Lecture 5 Minimal surface equation-Bernstein problem

- explicit examples
- Bernstein
- Jörgens
$\underline{\text { Minimal surface equation }}$
Consider the variational problem for area functional $A[f]=\int \sqrt{1+|D f|^{2}} d x$

$$
\inf _{f=\varphi \text { on } \partial U} A[f],
$$

any critical f satisfies for all $\eta \in C_{0}^{\infty}(U)$

$$
\begin{aligned}
0 & =\left.\frac{d}{d \varepsilon} A[f+\varepsilon \eta]\right|_{\varepsilon=0}=\int_{U} \frac{D f \cdot D \eta}{\sqrt{1+|D f|^{2}}} d x \\
& =\int_{U}-\operatorname{div}\left(\frac{D f}{\sqrt{1+|D f|^{2}}}\right) \eta d x .
\end{aligned}
$$

So

$$
\text { mean curvature } H \triangleq \operatorname{div}\left(\frac{D f}{\sqrt{1+|D f|^{2}}}\right)=0
$$

Note also

$$
\begin{gathered}
H=\frac{\Delta f}{\sqrt{1+|D f|^{2}}}-\frac{\left\langle D f, D^{2} f D f\right\rangle}{\left(\sqrt{1+|D f|^{2}}\right)^{3}} \\
=\frac{1}{\left(\sqrt{1+|D f|^{2}}\right)^{3}}\left[\left(1+|D f|^{2}\right) \Delta f-\left\langle D f, D^{2} f D f\right\rangle\right] \\
\stackrel{2 d}{=} \frac{1}{\left(\sqrt{1+|D f|^{2}}\right)^{3}}\left[\left(1+f_{2}^{2}\right) f_{11}-2 f_{1} f_{2} f_{12}+\left(1+f_{1}^{2}\right) f_{22}\right] \\
=\frac{1}{\left(\sqrt{1+|D f|^{2}}\right)^{3}} L f
\end{gathered}
$$

where $L=\left(1+f_{2}^{2}\right) \partial_{11}-2 f_{1} f_{2} \partial_{12}+\left(1+f_{1}^{2}\right) \partial_{22}$.
Explicit examples of minimal surfaces

[^0]RMK. Solutions, in particular explicit ones are hard to come by for nonlinear equations.)
catenoid: $|(x, y)|=\cosh z$
helicoid: $z=\arctan \frac{y}{x}$
Sherk's surface: $z=\frac{x}{\ln } \frac{\cos y}{\cos x}$
figure minimal surfaces
Exercise: invariance for minimal surface equation?
Bernstein. Let smooth f satisfies $\operatorname{div}\left(\frac{D f}{\sqrt{1+|D f|^{2}}}\right)=0$ in R^{2}. Then f is linear.
Bernstein's proof 1910s-40s
Strange obs. $L \arctan f_{1}=0$! Only in 2 d.
Stunning Theorem. Bounded global saddle surface is flat, really horizontal.
That is $\arctan f_{1}=$ const. Similarly arctan $f_{2}=$ const. Thus f is linear.
Lewy 1930s
In studying the Monge-Ampere equations $\operatorname{det} D^{2} u=1$, really Darboux equation

$$
\operatorname{det}_{g} \nabla^{2} u=K_{g}\left(1-\left|\nabla_{g} u\right|^{2}\right)
$$

for the isometric embedding problem, introduced the/his transformation $\eta(\xi)=\operatorname{Lewy}[u(x)]$ with

$$
\left\{\begin{array}{l}
\xi_{1}=1+u_{1} \\
\xi_{2}=1+u_{2}
\end{array}\right.
$$

and $u-\eta$ satisfying the contact transformation

$$
0=u+\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\eta-x_{1} \xi_{1}-x_{2} \xi_{2} .
$$

In fact, Lewy rotation is just the usual Legendre transformation of function $u+$ $\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$. Lewy was trying to get a priori estimates (in order to solve the equations).

Jörgens 1954

$$
\operatorname{det} D^{2} u=1 \quad \text { in } R^{2} \Rightarrow u \text { is quadratic. }
$$

Jörgens used Heinz's "hard" estimates on the 3rd order derivatives.
Exercise: Verify $v=x_{1}^{3}+\frac{x_{2}^{2}}{12 x_{1}}$ satisfies the 2 d M-A equation.
Contrasting example in hyperbolic case.

$$
\begin{aligned}
v & =x_{1} x_{2}+\arctan x_{1} \\
D^{2} v & =\left[\begin{array}{cc}
\frac{1}{1+x_{1}^{2}} & 1 \\
1 & 0
\end{array}\right] \\
\operatorname{det} D^{2} v & =-1
\end{aligned}
$$

Heinz 1952 observed, there exists a scalar function u such that

$$
\frac{1}{\sqrt{1+|D f|^{2}}}\left[I+(D f)(D f)^{T}\right]=\frac{1}{\sqrt{1+|D f|^{2}}}\left[\begin{array}{cc}
1+f_{1}^{2} & f_{1} f_{2} \\
f_{1} f_{2} & 1+f_{2}^{2}
\end{array}\right]=D^{2} u
$$

and

$$
\operatorname{det} D^{2} u=1
$$

The second equation is easy, just note

$$
\frac{1}{\sqrt{1+|D f|^{2}}} g \sim \frac{1}{\sqrt{1+|D f|^{2}}}\left[\begin{array}{ll}
1+|D f|^{2} & \\
& 1
\end{array}\right]
$$

The first super potential part is a little hard.
Geometrically, we know $\triangle_{g}\left(x_{1}, x_{2}, f\right)=\vec{H}=0$, in fact

$$
\triangle_{g} f=0 \Leftrightarrow \triangle_{g} x_{1}=0 \Leftrightarrow \triangle_{g} x_{2}=0
$$

where

$$
\triangle_{g}=\frac{1}{\sqrt{g}} \operatorname{div}\left(\sqrt{g} g^{-1} D\right)=\frac{1}{\sqrt{1+|D f|^{2}}} \operatorname{div}\left(\frac{1}{\sqrt{1+|D f|^{2}}}\left[\begin{array}{cc}
1+f_{2}^{2} & -f_{1} f_{2} \\
-f_{1} f_{2} & 1+f_{1}^{2}
\end{array}\right] D\right)
$$

figure mean curvature

Then $\triangle_{g} x_{1}=0$ implies

$$
\partial_{1}\left(\frac{1+f_{2}^{2}}{\sqrt{1+|D f|^{2}}}\right)-\partial_{2}\left(\frac{f_{1} f_{2}}{\sqrt{1+|D f|^{2}}}\right) \stackrel{*}{=} 0
$$

and $\triangle_{g} x_{2}=0$ implies

$$
-\partial_{1}\left(\frac{f_{1} f_{2}}{\sqrt{1+|D f|^{2}}}\right)+\partial_{2}\left(\frac{1+f_{1}^{2}}{\sqrt{1+|D f|^{2}}}\right) \stackrel{*}{=} 0
$$

We'll also verify these two identifies directly. It follows that

$$
\left[\begin{array}{cc}
\frac{1+f_{2}^{2}}{\sqrt{1+|D f|^{2}}} & \frac{-f_{1} f_{2}}{\sqrt{1+|D f|^{2}}} \\
\frac{-f_{1} f_{2}}{\sqrt{1+|D f|^{2}}} & \frac{1+f_{1}^{2}}{\sqrt{1+|D f|^{2}}}
\end{array}\right]=\left[\begin{array}{c}
D F \\
D G
\end{array}\right]
$$

As $F_{2}=G_{1}$, there exists u such that $(F, G)=D u$. Thus the existence of the double potential u.

Direct verification of $*$.

Let $V=\sqrt{1+|D f|^{2}}$,

$$
\begin{aligned}
\text { LHS } & =\partial_{1}\left(\frac{V^{2}-f_{1}^{2}}{V}\right)-\partial_{2}\left(f_{1} \frac{f_{2}}{V}\right) \\
& =\partial_{1}\left[V-f_{1}\left(\frac{f_{1}}{V}\right)\right]-\partial_{2}\left[f_{1}\left(\frac{f_{2}}{V}\right)\right] \\
& =\partial_{1} V-f_{11}\left(\frac{f_{1}}{V}\right)-\underbrace{f_{1} \partial_{1}\left(\frac{f_{1}}{V}\right)}_{1} \\
& -f_{12}\left(\frac{f_{2}}{V}\right)-f_{1} \underbrace{\partial_{2}\left(\frac{f_{2}}{V}\right)} \\
& =\frac{f_{1} f_{11}+f_{2} f_{21}}{V}-\frac{f_{1} f_{11}+f_{2} f_{21}}{V}-f_{1} d i v\left(\frac{D f}{\sqrt{1+|D f|^{2}}}\right) \\
& =0
\end{aligned}
$$

In summary:
Heinz

$$
\begin{aligned}
\operatorname{div}\left(\frac{D f}{\sqrt{1+|D f|^{2}}}\right) & =0 \text { in } R^{2} \Rightarrow \text { there exists } u \text { such that in } R^{2} \\
\operatorname{det} D^{2} u & =1 \text { and } \frac{1}{\sqrt{1+|D f|^{2}}}\left[\begin{array}{cc}
1+f_{1}^{2} & f_{1} f_{2} \\
f_{1} f_{2} & 1+f_{2}^{2}
\end{array}\right]=D^{2} u
\end{aligned}
$$

Jörgens result implies Bernstein theorem in 2d.
RMK. A by product divergence $\triangle_{g}=\frac{1}{\sqrt{g}} \operatorname{div}\left(\sqrt{g} g^{-1} D\right)=\sum g_{i j} \partial_{i j}$ nondivergence on minimal graphs.

Nitsche's proof of Jorgens' Theorem via Lewy rotation (1956).
Step1. Let $\tilde{u}(y)$ be the Legendre-Lewy rotation of u, namely Legendre transform of $v(x)=u(x)+\frac{1}{2}|x|^{2}$. The following distance increasing argument shows the map from x to $D u(x)+\frac{1}{2} x$ is 1-1 and onto.

Step2. By the property of Legendre transform

$$
D^{2} \tilde{v}(y)=\left[D^{2} u(x)+I\right]^{-1} \sim\left[\begin{array}{cc}
\frac{1}{1+\lambda_{1}} & \\
& \frac{1}{1+\lambda_{2}}
\end{array}\right] .
$$

Further we see

$$
0<D^{2} \tilde{v}(y)<I
$$

and

$$
\triangle \tilde{v}(y)=\tilde{\lambda}_{1}+\tilde{\lambda}_{2}=\frac{2+\lambda_{1}+\lambda_{2}}{1+\lambda_{1}+\lambda_{2}+\lambda_{1} \lambda_{2}}=\frac{2+\lambda_{1}+\lambda_{2}}{2+\lambda_{1}+\lambda_{2}}=1 .
$$

Step3. Liouville shows $D^{2} \tilde{v}$ is constant, in turn $D^{2} u$ is constant.
Now new interpretation of Nitsche's proof. (2001)
Geometric way.
Step 1. Set-up

$$
\begin{gathered}
\underset{\text { assume }}{\lambda_{1} \lambda_{2}>0}=1
\end{gathered} \Leftrightarrow \arctan \lambda_{1}+\arctan \lambda_{2}=\frac{\pi}{2} \text { or } \theta_{1}+\theta_{2}=\frac{\pi}{2} .
$$

Step 2. $0<\theta_{i}<\frac{\pi}{2}$ graph over x-R ${ }^{2}$ plane
Make a $U(2)$ rotation

$$
\left[\begin{array}{ll}
e^{-\sqrt{-2} \pi / 4} & \\
& e^{-\sqrt{-2} \pi / 4}
\end{array}\right]\binom{z_{1}}{z_{2}} \quad\left\{\begin{array}{l}
z_{1}=x_{1}+\sqrt{-1} y_{1} \\
z_{2}=x_{2}+\sqrt{-1} y_{2}
\end{array}\right.
$$

Obs. $U(2)$ rotation preserves the Lagrangian structure i.e. J Tangent space= Normal Space or $i T=N$. This is because $i U T=U i T=U N$. Locally Lagrangian means the graph has a "gradient" structure.

Obs. This $U(2)$ rotation decreases the angles

$$
-\frac{\pi}{4}<\bar{\theta}_{i}=\theta_{i}-\frac{\pi}{4}<\frac{\pi}{4} \leftrightarrow---\rightarrow-1<\tan \bar{\theta}_{i}=\bar{\lambda}_{i}<1
$$

Then $(x, D u(x))$ still a graph over $\bar{x}-\mathrm{R}^{2}$ plane. In fact a Lagrangian graph $(\bar{x}, D \bar{u}(\bar{x}))$ with bounded Hessian $D^{2} \bar{u}$.

Step 3. $\bar{\theta}_{1}+\bar{\theta}_{2}=0 \Leftrightarrow \triangle \bar{u}=0$. Also $-I<D^{2} \bar{u}<I$. By Liouville, \bar{u} is quadratic. Then $(\bar{x}, D \bar{u})$ is a plane, finally u is quadratic in terms of x.

RMK. In justifying the rotation $e^{-\sqrt{-1} \pi / 4}$, we assumed $D^{2} u$ is diagonal, this can be achieved by another $U(2)$ rotation induced from the $O(2)$ rotation on $x-\mathrm{R}^{2}$ plane

$$
R x+\sqrt{-1} R y \quad \text { or }[R]_{2 \times 2}\binom{z_{1}}{z_{2}}
$$

Analytic way.
Step 1. Set up $\lambda_{1} \lambda_{2}=1$, say $\lambda_{i}>0$.

$$
\text { figure } \pi / 4 \text { rotation }
$$

Step 2. Change of variables
Now $(x, D u(x))$ represented by $(\Phi(x), \Psi(x))$ in $\bar{x}-\bar{y}$ coordinate system

$$
\begin{aligned}
& \bar{x}=\Phi(x)=\frac{1}{\sqrt{2}}(x+D u(x)) \\
& \bar{y}=\Psi(x)=\frac{1}{\sqrt{2}}(-x+D u(x))
\end{aligned}
$$

Note $\frac{\partial \Phi}{\partial x}=\frac{1}{\sqrt{2}}\left(I+D^{2} u\right) \geq \frac{1}{\sqrt{2}} I$. Then Φ is $\frac{1}{\sqrt{2}}$ distance expanding and an open map. It follows that

* Φ is globally 1-1 and onto from $\mathrm{x}-R^{2}$ to $\bar{x}-R^{2}$
* $(x, D u(x))$ is still a graph over \bar{x}-plane.

Instead of this infinitesimal argument, we argue without derivative.

$$
\begin{aligned}
\left|\bar{x}^{P}-\bar{x}^{Q}\right|^{2} & =\frac{1}{2}\left|x^{P}-x^{Q}+D u\left(x^{P}\right)-D u\left(x^{Q}\right)\right|^{2} \\
& =\frac{1}{2}\left|x^{P}-x^{Q}\right|^{2}+\frac{1}{2}\left|D u\left(x^{P}\right)-D u\left(x^{Q}\right)\right|^{2}+\underbrace{\left\langle x^{P}-x^{Q}, D u\left(x^{P}\right)-D u\left(x^{Q}\right)\right\rangle}_{\geq 0, \text { since } u \text { is convex }} \\
& \geq \frac{1}{2}\left|x^{P}-x^{Q}\right|^{2}+\frac{1}{2}\left|D u\left(x^{P}\right)-D u\left(x^{Q}\right)\right|^{2}=\frac{1}{2}|P-Q|^{2} .
\end{aligned}
$$

So different points P and Q have different projections on \bar{x}-plane. So $(x, D u(x))$ is still a graph over \bar{x}-plane.

Checking the Lagrangian structure
$\operatorname{cur}_{\bar{x}} \Psi=\frac{\partial \Psi^{2}}{\partial \bar{x}_{1}}-\frac{\partial \Psi^{1}}{\partial \bar{x}_{2}}=0 \Leftrightarrow 0=\underbrace{d \bar{x}_{1} \wedge d \Psi^{1}+d \bar{x}_{2} \wedge d \Psi^{2}}_{\bar{x} \text { parametrization }}=\underbrace{d \Phi^{1} \wedge d \Psi^{1}+d \Phi^{2} \wedge d \Psi^{2}}_{x \text { parametrization }}$.
Now

$$
\begin{aligned}
& d\left(x_{1}+u_{1}\right) \wedge d\left(-x_{1}+u_{1}\right)+d\left(x_{2}+u_{2}\right) \wedge d\left(-x_{2}+u_{2}\right) \\
& =d x_{1} \wedge d u_{1}-d u_{1} \wedge d x_{1}+d x_{2} \wedge d u_{2}-d u_{2} \wedge d x_{2} \\
& =2\left(d x_{1} \wedge d u_{1}+d x_{2} \wedge d u_{2}\right) \\
& =2\left(u_{12} d x_{1} \wedge d x_{2}+u_{21} d x_{2} \wedge d x_{1}\right)=0
\end{aligned}
$$

Calculating the new Hessian $D^{2} \bar{u}$, and another way of checking "gradient" structure.

$$
\begin{gathered}
{\left[\begin{array}{ll}
\frac{\partial \Psi^{1}}{\partial \bar{x}_{1}} & \frac{\partial \Psi^{2}}{\partial \bar{x}_{1}} \\
\frac{\partial \Psi^{1}}{\partial \bar{x}_{2}} & \frac{\partial \Psi^{2}}{\partial \bar{x}_{2}}
\end{array}\right]=} \\
=\underbrace{\frac{\partial \bar{x}}{\partial \bar{x}}}_{\text {symmetric, thus } \frac{\partial \Psi}{\partial \bar{x}_{2}}=\frac{\partial \Psi^{2}}{\partial \bar{x}_{1}}}=\frac{\partial \Psi}{\partial x} \frac{\partial x}{\partial \bar{x}}=\frac{\partial \Psi}{\partial x}\left(\frac{\partial \bar{x}}{\partial x}\right)^{-1}=\frac{\partial \Psi}{\partial x}\left(\frac{\partial \Phi}{\partial x}\right)^{-1} \\
\\
\text { figure graph } \frac{-1+\lambda}{1+\lambda}
\end{gathered}
$$

So

$$
-I<\left(D^{2} \bar{u}\right)=\frac{\partial \Psi}{\partial \bar{x}}<I .
$$

Step 3. Equation

$$
\begin{aligned}
\triangle \bar{u} & =\bar{\lambda}_{1}+\bar{\lambda}_{2}=\frac{-1+\lambda_{1}}{1+\lambda_{1}}+\frac{-1+\lambda_{2}}{1+\lambda_{2}}= \\
& =\frac{2 \lambda_{1} \lambda_{2}-2}{\left(1+\lambda_{1}\right)\left(1+\lambda_{2}\right)}=0!
\end{aligned}
$$

We have a harmonic function with bounded Hessian on R^{2}. Liouville theorem implies that \bar{u} is quadratic, then so is u.

[^0]: ${ }^{0}$ December 1, 2016

