Lecture 15 Krylov-Safonov

o decay estimate

o weak Harnack = C% = Liouville
o Harnack

o L* bound in terms of L¢/LP

Theorem 1 (Krylov-Safonov) Let u € C° be a viscosity solution of S (11,0) = 0.
Then u s Holder continuous and

||u||C’&(Bl/2) < C(n, ) [ull poo (3, with (small) a = o (n, p) > 0.

RMK. In this nondivergence case, the proof is relatively “easier”. It only took 20
years to achieve it after the divergence results in the 1950s. The viscosity version was
adapted by Caffarelli in the late 1980s.

Proof. Outline Step 1. Let

ueS(p0), ie. M~ (D) <0

u>0 inQym
infu <1.
Qs

Then there exist large M (u,n) and small 1 (x4, n) > 0 such that
Hu<M}NQ@i >n or {fu>M}n@ <1-—n.
Step 2. Iterate
{u>M Q| < (1-n)t.
RMK. The right formulation/consequence is: if

ueS(p,0), ie. M~ (D) <0

UZO inQ4\/ﬁ
minu < 1,
Qs

then there exists € = ¢ (1, n) such that

/ ut <M {u< MY+ M*[{M <u< M} +M*|[{M*<u< M} +--

<SMET+ME(1—n)+M*(1—n)+-
M* def
= =C )
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Without the assumption ming, u < 1 for 0 < u € S (,0) in Qa,/m, We just apply the
above to v = u/ ming, u, then

1/e
</ u5> < CV# (,n) min u.
) Qs
Step 3. Oscillation

Step 1. First heuristic: If

ZaijDiju < 0 in Bl
u(0) <1
u > 0,

then
Hu < M}N By >n.

That is, positive super solution small at one point implies it is not too large in a
nontrivial portion.

envelope figure

Let w=u + 2 <|5L'|2 — ].) 5 then ZCLZ']‘DZ‘]‘U} S 42&11 It follows that

1< n}gxw’ < C(n,pw) [/wr(w) <4Z%)n} Hn < C(n,p)|{w =T (w)}".
Now
{w=T(w)} C{w<0} C{u<2}.
Thus

1 " def
<2}N By > |=———=| —0.0000001 = n.
<20 8> o !

Second realization: construct h = A — B/r® such that

M™* (D?h) <0 outside @, to pick out @1,
h <=2 in (Q3 C) By5, to have inf over Qs,
h >0 outside (Q4 C) B; 5, to have nonnegative boundary data for Alexandrov,

‘DQh‘ < (', to bound determinant from above.

set inclusion figure

Let

/,'-Oé

h _ 2 — 2@ OutSide B1/2 C Ql = |:_l l:|n .
smooth inside By,



Then

—a(a+1)
2 (3y/n)" oY
2y
D= =20
e
2 o
M* (D?h) = (Sa—@ [—a(a+1)p+(n—1)ap™"] <0 if a(n,pu) large enough.

Set w = u + h, apply Alexandrov-B-P to min (u + %,0) in Bs 5 C Q4,5 we have

] l/mn
“M - (DQw)Tr} 1 (minimal arithmetic mean).

min w' < O (n, p) diam (Bs,z) [/w

By m =I'(w)

Observe

inf w<infw<l1l-2=-1.
B3 m Qs

Near contact points

w=u+h>I>P
u>P—h
u>P —Tyh “="at contact point.

Recall u € S (i,0) means pA* — A~ < Au <0

0> M~ (D?P — D*Tyh) L™ Tr A (D*P — D*Tyh) = TrAD*P — TrA (D*Tyh)
> M~ (D*P) — M* (D*Tyh).

It follows
M~ (D*P) < M* (D*Txh) < C (n, 1) Xq, -

Thus

1/n
t<con{ [ el < Cmmlw =T}

Also
{w=T(w)} C{w <0} C {u< —hgsup—hdéfM(n,u)}.

Finally we have

Hu<M}nQ:i _{ ]n_
O] =Hu<M}NQi| >nn,pu = o) 0.0000001 or
H{u> M} NQ _
Q-



Step 2. Claim: If

ueS(p0), ie. M~ (D) <0
u>0 inQym
infu <1,
Qs
then
{u>MYnoy] <@-n)'.
Step 1 shows k = 1 is true. Suppose the decay estimate is true for £ — 1, we show
“so is k”. Let
A={u>M"}NnQ B={u>M"1nQ:.
Already
Al < {uzMPn@Q <1—-n.

C-Z cube figure

We prove |A| < (1 —1n)|B| at every “effective” small scale via (Calderon-Zygmund)
dyadic splitting (), according to A.

Keeping case: |Q|8‘A‘ >1—mn, keep Q;
Splitting case: |?8|A| < 1 — 7, continue splitting Q.

Let {Q’} be the collection, for the predecessor Q7* of each @?, we show that
(* C B, that is, u > M*~! in Q’*. Suppose Q* € B or infg;- u < M*~1. We have

7%
QraAl
|Q7%|
Q7 N A
A1y *
(e .
Now
U _
0< 75— €5(10)
nf 7

<1

Apply Step 1 to u/M* 1 we get

o= =2 M} nQ|

ol =
which contradicts (*). Hence @Q7* C B. We can then finish the decay estimate
4] Leessne Z Q4| < Z ‘Qj’* ﬂA’
’ disjoint Qj/*jl(:over all Qi
case s%litting 1-n) Z ‘Qj’* QJ*SCB a—mlBl.
I




Therefore,
{uz Qi < (=) | fuz 2300,

Corollary 2 (Krylov-Safonov’s weak Harnack) Let 0 < u € S (1,0). Then

(/lua)1/€ < C(”»M)%ﬂnug C(n, 1) u(0).

RMK. One immediate consequence of this corollary is the strong minimum prin-
ciple for super solutions. B
Step 3. Claim: For continuous u € S (1,0) = S (1, 0) NS(w, 0) , we have

oscu < 0 osc u with positive 0 = 60 (n, u) < 1.
Q1 Q4\/71

In fact let .
" u—mewﬁu’
08CQ, /U
then w € S (p,0) and 0 < w < 1. )
Case |[{w > 1/2} N Q1] > 1/2. By the corollary applied to w € S,

1 ’Q1| 1/e 1/e
5 (—> < (/ w€> < C(n,pn) Hcl)inw < C(n,p) r%inw.

2 3 1
Then
()"
inw > =2 =0 (n,u) €(0,1).
minw = 5o (n,p) € (0,1)
Consequently
oscw<1-—9
Q1
or

oscu < (1 —0) osc u.
Q1 Qaym

Case [{w > 1/2} N Q1] < 1/2. Apply the corollary to

l1—wesS with [{1-w>1/2}NQ,

> 1/2,
and repeat the argument in the first case, we get
oscw=osc(l—w)<1-9§
Q1 Q1

or

oscu < (1 —0) osc u.
Q1 Quaym

The theorem is completely proved.



Corollary 3 (Krylov-Safonov’s Liouville) Let continuos u be a viscosity solution
to

Z Qi (l’) Diju =0 mR"

(%

with the continuos coefficients a;; (x) satisfying ul < (a;;) < p I  and
lul < C.
Then u 1s constant.

The proof goes as follows.

oscu < (1—268) oscu<---<(1—06)" osc u—0, ask — oco.
Ql Q4\/ﬁ Q(4ﬁ)k

Theorem 4 (Krylov-Safonov) Let continuos u be a solution in the viscosity sense
to

Z Qi (37) Diju =0 m B4\/ﬁ

i?j

with the continuos coefficients a;; (z) satisfying pl < (a;;) < p~ 1. Suppose u satisfies
u >0 in By

Then

maxu < C (n,u)u(0), and maxu < C (n,u)minu
Q1/2 Q12 Qs

Proof. Step 1. As in the divergence case, we can also “flip" the large distribution
decay estimate in Step 2 to obtain the Harnack inequality. Say u (0) = 1, if maxg, u >
M, then there exist a1, z, 73, -+ goes to x, € Qo such that u (zy) > (¥ 1M goes to
00. A contradiction.

Step 2. Local Maximum Principle. Let u €S(y,0) in By /. Then for any p > 0,
we have

mmuﬁC@mwﬂ/}MYTm.

1/2

Exercise: Proof this LMP. Hints: Indeed, by scaling u/ [[u*| 1., . we assume
[u™ | 1@,y = 1- Then

fu>tnail< [ ) 1

Lot T

Note ut = max {u, 0} is a subsolution, we have the large distribution decay estimate
by “look down” version of Step2. If maxg, P u™ > M, then similar to the “blow-
up” argument for the Harnack, there exist zq, x9, 23, -+ goes to x, € ()1 such that
u (z) > "1 M goes to co. A contradiction.

Weak Harnack then implies the full version.



