
Lecture 10 De Giorgi—Nash

◦ Statement
◦ motivation
◦ Proof
◦ Liouville

Theorem 1 Let u be a weak solution to
n∑

i,j=1

Di (aij (x)Dju) = 0 in B1 ⊂ Rn

with

µI ≤ (aij) ≤ µ−1I when (aij)
def
= A = AT ,

µI ≤ (aij) and |aij| < µ−1 when A 6= AT . (*)

Namely for all v ∈ H1
0 (B1) ∫

aij (x)DivDju = 0.

Then u is Hölder continuos in B1/2 and

‖u‖Cα(B1/2) ≤ C (µ, n) ‖u‖L2(B1) with α = α (µ, n) > 0.

RMK. The general equations

n∑
i,j=1

Di (aij (x)Dju) + biDiu+ cu = 0

with |b| ≤ µ−1 and |c| ≤ µ−1 can be reduced to the above model case. To write the
equation in full divergence form, let c̄ = x1c, then∑

Di (aij (x)Dju) +
∑

biDiu− c̄D1u+D1 (c̄u) = 0.

Set
u0
(
x0, x

)
= x0u (x)

and

(
a0
ij

)
=


a00

x0

2
(b1 − c̄) x0

2
b2 · · · x0

2
bn

x0c̄
0
· · ·
0

(aij)

 .
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By choosing a00 large for, say 1 ≤ x0 ≤ 3, the nonsymmetric
(
a0
ij

)
satisfies the uniform

ellipticity condition (*).
Exercise: Verify u0 (x0, x) satisfies in both pointwise and integral senses the equa-

tion
n∑

i,j=0

Di

(
a0
ij (x)Dju

)
= 0.

Exercise: Verify the unbounded function f (x) = |x|−α and g (x) =
∑∞

k=1 2−k |x−Qk|−α
with 0 < α < (n− 2) /2 and Qk rational points in a unit ball B1 are in W 1,2 (B1) .
What is an analogous example in dimension two?
Motivation/Application 1. Minimal surface

inf

∫
F (Du)

Euler-Lagrangian
n∑

i,j=1

Di (Fpi (Du)) = 0

or
n∑

i,j=1

Fpipj (Du)Diju = 0.

In order to apply Schauder, or Calderon-Zygmund, need Fpipj (Du) ∈ Cα or C0. Let
e ∈ Rn

De

n∑
i,j=1

Di (Fpi (Du)) =
n∑

i,j=1

Di

(
Fpipj (Du)Djue

)
= 0.

Let us first assume
µI ≤

(
Fpipj (Du)

)
≤ µ−1I.

De Giorgi—Nash then implies ue ∈ Cα. (A long blow-up argument came up later.)
M/A 2. Homogenization

4gu =
1
√
g
Di

(√
ggijDju

)
= 0

with the Riemannian metric g periodic.

periodic figure salty water, potato soup

Look at u from far away, what happens? We have solution u to

n∑
i,j=1

Di (aij (x)Dju (x)) = 0.
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What happens to uε (x) as ε goes to 0?

n∑
i,j=1

Di

(
aij

(x
ε

)
Djuε (x)

)
= 0

De Giorgi—Nash says uε (x)→ u ∈ Ca in Cα−δ norm.
Eg. 1-d

Dx

(
1

2 + cos x
ε

Dx

(
2x+ ε sin

x

ε

))
= 0

uε (x) = 2x+ ε sin x
ε

ε→0→ 2x, which satisfies

Dx

(
1

2
Dx (2x)

)
= 0.

Equations for limit solutions are very interesting to know.
Proof.
Step 1. Cacioppoli, (‖Du‖2 ≤ ‖u‖2): As for any convex function, its gradient is

bounded by its oscillation, any subharmonic function’s Dirichlet energy is bounded
by its potential energy.
Step 2. L∞ bound: Dyadically and simultaneously, going up to level 1 of the

subsol and going down to the half ball from the unit ball, by Holder, Sobolev, and
Caccioppoli, each L2 integral (potential energy) in dyadic ball the above dyadic level
is bounded by the product of the reciprocals of the gaps of subsol levels and dyadic
balls, and multiplied by a super linear power of the previous L2 integral. If the
initial above zero L2 integral in the unit but is small enough, then the dyadic L2

integrals decays geometrically to zero. This means the subsol is less than 1 in the
half ball.
Step 3. Oscillation: The product of upper and lower function level set measures

is bounded above by the L1 Dirichlet energy, then by the L2 one multiplied by the in
between level set measure, and in turn, by Caccioppoli applied to the subsol function,
solely by the in between measure.
Dyadically going up to level 1, in finite steps, the upper level set measure would be

less than a fixed small amount. Otherwise, those dyadic in between level set measures
add up to impossible infinity in the unit ball. It follows that the integral of the subsol
above that finite dyadic level is less than a fixed small number as in Step 2. Repeating
the iteration in Step 2, the less than that finite dyadic level set has measure zero in
the half ball, or the oscillation in the half ball shrinks.

Step 1. Let v = η2u, (technical, trial-error picking)∫
D
(
η2u
)︸ ︷︷ ︸

ηD(ηu)+ηuDη

ADu = 0.

Let us move one η to the other u, in this the non-commuative situation

0 =

∫
[D (ηu) + uDη]A [D (ηu)− uDη] .
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Then

µ

∫
|D (ηu)|2 ≤

∫
D (ηu)AD (ηu)

#
=

∫
u2DηADη + uD (ηu)ADη − uDηAD (ηu)

=

∫
u2DηADη + uD (ηu)

(
A− AT

2

)
Dη − uDη

(
A− AT

2

)
D (ηu)

≤



µ−1
∫
u2 |Dη|2 when A is symmetric

C (n, µ)
∫
u2 |Dη|2 + C̄ (n, µ)

∫
u |Dη| |D (ηu)|︸ ︷︷ ︸

≤ [C̄(n,µ)]2

2µ

∫
u2|Dη|2+µ

2

∫
|D(ηu)|2

otherwise .

Thus ∫
|D (ηu)|2 ≤ C (n, µ)

∫
u2 |Dη|2 .

RMK 1. By design, the “intrinsic”case is “equally”symmetric as for flat Laplacian

0 =

∫
η2u4g udvg = −

∫ ∑
Di

(
η2u
)
gijDjudvg

= −
∫ 〈
∇g

(
η2u
)
,∇gu

〉
g
dvg = −

∫
〈∇g (ηu) + u∇gη,∇g (ηu)− u∇gη〉g dvg

= −
∫ (
|∇g (ηu)|2g − u

2 |∇gη|2g
)
dvg.

RMK 2. ∫
B1/2

|Du|2 ≤ C (n, µ)
1

(1/2)2

∫
B1\B1/2

u2

∫
B1/2

|Du|2 ≤ C (n, µ)
1

ε2

∫
B 1

2 +ε
\B 1

2

u2

figure

RMK 3. Let v = η2 (u− a)+ (be a nonnegative test function), we have for (sub)
solution u

0≥
∫
D
[
η2 (u− a)+]ADu =

∫
D
[
η2 (u− a)+]AD (u− a)+ .

Hence by repeating the above argument, we get∫ ∣∣D [η (u− a)+]∣∣2 ≤ C (n, µ)

∫ [
(u− a)+]2 |Dη|2 .
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Recall Sobolev[∫
|ηu|

2n
n−2

]n−2
2n

≤ C (n)

[∫
|D (ηu)|2

] 1
2

when n > 2[∫
B1

|ηu|p
] 1
p

≤ C (p,B1)
scaling variant

[∫
B1

|D (ηu)|2
] 1

2

for all p <∞ when n = 2.

Step 2. Claim: There exists ε0 (n, µ) > 0 small such that (for sub solution u)∫
B1

(
u+
)2 ≤ ε0 ⇒ sup

B 1
2

u ≤ 1.

With the claim in hand, w = ε
1/2
0 u/ ‖u‖L2 still a solution satisfies∫

B1

w2 ≤ ε0

sup
B 1

2

w ≤ 1 and sup
B 1

2

−w ≤ 1.

So
‖u‖L∞(B1/2) ≤

1
√
ε0

‖u‖L2(B1) = C (n, µ) ‖u‖L2(B1) .

Question: A mean value inequality approach as for subharmonic function 4u ≥ 0
on Rn or 4gu ≥ 0 on minimal surfaces

u (0) ≤ 1

|Br|

∫
Br

udv ?

Now to the claim.
Domain goes from 1 to 1

2
, range goes from 1

2
to 1.

domain range figure

Set

ηk (x) =


1 for |x| < 1

2
+ 1

2k+1

linear interpolation in between
0 for |x| > 1

2
+ 1

2k

uk =

[
u−

(
1− 1

2k

)]+

.
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Observe uk ≤ uk−1, and uk−1 >
1
2k
when uk > 0. Set

Ak
def
=

∫
B1

(ηkuk)
2 ≥

∫
B1/2

[
(u− 1)+]2 .

We prove ∣∣{u > 1} ∩B1/2

∣∣ = 0

via iteration
Ak ≤ [b (n, µ)]S(k) A

S(k)
1 → 0 as k →∞.

Case n > 2.

Ak ≤
[∫

B1

(ηkuk)
2 n
n−2

]n−2
n
(∫

ηkuk>0

1

) 2
n

Sobolev
≤ C (n)

∫
B 1

|D (ηkuk)|2
(∫

ηkuk>0

1

) 2
n

Step 1
≤ C (n, µ)

∫
B 1

|Dηk|2 u2
k

(∫
ηkuk>0

1

) 2
n

≤ C (n, µ)
(
2k+1

)2
∫
B 1

η2
k−1u

2
k

(∫
ηk−1uk−1>

1

2k

1

) 2
n

≤ C (n, µ)
(
2k+1

)2
∫
B 1

η2
k−1u

2
k−1

(∫
B1

(
ηk−1uk−1

1
2k

)2
) 2

n

≤ C (n, µ) 4 16k
(∫

B 1

η2
k−1u

2
k−1

)1+ 2
n

.

Case n = 2. Say p = 4 in the Sobolev, then

C (n, µ) 99K C
(
n, µ,

=4
p
)

2

n
99K 1

2
.

Any way both 1 + 2
n
> 1 and 1 + 1

2
> 1. At this point we have

Ak ≤ bkAβk−1 with

b = C (n, µ) and β = 1 +
2

n
or 1 +

1

2
.

To skip a direct but “tedious”iteration, let us go with a short cut. We need

dkAk ≤
(
dk−1Ak−1

)β
and really

bk ≤
(
dk−1

)β
dk

= dβ(k−1)−β
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or
k ln b

(β − 1) k − β ≤ ln d.

This can be achieved for k ≥ k0 (n, µ) with ln d > 0, d > 1. Thus we have

dkAk ≤
(
dκ−1Ak−1

)β ≤ (dκ−2Ak−2

)β2

≤ · · · ≤
(
dk0Ak0

)βk−k0

.

It follows that

Ak ≤
1

dk
(
dk0Ak0

)βk−k0

≤ 1

dk

[
dk0

∫
B 1

(
u+
)2
]βk−k0

→ 0 as k →∞

provided ∫
B 1

(
u+
)2 ≤ ε0 (n, µ) small enough.

Therefore ∫
B1/2

[
(u− 1)+]2 = 0

and
sup
B1/2

u+ ≤ 1.

Step 3. Drop claim: Assume (sub) solution u in B2 satisfying

u ≤ 1 in B2

|{u ≤ 0} ∩B1|
|B1|

≥ δ0 > 0.

Then
u ≤ 1− ε (δ0, n, µ) in B1/2.

Consequence: “Full”solution u

osc
B1

u ≤ 2 ⇒ osc
B1/2

u ≤ 2θ (n, µ) < 2.

In fact, by linearity of the equation, suppose −1 ≤ u ≤ 1.

Case |{u≤0}∩B1|
|B1| ≥ 1/2

u sub sol⇒ u ≤ 1− ε
(

1
2
, n, µ

)
in B1/2 ⇒

osc
B1/2

u ≤ 2− ε
(

1

2
, n, µ

)
= 2 ·

2− ε
(

1
2
, n, µ

)
2

= 2θ;

Case |{u≤0}∩B1|
|B1| < 1/2, then sub sol −u satisfies |{−u≤0}∩B1|

|B1| ≥ 1/2. From Case
“ ≥ 1/2”

2θ ≥ osc
B1/2

(−u) = osc
B1/2

u.
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Therefore, for all x0 ∈ B1/2 (0)

osc
B

2−k (x0)
u ≤ θk−2 osc

B1/4(x0)
u,

and continuously for 2−k−1 < ρ ≤ 2−k

osc
Bρ(x0)

u ≤ θk+1 θ−3 osc
B1/4(x0)

u ≤
(
2−k−1

)log2 θ
−1

θ−3 osc
B1/4(x0)

u

≤ ρα C (n, µ) ‖u‖L2(B1(0))

with α (n, µ) = log2 θ
−1 > 0. Our theorem is proved up to the Drop claim.

Now we prove the drop claim. We proceed with the following preparation of the
“almost case”.
Case almost: |{u≤0}∩B1|

|B1| ≥ 1− h0 with small enough h0 = ε0
4|B1| . We have∫

B 1

(
u+
)2 ≤ 12h0 |B1| ≤

1

4
ε0.

Apply Step 2 to 2u, we get 2u ≤ 1 in B1/2 or u ≤ 1/2 in B1/2.

Drop claim-Case δ0 : |{u≤0}∩B1|
|B1| ≥ δ0 > 0 (δ0 < 1− h0) . The proof is through

next
Energy claim: v ∈ H1 (B1) 0 ≤ v ≤ 1, Σ0 = {v = 0} Σ1 = {v = 1} . Then

|Σ0| |Σ1| ≤ C (n) ‖Dv‖L2(B1) |{0 < v < 1}|
1
2 .

Assuming Energy claim, let us proceed.

u from 1− 1

2k−1
to 1− 1

2k
figure

Apply Step 1 Cacioppoli to test function η2uk with

uk = min

{
2k
[
u−

(
1− 1

2k−1

)]+

, 1

}
∈ W 1,2,

we get ∫
B1

|Duk|2 ≤ C (n, µ)

∫
B2\B1

u2
k ≤ C (n, µ)

∫
B2\B1

1.

By Energy claim applying to v = uk,∣∣∣∣{u ≤ 1− 1

2k−1

}
∩B1

∣∣∣∣︸ ︷︷ ︸
≥δ0|B1|

∣∣∣∣{1 ≥ u ≥ 1− 1

2k

}
∩B1

∣∣∣∣
≤ C (n) ‖Duk‖L2

∣∣∣∣{1− 1

2k−1
< u < 1− 1

2k

}∣∣∣∣1/2 .
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If ∣∣∣∣{1 ≥ u ≥ 1− 1

2k

}
∩B1

∣∣∣∣ ≥ h0 |B1| for all k = 1, 2, 3, · · · ,

then

δ0 |B1| h0 |B1| C (n, µ) ≤
∣∣∣∣{1− 1

2k−1
< u < 1− 1

2k

}
∩B1

∣∣∣∣1/2 .
It implies

|{0 < u ≤ 1} ∩B1| >
∞∑
k=1

∣∣∣∣{1− 1

2k−1
< u < 1− 1

2k

}
∩B1

∣∣∣∣1/2 =∞.

This contradiction shows there exists (large) k1 = k1 (n, µ) such that∣∣{1 ≥ u ≥ 1− 1
2k1

}
∩B1

∣∣
|B1|

< h0.

Now (sub) solution w =
[
u−

(
1− 1

2k1

)]
2k1 satisfies∫

B1

(
w+
)2 ≤ 1 |B1| h0 ≤

ε0

4
.

Applying Step 2 to 2w we get
sup
B1/2

2w ≤ 1

or [
u−

(
1− 1

2k1

)]
≤ 1

2

1

2k1
in B1/2.

That is
u ≤ 1− 1

2

1

2k1
in B1/2 = 1− ε (n, µ) .

Finally we prove Energy claim.

“solid angle”from x to reach all Σ1

Sx (Σ1) “solid”angle from x ∈ Σ0 to reach all y ∈ Σ1. First

1 = v (y)− v (x) =

∫ |y−x|
0

Dρv (x+ ρw) dρ ≤
∫ |y−x|

0

|Dv (x+ ρw)| dρ.
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Next fix x and integrate over
∫
Sx(Σ1)

dω

|Sx (Σ1)| =
∫
Sx(Σ1)

1 dω ≤
∫
Sx(Σ1)

∫ |y−x|
0

∣∣∣∣∣Dv
( z︷ ︸︸ ︷
x+ ρw

)∣∣∣∣∣
ρn−1

ρn−1 dρdω

≤
∫
B1

|Dv (z)|
|z − x|n−1dz.

Then integrate over
∫

Σ0
dx

|Σ0| min
x∈Σ0

|Sx (Σ1)| =
∫

Σ0

|Sx (Σ1)| dx ≤
∫
B1

∫
B1

|Dv (y)|
|z − x|n−1dzdx

≤ C (n)

∫
B1

|Dv (z)| dz

≤ C (n)

(∫
B1

|Dv (z)|2 dz
)1/2(∫

|Dv(z)|6=0

1dz

)1/2

= C (n) ‖Dv‖L2(B1) |{0 < v < 1}|1/2 .

Lastly we solve the puzzle minx∈Σ0 |Sx (Σ1)| ≥ c (n) |Σ1| . This is because

|Σ1| =
∫

Σ1

dy ≤
∫ ρ2(y)

ρ1(y)

∫
Sx(Σ1)

ρn−1dωdρ

≤
∫ 2

0

∫
Sx(Σ1)

ρn−1dωdρ =
2n

n
|Sx (Σ1)| .

Thus minx∈Σ0 |Sx (Σ1)| ≥ n
2n
|Σ1| .

RMK. For u ∈ C∞0 (Ω) we have

u (y) = −
∫ ∞

0

Dρu (y + ρω) dρ

then

u (y) |∂B1| = −
∫
∂B1

∫ ∞
0

Dρu (y + ρω) dρdω = −
∫

Ω

〈z − y,Du (z)〉
|z − y|n dz

=
1

(n− 2)

∫
Ω

〈
Dz

1

|z − y|n−2 , Du (z)

〉
dz =

−1

n− 2

∫
Ω

1

|z − y|n−2 4 u (z) dz,

that is

u (y) =

∫
Ω

−1

(n− 2) |∂B1| |z − y|n−2 4 u (z) dz.
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Also we have

u (y) =
z

− |∂B1| |z|n
∗Du and

‖u‖Lr(Ω) ≤
∥∥∥∥ z

− |∂B1| |z|n
∥∥∥∥
Lp(Ω)

‖Du‖Lq(Ω) with say

r = p <
n

n− 1
and q = 1 in the condition 1 +

1

r
=

1

p
+

1

q
.

By the way last Young’s inequality is proved as follows: decompose

fg = f
p
r g

q
r fp(

1
p
− 1
r )gq(

1
q
− 1
r ) with 1 =

1

r
+

(
1

p
− 1

r

)
+

(
1

q
− 1

r

)
;

apply Hölder∫
f (x− y) g (y) dy ≤

[∫
fp (x− y) gq (y) dy

] 1
r
[∫

fp (x− y) dy

]( 1
p
− 1
r ) [∫

g (y) dy

]( 1
q
− 1
r )

;

integrate∫ [∫
f (x− y) g (y) dy

]r
dx ≤

∫ ∫
fp (x− y) gq (y) dydx

[∫
fp
]r( 1

p
− 1
r ) [∫

g

]r( 1
q
− 1
r )

=

[∫
fp
]1+r( 1

p
− 1
r ) [∫

g

]1+r( 1
q
− 1
r )

;

simplify
‖f ∗ g‖Lr ≤ ‖f‖Lp ‖g‖Lq .

Immediate application: Assume

u ∈ W 1,2
loc (Rn) ∩W 1,∞ (Rn) , say |Du| ≤ a google∑

i

Dxi (Fpi (Du)) = 0, say F (p) =

√
1 + |p|2.

Then u is a linear function.
In fact

1

ε

∑
i

Dxi [Fpi (Du (x+ εe))− Fpi (Du (x))] = 0

∑
i

Dxi

[
Fpipj (∗)Dxj

(
Du (x+ εe)−Du (x)

ε

)]
= 0.

Now De Giorgi-Nash implies

osc
B1

Du (x+ εe)−Du (x)

ε
≤ θk osc

B
2k

Du (x+ εe)−Du (x)

ε

≤ θk ‖Du‖L∞(Rn) → 0 as k →∞,
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where positive θ = θ
(
n, ‖Du‖L∞(Rn)

)
< 1. Thus

osc
B1

[Du (x+ εe)−Du (x)] = 0

for all ε, e, B1 (x0) .
Exercise: Relying on this zero oscillation, show that u is a linear function. (Try

not to use derivative.)
RMK. We use the Euclidean structure (only) in deriving the measure control of

Energy claim in Step 3. This part is messy on minimal surfaces. In fact it is not
true in general. Otherwise (since Step 1 and Step 2 (Sobolev) generalize to minimal
surfaces), one would have Hölder estimate for harmonic functions. One consequence
is that Hölder growth of non constant harmonic functions

osc
B

2k+1

h ≥ 1

θk
osc
B1

h =
(
2k
) α︷ ︸︸ ︷

log2 θ
−1

osc
B1

h.

But the height of catenoid z = ch−1 |x| satisfies

4gz = 0

z v ln |x| � ρα.

This contradiction indicates that Energy claim is not true on Catenoid.
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