Lecture 16 Evans-Krylov-(Safonov)

- skip $C^{1, \alpha}$
- $C^{2, \alpha}$ estimate

Recall Krylov-Safonov for $C^{0} \ni u \in S(\mu, 0)$. Now for μ-elliptic equation

$$
F\left(D^{2} u\right)=0
$$

we have
i) $u \in C^{\alpha}$;
ii) $u \in C^{1, \alpha}$;
smooth version:

$$
\sum F_{i j} D_{i j} u_{e}=0
$$

C^{0} version:

$$
\frac{u(x+\varepsilon e)-u(x)}{\varepsilon} \in S(\mu, 0) .
$$

The strong argument already gives $u-v \in S(\mu, 0)$, then the uniqueness of viscosity solution,

$$
\left\{\begin{array}{c}
F\left(D^{2} u\right)=F\left(D^{2} v\right) \text { in } \Omega \\
u=v \text { on } \partial \Omega
\end{array}\right\} \Rightarrow u=v \text { in } \Omega .
$$

RMK. One can argue for the uniqueness "directly" when F is not uniformly elliptic, say only strictly elliptic or just elliptic. In such cases, there is no intermediate conclusion $u-v \in S(\mu, 0)$.
iii) $C^{1,1} / C^{2, \alpha}$ provided F is convex.

Smooth case: Analytic*

$$
\sum F_{i j} D_{i j} u_{e e}+\overbrace{\sum F_{i j, k l} D_{i j} u_{e} D_{k l} u_{e}}^{\geq 0}=0,
$$

that is $\sum F_{i j} D_{i j} u_{e e} \leq 0$. Then

$$
\left\{\begin{array}{c}
u_{e e} \in \bar{S}(\mu, 0) \\
F\left(D^{2} u\right)=0
\end{array}\right\} \Rightarrow D^{2} u \in C^{\alpha} .
$$

Continuous case:

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{u(x+\varepsilon e)+u(x-\varepsilon e)-2 u(x)}{\varepsilon^{2}} \in \bar{S}(\mu, 0) \\
F\left(D^{2} u\right)=0
\end{array}\right\} \Rightarrow D^{2} u \in C^{\alpha} . \\
\left\{\begin{array}{c}
u_{\rho}^{*}=\frac{1}{\rho^{2}}\left[f_{\partial B_{\rho}(x)} u-u(x)\right] \in \bar{S}(\mu, 0) \\
\text { local maximum principle }
\end{array}\right\} \Rightarrow D^{2} u \in L^{\infty} .
\end{gathered}
$$

[^0]*Geometric
\[

$$
\begin{aligned}
& \text { convex level figure } \\
& F(M)=0 D^{2} u(x-\varepsilon e) \quad D^{2} u(x+\varepsilon e) \quad \nabla F\left(D^{2} u(x)\right) \\
& \nabla F \cdot \frac{D^{2} u(x-\varepsilon e)+D^{2} u(x+\varepsilon e)-2 D^{2} u(x)}{\varepsilon^{2}} \leq 0 \text { or } \\
& F_{i j} D_{i j} u_{e e} \leq 0 .
\end{aligned}
$$
\]

Theorem 1 Let $u \in C^{2}\left(C^{4}\right)$ be a solution to μ-elliptic equation $F\left(D^{2} u\right)=0, F$ convex. Then $u \in C^{2, \alpha}$ and

$$
\left\|D^{2} u\right\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C(n, \mu)\left\|D^{2} u\right\|_{L^{\infty}\left(B_{1}\right)},
$$

where small $\alpha=\alpha(n, \mu)>0$.
Heuristic: Recall C^{α} estimate for solutions $0 \leq u \leq 1$ to $\sum D_{i}\left(a_{i j} D_{j} u\right)=0$ or $\sum a_{i j} D_{i j} u=0$,

$$
\underset{B_{1 / 2}}{\operatorname{osc}} u \leq \theta \underset{B_{1}}{\operatorname{osc}} u
$$

domain target pic

$$
\mathcal{B}^{+}=\left[0, \frac{1}{2}\right] \quad \mathcal{B}^{-}=\left(\frac{1}{2}, 1\right] .
$$

Either i) $\left|u^{-1}\left(\mathcal{B}^{+}\right)\right| \geq \frac{1}{2}\left|B_{1}\right|$ or ii) $\left|u^{-1}\left(\mathcal{B}^{-}\right)\right| \geq \frac{1}{2}\left|B_{1}\right|$.
Case i) $u>0$ super solution satisfies

$$
\inf _{B_{1 / 2}} u \geq C(n, \mu)\left(\int_{B_{1}} u^{\varepsilon}\right)^{1 / \varepsilon} \geq C(n, \mu) \frac{1}{2}\left(\frac{1}{2}\left|B_{1}\right|\right)^{\varepsilon} \stackrel{\text { def }}{=} \eta(n, \mu) .
$$

Case ii) $1-u$ super solution satisfies

$$
\inf _{B_{1 / 2}}(1-u) \geq C(n, \mu)\left(\int_{B_{1}}(1-u)^{\varepsilon}\right)^{1 / \varepsilon} \geq C(n, \mu) \frac{1}{2}\left(\frac{1}{2}\left|B_{1}\right|\right)^{\varepsilon} \stackrel{\text { def }}{=} \eta(n, \mu) .
$$

Either way, we conclude

$$
\underset{B_{1 / 2}}{\operatorname{osc}} u \leq(1-\eta) \underset{B_{1}}{\operatorname{osc}} u
$$

RMK. We really only used u along positive and negative directions are super solutions. One does similar things in the vector case:

- Fully nonlinear equations $F\left(D^{2} v\right)=0, u \rightarrow D^{2} v$, and $v_{e e}$ directions are enough (note there is no negative direction now).
- Harmonic maps $\triangle U=Q(U, D U), \quad u \rightarrow U$ (no negative direction either).

Now heuristic for $C^{2} \Rightarrow C^{2, \alpha}$ for $F\left(D^{2} u\right)=0$.

$$
\left.\begin{array}{rl}
\quad \text { domain target pic } \\
D^{2} u\left(B_{1}\right) & =\mathcal{B}^{1} \cup \mathcal{B}^{2} \cup \mathcal{B}^{3}
\end{array}\right] \begin{aligned}
& \text { Diam } D^{2} u\left(B_{1}\right)=1
\end{aligned}
$$

One of the preimages, say

$$
\left|\left(D^{2} u\right)^{-1}\left(\mathcal{B}^{2}\right) \cap B_{1}\right| \geq \frac{1}{3}\left|B_{1}\right|
$$

From $D^{2} u \in\{M: F(M)=0\}$, we find $e \in \mathbb{R}^{n}$ such that

$$
u_{e e}-\overbrace{\inf _{B_{1}} u_{e e}}^{m} \geq \bar{C}(n, \mu)>0 \text { in }\left(D^{2} u\right)^{-1}\left(\mathcal{B}^{2}\right) .
$$

Note

$$
u_{e e} \in \bar{S}(\mu, 0) \quad\left(u \in C^{4} \text { straightforward for } u \in C^{4}, \quad \text { little involved for } u \in C^{2}\right)
$$

From Krylov-Safonov, we obtain

$$
\begin{aligned}
\inf _{B_{1 / 2}}\left(u_{e e}-m\right) & \geq C(n, \mu)\left(\int_{B_{1}}\left(u_{e e}-m\right)^{\varepsilon}\right)^{1 / \varepsilon} \\
& \geq C(n, \mu) \cdot \bar{C}(n, \mu)\left(\frac{1}{3}\left|B_{1}\right|\right)^{1 / \varepsilon} \stackrel{\text { def }}{=} \eta(n, \mu)>0
\end{aligned}
$$

Then we can "drop" say \mathcal{B}^{3} in the covering of $D^{2} u\left(B_{1 / 2}\right)$ or at least a fixed portion of \mathcal{B}^{3}. Iterate, we have $D^{2} u$-image shrinks as we shrink our domain, in a Hölder fashion, then Hölder for $D^{2} u$.

Lemma 2 Assume F is μ-elliptic (no convexity assumption) and $F\left(M_{1}\right)=F\left(M_{2}\right)$. Then (in fact \Longleftrightarrow)

$$
\left\|M_{1}-M_{2}\right\| \stackrel{C(\mu)}{\approx}\left\|\left(M_{1}-M_{2}\right)^{-}\right\| \stackrel{C(\mu)}{\approx}\left\|\left(M_{1}-M_{2}\right)^{+}\right\| \stackrel{C(n)}{\approx} \sup _{|e|=1}\left(M_{1}-M_{2}\right) \cdot e^{T} e
$$

in particular

$$
\left\|M_{1}-M_{2}\right\| \geq \sup _{|e|=1}\left(M_{1}-M_{2}\right) \cdot e^{T} e \geq \overbrace{C(n, \mu)}^{C_{E}}\left\|M_{1}-M_{2}\right\| .
$$

Here $\|M\|^{2}=\sum M_{i j}^{2}$.
Proof. By μ-ellipticity, we have

$$
\underline{F\left(M_{1}\right)}=F\left(M_{1}-M_{2}+M_{2}\right) \leq \underline{F\left(M_{2}\right)}+\mu^{-1}\left\|\left(M_{1}-M_{2}\right)^{+}\right\|-\mu\left\|\left(M_{1}-M_{2}\right)^{-}\right\| .
$$

Then

$$
\mu\left\|\left(M_{1}-M_{2}\right)^{-}\right\| \leq \mu^{-1}\left\|\left(M_{1}-M_{2}\right)^{+}\right\|
$$

By symmetry

$$
\mu\left\|\left(M_{1}-M_{2}\right)^{+}\right\|=\mu\left\|\left(M_{2}-M_{1}\right)^{-}\right\| \leq \mu^{-1}\left\|\left(M_{2}-M_{1}\right)^{+}\right\|=\mu^{-1}\left\|\left(M_{1}-M_{2}\right)^{-}\right\|
$$

Next from

$$
\left(M_{1}-M_{2}\right)^{+}=\left[\begin{array}{cccccc}
\lambda_{1}^{+} & & & & & \\
& \ldots & & & & \\
& & \lambda_{k}^{+} & & & \\
& & & 0 & & \\
& & & & \cdots & \\
& & & & 0
\end{array}\right]
$$

we have

$$
\begin{aligned}
\left\|\left(M_{1}-M_{2}\right)^{+}\right\| & \leq\left\|M_{1}-M_{2}\right\| \leq\left\|\left(M_{1}-M_{2}\right)^{+}\right\|+\left\|\left(M_{1}-M_{2}\right)^{-}\right\| \\
& \leq\left(1+\mu^{-2}\right)\left\|\left(M_{1}-M_{2}\right)^{+}\right\|
\end{aligned}
$$

Then

$$
\sup _{|e|=1}\left(M_{1}-M_{2}\right) \cdot e^{T} e \leq\left\|\left(M_{1}-M_{2}\right)^{+}\right\| \leq \sqrt{n} \lambda_{\max }^{+}=\sqrt{n} \sup _{|e|=1} e\left(M_{1}-M_{2}\right) e^{T}
$$

and

$$
\sup _{|e|=1} e\left(M_{1}-M_{2}\right) e^{T} \geq \overbrace{\frac{1}{\sqrt{n}\left(1+\mu^{-2}\right)}}^{c_{E}}\left\|M_{1}-M_{2}\right\|
$$

Proof of the theorem (Caffarelli).
Step 0. Suppose $\operatorname{diam}\left(D^{2} u\left(B_{1}\right)\right)=1$. Otherwise let $v=u / \operatorname{diam}, G(M)=$ $F(\operatorname{diam} M) / \operatorname{diam}$, then $G\left(D^{2} v\right)=0$ with G still being μ-elliptic and convex.

Step 1. There exists small $\varepsilon_{0}(n, \mu)$ (from weak Harnack) such that if $\left\{\mathcal{B}_{\varepsilon_{0}}\left(M_{k}\right)\right\}_{k=1}^{k=N}$ cover $D^{2} u\left(B_{1}\right)$, then
either a) $D^{2} u\left(B_{1 / 2}\right)$ has diameter less than $1 / 2$
or b) we can cover $D^{2} u\left(B_{1 / 2}\right)$ with $N-1$ balls.
Suppose a) does not happen, then $\operatorname{diam} D^{2} u\left(B_{1}\right) \geq \operatorname{diam} D^{2} u\left(B_{1 / 2}\right) \geq 1 / 2$. "Enlarge" the covering of $D^{2} u\left(B_{1}\right)$ by N^{\prime} (finitely many overlapping, "decoys") balls in $\mathbb{R}^{n \times n}\left\{\mathcal{B}_{h}\left(H_{l}\right)\right\}_{l=1}^{l=N^{\prime}}$ with $h=h(n, \mu)=\min \left\{\frac{1}{8}, \frac{1}{8} c_{E}\right\}$ (much larger than ε_{0} such that $\left.\left(h^{n \times n}\right)>\varepsilon_{0}\right)$ and c_{E} is from the above lemma.

domain target covering figure

We know $N^{\prime}(n, \mu) \leq\left(\frac{1}{h}\right)^{n \times n}$, then there exists one ball, say $\mathcal{B}^{1}=\mathcal{B}_{h}\left(H_{1}\right)$ and $H_{1}=D^{2} u\left(x_{1}\right)$ such that

$$
\left|\left(D^{2} u\right)^{-1}\left(\mathcal{B}^{1}\right)\right| \geq \frac{\left|B_{1}\right|}{N^{\prime}} \text { or } \frac{\left|B_{1 / 2}\right|}{N^{\prime}} .
$$

Also there exists H_{*} with $H_{*}=D^{2} u\left(x_{*}\right)$ such that $\left\|H_{1}-H_{*}\right\| \geq 1 / 4$. By the above lemma, there exists $e \in \mathbb{R}^{n}$ such that

$$
u_{e e}\left(x_{1}\right)-u_{e e}\left(x_{*}\right) \geq c_{E}\left\|D^{2} u\left(x_{1}\right)-D^{2} u\left(x_{*}\right)\right\| \geq \frac{1}{4} c_{E}
$$

and with $m=\inf _{B_{1}} u_{e e}(x)=u_{e e}(\underline{x})$

$$
\begin{aligned}
u_{e e}(x)-m & \geq u_{e e}(x)-u_{e e}\left(x_{*}\right)=u_{e e}(x)-u_{e e}\left(x_{1}\right)+u_{e e}\left(x_{1}\right)-u_{e e}\left(x_{*}\right) \\
& \geq-\left\|D^{2} u(x)-D^{2} u\left(x_{1}\right)\right\|+\frac{1}{4} c_{E} \\
& \geq-\frac{1}{8} c_{E}+\frac{1}{4} c_{E}=\frac{1}{8} c_{E}
\end{aligned}
$$

for all x satisfying $\left\|D^{2} u(x)-D^{2} u\left(x_{1}\right)\right\| \leq h \leq \frac{1}{8} c_{E}$.
Recall F is convex and $u \in C^{4}$ (C^{0} is enough), then we have the important

$$
u_{e e}(x)-m \in \bar{S}(\mu, 0) .
$$

By Krylov-Safonov, we derive

$$
\begin{aligned}
\inf _{B_{1 / 2}}\left(u_{e e}(x)-m\right) & \geq c(n, \mu)\left[\int_{B_{1}}\left(u_{e e}-m\right)^{\varepsilon}\right]^{1 / \varepsilon} \\
& \geq c(n, \mu) \frac{1}{8} c_{E}\left(\frac{B_{1}}{N^{\prime}}\right)^{1 / \varepsilon}=\eta(n, \mu)>0
\end{aligned}
$$

Let, say $\mathcal{B}_{\varepsilon_{0}}\left(M_{1}\right)$ contain $D^{2} u(\underline{x})$, then for $D^{2} u(y) \in \mathcal{B}_{\varepsilon_{0}}\left(M_{1}\right)$

$$
u_{e e}(y)-u_{e e}(\underline{x}) \leq\left\|D^{2} u(y)-D^{2} u(\underline{x})\right\| \leq 2 \varepsilon_{0}<\eta
$$

provided we (now) choose ε_{0} such that $2 \varepsilon_{0}(n, \mu)<\eta(n, \mu)$ (essentially $h^{n \times n / \varepsilon}>\varepsilon_{0}$).

$$
D^{2} u\left(B_{1 / 2}\right) \text { and } \mathcal{B}_{\varepsilon_{0}}\left(M_{1}\right) \text { figure }
$$

Therefore, we can still cover $D^{2} u\left(B_{1 / 2}\right)$ with $N-1$ balls of $\left\{\mathcal{B}_{\varepsilon_{0}}\left(M_{k}\right)\right\}_{k=1}^{k=N}$, after throwing away one ball $\mathcal{B}_{\varepsilon_{0}}\left(M_{1}\right)$.

Step 2. Let

$$
v(x)=2^{2} u(x / 2): B_{1} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}
$$

then

$$
\begin{aligned}
D^{2} v(x) & =D^{2} u(x / 2), D^{2} v\left(B_{1 / 2}\right)=D^{2} u\left(B_{1 / 4}\right) \\
F\left(D^{2} v(x)\right) & =F\left(D^{2} u(x / 2)\right)=0 .
\end{aligned}
$$

Repeat Step 1, $D^{2} u\left(B_{1 / 4}\right)=D^{2} v\left(B_{1 / 2}\right)$ is either a) or b). After $l<N \lesssim\left(1 / \varepsilon_{0}\right)^{n \times n}$ many steps, we have

$$
\operatorname{diam}\left(D^{2} u\left(B_{1 / 2^{l}}\right)\right) \leq \frac{1}{2}
$$

Let $\gamma=\gamma(n, \mu)=1 / 2^{l}$, then

$$
\begin{aligned}
\operatorname{diam}\left(D^{2} u\left(B_{\gamma}\right)\right) & \leq \frac{1}{2} \operatorname{diam}\left(D^{2} u\left(B_{1}\right)\right) \\
\operatorname{diam}\left(D^{2} u\left(B_{\gamma^{2}}\right)\right) & \leq \frac{1}{2^{2}} \operatorname{diam}\left(D^{2} u\left(B_{1}\right)\right) \\
& \ldots \\
\operatorname{diam}\left(D^{2} u\left(B_{\gamma^{k}}\right)\right) & \leq \frac{1}{2^{k}} \operatorname{diam}\left(D^{2} u\left(B_{1}\right)\right) .
\end{aligned}
$$

Iterate, we obtain the desired Hölder estimate of $D^{2} u$. The proof of Evans-Krylov(Safonov) is complete.

RMK. For complex Monge-Ampere equation $\operatorname{det} \partial \bar{\partial} u=1$, one obtains real Hessian $\left\|D^{2} u\right\|_{C^{\alpha}}$ estimates in terms of complex Hessian $\|\partial \bar{\partial} u\|_{L^{\infty}}$ and $\|u\|_{L^{\infty}}$ as follows.

Curvature way (Yau): By Calabi $\|D \partial \bar{\partial} u\|_{L^{\infty}} \leq C\left(\|\partial \bar{\partial} u\|_{L^{\infty}}\right)$. By Schauder, $\left\|D^{2} u\right\|_{C^{\alpha}} \leq C\left(\|\partial \bar{\partial} u\|_{L^{\infty}},\|u\|_{L^{\infty}}\right)$.

Bernstein way (X-J Wang): By Bernstein, $\left\|D^{2} u\right\|_{L^{\infty}} \leq C\left(\|\partial \bar{\partial} u\|_{L^{\infty}},\|u\|_{L^{\infty}}\right)$. By Evans-Krylov-(Safonov), $\left[D^{2} u\right]_{C^{\alpha}} \leq C\left(\left\|D^{2} u\right\|_{L^{\infty}}\right)$.

Complex way: Replace real $e \otimes e$ by complex $\partial z \otimes \partial \bar{z}$, by Evans-Krylov-(Safonov), $[\partial \bar{\partial} u]_{\alpha} \leq C\left(\|\partial \bar{\partial} u\|_{L^{\infty}}\right)$. Then $\operatorname{tr} D^{2} u=\triangle u \in C^{\alpha}$. By Schauder, $\left\|D^{2} u\right\|_{C^{\alpha}} \leq$ $C\left(\|\partial \bar{\partial} u\|_{L^{\infty}}\right) \cdot\left(\|\partial \bar{\partial} u\|_{L^{\infty}}+\|u\|_{L^{\infty}}\right)$.

Another proof (Caffarelli-Silvestre) of Evans-Krylov Theorem 1 is via Schauder for Laplacian equation $\Delta u=f(x) \in C^{\alpha}$ and the following oscillation decay of $\triangle u$.

Proposition 3 Let u be a smooth solution to μ-elliptic concave equation $F\left(D^{2} u\right)=0$ in B_{1}. Then

$$
\operatorname{osc}_{B_{2}-k} \triangle u \leq[1-\theta(n, \mu)]^{k} \operatorname{osc}_{B_{1}} \triangle u
$$

Step 1. Normalization. By subtracting a quadratic function from $u, v(x)=u(x)-$ $\frac{1}{2} u_{i j}(0) x_{i} x_{j}$, then $F\left(D^{2} v+D^{2} u(0)\right)=0$, we assume $D^{2} u(0)=0$. By linear change of variables $v(x)=u(A x)$ and scaling equation $G\left(D^{2} v\right)=\frac{1}{d} F\left(\left(A^{\prime}\right)^{-1} D^{2} v(x) A^{-1}\right)=0$, we assume $\left(F_{v_{i j}}(0)\right)=I$, meanwhile, say $\mu^{3} I \leq\left(F_{v_{i j}}\right) \leq \mu^{-3} I$.

Obs.

$$
\begin{aligned}
0 & =F\left(D^{2} u\right)=F\left(D^{2} u\right)-F(0)=\sum a_{i i} \lambda^{+}+\sum-a_{j j} \lambda^{-} \\
\mu^{2} & \leq \frac{\sum \lambda^{+}}{\sum \lambda^{-}} \leq \mu^{-2} \\
0 & \leq \triangle u=\sum \lambda^{+}+\sum-\lambda^{-} .
\end{aligned}
$$

By scaling $M F\left(D^{2} u / M\right)=0$ with $M=\max _{B_{1}} \sum \lambda^{+}(x)$, we assume

$$
\max _{B_{1}} \sum \lambda^{+}(x) \leq 1,
$$

while μ-ellipticity and concavity are preserved.

Step 2. Claim:

$$
\max _{B_{1 / 2}} \sum \lambda^{+}(x) \leq 1-\theta(n, \mu)
$$

for small positive $\theta(n, \mu)$ to be chosen in the end of this Step.
Otherwise, there exists $x_{0} \in B_{1 / 2}$ and subvariety $x_{0}+\Pi$ such that $\triangle_{\Pi} u\left(x_{0}\right)=$ $\sum \lambda^{+}\left(x_{0}\right)>1-\theta$.

Step 2.1. Consider supersolution $v=1-\triangle_{\Pi} u \geq 0$ with $\min _{B_{1 / 2}} v \leq \theta$. By the weak Harnack

$$
\left(\int_{B_{1 / 4}} v^{\varepsilon}\right)^{1 / \varepsilon} \leq C(n, \mu) \min _{B_{1 / 2}} v \leq C(n, \mu) \theta .
$$

Multiplying both sides by $\frac{1}{\theta^{1 / 2}}$, we have $\left|\left\{v \geq \theta^{1 / \theta}\right\} \cap B_{1 / 4}\right|^{1 / \varepsilon} \leq C(n, \mu) \theta^{1 / 2}$ or $1-\triangle_{\Pi} u=v<\theta^{1 / 2}$ in $\Omega \subset B_{1 / 4}$, with most of the measure, $\left|B_{1 / 4} \backslash \Omega\right| \leq C^{\varepsilon} \theta^{\varepsilon / 2}$.

Step 2.2. Now in Ω, we have

$$
\begin{aligned}
1-\theta^{1 / 2} & <\triangle_{\Pi} u \leq \sum \lambda^{+} \leq 1, \text { then } \\
\sum \lambda^{-} & \geq \mu^{2} \sum \lambda^{+}>\mu^{2}\left(1-\theta^{1 / 2}\right)
\end{aligned}
$$

Still in Ω

$$
\triangle_{\Pi^{\perp}} u=-\sum \lambda^{-}+\sum \lambda^{+}-\triangle_{\Pi} u<-\mu^{2}\left(1-\theta^{1 / 2}\right)+\theta^{1 / 2} \stackrel{\text { def }}{=}-b(n, \mu)<0 .
$$

Consider subsolution

$$
\begin{gathered}
v=(v+b)^{+} \leq 1+b \text { in } B_{1 / 4} \\
v=0 \text { in } \Omega \\
v(0)=b(n, \mu)>0
\end{gathered}
$$

By Local Maximum Principle/Mean value inequality

$$
\begin{aligned}
0 & <b=\max _{B_{1 / 8}} v \leq C(n, \mu)\left(\int_{B_{1 / 4}} v^{\varepsilon}\right)^{1 / \varepsilon} \\
& \leq C(n, \mu)(1+b)\left|B_{1 / 4} \backslash \Omega\right| \leq C(1+b) C^{\varepsilon} \theta^{\varepsilon / 2}
\end{aligned}
$$

Contradiction, if we finally fix small enough $\varepsilon(n, \mu)$.
Step 3. Iteration, by repeating Step 2 to $2^{2 k} u\left(x / 2^{k}\right)$, we have

$$
\max _{B_{2-k}} \sum \lambda^{+} \leq(1-\theta)^{k} .
$$

Then in $B_{2^{-k}}$,

$$
0 \leq \triangle u \leq \max _{B_{2-k}} \sum \lambda^{+} \leq(1-\theta)^{k} .
$$

Direct proof (after Caffarelli-Silvestre) of Evans-Krylov Theorem 1 without Schauder for Laplacian equation $\triangle u=f(x) \in C^{\alpha}$.

Step 1. Normalization. By subtracting a quadratic function from $u, v(x)=$ $u(x)-\frac{1}{2} u_{i j}(0) x_{i} x_{j}$, then $F\left(D^{2} v+D^{2} u(0)\right)=0$, we assume $D^{2} u(0)=0$.

Obs.

$$
\begin{aligned}
0 & =F\left(D^{2} u\right)=F\left(D^{2} u\right)-F(0)=\sum a_{i i} \lambda^{+}+\sum-a_{j j} \lambda^{-} \\
\mu^{2} & \leq \frac{\sum \lambda^{+}}{\sum \lambda^{-}} \leq \mu^{-2}
\end{aligned}
$$

By scaling $M F\left(D^{2} u / M\right)=0$ with $M=\max _{B_{1}} \sum \lambda^{+}(x)$, we assume

$$
\max _{B_{1}} \sum \lambda^{+}(x)=1
$$

while μ-ellipticity and concavity are preserved. Note that if $M=0$, then $D^{2} u \equiv 0$ in B_{1}.

Step 2. Claim:

$$
\max _{B_{1 / 2}} \sum \lambda^{+}(x) \leq 1-\theta(n, \mu)
$$

for small positive $\theta(n, \mu)$ to be chosen in the end of this Step.
Otherwise, there exists $x_{0} \in B_{1 / 2}$ with the eigenspace Π for positive eigenvalues λ^{+}of $D^{2} u\left(x_{0}\right)$ such that $\operatorname{tr}_{\Pi} D^{2} u=\triangle_{\Pi} u\left(x_{0}\right)=\sum \lambda^{+}\left(x_{0}\right)>1-\theta$.

Step 2.1. Consider supersolution $v=1-\triangle_{\Pi} u \geq 0$ with $\min _{B_{1 / 2}} v \leq \theta$. By the weak Harnack

$$
\left(\int_{B_{1 / 4}} v^{\varepsilon}\right)^{1 / \varepsilon} \leq C(n, \mu) \min _{B_{1 / 2}} v<C(n, \mu) \theta .
$$

Multiplying both sides by $\frac{1}{\theta^{1 / 2}}$, we get $\left|\left\{v \geq \theta^{1 / \theta}\right\} \cap B_{1 / 4}\right|^{1 / \varepsilon} \leq C(n, \mu) \theta^{1 / 2}$ or $1-\triangle_{\Pi} u=v<\theta^{1 / 2}$ in $\Omega \subset B_{1 / 4}$, with most of the measure, $\left|B_{1 / 4} \backslash \Omega\right| \leq C^{\varepsilon} \theta^{\varepsilon / 2}$.

Step 2.2. Now in Ω, we have

$$
\begin{gathered}
1-\theta^{1 / 2}<\triangle_{\Pi} u \leq \sum \lambda^{+} \leq 1, \text { then } \\
\sum \lambda^{-} \geq \mu^{2} \sum \lambda^{+}>\mu^{2}\left(1-\theta^{1 / 2}\right)
\end{gathered}
$$

Still in Ω

$$
\triangle_{\Pi}{ }^{\perp} u=-\sum \lambda^{-}+\sum \lambda^{+}-\triangle_{\Pi} u<-\mu^{2}\left(1-\theta^{1 / 2}\right)+\theta^{1 / 2} \stackrel{\text { def }}{=}-b(n, \mu)<0 .
$$

Consider subsolution

$$
\begin{gathered}
v=(v+b)^{+} \leq 1+b \text { in } B_{1 / 4} \\
v=0 \text { in } \Omega \\
v(0)=b(n, \mu)>0
\end{gathered}
$$

By Local Maximum Principle/Mean value inequality

$$
\begin{aligned}
0 & <b=\max _{B_{1 / 8}} v \leq C(n, \mu)\left(\int_{B_{1 / 4}} v^{\varepsilon}\right)^{1 / \varepsilon} \\
& \leq C(n, \mu)(1+b)\left|B_{1 / 4} \backslash \Omega\right| \leq C(1+b) C^{\varepsilon} \theta^{\varepsilon / 2}
\end{aligned}
$$

Contradiction, if we finally fix small enough $\varepsilon(n, \mu)$.
Step 3. Iteration, by repeating Step 2 to $2^{2 k} u\left(x / 2^{k}\right)$, we have

$$
\max _{B_{2-k}} \sum \lambda^{+} \leq(1-\theta)^{k}
$$

Then in $B_{2^{-k}}$,

$$
0 \leq \max _{B_{2-k}} \sum \lambda^{+} \leq(1-\theta)^{k}
$$

Meanwhile

$$
0 \leq \max _{B_{2-k}} \sum \lambda^{-} \leq \max _{B_{2^{-k}}} \mu^{-2} \sum \lambda^{-} \leq \mu^{-2}(1-\theta)^{k}
$$

That is

$$
\operatorname{osc}_{B_{2-k}} D^{2} u \leq(1-\theta)^{k} \mu^{-2} \operatorname{osc}_{B_{1}} D^{2} u
$$

[^0]: ${ }^{0}$ November 25, 2019

