
Lecture 4 Wave equations

◦ invariance, explicit solutions
◦ radial way, self-similar way, and Fourier way
◦ Cauchy problem in 1d, 3d, & 2d (spherical means)
◦ energy method, uniqueness, domain of dependence

Invariance of utt −4u = 0 in Rn+1

· u (x+ x0, t+ t0)
· u
(
eAx, t

)
with A = −AT

· u
(
eL (x, t)

)
with L

(
I
−1

)
+

(
I
−1

)
LT = 0, eL ∈ O (n, 1) and L ∈

o (n, 1) , eg. n = 1

eL =

(
cosh ε sinh ε
sinh ε cosh ε

)
and L = ε

(
0 1
1 0

)
· u (µx, µt)
· u+ v, au

· Dα
xD

l
tu still wave

· Du · Ax = d
dε
u
(
eεAx, t

)∣∣
ε=0

with A = −AT
· (Du,Dtu) · L (x, t) = d

dε
u
(
eεL (x, t)

)∣∣
ε=0

with L ∈ o (n, 1) , eg. n = 1

L =

(
0 1
1 0

)
and tux + xut is still wave

· Dxu (x, t) · x+Dtu (x, t) =
d
dµ
u (µx, µt)

∣∣∣
µ=1

·
∫
u (x− y, t− s)ϕ (y, s) dyds

· Kelvin like
(
|x|2 − t2

)(1−n)/2
u

(
(x,
√
−1t)

|x|2−t2

)
by the twist harmonic generation

Examples.
· Harmonic generation
* all harmonic functions in Rn are stationary/time independent wave x1x2x3,

|x|2−n , Re / Im e3x1+4x2+i5x3

* all harmonic functions h (x, t) in Rn × R with imaginary twist on last variable
h
(
x,
√
−1t

)
are wave

nt2+|x|2 , nt4+6t2 |x|2+x41+· · ·+x4n, ..., all those harmonic polynomials in Rn×R1
should produce all those wave polynomials, as the “twist”operation is reversible.(
|x|2 − t2

)(1−n)/2
for n ≥ 2, ln

(
|x|2 − t2

)
for n = 1
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· eξ·x+|ξ|t, Re / Im ei(ξ·x+|ξ|t), u (ξ · x+ |ξ| t) (already seeing no smoothness improve-
ment for, say u ∈ C2)
RMK. ex1+t are both caloric and wave functions.
· Radial ones: u (x, t) = u (r, t)
utt − urr − n−1

r
ur = 0 (and urtt = urrr +

n−1
r
urr − n−1

r2
ur)

n = 1: uxx = utt, u (x, t) = F (x+ t) +G (x− t)
n = 2: (ru)tt = (ru)rr − ur ?
n = 3: (ru)tt = r

(
urr +

2
r
ur
)
= (ru)rr , from 1-d, u (r, t) = r−1F (r + t) +

r−1G (r − t)
n = 4: (ru)tt = (ru)rr + ur

(r2ur)tt = (r
2ur)rr + (n− 5) rurr − (n+ 1)ur = (r2ur)rr + rurr − 5ur

n = 5: (ru)tt = (ru)rr + 2ur
(r2ur)tt = (r

2ur)rr + (n− 5) rurr − (n+ 1)ur = (r2ur)rr + rurr − 6ur
then (r2ur + 3ru)rr = (r

2ur + 3ru)tt , or

∂2r

[
1

r
∂r
(
r3u
)] nontrivial

=
1

r
∂r

[
r3
(
∂2r +

4

r
∂r

)
u

]
=
1

r
∂r
[
r3∂ttu

]
= ∂tt

[
1

r
∂r
(
r3u
)]

RMK. The nontrivial fact in general dimension is

∂2r

[(
1

r
∂r

)n−3
2 (

rn−2u
)]
=

(
1

r
∂r

)n−3
2
[
rn−2

(
∂2r +

n− 1
r

∂r

)
u

]
=

(
1

r
∂r

)n−3
2 [

rn−2∂ttu
]

= ∂tt

[(
1

r
∂r

)n−3
2 (

rn−2u
)]
.

Yes,
(
1
r
∂r
)n−3

2 is fractional derivative in even dimensions. Also radial solutions to other
evolution equations like heat equation 4h (r, t) = ∂th (r, t) satisfy a similar equation
with ∂tt replaced by ∂t. For example, ∂rr [rh] = ∂t [rh] in 3-d and ∂rr [r2hr + 3rh] =
∂t [r

2hr + 3rh] . See the method of spherical means in [Courant-Hilbert, vol 2] for a
complete account.
· Self-similar ones: u (x, t) = tαv (r/t)

4u = tα
[
t−2v′′ (r/t) +

n− 1
r

t−1v′ (r/t)

]
= tα−2

[
v′′ (r/t) +

n− 1
r/t

v′ (r/t)

]

utt =
(
αtα−1v − tα−2rv′

)
t
= α (α− 1) tα−2v − αtα−3rv′ − (α− 2) tα−3rv′ + tα−4r2v′′

= tα−2
[
r2

t2
v′′ (r/t)− 2 (α− 1) r

t
v′ (r/t) + α (α− 1) v (r/t)

]
Set ρ = r/t, we have equation for v (ρ)(

1− ρ2
)
vρρ +

[
n− 1
ρ

+ 2 (α− 1) ρ
]
vρ − α (α− 1) v = 0.
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To eliminate v term, try α = 1 or 0.
α = 1 :

vρρ +
n− 1

ρ (1− ρ2)vρ = 0

exp

(∫
n− 1

ρ (1− ρ2)dρ
)
vρ = c or exp

[
(n− 1) ln ρ

(1− ρ2)1/2

]
vρ = c

then

u (x, t) = tv (ρ) = t

{
c

∫
(1− ρ2)n−1/2

ρn−1
dρ+ c′

}
with ρ = r/t.

α = 0 :

vρρ +

[
n− 1

ρ (1− ρ2) −
2ρ

1− ρ2

]
vρ = 0

u (x, t) = v (ρ) = c

∫
(1− ρ2)n−1/2

ρn−1
+

1

1− ρ2dρ+ c′ with ρ = r/t.

Fourier transform for utt −4u = 0
In space and time

û (ξ, s) =
1

(2π)(n+1)/2

∫
Rn+1

u (x, t) e−i(ξ·x+st)dxdt.

Now transform both sides of utt −4u = δ0 (x) δ0 (t) , we have

−s2û+ |ξ|2 û = 1

(2π)(n+1)/2
, then û =

cn

|ξ|2 − s2
.

How to convert?
Space only

û (ξ, t) =
1

(2π)n/2

∫
Rn+1

u (x, t) e−iξ·xdx.

Space transform both sides of utt −4u = δ0 (x) δ0 (t) , we have

û (ξ, t)tt + |ξ|
2 û (ξ, t) =

1

(2π)n/2
δ0 (t) .

Let try to use variation of coeffi cient method to solve this equation. The general
solution to the homogeneous equation is e±i|ξ|t, let us just go with ei|ξ|t in the variation
a (t) ei|ξ|t. We solve [

a (t) ei|ξ|t
]
tt
+ |ξ|2 a (t) ei|ξ|t = cnδ0 (t)

then

[att + 2ati |ξ|] ei|ξ|t = cnδ0 (t) or att + 2ati |ξ| = cnδ0 (t) e
−i|ξ|t = cnδ0 (t)

and [
ei2|ξ|tat

]
t
= cnδ0 (t) e

i2|ξ|t = cnδ0 (t) .
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So

ei2|ξ|tat =

{
cn for t > 0
0 for t < 0

or say
{

0.5cn for t > 0
−0.5cn for t < 0

and

a (t) =

{
cn

e−i2|ξ|t

−i2|ξ| for t > 0
cn

1
−i2|ξ| for t < 0

or

{
0.5cn

e−i2|ξ|t

−i2|ξ| for t > 0

−0.5cn e
−i2|ξ|t

−i2|ξ| + cn
1

−i2|ξ| for t < 0
.

Finally

û (ξ, t) = a (t) ei|ξ|t =

{
cn

e−i|ξ|t

−i2|ξ| for t > 0

cn
ei|ξ|t

−i2|ξ| for t < 0
or

{
0.5cn

e−i|ξ|t

−i2|ξ| for t > 0

−0.5cn e
−i|ξ|t

−i2|ξ| + cn
ei|ξ|t

−i2|ξ| for t < 0
.

How to convert? ...
Let try to solve the Cauchy problem for wave equation in the whole space time,

by directly space Fourier transform the initial position and initial velocity in
utt −4u = 0 in Rn ×R1
u (x, 0) = g (x) in Rn

ut (x, 0) = h (x) in Rn

.

We have

û (ξ, t)tt + |ξ|
2 û (ξ, t) = 0

û (ξ, 0) = ĝ (ξ)

ût (x, 0) = ĥ (ξ)

and

û (ξ, t) = ĝ (ξ) cos |ξ| t+ ĥ (ξ)
sin |ξ| t
|ξ| .

Thus

u (x, t) =
1

(2π)n

∫
Rn

[
ĝ (ξ) cos |ξ| t+ ĥ (ξ)

sin |ξ| t
|ξ|

]
e−x·ξdξ.

Hard to convert.
RMK. If we repeat the same procedure to the Cauchy problem for heat equation{

ut −4u = 0 in Rn × [0, T )
u (x, 0) = g (x) in Rn .

We quickly get an explicit representation the solution. From

û (ξ, t)t + |ξ|
2 û (ξ, t) = 0

û (ξ, 0) = ĝ (ξ)

we have
û (ξ, t) = ĝ (ξ) e−|ξ|

2t
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and

u (x, t) =
1

(2π)n

∫
Rn
ĝ (ξ) e−|ξ|

2teix·ξdξ =
1

(2π)n

∫
Rn

∫
Rn
g (y) e−iξ·ydy e−|ξ|

2teix·ξdξ

=
1

(2π)n

∫
Rn
g (y)

∫
Rn
e−iξ·y+ix·ξ−|ξ|

2t dξ dy

=
1

(2π)n

∫
Rn
g (y)

πn/2

tn/2
e−
|x−y|2
4t dy =

1

(4πt)n/2

∫
Rn
g (y) e−

|x−y|2
4t dy!

Cauchy problem in 1d
utt − uxx = 0 in R× (−∞,∞)
u (x, 0) = g (x) on R
ut (x, 0) = h (x) on R

First when g and h are analytic, we can get (an) analytic local solution in terms
of x and t, say near (0, 0) , by finding all space and time derivatives at (0, 0) , then
justifying the convergence (general version is Cauchy-Kowalevskaya). This works for
all dimensions Rn × (−∞,∞) .
When g and h are smooth, in fact g ∈ C2 and h ∈ C1, we can directly solve the

1-d wave equation, by factoring the operator D2
t − D2

x = (Dt +Dx) (Dt −Dx) and
integrating along the characteristic lines. We reduce the order of the equations as
follows

utt − uxx = (Dt +Dx) (Dt −Dx)u = 0.

Let v (x, t) = (Dt −Dx)u (x, t) , we immediately solve (the transport equation) vt +
vx = (Dt +Dx) v = D(1,1)v = 0. That is, along the characteristic curve γ (s) =
(x (s) , t (s)) with γs = (1, 1) , v (γ (s)) is constant. If we come back from (x, t) to
initial time 0, then (x, t) and (x− t, 0) support the same value for v, namely v (x, t) =
v (x− t, 0) define= a (x− t) .
Next we solve for (Dt −Dx)u = a (x− t) . This time the characteristic curve

is γ (s) = (x (s) , t (s)) with γs = (−1, 1) . (Solutions to the homogenous equation
(Dt −Dx)u = 0 are b (x+ t) .) We need to integrate a along γ (s) to get solutions to
the nonhomogeneous equation. We want to start from t = 0, and go to (x, t) . Then

γ (s) = (x+ t, 0) + s (−1, 1) s ∈ (0, t) .

u (x, t) = u (x+ t, 0) +

∫ t

0

d

ds
u (γ (s)) ds = g (x+ t) +

∫ t

0

(Dt −Dx)u (γ (s)) ds

= g (x+ t) +

∫ t

0

a (x+ t− s− s) ds

x+t−2s=τ
= g (x+ t) +

1

2

∫ x+t

x−t
a (τ) dτ.
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Finally we go back to the initial velocity to figure out a. We have

h (x) = ut (x, 0) = g′ (x+ 0) + a (x) .

Then a (τ) = h (τ)− g′ (τ) . In turn

u (x, t) = g (x+ t) +
1

2

∫ x+t

x−t
h (τ)− g′ (τ) dτ

=
1

2
[g (x+ t) + g (x− t)] + 1

2

∫ x+t

x−t
h (τ) dτ.

figure: the cone with vertex (x, t)

|y − x| ≤ |τ − t|

Certainly one verifies the above representation satisfies the Cauchy problem for C2

g and C1 h. For nonhomogeneous equation utt−uxx = f (x, t) , by Duhamel principle
(for derivation, see the end of 3d Cauchy problem), we only need to add

1

2

∫ t

0

∫ x+t−s

x−t+s
f (y, s) dyds.

We will handle uniqueness (energy method, no maximal principle anymore) later on.

Cauchy problem in 3d
utt −4u = f (x, t) in R3 × (−∞,∞)
u (x, 0) = g (x) on R3

ut (x, 0) = h (x) on R3

The solution is

u (x, t) =
1

4π

∫
S2
g (x+ tω) + tω ·Dg (x+ tω) dω +

t

4π

∫
S2
h (x+ tω) dω

+
1

4π

∫
Bt(0)

f (x+ y, t− |y − x|)
|y| dy.

We have seen the“fundamental”solutions for the wave equations:(
|x|2 − t2

)(1−n)/2
for n ≥ 2, ln

(
|x|2 − t2

)
for n = 1.

But as the singularity is along the whole cone |x| = |t| , it is tough (still possible ) to
use the fundamental theorem of calculus—Green’s formula—to work out the represen-
tation formula, as for Laplace and heat equation. Instead we go with usual spherical
mean way.
We first work out case f = g = 0, then f = 0, finally general nonhomogeneous

case. We only deal with t > 0 case. The negative t < 0 case can be done with change
of time τ = −t and v (x, τ) = u (x,−τ) with vττ −4u = f (x,−τ) .
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Case f = g = 0
Let ρ = |x− y| , recall from general 3-d radial solutions, ρ−1F (ρ− t) is a 3-d wave

function in terms t and x for all functions F. Adding those with weight h (y) , we get
another wave function ∫

R3
h (y)

F (|x− y| − t)
|x− y| dy.

Now take F as a bump function such that F (s) ∈ C∞0 (R
1) and

∫
R1
F (s) ds = 1.

Then the family of wave functions (the integration is over an ε-thin shell around
sphere ∂Bt (x) , use spherical coordinates around x)

∫
R3
h (y)

1
ε
F
(
|x−y|−t

ε

)
|x− y| dy

ε→0+→
∫
|x−y|=t

h (y)
1

t
dA (y)

y=x+tω
= t

∫
S2
h (x+ tω) dω.

We quickly check

u (x, t) =
t

4π

∫
S2
h (x+ tω) dω =

1

4πt

∫
∂Bt(0)

h (x+ y) dA (y)

satisfies the above wave equation (for all t ∈ R) with u (x, 0) = 0 and ut (x, 0) = h (x) .
As for the equation, the above procedure shows the validation. Another direct way
is as follows. The trick is to use divergence theorem in rewriting ut (x, t) , and not to
create full Hessian terms 〈D2h (x+ tω)ω, ω〉 and any higher order derivatives.

ut (x, t) =
1

4π

∫
S2
h (x+ tω) dω +

t

4π

∫
S2
ω ·Dh (x+ tω) dω

=
1

4π

∫
S2
h (x+ tω) dω +

1

4πt

∫
Bt(0)

4h (x+ y) dy

utt (x, t) =
1

4π

∫
S2
ω ·Dh (x+ tω) dω

− 1

4πt2

∫
Bt(0)

4h (x+ y) dy +
1

4πt

∫
∂Bt(0)

4h (x+ y) dA (y)

=
1

4πt

∫
∂Bt(0)

4h (x+ y) dA (y) = 4
[
t

4π

∫
S2
h (x+ tω) dω

]
= 4u (x, t) .

Case f = h = 0
Note that the t-derivative of the above solution ut (x, t) satisfies

uttt (x, t)−4ut (x, t) = 0
ut (x, 0) = h (x)

utt (x, 0) = lim
t→0

1

4πt

∫
∂Bt(0)

4h (x+ y) dA (y) = 0 or 4 u (x, 0) = 0
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Replacing h by g, we see that

1

4π

∫
S2
g (x+ tω) + tω ·Dg (x+ tω) dω

is a wave function with initial position g (x) and velocity 0. Thus the solution to
utt −4u = 0 in R3 × (−∞,∞)
u (x, 0) = g (x) on R3

ut (x, 0) = h (x) on R3

is

u (x, t) =
1

4π

∫
S2
g (x+ tω) + tω ·Dg (x+ tω) dω +

t

4π

∫
S2
h (x+ tω) dω

=
1

4πt2

∫
∂Bt(0)

g (x+ y) + y ·Dg (x+ y) + th (x+ y) dA (y) .

RMK. If g and h have compact support, say in B100 (0) ⊂ R3, then u (x, t) decays in
the order of 1

t
uniformly for large time t. This is because all the integrals happen in

finite region B100 (0) :

|u (x, t)| ≤ C (100)

t

[
‖g‖C1(B100(0)) + ‖h‖L∞(B100(0))

]
.

Case full nonhomogeneous.
By Duhamel’s principle, we just add/superpose∫ t

0

t− s
4π

∫
S2
f (x+ (t− s)ω, s) dωds

=

∫ t

0

s

4π

∫
S2
f (x+ sω, t− s) dωds sω=y

=
1

4π

∫
Bt(0)

f (x+ y, t− |y − x|)
|y| dy

RMK. Duhamel principle: solution to
{

utt −4u = f (x, t)
u (x, 0) = ut (x, 0) = 0

can be integrated

from the solution
t− s
4π

∫
S2
f (x+ (t− s)ω, s) dω

to 
v (x, t; s)tt −4v (x, t; s) = 0 for t > s
v (x, s; s) = 0 t = s
vt (x, s; s) = f (x, s) t = s

.

Let us verify u (x, t) =
∫ t
0
v (x, t; s) ds satisfies the above non-homogeneous equation.

The initial conditions are obvious

u (x, 0) = 0

ut (x, t) = v (x, t; t)
0

+

∫ t

0

vt (x, t; s) ds
t=0
= 0
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As for the equation

utt (x, t) = vt (x, t; t) +

∫ t

0

vtt (x, t; s) ds = f (x, t) +

∫ t

0

4v (x, t; s) ds

= f (x, t) +4u (x, t) .

Duhamel heat equation version: solution to
{
utt −4u = f (x, t)

u (x, 0) = 0
can be inte-

grated from the solution to{
v (x, t; s)t −4v (x, t; s) = 0 for t > s
v (x, s; s) = f (x, s) t = s

.

Now u (x, t) =
∫ t
0
v (x, t; s) ds, then u (x, 0) = 0 and

ut (x, t) = v (x, t; t) +

∫ t

0

vt (x, t; s) ds = f (x, t) +

∫ t

0

4v (x, t; s) ds

= f (x, t) +4u (x, t) .

Duhamel cubic version, ode version... similar. For example solution to{
uttt −4u = f (x, t)

u (x, 0) = ut (x, 0) = utt (x, 0) = 0

can be integrated from the solution to{
v (x, t; s)ttt −4v (x, t; s) = 0 for t > s
v (x, s; s) = vt (x, s; s) = 0, vtt (x, s; s) = f (x, s) t = s

.

That is u (x, t) =
∫ t
0
v (x, t; s) ds.

Cauchy problem in 2d
utt −4u = f (x, t) in R2 × (−∞,∞)
u (x, 0) = g (x) on R2

ut (x, 0) = h (x) on R2

Again we only handle t > 0 case. The negative t case can be done by “symmetry”.
As the radial solution in R2×R1 is hard to find, a direct way might (should) be hard.
But any solution to the 2-d wave equation is automatically a solution to 3-d (higher
dimensional) wave equation with the initial data independent of the “fake”variables.

Setting x = (x′, x3) = (x1, x2, x3) and ω =
(
y1, y2,±

√
1− y21 − y22

)
with

dω =

√
1 +

∣∣∣∣D√1− |y′|2∣∣∣∣2dy1dy2
=

1√
1− |y′|2

dy1dy2,
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the 2-d solution is

u (x1, x2, t) =
1

4π

∫
S2
g (x+ tω) + tω ·Dg (x+ tω) dω +

t

4π

∫
S2
h (x+ tω) dω

+

∫ t

0

s

4π

∫
S2
f (x+ sω, t− s) dωds.

=
1

2π

∫
B1(0)

g (x′ + ty) + ty ·Dg (x′ + ty) + t h (x′ + ty)
1√

1− |y′|2
dy1dy2

+
1

2π

∫ t

0

s

∫
B1(0)

f (x′ + sy, t− s) 1√
1− |y′|2

dy1dy2ds.

The reason 1/4π becomes 1/2π is because the sphere S2 has upper and lower parts
seeing from the 2-d disk B1 (0) .
RMK. Descend further down to 1-d, or if we start with 1-d Cauchy problem of

the wave equation, integrate out∫
[−1,1]

∫ √1−y21
−
√
1−y21

1√
1− y21 − y22

dy2dy1 =

∫
[−1,1]

πdy1,

then the solution is

u (x, t) = u (x1, t) =
1

2

∫
[−1,1]

g (x1 + ty1) + ty1 ·D1g (x1 + ty1) + t h (x1 + ty1) dy1

+
1

2

∫ t

0

s

∫
[−1,1]

f (x1 + sy1, t− s) dy1ds

=
1

2
[g (x+ t) + g (x− t)] + 1

2

∫ x+t

x−t
h (y) dy

+
1

2

∫ t

0

s

∫
[−1,1]

f (x+ sy, t− s) dyds

=
1

2
[g (x+ t) + g (x− t)] + 1

2

∫ x+t

x−t
h (y) dy +

1

2

∫ t

0

∫ x+t−s

x−t+s
f (y, s) dyds !

RMK. Huygens’ principle. For the homogeneous f = 0 case, comparing the
“sphere” representaion of wave with the “ball” representations of wave in 1-d and
2-d, we see the 3d wave/sound (and all higher odd dimensions) effect at (x, t) only
depends on the disturbance on the sphere centered at x with radius t, while 1-d string
wave and 2-d surface wave (and all even dimensions) both depend on the whole ball
centered at x with radius t. For example, effect of the disturbance from a stone thrown
in a lake is forever on the water surface.
Apprarently Shakespeare first studied this “forever-to-nought”effect, as noted in

F. John’s PDE book:

Glory is like a circle in the water,

which never ceaseth to enlarge itself,

Till by broad spreading it diperse to nought.
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Cauchy problem in higher dimensional case can be handled by spherical means.
The spherical mean of the wave function (harmonic, caloric, ...) over spheres with
arbitrary radius ρ centered at x (|x| 6= ρ) satisfies the wave equation in terms ρ and t.
The odd radial wave equation can be reduced to 1-d wave equation, as we saw for 3d
case, then solvable. Note that the spherical mean takes exactly the (wave) function
value at (x, t) , when the radius ρ = 0, an explicit representation of the solution is then
reached. Descending to the even dimensional from, say the nearest odd dimensional
space, one completes the general case.
For any function f (x) , set

M (x, ρ) =
1

|∂Bρ|

∫
∂Bρ(x)

f (y) dA (y) =
1

|∂B1|

∫
∂B1(0)

f (x+ ρy) dA (y)

Claim:

4ρM =

(
∂2ρ +

n− 1
ρ

∂ρ

)
M = 4xM.

In fact

Mρ =
1

|∂B1|

∫
∂B1(0)

y ·Df (x+ ρy) dA (y) =
1

|∂B1|

∫
B1(0)

div [Df (x+ ρy)] dy

=
1

|∂B1|

∫
B1(0)

ρ4 f (x+ ρy) dy

=
ρ1−n

|∂B1|

∫
Bρ(0)

4f (x+ y) dy (to avoid further derivative of f in Mρρ)

and

Mρρ = −
(n− 1) ρ−n
|∂B1|

∫
Bρ(0)

4f (x+ y) dy +
ρ1−n

|∂B1|

∫
∂Bρ(0)

4f (x+ y) dA (y) .

Thus (
∂2ρ +

n− 1
ρ

∂ρ

)
M (x, ρ) = 4xM (x, ρ) .

Next, when f (x) also depends on time t, we average u (x, t) for each fixed t

M (x, ρ, t) =
1

|∂Bρ|

∫
∂Bρ(x)

u (y, t) dA (y) =
1

|∂B1|

∫
∂B1(0)

u (x+ ρy, t) dA (y) .

And(
∂2ρ +

n− 1
ρ

∂ρ

)
M (x, ρ, t) = 4xM (x, ρ, t) =

1

|∂B1|

∫
∂B1(0)

4xu (x+ ρy, t) dA (y)

= ∂2tM (x, ρ, t) ,

provided 4u = utt.
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One nontrivial fact needed is, as we remarked in the beginning,

∂2ρ

[(
ρ−1∂ρ

)k−1 (
ρ2k−1w (ρ)

)]
=
(
ρ−1∂ρ

)k−1 [
ρ2k−1

(
∂2ρ +

n− 1
ρ

∂ρ

)
w (ρ)

]
,

when n = 2k + 1 (
ρ−1∂ρ

)k−1 [
ρ2k−1

1

|∂Bρ|

∫
∂Bρ(x)

u (y, t) dA (y)

]
satisfies the 1-d wave equation in terms of ρ and t, wtt − wρρ = 0.
RMK. If u satisfies heat equation 4u = ut, or harmonic equation 4u = 0, etc,

one has 4ρM = ∂tM, or certainly 4ρM = 0, etc

Energy method
Physically, the sum of potential and kinetic energy of the wave function∫

Rn
|Du|2 + |Dtu|2 dx

should be preserved, as suggested by one 1-d string oscillation such as sin (x+ t) .
Analytically, multiply the wave equation by ut (others u, ux?) and integrate by parts
(divergence theorem) in space (assuming compact support of the wave), we confirm

0 =

∫
Rn
ut (utt −4u) dx =

∫
Rn

1

2
Dt

[
(ut)

2 + |Du|2
]
− div (utDu) dx

=
1

2
Dt

∫
Rn

[
(ut)

2 + |Du|2
]
dx.

From the spherically mean representation of the solutions to the Cauchy problem,
we see u (x0, t0) only depends on the wave in the backward cone

C = {(x, t) : 0 ≤ t ≤ t0, |x− x0| ≤ t0 − t} .
This suggests a cone dependence or uniqueness, quite different from caloric functions.
Uniqueness-Cone dependence-Finite time propagation: For wave function u, utt−

4u = 0, if u = ut = 0 in the ball centered at x0 and with radius t0 initially Bt0 (x0) ,
then u ≡ 0 in the cone C.
Proof. For t ∈ (0, t0) , we estimate the above energy changing rate inside the cone

d

dt

∫
Bt0−t(x0)

|Du|2 + |Dtu|2 dx

=

∫
Bt0−t(x0)

2 div (utDu) dx−
∫
∂Bt0−t(x0)

|Du|2 + |Dtu|2 dA (boundary is changing)

=

∫
∂Bt0−t(x0)

2utuγ −
(
|Du|2 + |Dtu|2

)
dA

≤
∫
∂Bt0−t(x0)

(ut)
2 + (uγ)

2 −
(
|Du|2 + |Dtu|2

)
dA ≤ 0.

Thus the energy
∫
Bt0−t(x0)

|Du|2+|Dtu|2 dx = 0 for t ∈ [0, t0] . And consequently u ≡ 0
in C.
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