Lecture 4 Mean curvature flow, monotonicity, and self shrinking solutions

o mean curvature flow
o monotonicity formula
o self shrinking solutions

Mean curvature flow
Recall the area/volume variation £ for hypersurface/surface in Euclidean space
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We deform the surface along the negative gradient of the volume
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The volume element changes as
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We call this the mean curvature flow.

For example, in the graph setting, if we insist the equation for the height (z, f (x,t)) C
R™! the effect deformation, namely the normal projection has to be exactly the mean
curvature
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Tracing back, the height changing rate has to be “larger”
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This parabolic equation is in fact strictly parabolic. Recall the grim reaper solution
to this equation in R?: f (z,t) =t — Incosz.
Degenerate parabolic system
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The mean curvature flow system has the following form under parametrization

X (p,t) 3 3
X =g" [ Xy —TLX) = g" [Xij — (X35, Xa) 97 X0

from the decomposition
Xij = Dx, Xy, = (Xij, Xa) g Xy + (X35, N) N =T}, Xy + 1I;;N.

From this we see the equation is degenerate along tangential directions, or the prin-
ciple symbol could vanish. For example, manipulate the tangentials X, or reparame-
trize, we make the coefficient of X;; zero at a point.

In order to get short time existence for the degenerate parabolic mean curvature
flow system, one trick is to add the tangential part g% F%Xb to the “effective” mean
curvature flow, then we work with the nondegenerate parabolic system

Xy = ginij‘

Apparently, this trick is already hidden in the evolution equation of the height of the
above insisted non-parametric or graph representation (z, f (x,t)) .
We first solve the strictly parabolic system
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Y(2,0) = X () = X (p)

to get a short time solution Y (z,t). Then we solve the ODE system
{ L = — g () TE () = =g (2) (Yaray, Yau) 9% (2)
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Now the re-parametrized surface Y (z (p,t),t) = X (p,t) satisfies
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as desired.

It is important to recognize that the first non-divergent parabolic system and the
ODE system are both invariant under the orthogonal change of variable in R"**,
which we take as the tangent coordinates of the hypersurface (surface). Accordingly,
we assume the initial hypersurface/surface X (p, t) is parametrized globally by tangent
coordinates. At least in the compact and co-dimension one graph cases, everything
fits together. In general noncompact complete case, certain assumptions should be
thrown in.

Lastly let us make co-dimension one graph case X = (z, f (x,t)) explicit. As
before, the strictly parabolic system becomes a single equation
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From the decomposition
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Then the ODE system becomes
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Monotonicity for mean curvature flow.

Recall the familiar heat equation Au —u; = 0 in R™ x (0,00), the solution (with
quadratic exponential growth) can be determined from all previous time ¢ € [0, %)
via convolution with heat kernel
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where we denote the heat kernel term in terms of the backward heat kernel Az, ® +
®, = 0. This representation is independent of the time ¢, that is %u (x0,t0) = 0. Let
us also take the time derivative of the right hand side
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We follow this route to derive Huisken’s monotonicity formula for mean curvature
flow of n-dim hypersurface (same for any codimensions) in R"™ x (0,T).

Huisken. Let M; = X (p,t) C R™"! be a smooth solution (compact or noncom-
pact complete) to the mean curvature flow X; = Ay X for t € (0,7). Let u (p,t) be
a smooth function on M; for ¢t € (0,7"). Then we have for ¢ < ¢,
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where we assume all integrals are finite, in particular they are so when M, is compact.



For simplicity of notation, let us assume Xy = 0 and tqg = 0. Thus ¢ < 0 from now
on. we calculate

L u(p,t) ® (X, t)dv, :/ (ut¢+ui¢_u¢|]_]|2> dv, .
dt Mt Mt dt

We convert time derivative of @ (X,t) = (—4nxt) "% exp (JX ? /4t) to space deriva-
tives. Note now
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where the last three terms in the second line sum up to 0. At the current point X, we

rotated coordinates so that N = 0,,., and 0,,,---0,, are along the tangent space.
Then
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RMK. For k co-dimension submanifolds in R"**, the normal N means N!,---  N*
or Oy, .., 0.4k at this particular point under the tangent coordinates.
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We collect all terms together

9 7

-~ DV
— | u(p,t)®(X,t)dv, = w® —ulNg® —u|lH———| ®|dy,
dt M; My @
' . DVo| ]
—/ w® - Aju—u|H———| ®|dv,
M; ®
- DVo|
Iip/ [(ut —Agu) —u|H— —— ] Pdvy,.
M; ®
Lastly note
X XN
DN<I>:<D<I>,N)N:<I><2—t,N>N:<I>2—t

we arrive the desired formula.
Self shrinking solutions out of “minimal” blow up rate.
First we list a few evolution formulas under mean curvature flow of hypersurfaces

X (p,t) = AyX (p,t) in R™H
Orgij = —2hA;;
ON = —hig"X; = -7 h
DAy = NgAy; + 2hAig™ Ay — |A]” Ay
Oh = Nyh — h|A]?
DAl = Dg|AP = 2|7, A" + 2 Al

Actually the first two are straight forward. The maneuver is to switch higher
order derivatives to lower ones by the perpendicular relation. We compute

Ohgi; = 0y (Xi, X;) = ((Xa), ,Xj>+<XZ-, (Xt)j> = — (A X, Xji) —(Xij, A X) = —2hAy;,

N = (9N, X,) g X = — (N, Xut) ¢ Xy = — (N, (RN),) ¢ X,
= —h,g" X, = V,h.

What prevents the mean curvature flow continues is that the second fundamental
form become infinity. Thus the maximal existence time T is either (ii) finite and
maxx ., |A| blows up as t goes to T or (ii) 7' = oo. In the finite time blow up case,
let us see the asymptotic behavior of |A].

Proof. The blow up rate for maxx ., |A|* satisfies

1
max [A]* > ———.
X(-t) 2(T —1t)
Proof. Denote u (t) = maxx .y |A|” (as max of Lipschitz function, still Lip). From

the evolution equation for |A|?



Integrate, we have

1
0—565>—ﬂT—ﬂ
that is
u(t) > ;
—2(T—-1)

So we distinguish two types of blow up rate or types of singularity, minimal
rate or large ones
Type L

2(T t)
_Cc
2(T D) = sm—y

Type II. maxy. |A| (T —1t) —>o0,ast —T.

In the followmg, We extract a subconvergence sequence of the evolving hypersur-
face to self shrinking surface. We rescale the evolving surface or blow it up near the
type I singular point P, where the whole surface collapses, X (p,t) — P ast — T. Set

< maxx(.y |A]? <

Y (p,t) = (X (p,t) = P).

T—1
Observe Y (p,t) is bounded, as

T T T o
= X, dt S/ h dtﬁ/ dt =20vVT —t.
/t ' ' t g ¢ VIT—t

Further note the whole second fundamental of the rescaled surface now becomes
bounded, as |A(Y)| = vT —t|A(X)| < C.

Once we manage to find a subconvergence sequence Y (-, ;) (doable because of
the above two observation and higher order derivative estimates Schauder), then any
limit Z (p) satisfies our self shrinking equation

| X (p,t

-1 1
H+§ZN:0 or Agzz—ﬁzN.

Indeed, now P = (0,7, here we just assume the space component of the singular
point P is 0, by the above Huisken’s monotonicity formula with heat kernel weight
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or
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As fOT ﬁdt = 00, we conclude that any limit Z (p) of Y (p, tx) as tx goes to T should
satisfy our self shrinking equation.

One can also present this self similar equation derivation via a change of time.
The rescaled surface satisfies
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We change time scale
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Huisken. (Monotonicity with weight exp (— v |? /4)). The rescaled flow Y,
DgyY + %Y satisfies

1 2 e
DY + YN e du,.
Proof. Let ¢ (Y) = exp (— Y ? /4) . We compute

= [ oav,= [ Do)+ vy vian, = [

<D¢7 YVT) + diVY gby;' - <DT¢> Y:r>dvg
_ / (D¥6,Y,) + divy Y7 + divy ¢¥Vdu,
DoY)

1 ﬁ
=/ ¢<—§YN,YT>—¢<YTN,H>dvg—I—/ divy oY, dvyg
Y Y
o 1 N 5 1 N
— | o(H+=YN Y, Ydv,=— | ¢|H+=Y
Y 2 Y 2

2

dvy.




One consequence is
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Once we manage to find a subconvergence sequence Y (-, 73,) with fy(m [0) ‘H + %YN ‘ dvy, —
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0 (doable), then limit Z (p) satisfies our self shrinking equation

H+§ZN:0 or Agzz—ﬁzN.

Rigidity of entire self shrinking graph in R"*!.

We need another evolution formula in terms the normal N with the second fun-
damental showing up. Under the non-divergence flow of hyper surface X; (x,t) =
g70;; X (z,t), we have

(0: — g"0;;) N = |A]* N.

Indeed, we have obtained the N; part for the divergence flow, now we go with the
non-divergence one

Ny = (Nt, Xa> gabXb = - <N, Xta> gabXb = - <N7 Xt>agabXb + <Na7Xt>gabXb
—— E——
(= =Vgh + (Ng, X¢) g% X3) .
Next for the 0;; N part,
Ni = (N, Xa) 9" Xy = — (N, Xui) " X,

Nij = [— (N, Xaij) — (Nj, Xai)] g% X — (N, Xai) 0,9 Xy — (N, Xai) g% X

97Ny = [— (N, 9" Xuij) — g7 (Nj, Xai)] 9% X — 97 (N, Xai) 0,9 Xy, — g7 (N, Xai) g% X
= |— (N, 9" X35), +(Na, 97 Xi;) + 0ag” (N, Xi3) — 97 (N}, Xai) | 9™ X,
— g7 (N, Xui) 0,9 Xy, — g (N, Xui) 9" Xo;.
Then
(0r — 970;j) N = [-0ug” Aij + g” (N}, Xai)] 9 Xy + 97 Aai0;9" Xy + 97 Aaig™ X

Note at the tangent point under the tangent coordinates, 9,9 = 0,0,¢9~ ' = 0, and
X || N, in turn, the evolution for N is already valid. Recall our non-divergence
system is invariant under orthogonal rotation in R"*!, consequently we have proved
the desired equation for the normal.



Here we also include a direct proof:
(0 — 970;5) N = [=0a9" Aij + 9" (Nj, Xai)] 9°° X5 + 9" Aai0i g™ X + 97 Aaig™ Xo;
= [ ({Xaa Xp) + (Xas Xpa)) 97 Aij — 97 Ajag™” (X5, Xai) ] 9™ X,
- ngAaigaa <<onja X5> + <Xa7 Xﬁj>) gﬁbXb + g”Aaigabij
= {gmAz'jgﬁj <<Xﬁ, Xaa) + (Xa, Xﬁa>> — 9" Ajag™ (X, Xai) | 9% X5
—_—  N—

— gijAaigaanj — gijAm’gaa <Xom X,B]> ngXb +gijAaigabij

= _gijAaigang; + gijAaigabij = gijAaigabXIf}f
= gijAm-g“bAij = |A|2 N.

RMK. Under the effective mean curvature flow Y; (p,t) = A,Y (p,t) for Y (p, t) =
X (z (p,t),t), the equation for N (p,t) takes a similar form

(8, — NgX)N = |A]> N.
This is just because of the ODE system for the reparametrization x (p,t)

df)?k

Sk~ g @) T ().

Theorem(Lu Wang): Any ancient self-similar solution (x, f (x,t)) = (:c, V—tu <\/i_7))
to
- . y 1 .
fi=97(Df)0;f in R" x (—00,0) <« ¢ (Du)0ju = 3% Du — Ju in R"

is linear, f (z,t) = Du(0) -z = u(x).
Lu Wang’s original proof is in an integral way. We have a shorter pointwise
subharmonic approach. Here we present yet an even shorter superharmonic argument.

Stepl. Superharmonic inner product W (x,t) = (N, enpq) = 1/4/1+|Df|> > 0
satisfies B
(970 — ) W = — |APW <0,

from the above evolution equation for N. By self-similarity
2
W(x,t) =w (m/\/ —t) . gr(z,t) =gy (x/\/ —t) , and |Ay (m,t)|2 = ’au (a:/\/ —t)| /(—1).

The equation for W becomes

970w — 3% Dw = —|a|*w < 0.

Heuristic: As ¢"9;w < %x - Dw, the amplifying force in the right forces w up
near co. Otherwise, bounded w becomes unboundedly negative near co. Hence super
solution w attains its min at a finite point, then constant.
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Step2. The self-similar term rw, with barrier like v (z) = —¢ (|x]2 —4n?) +
minp, w forces superharmonic w attains its global minimum at a finite point. This
is because

g"” ;v — 3% Dv = —¢ (2¢9"6;; — ]a:|2) > —¢(2n — |x]2) >0 for |z| > 2n,

and the subharmonic function v is less than or equal to w at the boundary B,, and
near co. Then the maximum principle implies w > v. Let € go to 0, we conclude

w(x) > rginw for |z| > 2n.
2n

Hence we see w attains its global minimal at some finite point. Now the strong
maximum principle then implies that w = const. > 0.
Step3. By the equation for w, one concludes the second fundamental form |a| = 0.
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