Lecture 17 Dirichlet problem for special Lagrangian equations—a model case

o continuity method
o a priori estimate

We have answered Dirichlet problem for minimal surface equation with smooth
boundary data. Now we solve Monge-Ampere equations and special Lagrangian equa-
tions. Let

FO) = InA\+---+1nA\,
~ |arctan Ay + - - - + arctan A, — ©, for © > (n—2)7.

When n =2, InA\; +1In Xy = 0 & arctan \; + arctan Ay = 7.

Theorem 1 There ezists a unique solution u € C*>%(B;) to

{ f(N(D?u)) =0 in B; C R" ()

U = ¢ c 04(8B1)

RMK. For subcritical special Lagrangian equations (|©| < (n —2) 7), even with
analytic boundary data, the C? viscosity solution may be only C1, NO better; see the
recent work [Wang-Yuan|. In the “In" case, the solution is convex from the continuity
process.

Proof.
The uniqueness is an easy exercise.
For existence, consider a family of equations

F(A)=0in B, C R
U = t¢ S O4<8B1)

Let
I ={te0,1] | E; has a solution u; € C**(By), o = a(¢,n) > 0} .

Step 0. 0 € 1.

wo= [HIP = Dew(B) =1
(12 ~1)tan () f = arctan \

Step 1. [ is open. Suppose ¢y € I, the linearized equation near u,, is

Fmi]' (DQUtO)DijU =0in Bl
v= € C? on B,

and pu([[u|le2) < (Finy;) < ([Jugylle2). Tt follows from Schauder theory that the
equation is solvable for any ¢ € C*%(9B;) with solution v € C**(By).
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By Implicit Function Theorem, there exists solution u; € C*%(B;) to the equation
FE, for t close to tg.
Step 2. I is closed. We show that

l[uel|c2omy) < C(0),

independent of ¢ for all C%%(B;) solutions to E;. Then Ascoli-Arzela theorem implies
I is closed.
We will show

[l lerrayy < C9llga s 1, 0),

then the concave equation is u(C/(¢, n, ©))-elliptic.
By interior Evans-Krylov-(Safonov) and boundary Krylov (which we did not prove),

1Dl lcamyy < ClI8llea s, ©).
For simplicity, we skip the index ¢ in u; and t¢ in the following.
2.1 L* bound.
We have

exp (2) or tan () ( exp (2) ortan (2)

2
— 10l + 2 = 1) S u < (|9l +

(. S/ (.
-~
u

J/

R

and
F D) = £ (A (D) = £ (\(D*)) in By
By the comparison principle
exp (%) or tan (%)
2

ullzoe(By) < 10ll2o=(081) +
2.2 Lipschitz bound.

For any (unit) direction e € R", we have
Fy, Dijue = 0,
ij
where F' (D?*u) = f (A (D?u)). The maximum principle leads
sup | Dul = sup | Du| < sup([u| + [o])
B1 0B1 0B,
Next we estimate the boundary normal derivative u,. Fix y € 0B;. Since 0B is

strongly convex, ¢ € C?(0B;), there exist two linear functions L* whose C! norms
depend on C'*! norm of ¢ so that (see the Minimal surface equation lecture notes.)

L <¢<L"ondB;and “=" at y.

(|x\2 —1) on 0B



Let

0 t ©
B:t:L:t+eXp (n) 021' an(n) (|$|2—1)
Then

F(D?B*) = F(D?*u) in By
B~ <u< Bt on 0By and “=" at y

It follows from the comparison principle, B~ <« < B* in B;. Hence

B~ —uly) _u—uly) _ BT —uly)
rT1—Y%  T1—Y1  T1— N

Let 71 — i, we get
0
— <C 2
)| < Clloler
Thus
[Dul|roe(py) < [|Dul|@m,) < C(||]|c2)-

2.3 C'! bound.
First observe

’convex level set over tangent plane ﬁgures‘

Au > nexp (9> or ntan (9> ,
n n

then an upper bound for D?u would lead to a corresponding lower bound, which we
estimate next.

Second, since u € C%* (no bound yet), Schauder implies u € C*%, and then C**
(Hard Exercise). Thus we can differentiate the equation twice,

FmijDijuee + Fm

35Tkl

DijueDklue = 0.
~~ >y

<0
By the concavity of F, we have
FmijDijuee Z 0.
Maximal principle then implies

SUP Uee < SUP Uee-
B B,

The only thing left is the boundary C'! (upper) estimate for u in terms of the bound-
ary data ¢. There are tangential derivative and normal derivative on the boundary
of the circle:



1 1
Upr, say Uyp = ﬁuee + ;Ur = ¢op + u, < O(|]@]|c2);

1 1
Urn, Say Up1 = ;Ure - ﬁue = Urg — Po-

We show that |u.g(y)| < C(||¢||c2). Apply
Op = 0,0y — 110, .
to the equation F'(D?u) = 0 (exercise), we get
-FijDijU/G = O
Ugp = ¢9 on 831
Since ¢y € C*(0B;) and 9B strongly convex, we have
L™ <¢g < LT (as in the Minimal surface equation lecture notes)
Z File'jLi = 0

The comparison principle implies

L™ <uy<LTin Bl
L™ — up(y) u@—ua( ) LT —up(y) .
e T R R

Let 2, — — 1%, we get g = \%u@@)\ < O(l19lles).

Thus only the upper bound of double normal derivative is left to estimate.

Idea: we have, F;;D;;(ru, — 2u) = 0 = F;;D;; L™, exercise! Now if ru, — 2u >
L~ (2',x,) on 0B;. Then
ru, —2u > L~ in B
ru, —2u — L™ (y) < L= — L (y)
r—1 - r—1
But L~ coefficients involve C*® norms of u on 9By, which is not available yet!

We get around in the following (Trudinger) way. We can have (*) at “minimal"
upr (or rather f(urr)). Then by the equation (still heuristic)

furr) + f(up) =0

= Upy S Lr_ — Uy (*)

we would get the upper bound
f (uw(y)) = _f(UTT (y)) < _f(UTT (ymm)) = f(uﬂ”(ymm)) < C.

Realization:
u u AN
D2U — T Tr ~ Tr :
Urr  Upr U Upp
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where tangent vector 1" acts as

1 1
uTT = 500 + U = boo + Uy,

say ¢ (r,6) = ¢ (0) is homogeneous order zero.
We estimate the lower bound of trD?*ulr = \] + -+ + \,. Suppose Y, is one
minimal point for f'(\)|sp,, where
FN) = In N, +---+In) _,
arctan A} + --- +arctan A, _; — ©
Let Ay = N (Zmin). Then the f'(Aj)-level set of the function f/'()\') is convex. Indeed

') > f'(Ay) > ©—7/2 or 0—C by the following linear algebra lemma, thus X is
in a convex set

’ convex set figure ‘

{)\’ : arctan \' > arctan \j > © —

{N:InXN>ln)\y>0-C}.

Nl 3

2(n—1—2)g} or

(Note the above inequality holds without the full concavity of function f’ ()\’) in arctan
case.) We conclude

(Df'(No), N = Ag) >0

or
(Df'"(No), \Yy > (Df"(No), No) = o (not necessarily +) and “=" at y,;

in matrix form

o (2Ll

kookkokskokoskook sk ko k >k

Recall f'(X') is a symmetric function of X'. After symmetrizing \', we get

tr \
n—1

(Df' (M),

(1,...,1)) > ¢y, FLAWED

that is

n_1 i 1 (f1o) + -+ fr_1 (X)) tr N > co.

It follows that

-1
tr D*ulp =tr X > (n=1)co

Z e+ g @9l

Then
(n— 1)u, +tr D*¢|r = tr D?ulp > ¢
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or
r r
Co —

tr D*¢|lp on B; and “=" at Y.
n—1 n—1

U, >

kkkkskokskskk

It turns out the above “cute” symmetrization is FLAWED. We go back to the
original plain argument.
Note that D*u|r = (u, — ¢,.) [y, + D*¢|7 = (u, — ¢.) I' + D?*¢|r. Then

o g o () (e

on 0B; and “=" at Yuyin.
As in the Minimal surface equation lecture, for ru, and also ru, — 2u, we can find
linear barrier L=, whose C'* norm now depends on C®! norm of ¢, so that

ru. (y) > 1o, +

U, — 2u > Li(l'/, xn) on dB; and still “=" at Ymin-

Recall
File'j<T’ur — 2’[1,) =0= F}jDijLi in Bl~
The comparison principle implies
ru, —2u > L~ in By,
then for r < 1
TUr — 2u — L™ (Ymin) < L™ — L™ (Ymin)

= inBl.
r—1 r—1

Let r — 17, we get
(trr = 1) (Ymin) < C([|9]]c2).

Because we have already bounded Du in terms of the C''! norm of ¢, we thus obtain

u”’(ymm) < C_’<||¢||C4)

Lemma 2 (Linear algebra lemma) Let

)\/1 aq
M = .
)\nfl an—1
a; - Gp_1 a
where Ny, ..., N | are fized, |a;| < C and |a| — +o0.

Then the eigenvalues of M behave like
N +o(l),..., A 1 +0o(1),a+ O(1),

where o(1) and O(1) are uniform as a — oo.

6



We proceed separately for Monge-Ampere equation and special Lagrangian equa-
tion.

M-A: In case
0 < D*w(Ymin) < c(||9]]cs)
ln/\1 —i—ln)\n =0
= )\z(ymm) 2 c(‘|¢|’04) > 0
A
= ~ D2U’T(ymm) > miin Ai(Ymin) = c(||®]|cs) > 0.

N

n

Then from the definition of y,;,, we have
(In A+ 4+ A ) (y) = (X + -+ I X ) (Ymin) = —C([[0]]c4).
Recall we have estimated ' (y) < C(||¢||c2), then we get
Xi(y) = c(||¢llcs) > 0, Vy € OB
Finally choose K = K(\(y)) = K(c(||¢]|c4)) large, to be determined. If
urr(y) < K,

then OK. Otherwise by the linear algebra lemma

' y) ~ h y) .
Anc1l Un—1p & An—1+o(1) W
Upy - an,n—l Unn Unn + 0(1)

From equation (FE;), we have at y
In(A] 4+ 0(1)) + - - +1n(\,_; + 0o(1)) + In(up, + O(1)) =0
Now we choose K large enough so that at y
In(A] +o(1))+---+In(\,_;+0(1)=InA +---+1InX _; +0(1) > —=C(||d]|c2).

Thus it follows that
unn(y) < C(|[8][c1)-

Special Lagrangian case:

| D*u(Ymin)| < C(l@]]c)
At Ymin,

f(D*u+ 100e, ® €,) — f(D*u) = (“V*F (x)7,100e, ® e,) = 61 (||¢||c4) > 0.
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Also we have

lim f(D*u+a-e,®e,) > f(D*u+100e, ® e,) > f(D*u) + 6, = O + 6;.

a—00

It follows from the linear algebra lemma

7

Z arctan X, (Ymin) > © + 01 — B

As in the M-A case we choose K = K(||¢]|c4) large enough to be determined shortly.
If
unn(y) < k.

then OK. Otherwise, we have at y
© = f(D*u) = f(N' + o(1)) + f(tn + O(1))
n—1
= Z arctan \;(y) + o(1) + arctan(u,, + O(1))
i=1

>0+ 6 — g - % + arctan(u,, + O(1)).

We now take K large enough, then

naly) < tan( T — 2) = 0(1) < C(Jol|ex).

Therefore
ullcraz,) < C([lo]]es)-

Our proof is complete.

RMK. Our adapted presentation from [T] is shorter and works simultaneously for
both critical and supercrticial phases, whose corresponding equations are type I (the
origin-level-set cone has \;-axis on its boundary ) and type II (the origin-level-set
cone is larger than the positive cone) respectively. Type I and II equations were
handled separately in [CNS] and [T7]. Note that the pioneering paper [CNS] solves
Slag equation, the convex branch of

0=Tm [ (14+V7IN) =Tm /(1 +X2) (1 +X2) exp (V-16)
= /4N (14 A2)sin @,

which corresponds to
n is odd

©=Mn-1)3
©=(n—-2)7 niseven



