Lecture 11 Moser

o Statement
o strong maximal principle

Theorem 1 (Moser) Let C* u be a W'? weak solution to

> Di(aj; (x) Dju) =0 in B, CR"

,j=1

with

pl < (ay) <p 'l when (a;;) YA = AT

pl < (ay) and lai;| < p™' when A # AT,
Suppose u satisfies

u>0 in By (0),
u(0) < 1.

Then
supu < C'(n, p).
By /2

Recall the examples 72~" and xr! ™.
Proof.

Step 1. Distribution estimate of solution
Step 2. Divergent sequence

Step 1. Claim: Suppose (super) solution v > 0 in () cube and v (0) < 1. Then

{v>10Q _ 2

Q1] Tt
where v = v (n, u) > 0, could be small.

RMK. Norm ||v||2(¢,) is not available. One cannot normalize so that [[v]|;2(q,) =
and v (0) < 1 simultaneously. Otherwise the claim the trivial with v = 2.

1

RMK. The assumption v (0) < 1 is a conflicting condition for positive solution v,

hence the reverse control of the large distribution of the positive solution v.

Let X, = {v > Nk} N @1 with N = N (n, ) to be chosen in the inductive step.

Recall Step 3 in the proof of De Giorgi: Suppose

w sub solution in B,

w<1 in By
|{w S 0}ﬂ31| 2 50
| B1|
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Then w < 1 — € (6, n, 1) in Byjs.
Now a “variant” claim: Suppose

w sub solution in ()
w < 1 in QQ
< <
w<0nQl, ,  He<0nQl &
Q1 Q| 2

Then w < 1—¢(6p27", n, 1) in Q1, where &y is chosen in the inductive step as 27177
Initial Step. || < £ with N = 2.
Otherwise if [Z;| > 3, we seek a contradiction. Now the (sub) solution

v €
-] —=1-=
w N 21}
satisfies
’LUSl in QQ
[{w <0} NG S 1
Q1] — 2

By the “variant” claim, w <1 —¢ in ¢y or v > 2 in @)1, which contradicts v (0) < 1.
Second Step. |Zo| < 1 [%4].
RMK. The strategy is to prove |E,| < 1 |£;] at every small scale, namely |2, N Q| <
% X1 N Q| for all @s. Only density points of ¥ make contributions toward its mea-
sure. We (Calderon-Zygmund) decompose @); forever.

cube ()1

Case splitting;: ‘Efngl < %, continue splitting.

Case keeping;: |E|2Q‘Q‘ > %, keep (). And in this case the predecessor Q* of @)
satisfies 27177 < |Efg*|*| < % and () propels Q* inside ¥, that is Q* C X;.
Indeed consider sub solution

v/N1 ,
— < 1in 2Q"
N in 2Q)
{w=<0}n2Q" _ 31Q _ ) out
2Q%| ~ 207
By the “variant” claim with e chosen now, w <1 —¢ (272" 1 n,u) =1— % in Q* or
v > 2N'in Q*, which implies Q* C X;.

w=1




Before we proceed, observe that any of those kept ()s cannot be any of the half
subdivision Q3 of Q1 = (Q1 /2)* . Otherwise, by what we have just proved, v > 2N >
1 =v(0) in Q;. Impossible.

Now let the (disjoint) collection of @ be {Q’}, we have

Lebesgue

D] < Z QNS <) (@) NE,
I exclude repeated ones
case bphttlng 1 Q¥CX1 1
Z [CORREREIA
Inductive step. [Spi1] < 5 [Zkl.
Case splitting: w < l, continue splitting.
Case keeping: |Ek|+é‘mQ| > ;, keep (). And in this case the predecessor Q* of @)
satisfies 27177 < w and Q) propels Q* inside X, that is Q* C Y.
Indeed consider sub solutlon
v/NFk
=1- < 1in 2Q"
w N in 2Q)
[{w <0} N2Q"| % Q| _ o9—2n—1
> =2 .
2Q%| 2Q%|

By the “variant” claim, w <1 —¢ =1 — % in Q* or v > 2N* in Q*, which implies
Q* C Xy.
Now let the (disjoint) collection of @ be {Q’} , we have

Lobc%guc

|Egt1] Z{Q]mzk—&-l} < Z‘ "N
not all predecessor
case sphttlng 1 Q* C k1
32 (@) 51l
So we have the claim
1 2 2 2 2 2

k o JR—
{v =1} < HU > N H < ok okl (Nlogy 2)FH1 - (Nk+1)losn 2 < tloen2 7’

where

Y =108N@u 2 > 0.

Step 2. Claim: The positive solution u in the theorem satisfies

supu < M (n,p), large enough to be chosen in the end.
Q12



Otherwise, there exist {x;} C @1 such that
u(xy) > 1""*M — oo with 1 <1 =1(n,u) to be chosen shortly.

blow up sequence figure

This contradiction proves the claim. Now let us find a blow-up sequence.
Step x;. There exists #1 € Q12 such that u (z1) > M.

Step x5. From Step 1.
M 2 1 (h\" g 1

{ 2 } (5)" 2\2 (%)
{u<5}N@up(w)| 1

*
Quato) % "
From this we show that there exists xo € Qp, (z1) such that u (x9) > [M. Suppose
otherwise, then u () < IM in Qp, (z1).

(The heuristic idea of the following argument is, to look down u from [M with
I =1+ T5sa00005+ then relatively w (z1) > M is near M, but M/2 is far away from
[M. By Step 1, the M /2 far away distribution of the “flipped” solution is small. The
competition of distributions from two ends then leads to a collision.)

Then

flip figure
We have (sub) solution
IM —u )
W=y 20 0 Qn (21)

By “scaled” Step 1,

Hw > %} N Qn, /2 (1)

< 2 < !
|Qna 2 (21)] B (lj)7 2
if { =1(n,un) > 1 and close to 1. In terms of u
{0 ¥} 0 Qu (o] _ 1
‘Qh1/2 (xl)‘ 2

4



This contradicts (*2).

Step x3. Given u (x2) > [M, repeat Step 2 with M replaced by IM: Again from
Step 1

1/n
ZM} 9 1(@)" _ [ 4 ] 1
us>-— Y00 < o =2 (22)  with hy =2
{ 2 (5)" 2\2 (%)’

Then

{u <5} N0 Qnp ()| 1 .
Qo) 2 (3)

From this we show that there exists x3 € Qp, (z2) such that u (z3) > [>M. Suppose
otherwise, then u (z) < [*M in Qy, (z2) . We have (sub) solution

M —u .
w:m20 in Qn, (2)
w(x9) < 1.

By “scaled" Step 1, we have

2y
Hw > m} N Qh2/2 (CUZ)

<2 1
|Qnay2 (22)] = (%)W 5
In terms of w, it is
[{u< 3} NQup )| 1
|Qnay2 (22)] 2

It contradicts (*3).

In particular

h1+h2+h3+"'

1 1
hi(l+ s+ s+
( (15) @y’ )

1/n
—9 %] 4
[(7) 1‘@

provided we choose M = M (v, n, u) large enough. The proof of Moser is complete.

Strong Maximum Principle. Suppose W12

u is a weak solution to Z D; (a;jDju) =0
u>0 in B;
u (0) = 0.



Then u = 0.
Proof. For arbitrarily large K, Ku > 0 in By, Ku (0) = 0. By Moser

Ku < C(n,p) in Byjp or
C (n, p)
K

— 0 as K — oo.

0 <supu <
By 2

Similarly u =0 in B%"‘i’B%‘*‘%*‘%’ ce ,Bl.
RMK. Once u (0) > 0, we can scale and upgrade Th’m 1 to

supu < C(n, p)u(0).
B2



