Lecture 13 Minimal Surface equations

o non-solvability

o strongly convex functional

o further regularity

Consider minimal surface equation

Du —_ :
v <——1+Du|2) 0 in Q '
u =@ on Jf)

The solution is a critical point or the minimizer of

inf /\/14— | Dul®.
Q

ulaa=¢

But the integrand F (p) = 1/1 + |p|® is not strongly convex, that is D*F % &I, only

D?F > 0. The loss of strong convexity or convexity causes non-solvability, or non
minimizer for general domains, unlike Au = 0 with | | Dul® case.
Egl. Let the boundary data be w =t on 0By and u = 0 on 0B; with Q = By\ B;.
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The minimizer should be radial (by symmetry), or just we consider radial solutions.
Necessarily we have a constraint
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Now u(2) = t, say 100000000 on OB, contradicts the above inequality. Or the
difference u (2) — u (1) cannot be too large.

RMK. Mean curvature of 0f) nonnegative is necessary and sufficient (use distance
to the boundary as barrier) in solving minimal surface equation with arbitrary bound-
ary condition. In our lecture, we only consider strongly convex € and ¢ € C1! (9Q) .

Eg2. Consider the non-convex functional

p* (p—2)* for |p| <10
quadratic extension for [p| > 10 ’

1
inf / F (u;)dx with F (p) = {
A

double well F' figure

The Euler-Lagrangian equation is D, (F), (uy)) = F" (uy) ugy = 0.
- u = x is a critical point, not minimizer, fol F(2')dx =1.
- v =--- with v = 0 or 2, minimizers, not smooth, not unique, fol F (v')dx = 0.

various critical pts figure

Next we solve the minimal surface equation via strongly convex functionals.

Step 8. Let F* (p) = /1 + |p[*+6 |p|*, then 267 < (D2F?) < (1+25)I. ((VI+2?), =

= = sinb, (V1 —i—x2)m = cosf - 0, = ﬁﬁ) Parallel to the minimizing

process to [, |Du|?, we minimize

7l :/Qﬁ (Du).

Let the minimizing sequence u* € H' with u* = ¢ on 9%
J [u*] — inf J [u] = m.
We claim: {uk} is a Cauchy sequence in H'.
convexity figure
For any (small) positive e, we have for all large k and [

m<J W] <m+e
m< a5t ea)] = [# (5 0o

< / % [F° (Du*) + F° (Du')] — % min D*F"

DuF — Du! 2
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Hence

g/ }Duk — Dul}2 <e.
Q

So we know

cuk = u®in HY

- the minimizer is unique (by setting ¢ = 0) and satisfies for all ¢ € H} (Q)

/ > D.¢ F) (Du’) =0.
Q

inf /\/1+|Du = inf.
uer 1

To make sense the functional, W'! is the right space. Note W! functions also have
L' trace on 09. (Going with the W12 minimizing sequence would not lead to a W2
Cauchy sequence. Even if one has a W% minimizing sequence, the minimizer is only
in W1 space, not in W2 space.)

For any € > 0, there exists v € W' with v = ¢ on 92 such that

/\/ 1+ |Dv|* < inf +e.

To move from W' v to W2 let V,, € C™ be the approximation for v, then

/\/1 +|DV, |’ <inf +e+e.

Also there is § =6 (&, | DV, ||,) such that

/ \/ 14 DV, > +6|DV,|> < inf4e+e+e.
Q

So the minimizer v’ € H! with u’ = ¢ on dQ for [1/1+ |Du|* 4 § | Dul* satisfies

/\/1+|Du5|2+5‘Du5}2Sinf—i—?)a.
Q

/\/1+|Du5|2 =" inf.

Q

But no minimizer to be found yet.
RMK. If

Step 0. Now

Thus

HDu‘sH @) S C' independent of § (to be justified),

then there is v € H' such that v — u in H' weakly by weak compactness of H*
space. Let us show that

/\/1—|—|Du|2§liminf/\/1—|—|Du52:inf.
Q 6—0 Q
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This is because the functional [ /1 + \Du|2 is convex and a convex combination of

u® — u in H' strongly. Then

/ \/1+ |Dul” « / \/1 + |D convex combination of uf]?
Q Q
Jessen . . 9
< convex combination of / \/ 1+ |Dul|
Q

<inf +6C.

Linear way:

/ F (Du) < / F (Du’) — F, (Du) - (Du’ — Du) — inf .
Q Q
At this point, we have already obtained a minimizer u and its H' regularity then its
uniqueness (¢ = 0 argument pushed further), if we furnish (*). Indeed we show a
stronger claim by taking advantage of the boundary data (C'! at this point, further
relaxed C° condition depending on Bombieri-De Giorgi-Miranda’s a priori gradient
estimate.) and C*! boundary:

| Du < C(|l¢llgra,09), independent of é.

"Il o

RMK. First note from De Giorgi-Nash, we already know v’ € C'* inside (2,
though we do not know yet a uniform C'“ norm. Further by a similar, but simpler
argument than De Giorgi-Nash, one can get C¢ regularity of v’ up to the Lipschitz
boundary with C# boundary data ¢. In the following we are just drawing uniform
estimates independent of parameter o.

Step ||DU6HLOO(Q) <C (HQDHCLI 789)
Boundary. For any linear function L, Y D; (in- (DL)) = 0. We compare L to u’
satisfying > D; (F? (Du’)) = 0. We have

Z D: (Fﬁipj (+) D; (L - “5)> =0
201 < (F;pj) < (1+26)1I.

The (strong) maximum principle implies that the inf and sup of L — u® achieves on
the boundary.

Recall /Exercise: For C' boundary 0f) strongly kg-convex, that is the principle
curvatures (ky,- -+ ,kn_1) > Ko componentwise, and Ct'! boundary data ¢, we have

z, = |2'|* boundary figure

L~ L+

A\ .

Ve

2 (0) + Dy (0) - &'~ Mz, <@ () < ¢(0)+ Dup(0) - 2'+Mz,
L™ <4 <L ondf.



Hint: z, > ko |2/|” .
Apply the maximum principle (either after Moser, or a simpler argument to be

found in the end of this lecture), we get
L~ <« <L" inQ.

It implies
}D:cnu‘S (0)] < M.

Thus
|Dw’| = [(D'u’, Dyu)| < M ([|@llgrs s ko) on 09, d-free. (Bdry Lip)

Interior to Boundary. For any e € R", for any x € 0f), really boundary of
QN {Q — ee} with £ small. By the boundary Lip (Bdry Lip), we have for any fixed
boundary point = = xy and for all € < g¢ ()

u’ (v +ee) < ul () + 2Me.

By the compactness of 02, we have the above inequality at all boundary points of
QN {Q — e} for all € < £59. Observe that both u° (x + ce) and u° (v) are W'? weak
solutions to

> Dy, (F) (Dv)) =0 in QN {Q—ce}.

By the (strong) maximum principle
u (z+cee) < (z) +2Me in QN {Q — e},
from which we infer for all x € QN {Q — ce}

u’ (z + ee) —ul (z)

< 2M.

Similarly we obtain
u® (x + ee) — ul (z)
s .

—2M <

By letting ¢ — 0, we get

HDu < 2M, o-free.

5
| ey
Then
/|Du5|2—> inf /|Dv|2 as § — 0.
Q ’UGH&(Q) Q

By the parallelogram inequality, u’ — u in H* (€2).

Summary: we have got the minimizer for [, /1 + |Dv|* with u = ¢ € V' (99)
on the strongly convex boundary, such that (for example, by the above argument)

1Dl () < C (Iellcns 0 (99).
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Step C*®. Regularity for the critical point u.
First we have

5. (B 0, (HEDZHE))

De Giorgi-Nash implies

u(x+ee) —u(x)

u(x+ece) —u(x)

<C
C“(Bl/2)

< C [[Dull p2(g,) < C (el s o (09)) -

L%(B1)

Thus u € C* and u is a weak solution to Y D; (F,, (Du)) = 0.

Next we show that v € C*, then } F,,,. (Du) D”u = 0. The proof is through the
C?* solution to a Dirichlet problem by Schauder theory. Let ay; () = F),p, (Du (7))
(like the regularity for viscosity/Perron solution to Au = 0), we know how to solve

Zaij (.I’) Dijw =0 in Bn
{ w=u ondB, (Schauder)

by weighted norm method. Then we have C*“ (B,) solution w.

Proposition 1 Let u € CY be a weak solution to Y D; (F,, (Du)) = 0 in B, and
w € C%% solution to (Schauder). Then u = w in B,).

The idea of the proof is to show ) D, (F,, (Dw)) = 0 by a “viscosity” way. The
technical execution is to modify w to v € 02 2 such that

> Di(F, (Dv)) = F,, (Dv) Dyv >0
v>wu and v (zy) > u(zq)
v =u on boundary.
Then contradicts ) D; (F}, (Du)) = 0.
Proof. Suppose u # w in B,, say maxp, (w —u) = (w —u)(x9) =t > 0 and
Xg € B77'
w over u at xq figure

First step toward a sub solution v : Let w, = w + £ (|:c|2 — 772) , then w; = v on 0B,
and

t
wr0) = o)+ (Jaof® = 17) = o)+ 0+ & (ol = 17) > ),
where we assumed that we started with 7 < 1. Then there exists C} such that

- Ct S u in 377
—Cy=u atx € én (x1 may not be )
Dwy (x1) = Du (z1) .



v over u over w; figure

Second step toward a sub solution v : Let v = w, — C; — i |z — m1|2 + 7, then v > u
in a neighborhood N, of 1. And N,, shrinks to the point z; as y goes to zero.

Since w € C**, a;; () € C*, and Dv (z1) = Du(x1), we can choose 7 small so
that IV, small, then Duv is close to Du in N, and eventually so that

> Di(F, (Dv)) =Y F,, (Dv) Dyv

:Z\ i (DV) —FMJ (Du)) Dy +Y " a; (x) Dijv

0(1) bounded

)+ Z aw Dz]w + Z aw

t
> ng for small .

Now
S D, (B, (Dw)=0
> Di (Fy, (Dv)) 20 T
u=wv on N,
or

ZD pip; (¥) Dj (v — u)) > 0.

Take a test function (v —u)™ € H} (N,), we get

It follows that fN |Di (v —u)" ‘ = 0, then (v—u)" = 0 or v < u in N,. But
v—u—7>0atx1 in N,.

This contradiction shows that u = w € C** in B,).

Exercise: Let u be a C** solution to Y F,,,, (Du) Dyjju = 0 and pul < (F,

<
pipj) —
LI, Show that u € C3«.



