## Lecture 14 Alexandrov

- $C^{1,1} / W^{2, n}$ version
- viscosity version statement

Alexandrov-Bakelman-Pucci maximum principle:
Let $u \in C^{1,1}$ be a solution to

$$
\begin{gathered}
\sum a_{i j}(x) D_{i j} u=f \\
u \geq 0 \text { on } \partial B_{1}
\end{gathered}
$$

where

$$
\mu I \leq\left(a_{i j}\right) \leq \mu^{-1} I
$$

Then

$$
\max _{B_{1}} u^{-} \leq C(n, \mu)\left[\int_{B_{1}}\left(f^{+}\right)^{n}\right]^{1 / n}
$$

Proof.
cone figure
Consider the cone with base $\partial B_{1}$ and vertex $\left(x_{0}, u\left(x_{0}\right)\right)$, where $u\left(x_{0}\right)=\inf _{B_{1}} u$. Then

$$
\max _{B_{1}} u^{-} \leq \overbrace{2}^{\text {diameter }} \cdot \overbrace{\inf \mid D \text { cone } \mid}^{m} .
$$

We next estimate $m$ from above. Consider the cone with vertex $\left(x_{0}, u\left(x_{0}\right)\right)$ and a uniform slope $m$. For each and every tangent plane to the cone (along its generator), we move down parallelly the plane until it touched $u$ (and leaves $u$ after further down). At the touching points, which we denote by $\Sigma$,

$$
\begin{gathered}
D u=D \text { plane }=\text { Dcone } \\
u<0 \\
D^{2} u \geq 0 .
\end{gathered}
$$

It follows that

$$
B_{m} \subset D u(\Sigma) .
$$

RMK. To better describe the contact set $\Sigma$, we let $\Gamma$ be the convex envelope of $\min (u, 0)$ in $B_{1}$ (mainly for viscosity version). We have

$$
\begin{aligned}
\Sigma & =\{u=\Gamma\} \\
L(x) & \leq \Gamma \leq u \\
L\left(x^{*}\right) & =u\left(x^{*}\right) \quad x^{*} \text { touching point. }
\end{aligned}
$$

[^0]We infer

$$
\begin{gathered}
\left|B_{1}\right| m^{n} \leq|D u(\Sigma)|=\int_{D u(\Sigma)} d y \\
\begin{array}{c}
u \in C^{1,1} \\
D^{2} u \geq 0
\end{array} \int_{\Sigma} \operatorname{det} D^{2} u=\int_{\Sigma} \frac{\operatorname{det}\left(A D^{2} u\right)}{\operatorname{det} A} \\
\leq \int_{\Sigma} \frac{1}{\operatorname{det} A}\left[\frac{\operatorname{tr}\left(A D^{2} u\right)}{n}\right]^{n} \\
=\int_{\Sigma} \frac{1}{\operatorname{det} A}\left(f^{+}\right)^{n} \leq C(n, \mu) \int_{\Sigma}\left(f^{+}\right)^{n} .
\end{gathered}
$$

Thus we get

$$
\sup _{B_{1}} u^{-} \leq C(n, \mu)\left[\int_{\Sigma}\left(f^{+}\right)^{n}\right]^{1 / n}=C(n, \mu)\left[\int_{\Gamma=u}\left(f^{+}\right)^{n}\right]^{1 / n} .
$$

In order to have a short notation, mainly to avoid linearization of fully nonlinear equations, we introduce the viscosity sub and super classes: for $\mu>0$ and $f \in C^{0}$

$$
\begin{aligned}
\underline{\mathrm{S}}(\mu, f) & =\left\{u: M^{+}\left(D^{2} u\right) \geq f \text { in viscosity sense }\right\} \\
\bar{S}(\mu, f) & =\left\{u: M^{-}\left(D^{2} u\right) \leq f \text { in viscosity sense }\right\} \\
S & =\underline{\mathrm{S}} \cap \bar{S} .
\end{aligned}
$$

Here the subviscosity sense means whenever a quadratic $Q$ (touching $u$ from above, " $\left.\triangle Q " \geq f\left(x^{0}\right)\right)$ satisfying

$$
\left\{\begin{array}{c}
Q \geq u \text { near } x^{0} \\
=\text { at } x_{0}
\end{array}\right\}
$$

then

$$
M^{+}\left(D^{2} Q\right)=\sum_{\lambda_{i} \geq 0} \mu^{-1} \lambda_{i}+\sum_{\lambda_{i}<0} \mu \lambda_{i} \geq f\left(x^{0}\right)
$$

and the superviscosity sense means whenever a quadratic $Q$ (touching $u$ from below, $" \triangle Q " \leq f\left(x^{0}\right)$ ) satisfying

$$
\left\{\begin{array}{c}
Q \leq u \text { near } x^{0} \\
=\text { at } x_{0}
\end{array}\right\}
$$

then

$$
M^{-}\left(D^{2} Q\right)=\sum_{\lambda_{i} \geq 0} \mu \lambda_{i}+\sum_{\lambda_{i}<0} \mu^{-1} \lambda_{i} \leq f\left(x^{0}\right)
$$

Theorem 1 (Caffarelli) Let $u \in C^{0}\left(B_{1}\right)$ with $u \geq 0$ on $\partial B_{1}$ and $u \in \bar{S}(\mu, f)$. Then

$$
\sup _{B_{1}} u^{-} \leq C(n, \mu)\left[\int_{\Gamma=u}\left(f^{+}\right)^{n}\right]^{1 / n}
$$

Proof. Step 1. $\Gamma$ is $C^{1,1}$.
$\Gamma$ is $C^{1,1}$ at contact points $\Gamma=u$, say 0

$$
\left\{\begin{array}{c}
\Gamma \leq u \\
\Gamma(0)=u(0)
\end{array} \quad \stackrel{?}{\Longrightarrow} L(x) \leq \Gamma \leq L(x)+C|x|^{2}\right.
$$

By subtracting a linear support function from $\Gamma$ and $u$, we assume $L \equiv 0$. We want

$$
0 \leq \Gamma \leq C|x|^{2}
$$

that is to avoid $u=|x|$.
Let $M=\sup _{B_{\rho}} \Gamma$, say $M=\Gamma\left(\rho e_{n}\right)$. Note convex function $\Gamma$ is above its linear support function at $x=\rho e_{n}$

$$
\Gamma \geq a+b x_{n}
$$

Then $\Gamma\left(x^{\prime}, \rho\right) \geq a+b \rho=M$. Recall $\Gamma \geq 0$ on the rest of boundary of $R=B_{K \rho}^{n-1} \times$ $\times(-\rho, \rho)$. Set

$$
Q=M\left[\frac{\left(x_{n}+\rho\right)^{2}}{4 \rho^{2}}-\frac{\left|x^{\prime}\right|^{2}}{K^{2} \rho^{2}}\right], \quad K \text { to be determined. }
$$

Then

$$
\begin{aligned}
Q(0) & >0=\Gamma(0)=(u-L)(0) \\
Q & \leq \Gamma \leq u-L \text { on } \partial R .
\end{aligned}
$$

It allows one to move $Q$ down parallelly until it touches $u$ from above at $x^{*}$ inside $R$. From $u-L \in \bar{S}(\mu, f)$, we have

$$
\begin{gathered}
M^{-}\left(D^{2} Q\right) \leq f\left(x^{*}\right) \leq\left\|f^{+}\right\|_{L^{\infty}\left(B_{K_{\rho}}\right)} . \\
M^{-}\left(D^{2} Q\right)=\frac{M}{\rho^{2}}\left[\mu \frac{1}{2}-\mu^{-1}(n-1) \frac{2}{K^{2}}\right]=\frac{M}{\rho^{2}} \frac{1}{4} \mu
\end{gathered}
$$

with $K$ chosen as $K^{2}=\frac{(n-1)}{8} \mu^{-2}$. We get

$$
M \leq 4 \mu^{-1}\left\|f^{+}\right\|_{L^{\infty}\left(B_{K \rho}\right)} \rho^{2}
$$

So for all $\rho>0$

$$
0 \leq \Gamma \leq \sup _{B_{\rho}} \Gamma \leq 4 \mu^{-1}\left\|f^{+}\right\|_{L^{\infty}\left(B_{K \rho}\right)} \rho^{2}
$$

This implies that

$$
0 \leq D^{2} \Gamma(0) \leq 4 \mu^{-1} f^{+}(0) I
$$

$\Gamma$ is $C^{1,1}$ elsewhere. This follows from the fact that any non-contact point, is a convex combination of $(n+1)$ but one contact points [Caffarelli-Cabre, Lem 3.5].

Step 2. Consider cone with base $\partial B_{1}$, vertex $\left(x_{0}, u\left(x_{0}\right)\right)$ with

$$
\left|u\left(x_{0}\right)\right|=\sup _{B_{1}}|u(x)| \leq \underset{\text { diam }}{2} \cdot \inf \mid \underset{m}{D \text { cone } \mid .}
$$

Modify the initial cone to $\widetilde{c o n e}$ with slope $m$ and the same vertex $\left(x_{0}, u\left(x_{0}\right)\right)$. Parallelly move down each generator, really tangent plane along each generator of $\widetilde{\text { cone }}$, until it touches $u$ from above. Moreover, it touches $\Gamma$ from below where it touches $u$. Thus

$$
D \Gamma(\{\Gamma=u\}) \supseteq B_{m} .
$$

Then

$$
\begin{array}{rl}
\left|B_{1}\right| m^{n} & \leq|D \Gamma(\{\Gamma=u\})|=\int_{D \Gamma(\{\Gamma=u\})} d y \\
\stackrel{\Gamma}{\text { is } C^{1,1}} & d y \\
\{\Gamma=u\} \\
\operatorname{det} D^{2} \Gamma & \leq C(\mu) \int_{\{\Gamma=u\}}\left(f^{+}\right)^{n} .
\end{array}
$$

Therefore

$$
\sup _{B_{1}} u^{-} \leq C(n, \mu)\left[\int_{\{\Gamma=u\}}\left(f^{+}\right)^{n}\right]^{1 / n} .
$$


[^0]:    ${ }^{0}$ November 13, 2019

