Lecture 10 De Giorgi—Nash

o Statement
o motivation
o Proof

o Liouville

Theorem 1 Let u be a weak solution to

ij=1
with
pl < (ay) <p ' when (a;;) Yy = AT,
pl < (ay) and |ag| <p™' when A # AT (*)

Namely for all v € Hj (By)

/aij (z) DivDju = 0.
Then u is Holder continuos in By, and
ol ) < C (1) [0l with @ = ) > 0.
RMK. The general equations
i D; (a;j () Dju) + b;Dju+ cu = 0
ij=1

with [b] < p~! and |¢| < p~! can be reduced to the above model case. To write the
equation in full divergence form, let ¢ = x1¢, then

Z Dz (aij (I) Dju) + Z szlu — EDlu + D1 (EU) =0.

Set

and
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By choosing agg large for, say 1 < 2% < 3, the nonsymmetric (a?j) satisfies the uniform
ellipticity condition (*).
Exercise: Verify u (z°, x) satisfies in both pointwise and integral senses the equa-

tion .
Z D; (a3; (z) Dju) = 0.

1,7=0

Exercise: Verify the unbounded function f (z) = |z| *and g (z) = > 0, 27" |z — Qx| “
with 0 < o < (n —2) /2 and @, rational points in a unit ball B; are in W2 (By).
What is an analogous example in dimension two?

Motivation/Application 1. Minimal surface

Euler-Lagrangian

ZD L (Du)) =0
or

E , plpj Djju = 0.

i,j=1

In order to apply Schauder, or Calderon-Zygmund, need F),, (Du) € C* or C°. Let
eeR”

D, i D; (E, (D Z D; (Fy.y, (Du) Dju.) = 0.

4,j=1 1,j=1
Let us first assume
pl < (Fpipj (Du)) <p '

De Giorgi—Nash then implies u, € C®. (A long blow-up argument came up later.)
M/A 2. Homogenization

1 .
Agu = ﬁDi (\/ﬁg”Dju) =0

with the Riemannian metric g periodic.
periodic figure salty water, potato soup

Look at u from far away, what happens? We have solution u to

> Di(ay; (x) Dju(x)) = 0.

ij=1



What happens to u. (z) as £ goes to 07

n

D; (aij (g) Dju, (m)) =0

h,j=

De Giorgi-Nash says u. (z) — u € C* in C*~% norm.

Eg. 1-d
D, (%Dm (20 + esin f)) —0
2+cost €

u. (r) =21 +esin 2 =" 922, which satisfies

D, (%DI (21;)) 0.

Equations for limit solutions are very interesting to know.

Proof.

Step 1. Cacioppoli, (|[Dull, < ||ul|,): As for any convex function, its gradient is
bounded by its oscillation, any subharmonic function’s Dirichlet energy is bounded
by its potential energy.

Step 2. L*° bound: Dyadically and simultaneously, going up to level 1 of the
subsol and going down to the half ball from the unit ball, by Holder, Sobolev, and
Caccioppoli, each L? integral (potential energy) in dyadic ball the above dyadic level
is bounded by the product of the reciprocals of the gaps of subsol levels and dyadic
balls, and multiplied by a super linear power of the previous L? integral. If the
initial above zero L? integral in the unit but is small enough, then the dyadic L2
integrals decays geometrically to zero. This means the subsol is less than 1 in the
half ball.

Step 3. Oscillation: The product of upper and lower function level set measures
is bounded above by the L! Dirichlet energy, then by the L? one multiplied by the in
between level set measure, and in turn, by Caccioppoli applied to the subsol function,
solely by the in between measure.

Dyadically going up to level 1, in finite steps, the upper level set measure would be
less than a fixed small amount. Otherwise, those dyadic in between level set measures
add up to impossible infinity in the unit ball. It follows that the integral of the subsol
above that finite dyadic level is less than a fixed small number as in Step 2. Repeating
the iteration in Step 2, the less than that finite dyadic level set has measure zero in
the half ball, or the oscillation in the half ball shrinks.

Step 1. Let v = nu, (technical, trial-error picking)

/ D (7)2u) ADu = 0.
——
nD(nu)+nuDn

Let us move one 7 to the other u, in this the non-commuative situation
0= / [D (nu) +uDn] A[D (nu) — uDn].
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Then

" / D (nu)? < / D (3ju) AD () £ / «2DnADy + uD (1ju) ADy — uDnAD (1)

- /u2D77AD77 +uD (nu) ( T) D —uDn <A - AT> D (1)

2 2
(p~' [4?|Dnl>  when A is symmetric

IN

€ (.10 |Daf* + € () [ | Dl D ()| otherwise

N

-~

= 2
C(n,
\ <[COm 2 Dy f1D ()2

Thus
/ D (u)[* < C (n, ) / a | Dnf?.

RMK 1. By design, the “intrinsic” case is “equally” symmetric as for flat Laplacian
0= /772u Agudvy, = — / Z D; (n*u) ¢” Djudv,
- / (Vg (n*u) >Vgu>g dvg = — / (Vg (nu) +uVgn, Vg (nu) — u¥Ven)  du,

== [ (Vo )2 = 2 Vi) o,
RMK 2.

1
D < Clnp) o [
/Bl/2 (1/2)2 Bi\By /2

1
[ scmnl [
Byo € JB;, \B;
3 b

figure

RMK 3. Let v = n? (u — a)* (be a nonnegative test function), we have for (sub)
solution u

02/D[772 (u—a)'] ADu:/D[n2 (u—a) ] AD (u—a)".

Hence by repeating the above argument, we get
2 2
[1p=a'1f <€ [ [w=a]* Dol
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Recall Sobolev

Umu ] < C(n) Uw(nu)ﬁr when n > 2

1 1
{/ |77u|p] < C (p, By) [ |D (77u)|2] for all p < oo when n = 2.
B1 B

scaling variant

Step 2. Claim: There exists €g (n, ) > 0 small such that (for sub solution u)

2
/ (u+) <eg = supu<l.
Bl B%

With the claim in hand, w = 53/ 2w/ ||ul| - still a solution satisfies

/ w? < g
By

supw <1 and sup—w < 1.

B, B
2 3

So
1

HUHLoo(Bl/Z) < ﬁ ”uHL?(Bl) = C(n,p) ||UHL2(Bl) :

Question: A mean value inequality approach as for subharmonic function Au > 0
on R" or Ayju > 0 on minimal surfaces

udv 7

1
u(0) <
B, Js,

Now to the claim.
Domain goes from 1 to %, range goes from % to 1.

domain range figure

Set

1 for |z] <1+ 5
N () = ¢ linear interpolation in between
0 for |z|> 3+ 5%

el (o)



Observe uy, < up_1, and ug_1 > 2% when u;, > 0. Set

A, /B1 (mug)? > /Bm [(u— 1)+}2.

We prove

via iteration
Ay, < [b(n, p)]°® Af(k) — 0 as k — oo.

Case n > 2.

n—2

2
A= {/ (Wkukf"ﬂ </ 1)
By Uk >0
2
Sobolev 9 n
e [ wmr ([ 1)
B 1 nkuk>0
Step 1 %
< C(n,u)/ | D (/ 1)
B 1 Nruk>0
2
<Cow@) [ et ([ 1
B, 771c71u1c71>2%C

conenr | ot (], ()
) .

AN

1+2

<C(n,p) 4 16" < 77k 1Uk 1

Case n = 2. Say p = 4 in the Sobolev, then

Cnp) - C(np7)
2 1
ﬁ -—> 5%

Any way both 1 + % >1and 1+ % > 1. At this point we have

A < bkAg , with
2 1
b=C(n,u) and 5=1+— or 1+ —.
n 2
To skip a direct but “tedious” iteration, let us go with a short cut. We need

d* A, < ("' Ay1)” and really

—1\A
b < (dkdkl) _ P15



or

This can be achieved for k > kg (n, 1) with Ind > 0, d > 1. Thus we have

ko

dkAk < (dn—lAk_l)B < (dn—ZAk_2)52 <... < (dkoAkO>5k7

It follows that

provided
/ (u+)2 <o (n,pn) small enough.
B
Therefore
/ [(w=1)"]" =0
By 2

and

supu’ < 1.

Byya

Step 3. Drop claim: Assume (sub) solution u in B, satisfying

w<1 inB,
{u <0} N By
| B

250>0

Then
u <1—¢€(dp,n,p1) in Bys.

Consequence: “Full” solution u

oscu <2 = oscu <20 (n,pu) < 2.
By B2
In fact, by linearity of the equation, suppose —1 < u < 1.
Case % >1/2 "R <1 ¢ (3,n,p) in By =

|

1 2 —¢(in,

oscu<2—¢e|=,n,u :2-M:29;
By 2 2

m?%ﬁ < 1/2, then sub sol —u satisfies 1="=8051 > 1 /2 From Case

Case
| | B1|

43 Z 1/277

20 > osc (—u) = oscu.
By /2 By /2



Therefore, for all zq € B2 (0)

osc u <02 osc u,
By (o) Bi/4(z0)

and continuously for 2771 < p < 27F

_ L i\loga 6071
osc u <O 073 osc u< (2 k 1) 82 073 osc wu
By (o) B /4(z0) By a(z0)

< p* C(n, 1) [[ull 125, (0
with « (n, 1) = logy 6~ > 0. Our theorem is proved up to the Drop claim.

Now we prove the drop claim. We proceed with the following preparation of the
“almost case”.
Case almost: % > 1— hg with small enough hy =

1
/ (u+)2 < 12h0 ’Bl‘ < —&0-
B 4

€0
1B We have

Apply Step 2 to 2u, we get 2u < 1 in By or u < 1/2 in Bys.

Drop claim-Case 9 : % > 09 >0 (0o <1—hg). The proof is through
next

Energy claim: v € H'(B;) 0<v <1, y={v=0} %, ={v=1}. Then

ol [Z1] <C () |1Dv] 25,y {0 <v <1},

Assuming Energy claim, let us proceed.

1
u from 1_F t01—2—k figure

Apply Step 1 Cacioppoli to test function n?u; with
1 -
uy, = min { 2 [u— (1 — 2k_1>} , 1pewt?

uZSC(n,M)/ 1.

By\B;

we get

Dupl? < C (n, ) /

B1 B2\B1

By Energy claim applying to v = uy,

1

~~
>00|B1|

1

1/2
< C(n) [ Dug|| 12

1 1



> ho|By| forall k=1,2,3---,

1

then
1 1 1/2
b0 |B1] ho|Bi| C (n,p) < ‘{1—F<U<1—ﬁ}ﬂ31
It implies
> 1 1 1/2
|{0<u§1}ﬂB1|>Z{1—2k1<u<1—§}ﬂ31 = 0.
k=1

This contradiction shows there exists (large) k; = ky (n, ) such that

{1>u>1- 4} N8B

2F1

| B

< hy.
Now (sub) solution w = [u— (1 — 57)] 2" satisfies

/(wfglwﬂmgﬁ
B1 4

Applying Step 2 to 2w we get

sup 2w <1
By 2
o 1 11
That is 11
u§1—§271 in Bipp=1—¢(n,p).

Finally we prove Energy claim.

“solid angle” from x to reach all ¥;

Sz (21) “solid” angle from z € ¥ to reach all y € 3. First

ly—z| ly—z|
1:v(y)—v(a:):/0 Dpv(:c—l—pw)dpg/o |Dv (z + pw)| dp.



Next fix z and integrate over |, $u () AW

o] Dv (m—i—pw)
Yy—x
S (21)|_/ 1dw</ / e dpe
Sz(21) (1)
D
< / ADv
B |Z—ZL’|
Then integrate over [, dx
D
I%o| min |S, ()] = |s |da:</ / Do ( dzda:
z€Xo By J B Z_x|

< C’(n) |Dv (2)| dz

By

1/2 1/2
< C(n) ( | Do (z)\2dz) (/ 1dz>
By | Dv(z)]|#0

= C (n) [ Doll 2,y {0 < 0 < 112

Lastly we solve the puzzle min,eyx, |5, (£1)| > ¢(n)|X|. This is because

p2(y)
D RN N
1 p1(y) =(31)
2 2n
g/ / " tdwdp = — |S, (X1)].
0 x(zl) n

Thus minges, |9 (X1)] > 37 [X1].

RMK. For u € C§° (2) we have

U(y)z—/OOODpU(y+pw)dp

then
” —y,D
ww) Bl =~ [ [T Duy s pdpto = [ £ un<z>>dz
051 J0 Q |Z—y!
Sy P ) = (2)d
= z,7 n=2 u\z — u ~ 2,
(n—2) Jq |z —y["? =2 gz — y| 2
that is

1
u(y) = /Q (n—2) 05| | — g Awu(z)dz.
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Also we have
z

u (y) OB u an
Z .
[ull 1r gy < H——12n | [ Dul| oy with say
1 1 1
r=p< n and ¢ =1 in the condition 1 4+ — = — + —.
n—1 rop o q

By the way last Young’s inequality is proved as follows: decompose
fog=rEgt G0 g1i=3) with 1 = 1 (1 _ 1) " (1 _ 1) ;
q T
apply Holder

JECENTIOUE [/fp(ac—wgwy)dyr W(w—y)dy}(’l’_” [/y(y)dy](

integrate

[ re=ma] ses [ [ re-wmoane [ L]
AR

1f* gl < Wl lgll o -

Immediate application: Assume

simplify

u € Wit (R")NWH* (R"), say |Du| < a google
ZDIz (Fpi (Du>> =0, say F (p) =V 1+ |p|2'

Then « is a linear function.
In fact

=3 D By (Dule +26)) = By, (Du @) = 0

>0 { . (5)Da, (Du(wai)—m(x))] .

Now De Giorgi-Nash implies

osc Du (z 4 ee) — Du (x) < 0 osc Du (x +ece) — Du (x)

By g B,k €

< 6F [ Dul| poony = 0 as k — oo,
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where positive § = ¢ (n, ||Du||Loo(Rn)> < 1. Thus

osc [Du (x +¢ee) — Du(x)] =0
for all ¢, e, By ().

Exercise: Relying on this zero oscillation, show that u is a linear function. (Try
not to use derivative.)

RMK. We use the Euclidean structure (only) in deriving the measure control of
Energy claim in Step 3. This part is messy on minimal surfaces. In fact it is not
true in general. Otherwise (since Step 1 and Step 2 (Sobolev) generalize to minimal
surfaces), one would have Holder estimate for harmonic functions. One consequence
is that Holder growth of non constant harmonic functions

1 - -1
osc h> —osc h= (2]‘7) log, ¢ osc h.
Byk+1 0k B, By

But the height of catenoid z = ch™! |z| satisfies

Ngz =0
zw In x| < p°.

This contradiction indicates that Energy claim is not true on Catenoid.
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