- $W^{1,2}$ space, different characterizations
- Trace
- Chain rule

Sobolev space $W^{1,2}$, different characterizations.
Approximation: $u \in W^{1,2}(\Omega)$ if there exist a sequence $u_{k} \in C^{1}(\Omega)$ s.t. $u_{k} \rightarrow u$ in $L^{2}(\Omega)$ and $\left\{D u_{k}\right\}$ is a Cauchy sequence in $L^{2}(\Omega)$.

IBP: $u \in W^{1,2}(\Omega)$ if $u \in L^{2}(\Omega)$ and $\int u D_{e} \varphi \leq C\|\varphi\|_{L^{2}(\Omega)}$ for all $\varphi \in C_{0}^{1}(\Omega)$ and $e \in S^{n-1}$.

Difference quotient: $u \in W^{1,2}(\Omega)$ if $u \in L^{2}(\Omega)$ and $\left\|\frac{u(x+h e)-u(x)}{h}\right\|_{L^{2}(\Omega)} \leq$ C for h-free C and all $e \in S^{n-1}$.

Proposition. The above approximation, IBP, and difference quotient characterizations of Sobolev space $W^{1,2}(\Omega)$ are equivalent.

Proof. Approximation \Rightarrow IBP
We have

$$
\int u_{k} D_{e} \varphi=-\int D_{e} u_{k} \varphi \leq\left\|D_{e} u_{k}\right\|_{L^{2}}\|\varphi\|_{L^{2}} \leq C\|\varphi\|_{L^{2}} .
$$

Take limit of the left side, we have

$$
\int u D_{e} \varphi \leq C\|\varphi\|_{L^{2}} .
$$

$\mathrm{IBP} \Rightarrow$ Difference quotient
To produce differenec quotient from test functions, one integrates the difference of two delta functions along the given direction. We construct $\Phi \in W_{0}^{1, \infty}\left(R^{n}\right)$ so that $\Phi_{e}=\phi$ where

$$
\phi=\frac{1}{\left|B_{\varepsilon}\right|}\left[\chi_{B_{\varepsilon}(h e)}-\chi_{B_{\varepsilon}(0)}\right] .
$$

figureS: graphs of ϕ and Φ
graph of Φ cylinder like w/ height $-\frac{1}{\varepsilon^{n-1}}$ on $B_{\varepsilon}^{n-1} \times(0, h)$
Note that

$$
\int|\Phi| \sim h
$$

To capture the integral norm of the difference quotient, we use duality. The duality test function $\varphi \in C_{0}^{1}(\Omega)$ is sneaked in as convolution with the primitive Φ

$$
\int u(y) D_{e}(\varphi * \Phi) d y \leq C_{u}\|\varphi * \Phi\|_{L^{2}} \leq C_{u}\|\varphi\|_{L^{2}}\|\Phi\|_{L^{1}} \leq C_{u} h\|\varphi\|_{L^{2}}
$$

[^0]and the left hand side equals
\[

$$
\begin{gathered}
\int u(y)\left(\int \varphi(x) \phi(y-x) d x\right) d y=\int \varphi(x)\left(\int u(y) \phi(y-x) d y\right) d x \\
=\int \varphi(x)\left(\int u(y+x) \phi(y) d y\right) d x=\int \varphi(x)\left(\int u(y+x) \frac{1}{\left|B_{\varepsilon}\right|}\left[\chi_{B_{\varepsilon}(h e)}-\chi_{B_{\varepsilon}(0)}\right] d y\right) d x .
\end{gathered}
$$
\]

Let $\varepsilon \rightarrow 0$, we have

$$
\int \varphi(x)[u(h e+x)-u(x)] \leq C_{u} h\|\varphi\|_{L^{2}}
$$

that is

$$
\int \varphi(x)\left[\frac{u(h e+x)-u(x)}{h}\right] \leq C_{u}\|\varphi\|_{L^{2}}
$$

So by duality

$$
\left\|\frac{u(x+h e)-u(x)}{h}\right\|_{L^{2}(\Omega)} \leq C_{u} .
$$

Difference quotient \Rightarrow Approximation
As $L^{2}(\Omega)$ space is reflexive and separable, the sequence $\frac{u(x+h e)-u(x)}{h}$ has a weak limit v in $L^{2}(\Omega)$, that is for all $\varphi \in C_{0}^{1}(\Omega)$

$$
\int \frac{u(x+h e)-u(x)}{h} \varphi(x) \rightarrow \int v \varphi .
$$

The left hand side equals

$$
\int u(x) \frac{\varphi(x-h e)-\varphi(x)}{h} \rightarrow-\int u(x) D_{e} \varphi(x) \quad \text { as } h \rightarrow 0 .
$$

So

$$
-\int u(x) D_{e} \varphi(x)=\int v \varphi .
$$

Next we construct a Cauchy sequence by taking φ to be a usual mollifier $\rho \in C_{0}^{\infty}\left(R^{n}\right)$ with $\int \rho=1$.

Claim: $D_{e}(u * \rho)=v * \rho$.
Indeed

$$
\begin{aligned}
D_{e}(u * \rho) & =\int u(y) D_{e(x)} \rho(x-y) d y=\int u(y)\left[-D_{e(y)} \rho(x-y)\right] d y \\
& =\int v(y) \rho(x-y) d y \text { by the derived IBP identity above the claim. } \\
& =v * \rho .
\end{aligned}
$$

It is also true that $D_{e}\left(u * \rho_{\varepsilon}\right)=v * \rho_{\varepsilon}$ with $\rho_{\varepsilon}(x)=\rho(x / \varepsilon) / \varepsilon^{n}$. Certainly $v * \rho_{\varepsilon} \rightarrow v$ in $L^{2}(\Omega)$. Therefore we have a Cauchy sequence with $u * \rho_{\varepsilon} \rightarrow u$ and $D_{e}\left(u * \rho_{\varepsilon}\right) \rightarrow v$ in $L^{2}(\Omega)$. Replace e with all axis directions we have the desired full gradient version.

Trace

$$
\text { figure: } \mathrm{Q}=\text { flat piece } \Gamma \text { in } \mathrm{x}-R^{n-1} \times \delta \text { height in } \mathrm{y}-R^{1}
$$

We show that $u \in W^{1,2}$ has a well-defined restriction (trace) on the boundary. We first assume $u \in C^{1}$, then use approximation to reach the general conclusion. From

$$
u(x, y)-u(x, 0)=\int_{0}^{y} u_{y}(x, s) d s
$$

it follows that

$$
\begin{aligned}
\int_{\Gamma}|u(x, y)-u(x, 0)|^{2} d x & \leq \int_{\Gamma}\left[\int_{0}^{y} u_{y}(x, s) d s\right]^{2} d x \\
& \leq \int_{\Gamma} y \int_{0}^{y} u_{y}^{2}(x, s) d s d x \\
& \leq y \int_{Q}|D u|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{\delta} \int_{\Gamma} u^{2}(x, 0) d x d y & =\int_{0}^{\delta} \int_{\Gamma}\left[-u(x, y)+\int_{0}^{y} u_{y}(x, s) d s\right]^{2} d x d y \\
& \leq 2 \int_{0}^{\delta} \int_{\Gamma} u^{2}(x, y)+\left[\int_{0}^{y} u_{y}(x, s) d s\right]^{2} d x d y \\
& \leq 2 \int_{0}^{\delta} \int_{\Gamma}\left[u^{2}(x, y)+\delta \int_{0}^{\delta} u_{y}^{2}(x, s) d s\right] d x d y \\
& \leq 2 \int_{Q} u^{2}+2 \delta^{2} \int_{\Gamma} \int_{0}^{\delta} u_{y}^{2}(x, s) d s d x \\
& \leq 2 \int_{Q} u^{2}+2 \delta^{2} \int_{Q}|D u|^{2}
\end{aligned}
$$

The last inequality becomes

$$
\int_{\Gamma} u^{2}(x, 0) d x \leq \frac{2}{\delta} \int_{Q} u^{2}+2 \delta \int_{Q}|D u|^{2}
$$

Therefore $u(\cdot, y)$ is a Cauchy sequence in $L^{2}(\Gamma)$ as $y \rightarrow 0$. The limit of the Cauchy sequence is defined as the trace of u on Γ.

RMK. Inspecting the above argument, we can also go along $W^{1,1}$ function to leave a trace, as long as notice that the integral of L^{1} function over a small measure set is small:

$$
\int_{\Gamma}|u(x, y)-u(x, 0)| d x \leq \int_{\Gamma} \int_{0}^{y}|D u| d s d x \rightarrow 0 \text { as } y \rightarrow 0 .
$$

Chain Rule

Given $f \in C^{1}\left(R^{1}\right)$ with $f^{\prime} \in L^{\infty}\left(R^{1}\right)$ and $u \in W^{1,2}(\Omega)$, then $f(u) \in W^{1,2}(\Omega)$ and $D f(u)=f^{\prime}(u) D u$.

Proof. We use the approximation version of $W^{1,2}$ space. Let u_{k} be an approximating sequence for u in $W^{1,2}$ norm, that is $u_{k} \rightarrow u$ in $L^{2}(\Omega)$ and $D u_{k} \rightarrow D u$ or $D u_{k}$ is a Cauchy sequence in $L^{2}(\Omega)$. We have

$$
\int_{\Omega}\left|f\left(u_{k}\right)-f(u)\right|^{2} d x \leq \int_{\Omega}|D f(*)|^{2}\left|u_{k}-u\right|^{2} d x \leq \sup _{R}|D f|^{2} \int_{\Omega}\left|u_{k}-u\right|^{2} d x \rightarrow 0
$$

and

$$
\begin{aligned}
& \int_{\Omega}\left|f^{\prime}\left(u_{k}\right) D u_{k}-f^{\prime}(u) D u\right|^{2} d x \\
& \leq 2 \int_{\Omega}\left[f^{\prime}\left(u_{k}\right)\right]^{2}\left|D u_{k}-D u\right|^{2} d x+2 \int_{\Omega}\left|f^{\prime}\left(u_{k}\right)-f^{\prime}(u)\right|^{2}|D u|^{2} d x
\end{aligned}
$$

$\rightarrow 0 \quad$ (1st limit by Cauchy $D u_{k}, 2$ nd limit by Lebesgue dom. con.).

Prop. For $u \in W^{1,2}$, we have $u \vee 0 \in W^{1,2}$ and $D(u \vee 0)=\left\{\begin{array}{cc}D u & u>0 \\ 0 & u \leq 0\end{array}\right.$ a.e. .
Proof. Smooth out the function $f(t)=\left\{\begin{array}{cc}t & t>0 \\ 0 & t \leq 0\end{array}\right.$ by convolution with an even (radial) mollifier ρ_{ε} in R^{1}. Then the mollified function $\tilde{f}_{\varepsilon}(t)=\left\{\begin{array}{cl}t & t>\varepsilon \\ \sim \varepsilon & |t| \leq \varepsilon . \\ 0 & t<-\varepsilon\end{array}\right.$. Let

$$
f_{\varepsilon}(t)=\tilde{f}_{\varepsilon}(t+\varepsilon)
$$

By the Chain Rule, $D f_{\varepsilon}(u)=f_{\varepsilon}^{\prime}(u) D u$. Hence for any $\varphi \in C_{0}^{1}(\Omega)$ (by Lebesgue D.C.T twice)

$$
-\int_{\Omega} f(u) D \varphi=\lim _{\varepsilon \rightarrow 0}-\int_{\Omega} f_{\varepsilon}(u) D \varphi=\lim _{\varepsilon \rightarrow 0} \int_{\Omega} D f_{\varepsilon}(u) \varphi=\int_{\Omega} D u \chi_{\{u>0\}} \varphi
$$

Therefore (by IBP characterization of $W^{1,2}: f(u) \in W^{1,2}$ then $\left.D f(u)=f^{\prime}(u) D u\right)$

$$
u \vee 0=f(u)=\left\{\begin{array}{ll}
u & u>0 \\
0 & u \leq 0
\end{array} \in W^{1,2}\right.
$$

RMK. One can just take $f_{\varepsilon}(t)=\left\{\begin{array}{cc}\sqrt{t^{2}+\varepsilon^{2}}-\varepsilon \quad t>0 \\ 0 & t \leq 0\end{array}\right.$ as in [GT].
Cor. If u and v are in $W^{1,2}$, then so are the following: $u \wedge 0=-(-u \vee 0), u^{+}$and u^{-}with $u=u^{+}-u^{-},|u|=u^{+}+u^{-}$, and also $u \vee v=(u-v) \vee 0+v=\left\{\begin{array}{ll}u & u>v \\ v & v \geq u\end{array}\right.$, $u \wedge v=(u-v) \wedge 0+v=\left\{\begin{array}{cc}u & u<v \\ v & v \leq u\end{array}\right.$.
eg. $\int|D u|^{2}=\int\left|D u^{+}\right|^{2}+\int\left|D u^{-}\right|^{2} \geq \int\left|D u^{+}\right|^{2}$.

[^0]: ${ }^{0}$ June 3, 2019

