Lecture 16 Evans-Krylov-(Safonov)

 $\stackrel{\circ}{\scriptstyle \circ} \mathop{\rm skip} C^{1,\alpha} \\ \stackrel{\circ}{\scriptstyle \circ} C^{2,\alpha} \text{ estimate}$

Recall Krylov-Safonov for $C^0 \ni u \in S(\mu, 0)$. Now for μ -elliptic equation

$$F\left(D^2u\right) = 0$$

we have

i) $u \in C^{\alpha}$; ii) $u \in C^{1,\alpha}$; smooth version:

$$\sum F_{ij} D_{ij} u_e = 0.$$

 C^0 version:

$$\frac{u\left(x+\varepsilon e\right)-u\left(x\right)}{\varepsilon}\in S\left(\mu,0\right).$$

The strong argument already gives $u - v \in S(\mu, 0)$, then the uniqueness of viscosity solution,

$$\left\{\begin{array}{cc} F\left(D^{2}u\right) = F\left(D^{2}v\right) & \text{in }\Omega\\ u = v & \text{on }\partial\Omega \end{array}\right\} \Rightarrow u = v \text{ in }\Omega.$$

RMK. One can argue for the uniqueness "directly" when F is not uniformly elliptic, say only strictly elliptic or just elliptic. In such cases, there is no intermediate conclusion $u - v \in S(\mu, 0)$.

iii) $C^{1,1}/C^{2,\alpha}$ provided F is convex.

Smooth case: Analytic*

$$\sum F_{ij} D_{ij} u_{ee} + \overbrace{\sum F_{ij,kl} D_{ij} u_e D_{kl} u_e}^{\geq 0} = 0,$$

that is $\sum F_{ij}D_{ij}u_{ee} \leq 0$. Then

$$\left\{\begin{array}{l}u_{ee}\in\bar{S}\left(\mu,0\right)\\F\left(D^{2}u\right)=0\end{array}\right\}\Rightarrow D^{2}u\in C^{\alpha}.$$

Continuous case:

$$\left\{\begin{array}{c} \frac{u(x+\varepsilon e)+u(x-\varepsilon e)-2u(x)}{\varepsilon^{2}}\in \bar{S}\left(\mu,0\right)\\ F\left(D^{2}u\right)=0\end{array}\right\}\Rightarrow D^{2}u\in C^{\alpha}.$$
$$\left[u_{\rho}^{*}=\frac{1}{\rho^{2}}\left[\oint_{\partial B_{\rho}(x)}u-u\left(x\right)\right]\in \bar{S}\left(\mu,0\right)\\ \text{local maximum principle}\end{array}\right\}\Rightarrow D^{2}u\in L^{\infty}$$

 0 November 25, 2019

*Geometric

convex level figure

$$F(M) = 0 \quad D^{2}u(x - \varepsilon e) \quad D^{2}u(x + \varepsilon e) \quad \nabla F(D^{2}u(x))$$

$$\nabla F \cdot \frac{D^{2}u(x - \varepsilon e) + D^{2}u(x + \varepsilon e) - 2D^{2}u(x)}{\varepsilon^{2}} \leq 0 \text{ or }$$

$$F_{ij}D_{ij}u_{ee} \leq 0.$$

Theorem 1 Let $u \in C^2(C^4)$ be a solution to μ -elliptic equation $F(D^2u) = 0$, F convex. Then $u \in C^{2,\alpha}$ and

$$\|D^2 u\|_{C^{\alpha}(B_{1/2})} \le C(n,\mu) \|D^2 u\|_{L^{\infty}(B_1)},$$

where small $\alpha = \alpha (n, \mu) > 0$.

Heuristic: Recall C^{α} estimate for solutions $0 \leq u \leq 1$ to $\sum D_i(a_{ij}D_ju) = 0$ or $\sum a_{ij}D_{ij}u = 0$,

$$\underset{B_{1/2}}{\operatorname{osc}} u \leq \theta \underset{B_1}{\operatorname{osc}} u.$$

domain target pic

$$\mathcal{B}^+ = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \quad \mathcal{B}^- = (\frac{1}{2}, 1].$$

Either i) $|u^{-1}(\mathcal{B}^+)| \ge \frac{1}{2} |B_1|$ or ii) $|u^{-1}(\mathcal{B}^-)| \ge \frac{1}{2} |B_1|$. Case i) u > 0 super solution satisfies

$$\inf_{B_{1/2}} u \ge C(n,\mu) \left(\int_{B_1} u^{\varepsilon} \right)^{1/\varepsilon} \ge C(n,\mu) \frac{1}{2} \left(\frac{1}{2} |B_1| \right)^{\varepsilon} \stackrel{\text{def}}{=} \eta(n,\mu).$$

Case ii) 1 - u super solution satisfies

$$\inf_{B_{1/2}} (1-u) \ge C(n,\mu) \left(\int_{B_1} (1-u)^{\varepsilon} \right)^{1/\varepsilon} \ge C(n,\mu) \frac{1}{2} \left(\frac{1}{2} |B_1| \right)^{\varepsilon} \stackrel{\text{def}}{=} \eta(n,\mu).$$

Either way, we conclude

$$\underset{B_{1/2}}{\operatorname{osc}} u \le (1 - \eta) \underset{B_1}{\operatorname{osc}} u.$$

RMK. We really only used u along positive and negative directions are super solutions. One does similar things in the vector case:

• Fully nonlinear equations $F(D^2v) = 0$, $u \rightarrow D^2v$, and v_{ee} directions are enough (note there is no negative direction now).

• Harmonic maps $\Delta U = Q(U, DU)$, $u \rightarrow U$ (no negative direction either).

Now heuristic for $C^2 \Rightarrow C^{2,\alpha}$ for $F(D^2u) = 0$.

domain target pic

$$D^{2}u(B_{1}) = \mathcal{B}^{1} \cup \mathcal{B}^{2} \cup \mathcal{B}^{3}$$

 $\mathrm{Diam}D^{2}u(B_{1}) = 1$

One of the preimages, say

$$\left| \left(D^2 u \right)^{-1} \left(\mathcal{B}^2 \right) \cap B_1 \right| \ge \frac{1}{3} \left| B_1 \right|.$$

From $D^{2}u \in \{M : F(M) = 0\}$, we find $e \in \mathbb{R}^{n}$ such that

$$u_{ee} - \overbrace{\inf_{B_1}}^m u_{ee} \ge \overline{C}(n,\mu) > 0 \quad \text{in } \left(D^2 u\right)^{-1} \left(\mathcal{B}^2\right).$$

Note

 $u_{ee} \in \overline{S}(\mu, 0)$ $(u \in C^4 \text{ straightforward for } u \in C^4, \text{ little involved for } u \in C^2).$

From Krylov-Safonov, we obtain

$$\inf_{B_{1/2}} (u_{ee} - m) \ge C(n, \mu) \left(\int_{B_1} (u_{ee} - m)^{\varepsilon} \right)^{1/\varepsilon}$$
$$\ge C(n, \mu) \cdot \bar{C}(n, \mu) \left(\frac{1}{3} |B_1| \right)^{1/\varepsilon} \stackrel{\text{def}}{=} \eta(n, \mu) > 0$$

Then we can "drop" say \mathcal{B}^3 in the covering of $D^2u(B_{1/2})$ or at least a fixed portion of \mathcal{B}^3 . Iterate, we have D^2u -image shrinks as we shrink our domain, in a Hölder fashion, then Hölder for D^2u .

Lemma 2 Assume F is μ -elliptic (no convexity assumption) and $F(M_1) = F(M_2)$. Then (in fact \iff)

$$\|M_1 - M_2\| \stackrel{C(\mu)}{\approx} \|(M_1 - M_2)^-\| \stackrel{C(\mu)}{\approx} \|(M_1 - M_2)^+\| \stackrel{C(n)}{\approx} \sup_{|e|=1} (M_1 - M_2) \cdot e^T e,$$

 $in \ particular$

$$||M_1 - M_2|| \ge \sup_{|e|=1} (M_1 - M_2) \cdot e^T e \ge \overbrace{C(n,\mu)}^{C_E} ||M_1 - M_2||.$$

Here $\left\|M\right\|^2 = \sum M_{ij}^2$.

Proof. By μ -ellipticity, we have

$$\underline{F(M_1)} = F(M_1 - M_2 + M_2) \le \underline{F(M_2)} + \mu^{-1} \left\| (M_1 - M_2)^+ \right\| - \mu \left\| (M_1 - M_2)^- \right\|.$$

Then

$$\mu \| (M_1 - M_2)^- \| \le \mu^{-1} \| (M_1 - M_2)^+ \|.$$

By symmetry

$$\mu \left\| (M_1 - M_2)^+ \right\| = \mu \left\| (M_2 - M_1)^- \right\| \le \mu^{-1} \left\| (M_2 - M_1)^+ \right\| = \mu^{-1} \left\| (M_1 - M_2)^- \right\|.$$

Next from

$$(M_1 - M_2)^+ = \begin{bmatrix} \lambda_1^+ & & & \\ & \ddots & & \\ & & \lambda_k^+ & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{bmatrix}$$

we have

$$\left\| (M_1 - M_2)^+ \right\| \le \|M_1 - M_2\| \le \left\| (M_1 - M_2)^+ \right\| + \left\| (M_1 - M_2)^- \right\| \\ \le (1 + \mu^{-2}) \left\| (M_1 - M_2)^+ \right\|.$$

Then

$$\sup_{|e|=1} (M_1 - M_2) \cdot e^T e \le \left\| (M_1 - M_2)^+ \right\| \le \sqrt{n} \lambda_{\max}^+ = \sqrt{n} \sup_{|e|=1} e (M_1 - M_2) e^T$$

and

$$\sup_{|e|=1} e \left(M_1 - M_2 \right) e^T \ge \underbrace{\frac{c_E}{1}}_{\sqrt{n} \left(1 + \mu^{-2} \right)} \left\| M_1 - M_2 \right\|.$$

Proof of the theorem (Caffarelli).

Step 0. Suppose diam $(D^2u(B_1)) = 1$. Otherwise let v = u/diam, G(M) = F(diam M)/diam, then $G(D^2v) = 0$ with G still being μ -elliptic and convex.

Step 1. There exists small $\varepsilon_0(n,\mu)$ (from weak Harnack) such that if $\{\mathcal{B}_{\varepsilon_0}(M_k)\}_{k=1}^{k=N}$ cover $D^2u(B_1)$, then

either a) $D^2u(B_{1/2})$ has diameter less than 1/2

or b) we can cover $D^2u(B_{1/2})$ with N-1 balls.

Suppose a) does not happen, then diam $D^2u(B_1) \ge \text{diam}D^2u(B_{1/2}) \ge 1/2$. "Enlarge" the covering of $D^2u(B_1)$ by N' (finitely many overlapping, "decoys") balls in $\mathbb{R}^{n \times n} \{\mathcal{B}_h(H_l)\}_{l=1}^{l=N'}$ with $h = h(n,\mu) = \min\{\frac{1}{8}, \frac{1}{8}c_E\}$ (much larger than ε_0 such that $(h^{n \times n}) > \varepsilon_0$) and c_E is from the above lemma.

domain target covering figure

We know $N'(n,\mu) \leq \left(\frac{1}{h}\right)^{n \times n}$, then there exists one ball, say $\mathcal{B}^1 = \mathcal{B}_h(H_1)$ and $H_1 = D^2 u(x_1)$ such that

$$\left| \left(D^2 u \right)^{-1} \left(\mathcal{B}^1 \right) \right| \ge \frac{|B_1|}{N'} \text{ or } \frac{|B_{1/2}|}{N'}.$$

Also there exists H_* with $H_* = D^2 u(x_*)$ such that $||H_1 - H_*|| \ge 1/4$. By the above lemma, there exists $e \in \mathbb{R}^n$ such that

$$u_{ee}(x_1) - u_{ee}(x_*) \ge c_E \left\| D^2 u(x_1) - D^2 u(x_*) \right\| \ge \frac{1}{4} c_E$$

and with $m = \inf_{B_1} u_{ee}(x) = u_{ee}(\underline{x})$

$$u_{ee}(x) - m \ge u_{ee}(x) - u_{ee}(x_*) = u_{ee}(x) - u_{ee}(x_1) + u_{ee}(x_1) - u_{ee}(x_*)$$
$$\ge - \left\| D^2 u(x) - D^2 u(x_1) \right\| + \frac{1}{4} c_E$$
$$\ge -\frac{1}{8} c_E + \frac{1}{4} c_E = \frac{1}{8} c_E$$

for all x satisfying $||D^2u(x) - D^2u(x_1)|| \le h \le \frac{1}{8}c_E$. Recall F is convex and $u \in C^4$ (C⁰ is enough), then we have the important

$$u_{ee}\left(x\right) - m \in \bar{S}\left(\mu, 0\right).$$

By Krylov-Safonov, we derive

$$\inf_{B_{1/2}} \left(u_{ee} \left(x \right) - m \right) \ge c \left(n, \mu \right) \left[\int_{B_1} \left(u_{ee} - m \right)^{\varepsilon} \right]^{1/\varepsilon}$$
$$\ge c \left(n, \mu \right) \frac{1}{8} c_E \left(\frac{B_1}{N'} \right)^{1/\varepsilon} = \eta \left(n, \mu \right) > 0.$$

Let, say $\mathcal{B}_{\varepsilon_0}(M_1)$ contain $D^2u(\underline{x})$, then for $D^2u(y) \in \mathcal{B}_{\varepsilon_0}(M_1)$

$$u_{ee}(y) - u_{ee}(\underline{x}) \le \left\| D^2 u(y) - D^2 u(\underline{x}) \right\| \le 2\varepsilon_0 < \eta$$

provided we (now) choose ε_0 such that $2\varepsilon_0(n,\mu) < \eta(n,\mu)$ (essentially $h^{n \times n/\varepsilon} > \varepsilon_0$).

 $D^2u(B_{1/2})$ and $\mathcal{B}_{\varepsilon_0}(M_1)$ figure

Therefore, we can still cover $D^2u(B_{1/2})$ with N-1 balls of $\{\mathcal{B}_{\varepsilon_0}(M_k)\}_{k=1}^{k=N}$, after throwing away one ball $\mathcal{B}_{\varepsilon_0}(M_1)$.

Step 2. Let

$$v(x) = 2^2 u(x/2) : B_1 \subset \mathbb{R}^n \to \mathbb{R}^1,$$

then

$$D^{2}v(x) = D^{2}u(x/2), \ D^{2}v(B_{1/2}) = D^{2}u(B_{1/4})$$
$$F(D^{2}v(x)) = F(D^{2}u(x/2)) = 0.$$

Repeat Step 1, $D^2u(B_{1/4}) = D^2v(B_{1/2})$ is either a) or b). After $l < N \leq (1/\varepsilon_0)^{n \times n}$ many steps, we have

diam
$$\left(D^2 u\left(B_{1/2^l}\right)\right) \leq \frac{1}{2}$$
.

Let $\gamma = \gamma(n, \mu) = 1/2^l$, then

$$\operatorname{diam} \left(D^{2}u\left(B_{\gamma}\right) \right) \leq \frac{1}{2} \operatorname{diam} \left(D^{2}u\left(B_{1}\right) \right)$$
$$\operatorname{diam} \left(D^{2}u\left(B_{\gamma^{2}}\right) \right) \leq \frac{1}{2^{2}} \operatorname{diam} \left(D^{2}u\left(B_{1}\right) \right)$$
$$\ldots$$
$$\operatorname{diam} \left(D^{2}u\left(B_{\gamma^{k}}\right) \right) \leq \frac{1}{2^{k}} \operatorname{diam} \left(D^{2}u\left(B_{1}\right) \right).$$

Iterate, we obtain the desired Hölder estimate of D^2u . The proof of Evans-Krylov-(Safonov) is complete.

RMK. For complex Monge-Ampere equation det $\partial \partial u = 1$, one obtains real Hessian $\|D^2 u\|_{C^{\alpha}}$ estimates in terms of complex Hessian $\|\partial \bar{\partial} u\|_{L^{\infty}}$ and $\|u\|_{L^{\infty}}$ as follows.

Curvature way (Yau): By Calabi $\|D\partial\bar{\partial}u\|_{L^{\infty}} \leq \tilde{C}(\|\partial\bar{\partial}u\|_{L^{\infty}})$. By Schauder, $\|D^{2}u\|_{C^{\alpha}} \leq C(\|\partial\bar{\partial}u\|_{L^{\infty}}, \|u\|_{L^{\infty}})$.

Bernstein way (X-J Wang): By Bernstein, $\|D^2 u\|_{L^{\infty}} \leq C\left(\|\partial \bar{\partial} u\|_{L^{\infty}}, \|u\|_{L^{\infty}}\right)$. By Evans-Krylov-(Safonov), $[D^2 u]_{C^{\alpha}} \leq C\left(\|D^2 u\|_{L^{\infty}}\right)$.

Complex way: Replace real $e \otimes e$ by complex $\partial z \otimes \partial \bar{z}$, by Evans-Krylov-(Safonov), $\left[\partial \bar{\partial} u\right]_{\alpha} \leq C \left(\left\|\partial \bar{\partial} u\right\|_{L^{\infty}} \right)$. Then $trD^{2}u = \Delta u \in C^{\alpha}$. By Schauder, $\left\|D^{2}u\right\|_{C^{\alpha}} \leq C \left(\left\|\partial \bar{\partial} u\right\|_{L^{\infty}} \right) \cdot \left(\left\|\partial \bar{\partial} u\right\|_{L^{\infty}} + \left\|u\right\|_{L^{\infty}} \right)$.

Another proof (Caffarelli-Silvestre) of Evans-Krylov Theorem 1 is via Schauder for Laplacian equation $\Delta u = f(x) \in C^{\alpha}$ and the following oscillation decay of Δu .

Proposition 3 Let u be a smooth solution to μ -elliptic concave equation $F(D^2u) = 0$ in B_1 . Then

$$osc_{B_{2-k}} \bigtriangleup u \le [1 - \theta(n, \mu)]^k osc_{B_1} \bigtriangleup u.$$

Step 1. Normalization. By subtracting a quadratic function from $u, v(x) = u(x) - \frac{1}{2}u_{ij}(0)x_ix_j$, then $F(D^2v + D^2u(0)) = 0$, we assume $D^2u(0) = 0$. By linear change of variables v(x) = u(Ax) and scaling equation $G(D^2v) = \frac{1}{d}F((A')^{-1}D^2v(x)A^{-1}) = 0$, we assume $(F_{v_{ij}}(0)) = I$, meanwhile, say $\mu^3 I \leq (F_{v_{ij}}) \leq \mu^{-3}I$.

Obs.

$$0 = F(D^{2}u) = F(D^{2}u) - F(0) = \sum a_{ii}\lambda^{+} + \sum -a_{jj}\lambda^{-}$$
$$\mu^{2} \leq \frac{\sum \lambda^{+}}{\sum \lambda^{-}} \leq \mu^{-2}$$
$$0 \leq \Delta u = \sum \lambda^{+} + \sum -\lambda^{-}.$$

By scaling $MF(D^2u/M) = 0$ with $M = \max_{B_1} \sum \lambda^+(x)$, we assume

$$\max_{B_1} \sum \lambda^+ \left(x \right) \le 1,$$

while μ -ellipticity and concavity are preserved.

Step 2. Claim:

$$\max_{B_{1/2}} \sum \lambda^{+} (x) \le 1 - \theta (n, \mu)$$

for small positive $\theta(n, \mu)$ to be chosen in the end of this Step.

Otherwise, there exists $x_0 \in B_{1/2}$ and subvariety $x_0 + \Pi$ such that $\Delta_{\Pi} u(x_0) = \sum \lambda^+(x_0) > 1 - \theta$.

Step 2.1. Consider supersolution $v = 1 - \Delta_{\Pi} u \ge 0$ with $\min_{B_{1/2}} v \le \theta$. By the weak Harnack

$$\left(\int_{B_{1/4}} v^{\varepsilon}\right)^{1/\varepsilon} \le C\left(n,\mu\right) \min_{B_{1/2}} v \le C\left(n,\mu\right) \ \theta$$

Multiplying both sides by $\frac{1}{\theta^{1/2}}$, we have $\left|\left\{v \ge \theta^{1/\theta}\right\} \cap B_{1/4}\right|^{1/\varepsilon} \le C(n,\mu) \ \theta^{1/2}$ or

$$1 - \Delta_{\Pi} u = v < \theta^{1/2}$$
 in $\Omega \subset B_{1/4}$, with most of the measure, $|B_{1/4} \smallsetminus \Omega| \le C^{\varepsilon} \theta^{\varepsilon/2}$

Step 2.2. Now in Ω , we have

$$1 - \theta^{1/2} < \Delta_{\Pi} u \le \sum \lambda^+ \le 1, \text{ then}$$
$$\sum \lambda^- \ge \mu^2 \sum \lambda^+ > \mu^2 \left(1 - \theta^{1/2}\right).$$

Still in Ω

$$\Delta_{\Pi^{\perp}} u = -\sum \lambda^{-} + \sum \lambda^{+} - \Delta_{\Pi} u < -\mu^{2} \left(1 - \theta^{1/2}\right) + \theta^{1/2} \stackrel{\text{def}}{=} -b \left(n, \mu\right) < 0.$$

Consider subsolution

$$v = (v + b)^+ \le 1 + b$$
 in $B_{1/4}$
 $v = 0$ in Ω
 $v(0) = b(n, \mu) > 0$

By Local Maximum Principle/Mean value inequality

$$0 < b = \max_{B_{1/8}} v \le C(n,\mu) \left(\int_{B_{1/4}} v^{\varepsilon} \right)^{1/\varepsilon} \le C(n,\mu) (1+b) |B_{1/4} \smallsetminus \Omega| \le C (1+b) C^{\varepsilon} \theta^{\varepsilon/2}.$$

Contradiction, if we finally fix small enough $\varepsilon(n,\mu)$.

Step 3. Iteration, by repeating Step 2 to $2^{2k}u(x/2^k)$, we have

$$\max_{B_{2^{-k}}} \sum \lambda^+ \le (1-\theta)^k.$$

Then in $B_{2^{-k}}$,

$$0 \le \Delta u \le \max_{B_{2^{-k}}} \sum \lambda^+ \le (1-\theta)^k \,.$$

Direct proof (after Caffarelli-Silvestre) of Evans-Krylov Theorem 1 without Schauder for Laplacian equation $\Delta u = f(x) \in C^{\alpha}$.

Step 1. Normalization. By subtracting a quadratic function from u, $v(x) = u(x) - \frac{1}{2}u_{ij}(0)x_ix_j$, then $F(D^2v + D^2u(0)) = 0$, we assume $D^2u(0) = 0$. **Obs.**

$$0 = F\left(D^{2}u\right) = F\left(D^{2}u\right) - F\left(0\right) = \sum a_{ii}\lambda^{+} + \sum -a_{jj}\lambda^{-}$$
$$\mu^{2} \leq \frac{\sum \lambda^{+}}{\sum \lambda^{-}} \leq \mu^{-2}$$

By scaling $MF(D^2u/M) = 0$ with $M = \max_{B_1} \sum \lambda^+(x)$, we assume

$$\max_{B_1} \sum \lambda^+ \left(x \right) = 1,$$

while μ -ellipticity and concavity are preserved. Note that if M = 0, then $D^2 u \equiv 0$ in B_1 .

Step 2. Claim:

$$\max_{B_{1/2}} \sum \lambda^{+} (x) \le 1 - \theta (n, \mu)$$

for small positive $\theta(n, \mu)$ to be chosen in the end of this Step.

Otherwise, there exists $x_0 \in B_{1/2}$ with the eigenspace Π for positive eigenvalues λ^+ of $D^2 u(x_0)$ such that $tr_{\Pi} D^2 u = \Delta_{\Pi} u(x_0) = \sum \lambda^+(x_0) > 1 - \theta$.

Step 2.1. Consider supersolution $v = 1 - \Delta_{\Pi} u \ge 0$ with $\min_{B_{1/2}} v \le \theta$. By the weak Harnack

$$\left(\int_{B_{1/4}} v^{\varepsilon}\right)^{1/\varepsilon} \leq C\left(n,\mu\right) \min_{B_{1/2}} v < C\left(n,\mu\right) \ \theta.$$

Multiplying both sides by $\frac{1}{\theta^{1/2}}$, we get $\left|\left\{v \ge \theta^{1/\theta}\right\} \cap B_{1/4}\right|^{1/\varepsilon} \le C(n,\mu) \ \theta^{1/2}$ or

 $1 - \Delta_{\Pi} u = v < \theta^{1/2}$ in $\Omega \subset B_{1/4}$, with most of the measure, $|B_{1/4} \smallsetminus \Omega| \le C^{\varepsilon} \theta^{\varepsilon/2}$.

Step 2.2. Now in Ω , we have

$$1 - \theta^{1/2} < \Delta_{\Pi} u \le \sum \lambda^+ \le 1, \text{ then}$$
$$\sum \lambda^- \ge \mu^2 \sum \lambda^+ > \mu^2 \left(1 - \theta^{1/2}\right).$$

Still in Ω

$$\Delta_{\Pi^{\perp}} u = -\sum \lambda^{-} + \sum \lambda^{+} - \Delta_{\Pi} u < -\mu^{2} \left(1 - \theta^{1/2}\right) + \theta^{1/2} \stackrel{\text{def}}{=} -b \left(n, \mu\right) < 0.$$

Consider subsolution

$$v = (v + b)^+ \le 1 + b \text{ in } B_{1/4}$$

 $v = 0 \text{ in } \Omega$
 $v (0) = b (n, \mu) > 0$

By Local Maximum Principle/Mean value inequality

$$0 < b = \max_{B_{1/8}} v \le C(n,\mu) \left(\int_{B_{1/4}} v^{\varepsilon} \right)^{1/\varepsilon} \le C(n,\mu) (1+b) |B_{1/4} \smallsetminus \Omega| \le C (1+b) C^{\varepsilon} \theta^{\varepsilon/2}$$

Contradiction, if we finally fix small enough $\varepsilon(n,\mu)$. Step 3. Iteration, by repeating Step 2 to $2^{2k}u(x/2^k)$, we have

$$\max_{B_{2^{-k}}} \sum \lambda^+ \le (1-\theta)^k \,.$$

Then in $B_{2^{-k}}$,

$$0 \le \max_{B_{2^{-k}}} \sum \lambda^+ \le (1-\theta)^k.$$

Meanwhile

$$0 \le \max_{B_{2^{-k}}} \sum \lambda^{-} \le \max_{B_{2^{-k}}} \mu^{-2} \sum \lambda^{-} \le \mu^{-2} (1-\theta)^{k}.$$

That is

$$osc_{B_{2-k}}D^2u \le (1-\theta)^k \mu^{-2}osc_{B_1}D^2u.$$