Lecture 5 Minimal surface equation—Bernstein problem

o explicit examples
o Bernstein
o Jorgens

Minimal surface equation

Consider the variational problem for area functional A [f] = [4/1+|Df|*dx
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Explicit examples of minimal surfaces
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RMK. Solutions, in particular explicit ones are hard to come by for nonlinear
equations.)
catenoid: |(z,y)| = cosh z

helicoid: z = arctan%

Sherk’s surface: z = In <3¢
cos T

figure minimal surfaces

Exercise: invariance for minimal surface equation?

Bernstein. Let smooth f satisfies div (L) =0 in R?%. Then f is linear.

V1+|Df?
Bernstein’s proof 1910s-40s
Strange obs. Larctan f; = 0! Only in 2d.
Stunning Theorem. Bounded global saddle surface is flat, really horizontal.
That is arctan f; = const. Similarly arctan fo = const. Thus f is linear.

Lewy 1930s
In studying the Monge-Ampere equations det D?u = 1, really Darboux equation

det, Viu = K, (1 — |V,ul?)

for the isometric embedding problem, introduced the/his transformation 7 (§) =Lewy[u ()]
with

G =1+u

S=1+uy ’
and u — n satisfying the contact transformation
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In fact, Lewy rotation is just the usual Legendre transformation of function u +

1 (1 4 23) . Lewy was trying to get a priori estimates (in order to solve the equations).

Jorgens 1954

det D>u=1 in R* = w is quadratic.

Jorgens used Heinz’s “hard” estimates on the 3rd order derivatives.

Exercise: Verify v = 23 + 1;%1 satisfies the 2d M-A equation.

Contrasting example in hyperbolic case.

V = X129 + arctan x;
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det D?v = —1.



Heinz 1952 observed, there exists a scalar function u such that
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det D?u = 1.

The second equation is easy, just note

1 1
27 2
V1+1D/f] V1+IDf

The first super potential part is a little hard.
Geometrically, we know A, (21,29, f) = H = 0, in fact
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Then Agyzy = 0 implies
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We’ll also verify these two identifies directly. It follows that
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As Fy = (i, there exists u such that (F,G) = Du. Thus the existence of the double
potential u.
Direct verification of .



Let V =1/1+ |Df[,
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In summary:
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Jorgens result implies Bernstein theorem in 2d.
RMK. A by product divergence A, = \/%dz'v (\/ﬁg’lD) =Y ¢;;0;; nondivergence
on minimal graphs.

Nitsche’s proof of Jorgens” Theorem via Lewy rotation (1956).

Stepl. Let @ (y) be the Legendre-Lewy rotation of u, namely Legendre transform
of v(z) =u(z)+ 3 |z . The following distance increasing argument shows the map
from z to Du (x) 4+ 3z is 1-1 and onto.

Step2. By the property of Legendre transform

D% (y) = [D2u(a) + 1] " ~ { Ry
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Further we see
0<D*(y) <I

and
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Step3. Liouville shows D2 is constant, in turn D?u is constant.

Now new interpretation of Nitsche’s proof. (2001)
Geometric way.
Step 1. Set-up

AMA2 =1 & arctan \; + arctan Ay = g or 61 + 0y = g

assume A; >0
figure 7 /4 rotation

Step 2. 0 < 6; < § graph over x-R? plane
Make a U (2) rotation

e~V 2/ 21 2 =r1+vV—1y
e~V 2m/4 22 Zg = T2+ V—1ya
Obs. U (2) rotation preserves the Lagrangian structure i.e. J Tangent space=
Normal Space or 17" = N. This is because :UT = UiT = UN. Locally Lagrangian
means the graph has a “gradient” structure.
Obs. This U (2) rotation decreases the angles
_%<§i:9i_£<%(’____') —1<tan§i=5\i<1
Then (z, Du (z)) still a graph over 7-R? plane. In fact a Lagrangian graph (7, D (7))
with bounded Hessian D*a.
Step 3. 0 + 0, =0 < At = 0. Also —I < D?*u < I. By Liouville, @ is quadratic.
Then (z, Du) is a plane, finally u is quadratic in terms of x.
RMK. In justifying the rotation e V=14 we assumed D?u is diagonal, this can
be achieved by another U (2) rotation induced from the O (2) rotation on 2-R? plane

Rz ++v/—1Ry or [R],,, ( 1 )

%)
Analytic way.
Step 1. Set up Ay =1, say \; > 0.
figure 7/4 rotation

Step 2. Change of variables
Now (z, Du (x)) represented by (® (x

~—

, ¥ (z)) in T — § coordinate system
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Note 22 = \% (I + D%*u) > \%I . Then ® is \/Li distance expanding and an open
map. It follows that

* @ is globally 1-1 and onto from x-R? to 7 — R?

* (x, Du (x)) is still a graph over Z-plane.

Instead of this infinitesimal argument, we argue without derivative.

}JYJP — _Q}Q = % ‘JIP — 29 + Du (JJP) — Du (mQ){Q

= % ‘xp — xQ‘Q + % ‘Du (:BP) — Du (mQ)}2 + <.CEP —z% Du (xp) — Du (xQ)>
>0, since:is convex

Z%!xp—xQ‘z%—%‘Du(xP)—Du(xQ)‘2:%|P—Q|2.

So different points P and () have different projections on Z-plane. So (z, Du (x)) is
still a graph over Z-plane.
Checking the Lagrangian structure
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Now
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Calculating the new Hessian D?@, and another way of checking “gradient” struc-

ture.
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Step 3. Equation
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We have a harmonic function with bounded Hessian on R2. Liouville theorem implies
that u is quadratic, then so is w.



