Lecture 13 Minimal Surface equations

- non-solvability
- strongly convex functional
- further regularity

Consider minimal surface equation

$$
\left\{\begin{array}{c}
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 \text { in } \Omega \\
u=\varphi \text { on } \partial \Omega
\end{array} .\right.
$$

The solution is a critical point or the minimizer of

$$
\inf _{\left.u\right|_{\partial \Omega=\varphi}} \int_{\Omega} \sqrt{1+|D u|^{2}}
$$

But the integrand $F(p)=\sqrt{1+|p|^{2}}$ is not strongly convex, that is $D^{2} F \nsupseteq \delta I$, only $D^{2} F>0$. The loss of strong convexity or convexity causes non-solvability, or non minimizer for general domains, unlike $\triangle u=0$ with $\int_{\Omega}|D u|^{2}$ case.

Eg1. Let the boundary data be $u=t$ on ∂B_{2} and $u=0$ on ∂B_{1} with $\Omega=B_{2} \backslash B_{1}$. catenoid on annulus figure

The minimizer should be radial (by symmetry), or just we consider radial solutions. Necessarily we have a constraint

$$
0=\int_{B_{r} \backslash B_{1}} \operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=\int_{\partial B_{r}} \frac{D u}{\sqrt{1+|D u|^{2}}} \cdot \partial_{r} d A-\int_{\partial B_{1}} \frac{D u}{\sqrt{1+|D u|^{2}}} \cdot \partial_{r} d A .
$$

We infer

$$
\begin{gathered}
\frac{u_{r}}{\sqrt{1+u_{r}^{2}}} r^{n-1}=\frac{1}{C} \neq 0 \\
u_{r}=\frac{1}{\sqrt{\left(C r^{n-1}\right)^{2}-1}} \quad \text { with } C \geq 1 .
\end{gathered}
$$

Then

$$
\begin{aligned}
& u(r)-u(1)=\int_{1}^{r} \frac{1}{\sqrt{\left(C \rho^{n-1}\right)^{2}-1}} d \rho \leq \int_{1}^{2} \frac{1}{\sqrt{\left(\rho^{n-1}\right)^{2}-1}} d \rho<\infty \\
& \stackrel{\text { eg } n=2}{=}{c h^{-1}(2)}
\end{aligned}
$$

[^0]Now $u(2)=t$, say 100000000 on ∂B_{2} contradicts the above inequality. Or the difference $u(2)-u(1)$ cannot be too large.

RMK. Mean curvature of $\partial \Omega$ nonnegative is necessary and sufficient (use distance to the boundary as barrier) in solving minimal surface equation with arbitrary boundary condition. In our lecture, we only consider strongly convex Ω and $\varphi \in C^{1,1}(\partial \Omega)$.

Eg2. Consider the non-convex functional

$$
\inf _{\substack{u(0)=0 \\
u(1)=1}} \int_{0}^{1} F\left(u_{x}\right) d x \quad \text { with } F(p)=\left\{\begin{array}{c}
p^{2}(p-2)^{2} \text { for }|p| \leq 10 \\
\text { quadratic extension for }|p|>10
\end{array}\right.
$$

double well F figure
The Euler-Lagrangian equation is $D_{x}\left(F_{p}\left(u_{x}\right)\right)=F^{\prime \prime}\left(u_{x}\right) u_{x x}=0$.

- $u=x$ is a critical point, not minimizer, $\int_{0}^{1} F\left(x^{\prime}\right) d x=1$.
$\cdot v=\cdots$ with $v^{\prime}=0$ or 2 , minimizers, not smooth, not unique, $\int_{0}^{1} F\left(v^{\prime}\right) d x=0$.
various critical pts figure

Next we solve the minimal surface equation via strongly convex functionals.
Step δ. Let $F^{\delta}(p)=\sqrt{1+|p|^{2}}+\delta|p|^{2}$, then $2 \delta I \leq\left(D^{2} F^{\delta}\right) \leq(1+2 \delta) I .\left(\left(\sqrt{1+x^{2}}\right)_{x}=\right.$ $\left.\frac{x}{\sqrt{1+x^{2}}}=\sin \theta,\left(\sqrt{1+x^{2}}\right)_{x x}=\cos \theta \cdot \theta_{x}=\frac{1}{\sqrt{1+x^{2}}} \frac{1}{1+x^{2}}\right)$ Parallel to the minimizing process to $\int_{\Omega}|D u|^{2}$, we minimize

$$
J[u]=\int_{\Omega} F^{\delta}(D u) .
$$

Let the minimizing sequence $u^{k} \in H^{1}$ with $u^{k}=\varphi$ on $\partial \Omega$

$$
J\left[u^{k}\right] \rightarrow \inf J[u]=m .
$$

We claim: $\left\{u^{k}\right\}$ is a Cauchy sequence in H^{1}.
convexity figure
For any (small) positive ε, we have for all large k and l

$$
\begin{aligned}
m & \leq J\left[u^{k}\right] \leq m+\varepsilon \\
m & \leq J\left[\frac{1}{2}\left(u^{k}+u^{l}\right)\right]=\int F^{\delta}\left(\frac{1}{2}\left(D u^{k}+D u^{l}\right)\right) \\
& \leq \int \frac{1}{2}\left[F^{\delta}\left(D u^{k}\right)+F^{\delta}\left(D u^{l}\right)\right]-\frac{1}{2} " \min D^{2} F^{\prime \prime}\left|\frac{D u^{k}-D u^{l}}{2}\right|^{2} \\
& \leq m+\varepsilon-\frac{\delta}{4} \int_{\Omega}\left|D u^{k}-D u^{l}\right|^{2} .
\end{aligned}
$$

Hence

$$
\frac{\delta}{4} \int_{\Omega}\left|D u^{k}-D u^{l}\right|^{2} \leq \varepsilon
$$

So we know

- $u^{k} \rightarrow u^{\delta}$ in H^{1}
- the minimizer is unique (by setting $\varepsilon=0$) and satisfies for all $\phi \in H_{0}^{1}(\Omega)$

$$
\int_{\Omega} \sum D_{x_{i}} \phi F_{p_{i}}^{\delta}\left(D u^{\delta}\right)=0 .
$$

Step 0. Now

$$
\inf _{\substack{u \in W^{1,1} \\ u=\varphi \text { on } \partial \Omega}} \int \sqrt{1+|D u|^{2}}=\inf .
$$

To make sense the functional, $W^{1,1}$ is the right space. Note $W^{1,1}$ functions also have L^{1} trace on $\partial \Omega$. (Going with the $W^{1,2}$ minimizing sequence would not lead to a $W^{1,2}$ Cauchy sequence. Even if one has a $W^{1,2}$ minimizing sequence, the minimizer is only in $W^{1,1}$ space, not in $W^{1,2}$ space.)

For any $\varepsilon>0$, there exists $v \in W^{1,1}$ with $v=\varphi$ on $\partial \Omega$ such that

$$
\int \sqrt{1+|D v|^{2}} \leq \inf +\varepsilon
$$

To move from $W^{1,1} v$ to $W^{1,2}$, let $V_{\eta} \in C^{\infty}$ be the approximation for v, then

$$
\int \sqrt{1+\left|D V_{\eta}\right|^{2}} \leq \inf +\varepsilon+\varepsilon
$$

Also there is $\delta=\delta\left(\varepsilon,\left\|D V_{\eta}\right\|_{L^{2}}\right)$ such that

$$
\int_{\Omega} \sqrt{1+\left|D V_{\eta}\right|^{2}}+\delta\left|D V_{\eta}\right|^{2} \leq \inf +\varepsilon+\varepsilon+\varepsilon
$$

So the minimizer $u^{\delta} \in H^{1}$ with $u^{\delta}=\varphi$ on $\partial \Omega$ for $\int \sqrt{1+|D u|^{2}}+\delta|D u|^{2}$ satisfies

$$
\int_{\Omega} \sqrt{1+\left|D u^{\delta}\right|^{2}}+\delta\left|D u^{\delta}\right|^{2} \leq \inf +3 \varepsilon
$$

Thus

$$
\int_{\Omega} \sqrt{1+\left|D u^{\delta}\right|^{2}} \xrightarrow{\delta \rightarrow 0} \inf .
$$

But no minimizer to be found yet.
RMK. If

$$
\left\|D u^{\delta}\right\|_{L^{2}(\Omega)} \leq C \text { independent of } \delta \text { (to be justified) }
$$

then there is $u \in H^{1}$ such that $u^{\delta} \rightharpoonup u$ in H^{1} weakly by weak compactness of H^{1} space. Let us show that

$$
\int_{\Omega} \sqrt{1+|D u|^{2}} \leq \liminf _{\delta \rightarrow 0} \int_{\Omega} \sqrt{1+\left|D u^{\delta}\right|^{2}}=\inf
$$

This is because the functional $\int \sqrt{1+|D u|^{2}}$ is convex and a convex combination of $u^{\delta} \rightarrow u$ in H^{1} strongly. Then

$$
\begin{gathered}
\int_{\Omega} \sqrt{1+|D u|^{2}} \leftarrow \int_{\Omega} \sqrt{1+\mid D \text { convex combination of }\left.u^{\delta}\right|^{2}} \\
\stackrel{\text { Jessen }}{\leq} \text { convex combination of } \int_{\Omega} \sqrt{1+\left|D u^{\delta}\right|^{2}} \\
\leq \inf +\delta C .
\end{gathered}
$$

Linear way:

$$
\int_{\Omega} F(D u) \leq \int_{\Omega} F\left(D u^{\delta}\right)-F_{p}(D u) \cdot\left(D u^{\delta}-D u\right) \rightarrow \inf
$$

At this point, we have already obtained a minimizer u and its H^{1} regularity then its uniqueness ($\varepsilon=0$ argument pushed further), if we furnish $\left(^{*}\right)$. Indeed we show a stronger claim by taking advantage of the boundary data ($C^{1,1}$ at this point, further relaxed C^{0} condition depending on Bombieri-De Giorgi-Miranda's a priori gradient estimate.) and $C^{1,1}$ boundary:

$$
\left\|D u^{\delta}\right\|_{L^{\infty}(\Omega)} \leq C\left(\|\varphi\|_{C^{1,1}}, \partial \Omega\right), \quad \text { independent of } \delta
$$

RMK. First note from De Giorgi-Nash, we already know $u^{\delta} \in C^{1, \alpha}$ inside Ω, though we do not know yet a uniform $C^{1, \alpha}$ norm. Further by a similar, but simpler argument than De Giorgi-Nash, one can get C^{ε} regularity of u^{δ} up to the Lipschitz boundary with C^{β} boundary data φ. In the following we are just drawing uniform estimates independent of parameter δ.

Step $\left\|D u^{\delta}\right\|_{L^{\infty}(\Omega)} \leq C\left(\|\varphi\|_{C^{1,1}}, \partial \Omega\right)$
Boundary. For any linear function $L, \sum D_{i}\left(F_{p_{i}}^{\delta}(D L)\right)=0$. We compare L to u^{δ} satisfying $\sum D_{i}\left(F_{p_{i}}^{\delta}\left(D u^{\delta}\right)\right)=0$. We have

$$
\begin{gathered}
\sum D_{i}\left(F_{p_{i} p_{j}}^{\delta}(*) D_{j}\left(L-u^{\delta}\right)\right)=0 \\
2 \delta I \leq\left(F_{p_{i} p_{j}}^{\delta}\right) \leq(1+2 \delta) I
\end{gathered}
$$

The (strong) maximum principle implies that the inf and sup of $L-u^{\delta}$ achieves on the boundary.

Recall/Exercise: For $C^{1,1}$ boundary $\partial \Omega$ strongly κ_{0}-convex, that is the principle curvatures $\left(\kappa_{1}, \cdots, \kappa_{n-1}\right) \geq \kappa_{0}$ componentwise, and $C^{1,1}$ boundary data φ, we have

$$
x_{n}=\left|x^{\prime}\right|^{2} \text { boundary figure }
$$

$$
\begin{aligned}
\overbrace{\varphi(0)+D_{x^{\prime}} \varphi(0) \cdot x^{\prime}-M x_{n}}^{L^{-}} & \leq \varphi(x) \leq \overbrace{\varphi(0)+D_{x^{\prime}} \varphi(0) \cdot x^{\prime}+M x_{n}}^{L^{+}} \\
L^{-} & \leq u^{\delta} \leq L^{+} \text {on } \partial \Omega .
\end{aligned}
$$

Hint: $x_{n} \geq \kappa_{0}\left|x^{\prime}\right|^{2}$.
Apply the maximum principle (either after Moser, or a simpler argument to be found in the end of this lecture), we get

$$
L^{-} \leq u^{\delta} \leq L^{+} \text {in } \Omega
$$

It implies

$$
\left|D_{x_{n}} u^{\delta}(0)\right| \leq M
$$

Thus

$$
\begin{equation*}
\left|D u^{\delta}\right|=\left|\left(D^{\prime} u^{\delta}, D_{n} u\right)\right| \leq M\left(\|\varphi\|_{C^{1,1}}, \kappa_{0}\right) \quad \text { on } \partial \Omega, \quad \delta \text {-free. } \tag{BdryLip}
\end{equation*}
$$

Interior to Boundary. For any $e \in R^{n}$, for any $x \in \partial \Omega$, really boundary of $\Omega \cap\{\Omega-\varepsilon e\}$ with ε small. By the boundary Lip (Bdry Lip), we have for any fixed boundary point $x=x_{0}$ and for all $\varepsilon \leq \varepsilon_{0}\left(x_{0}\right)$

$$
u^{\delta}(x+\varepsilon e) \leq u^{\delta}(x)+2 M \varepsilon
$$

By the compactness of $\partial \Omega$, we have the above inequality at all boundary points of $\Omega \cap\{\Omega-\varepsilon e\}$ for all $\varepsilon \leq \varepsilon_{\partial \Omega}$. Observe that both $u^{\delta}(x+\varepsilon e)$ and $u^{\delta}(x)$ are $W^{1,2}$ weak solutions to

$$
\sum D_{x_{i}}\left(F_{p_{i}}^{\delta}(D v)\right)=0 \text { in } \Omega \cap\{\Omega-\varepsilon e\} .
$$

By the (strong) maximum principle

$$
u^{\delta}(x+\varepsilon e) \leq u^{\delta}(x)+2 M \varepsilon \text { in } \Omega \cap\{\Omega-\varepsilon e\}
$$

from which we infer for all $x \in \Omega \cap\{\Omega-\varepsilon e\}$

$$
\frac{u^{\delta}(x+\varepsilon e)-u^{\delta}(x)}{\varepsilon} \leq 2 M
$$

Similarly we obtain

$$
-2 M \leq \frac{u^{\delta}(x+\varepsilon e)-u^{\delta}(x)}{\varepsilon}
$$

By letting $\varepsilon \rightarrow 0$, we get

$$
\left\|D u^{\delta}\right\|_{L^{\infty}(\Omega)} \leq 2 M, \quad \delta \text {-free. }
$$

Then

$$
\int_{\Omega}\left|D u^{\delta}\right|^{2} \rightarrow \inf _{v \in H_{\varphi}^{1}(\Omega)} \int_{\Omega}|D v|^{2} \quad \text { as } \delta \rightarrow 0
$$

By the parallelogram inequality, $u^{\delta} \rightarrow u$ in $H^{1}(\Omega)$.
Summary: we have got the minimizer for $\int_{\Omega} \sqrt{1+|D v|^{2}}$ with $u=\varphi \in C^{1,1}(\partial \Omega)$ on the strongly convex boundary, such that (for example, by the above argument)

$$
\|D u\|_{L^{\infty}(\bar{\Omega})} \leq C\left(\|\varphi\|_{C^{1,1}}, \kappa_{0}(\partial \Omega)\right)
$$

Step $C^{2, \alpha}$. Regularity for the critical point u.
First we have

$$
\sum D_{x_{i}}\left(F_{p_{i} p_{j}}(*) D_{x_{j}}\left(\frac{u(x+\varepsilon e)-u(x)}{\varepsilon}\right)\right)=0 .
$$

De Giorgi-Nash implies

$$
\begin{gathered}
\left\|\frac{u(x+\varepsilon e)-u(x)}{\varepsilon}\right\|_{C^{a}\left(B_{1 / 2}\right)} \leq C\left\|\frac{u(x+\varepsilon e)-u(x)}{\varepsilon}\right\|_{L^{2}\left(B_{1}\right)} \\
\leq C\|D u\|_{L^{2}\left(B_{1}\right)} \leq C\left(\|\varphi\|_{C^{1,1}}, \kappa_{0}(\partial \Omega)\right) .
\end{gathered}
$$

Thus $u \in C^{1, \alpha}$ and u is a weak solution to $\sum D_{i}\left(F_{p_{i}}(D u)\right)=0$.
Next we show that $u \in C^{2, \alpha}$, then $\sum F_{p_{i} p_{j}}(D u) D_{i j} u=0$. The proof is through the $C^{2, \alpha}$ solution to a Dirichlet problem by Schauder theory. Let $a_{i j}(x)=F_{p_{i} p_{j}}(D u(x))$ (like the regularity for viscosity/Perron solution to $\triangle u=0$), we know how to solve

$$
\left\{\begin{array}{c}
\sum a_{i j}(x) D_{i j} w=0 \text { in } B_{\eta} \tag{Schauder}\\
w=u \text { on } \partial B_{\eta}
\end{array}\right.
$$

by weighted norm method. Then we have $C^{2, \alpha}\left(B_{\eta}\right)$ solution w.
Proposition 1 Let $u \in C^{1, \alpha}$ be a weak solution to $\sum D_{i}\left(F_{p_{i}}(D u)\right)=0$ in B_{η} and $w \in C^{2, \alpha}$ solution to (Schauder). Then $u \equiv w$ in B_{η}.

The idea of the proof is to show $\sum D_{i}\left(F_{p_{i}}(D \mathbf{w})\right)=0$ by a "viscosity" way. The technical execution is to modify w to $v \in C^{2, \alpha}$ such that

$$
\begin{aligned}
\sum D_{i}\left(F_{p_{i}}(D v)\right) & =\sum F_{p_{i} p_{j}}(D v) D_{i j} v \geq 0 \\
v & \geq u \text { and } v\left(x_{1}\right)>u\left(x_{1}\right) \\
v & =u \text { on boundary. }
\end{aligned}
$$

Then contradicts $\sum D_{i}\left(F_{p_{i}}(D u)\right)=0$.
Proof. Suppose $u \neq w$ in B_{η}, say $\max _{B_{\eta}}(w-u)=(w-u)\left(x_{0}\right)=t>0$ and $x_{0} \in \stackrel{\circ}{B}_{\eta}$.
w over u at x_{0} figure
First step toward a sub solution v : Let $w_{t}=w+\frac{t}{2}\left(|x|^{2}-\eta^{2}\right)$, then $w_{t}=u$ on ∂B_{η} and

$$
w_{t}\left(x_{0}\right)=w\left(x_{0}\right)+\frac{t}{2}\left(\left|x_{0}\right|^{2}-\eta^{2}\right)=u\left(x_{0}\right)+t+\frac{t}{2}\left(\left|x_{0}\right|^{2}-\eta^{2}\right)>u\left(x_{0}\right),
$$

where we assumed that we started with $\eta \leq 1$. Then there exists C_{t} such that

$$
\begin{aligned}
w_{t}-C_{t} & \leq u \text { in } B_{\eta} \\
w_{t}-C_{t} & =u \text { at } x_{1} \in \stackrel{\circ}{B}_{\eta} \quad\left(x_{1} \text { may not be } x_{0}\right) \\
D w_{t}\left(x_{1}\right) & =D u\left(x_{1}\right)
\end{aligned}
$$

v over u over w_{t} figure

Second step toward a sub solution v : Let $v=w_{t}-C_{t}-\frac{t}{4}\left|x-x_{1}\right|^{2}+\gamma$, then $v \geq u$ in a neighborhood N_{γ} of x_{1}. And N_{γ} shrinks to the point x_{1} as γ goes to zero.

Since $w \in C^{2, \alpha}, a_{i j}(x) \in C^{\alpha}$, and $D v\left(x_{1}\right)=D u\left(x_{1}\right)$, we can choose γ small so that N_{γ} small, then $D v$ is close to $D u$ in N_{γ} and eventually so that

$$
\begin{aligned}
\sum D_{i}\left(F_{p_{i}}(D v)\right) & =\sum F_{p_{i} p_{j}}(D v) D_{i j} v \\
& =\sum \underbrace{\left(F_{p_{i} p_{j}}(D v)-F_{p_{i} p_{j}}(D u)\right)}_{o(1)} \underbrace{D_{i j} v}_{\text {bounded }}+\sum a_{i j}(x) D_{i j} v \\
& =o(1)+\overrightarrow{\sum a_{i j}(x) D_{i j} w^{0}}+\sum \underbrace{a_{i j}(x)}_{\geq \mu} \frac{t}{4} \delta_{i j} \\
& \geq \mu \frac{t}{8} \text { for small } \gamma .
\end{aligned}
$$

Now

$$
\left\{\begin{array}{c}
\sum D_{i}\left(F_{p_{i}}(D u)\right)=0 \\
\sum D_{i}\left(F_{p_{i}}(D v)\right) \geq 0 \\
u=v \text { on } \partial N_{\gamma}
\end{array} \text { in } N_{\gamma}\right.
$$

or

$$
\sum D_{i}\left(F_{p_{i} p_{j}}(*) D_{j}(v-u)\right) \geq 0
$$

Take a test function $(v-u)^{+} \in H_{0}^{1}\left(N_{\gamma}\right)$, we get

$$
\begin{aligned}
0 & \leq \int_{N_{\gamma}}(v-u)^{+} D_{i}\left(F_{p_{i} p_{j}}(*) D_{j}(v-u)\right) \\
& \stackrel{\text { Sard }}{=}-\int_{N_{\gamma}} \sum D_{i}(v-u)^{+} F_{p_{i} p_{j}}(*) D_{j}(v-u) \\
& \leq-\mu \int_{N_{\gamma}}\left|D_{i}(v-u)^{+}\right|^{2} .
\end{aligned}
$$

It follows that $\int_{N_{\gamma}}\left|D_{i}(v-u)^{+}\right|^{2}=0$, then $(v-u)^{+} \equiv 0$ or $v \leq u$ in N_{γ}. But $v-u=\gamma>0$ at x_{1} in N_{γ}.

This contradiction shows that $u \equiv w \in C^{2, \alpha}$ in B_{η}.
Exercise: Let u be a $C^{2, \alpha}$ solution to $\sum F_{p_{i} p_{j}}(D u) D_{i j} u=0$ and $\mu I \leq\left(F_{p_{i} p_{j}}\right) \leq$ $\mu^{-1} I$. Show that $u \in C^{3, \alpha}$.

[^0]: ${ }^{0}$ October 30, 2019

