Lecture 16 Evans-Krylov-(Safonov)

o skip C1@
o C'*“ estimate

Recall Krylov-Safonov for C° 5 u € S (u,0) . Now for u-elliptic equation
F (D) =0

we have
i) ue C
ii) u € C1;
smooth version:
Z EjDijue =0.

C° version:

u(x+ee) —u(x)

€

€S (u,0).

The strong argument already gives u — v € S (i, 0), then the uniqueness of viscosity
solution,

u=7v on Jf)

2,0\ _ 2.\ i
{ F (D*u) = F(D*v) inQ }:>u:vinQ.
RMK. One can argue for the uniqueness “directly” when F' is not uniformly ellip-
tic, say only strictly elliptic or just elliptic. In such cases, there is no intermediate
conclusion v —v € S (u,0).
iii) C*'/C?** provided F is convex.
Smooth case: Analytic*

>0

Z FiiDjjtee + Z FijDijueDyue = 0,

that is Z FijDZ-juee < 0. Then

Ueee‘g(/‘ao) 2 @
{ F (D) = 0 }:>Du€C'.

Continuous case:

wletee)tuls—ce)=2u() G () ()

£

= D*u e O~
F (D) =0

uy = [f@BP(I)u —u (x)] € S (u,0)

local maximum principle
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*(Geometric

convex level figure

F(M)=0 D*u(z—ee) D*u(z+ce) VF (Du(z))

D*u(z —ce) + D?*u(x+ce) —2D%*u(z)
=2
FijDjjuee < 0.

VFE.

<0 or

Theorem 1 Let u € C*(C*) be a solution to p-elliptic equation F (D*u) = 0, F
convez. Then u € C** and
2

D).

By S C 1) 1D%ull e 5,

where small « = a (n, @) > 0.

Heuristic: Recall C* estimate for solutions 0 < u < 1 to > D, (a;;D;u) = 0 or
Z aijDiju = 0,

osc u < 0 oscu.
B1/2 B,

domain target pic
1 1
Bt =10,=| B =(z,1].
Tt
Either i) [u™! (BY)| > $ |By| or ii) [u™! (B™)| > 5 | Bi].
Case i) u > 0 super solution satisfies

1/e 1 /1 e
wtwzClu ([ ) 2 (5181) Znonn.

B2

Case ii) 1 — u super solution satisfies

inf (1— ) > C (n, ) (/ ( —uf)l/g > O () ) (%\Bﬂy ()

B2

Either way, we conclude
osc u < (1 —mn)oscu.
goeu < (1—n) o
RMK. We really only used u along positive and negative directions are super
solutions. One does similar things in the vector case:
o Fully nonlinear equations F (D?*v) = 0, u --+ D%v, and v, directions are
enough (note there is no negative direction now).
o Harmonic maps AU = Q (U,DU), wu --» U (no negative direction either).



Now heuristic for C? = C** for F (D?u) = 0.

domain target pic
D*u(B,) =B'UB*uUB®
DiamD?u (B;) = 1

One of the preimages, say
_ 1
(D%) 7 (B) N By = £ |B.

From D?*u € {M : F (M) =0}, we find e € R such that
PG .
— ] > : 2 2 )
Uee 1{?11f Uee > C'(n,p0) >0 in (D u) (B )
Note

Uee € S (11,0)  (u € C* straightforward for u € C*, little involved for u € C?).

From Krylov-Safonov, we obtain

it (=) 2 ) ([ (- ') "

By 2
= 1 e def
> Cnp)-Cnw (1B1) a0

Then we can “drop” say B? in the covering of D?u (B ) or at least a fixed portion of

B3. Tterate, we have D?*u-image shrinks as we shrink our domain, in a Holder fashion,
then Holder for D?u.

Lemma 2 Assume F is p-elliptic (no convexity assumption) and F (My) = F (M,) .
Then (in fact <=>)

C(w) _y € C(n)
My = M| =" ||(My — My)™ || = [|(My — M) " || =" sup (My — My) - e”e,
le]=1
m particular
Cg
TS \
| My — Ms|| > sup (My — M) -e* e > C (n, ) || My — M|

le|=1
Here | M| = > M7
Proof. By p-ellipticity, we have

F (M) =F (M; — My + M) < F (M) + " ||(My — Mo) " || = || (M7 — M)~ ||
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Then
pl|(My = My) || < 7| (M = M) |

By symmetry
@ =) = e[ = 27| < w7 [ (M = M| = | (M = M)

Next from

(M, — Mp)" =

we have

= )| < M, = Al < M — M)+ |04y — 2]
< () an - 2|

Then
lsTlp (M1 — Mp) - e'e < ||(My — M) || < VXl = \/ﬁ‘s.l‘lp e(M; — My)e”
el=1 e|=1
and
CE
—_——~

1
T
e M M) 2 )

Proof of the theorem (Caffarelli).

Step 0. Suppose diam(D?u(B;)) = 1. Otherwise let v = u/diam, G (M) =
F (diam M) /diam, then G (D?*v) = 0 with G still being u-elliptic and convex.

Step 1. There exists small ¢y (n, 1) (from weak Harnack) such that if { B, (My) szlv
cover D?*u (By), then

either a) D*u (By ;) has diameter less than 1/2

or b) we can cover D*u (B 5) with N — 1 balls.

Suppose a) does not happen, then diamD?u (By) >diamD?u (By2) > 1/2. “En-
large” the covering of D?u (B;) by N’ (finitely many overlapping, “decoys”) balls in
R {y, (Hl)}ézfﬂ with & = h (n,p) = min {4, §
(h™™) > g¢) and cg is from the above lemma.

| My — M| .

cg} (much larger than £y such that

domain target covering figure

We know N’ (n,u) < (%)nxn, then there exists one ball, say B! = By, (H;) and
H, = D?u (z;) such that




Also there exists H, with H, = D?u (z,) such that ||H, — H,|| > 1/4. By the above
lemma, there exists e € R" such that

Uee (T1) — Uee (T4) > CR HDzu (z1) — D*u ()

> —
= 4CE
and with m = infg, Uee () = Uee ()

Uee () — M 2> Uge (T) — Uge (T4) = Uee (T) — Uee (1) + Uee (T1) — Uee (T4)
> — || D?u(z) — D*u (21)|| + iCE

S 1 +1 1
——c —cp = =¢C
= TglE T 4= gk

for all = satisfying || D?u (x) — D*u (21)|| < h < gcg.
Recall F is convex and u € C* (C? is enough), then we have the important

Uee () —m € S (,0).

By Krylov-Safonov, we derive

iﬁw%m—mnmmwﬂéy%—mﬂw

By /2
1 B, 1/e
> c(n,p) e (ﬁ) =n(n,pu) > 0.

Let, say B., (M;) contain D?u (z), then for D?u (y) € B., (M)
tee () = tee (2) < ||D*u(y) — D*u(z)|| <220 <
provided we (now) choose &y such that 2¢q (n, 1) < 1 (n, 1) (essentially h™*™/¢ > &g).
D%y (Bl/g) and B, (M;) figure

Therefore, we can still cover D*u (Byj,) with N — 1 balls of {B,, (Mk)}],zzv, after
throwing away one ball B., (M) .
Step 2. Let
v(z) =2%u(z/2): B CR" - R,

then
D’ (x) = D*u(x/2), D*v (Bij2) = D*u (Bia)
F (D*v (z)) = F (D*u(z/2)) = 0.

Repeat Step 1, D?u (B1/4) = D% (Bl/g) is either a) or b). After [ < N < (1/g9)™*"
many steps, we have

diam (D2u (Bl/Zl)) S

N |
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Let v =7 (n,u) = 1/2!, then

diam (D*u (B,)) < %diam (D*u(By))
diam (D*u (B,z2)) < %dlam (D*u(By))
diam (D% (B1)) < gediom (D*u (1)

Iterate, we obtain the desired Holder estimate of D?u. The proof of Evans-Krylov-
(Safonov) is complete.

RMK. For complex Monge-Ampere equation det 90u = 1, one obtains real Hessian
|D?ul| oo estimates in terms of complex Hessian ||00ul|, ., and |Ju||; as follows.

Curvature way (Yau): By Calabi ||D85UH e S C (||85UH Loo). By Schauder,
ID*ull o < C ([|00ul] o, lJull o) -

Bernstein way (X-J Wang): By Bernstein, || D?ul|;. < C (H@éuHLw ull ) - By
Evans-Krylov-(Safonov), [D?u] . < C (|[D*ul| ;) -

Complex way: Replace real e Q) e by complex 0z Q) 0z, by Evans-Krylov-(Safonov),
[00u] < C (H@éu”Lm) . Then ¢trD?*u = Au € C® By Schauder, ||D%uly. <
C (/|00 ;) - (|100u]] po + N1l ) -

Another proof (Caffarelli-Silvestre) of Evans-Krylov Theorem 1 is via Schauder
for Laplacian equation Au = f(x) € C* and the following oscillation decay of Au.

Proposition 3 Let u be a smooth solution to u-elliptic concave equation F(D?*u) = 0
in By. Then
oscp, , Au<[l1—0(n, w)]Foscp, A u.

Step 1. Normalization. By subtracting a quadratic function from u, v(z) = u(z) —

2u;;(0)z;x;, then F (D?v + D?u (0)) = 0, we assume D?u(0) = 0. By linear change of

variables v(z) = u(Az) and scaling equation G (D*v) = 1F((A") ' D?v(z)A™!) = 0,
we assume (F, (0)) = I, meanwhile, say p°I < (F,,) < p~°1.

Obs. ?

0="F (D) =F (D) —F(0) =) as\"+ ) —a;\~

By scaling M F (D?*u/M) = 0 with M = maxp, Y A" (z), we assume
tx) <
H}lEgXZ AT (z) <1,
while p-ellipticity and concavity are preserved.
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1/2

for small positive 6 (n, ;1) to be chosen in the end of this Step.

Otherwise, there exists xg € By, and subvariety x¢ + II such that Anu (zo) =
Z:/\Jr (flfo) >1-—40.

Step 2.1. Consider supersolution v = 1 — Apgu > 0 with ming ,v < 6. By the

weak Harnack y
/ v° < C(n,p)minv < C(n,pn) 6.
Bi4 By /2

Multiplying both sides by 57, we have [{v > 6/} N Bl/4}1/5 < C(n,p) 042 or
l—-Aqu=v<67?inQcC B /4, with most of the measure, }31/4 ~ Q‘ < O/,
Step 2.2. Now in €2, we have
1—02 < Aqu < ZA’L <1, then
DA =) N > (1-677).
Still in
Apru=—=3 N+ 3 M = Aqu < —p? (1= 072) + 0= b (n, 1) < 0.
Consider subsolution
v=(v+b)" <1+bin Bu
v=201in
v(0) =b(n,u) >0

By Local Maximum Principle/Mean value inequality

1/e
0 <b=maxv <C(n,u) / v°
Buys B4

< C(n,p) (1+40b) [Biya~Q<C (1+0b) C° 672

Contradiction, if we finally fix small enough ¢ (n, ).
Step 3. Iteration, by repeating Step 2 to 2%y (a: / 2’“) , we have

AT < (1 —0)F.
g2 A= (1-0)



Direct proof (after Caffarelli-Silvestre) of Evans-Krylov Theorem 1 without Schauder
for Laplacian equation Au = f(z) € C°.

Step 1. Normalization. By subtracting a quadratic function from u, v(x) =
u(x) — 3u;;(0)z;z;, then F (D*v + D?u (0)) = 0, we assume D*u(0) = 0.

Obs

0=F (D) =F (D2 = apht+ ) —ajA
2 o AT
[T ZA’

By scaling M F (D?*u/M) = 0 with M = maxp, Y A" (z), we assume

max Z )\Jr

while p-ellipticity and concavity are preserved. Note that if M = 0, then D?*u = 0 in
Bs.
Step 2. Claim:

maxZ)OL )< 1—46(n,pn)

By /2

for small positive 6 (n, ;1) to be chosen in the end of this Step.

Otherwise, there exists zo € B/, with the eigenspace II for positive eigenvalues
AT of D?u (xg) such that trpD?*u = Apu (z0) = Y. AT (z9) > 1 — 6.

Step 2.1. Consider supersolution v = 1 — Anqu > 0 with minBl/2 v < 6. By the
weak Harnack

1/e
(/ v5> < C(n,p)minv < C(n,pu) 6.
Bija

By s
Multiplying both sides by 55, we get |[{v > "7} N Bl/4‘1/8 < C(n,p) 042 or
l—Aqu=v<60"2inQc B4, with most of the measure, }31/4 ~ Q‘ < C°6°/2,
Step 2.2. Now in €2, we have
1—6"2 < Aqu< ) A" <1, then
DA =) N> (1-677).
Still in
Apiu = —Z)ﬁ + Z)\+ — Apu < —p? (1—0Y2) + 912 b (n,p) < 0.
Consider subsolution
v=(v+b)" <1+bin By,
v=0in
v(0)=b(n,u) >0
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By Local Maximum Principle/Mean value inequality

1/e
0 <b=maxv < C(n,un) / v°
Buys Biya

<Cn,p) (140) |Bua~ Q| <C (14b) C° 6>

Contradiction, if we finally fix small enough ¢ (n, ).
Step 3. Iteration, by repeating Step 2 to 2%y (x/Zk) , we have

+ . k
II_%EEC(ZA <(1-6)".

Then in By,
0< glﬁi(z:)\* <(1-6)".
Meanwhile
0< gffz/\_ < gﬁfu‘i’zk‘ <p(1-6)".
That is

OSCBQ,kD2u <(1- G)k 1 2oscg, D*u.



