

∫
∂BR

vγ1dA

≤ |∂BR|
|BR|

‖u‖L∞(BR) ,
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then, say D1v (0) = |Dv (0)|

|Dv (0)| ≤ n

R
‖u‖L∞(BR) .

Step 2. Fill in the unit ball with balls with radii 1
k
, 2
k
, · · · , k−1

k
, 1,

f igure

we have ∣∣Dkv (0)
∣∣ ≤ kn

∥∥Dk−1v
∥∥
L∞(B1/k)

≤ (kn)2
∥∥Dk−1v

∥∥
L∞(B2/k)

≤ · · ·

≤ (kn)k ‖v‖L∞(B1) ≤ k! (en)k ‖v‖L∞(B1(0)) ,

where we used k!ek = k!
(

1 + · · ·+ kk

k!
+ · · ·

)
≥ kk. Generally we have

|Dαv (0)| ≤ (|α|n)|α|

R|α|
‖v‖L∞(BR) ≤

|α|! (en)|α|

R|α|
‖v‖L∞(BR) .

Step 3. For now smooth harmonic function u, we have its Taylor expansion

u (x) = u (0) +Du (0) · x+ · · ·+ 1

(N − 1)!

∑
|α|=N−1

Dαu (0)xα

α!
+RN

RN =
1

N !

∑
|α|=N

Dαu (∗)xα =
1

N !
|x|N DN

ω u (∗) with ω =
x

|x| .

This can be shown via integration by parts. Setting f (t) = u (tx) , then

f (1) = f (0) +

∫ 1

0

f ′ (s) ds

= f (0) + (s− 1) f ′ (s)|10 −
∫ 1

0

(s− 1) f ′′ (s) ds

· · ·

= f (0) +f ′ (0) +
1

2!
f ′′ (0) + · · ·+ 1

(N − 1)!
f (N−1) (0) +

(−1)N

(N − 1)!

∫ 1

0

(s− 1)N−1 f (N) (s) ds

= f (0) + f ′ (0) +
1

2!
f ′′ (0) + · · ·+ 1

(N − 1)!
f (N−1) (0) +

1

N !
f (N) (s∗) .

Now we use the polarized expression |x|N DN
ω u (∗) to get a better estimate, at the

same time, with simpler argument. Note f ′ (t) = x ·Du (tx) = |x|Dωu (tx) and also
f (N) (t) = |x|N DN

ω u (tx) . We then have from Step 2

|RN | =
1

N !
|x|N

∣∣DN
ω u (∗)

∣∣ ≤ 1

N !
|x|N N ! (en)N ‖u‖L∞(B|x|+1(0))

= (|x| en)N ‖u‖L∞(B|x|+1(0))
N→∞→ 0
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once |x| < 1
en
.

RMK. The above “canonical”way is a model for analyticity of solutions to analytic
elliptic equations.
“Elementary”way.
Starting from Green’s formula∫

B1

v4 u− u4 vdx =

∫
∂B1

vuγ − uvγdA

with v (y) = cn
1

|x−y|n−2 = K (x− y) , we have

u (x) =

∫
∂B1

K (x− y)uγ − y ·DyK (x− y)udA (y) .

Let us write the kernels as analytic functions of x :

|x− y|2−n =
(
|x|2 − 2x · y + |y|2

)1−n/2
= |y|2−n

(
1 +
|x|2 − 2x · y
|y|2

)1−n/2

|y|=1
= 1 +

(
1− n/2

1

)(
|x|2 − 2x · y

)
+

(
1− n/2

2

)(
|x|2 − 2x · y

)2
+ · · ·

is analytic in terms x for small x. So is y ·Dy |x− y|2−n for small x and |y| = 1.
RMK. “Wave”functions are not necessarily smooth, let alone analytic.

Application 3. Harnack inequalities—a quantitative version of the strong maximum
principle.
eg. Consider positive harmonic functions r2−n, x1r

−n on {x1 > 0} .

r2−n, x1r
−n graph figure

eg. In general for 4 u = 0, u > 0 in B1 (0) , we have

u (x) =
1∣∣B1−|x|
∣∣ ∫

B1−|x|(x)

udx ≤ 1∣∣B1−|x|
∣∣ ∫

B1(0)

udx =
|B1|∣∣B1−|x|

∣∣u (0) =
1

(1− |x|)nu (0) .

RNK. As those two examples suggest, from estimating the kernel of Poisson repre-
sentation, we have a sharper comparison

(1− |x|)
2n−1

u (0) ≤ u (x) ≤ 2

(1− |x|)n−1u (0) .
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Going along a chain of balls with geometrically increasing radii, from the boundary,
using the following Harnack, one can get a super linear growth out of the boundary
for non-negative harmonic functions. Question: can one refine the Harnack chain
argument to make a linear growth from the boundary of the ball? For C1,1 boundary,
the linear growth is true by simple barrier argument. This is the content of Hopf
boundary lemma. For less smooth domains, no linear growth. For example: y2 − x2

in the domain {y > |x|} .
Harnack. Suppose 4 u = 0, u > 0 in Br (x0) . Then we have

sup
Br/4(x0)

u ≤ 3n inf
Br/4(x0)

u.

In fact
4 circle figure B1, B1/4, B1/4 (xmax) , B3/4 (xmin)

max
B1/4

u = u (xmax) =
1∣∣B1/4

∣∣ ∫
B1/4(xmax)

udx

≤ 1∣∣B1/4

∣∣ ∫
B3/4(xmin)

udx

= 3nu (xmin) = 3n min
B1/4

u.

Consequences · · · , for example one sided Liouville for entire harmonic functions.
RMK. Harnack inequality is in fact a quantitative version of the strong maximum

principle. It measures how much the minimum leaps when moving inside, or flipping
around how much the maximum drops when moving inside. For example, to move
inside B1/4 from B1,

min
B1/4

(u−m1) ≥ 3−n max
B1/4

(u−m1)

or
m1/4 ≥ m1 + 3−n

(
M1/4 −m1

)
.

The flip version is
min
B1/4

(M1 − u) ≥ 3−n max
B1/4

(M1 − u)

or
M1/4 ≤M1 − 3−n

(
M1 −m1/4

)
.

(This should be Moser’s observation: subtracting the leap from the drop, one has
oscillation decay of the “harmonic”function.)
Liouville Theorem. Given 4u = 0 and |u| ≤M in Rn, then u ≡constant.
Differential way. u is smooth, and |Du (0)| ≤ n

R
‖u‖L∞(BR) ≤ n

R
M → 0, asR→∞.

Similarly Du ≡ 0 everywhere, and then u is constant.
Harnack way. infRn u = m, u−m ≥ 0, we then have

0 ≤ sup
BR

(u−m) ≤ inf
BR

(u−m)→ 0, as R→∞.
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Harnack way also gives the following
One sided Liouville. 4u = 0 and u ≥ −M in Rn, then u ≡constant.
Fundamental theorem of algebra: There is a root for any polynomial equation

P (z) = 0 in C = R2. Suppose otherwise, then harmonic function ln |P (z)| =
Re lnP (z) has a lower bound in R2. By one sided Liouville, it is constant. An in-
consistence. Two sided cut: 1/P (z) would be bounded holomorphic, or two bounded
harmonic functions. By Liouville, they are constant. A contradiction.

Green’s function: Dirichlet and Neumann problem for balls and half space

* “wave”function can be determined by initial position and velocity
* minimal surface is determined by boundary height, nonlinear version of harmonic

functions; given pay-off at the boundary, should know expectation of a random walk
starting anywhere inside (Dirichlet Problem)
* steady state irrotational/incompressible fluid can be determined by boundary

flux (Neumann problem)

Q. Why not Cauchy data for harmonic functions?
A1. No special direction like time
A2. Green’s identity∫

Ω

u4 v − v4 u =

∫
∂Ω

uvγ − vuγdA

· v = 1
∫
∂Ω
uγdA = 0, cannot arbitrarily assign uγ

· v = x1x2

∫
∂Ω
uvγ − vuγdA = 0.

Q. What can be described then?
A. Dirichlet, Neumann, and mixed for closed domain.
Exercise. [J] Sec3.3 Problem4: Solve for harmonic function with Cauchy data

4u = 0 in S1 × (1− ε, 1 + ε)
u (1, θ) = ϕ
ur (1, θ) = ψ

ϕ, ψ analytic .

Dirichlet.
Pick v (x, y) = G (x, y) such that 4yv = δ (x) and v (x, ∂Ω) = 0 to pick up u (x)

and ignore uγ.We have the fundamental solution for δ (x) . To take care of boundary,
we subtract a harmonic function

G (x, y) =
cn

|x− y|n−2 − h (x, y)

∣∣∣∣
y∈∂Ω

= 0.

Now the hard to find h need to satisfy{ 4yh (x, y) = 0 in Ω
h (x, y) = cn

|x−y|n−2 for y ∈ ∂Ω .
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Then

u (x) =

∫
Ω

G (x, y) f (y) dy+

∫
∂Ω

ϕ (y)Gγ(y) (x, y) dA (y) , Gγ(y) (x, y) harmonic♣ in x

solves {
4u (x) = f (x) in Ω
u (x) = ϕ (x) on ∂Ω

.

Surprisingly in the sense limΩ3x→y u (x) = ϕ (y) for smooth enough domain and con-
tinuous ϕ.
RMK. The limiting behavior for general domain is hard to justify. For smooth do-

mainsG (a, y) is smooth up to the boundary. By the following symmetry,4xG (x, y) =
0 and then Gγ(y) (x, y) is harmonic♣ in x, 4x Gγ(y) (x, y) = 0 for y ∈ Ω.
Symmetry of Green’s function: G (x, y) = G (y, x) for x 6= y ∈ Ω.
From the ball case, we see this symmetry as follows

G (x, y) =
−1

(n− 2) |∂B1|

[
|x− y|2−n − |y|2−n

∣∣∣∣x− y

|y|2

∣∣∣∣2−n
]

= cn

[
∗ −

∣∣∣∣|y|x− y

|y|

∣∣∣∣2−n
]

= cn

[
|x− y|2−n −

∣∣|y|2 |x|2 − 2x · y + 1
∣∣1−n/2] .

In general, the symmetry is still valid, as we readily read off from Green’s formula∫
Ω

u4 v − v4 u =

∫
∂Ω

uvγ − vuγdA.

Take u (y) = G (a, y) and v (y) = G (b, y) with a 6= b ∈ Ω. Recall they both vanish
on the boundary of Ω, are smooth (harmonic) away from a and b respectively, and
δa and δb respectively after Laplace. Equivalently and actually what is really going
on is the following. The domain we are working on is the one after deleting two small
balls around a and b, Ω\ {Bε (a) ∪Bε (b)} . Now the Green’s formula reads

0 =

∫
∂Bε(a)

uvγ − vuγdA+

∫
∂Bε(b)

uvγ − vuγdA

=

∫
∂Bε(a)

O (1) ε2−n − [v (a) + o (1)]
1

|∂B1| εn−1
dA

+

∫
∂Bε(b)

[u (b) + o (1)]
1

|∂B1| εn−1
−O (1) ε2−ndA.

Let ε go to 0, we see v (a) = u (b) , that is G (b, a) = G (a, b) .

Example: Ball Ω = B1, Gγ(y) = Gr (x, y) = 1
|∂B1|

1−|x|2
|x−y|n , that is, Poisson formula

(for all dimension n)

u (x) =
1

|∂B1|

∫
∂B1(0)

1− |x|2

|x− y|nϕ (y) dA (y)
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solves {
4u (x) = 0 in B1 (0)
u (x) = ϕ (x) on ∂B1, i.e. limB13x→y u (x) = ϕ (y)

.

In particular,

u (0) =
1

|∂B1|

∫
∂B1(0)

ϕ (y) dA (y) and 1 =
1

|∂B1|

∫
∂B1(0)

1− |x|2

|x− y|n1 dA (y) .

Derivation of Poisson kernel.
By the symmetry

G (x, y) = cn

[
|x− y|2−n − |y|2−n

∣∣∣∣x− y

|y|2

∣∣∣∣2−n
]

= cn

[
|x− y|2−n −

∣∣|y|2 |x|2 − 2x · y + 1
∣∣1−n/2]

= cn

[
|x− y|2−n − |x|2−n

∣∣∣∣y − x

|x|2

∣∣∣∣2−n
]

we have

DyG (x, y) = −cn (n− 2)

[
y − x
|y − x|n −

1

|x|n−2

y − x̄
|y − x̄|n

]
with x̄ =

x

|x|2

and

y

|y| ·DyG (x, y) = −cn (n− 2)
1

|y|

[
|y|2 − x · y
|y − x|n − |x|

2

|x|n
(
|y|2 − x̄ · y

)
|y − x̄|n

]
|y|=1
= −cn (n− 2)

1− |x|2

|y − x|n recall |x|2 |y − x̄|2 = |x|2 |y|2 − 2x · y + 1 = |y|2 |x− ȳ|2 .

RMK. Though Poisson formula takes the same form in all dimensions n, the
Green’s function takes different forms in dimension n = 2 and n = 1.

n = 2 : G (x, y) =
1

2π

(
ln |x− y| − ln |y| − ln

∣∣∣∣x− y

|y|2

∣∣∣∣) .
Note the corrector ln

∣∣x− y |y|−2
∣∣ equals ln |x− y| for |y| = 1, but is not smooth for

y near 0. The right choice is ln |y|+ ln
∣∣x− y |y|−2

∣∣ , which can also be seen by taking
the derivative of the Green’s function in general dimension with respect to dimension
n.

n = 1 : G (x, y) =
1

2
[|x− y| − |xy − 1|] =

{
1
2

(y − x+ xy − 1) for y > x
1
2

(x− y + xy − 1) for y < x
.

From Green’s formula

u (x) = −cn (n− 2)

∫
∂B1(0)

1− |x|2

|y − x|nϕ (y) dA (y) .
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Testing with u ≡ 1, we see −cn (n− 2) = |∂B1|−1 .
Limit justification.
The intuition is that the positive Poisson kernel P (x, y) approaches the “bound-

ary”delta function δ (y0) as x goes to y0. For any small ε > 0, as ϕ is continuous, there
exists δ such that |ϕ (y)− ϕ (y0)| ≤ ε whenever |y − y0| ≤ δ. Take |x− y0| ≤ η (ε) to
be determined later. Let us measure the difference

u (x)− ϕ (y0) =
1

|∂B1|

∫
∂B1

1− |x|2

|x− y|n [ϕ (y)− ϕ (y0)] dA (y)

=
1

|∂B1|

∫
∂B1∩Bδ(y0)︸ ︷︷ ︸
I

+
1

|∂B1|

∫
∂B1\Bδ(y0)︸ ︷︷ ︸
II

.

|I| ≤ ε

|∂B1|

∫
∂B1

1− |x|2

|x− y|ndA (y) ≤ ε

|II| ≤
2 ‖ϕ‖L∞(∂B1)

|∂B1|

∫
∂B1\Bδ(y0)

(y0 + x) · (y0 − x)

|x− y|n dA (y)

η(δ)≤δ/2
≤

2 ‖ϕ‖L∞(∂B1)

|∂B1|

∫
∂B1\Bδ(y0)

2η (δ)

|δ/2|ndA (y)

≤ 2n+2 ‖ϕ‖L∞(∂B1)

η (δ)

|δ|n
η(δ)=εδn

≤ ‖ϕ‖L∞(∂B1) 2n+2ε.

Therefore |u (x)− ϕ (y0)| ≤ ε+ ‖ϕ‖L∞(∂B1) 2n+2ε if |x− y0| ≤ η (δ) .

RMK. Recall G (x, y) vanishes for x ∈ ∂B1 and the integral of |x− y|2−n over
small ball is small, then one can show that

∫
B1
G (x, y) f (y) dy goes to 0 as x goes

to the boundary ∂B1 for say, continuous f ( f ∈ Ca is enough to make sense of the
equation 4u = f ). Thus the Green-Poisson representation in ♣ for 4u = f and
u = ϕ on ∂B1 really takes the boundary value, say when f ∈ Cα and ϕ ∈ C0.
Poisson formula scaled version

u (x) =
1

|∂B1|

∫
∂BR

R2 − |x|2

R |x− y|nϕ (y) dA (y) .

Two ways: guess or scaling u (x) = v (Rx) .

Neumann problem {
4u = 0 in Ω
uγ = ψ on ∂Ω

.

Try to pick v (x, y) = G (x, y) (in Green’s formula) such that 4yv = δ (x) and

vγ(y)
y∈∂Ω
= 0.

Green function should be like{
G (x, y) = cn

1
|x−y|n−2 + h (x, y)

Gγ(y) = 0 for y ∈ ∂Ω
.

12



But ∫
∂Ω

Gγ(y)dA (y) =

∫
∂Bε(x)

Gγ(y)dA (y)→ 1, as ε→ 0.

So we can “only”go with Gγ(y) = 1/ |∂Ω| for y ∈ ∂Ω (then the representation is up
to a constant), and the harmonic h satisfies{ 4yh (x, y) = 0 in Ω

hγ(y) = 1
|∂Ω| − ∂γ(y)

cn
|x−y|n−2 on ∂Ω .

This harmonic corrector h is hard to come by.
A direct way on the sphere.

u (x) =

∫
∂B1

K (x, y)ψ (y) dA (y) + const.

where

K (x, y) =

∫
P (x, y)

r
dr with r = |x| ,

solves {
4u = 0 in B1

uγ = ψ on ∂B1 with
∫
∂B1

ψ = 0
.

Derivation of K : Look for a kernel K (x, y) so that

4xK (x, y) = 0

Kr (x, y) =
x

|x| ·DxK = P (x, y) Poisson kernel,

then would pick up the Neumann boundary value. However, Kr is not a harmonic
function in terms of x (to match harmonic P (x, y) ), only rKr is. Thus we are lead
to

rKr = P + const.

and

K =

∫
P (x, y)

r
dr + c ln r.

Observe, up to a ln r term, the indefinite integral is harmonic in terms of x. This is
because the x-analytic function P’s Taylor expansion consists of homogeneous har-
monic polynomials, operation

∫
r
dr preserves harmonicity up to ln r (operation rDr

preserves all harmonicity).
We proceed with the integral

K =

∫
1

r

1− r2(
1 + r2 − 2r x

|x| · y
)n/2dr + c ln r

=

∫
1

r

1− r2

(1 + r2 − 2r cos)n/2
dr + c ln r.
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n = 2 ∫
1

r

1 + r2 − 2r cos−2r2 + 2r cos

1 + r2 − 2r cos
dr + c ln r

=

∫
1

r
− 2 (r − cos)

1 + r2 − 2r cos
dr + c ln r

= ln r − ln
(
1 + r2 − 2r cos

)
+ c ln r

c=−1
= − ln

(
1 + r2 − 2r cos

)
.

And

u (x) =
−1

2π

∫
∂B1

ln
(
1 + |x|2 − 2x · y

)
ψ (y) dA (y)

is harmonic and takes the Neumann boundary value uγ = ψ.
n = 3, 5, 7, · · · Question: Can one integrate out an explicit kernel K?
n = 4, 6, 8, · · · is fine.

RMK. • In complex analysis, the Cauchy integral f (z) = 1
2πi

∫
C

1
ξ−zf (ξ) dξ is nice:

1

2πi

∫
C

1

ξ − z f (ξ) dξ
z→ξ0∈C→ f (ξ0) .

But it requires f (ξ) to be holomorphic near contour C.
• Now a variant (for real contour value), Non-Cauchy integral

f (z) =
1

2πi

∫
C

[
1

ξ − z + h (ξ, z)

]
f (ξ) dξ

still holomorphic in terms of z, no matter what boundary value f (ξ) is, in particular
f (ξ) = ϕ (ξ) real. (Splitting Schwarz kernel), we “add”the following

1

ξ − z +
1

ξ − z −
1

ξ
=
ξ + z

ξ − z
1

ξ
.

Then

u+ iv = f (z) =
1

2πi

∫
∂B1

ξ + z

ξ − z
1

ξ
ϕ (ξ) dξ Schwarz kernel

=
1

2π

∫
∂B1

ξ + z

ξ − zϕ (φ) dφ =
1

2π

∫
∂B1

|ξ|2 − |z|2 − ξz̄ + zξ̄

|ξ − z|2
ϕ (φ) dφ

=
1

2π

∫
∂B1

1− r2 + i2r sin (θ − φ)

1 + r2 − 2r cos (θ − φ)
ϕ (φ) dφ.

Now

u = Re f (z) =
1

2π

∫
∂B1

1− r2

1 + r2 − 2r cos (θ − φ)
ϕ (φ) dφ

r→1→ ϕ (θ) surprisingly,

v = Im f (z) =
1

2π

∫
∂B1

2r sin (θ − φ)

1 + r2 − 2r cos (θ − φ)
u (φ) dφ : u→ its conjugate

r=1
=

1

2π

∫
∂B1

sinφ

1− cosφ
u (θ − φ) dφ.
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Taking derivative

ur (1, θ) = vθ (1, θ) =
1

2π

∫
∂B1

sinφ

1− cosφ
uθ (θ − φ) dφ : uθ (1, θ)

Hilbert transform→ ur (1, θ) .

Question: In general dimension, what is the explicit formula of “θ · Dθu (1, θ)′′ →
ur (1, θ) on ∂Bn

1 ?
RMK. Schwarz had a cute geometric change of variable from φ to φ∗ with eiφ, z,

and eiφ
∗
being on the same line for each fixed z ∈ B1, satisfying dφ∗ = |ξ|2−|z|2

|ξ−z|2 dφ.

Then u (z) = 1
2π

∫
∂B1

ϕ (φ) dφ∗. As z → eiφ0 , most of φ∗ on ∂B1 corresponds to angles
near φ0. Thus the limit is ϕ (φ0) . Going up to 3-d and above, the straight Schwarz
like change of variable would have extra factor in the Jacobian. Other ways of change
of variables?

Example: Half space
Kelvin way. y = x/ |x|2 : B1/2 (0.5en)→ {yn > 1}

figure

Take u (x) = |x|2−n v
(
x/ |x|2

)
for x in the ball, the Dirichlet/Nuemann problem on

the half space is converted to the ball{
4v (y) = 0 for yn > 1
v = ϕ (y′) for yn = 1

→
{
4u (x) = 0 in B1/2 (en/2)

u (x) = |x|2−n ϕ
(
x/ |x|2

)
on ∂B1/2 (en/2){

4v (y) = 0 for yn > 1
vyn = ψ (y′) for yn = 1

→
{
4u (x) = 0 in B1/2 (en/2)

|x|n
[
(2− n)u (x)− uγ(x)

]
= ψ

(
x
|x|2

)
on ∂B1/2 (en/2)

,

where the Neumann condition is transformed as follows: v (y) = |y|2−n u
(
y/ |y|2

)
vyn = (2− n)

yn
|y|nu+

1

|y|n−2Du ·
[

(0, · · · , 0, 1)

|y|2
+ y
−2yn

|y|4
]

= (2− n)
yn
|y|nu+

yn
|y|nDu · 2

[(
0, · · · , 0, 1

2yn

)
− y

|y|2
]

yn=1
= |x|n

[
(2− n)u− uγ(x)

]
.

A mixed boundary value problem.

Direct way.
Poisson formula for Dirichlet

u (x) =
1

|∂B1|

∫
Rn−1

2xn
|x− y|nϕ (y) dy

solves {
4u = 0 for xn > 0

u = ϕ (x′) for xn = 0 in the sense u (x′, xn)
xn→0+→ ϕ (x′)

,
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say 1
1+rn

ϕ ∈ L1 (Rn−1) and ϕ ∈ C0.
Derivation

G (x, y) = cn

[
1

|x− y|n−2 −
1

|x− ȳ|n−2

]
with ȳ = (y1, · · · , yn−1,−yn) and cn =

1

(2− n) |∂B1|

−∂ynG = (n− 2) cn

[
yn − xn
|x− y|n −

yn + xn
|x− ȳ|n

]
yn=0
=

1

|∂B1|
2xn
|x− y|n .

The boundary limit justification is through the following manipulation

u (x) =
1

|∂B1|

∫
Rn−1

2xn(
x2
n + |y|2

)n/2ϕ (x′ − y) dy

=
1

|∂B1|

∫
Rn−1

2(
1 + |y|2

)n/2ϕ (x′ − xny) dy. ♠

For example, u ≡ 1 implies 1

|∂Bn1 |
∫
Rn−1

2

(1+|y|2)
n/2dy = 1. (Compare

∫
Rn−1

1

(1+|y|2)
(n+1)/2dy =

1
n−1

∫
Rn−1 div y

(1+|y|2)
(n−1)/2dy =

|∂Bn−11 |
n−1

.)

RMK. For L1 boundary data ϕ, the limit justification is done via Lebesgue dom-
inate convergence theorem.
RMK. From ♠, one sees the tangential derivatives Dx′u, after a convolution—

Hilbert transform, determines the normal derivative uxn .

Dx′u (x) ==

∫
Rn−1

2(
1 + |y|2

)n/2Dx′ϕ (x′ − xny) dy.

uxn =
1

|∂B1|

∫
Rn−1

2(
1 + |y|2

)n/2 (−y) ·Dx′ϕ (x′ − xny) dy

chang var xny to y
=

1

|∂B1|

∫
Rn−1

2(
x2
n + |y|2

)n/2 (−y) ·Dx′ϕ (x′ − y) dy

=
2

|∂B1|

∫
Rn−1

− (x′ − y)(
x2
n + |x′ − y|2

)n/2 ·Dx′ϕ (y) dy.

Then we have reached the Poisson formula—Hilbert transform

uxn =
2

|∂B1|
−x′(

|x′|2 + x2
n

)n/2 ∗ ∇x′u : ∇x′u (x′, 0)→ uxn (x′, xn) .

So the Drichelet data u (x′, 0) along the boundary, then∇x′u (x′, 0) already determines
the Neumann boundary data uxn (x′, 0); but only for THE bounded solution. e.g.
u+ xn is another unbounded solution.
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RMK. One can describe the analytic Cauchy data for harmonic functions near a
small neighborhood of the analytic boundary. One cannot describe both the initial
SMOOTH position and velocity along the boundary for harmonic functions.
For example n = 2. Suppose 4u = 0 for y > 0, and u (x, 0) = 0, uy (x, 0) =

ψ ∈ C∞\Cω, not analytic and u is C2 up to the boundary Then one makes an odd
reflection: u (x, y) = −u (x,−y) for y < 0. The C2 extension is a harmonic, then
analytic. A contradiction.

C2 version: assume u is C2 up to the boundary, the C2 extension is harmonic,
then analytic. A contradiction.

C0 version (Schwarz): assume u is continuous up to the boundary. Pick any ball
centered at the boundary, let h be the harmonic function by Poisson formula taking
the boundary value u.

Maximum principle⇒ h (x, y) = −h (x,−y)
y=0
= 0

M.P. again⇒ u = h.

So u is harmonic, then analytic. A contradiction.
RMK. • n = 2 Cauchy integral

u+ iv =
1

πi

∫
R1

1

ξ − zϕ (ξ) dξ =
1

πi

∫
R1

ξ − x+ iy

|ξ − z|2
ϕ (ξ) dξ

u (x, y) =
1

π

∫
R1

y

(ξ − x)2 + y2
ϕ (ξ) dξ

y→0+→ ϕ (x)

v (x, y) =
1

π

∫
R1

x− ξ
(x− ξ)2 + y2

ϕ (ξ) dξ

∣∣∣∣
y=0

: u (x, 0)→ conjugate v (x, y)

H∗ : u→ conjugate v

ux → −uy and vx → −vy ux − iuy holomorphic
uy = −vx → −vy = ux.

• Examples:

Poisson: u+ iv =
x− i (y + 1)

x2 + (y + 1)2 =
1

π

∫
R1

y

(x− ξ)2 + y2

ξ − i
ξ2 + 1

dξ

Hilbert: v =
− (y + 1)

x2 + (y + 1)2 =
1

π

∫
R1

x− ξ
(x− ξ)2 + y2

ξ

ξ2 + 1
dξ = H ∗ u (·, 0)

uy =
2 (y + 1)x[

x2 + (y + 1)2]2 =
1

π

∫
R1

x− ξ
(x− ξ)2 + y2

1− ξ2

(ξ2 + 1)2dξ = H ∗ ux (·, 0)

• (Communicated by Don Marshall) Let a and b be two points on the real line.
The harmonic function, angle ]bza equals π for z between a and b, and 0 outside a
and b. Observe

]bza = arg
b− z
a− z = Im ln

b− z
a− z = Im

∫ b

a

1

t− zdt = Im

∫ b

a

t− x+ iy

|t− z|2
dt.
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Any harmonic function taking piecewise constant values on the real line is just the
sum of the corresponding angles time constants, then divide π. The continuous version
is just our above Poisson formula.

Poisson formula for Neumann

u (x) =

{ 1
π

∫
R1

ln |x− y| ψ (y) dy n = 2
−2

(n−2)|∂B1|
∫
Rn−1

1
|x−y|n−2ϕ (y) dy n ≥ 3

solves/is a solution to{
4u = 0 for xn > 0
uxn = ψ (x′) for xn = 0 in the limit sense.

Derivation. Look for kernel K (x, y) such that its boundary normal derivative is the
Poisson kernel

∂xnK (x, y) =
1

|∂B1|
2xn
|x− y|n for yn = 0.

Then

K (x, y) =

∫
1

|∂B1|
2xn
|x− y|ndxn =

{ 1
π

ln |x− y| n = 2
−2

(n−2)|∂B1|
1

|x−y|n−2 n ≥ 3 .

One contrasting example:
∫
xyzdz = 0.5xyz2 is not harmonic anymore. The limit

justification is the same as in Dirichlet problem.

RMK. Bounded solution to
{
4u = f (x) xn > 0, say ∈ Cα

0 (xn > 0)
u = ϕ xn = 0, say ∈ L1 ∩ C0 has

the following Poisson representation:

u (x) = G (x, ·) ∗ f (·)−Gyn (x, ·) ∗ ϕ (·)

=
1

(2− n) |∂B1|

∫
Rn+

(
1

|x− y|n−2 −
1

|x− ȳ|n−2

)
f (y) dy

+
1

|∂B1|

∫
Rn−1

2(
1 + |y|2

)n/2ϕ (x′ − xny) dy.

• Lebesgue dominate convergence theorem

• Schauder f ∈ Ca =⇒ D2u ∈ Ca

f ∈ C0 ; D2u ∈ C0, D2u could be unbounded, c-eg u = xy ln1/3 r

• Boundary Schauder

ϕ ∈ C2,a (∂Ω) =⇒ D2u ∈ Ca
(
Ω̄
)

ux′ = P ∗ ϕx′ , ux′x′ = P ∗ ϕx′x′
uxn = R ∗ ϕx′ uxnx′ = R ∗ ϕx′x′ and uxnxn = f − P ∗ 4x′ϕ

ϕ ∈ C1 ; uxn ∈ C0, uxn could be unbounded, c-eg u = Im z log1/3 z.

Weak formulation for Laplace equation: 4u = 0.
Mean value formulation.
Suppose u ∈ L1 satisfy u (x) =

∫
−
Br(x)

u (y) dy for all x and r.
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Exercise. Then u is continuous, since

u (x)− u (x0) =

∫
−
B1(x)

u (y) dy −
∫
−
B1(x0)

u (y) dy
x→x0→ 0.

2 minor overlap circlefigure

In turn, we have u (x) =
∫
−
∂Br(x)

u (y) dy. In fact

d

dr
: rn |B1|u (x0) =

∫
Br(x0)

u (y) dy

nrn−1 |B1|u (x0) =

∫
∂Br(x0)

u (y) dy

|∂Br|u (x0) =

∫
∂Br(x0)

u (y) dy.

Then

u (x) =

∫
Rn
ϕ (x− y)u (y) dy ∈ C∞

for ϕ (x) = ϕ (|x|) with
∫
Rn
ϕ (|x|) dx = 1. Let us check 4u = 0.∫

∂Bε(0)

udA =

∫
∂Bε(0)

u (0) +Du (0) · x+
1

2
Diju (0)xixj︸ ︷︷ ︸
λ1x21+···+λnx2n

+ ε3dA

|∂Bε|u (0) = |∂Bε|u (0) + 0 +
1

2

(
λ1
ε2

n
+ · · ·+ λn

ε2

n

)
|∂Bε|+O

(
ε3
)
|∂Bε|

⇒ 1

2n
4 u (0) = 0.

Integration by parts formulation.
For u ∈ C0/L1/distribution

∫
u4 ϕ = 0 for any ϕ ∈ C∞0 . How to move to mean

value formulation?
Q. How to find ϕ ∈ C∞0 such that

4ϕ =
1

|B2|
χB2 −

1

|B1|
χB1?

C1,1 approach. ϕ ∼ “ |x|2
2n|B2|χB2” − “ |x|2

2n|B1|χB1”.
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Analytic way. We just look for those radial ones by solving

ϕrr +
n− 1

r
ϕr =

1

|B1|
χB1 or

1

|B2|
χB2 .

For r ≤ 1

ϕ =
1

|B1|
r2

2n
χ[0,1] + c1.

For r > 1
ϕ = c2r

2−n + c3.

After C1,1 matching at r = 1, we have

ϕ1 =

{
1
|B1|

r2

2n
χB1 − 1

|B1|2n −
1

|B1|(n−2)n
for |x| ≤ 1

−1
|B1|(n−2)n

1
rn−2 for |x| > 1

.

Similarly

ϕ2 =

{
1
|B2|

r2

2n
χB2 − 22

|B2|2n −
1

|B1|(n−2)n
for |x| ≤ 1

−1
|B1|(n−2)n

1
rn−2 for |x| > 1

.

“Incidentally”the gradient matching coeffi cient c2 leads exactly the coeffi cient for the
fundamental solution Γ = −1

|B1|(n−2)n
1

|x|n−2 .

Geometric way (Caffarelli).

quadratics drop down to fundamentalfigure

This requires ϕ2 = |x|2
2n|B2| − A to touch r2−n, in fact −1

?rn−2 at |x| = 2. We have a

system 22

2n|B2| − A = −1
?2n−2 and

2·2
2n|B2| = (n−2)

?2n−1 which implies ? = n (n− 2) |B1| and
A = 2(n−1)

n(n−2)|B2| . Similarly we get ϕ1 = |x|2
2n|B1| − A

′ touching −1
?rn−2 = −1

n(n−2)|B1|rn−2 at

|x| = 1. Thus ϕ = ϕ2 − ϕ1 ∈ C1,1
0 answers the above question.

For u ∈ L1,

∫
u4 ϕ = 0⇒

∫
−
B2

u =

∫
−
B1

u.

Therefore (exercise)

u (x) = lim
r→0

∫
−
Br(x)

u a.e. at Lebesgue point of L1 u.

Cor. (Weyl) u ∈ L1/C0 satisfying
∫
u4 ϕ = 0 for any ϕ ∈ C∞0 . Then u ∈ C∞

and 4u = 0.
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Warning: ∫
1

|x|n−2 4 ϕ = cnϕ (0) 6= 0 !

C∞ approach (Weyl)
Work for u ∈distribution
ψ (x) = ψ (|x|) ∈ C∞0 with

∫
ψ = 1

ψε (x) = 1
εn
ψ
(
x
ε

)
Γ ∗ ψε graph figure

Step 1. ϕε = Γ ∗ ψε =

{
Γ for |x| ≥ ε

smooth for |x| ≤ ε
. Recall Γ = −1

(n−2)|∂B1|
1

|x|n−2 .

Step 2. 4Γ ∗ ψ = ψ.
Step 3. ϕε2 − ϕε1 ∈ C∞0∫

Rn
u4 (ϕε2 − ϕε1) = 0⇒

∫
Rn
uψε2 =

∫
Rn
uψε1

- u ∗ ψε is independent of ε
- u ∗ ψε ∈ C∞ (Review distribution theory, try it.)
- u ∗ ψε = u as a distribution (Exercise).

Pointwise (viscosity) formulation.
Definition: u ∈ C0 is a viscosity solution to 4u = 0, if for any quadratic P ≥

(≤)
u

near an interior point x0 and “ =′′ at x0, then 4P ≥
(≤)

0.

RMK. If there is no quadratic touching u from above or blow at x0, then one
checks nothing. No touching, no checking!
RMK. We can replace those quadratics by equivalent C2/C∞ testing functions.

Certainly C2 harmonic functions satisfy this definition. We do have C0 but non
C2 solutions to (fully nonlinear) elliptic equations such as Monge-Ampere/Special
Lagrangian equations.
RMK. Motivation and origin of viscosity solution. As we see the Dirichlet energy

of harmonic function with some highly oscillating continuous boundary data could be
infinite, and many other nonlinear elliptic equations such as Pucci and Isaacs equa-
tions from stochastic optimization do not have divergence structure, the variational
approach is not adequate. There is a need of pointwise approach. The classic one
is the Perron method for Laplace equation. The modern (since early 1980s) “twist”
is viscosity solution. The origin of viscosity solution (Crandall-Lions, Evans) started
from solving Hamilton-Jacobi equationH (Du) = 0, say in B1, with nice C2 boundary
data on ∂B1, no easy job. One regularizes the first order equation by adding higher
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order derivatives, say ε 4 u + H (Du) = 0. Recall 4u represents viscosity in fluid
mechanics. One can now solve this elliptic equation for solution uε with boundary
value ϕ. By the comparison principle for elliptic equations, one can show that the
Lipschitz norm of the approximate solutions uε is uniformly bounded in terms of the
C2 norm of ϕ independent of ε. By Ascoli-Arzela, there is a uniform convergent limit
v in, say C0 norm. The viscosity solution is closed under C0 uniform limit. Thus v
is solution to the vanished viscosity equation– Hamilton-Jacobi equation.
We verify C0 harmonic functions in the viscosity sense are in fact smooth and

satisfy the “harmonic”equation by Poisson representation formula. Note explicitly
representation for solutions to nonlinear equations are NOT available in general.
Let

h =

∫
∂B1

P (x, y) u (y)|∂B1 dAy

· h = u on ∂B1.
· 4h = 0 in B1.

Now if u > h somewhere at x0 ∈
0

B1, say (u− h) (x0) = maxB1 (u− h) > 0

u,h graph figure

That is, h + max ≥ u in B1, “ =′′ at x0. Next for a small (< max) but positive
ε, h + max−ε |x|2 is still above u on the boundary ∂B1, may not be so inside (for
example at x0 6= 0). Any way, if necessary, we move up h+ max−ε |x|2 until it leaves
graph u at interior x′0. Analytically, there is δ such that

h+ max−ε |x|2 + δ ≥
= at x′0

u in B1.

By the viscosity subharmonicity of u, 0 ≤ 4
(
h+ max−ε |x|2 + δ

)
= −2nε. This

contradiction shows u ≤ h in B1.

Similarly, if u < h somewhere at x0 ∈
0

B1, say (u− h) (x0) = minB1 (u− h) < 0

u,h graph figure

That is, h + min ≤ u in B1, “ =′′ at x0. Next for a small (< |min|) but positive
ε, h + min +ε |x|2 is still below u on the boundary ∂B1, may not be so inside (for
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example at x0 6= 0). Any way, if necessary, we move down h + min +ε |x|2 until it
leaves graph u at interior x′0. Analytically, there is δ such that

h+ min + |x|2 + δ ≤
= at x′0

u in B1.

By the viscosity superharmonicity of u, 0 ≥ 4
(
h+ min +ε |x|2 + δ

)
= 2nε. This

contradiction shows u ≥ h in B1.
Thus u ≡ h.

Energy method

Uniqueness. u ∈ C2
(
Ω̄
)
solution to

{
4u = f in Ω
u = ϕ or uγ = ψ on ∂Ω say C1 boundary

is unique in Dirichlet problem and unique up to a constant in Nuemann problem.
Proof. Let w = u− v, the difference fo two solutions. Then{

4w = 0 in Ω
w = 0 or wγ = 0 on ∂Ω

.

And

0 =

∫
∂Ω

wwγ =

∫
Ω

div (wDw) =

∫
Ω

Dw ·Dw + w

0︷︸︸︷
4w.

It follows |Dw| ≡ 0.

Dirichlet principle. u ∈ C2
(
Ω̄
)
solution to

{
4u = f in Ω
u = ϕ on ∂Ω

is equivalent to

E [u] = min
v∈C2(Ω̄)
v=ϕ on ∂Ω

∫
1

2
|Dv|2 + fv.

Proof. “⇐=′′ Let u be the minimizer (E[v] is a convex functional). We have for
all η ∈ C∞0 (Ω)

0 =
d

dε
E [u+ εη]

∣∣∣∣
ε=0

=

∫
Du ·Dη + fη =

∫
(−4 u+ f) η.

Consequently 4u = f .
“⇒′′ Verify

∫
Ω

1
2
|Du|2 + fu ≤

∫
Ω

1
2
|Dv|2 + fv

RHS − LHS =

∫
Ω

1

2
|D (v − u)|2 +Dv ·Du− |Du|2 + f

4u
(v − u)

≥
∫

Ω

Dv ·Du− |Du|2 +

∫
∂Ω

uγ
0 Neumann

−−−−→
(v − u)0 −

∫
Ω

Du ·D (v − u)

= 0.
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Neumann version. u ∈ C2
(
Ω̄
)
solution to

{
4u = f in Ω
uγ = 0 on ∂Ω

“natural” free

boundary condition ⇒
∫

Ω
f = 0 is equivalent to

E [u] = min
v∈C2(Ω̄)

∫
1

2
|Dv|2 + fv.

Proof. “⇒′′ same as above.
“⇐=′′ same for equation; but one more variation for boundary condition. Let u a

minimizer

0 =
d

dε
E [u+ εη]

∣∣∣∣
ε=0

=

∫
Ω

Du ·Dη + fη =

∫
∂Ω

uγη +

∫
Ω

(−4 u+ f) η.

First η ∈ C∞0 (Ω)⇒ −4 u+ f = 0
Second η ∈ C∞ (Ω)⇒

∫
∂Ω
uγη = 0 =⇒ uγ = 0!

RMK. We emphasize the necessity of the enough smoothness of the boundary
data. For example, for mere continuous boundary data, the Dirichlet energy of the
harmonic solution may be infinity, then no minimizer exists. On the unit circle, take
rapidly oscillating continuous boundary function

ϕ (θ) =
∑ 1

m2
sin 2mθ.

The harmonic function in B1 taking ϕ as boundary value is

u (r, θ) =
∑ 1

m2
r2m sin 2mθ.

However (Exercise) ∫
B1

|Du|2 dx =

∫ 1

0

∫ 2π

0

(
u2
r +

1

r2
u2
θ

)
rdθdr

=
∑ 2m

m4
=∞.
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