Lecture 12 Quick applications of Harnack

- minimal graph cone
codimension 1
3 -d and high codimension
- estimates for Green's function

Application 1. Minimal graph cones of codimension 1 must be planes.
cone figure

Analytically

Theorem 1 Any homogeneous order one solution $u(x)=|x| u(x /|x|)$ to

$$
\begin{aligned}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right) & =0 \text { or } \\
\sum D_{x_{i}}\left(F_{p_{i}}(D u)\right) & =0 \text { with } F=\sqrt{1+|p|^{2}}, \text { say, }
\end{aligned}
$$

must be linear.
Proof. First $D u$ is bounded, since $D u(x)=D u(x /|x|)$. Then

$$
\begin{gathered}
\mu I \leq\left(F_{p_{i} p_{j}}\right) \leq \mu^{-1} I . \\
F \text { figure }
\end{gathered}
$$

For any $e \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
\sum D_{x_{i}}\left(F_{p_{i} p_{j}}(D u) D_{x_{j}} u_{e}\right) & =0 \text { or } \\
\sum D_{x_{i}}\left(F_{p_{i} p_{j}}(D u) D_{x_{j}}\left(u_{e}-m\right)\right) & =0,
\end{aligned}
$$

with $m=\min u_{e}$.
min figure and homog figure

By Harnack, we have the strong maximum principle. Apply it to u_{e}, we get

$$
\sup \left(u_{e}-m\right) \leq C(n, \mu) \inf \left(u_{e}-m\right)=0
$$

[^0]Thus $u_{e} \equiv$ const. As e is arbitrary, we see $D u=$ const. and u is linear.
RMK. Direct strong maximum principle way. D_{e} the above equation,

$$
\sum F_{p_{i} p_{j}}(D u) D_{i j} u_{e}+\underbrace{F_{p_{i} p_{j} p_{k}}(D u) D_{k} u_{i}}_{b_{j}} D_{j} u_{e}=0
$$

The usual Hopf strong maximum principle applies to u_{e}, and one gets the same linearity conclusion.

Application 2. Three dimensional minimal graph cones of any codimension must be planes.
cone figure

Analytically, one is dealing with

$$
\sum_{i, j=1}^{\mathbf{3}} g^{i j}(D U) D_{i j} U=0 \text { with } U(x)=|x| U(x /|x|)
$$

The argument is via strong maximum principle for derivative of solution u_{e} if $\sum_{i, j=1}^{2} a_{i j} D_{i j} u=$ 0 . Usually we only have strong maximum principle for w with $\sum_{i, j=1}^{\mathbf{n}} a_{i j} D_{i j} w=0$ or $\sum_{i, j=1}^{\mathbf{n}} D_{i}\left(D_{j} a_{i j} u\right)=0$.

Proposition 2 Let u be a $W^{2,2}$ strong solution for

$$
\sum_{i, j=1}^{2} a_{i j} D_{i j} u=0 \text { with } \mu I \leq\left(a_{i j}\right) \leq \mu^{-1} I
$$

Then $u \in C^{1, \alpha}$ and $D u$ satisfies the strong maximum principle componentwise.
RMK. The condition $|x| U(x /|x|)=U(x) \in W^{1,2}$ makes

$$
\int \sqrt{\operatorname{det} g}=\int \sqrt{\operatorname{det}\left(I+(D U)^{T} D U\right)}
$$

integrable.
RMK. In $R^{2}=C^{1}, \triangle u=0$, then $H=u_{x}-i u_{y}$ is holomorphic. Then $\ln |H|=$ Re $\ln H$ satisfies the strong maximum principle, or $|H|=|D u|$ satisfies the strong maximum principle.
Proof. The equation is

$$
\begin{aligned}
a_{11} u_{x x}+2 a_{12} u_{x y}+a_{22} u_{y y} & =0 \quad \text { or } \\
u_{x x}+\frac{2 a_{12}}{a_{11}} u_{x y}+\frac{a_{22}}{a_{11}} u_{y y} & =0 .
\end{aligned}
$$

D_{y} the last equation

$$
D_{x}\left(1 D_{x} u_{y}\right)+D_{y}\left(\frac{2 a_{12}}{a_{11}} D_{x} u_{y}\right)+D_{y}\left(\frac{a_{22}}{a_{11}} D_{y} u_{y}\right)=0 .
$$

The nonsymmetric coefficients satisfy

$$
\mu^{2} I \leq\left(\begin{array}{cc}
1 & 0 \\
\frac{2 a_{12}}{a_{11}} & \frac{a_{22}}{a_{11}}
\end{array}\right) \quad \text { and }\left|\frac{2 a_{12}}{a_{11}}\right| \leq 2 \mu^{-2}-2, \quad\left|\frac{a_{22}}{a_{11}}\right| \leq \mu^{-2}
$$

Apply De Giorgi-Nash to $W^{1,2}$ weak solution u_{y}, we obtain $u_{y} \in C^{\alpha}$. Apply Moser, we see u_{y} satisfies the strong maximum principle. Similarly $u_{x} \in C^{\alpha}$ and u_{x} satisfies the strong maximum principle.

RMK. The above proposition fails in 3d and above. The 4d counterexample is "easy". Consider the Hopf map

$$
H\left(z_{1}, z_{2}\right)=\frac{\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}, 2 \bar{z}_{1} z_{2}\right)}{|z|}: \mathbb{R}^{4}=\mathbb{C}^{2} \rightarrow \mathbb{R}^{3}
$$

One can cook up coefficients for the saddle surface $\frac{\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}}{|z|}$ for the following equations. Or Lawson-Osserman noticed that $\left(z, \frac{\sqrt{5}}{2} H(z)\right)$ is a minimal graph cone in \mathbb{R}^{7}, (later Harvey-Lawson discovered that this minimal cone is volume minimizing, in fact a calibrated submanifold in $\operatorname{Im} \mathbb{O}=\mathbb{R}^{7}$). Thus with

$$
g=I+\frac{5}{4}(D H)^{T} D H
$$

we have the minimal surface system in both nondivergence and divergence forms

$$
\sum_{i, j=1}^{4} g^{i j}(x) D_{i j} H=0 \text { or } \sum_{i, j=1}^{4} D_{i}\left(g^{i j}(x) D_{j} H\right)=0 .
$$

RMK. Recall Euclid triple for right angle triangles: $\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)$.
Theorem 3 Let u be a smooth ($W_{l o c}^{2,2}$ strong) solution to

$$
\begin{aligned}
\sum_{i, j=1}^{3} a_{i j} D_{i j} u & =0 \quad \text { and } \\
u(x) & =|x| u(x /|x|) .
\end{aligned}
$$

Then u is a linear function.
RMK. Heuristically, $\Sigma=D u\left(S^{2}\right)$ is a saddle and closed surface in \mathbb{R}^{3}, then can only be a point.

touching figure

Plane with normal e touches Σ at $D u(e)$ or $D u(-e)$, even Σ is singular.
Claim: Σ is saddle.
Rodrigue formula $K_{d} d X=d \gamma$, where γ is the unit normal to a hypersurface X, e_{d} is a principle direction.
hypersurface figure

Now $X=D u(x)$, in this case $\gamma=x /|x|$.
Convex case.
support function figure

The support function u is defined as

$$
u(w)=\sup _{y \in \Sigma} w \cdot y, \quad \text { or } u(r w)=\sup _{y \in \Sigma} r w \cdot y \text { that is } u(x)=\sup _{y \in \Sigma} x \cdot y
$$

then we have

$$
D u(x)=y(x)+\underbrace{x}_{\text {normal }} \cdot \overbrace{D_{x} y(x)}^{\text {tangent }}=y(x) .
$$

General case. One abandons the support function approach. Assume along x direction there exists a tangent plane (locally uniquely) to Σ at y. Define

$$
u(x)=x \cdot y(x)
$$

This way we also have $D u(x)=y(x)$.
Next $D^{2} u(x)=\frac{1}{|x|} D^{2} u(x /|x|)$ has one zero eigenvalue with eigendirection ∂_{r}. This is because for all $e, \partial_{r} u_{e}=0$, this implies $\left\langle D^{2} u \partial_{r}, e\right\rangle=0$. Then $D^{2} u \partial_{r}=0 \partial_{r}$.

Lastly Rodrigue becomes

$$
K_{d} d^{2} u=K_{d} d D u=d \gamma=\left.d \frac{x}{|x|}\right|_{x=(0, \cdots 0,1)}=\operatorname{diag}\left[I_{n-1, n-1}, 0\right]
$$

from which we obtain

$$
\left(\kappa_{1}, \cdots \kappa_{n-1}\right)=\left(\frac{1}{\lambda_{1}}, \cdots, \frac{1}{\lambda_{n-1}}\right), \quad \lambda_{n}=0!
$$

Now the proof of the theorem (is via 2-d equation). Suppose $D u \neq$ const. Let

$$
h\left(x_{1}, x_{2}\right)=u\left(x_{1}, x_{2}, 1\right) .
$$

For $x_{3}>0$

$$
\begin{gathered}
u\left(x_{1}, x_{2}, x_{3}\right)=x_{3} h\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right), \\
u_{1}=h_{1}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right), u_{2}=h_{2}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right), \\
u_{3}=h\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right)-\frac{x_{1}}{x_{3}} h_{1}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right)-\frac{x_{2}}{x_{3}} h_{2}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right), \\
D^{2} u\left(x_{1}, x_{2}, 1\right)=\left[\begin{array}{cc}
1 \\
-x_{1} & -x_{2} \\
1
\end{array}\right]\left[\begin{array}{ccc}
h_{11} & h_{12} & 0 \\
h_{21} & h_{22} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -x_{1} \\
& 1 & -x_{2} \\
& 1
\end{array}\right] .
\end{gathered}
$$

From the equation $\operatorname{Tr}\left[\left(a_{i j}\right) D^{2} u\right]=0$, we have

$$
\operatorname{Tr}\left\{\left[\begin{array}{ccc}
1 & & -x_{1} \\
& 1 & -x_{2} \\
& & 1
\end{array}\right]\left(a_{i j}\right)\left[\begin{array}{ccc}
1 & & \\
& 1 & \\
-x_{1} & -x_{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
h_{11} & h_{12} & 0 \\
h_{21} & h_{22} & 0 \\
0 & 0 & 0
\end{array}\right]\right\}=0
$$

that is

$$
\begin{gathered}
\sum_{i, j=1}^{2} A_{i j}(x) D_{i j} h=0 \text { with } \\
\mu(x) I \leq\left(A_{i j}(x)\right) \leq \mu^{-1}(x) I
\end{gathered}
$$

By the above 2d proposition: maximum principle for h_{1}, sup h_{1} only occurs at ∞. Recall

$$
u_{1}(x)=u_{1}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}, 1\right)=h_{1}\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right),
$$

then

$$
\sup _{\mathbb{R}^{3}} u_{1}(x)=u_{1}\left(x_{1}^{*}, x_{2}^{*}, 0\right) .
$$

To x_{1}, direction x_{2} and x_{3} are symmetric, thus similar arguments with $u=x_{2} u\left(\frac{x_{1}}{x_{2}}, 1, \frac{x_{3}}{x_{2}}\right)$ give

$$
\sup _{\mathbb{R}^{3}} u_{1}(x)=u_{1}\left(x_{1}^{*}, 0, x_{3}^{*}\right) .
$$

Thus

$$
\sup _{\mathbb{R}^{3}} u_{1}(x)=u_{1}\left(x_{1}^{*}, 0,0\right)=u_{1}(1,0,0) \text { or } u_{1}(-1,0,0) .
$$

The same argument leads to

$$
\sup _{\mathbb{R}^{3}} u_{3}(x)=u_{3}(0,0,1) \text { or } u_{1}(0,0,-1), \text { say } u_{3}(0,0,1) .
$$

(In fact, we only need this info for u_{3}.)
Next

$$
\begin{aligned}
u_{3}\left(x_{1}, x_{3}, 1\right) & =h\left(x_{1}, x_{2}\right)-x_{1} h_{1}\left(x_{1}, x_{2}\right)-x_{3} h_{2}\left(x_{1}, x_{2}\right) \\
& \leq u_{3}(0,0,1)=h(0,0) .
\end{aligned}
$$

The Taylor expansions for $h, D h$ at $x=0$ are

$$
h(x)=h(0)+h_{1}(0) x_{1}+h_{2}(0) x_{2}+\frac{1}{2} h_{11}(0) x_{1}^{2}+h_{12}(0) x_{1} x_{2}+\frac{1}{2} h_{2}(0) x_{2}^{2}+o\left(|x|^{2}\right),
$$

$h_{1}(x)=h_{1}(0)+h_{11}(0) x_{1}+h_{12}(0) x_{2}+o(|x|)$,
$h_{2}(x)=h_{2}(0)+h_{21}(0) x_{1}+h_{22}(0) x_{2}+o(|x|)$.
It follows that

$$
\begin{gathered}
h(0)-\left[\frac{1}{2} h_{11}(0) x_{1}^{2}+h_{12}(0) x_{1} x_{2}+\frac{1}{2} h_{2}(0) x_{2}^{2}\right]+o\left(|x|^{2}\right)=h(x)-x_{1} h_{1}(x)-x_{2} h_{2}(x) \\
\leq h(0) .
\end{gathered}
$$

But $\operatorname{Tr}\left[A D^{2} h\right]=0$, then $-\left[\frac{1}{2} h_{11}(0) x_{1}^{2}+h_{12}(0) x_{1} x_{2}+\frac{1}{2} h_{2}(0) x_{2}^{2}\right]$ is a saddle surface, in fact a hyperbola, in turn, cannot stay below 0 . Thus * is a contradiction. Note that we can choose a point on S^{2} such that $D^{2} u \neq 0$, because we assume $D u \neq$ const. For convenience, say the point is $(0,0,1)$. Then the saddle surface (hyperbola) is not degenerate. The proof is complete.

RMK. In $W^{2,2}\left(R^{2}\right)$ or $W^{2, n / 2}\left(R^{n}\right)$ case, the Taylor expansion is true (by another result of Calderon-Zygmund).

Application 3. Estimates for Green's function.
Let g be Green's function for μ-elliptic divergence equation

$$
\left\{\begin{array}{c}
-\sum D_{i}\left(a_{i j}(x) D_{j} g\right)=\delta(0) \text { in } B_{1} \\
g(x)=0 \text { on } \partial B_{1} \\
\lim _{x \rightarrow 0} g(x)=\infty .
\end{array}\right.
$$

Then for $n \geq 3$ and $|x| \leq 1 / 2$

$$
\frac{c(n, \mu)}{|x|^{n-2}} \leq g(x) \leq \frac{c^{-1}(n, \mu)}{|x|^{n-2}}
$$

Proof. The argument is through comparing to the model case $-\triangle h=\delta(0)$. We assume $a_{i j}(x) \in C^{\infty}$.

Step 1. Define

$$
\begin{aligned}
\operatorname{Cap}_{A}(\Omega) & =\inf _{\substack{u \in H_{0}^{1}\left(B_{1}\right) \\
u \geq 1 \\
\text { on } \Omega}} \int D u A D u=\int_{B_{1} \backslash \Omega} D V A D V \\
& =\int_{\partial\left(B_{1} \backslash \Omega\right)} V V_{A \nu}=\int_{\partial \Omega}-V_{A \gamma}
\end{aligned}
$$

where γ is the outward unit normal of Ω and V is the unique minimizer (the existence of V is straightforward for the convex quadratic energy functional) satisfying

$$
\left\{\begin{array}{c}
-\operatorname{div}(A D V)=0 \text { in } B_{1} \backslash \Omega \\
V=0 \text { on } \partial B_{1} \\
V=1 \text { on } \partial \Omega \\
\Omega \text { inside } B_{1} \text { figure }
\end{array}\right.
$$

Observation 1. $\Omega_{1} \subset \Omega_{2}$ then $\operatorname{Cap}_{A}\left(\Omega_{1}\right) \leq \operatorname{Cap}_{A}\left(\Omega_{2}\right)$.
Observation 2. $\mu \operatorname{Cap}_{I}(\Omega) \leq \operatorname{Cap}_{A}(\Omega) \leq \mu^{-1} \operatorname{Cap}_{A}(\Omega)$.
RMK. $\operatorname{Cap}_{A}(\{0\})=0$.
Step 2. Let $m=\min _{|x|=r} g(x)$ and $M=\max _{|x|=r} g(x)$.

$$
\Omega_{M} \subset \Omega_{m} \subset B_{1} \text { figure }
$$

By the maximum principle applied to g, we get

$$
\Omega_{M} \stackrel{\text { def }}{=}\{x: g(x) \geq M\} \subset B_{r} \subset\{x: g(x) \geq m\} \stackrel{\text { def }}{=} \Omega_{m} .
$$

We calculate

$$
\begin{aligned}
\operatorname{Cap}_{A}\left(\Omega_{m}\right) & =\frac{1}{m^{2}} \int_{B_{1} \backslash \Omega_{m}} \overbrace{D g A D g}^{\operatorname{div(gADg)}} \stackrel{\text { need Sard }}{=} \frac{1}{m^{2}} \int_{\partial \Omega_{m}} g\langle A D g,-\gamma\rangle=\frac{1}{m} \int_{\partial \Omega_{m}}-g_{A \gamma} \\
& =\frac{1}{m} \int_{\Omega_{m}}-\operatorname{div}(A D g)=\frac{1}{m} \int_{\Omega_{m}} \delta(0)=\frac{1}{m} .
\end{aligned}
$$

Now

$$
\operatorname{Cap}_{A}\left(\Omega_{m}\right) \geq \operatorname{Cap}_{A}\left(B_{r}\right) \geq \mu \operatorname{Cap}_{I}\left(B_{r}\right)=\mu \frac{1}{h(r)}=\frac{\mu(n-2)\left|\partial B_{1}\right|}{r^{2-n}-1},
$$

where $h=\frac{1}{(n-2)\left|\partial B_{1}\right|}\left(|x|^{2-n}-1\right)$ satisfies

$$
\left\{\begin{array}{c}
-\triangle h=\delta(0) \text { in } B_{1} \\
h=0 \quad \text { on } \partial B_{1}
\end{array} .\right.
$$

So

$$
m \leq \frac{r^{2-n}-1}{\mu(n-2)\left|\partial B_{1}\right|}
$$

Similarly we get

$$
\begin{aligned}
\operatorname{Cap}_{A}\left(\Omega_{M}\right) & =\frac{1}{M} \\
\operatorname{Cap}_{A}\left(\Omega_{M}\right) & \leq \operatorname{Cap}_{A}\left(B_{r}\right) \leq \mu^{-1} \operatorname{Cap}_{I}\left(B_{r}\right)=\mu^{-1} \frac{1}{h(r)}, \text { and } \\
M & \geq \mu \frac{1}{(n-2)\left|\partial B_{1}\right|}\left(r^{2-n}-1\right) .
\end{aligned}
$$

Step 3. Apply Moser's Harnack along the ring ∂B_{r} to positive solution g

$$
-\operatorname{div}(A D g)=0 \text { in } B_{2 r} \backslash\{0\}
$$

we get

$$
M \leq C(n, \mu) m
$$

and then

$$
\begin{gathered}
c(n, \mu) \frac{1}{|x|^{n-2}} \leq \frac{M}{C(n, \mu)} \leq m \\
\leq g(x) \leq \\
M \leq C(n, \mu) m \leq c^{-1}(n, \mu) \frac{1}{|x|^{n-2}}
\end{gathered}
$$

for $|x| \leq 1 / 2$.
The proof of the estimates for Green's function is complete.

[^0]: ${ }^{0}$ October 23, 2019

