Lecture 13 Minimal Surface equations

 \circ non-solvability

• strongly convex functional

• further regularity

Consider minimal surface equation

$$\begin{cases} \operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right) = 0 & \text{in } \Omega\\ u = \varphi & \text{on } \partial\Omega \end{cases}$$

The solution is a critical point or the minimizer of

$$\inf_{u|\partial\Omega=\varphi}\int_{\Omega}\sqrt{1+|Du|^2}.$$

But the integrand $F(p) = \sqrt{1 + |p|^2}$ is not strongly convex, that is $D^2 F \nleq \delta I$, only $D^2F > 0$. The loss of strong convexity or convexity causes non-solvability, or non minimizer for general domains, unlike $\Delta u = 0$ with $\int_{\Omega} |Du|^2$ case. Eg1. Let the boundary data be u = t on ∂B_2 and u = 0 on ∂B_1 with $\Omega = B_2 \setminus B_1$.

catenoid on annulus figure

The minimizer should be radial (by symmetry), or just we consider radial solutions. Necessarily we have a constraint

$$0 = \int_{B_r \setminus B_1} div \left(\frac{Du}{\sqrt{1 + |Du|^2}}\right) = \int_{\partial B_r} \frac{Du}{\sqrt{1 + |Du|^2}} \cdot \partial_r \, dA - \int_{\partial B_1} \frac{Du}{\sqrt{1 + |Du|^2}} \cdot \partial_r \, dA.$$

We infer

$$\frac{u_r}{\sqrt{1+u_r^2}}r^{n-1} = \frac{1}{C} \neq 0$$
$$u_r = \frac{1}{\sqrt{(Cr^{n-1})^2 - 1}} \quad \text{with} \ C \ge 1.$$

Then

$$u(r) - u(1) = \int_{1}^{r} \frac{1}{\sqrt{(C\rho^{n-1})^{2} - 1}} d\rho \le \int_{1}^{2} \frac{1}{\sqrt{(\rho^{n-1})^{2} - 1}} d\rho < \infty$$

$$\stackrel{\text{eg } n=2}{=} ch^{-1}(2).$$

⁰October 30, 2019

Now u(2) = t, say 100000000 on ∂B_2 contradicts the above inequality. Or the difference u(2) - u(1) cannot be too large.

RMK. Mean curvature of $\partial\Omega$ nonnegative is necessary and sufficient (use distance to the boundary as barrier) in solving minimal surface equation with arbitrary boundary condition. In our lecture, we only consider strongly convex Ω and $\varphi \in C^{1,1}(\partial\Omega)$.

Eg2. Consider the non-convex functional

$$\inf_{\substack{u(0)=0\\u(1)=1}} \int_0^1 F(u_x) \, dx \quad \text{with } F(p) = \begin{cases} p^2 \left(p-2\right)^2 \text{ for } |p| \le 10\\ \text{quadratic extension for } |p| > 10 \end{cases},$$

double well F figure

The Euler-Lagrangian equation is $D_x (F_p (u_x)) = F'' (u_x) u_{xx} = 0.$

- $\cdot u = x$ is a critical point, not minimizer, $\int_0^1 F(x') dx = 1$.
- $v = \cdots$ with v' = 0 or 2, minimizers, not smooth, not unique, $\int_0^1 F(v') dx = 0$.

various critical pts figure

Next we solve the minimal surface equation via strongly convex functionals.

Step δ . Let $F^{\delta}(p) = \sqrt{1 + |p|^2} + \delta |p|^2$, then $2\delta I \leq (D^2 F^{\delta}) \leq (1 + 2\delta) I$. $((\sqrt{1 + x^2})_x = \frac{x}{\sqrt{1 + x^2}} = \sin \theta$, $(\sqrt{1 + x^2})_{xx} = \cos \theta \cdot \theta_x = \frac{1}{\sqrt{1 + x^2}} \frac{1}{1 + x^2})$ Parallel to the minimizing process to $\int_{\Omega} |Du|^2$, we minimize

$$J\left[u
ight] = \int_{\Omega} F^{\delta}\left(Du
ight).$$

Let the minimizing sequence $u^k \in H^1$ with $u^k = \varphi$ on $\partial \Omega$

$$J\left[u^k\right] \to \inf J\left[u\right] = m.$$

We claim: $\{u^k\}$ is a Cauchy sequence in H^1 .

convexity figure

For any (small) positive ε , we have for all large k and l

$$m \leq J \left[u^{k} \right] \leq m + \varepsilon$$

$$m \leq J \left[\frac{1}{2} \left(u^{k} + u^{l} \right) \right] = \int F^{\delta} \left(\frac{1}{2} \left(Du^{k} + Du^{l} \right) \right)$$

$$\leq \int \frac{1}{2} \left[F^{\delta} \left(Du^{k} \right) + F^{\delta} \left(Du^{l} \right) \right] - \frac{1}{2} \operatorname{"min} D^{2} F'' \left| \frac{Du^{k} - Du^{l}}{2} \right|^{2}$$

$$\leq m + \varepsilon - \frac{\delta}{4} \int_{\Omega} \left| Du^{k} - Du^{l} \right|^{2}.$$

Hence

$$\frac{\delta}{4} \int_{\Omega} \left| Du^k - Du^l \right|^2 \le \varepsilon.$$

So we know

 $\cdot u^k \to u^\delta$ in H^1

· the minimizer is unique (by setting $\varepsilon = 0$) and satisfies for all $\phi \in H_0^1(\Omega)$

$$\int_{\Omega} \sum D_{x_i} \phi \ F_{p_i}^{\delta} \left(D u^{\delta} \right) = 0.$$

Step 0. Now

$$\inf_{\substack{u \in W^{1,1} \\ u = \varphi \text{ on } \partial\Omega}} \int \sqrt{1 + |Du|^2} = \inf.$$

To make sense the functional, $W^{1,1}$ is the right space. Note $W^{1,1}$ functions also have L^1 trace on $\partial\Omega$. (Going with the $W^{1,2}$ minimizing sequence would not lead to a $W^{1,2}$ Cauchy sequence. Even if one has a $W^{1,2}$ minimizing sequence, the minimizer is only in $W^{1,1}$ space, not in $W^{1,2}$ space.)

For any $\varepsilon > 0$, there exists $v \in W^{1,1}$ with $v = \varphi$ on $\partial \Omega$ such that

$$\int \sqrt{1 + \left| Dv \right|^2} \le \inf +\varepsilon.$$

To move from $W^{1,1}$ v to $W^{1,2}$, let $V_{\eta} \in C^{\infty}$ be the approximation for v, then

$$\int \sqrt{1 + \left| DV_{\eta} \right|^2} \le \inf + \varepsilon + \varepsilon.$$

Also there is $\delta = \delta \left(\varepsilon, \|DV_{\eta}\|_{L^2} \right)$ such that

$$\int_{\Omega} \sqrt{1 + |DV_{\eta}|^2} + \delta |DV_{\eta}|^2 \le \inf + \varepsilon + \varepsilon + \varepsilon.$$

So the minimizer $u^{\delta} \in H^1$ with $u^{\delta} = \varphi$ on $\partial \Omega$ for $\int \sqrt{1 + |Du|^2} + \delta |Du|^2$ satisfies

$$\int_{\Omega} \sqrt{1 + \left| Du^{\delta} \right|^2} + \delta \left| Du^{\delta} \right|^2 \le \inf + 3\varepsilon.$$

Thus

$$\int_{\Omega} \sqrt{1 + |Du^{\delta}|^2} \stackrel{\delta \to 0}{\to} \inf.$$

But no minimizer to be found yet.

RMK. If

$$\left\| Du^{\delta} \right\|_{L^{2}(\Omega)} \leq C$$
 independent of δ (to be justified),

then there is $u \in H^1$ such that $u^{\delta} \rightharpoonup u$ in H^1 weakly by weak compactness of H^1 space. Let us show that

$$\int_{\Omega} \sqrt{1 + |Du|^2} \le \liminf_{\delta \to 0} \int_{\Omega} \sqrt{1 + |Du^{\delta}|^2} = \inf_{\delta \to$$

This is because the functional $\int \sqrt{1+|Du|^2}$ is convex and a convex combination of $u^{\delta} \to u$ in H^1 strongly. Then

$$\int_{\Omega} \sqrt{1 + |Du|^2} \leftarrow \int_{\Omega} \sqrt{1 + |D \text{ convex combination of } u^{\delta}|^2}$$

$$\stackrel{\text{Jessen}}{\leq} \text{ convex combination of } \int_{\Omega} \sqrt{1 + |Du^{\delta}|^2}$$

$$\leq \inf + \delta C.$$

Linear way:

$$\int_{\Omega} F(Du) \leq \int_{\Omega} F(Du^{\delta}) - F_p(Du) \cdot (Du^{\delta} - Du) \to \inf.$$

At this point, we have already obtained a minimizer u and its H^1 regularity then its uniqueness ($\varepsilon = 0$ argument pushed further), if we furnish (*). Indeed we show a stronger claim by taking advantage of the boundary data ($C^{1,1}$ at this point, further relaxed C^0 condition depending on Bombieri-De Giorgi-Miranda's a priori gradient estimate.) and $C^{1,1}$ boundary:

$$\left\| Du^{\delta} \right\|_{L^{\infty}(\Omega)} \leq C\left(\left\| \varphi \right\|_{C^{1,1}}, \partial \Omega \right), \text{ independent of } \delta.$$

RMK. First note from De Giorgi-Nash, we already know $u^{\delta} \in C^{1,\alpha}$ inside Ω , though we do not know yet a uniform $C^{1,\alpha}$ norm. Further by a similar, but simpler argument than De Giorgi-Nash, one can get C^{ε} regularity of u^{δ} up to the Lipschitz boundary with C^{β} boundary data φ . In the following we are just drawing uniform estimates independent of parameter δ .

Step $\left\| Du^{\delta} \right\|_{L^{\infty}(\Omega)} \leq C\left(\left\| \varphi \right\|_{C^{1,1}}, \partial \Omega \right)$

Boundary. For any linear function L, $\sum D_i \left(F_{p_i}^{\delta}(DL)\right) = 0$. We compare L to u^{δ} satisfying $\sum D_i \left(F_{p_i}^{\delta}(Du^{\delta})\right) = 0$. We have

$$\sum D_i \left(F_{p_i p_j}^{\delta} (*) D_j \left(L - u^{\delta} \right) \right) = 0$$
$$2\delta I \le \left(F_{p_i p_j}^{\delta} \right) \le (1 + 2\delta) I.$$

The (strong) maximum principle implies that the inf and sup of $L - u^{\delta}$ achieves on the boundary.

Recall/Exercise: For $C^{1,1}$ boundary $\partial\Omega$ strongly κ_0 -convex, that is the principle curvatures $(\kappa_1, \dots, \kappa_{n-1}) \geq \kappa_0$ componentwise, and $C^{1,1}$ boundary data φ , we have

 $x_n = |x'|^2$ boundary figure

$$\overbrace{\varphi(0) + D_{x'}\varphi(0) \cdot x' - Mx_n}^{L^-} \leq \varphi(x) \leq \overbrace{\varphi(0) + D_{x'}\varphi(0) \cdot x' + Mx_n}^{L^+} \\
L^- \leq u^{\delta} \leq L^+ \text{ on } \partial\Omega.$$

Hint: $x_n \ge \kappa_0 |x'|^2$.

Apply the maximum principle (either after Moser, or a simpler argument to be found in the end of this lecture), we get

$$L^{-} \leq u^{\delta} \leq L^{+}$$
 in Ω .

It implies

$$\left| D_{x_n} u^{\delta} \left(0 \right) \right| \le M.$$

Thus

$$|Du^{\delta}| = |(D'u^{\delta}, D_n u)| \le M (||\varphi||_{C^{1,1}}, \kappa_0) \text{ on } \partial\Omega, \delta \text{-free.}$$
 (Bdry Lip)

Interior to Boundary. For any $e \in \mathbb{R}^n$, for any $x \in \partial\Omega$, really boundary of $\Omega \cap \{\Omega - \varepsilon e\}$ with ε small. By the boundary Lip (Bdry Lip), we have for any fixed boundary point $x = x_0$ and for all $\varepsilon \leq \varepsilon_0(x_0)$

$$u^{\delta}\left(x+\varepsilon e\right) \leq u^{\delta}\left(x\right)+2M\varepsilon.$$

By the compactness of $\partial\Omega$, we have the above inequality at all boundary points of $\Omega \cap \{\Omega - \varepsilon e\}$ for all $\varepsilon \leq \varepsilon_{\partial\Omega}$. Observe that both $u^{\delta}(x + \varepsilon e)$ and $u^{\delta}(x)$ are $W^{1,2}$ weak solutions to

$$\sum D_{x_i} \left(F_{p_i}^{\delta} \left(Dv \right) \right) = 0 \text{ in } \Omega \cap \{ \Omega - \varepsilon e \}$$

By the (strong) maximum principle

$$u^{\delta}(x+\varepsilon e) \leq u^{\delta}(x) + 2M\varepsilon \text{ in } \Omega \cap \{\Omega - \varepsilon e\},\$$

from which we infer for all $x \in \Omega \cap \{\Omega - \varepsilon e\}$

$$\frac{u^{\delta}\left(x+\varepsilon e\right)-u^{\delta}\left(x\right)}{\varepsilon}\leq 2M$$

Similarly we obtain

$$-2M \le \frac{u^{\delta}\left(x + \varepsilon e\right) - u^{\delta}\left(x\right)}{\varepsilon}$$

By letting $\varepsilon \to 0$, we get

$$\left\| Du^{\delta} \right\|_{L^{\infty}(\Omega)} \le 2M, \quad \delta ext{-free.}$$

Then

$$\int_{\Omega} \left| Du^{\delta} \right|^2 \to \inf_{v \in H^1_{\varphi}(\Omega)} \int_{\Omega} \left| Dv \right|^2 \quad \text{as } \delta \to 0.$$

By the parallelogram inequality, $u^{\delta} \to u$ in $H^{1}(\Omega)$.

Summary: we have got the minimizer for $\int_{\Omega} \sqrt{1 + |Dv|^2}$ with $u = \varphi \in C^{1,1}(\partial\Omega)$ on the strongly convex boundary, such that (for example, by the above argument)

$$\|Du\|_{L^{\infty}(\bar{\Omega})} \leq C(\|\varphi\|_{C^{1,1}}, \kappa_0(\partial\Omega)).$$

Step $C^{2,\alpha}$. Regularity for the critical point u. First we have

$$\sum D_{x_i}\left(F_{p_ip_j}\left(*\right)D_{x_j}\left(\frac{u\left(x+\varepsilon e\right)-u\left(x\right)}{\varepsilon}\right)\right)=0.$$

De Giorgi-Nash implies

$$\left\| \frac{u\left(x+\varepsilon e\right)-u\left(x\right)}{\varepsilon} \right\|_{C^{a}\left(B_{1/2}\right)} \leq C \left\| \frac{u\left(x+\varepsilon e\right)-u\left(x\right)}{\varepsilon} \right\|_{L^{2}\left(B_{1}\right)}$$
$$\leq C \left\| Du \right\|_{L^{2}\left(B_{1}\right)} \leq C \left(\left\|\varphi\right\|_{C^{1,1}}, \kappa_{0}\left(\partial\Omega\right) \right).$$

Thus $u \in C^{1,\alpha}$ and u is a weak solution to $\sum D_i(F_{p_i}(Du)) = 0$.

Next we show that $u \in C^{2,\alpha}$, then $\sum F_{p_i p_j}(Du) D_{ij}u = 0$. The proof is through the $C^{2,\alpha}$ solution to a Dirichlet problem by Schauder theory. Let $a_{ij}(x) = F_{p_i p_j}(Du(x))$ (like the regularity for viscosity/Perron solution to $\Delta u = 0$), we know how to solve

$$\begin{cases} \sum a_{ij}(x) D_{ij}w = 0 \text{ in } B_{\eta} \\ w = u \text{ on } \partial B_{\eta} \end{cases}$$
 (Schauder)

by weighted norm method. Then we have $C^{2,\alpha}(B_{\eta})$ solution w.

Proposition 1 Let $u \in C^{1,\alpha}$ be a weak solution to $\sum D_i(F_{p_i}(Du)) = 0$ in B_{η} and $w \in C^{2,\alpha}$ solution to (Schauder). Then $u \equiv w$ in B_{η} .

The idea of the proof is to show $\sum D_i(F_{p_i}(D\mathbf{w})) = 0$ by a "viscosity" way. The technical execution is to modify w to $v \in C^{2,\alpha}$ such that

$$\sum D_i \left(F_{p_i} \left(Dv \right) \right) = \sum F_{p_i p_j} \left(Dv \right) D_{ij} v \ge 0$$
$$v \ge u \text{ and } v \left(x_1 \right) > u \left(x_1 \right)$$
$$v = u \text{ on boundary.}$$

Then contradicts $\sum D_i (F_{p_i}(Du)) = 0.$

Proof. Suppose $u \neq w$ in B_{η} , say $\max_{B_{\eta}} (w-u) = (w-u)(x_0) = t > 0$ and $x_0 \in \mathring{B}_{\eta}$.

w over u at x_0 figure

First step toward a sub solution v: Let $w_t = w + \frac{t}{2} \left(|x|^2 - \eta^2 \right)$, then $w_t = u$ on ∂B_η and

$$w_t(x_0) = w(x_0) + \frac{t}{2} \left(|x_0|^2 - \eta^2 \right) = u(x_0) + t + \frac{t}{2} \left(|x_0|^2 - \eta^2 \right) > u(x_0),$$

where we assumed that we started with $\eta \leq 1$. Then there exists C_t such that

$$w_t - C_t \leq u \text{ in } B_\eta$$

$$w_t - C_t = u \text{ at } x_1 \in \mathring{B}_\eta \quad (x_1 \text{ may not be } x_0)$$

$$Dw_t (x_1) = Du (x_1).$$

v over u over w_t figure

Second step toward a sub solution v: Let $v = w_t - C_t - \frac{t}{4} |x - x_1|^2 + \gamma$, then $v \ge u$ in a neighborhood N_{γ} of x_1 . And N_{γ} shrinks to the point x_1 as γ goes to zero.

Since $w \in C^{2,\alpha}$, $a_{ij}(x) \in C^{\alpha}$, and $Dv(x_1) = Du(x_1)$, we can choose γ small so that N_{γ} small, then Dv is close to Du in N_{γ} and eventually so that

$$\sum D_i (F_{p_i} (Dv)) = \sum F_{p_i p_j} (Dv) D_{ij} v$$

=
$$\sum \underbrace{\left(F_{p_i p_j} (Dv) - F_{p_i p_j} (Du)\right)}_{o(1)} \underbrace{D_{ij} v}_{\text{bounded}} + \sum a_{ij} (x) D_{ij} v$$

= $o(1) + \overrightarrow{\sum a_{ij} (x) D_{ij} w^0} + \sum \underbrace{a_{ij} (x)}_{\ge \mu} \frac{t}{4} \delta_{ij}$
\ge \mu \frac{t}{8} for small \ge .

Now

$$\begin{cases} \sum D_i \left(F_{p_i} \left(Du \right) \right) = 0 & \text{in } N_{\gamma} \\ \sum D_i \left(F_{p_i} \left(Dv \right) \right) \ge 0 & \text{in } N_{\gamma} \\ u = v & \text{on } \partial N_{\gamma} \end{cases}$$

or

$$\sum_{i} D_i \left(F_{p_i p_j} \left(* \right) D_j \left(v - u \right) \right) \ge 0.$$

Take a test function $(v-u)^+ \in H^1_0(N_\gamma)$, we get

$$0 \leq \int_{N_{\gamma}} (v - u)^{+} D_{i} \left(F_{p_{i}p_{j}} (*) D_{j} (v - u) \right)$$

$$\stackrel{\text{Sard}}{=} - \int_{N_{\gamma}} \sum D_{i} (v - u)^{+} F_{p_{i}p_{j}} (*) D_{j} (v - u)$$

$$\leq -\mu \int_{N_{\gamma}} \left| D_{i} (v - u)^{+} \right|^{2}.$$

It follows that $\int_{N_{\gamma}} \left| D_i (v-u)^+ \right|^2 = 0$, then $(v-u)^+ \equiv 0$ or $v \leq u$ in N_{γ} . But $v - u = \gamma > 0$ at x'_1 in N_{γ} .

This contradiction shows that $u \equiv w \in C^{2,\alpha}$ in B_{η} . Exercise: Let u be a $C^{2,\alpha}$ solution to $\sum F_{p_i p_j}(Du) D_{ij} u = 0$ and $\mu I \leq (F_{p_i p_j}) \leq \mu^{-1}I$. Show that $u \in C^{3,\alpha}$.