Lecture 4 Wave equations

o invariance, explicit solutions

o radial way, self-similar way, and Fourier way

o Cauchy problem in 1d, 3d, & 2d (spherical means)
o energy method, uniqueness, domain of dependence

Invariance of uy — Au = 0 in R*!
. U<I+$0,t+t0)
U (eAI, t) with A = —AT

- u ek (z,t)) WithL(I . ) +([ 4 )LT =0, e’ € O(n,1) and L €
o(n,1),eg. n=1

. [ coshe sinhe - 01
€ _(sinha coshe) andL—a(l O)

- u (p, pt)
- u+v,au

- D@ Dlu still wave
- Du-Ax = %u (ean,t) L:O with A = — AT
- (Du, Dyu) - L (z,t) = Lu (e (2, 1)) L:o with L €o(n,1),eg. n=1

L= ( (1) (1) ) and tu, + zu; 1is still wave

- Dyu(z,t) - x + Dyu(z,t) = %u (,ux,,ut)‘
Jule =yt —s) oy, s) dyds
- Kelvin like (|x|2 — t2)(1_n)/2 u ((xﬁt) ) by the twist harmonic generation

p=1

||* 2

Examples.

- Harmonic generation

* all harmonic functions in R" are stationary/time independent wave zqz523,
|$|2in, Re/Im e3r1+H4z2+ibas

* all harmonic functions h (x,t) in R™ x R with imaginary twist on last variable
h (:U, \/—_1t) are wave

nt®>+ |z, nt*+6t% |z[*+ 214 - -+22, ..., all those harmonic polynomials in R" x R}
should produce all those wave polynomials, as the “twist” operation is reversible.

(|m|2 — t2)(1_n)/2 forn > 2, In (|x|2 —t?) forn=1

YNovember 28, 2016



- eSrFElt Re /Im '€= FEN oy (€ - 2 + €] t) (already seeing no smoothness improve-
ment for, say u € C?)
RMK. e”1*! are both caloric and wave functions.
- Radial ones: u (z,t) = u(r,t)
Ut — Uppr — nT_luT =0 (a'nd Upgt = Uppp + nT_lurr - nr_zlur)
n=1: Uy = uy, u(x,t) = F(r+t)+G(x—1)
n=2: (ru), = (ru),, —u, ?
n =3 (ru), = r(u,+2u) = (ru),,, from 1-d, u(r,t) = r'F(r+t) +
r G (r —t)
n=4 (ru), = (ru),, +u,
(r? uT)tt (r? ur) + (n = 5) ruy, — (n+ 1) u, = (r?u,.),, + 1 — Su,
n=5: (ru), = (ru),, +2u,
<T2u7’)tt (Tzur) + (n=5)rup — (n+ 1) u, = (r’u,),, + ru, — 6u,
then (r*u, + 3ru),, = (7“ u, + 3ru),, , or

672, [%ar (?"3U):| nontrivial %ar |:7“3 (83 + %‘lar> u:| _ %ar [Tgattu] = Oy |:lar (7"3U):|

r

RMK. The nontrivial fact in general dimension is

(1@) 2(w1%0]—-<1a) 2 Pn2(af+7”_1@)14——(1a> C 0]
T T T r

n—3
1 2 "2
= Oy [(T&) (7" u)] .
Yes, ( %@) N is fractional derivative in even dimensions. Also radial solutions to other
evolution equations like heat equation Ah (r,t) = 9;h (r,t) satisfy a similar equation
with 0y replaced by 0;. For example, 0,, [rh] = 0 [rh] in 3-d and 8, [r*h, + 3rh] =
Oy [r®h, + 3rh] . See the method of spherical means in [Courant-Hilbert, vol 2| for a
complete account.
- Self-similar ones: u (x,t) = t*v (r/t)

Au—ﬁ{2"uﬁwu—itvwﬁﬂ—w2{(mw = (mﬂ

uy = (ot v — to"Qrv')t =a(a—1)t""20 —at®?rv — (o —2)t* Prv’ +t* %"
2
=22 [;—zv” (r/t) —2(a—1) gv’ (r/t) +a(a—1)v (r/t)]
Set p = r/t, we have equation for v (p)
(1= p) vpp + T+2(a—1)p v,—a(a—1)v=0.
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To eliminate v term, try aw =1 or 0.

a=1:
n—1

p(l—p?)

n—1 p
exp /—dp)v:corexp n—1)ln———|v,=c
( p(1—p?) ’ [< ) (1—,02)1/2 P

1— 2 n—1/2
{C/%dp—FC/ Wlthp:T’/t

n—1 2p
p(L—=p*) 1-=p?

Upp + v, =0

then

<
—
=
~+~
N~—
I
~+
<
—
S
SN—
I
~+

vpp+[ :|Up:0

1— o\n—1/2 1
u(x,t):v(p):c/( pi_)l +1_p2dp+c' with p = r/t.

Fourier transform for uy; — Au =0
In space and time

1

ﬁ(f,s):W

/ w(z,t) e Tt dadt.
Rn+1

Now transform both sides of wu; — Au = &y () dp (t) , we have

1 c
2~ 2~ ~ n
—S U+|£’ u_(27[—)(—”+1)/2’ then U—|£|2—_82
How to convert?

Space only
1

(g, t) = W /Rn+1 u(w,t) e %dx.

Space transform both sides of w;; — Au = &y () dg (t) , we have

L 5o().

a@wu+w%u&wzégggo

Let try to use variation of coefficient method to solve this equation. The general

solution to the homogeneous equation is e/t let us just go with e*¢l* in the variation
a (t) e€l*. We solve
, 9 .
[a (1) €], + 1617 a (¢) €€ = ¢80 (2)

then
lay + 2a41 |€]] elElt = ¢, 8, (t) or ay+ 2a,1|&| = cndo (1) et = ¢, 5, (1)

and , .
[€z2|5\tat}t _ Cn50 (t) el2|§‘t — Cn50 (t) .
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So
e, ) n fort >0 0.5¢, fort >0
e { 0 fort<0 %W —0.5¢,, fort <0
and
(t) cn% fort >0 05"%;‘\?{ fort >0
a - —3 .
c”#lil fort <0 —O.5cne_i;‘§|t +cp —iélf\ fort <0
Finally
—ilglt —ilels
. ; Cn gy fort >0 0.5¢,, 5 fort >0
G(&t) =a(t)ellt = { efs'ﬁ' for f = 0 r { iy f@m TR
Cn—izle] © OCn —gag] T Cnagpg 10

How to convert? ...
Let try to solve the Cauchy problem for wave equation in the whole space time,
by directly space Fourier transform the initial position and initial velocity in

uy — Au =0 in R" x R!

u(z,0)=g(x) in R"
u (x,0) = h(z) in R"

We have
(€ t)y, + e a(Et) =0

W (§,0)=g(¢)
i (2,0) = h (€)

and

w(&,t) =g (&) cos|ét+ N (€) Slfgﬂ t
Thus 1 | |
u(z,t) = )" / {?} (f)cos|§|t+ﬁ(§)smy% e Ede

Hard to convert.
RMK. If we repeat the same procedure to the Cauchy problem for heat equation

u—Au=0 in R" x [0,7)
u(z,0)=g(x) in R"

We quickly get an explicit representation the solution. From

W€ t), + 1 ag ) =0
@ (£,0) =g (&)

we have ,
i (6t)=g(&e kT
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U (33, t) = = /n g (é’) e*‘ﬂzteia:-{dg _ (271)” /n /n g (y) eiiéhydy eimzteixfdé’

() [ el e ay

Cauchy problem in 1d

Uy — Uge = 0 in R X (—00, 00)
u(z,0)=g(x) on R
w (x,0) =h(z) onR

First when g and h are analytic, we can get (an) analytic local solution in terms
of x and t, say near (0,0), by finding all space and time derivatives at (0,0), then
justifying the convergence (general version is Cauchy-Kowalevskaya). This works for
all dimensions R" x (—o00,00).

When g and h are smooth, in fact g € C? and h € C', we can directly solve the
1-d wave equation, by factoring the operator D? — D? = (D; + D,) (D; — D,) and
integrating along the characteristic lines. We reduce the order of the equations as
follows

U — Uz = (Dy + D) (Dy — D) u = 0.

Let v (x,t) = (Dy — Dy) u(x,t), we immediately solve (the transport equation) v, +
vy = (Dy+ Dy)v = Dagyv = 0. That is, along the characteristic curve 7 (s) =
(x (s),t(s)) with 75 = (1,1), v(y(s)) is constant. If we come back from (z,t) to

initial time 0, then (z,t) and (x — t,0) support the same value for v, namely v (z,t)

v(z—1t,0) deinea(x—t).

Next we solve for (D; — D,)u = a(x —t). This time the characteristic curve
is v(s) = (z(s),t(s)) with 75 = (—1,1). (Solutions to the homogenous equation
(Dy — D;)u =0 are b(x +t).) We need to integrate a along 7 (s) to get solutions to
the nonhomogeneous equation. We want to start from ¢ = 0, and go to (x,t). Then

v(s)=(x+1t,0)+s(-1,1) se(0,1).

u(x,t>=u<x+t,o>+/o d%u<v<s>>ds=g<x+t>+/o (D, — Da)u (7 (s)) ds
:g(x+t)+/ta(:c—|—t—s—s)d8

T+t—2s=1 1 vt
= g(x+t)—|—§ a(7)dr.
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Finally we go back to the initial velocity to figure out a. We have
h(z) =u (2,0) = g'(x +0) + a(z).
Then a (1) =h(r) — ¢ (7). In turn
T+t

u(:z:,t):g(x—i-t)—i-%/ h(r)—g¢ (7) dr

—t

[9(m+t)+g(x—t)]+%/w h(r) dr.

l\JI»—t

figure: the cone with vertex (z,t)

ly — x| < |7 -1

Certainly one verifies the above representation satisfies the Cauchy problem for C?
g and C' h. For nonhomogeneous equation uy — u,, = f (z,t), by Duhamel principle
(for derivation, see the end of 3d Cauchy problem), we only need to add

r+t—s
/ / s) dyds.
r—t+s

We will handle uniqueness (energy method, no maximal principle anymore) later on.
Cauchy problem in 3d
uy — Au= f(z,t) in R?®X (—o0,00)

u(z,0) =g (x) on R’
ut(x 0)—h(x) on R?

The solution is
1 t
u(x,t):—/ g(z+tw)+tw-Dg(x+tw)dw+ — [ h(z+tw)dw

47T 52 47T 52

1 Fyt—y—
+_/ fla+yt-ly xl)dy
47 [ B.(0) |y

We have seen the “fundamental” solutions for the wave equations:

(|x|2 - t2)(1_n)/2 for n > 2, In (|x|2 — t2) for n=1.

But as the singularity is along the whole cone |z| = [¢|, it is tough (still possible ) to
use the fundamental theorem of calculus—Green’s formula—to work out the represen-
tation formula, as for Laplace and heat equation. Instead we go with usual spherical
mean way.

We first work out case f = g = 0, then f = 0, finally general nonhomogeneous
case. We only deal with ¢ > 0 case. The negative t < 0 case can be done with change
of time 7 = —t and v (x,7) = u (z, —7) with v,, — Au= f(x,—7).
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Case f=¢g=0
Let p = |z — y|, recall from general 3-d radial solutions, p~'F (p — t) is a 3-d wave
function in terms ¢ and «x for all functions F. Adding those with weight h (y), we get

another wave function F( b
:L‘ J— J—
/ h(y) L=y,
R3 |z —y|
Now take F' as a bump function such that F'(s) € Cg°(R'") and [, F (s)ds = 1.

Then the family of wave functions (the integration is over an e-thin shell around
sphere 0B; (), use spherical coordinates around z)

1 (lz=yl=t
/Rsh(y) —F< - >dy = /|Iy|:th(y) %dA(y)

|z =y
y‘x:““’t/ h(z + tw) dw.
5'2

We quickly check

1

. h(z+y)dA(y
5t oo (v +y) dA(y)

7

t
u(m,t):4—/52h(a:+tw)dw

satisfies the above wave equation (for all t € R) with u (x,0) = 0 and u; (z,0) = h(x).
As for the equation, the above procedure shows the validation. Another direct way
is as follows. The trick is to use divergence theorem in rewriting wu; (z,t), and not to
create full Hessian terms (D?h (z + tw) w,w) and any higher order derivatives.

1 t
ut(x,t):E/SQh(x—i-tw)dw—i-Ll— w - Dh(z + tw) dw

™ Jg2
1
=— [ hz+tw)dw+ — Ah(z+y)dy
4 S2 47t B;(0)

1
g (z,t) = —/ w - Dh(z + tw) dw
S2

7

1 1
- — Ah (x4 y)dy + — Ah(z+y) dA(y)
A2 [, 0 Amt Jop.(0)

1 t
=1 Ah(m#—y)dA(y):AL—/ h(m+tw)dw}=&u(:v,t).
Tt 9By (0) T Jg2

Case f=h=0
Note that the t-derivative of the above solution u, (x,t) satisfies
Uit (.CU, t) — Aut (l‘,t) =0
ue (2,0) = h(z)

1
utt(a:,O)—lim—/aB(O)Ah(x—i—y)dA(y)—0 or Au(r,0)=0

t—0 47t



Replacing h by g, we see that

1

— | g(z+tw)+tw- Dg(z+ tw) dw
47 2

is a wave function with initial position g (z) and velocity 0. Thus the solution to

uy — Au=0 in R®x (—o0,00)
u(z,0) =g(x) on R?
uy (z,0) = h(z) on R?

is
1 t
u(z,t)=— [ gx+tw)+tw-Dg(zx+tw)dw+ — | h(x+tw)dw
AT Jg2 47

S2
1

——2/ gx+y)+y-Dg(x+y)+th(z+y) dA(y).
4t dB4(0)

RMK. If g and h have compact support, say in Bigy (0) C R3, then u (z,t) decays in
the order of % uniformly for large time ¢. This is because all the integrals happen in
finite region Bjgo (0) :

C (100)
— [191lc3 00 + 1Alox 00| -

Ju(a,8)] <

Case full nonhomogeneous.
By Duhamel’s principle, we just add/superpose

/t—s fx+(t—s)w,s)dwds

S2

Sw= 1 ’t_ _
:/ — | f(v+sw,t—s)dwds "= — fla+y ly a:\)dy
o AT 4 Jp,(0) vl

uy — Au = f(x, )
u(z,0) =wu (z,0) =

RMK. Duhamel principle: solution to { can be integrated

from the solution

t—s
ym Szf(x%—(t s)w, s) dw
to
v(z,t;s), — Av(z,t;s) =0 fort>s
v(x,88)=0 t=s
v (z,858) = f(x,s) t=s

Let us verify u (z,t) fo x,t; s) ds satisfies the above non-homogeneous equation.
The initial condltlons are obvious

u(xz,0)=0

t
ug (z,t) = v (2, t;t) —|—/ v (x,t; ) ds =0
0

0



As for the equation

uy (r,t) = v (2, t; vy (,t;8)ds = f (x, Av (x,t;s)ds
@) =u (e tit)+ [ oatinds = f@0+ [ Aot
[ d) + Dulat).

uy — Au = f(2,1)

w(,0) =0 can be inte-

Duhamel heat equation version: solution to{

grated from the solution to

v(z,t;s), — Av(x,t;s) =0 fort>s
v(x,s;8) = f(z,8) t=s '

Now u (z,t) :ft

o V(w,t;5)ds, then u (x,0) = 0 and

t t
w (z,t) = v (z,t;t) +/ vy (z,t;8)ds = f (z,t) —I—/ Av (z,t;8)ds
0 0
[ d) + Dulat).
Duhamel cubic version, ode version... similar. For example solution to

{ Uy — Au = f (z,1)
u(z,0) =u (2,0) = uy (£,0) =0

can be integrated from the solution to

v(z,t;8),,, —Av(x,t;s) =0 fort>s
v(z,s58) =0 (x,8;8) =0, vy(x,s;8)=f(x,5s) t=s '

That is u (2,t) = [, v (2,t; 5) ds.
Cauchy problem in 2d
uy — Au= f(z,t) in R? X (—00,00)
u(z,0) =g(x) on R
u; (z,0) = h(z) on R?
Again we only handle t > 0 case. The negative t case can be done by “symmetry”.
As the radial solution in R? x R! is hard to find, a direct way might (should) be hard.

But any solution to the 2-d wave equation is automatically a solution to 3-d (higher
dimensional) wave equation with the initial data independent of the “fake” variables.

Setting x = (2', 23) = (1,22, 23) and w = (ybyz, £V1—yf — y%) with

2

dw = \/1 + ‘D\/l — |y'f’| dyrdys
1
- dyldy27
1=y



the 2-d solution is

1 t
u(xl,xQ,t):—/ g(m+tw)+tw-Dg(x+tw)dw+E h(z+ tw) dw
52

47 S2
bs

—|—/— f(z+ sw,t — s)dwds.
0 47[_ S2

1
g(x' +ty) +ty- Dg(x' +ty) +t h(z' +ty)

1
- o ———dpdss
" IBi(0) VI1=lyf
1/t , |
— | s f 2"+ sy, t — s) ——=dy1dysds.
™ Jo B1(0) /1 — |y/|2

The reason 1/41 becomes 1/27 is because the sphere S? has upper and lower parts
seeing from the 2-d disk B; (0).

RMK. Descend further down to 1-d, or if we start with 1-d Cauchy problem of
the wave equation, integrate out

1
T " dy2dy1 - / ﬂdyl 3
%Lw/vlﬁvl—ﬁ—ﬂ% [~1,1]

then the solution is
1

u(x,t) =u(xy,t) = 5/[ , g(x1 +tyr) +tyr - Dig (1 +tyr) +t h(x1 + tyy) dys
1

1 t
+—/ s/ f(x1+ sy, t — s)dyrds
2o Ji-ig

=5l oE—nl+ [ hwa

/ / f(x+sy,t—s)dyds
-1,1]

1 T+ r+t—s
[g(x—kt)—l—g(x—t)]—l— / y)dy + = // s) dyds !
2 2 x—t r—t+s

RMK. Huygens’ principle. For the homogeneous f = 0 case, comparing the
“sphere” representaion of wave with the “ball” representations of wave in 1-d and
2-d, we see the 3d wave/sound (and all higher odd dimensions) effect at (z,t) only
depends on the disturbance on the sphere centered at x with radius ¢, while 1-d string
wave and 2-d surface wave (and all even dimensions) both depend on the whole ball
centered at x with radius t. For example, effect of the disturbance from a stone thrown
in a lake is forever on the water surface.

Apprarently Shakespeare first studied this “forever-to-nought” effect, as noted in
F. John’s PDE book:

Glory is like a circle in the water,
which never ceaseth to enlarge itself,

Till by broad spreading it diperse to nought.
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Cauchy problem in higher dimensional case can be handled by spherical means.
The spherical mean of the wave function (harmonic, caloric, ...) over spheres with
arbitrary radius p centered at = (|x| # p) satisfies the wave equation in terms p and t.
The odd radial wave equation can be reduced to 1-d wave equation, as we saw for 3d
case, then solvable. Note that the spherical mean takes exactly the (wave) function
value at (z,t), when the radius p = 0, an explicit representation of the solution is then
reached. Descending to the even dimensional from, say the nearest odd dimensional
space, one completes the general case.

For any function f (), set

1 1

M (z,p) = 9B, aBP(m)f(y) dA(y) = 5] a&(O)f(@”rpy) dA (y)
Claim:
AM = <a§ + 2= 1ap) M =AM,
In fact
J— y-Df v+ py) dA(y) = — div[Df (z + py)] dy
[0B1] o, ) |0B1| /0
= I(?;ll o A f (e +py)dy
= |1081—£_371L| ) Af(z+y)dy (to avoid further derivative of f in M,,)
and
Mpp:—M/ Af(x—iry)dy—l—plin Af(z+y)dA(y).
0B1] /g, 0 |0B1| Jo, o)
Thus

—1
<a§ + ”Tap) M (z,p) = DM (2, p).

Next, when f (z) also depends on time ¢, we average u (x,t) for each fixed ¢

1 1
M (xz,p,t) = —— u(y,t)dA (y) = —— u(x+ py,t)dA(y) .
( ) |0B,| JoB, () (9,£)dA () |0B1| Jop, (o) ( ) dA )
And
s n—1 1
9, + Op | M (x,p,t) = Dy M (z,p,t) = Agu(x + py,t) dA (y)
p 0B, | 9B (0)

= (9t2M (x,p, 1),

provided Au = uy.
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One nontrivial fact needed is, as we remarked in the beginning,

[ (079,)" " (0w ()] = (070,)" [P%_l (32 += p 13p) w (P)] :

when n =2k + 1

RPN I
p 0 p
(o722 [ 05,1 Sy

satisfies the 1-d wave equation in terms of p and ¢, wy — w,, = 0.
RMK. If u satisfies heat equation Au = w;, or harmonic equation Au = 0, etc,
one has A,M = 0,M, or certainly A,M = 0, etc

u(y,t)dA(y)

Energy method
Physically, the sum of potential and kinetic energy of the wave function

/ |Du|? + | Dyl dz
R’ﬂ

should be preserved, as suggested by one 1-d string oscillation such as sin (z +1).
Analytically, multiply the wave equation by u; (others u, u,?) and integrate by parts
(divergence theorem) in space (assuming compact support of the wave), we confirm

1
0= / g (uy — Au) dr = / §Dt [(ut)2 + ]Duﬂ — div (v Du) dx

= 5D [ [+ |Duf] da.

From the spherically mean representation of the solutions to the Cauchy problem,
we see u (zg, o) only depends on the wave in the backward cone

C={(z,t):0<t<ty, |v—xo| <tyg—1t}.

This suggests a cone dependence or uniqueness, quite different from caloric functions.
Uniqueness-Cone dependence-Finite time propagation: For wave function u, us; —
Au =0, if u = u; = 0 in the ball centered at zy and with radius tq initially By, (zo),
then v = 0 in the cone C.
Proof. For ¢t € (0,ty), we estimate the above energy changing rate inside the cone

d

— |Dul? + | Dyl dx
dt Big 1

z0)

= / 2div (ugDu) dox — / |Dul? + |Dyul* dA (boundary is changing)
Bty —t(zo0) OBt —t(z0)

:/ 2uge, — (|Dul® + |Duf?) dA

aBtO_t(.’Z‘Q)

< / (ue)® + (uy)? — (|Dul? + ]Dtu]2) dA <0.
9Bty —t(z0)

Thus the energy |, (z0) | Du|*+|Dyul’ dx = 0 for t € [0, ] . And consequently u = 0
to—t(T
in C.
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