
Lecture 11 Moser

◦ Statement
◦ strong maximal principle

Theorem 1 (Moser) Let Cα u be a W 1,2 weak solution to

n∑
i,j=1

Di (aij (x)Dju) = 0 in B1 ⊂ Rn

with

µI ≤ (aij) ≤ µ−1I when (aij)
def
= A = AT ,

µI ≤ (aij) and |aij| < µ−1 when A 6= AT . (*)

Suppose u satisfies

u ≥ 0 in B1 (0) ,

u (0) ≤ 1.

Then
sup
B1/2

u ≤ C (n, µ) .

Recall the examples r2−n and x1r
1−n.

Proof.
Step 1. Distribution estimate of solution
Step 2. Divergent sequence

Step 1. Claim: Suppose (super) solution v ≥ 0 in Q2 cube and v (0) ≤ 1. Then

|{v > t} ∩Q1|
|Q1|

≤ 2

tγ
,

where γ = γ (n, µ) > 0, could be small.
RMK. Norm ‖v‖L2(Q1) is not available. One cannot normalize so that ‖v‖L2(Q1) = 1

and v (0) ≤ 1 simultaneously. Otherwise the claim the trivial with γ = 2.
RMK. The assumption v (0) ≤ 1 is a conflicting condition for positive solution v,

hence the reverse control of the large distribution of the positive solution v.
Let Σk =

{
v ≥ Nk

}
∩Q1 with N = N (n, µ) to be chosen in the inductive step.

Recall Step 3 in the proof of De Giorgi: Suppose

w sub solution in B2

w ≤ 1 in B2

|{w ≤ 0} ∩B1|
|B1|

≥ δ0
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Then w < 1− ε (δ0, n, µ) in B1/2.
Now a “variant”claim: Suppose

w sub solution in Q2

w ≤ 1 in Q2

|{w ≤ 0} ∩Q1|
|Q1|

≥ δ0 or
|{w ≤ 0} ∩Q2|

|Q2|
≥ δ0

2n
.

Then w < 1− ε (δ02−n, n, µ) in Q1, where δ0 is chosen in the inductive step as 2−1−n.
Initial Step. |Σ1| < 1

2
with N = 2

ε
.

Otherwise if |Σ1| ≥ 1
2
, we seek a contradiction. Now the (sub) solution

w = 1− v

N
= 1− ε

2
v

satisfies

w ≤ 1 in Q2

|{w ≤ 0} ∩Q1|
|Q1|

≥ 1

2
.

By the “variant”claim, w ≤ 1− ε in Q1 or v > 2 in Q1, which contradicts v (0) ≤ 1.
Second Step. |Σ2| ≤ 1

2
|Σ1| .

RMK. The strategy is to prove |Σ2| ≤ 1
2
|Σ1| at every small scale, namely |Σ2 ∩Q| ≤

1
2
|Σ1 ∩Q| for all Qs. Only density points of Σ2 make contributions toward its mea-
sure. We (Calderon-Zygmund) decompose Q1 forever.

cube Q1

Case splitting: |Σ2∩Q||Q| < 1
2
, continue splitting.

Case keeping: |Σ2∩Q|
|Q| ≥ 1

2
, keep Q. And in this case the predecessor Q∗ of Q

satisfies 2−1−n ≤ |Σ2∩Q∗|
|Q∗| < 1

2
and Q propels Q∗ inside Σ1, that is Q∗ ⊂ Σ1.

Indeed consider sub solution

w = 1− v/N1

N
< 1 in 2Q∗

|{w ≤ 0} ∩ 2Q∗|
|2Q∗| ≥

1
2
|Q|
|2Q∗| = 2−2n−1.

By the “variant”claim with ε chosen now, w ≤ 1− ε (2−2n−1, n, µ) = 1− 2
N
in Q∗ or

v > 2N1 in Q∗, which implies Q∗ ⊂ Σ1.
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Before we proceed, observe that any of those kept Qs cannot be any of the half
subdivision Q1/2 of Q1 =

(
Q1/2

)∗
. Otherwise, by what we have just proved, v > 2N >

1 = v (0) in Q1. Impossible.
Now let the (disjoint) collection of Q be {Qj} , we have

|Σ2|
Lebesgue
≤

∑
j

∣∣Qj ∩ Σ2

∣∣ ≤∑
l

∣∣∣(Ql
)∗ ∩ Σ2

∣∣∣
exclude repeated ones

case splitting
<

1

2

∑
l

∣∣∣(Ql
)∗∣∣∣ Q∗⊂Σ1

≤ 1

2
|Σ1| .

Inductive step. |Σk+1| ≤ 1
2
|Σk| .

Case splitting: |Σk+1∩Q||Q| < 1
2
, continue splitting.

Case keeping: |Σk+1∩Q||Q| ≥ 1
2
, keep Q. And in this case the predecessor Q∗ of Q

satisfies 2−1−n ≤ |Σk+1∩Q∗|
|Q∗| < 1

2
and Q propels Q∗ inside Σk, that is Q∗ ⊂ Σk.

Indeed consider sub solution

w = 1− v/Nk

N
< 1 in 2Q∗

|{w ≤ 0} ∩ 2Q∗|
|2Q∗| ≥

1
2
|Q|
|2Q∗| = 2−2n−1.

By the “variant”claim, w ≤ 1 − ε = 1 − 2
N
in Q∗ or v > 2Nk in Q∗, which implies

Q∗ ⊂ Σk.
Now let the (disjoint) collection of Q be {Qj} , we have

|Σk+1|
Lebesgue
≤

∑
j

∣∣Qj ∩ Σk+1

∣∣ ≤∑
l

∣∣∣(Ql
)∗ ∩ Σk+1

∣∣∣
not all predecessor

case splitting
<

1

2

∑
l

∣∣∣(Ql
)∗∣∣∣ Q∗⊂Σk

≤ 1

2
|Σk| .

So we have the claim

|{v ≥ t}| ≤
∣∣{v ≥ Nk

}∣∣ ≤ 1

2k
=

2

2k+1
=

2

(N logN 2)k+1
=

2

(Nk+1)logN 2
<

2

tlogN 2
=

2

tγ
,

where

Nk ≤ t < Nk+1

γ = logN(n,µ) 2 > 0.

Step 2. Claim: The positive solution u in the theorem satisfies

sup
Q1/2

u ≤M (n, µ) , large enough to be chosen in the end.
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Otherwise, there exist {xk} ⊂ Q1 such that

u (xk) ≥ lk−1M →∞ with 1 < l = l (n, µ) to be chosen shortly.

blow up sequence figure

This contradiction proves the claim. Now let us find a blow-up sequence.
Step x1. There exists x1 ∈ Q1/2 such that u (x1) ≥M.
Step x2. From Step 1.∣∣∣∣{u > M

2

}
∩Q1

∣∣∣∣ ≤ 2(
M
2

)γ =
1

2

(
h1

2

)n
with h1 = 2

[
4(
M
2

)γ
]1/n

.

Then ∣∣{u ≤ M
2

}
∩Qh1/2 (x1)

∣∣∣∣Qh1/2 (x1)
∣∣ >

1

2
. (*2)

From this we show that there exists x2 ∈ Qh1 (x1) such that u (x2) ≥ lM. Suppose
otherwise, then u (x) < lM in Qh1 (x1) .
(The heuristic idea of the following argument is, to look down u from lM with

l = 1 + 1
100000000

, then relatively u (x1) ≥ M is near lM, but M/2 is far away from
lM. By Step 1, the M/2 far away distribution of the “flipped”solution is small. The
competition of distributions from two ends then leads to a collision.)

flip figure

We have (sub) solution

w =
lM − u
lM −M ≥ 0 in Qh1 (x1)

w (x1) ≤ 1.

By “scaled”Step 1, ∣∣∣{w ≥ lM−M
2

lM−M

}
∩Qh1/2 (x1)

∣∣∣∣∣Qh1/2 (x1)
∣∣ ≤ 2(

l− 1
2

l−1

)γ < 1

2

if l = l (n, µ) > 1 and close to 1. In terms of u∣∣{u ≤ M
2

}
∩Qh1/2 (x1)

∣∣∣∣Qh1/2 (x1)
∣∣ <

1

2
.
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This contradicts (*2).
Step x3. Given u (x2) ≥ lM, repeat Step 2 with M replaced by lM : Again from

Step 1∣∣∣∣{u > lM

2

}
∩Q1

∣∣∣∣ ≤ 2(
lM
2

)γ =
1

2

(
h2

2

)n
with h2 = 2

[
4(
M
2

)γ
]1/n

1

(l1/n)
γ .

Then ∣∣{u ≤ lM
2

}
∩Qh2/2 (x2)

∣∣∣∣Qh2/2 (x2)
∣∣ >

1

2
. (*3)

From this we show that there exists x3 ∈ Qh2 (x2) such that u (x3) ≥ l2M. Suppose
otherwise, then u (x) < l2M in Qh2 (x2) . We have (sub) solution

w =
l2M − u
l2M − lM ≥ 0 in Qh2 (x2)

w (x2) ≤ 1.

By “scaled" Step 1, we have∣∣∣{w ≥ l2M− lM
2

l2M−lM

}
∩Qh2/2 (x2)

∣∣∣∣∣Qh2/2 (x2)
∣∣ ≤ 2(

l− 1
2

l−1

)γ < 1

2
.

In terms of u, it is ∣∣{u ≤ lM
2

}
∩Qh2/2 (x2)

∣∣∣∣Qh2/2 (x2)
∣∣ <

1

2
.

It contradicts (*3).
· · ·
In particular

h1 + h2 + h3 + · · ·

= h1

(
1 +

1(
l
γ
n

) +
1(
l
γ
n

)2 + · · ·
)

= 2

[
4(
M
2

)γ
]1/n

1

1− 1(
l
γ
n

) < 1

provided we choose M = M (γ, n, µ) large enough. The proof of Moser is complete.

Strong Maximum Principle. Suppose W 1,2

u is a weak solution to
∑

Di (aijDju) = 0

u ≥ 0 in B1

u (0) = 0.
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Then u ≡ 0.
Proof. For arbitrarily large K, Ku ≥ 0 in B1, Ku (0) = 0. By Moser

Ku ≤ C (n, µ) in B1/2 or

0 ≤ sup
B1/2

u ≤ C (n, µ)

K
→ 0 as K →∞.

Similarly u ≡ 0 in B 1
2

+ 1
4
, B 1

2
+ 1
4

+ 1
8
, · · · , B1.

RMK. Once u (0) > 0, we can scale and upgrade Th’m 1 to

sup
B1/2

u ≤ C (n, µ)u (0) .
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