Lecture 3 Heat equations

o invariance, explicit solutions
o self-similar way
o “Green’s” function for the “whole” space time and “half” space time
maximum principle
higher order derivative estimates
o mean value formulas{ regularity-analytic in x, smooth in t
Harnack
Liouville
mean value
o weak formulation{ weak formulation
distribution
o uniqueness with exponential growth, Tikhonov non-uniqueness, nonexistence
with super quadratic exponential growth, nonanalytic in ¢, backward uniqueness

Invariance of u; — Au =10
~u (x4 o, t + to)

- U (eAa:,t)

- (pa, p*t)

- u+v,au

- D2 Dlu still temperature/caloric
+Du- Az = Lu (e4z,t) L:o? A= AT
- Dyu(z,t) -2 + 2Dy (2, t) = ﬁu (px, pt)

Jule =yt =s) ey, s)dyds
- Kelvin t="/2¢~ 121 /4%y (2 /t, —1/t)

p=1

Examples.

- All harmonic functions are caloric

T1x9xs, )77 Re / Im edv1tiratise

tt o o)?, 2+ t]o)? /n+ (o} + -+ 22) / (12n) , more later

- Re /Im eié=lel’t | gatielt

RMK. ef7FElt Re / Tm e +ED) 4y (¢ - 2 + |€]t) are wave functions; ™' are both
caloric and wave functions.

More examples.
- Caloric polynomials

now
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is a caloric polynomial of degree |a| + 2.
eg.

1 |2

S e*% $1$2$§ _ (—t)n/2 e
tn (—2t) (2.1 8
‘b(if) (_1)77,/2 L1223

8

|21? T1X2X3
44t —

D123(I) =

{w [ WH

_ (1)615951 — a3 % a2, =12 6ty + x3 o(x ) (—1)"? 6try + 23
8t3 8 8 '
- Radial ones
— Au = 0,0 (7,t) = 6o () oo (1)
Fourier transform way in space and time
1 .
i€, s) = —n+1/ w(z,t) e ET ) dadt
(2m) 2 JRet
satisfies . . .
zsu+|f|2ﬂ— — and U = —T - 5
(2m) 2 (2m) 2 s+ [¢]
Then ) .
u(x,t) = — = @) e,
(2,1) (27r)n+1 /Rn+1 15 + |§|2 :
We see the radiality u (x,t) = u (|z],t) . Question, how to invert?
Fourier transform way in space only
~ 1 —i&x
U(f,t):—ﬂ U(%’,t)@ dx
(2m)2 Jpgn
satisfies )
Gy + €17 = ——00 (1) .
t (27T)n/2
Then
€[ 0 fort >0
e
<€|£‘2t ﬁ) = n/2 50 (t) == Wd{) (O) fOl“ t — O
v 0 fort <0



and
1
Q€% — { (2m)"/? for t >0 '

0 fort <0
) 01—  fort>0
RMEK. If the jump function at t = 0 is chosen as elél* ¢ = (2m)™ ,
then @ = —0.9¢~1<* is not invertible for ¢t < 0.
We proceed with the conversion.
Fort <0, u=0.
Fort >0
1 / 1 —‘$|2t+' £ 1 1 / ,|£‘2+ii.£
11 w2 ~|e- 2 ? sl / i
= — 4t 2/t d —
(2m)" n/2° Rn c ¢ ( t”/2 H Rl
71':L,/2 .
L
= —F— € t
(47t)"/?

RMK. In switching each of the line integrals to the real axis, we take holomorphic
function h (z) = e=* and domain Q as an “infinite” rectangle with bottom y = ¢ and
top y = 0 in the following divergence formula (FTC):

Complex version
/ h(z)dz:/hz(z)dZAdz:O.
o9 Q

Real version

(dy,—dz)=~dA

/a(z (udz — vdy) + i (udy + vdx) (de,dy)=TdA

[~y i)y da
o0
:/—(vx+uy)+i(ux—vy)dxdy:().

Q

RMK. Splitting way for Gaussian integral

_m2 22 n/2
I = e dr = e 17 %2drdrs
n R2

o0 ) n/2 5|00\ /2
</ e " 27r7“d7“> = <7re_r ) = /2,
0 0
Radial way

[:/ e 0By | ldr P2 _|8231|/ e p2tdp = |8B T I'(n/2).
0 0




Consequently

2 n =
n/2 271'”/2
|0B7| = 2m ={ (o n even
I'(n/2) A
(5-1)(3-2)~(3)
In chart
n 1 2 3 4 5) 6 7 8 9
0BY| 2 2r Am 2x* gn? ond Bt Lpt 16 74
Self-similar way
 self similar solution u (z,t) = t% (\L/) to us — Au = “§ (x,1)" or 0
Up = Ozta+1’0 + t}’ 2;37/121) = ta+1 ( )
Au =g (8W+" 18) (r/V?)
(D) = e ()
mn( _r n—1 1 r 1r (0 2\
U<7¥/>+ﬁv<7>+57 <_> 7)—0

Set p = \/LE’ then

V" (p) + 510 (p) + 5pv" (p) +av (p) =0
1

(pnflvl)/_f_ 5pnv/_’_ozlon—lv — 0

J/

:(%p"v)l when a=n/2
*Let o =n/2
2

/ 2
P+ Sp"v = ¢ orw —|—£v—c/p Lor (U@pT) = ce'T [p!
2
Then v (p) = ce™T +¢ e feT/p"_ldp and

2|2 \’K\2 2
u(z,t) = 5 de= i + ce (/epzl/p"_ldp)

After some testing for the fundamentalgglution, we find ¢ = 0.

Green’s function for the whole space-time and “half” space-time
Whole space-time

_la—y|?
P (x,t,%s) = (47571/_2 —(t,sl)n/ze I(t—s) o< s <t |
0 s>t
_z—yl
U(:Uyt)zé*f_ 4 n/2/ / 6 4(t— a)f(y’ )dde
7T

- n/2/ / Sn/Ze 45 f( y7t_8) dde



fec® not enough
for ¢ f € Cf;,  with compact support just fine, little involved calculus  to get u € C7 ,

fecC? more than enough
solving

— Au= f(x,t).
When C? function f having compact support in R"™! we see the convolution with
the heat kernel (47¢)""/? e~ leads
® % Dyf/Dyf/Dyuf : C° — C°.
Exercise (f (y,s) = o (y))

o0 _ =
/ _ e_l%fdt gy L 1n/ sV2%e sl l —=ds
o (4mt)"/? /2 [z" Jo 4s?

1 1 © n_g _g 1 1 1 /Oo n_q _
= s2 %e ¥ds = s2 e %ds
4 /2 |2 /0 42" =1 )y
T (n/2) 1 1 1
= = ' for n > 3.
272 (n—2) |z["*  (n—2) [0By] |z|"? -
Question. n = 1,27
As for the equation u; — Au = f (z,t), when D, hits the upper limit in ffoo, one
just substitute s with ¢ in the integrand, we reach f (x,t) or

z— |2

1 _lz—y
tim [ e () dy = f (o, 0):
s—t~ J Rpn (t — S)n

when D; — A hits the integrand, as the kernel is caloric, one gets 0,
(Dy — Ay) @ (z,t,y,s) = 0.

RMK. We indicate the Schauder estimates C’ /1 for mere C° o2 function f with
compact support in the heat potential. The 1dea is to split off integrable factors in
space or time from the bounded function t?e~'/*. The order is Dis, Dy1, and then
by equation D;u = Au.

z— \2

(r1 — 1) ) 1 _lz—y
Disu (z,t) —cn/ / e 49 ,S) dyds
12 ) Lt — s) (- S)n/Q f(y,s)dy

J}l y2) 1 _ |Z—y\2
e =) [ f(y,s)— f(a,t dyds
/ /n t — 8) (LL — S)n/2 [ ( ) by car(lcellazion]

|z —y|” 1 leyl® [ /2
7 e =) ||z —y t—s ]dyds
/—1/Bl4(t_3)2(t—8)n/2 | | ( )

1 2
1 2
= / / %W -4 [y|™ + s"‘/ﬂ dyds change variables to move singularity to (0,0)
4o nij_a
L [l e 1 L 07/ W

4s _— 4s d d

/ /Bl |y’n a/2 gl— oz/4< s > 1_’_ ’y|n—a/2 Slfa/lll\ s € ) yas
mtegrable b()l?nrded integrrable bm;lrded



(z1 — y1) 1 1
/R” 4 (1t - 81)2 B 2 (t — 5) (t _ )71/26 ( )f (ya )dyds

Dyu=c,

2 2
/ (1 — 1) B 1 1 e_% [f (y,8) — f(x,t) ] dyds
R

/.
-]

n | 4 (t — 8)2 2 (t — 5) (t — S)n/2 by cancellation

|z — Z/‘2 1 1 _le—y)? a/2
+ e T 4(t—s) T — t—s d ds
/ /31 _4 (t — 8)2 2(t—s) (t — S)n/2 [| Yyl + ( ) } Y

1 | 2
:/ / 12 a5 | et ol + 5] dyds.
o JB, s s | s

similar to Di2

We finish the estimate involving % term, whose singularity is still of order —n — 2+ «
in space-time, then integrable.

\
/2
/ [ T R
1 |y A _lul? 1 1 |y| s Jyl
4s 4s d d
/ /;1 sl— a/4| |n a/2< S ) € + gl—a/4 |y|nfo¢/2j\ S yas

~~ ~~

mtegrable bounded integrable bou‘n,ded

Space—half time

Physical observation: temperature/density evolves forward as time goes forward.

Mathematical observation: initial “velocity” u, already determined by initial “po-
sition” Aw. So only initial temperature can be prescribed:

u— Au=0 fort >0
(IVP) {u<x,0>=w<x>

It is similar to, but much better (behaved) than harmonic functions over half space

Au=0 forxz, >0
u(2',0) = p(2') € L} (R™) say C*(R") N L' (R™)

@0 o= (rt) " [ exp(~lo =yl 1) () dy
= (W)_”/Q/ exp (—[y[*) ¢ (fc - 2\/53/) dy

Rn
solves the (IVP). Namely

. t—07T
Bou(e,t) — ¢();
ii) u (z,t) analytic in &t for t > 0, as long as ¢ (x) € L' (R");



p€eC’=ueCY(R" x[0,0)
iii) ¢ peCl=ue 011/2 (R" x [0, 00)
peC?*=>ueC?(R"x%[0,00)
Proof.
i) e — § way, Lebesgue dominate convergence way.
i) [pn (4mt) ™2 exp (= ]z — yl? /At) ¢ (y) dy is a sum of x-t analytic function for
t>0.
iii) We only need to show the continuity near ¢t = 0. We skip the C° & C' case.
Now ¢ € C? and D?u takes the form

D2u(a,t) = (m) " / exp (—[yl*) D2 (w — 2Vy) dy =% D2g ().

The limit can be done via e-0 way assuming || D*@|| o (gny < 00, or Lebesgue domi-
nated convergence way assuming || D*¢|| gy < 00.
As for the continuity of u;, one way is to use the continuity of D?u coupled with

the equation: w; (z,t) = Au(x,t) =9 Ay (x). Another way is direct and fun. We
also include here.

odd integralo
—_

D (w - 2\@) = Dyp(z) + Do (x) | dy

<

ur (2 1) = ()™ / exp (— y?)

n

S

(0" [ exp(~ o)

: [wa (w - 2\@) — D,y (1’)} dy

~—2vtyl| D2 0o

< (7?)"/2/n exp (= |yl*) 2y dy || D*¢||,. -

So either e-0 way or Lebesgue dominated convergence theorem implies

t—0t+

ug (z,t)  — (W)"/Q/Rn exp (— |y*) 2y, D2p (z) y) dy

=2 (W)_”/2 /Rn exp (— |y‘2) [@11 (x) yf + o P (2) yrﬂ dy
=2 (7T)7”/2 /n exp (— |y‘2) [(,011 (x) % 4+ oo () %] dy
— Lgp(m)/n exp (_ |y|2) |y|2 dy

Tl’ﬂ'n/2

= Lp (@) / 2exp (—r%) r*r" " |0B, | dr =y Lo (@) |8Bl|/ exp (—p) p"*dp
0 0

nan/2 nan/2
N (z) 202 _ /n N (z) 2% _ /oy n
nm/2 T (n/2) (2 ) na/2 T (n/2) <2> 2 ? ()



Au=0 forzx, >0

RMEK. In contrast, recall for harmonic function in the upper half space { w(2,0) = o (2)

peC' (R # u,, € C*(RY)
peC™"™(R"") % u,, € C*(R}).

Nonhomogeneous problem

uy — Au = f(z,t) in R" x (0,00), say C? compact support
u(x,0)=¢(x), say C° '

has A solution

2
le=y|® lz—y|?

( // e 4(t—s) )dd—|— 1 /@_4t ()d
w(x,t n/2 s n/2 , §)ayas (47rt)"/2 [ w\y)ay,

where we assumed f =0 with ¢t < 0 for the integral ffoo, satisfying
i)ueC? fort > 0;

i) u(x,t) =07 @ (x).

We only prove ii) with

2
_lz—yl®

e T 4(t—s)
n/2// n/2 Yy, s) dyds

/ / e"yﬁf (x — 2Vt — sy, s) dyds
o Jrn

1 g2
StWMmﬁﬁ}Jﬂmw

/2

t—0t
=t fllpe — 0.

Mean value equality
Recall the derivation of the “solid" mean value formula for harmonic functions

/ uAv—vAu—/ UVy — VU
Br OBR

_ -1 11
Set v = =9 98] <\x|”*2 R"”)
C
u(O):/ uwm:/ u|DT|dA
8Bg r:ﬁ_l
where ' = =L 1

C_n |m‘n—2 .



As R goes from 1 to 0, the level of T" runs from —1/¢, to —oo, we seek a power
weight w (1) = ¢ (—1)” satisfying 1 = f:olo/cn w (1) dl, and then

—1/cn
u(O):/ w(l)/ u|DT| dAdl
—00 I'=l

:/ uw (1) |Dr|? de,
By

where we used change of variable or co-area formula: dx = dvol = dA %

figure gradient length=dl/ |DT|
Now we choose w so that the weight w (I) |DT|> = 1/ |By|, then

#0352

At R=1and ! = —1/¢,, we have

o=l

The integral for the weight implies

1 1 14+«
k(1)
14+a \¢,

Thus —(1+()Z) = m :n/(n—Z), then
n 2(n—1)
l) = A G )
w(l) = =" (e) 0D (1)
r=(—cpl) "1/ ("2 = /e _ 2(n—1)
RMK. Old weight way, 1 = fol R Lo’ f_olo/ " (1) =2

And pleasantly w (1) |DT']> = 1/ | By|!
Mean value equality for caloric functions (sphere version)

1 |:L‘|2CI>(0,0,x,t)

W / u ,t) ZdA
(r B2 Jomtamrn e i o o (2nt 4 12 P)

u(0,0) =

2
figure: heat sphere ® (0,0, z,t) = [47 (—t)] ™ * exp % = (47)™"?

One “solid” version
2
1 |z]

T t) —dA
(47TR2)n/2 /4>2(47rR2)—n/2u<x7 ) 442 )

9

u (0,0) =



where
& (o, to; =, 1) 1 -l
Zo,to; o, t) = e Aot
[47 (to — 1))/

figure: backward heat kernel graphs

Derivation of the hollow version.

Du-Dv+ulv= / div (uDv) / (div, Dy) (uDv,0) = / (uDv,0) - (Vz,7e) dA
UT 8UT

UT UT
—) Dv-Du+vAu= / div (vDu) / (div, Dy) (uvDu, 0) = / (vDu,0) - (vz,v) dA
UT UT UT 8UT
+) / uDyw +vDyu = Dt (uv) / (div, Dy) (0, uv) :/ (0, uv) « (Va, 1) dA
Ur Ur U
u Dv—l—Av)+v<Du—Au) / UV, — U Uy, +uvy, dA.
[]T (taf_/ i 8UT B 0 B '
«5(0,0)"
_ 1 2
Take v = TrE el 7l then

|| 1

1 |22 2
UT =FEnN {t S S}.

figure Uy
We have from the Green’s identity
0= / uv,, + / uvdA
OEN{t<s} I
——
— 1 (0,0)

as s — 07, say for u € C°

—D® — |D®|?
=D& -~, = D - —
! (DD, D,®) ~ |(D®, D,®)|
o 12
_ —2*|5 — % ||
\/q)% o2 (32 ) VA lal + (20t + o)



Therefore

1 > 9(0,0,x,t
u(0,0):—n/z/ u (o ) ——12L 20.0.7.0) A
(4m)"? Jomamyrs2 VAol + (2nt + o)
1 > $(0,0,x,t
w(0,0) = o 20,058 4

ol )
m/ B u(z,
(47 R?)""* Jo—(anr2)~/> \/4t2|x|2+(2nt+|95|2)2

/ (.9 |D®|
= U2, ) o
d=(4nR2)" /2= [(D®, D;®)|

Having this sphere version, let us get a “solid” mean value formula, by integrating
level by level of the heat kernel.
Set w(l) s.t. 1= f(oi)n/Q w (1) dl,

4m

_ [ D2’
u(O,O)/(l)n/Qw(l) /plumd/l dl

ar

dA

- / e (1) |D®|? dzdt  recall dA o dvol
o>(L)

> VO
/ u w (1) P
o> (L) ~—~—

constant

2
f‘ dadt
o

o /2w (I)dl = (ﬁ)n/2 ’Tl}zl)n/z = 1. Thus
4m

1 [
(0,0 :—/ u ——dxdt

1
4m

or

1 o]
u (o, to) = —/ u —=dxdt
(47TR2)n/2 @(Io,to,x,t)z( )77,/2 4t2

1
4n R2

figure heat ball

rescale the unit heat ball by R? in time and R in space

In particular, for u =1

1 2 o
l=——+ ——dxdt = —=dxdt.
(47 R2)"* /[zm(t)]—”/z’e%2> L 4™ /<I> > A !
——

- (47rR2)n/2

say 4rR2=1

RMK. Other choices of weights. For example w (1) = ¢/I>**, 0 < a <1

o

(0,0 :c/ u P*—dzdt,
(0,0) s e

11



the kernel is still singular, though the kernel /weight has integrable singularity of order
—na — 2 in space-time.

Applications of mean value formulas

Appl. Strong max principle:

Let w € C? solution to u; — Au = 0 in Ur. THEN

- max v only attains at the parabolic boundary of Ur;

- otherwise, if maxu = wu(zg,ty), where (z¢,%p) is an interior or non-parabolic
boundary of Uy, then we have u (x,t) = u(xg,to) for all (x,t) in the closure of the
connected set of Ur N {t < ty} by chain of downward heat balls.

Def: Parabolic boundary points cannot center any heat ball inside the domain Ur.

Examples of Ur

figure parabolic bdry

Proof of the strong max principle.
Suppose u (g, tg) = maxy, u and (g, ty) is not a parabolic boundary point, that
is, (xo,to) centers a heat ball in Ur. By the mean value formula in this ball

1 ?

|

“orto) = —/ u(x,t) —sdxdt
(47TR2)71/2 (I)(;co,to,w,t)z(47TR2)*n/2 442
kernel >0 1 / |$’2
(47 R2)"? u (wo, tg) ——5dwdt
(47TR2)7Z/2 @(xo,to,x,t)z(zlﬂ-RQ)fnm 4t2
fkegel:l

= U(ZEo,to) .

Thus u (x,t) = u (x9,tp) in

(2,1)] — e % > 1
T (to— )" SR )

RMEK. The closure includes the points at horizontal level {t = ¢}, this is because
such a point (y, o) is the limit of (y, s) as s | tg, and the segment (g, ty) -(y, s) can
be covered a chain of heat balls.

figure downward segment

Then u (y,t) = limu (y, s) = limu (xg, to) .
Uniqueness of caloric function on bounded domains

12



Let u, v be two C} (Ur) N CY (Ur) solutions to w; — Aw = 0 in Uy, and u = v on
the parabolic boundary of Ur. THEN u = v.
RMK. Uy including U,, domains like {¢ > convex (z)} , say

figure ¢ > |z|* .

Question. What happens to R" x [0,7] or R} x [0,T]?

App2. Regularity

Faking space dimension R" — R"™™ will lead us to a C? (even better ones for
larger m) kernel in the mean value formula:

w (z,t) — (Dp + Dy)u(z,t) =0

u(xo,to) _/ u(x,t) K(xo—x,to_t) drdt
®(z0,to,a,t)> (4w R2) /2
= / U (;L‘,t) K (ZL’O — Qj7t0 t) dl’dt
R?x R!

where K is the kernel of Kuptsov (c.f. Neil A. Waston 2002). Then starting from
L' function, satisfying the parabolic mean value formula, we immediately have C?
solution to the heat equation (no need existence). We can also get interior estimates.

RMEK. One way to verify those C? functions (out of L, enjoying solid, then hollow
mean value formulas) satisfy the heat equation, comes from the derivation of the heat
sphere mean value derivation

/ v (Dyu — Au) dxdt = / uv,, dA + u (xo,ty) = 0.
d>c d=c

Next, by using a different argument via Green’s identity over a cylinder Ur = Bpg X
[0, 7], we show the C? solutions are C* in x,¢ and C* in x. Recall the fundamental
solution is not C¥ in t.

Green’s identity

/ U <Dtv + Av) + v (Dtu — Au) = / UV, — Vs, + w0y dA.
Ur —_———— T Uy
“5(0,0)”

lz—yl|?

v=®(z,ty,s) = e [ [dm (¢~ 5)]"?

13



u(z,t) = —/ u(y,s) @, (z,t;y,5) dA
oU x[0,1] —_——

C% in x not in t, C>® in t

+/ Uy, (y,8)  P(z,t;y,s) dA
AU x[0,t] —

C% in x not in t, C in t

+/U(y,0) P (2,t;9,0) dy.
U %/_/

Cw in a,t for t>00
So we conclude u is C* () and C* (t) in U}, C Ur.
Interior estimates
max }D’;Diu‘ < C(k,l,K) max |D§u| + |Dyu| < C (k, 1, K) I%%X|U|

or
C (k,1, K)

il

via scaling v (z,t) = w(Rz, R?t), DEDjv (z,t) = R*™® DEDlu| (g, rery. Here Cp =
BR (l‘o) X (to — R2,t0) .

II(IJE}i;X |D§Diu} <

Liouville Theorem: Global (eternal) solution, say C? to u; — Au = 0 in R™ x
(—o0, +00) satisfying

u (z,1)] < A(!x\k+\tll> for large |2 + [¢]

must be a caloric polynomial of degree less than k + 21.

Proof.
C (Kl K)

|D’;D7ltu (0, 0)‘ < RK 201

A (R + RY) =0

for k' + 217 > k + 2. Note (0,0) could be anywhere, so u (z,t) is a caloric polynomial
of degree < k + 2I.

App3. Harnack inequality
u > 0 solution to u; — Au = 0, then

maxu < C'(n) min u.
Cr cr

figure Harnack.

14



One proof is via “fake” dimension mean value formula, it is little “involved” in cal-
culating the positive weight. However, everything is at calculus level.

Uniqueness revisited
e If a caloric function is analytic in terms of x and ¢, like

1 _le—y?
u(z,t) = W/"e i p(y)dy fort >0,

then u (x,0.9) determines all the temperature for ¢ > 0:¢ > 0.9 or 0 < t < 0.9, also
like
u(z,t) =" ore'sinz,
u (x,0) determines all temperature for —oo < ¢t < oo.
e In general, caloric functions are not analytic in ¢, like

S -
u(z,t) =14 Gn @Et ? forx #0 and t >0
0 forx #0 and t <0

then u (z,0) cannot determine u (x,t) for ¢ > 0.
Recall we have from the maximum principle, that two caloric functions agree on
the parabolic boundary of a bounded space-time domain, they agree everywhere.

figure cylinder domain and {t > |x]2} intersecting t < T

Energy proof of the uniqueness: w € C? ((_]T) solution to w; — Aw = 0, vanishing
on the parabolic boundary, then w = 0.
C! way. We calculate/estimate the energy

T T
0< // |Dw|” dxdt = / / div (wDw) — w A wdzdt = / ( ww.,dA — / w A wdw) dt
Ur 0 0 o0 Q
1
/ / wwdzdt = / / ), dtdx = —/ —w? (z,T)dr < 0.
Qt QT t Z‘ QT 2

So |Dw| = 0 and then w = 0.
To prepare for a proof of backward uniqueness, we present another
C? way. We calculate/estimate the L? norm of w. Set E (t) = [, w (z, t)? dx, say
Qt - Q
d

—FE(t) = E(t):/watdmz/QwAwdx
dt Q Q

= 2/ w.,dA — 2/ |Dw|* dz = —2/ |Dw|* dz < 0.
o0 Q Q

Then [, w?® (z,t)dx = E (t) < E(0) = 0. So w (z,t) = 0.
—Aw=0 inQx[0,T]
Backward uniqueness: Let v and v be two C? solutions to { u = v on 092 x [0,T] ,

u="v on QxT
then u = v on Q x [0,7].
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Proof. By linearity, we only need to show from w; — Aw =0 in Q x [0,7] and

w=0o0nxT and dN x [0,7], we have w = 0 or w (z,0) = 0.Set

E@:Lw@@wm

The proof is based on the observation that In £ () is convex in terms of ¢.
Stepl. As in the C° way in the above, we have

E(t) = —2/ |Dw|* dz < 0.
Q

We will also need [, | Dw|” dx w=0_on 00 Jo —whwdz < ([, wdz) 1/2 ([ (Aw)? dz)

Take one more derivative
E(t) = —4/Dw-Dwtd:L’: —4/ ww-@OdA—{—ll/Aw wedx
Q o0 Q
:4/XAwfdm
9]

Step2. Suppose E (t) >0 for 0 <t <T" < T and FE (T") = 0. Then

d FE
EIHE_ E
and , . ,
d FE - F
ﬁlnE— foE >0,

since £2 =4 ([, |Dw/|* dx)2 < 4 [yw?dz [, (Aw)*dv = EE.

1/2

Now the convex function In E (¢) cannot go to —oo as t goes to T’; for it should

stay above the tangent line at (0,In £ (0)). This contradiction shows E (¢) = 0.

Uniqueness for Cauchy problem with constraints in R" x R™.
Max Principle: Let u be CZ (R" x (0,7)) N C (R" x [0,T]) solution to

AT

Suppose |u (z, )] < Ae?l" in R" x [0,T]. Then

lu(z,t)] <supg(x) in R" x[0,T].
Rn

Proof. We only need to prove u (z,t) < supg. g (z) £ M for subcaloric solution

u — Au < 0 with sub quadratic-exponential growth u (z,t) < Aedlel’,
Stepl.
figure t-direction thin domain.
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For any p > 0, set

|2
1
v=M + uﬁe‘*(?}?_t)
(5 — 1)

v —Av=02>u — Au
1
v >wu on JBg, X [0,@] for R, large
v>wu on R" x{0}.

RMK. Invariance way to construct this barrier:

le2 /=1 |z|2
* Lo Y 5 1 oTH ot
i€ 7€ still sol.

* the time shift sol v is quadratic-exponential growth at ¢ = 0, it goes to oo as
t Bia for every x.
It follows from the maximum principle on the bounded domain,

2
||

1 e 1
u(z,t) < M—l—,uTt)n/Ze (s:) in Bpg, % {0’16_@] :
8a
So for any fixed (zq,tg) with ¢y < Flw we have
1 |9100|2 0
u (29, tp) < M+uﬁe4(ﬁ_t°> =M.
(sa —to)
Step2. The above argument works equally well on [16%, 16%} , [%a, %] , oo, still

[0,77.
Corollary. The Cauchy problem with growth constraint

{ oo oty = wx0D

with |u (z,t)| < Ae®" in R" x [0, 7], has at most one solution.
Proof. The difference of any two solutions satisfies the condition in the max
2
principle with ¢ = 0 and difference is less 24e®*!", so the difference is 0.

u — Au =20

eg. The caloric function, or a solution to
g ’ { ” (x,O) — €a|z‘2

Integral way to construct the barrier:
1 lz—y|? 2
u(x,t) = —/ e —1 W gy
(4mt)"* J

- 7Ti/z/ oIl ral2viy—2l g,

1 2
e —— ]

(1 — 4at)"?

17



is

* @ > 0 unique in R" x [0, ) with constraint |u (z,t)| < W@ﬁmrz and
grows faster than el for ¢ > 0;

* a < 0 uniqueness in R™ x [0,00) with constraint |u (z,t)| < e
faster than e®” for ¢ > 0.

The message: the growth/decay rate is not preserved precisely.

2
100121 and grows

Nonuniqueness of Cauchy problem { Zt(% OA)u: OO in B x [0, 00)

Tikhonov’s counterexample.

Idea of construction:

* along t = 0, position u (z,0) alone determines all the derivatives (if analytic).

* along o = 0, position u (0,¢) and velocity u, (0,?) determines all the derivatives
in z, (if analytic in x).

Now we solve a “real” Cauchy problem along the t-axis

{Z(O;t)=g(t)

+(0,t) =0
ug (0,1) =0, m( ) = ut( t) =0, -, D¥*¥ 1y (0, t) Dkuz( ):0
Diu(0,t) = ng()

Assuming v is C* in terms of x, then

= gk

u(z,t) =g(t) + Z (2]{(?:6

Technical realization:

—® >0
{et - need o > 1.

graph for g (t) 0 t<0

How to control the derivatives
1st Direct try.

g(t)y=e""
g/ — e—t’“at—a—l

g =t [(at_o‘_l)2 —a(a+1)to?

g"=et" [(at_a_l)B' +-tala+1)(a+2)t3

g(k) — e—tfa [(at—a—l)k + e :I: o (a _|_ 1) (Oé _|_ 2) e (Oé _|,_ k _ 1) t—Oé—k?j|
~e k! (atmo )"
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(k) e a1k !
g ~ o1 k! a—1 kKl 1 ~ 1
(I € k)] (at )", and @K — 2F 135 (2k—1) ~ 2% &I
-t —— k 4« atia*l 2 _ 1 azQ 1 t—0+
\“(%t)\ﬁg(t)JrZ;}'il Z! 52k (0475 ¢ 1) k=t et T T meT T TS

2nd complex try
Observe e~*" is analytic when t > 0

figure complex plan z =t 4 s

9(t) = 55 [, 25dz

2w Jy z—t

g () = £ [ 90

271 (Z_t)kJrl
Now by continuity of z~* at 1, Rez™* > 1 for |z — 1| < p, where pp = 1 (1/2) < 1,
then Re (tz)”* > 3t~ for |tz —¢| < pt
or Rez7% > %t_a for |z —t| < ut

and .
‘e‘ziu = Re—="" <72 for |z —t| < pt.
So ) )
k! g(2) Kl em2t™" Kl e 2t™"
L R
| e=ti=nt (2 = 1) ™ (ut) (uit)
and
X001 Klest?
u(e, ) <g(t)+ o
— (2k)! (ut)
o N
< ot -1t I
<o ety (m)

2
_ly—ay z®
<€ 2t +,ut

{ <oo forall (z,¢) witht>0, provided o > 1.

— 0 ast — 0+ for each fixed z,

Then the Tikhonov’s series converges, we’ve constructed a “super” quadratic-exponential
caloric function such that u; — u,, = 0 and w (x,0) = 0, u (z,t) is not identically 0
for t > 0.

RMK. Choosing

1 1
TETA-0T >0
=4 ¢’
9(t) {O t<Qort>1

figure complex plan z =t + is for this g
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we have another Tikhonov solution/caloric function vanishes before 0 or after 1.

figure Tikhonov double sided vanishing

RMK. Let v = u?, where u is the above Tikhonov caloric function, then v, — Av =
Quuy — 2u A u — 2| Dul> = —2|Dul* < 0. This v is non-negative sub-caloric function
vanishing at ¢ = 0 and ¢ = 1, yet doesn’t vanish identically between (0,1).

Nonanalytic, yet smooth solution in R" x [0, co)

eg.
U — Uy = 0
u(z,0) = e

has the bounded solution/quadratic-exponential growth solution

1 la—y|? 4
_ - - oyl
1 a2 _2\/{5 4
:—7T1/2/Rleye‘m y|dy

which is C*° (R! x [0,00)), but NOT C¥ at ¢t = 0.
In fact, if u (0,t) is analytic in terms of ¢ near ¢ = 0, then

u(0,t) = Zaktk,
k=0
where
1 1 1 N )
ay = ngu (0,0) HDiku (0,0) ED;i’“ T
= =0
2k=4m 1 (4m)‘ > |
(2m)! m!
So

‘agmt2m| > m!t?™ "5 0o for any fixed t > 0.
Then the series diverges, u (z,t) cannot be analytic in ¢ at (0,0).

Nonexistence of nonnegative solution to Cauchy problem
Ut — Ugy = 0
u(z,0) = e

20



First note the representation

1 a—yl?
™ R

Overheated, the nonnegative solution blows up once time starts.
Now the proof.

figure for e and Jk

gk (2) € C° (Biy) and gi () = € on By,. The bounded C? solution to
{ Ut — Uz = 0

1
PYEN

is
ug (x,t) = e_ngk (x — 2\/Ey> dy.

figure for e and Gk (R — 2\/1_5y>

For each fixed k and say, 0.9, there exists Ry = R (k,0.9) large so that
0 <wu(£R,t) <0.9 for0 <t <1.

This is because
1 _<M)2 o k+1
e

— wt ) et ———.

7172 Vi

Then as u is nonnegative, u; < 0.9 + u on the parabolic boundary of the cylinder
Bpg, x[0,1] . The maximum principle implies u; < 0.9+w in Bp, x [0, 1] . In particular

ug (£Rg, t) <

ur (0,1) <09+ w(0,1) for all k.

But uy (0,1) goes to +o0o, as k goes to +00. A contradiction!

In fact, u (0,1) is forced to be oo for all small I > 0.

Question: Existence of sign-changing solutions? Answer: YES, F. B. Jr. Jones
1977.
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