Lecture 4 Mean curvature flow, monotonicity, and self shrinking solutions

- mean curvature flow
- monotonicity formula
- self shrinking solutions

Mean curvature flow

Recall the area/volume variation E for hypersurface/surface in Euclidean space

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} \operatorname{vol}\left(M_{\varepsilon}\right)\right|_{\varepsilon=0} & =\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \int_{M} d v_{g(\varepsilon)}=\int_{M}\left\langle E_{i}, g^{i j} X_{j}\right\rangle d v_{g} \\
& =\int_{M} \operatorname{div}_{M} E d v_{g}=\int_{M} \operatorname{div}_{M} E^{T}+\operatorname{div}_{M} E^{N} d v_{g} \\
& =\int_{M} \operatorname{div}_{M} E^{T}-\left\langle E^{N}, \frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} X_{j}\right)\right\rangle d v_{g}
\end{aligned}
$$

We deform the surface along the negative gradient of the volume

$$
X_{t}=\triangle_{g} X=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} X_{j}\right)=g^{i j} X_{i j}-g^{i j} \Gamma_{i j}^{k} X_{k}
$$

The volume element changes as

$$
\frac{d}{d t} \sqrt{g}=\operatorname{div}_{M_{t}} X_{t} \cdot \sqrt{g}=-\left\langle H, \triangle_{g} X\right\rangle \sqrt{g}=-\left|\triangle_{g} X\right|^{2} \sqrt{g}
$$

We call this the mean curvature flow.
For example, in the graph setting, if we insist the equation for the height $(x, f(x, t)) \subset$ R^{n+1}, the effect deformation, namely the normal projection has to be exactly the mean curvature

$$
\left(\triangle_{g} X, \frac{(-D f, 1)}{\sqrt{1+|D f|^{2}}}\right)=\operatorname{div}\left(\frac{D f}{\sqrt{1+|D f|^{2}}}\right)
$$

Tracing back, the height changing rate has to be "larger"

$$
\begin{aligned}
f_{t} & =\sqrt{1+|D f|^{2}} \operatorname{div}\left(\frac{D f}{\sqrt{1+|D f|^{2}}}\right) \\
& =\sum\left(\delta_{i j}-\frac{f_{i} f_{j}}{1+|D f|^{2}}\right) D_{i j} f=\sum g^{i j} D_{i j} f
\end{aligned}
$$

This parabolic equation is in fact strictly parabolic. Recall the grim reaper solution to this equation in $R^{2}: f(x, t)=t-\ln \cos x$.

Degenerate parabolic system

[^0]The mean curvature flow system has the following form under parametrization $X(p, t)$

$$
X_{t}=g^{i j}\left[X_{i j}-\Gamma_{i j}^{b} X_{b}\right]=g^{i j}\left[X_{i j}-\left\langle X_{i j}, X_{a}\right\rangle g^{a b} X_{b}\right]
$$

from the decomposition

$$
X_{i j}=D_{X_{p_{i}}} X_{p_{j}}=\left\langle X_{i j}, X_{a}\right\rangle g^{a b} X_{b}+\left\langle X_{i j}, N\right\rangle N=\Gamma_{i j}^{b} X_{b}+I I_{i j} N .
$$

From this we see the equation is degenerate along tangential directions, or the principle symbol could vanish. For example, manipulate the tangentials X_{a} or reparametrize, we make the coefficient of X_{11} zero at a point.

In order to get short time existence for the degenerate parabolic mean curvature flow system, one trick is to add the tangential part $g^{i j} \Gamma_{i j}^{b} X_{b}$ to the "effective" mean curvature flow, then we work with the nondegenerate parabolic system

$$
X_{t}=g^{i j} X_{i j}
$$

Apparently, this trick is already hidden in the evolution equation of the height of the above insisted non-parametric or graph representation $(x, f(x, t))$.

We first solve the strictly parabolic system

$$
\left\{\begin{array}{c}
Y_{t}(x, t)=g^{i j}(x, t) Y_{x_{i} x_{j}}(x, t) \\
Y(x, 0)=X(x)=X(p)
\end{array}\right.
$$

to get a short time solution $Y(x, t)$. Then we solve the ODE system

$$
\left\{\begin{array}{l}
\frac{d x_{k}}{d t}=-g^{i j}(x) \Gamma_{i j}^{k}(x)=-g^{i j}(x)\left\langle Y_{x_{i} x_{j}}, Y_{x_{a}}\right\rangle g^{a k}(x) \\
x_{l}(0)=p
\end{array}\right.
$$

Now the re-parametrized surface $Y(x(p, t), t)=X(p, t)$ satisfies

$$
\begin{aligned}
X_{t}(p, t) & =\frac{d}{d t} Y(x(p, t), t)=Y_{t}(x(p, t), t)+D_{x_{k}} Y \frac{d x_{k}}{d t} \\
& =g^{i j}(x, t) Y_{x_{i} x_{j}}(x, t)-D_{x_{k}} Y g^{i j}(x) \Gamma_{i j}^{k}(x) \\
& =\triangle_{g(x, t)} Y(x(p, t), t) \\
& \left.=\triangle_{g(p, t)} X(p, t) \quad \text { (invariance of } \triangle_{g}\right)
\end{aligned}
$$

as desired.
It is important to recognize that the first non-divergent parabolic system and the ODE system are both invariant under the orthogonal change of variable in R^{n+k}, which we take as the tangent coordinates of the hypersurface (surface). Accordingly, we assume the initial hypersurface/surface $X(p, t)$ is parametrized globally by tangent coordinates. At least in the compact and co-dimension one graph cases, everything fits together. In general noncompact complete case, certain assumptions should be thrown in.

Lastly let us make co-dimension one graph case $X=(x, f(x, t))$ explicit. As before, the strictly parabolic system becomes a single equation

$$
f_{t}(x, t)=\sum\left(\delta_{i j}-\frac{f_{i} f_{j}}{1+|D f|^{2}}\right) D_{i j} f
$$

From the decomposition

$$
\begin{aligned}
\Gamma_{i j}^{k} X_{k} & =X_{x_{i} x_{j}}-I I_{i j} N=\left(0, f_{i j}\right)-\frac{f_{i j}}{\sqrt{1+|D f|^{2}}} \frac{(-D f, 1)}{\sqrt{1+|D f|^{2}}} \\
& =\frac{f_{i j}}{1+|D f|^{2}}\left(D f,|D f|^{2}\right)=\frac{f_{i j}}{1+|D f|^{2}} f_{k} X_{x_{k}}
\end{aligned}
$$

we have

$$
\Gamma_{i j}^{k}(x, t)=\frac{f_{i j}}{1+|D f|^{2}} f_{k} .
$$

Then the ODE system becomes

$$
\frac{d x_{k}}{d t}=-\left(\delta_{i j}-\frac{f_{i} f_{j}}{1+|D f|^{2}}\right) \frac{f_{i j}}{1+|D f|^{2}} f_{k}=-\frac{f_{t}}{1+|D f|^{2}} f_{k} .
$$

Monotonicity for mean curvature flow.

Recall the familiar heat equation $\triangle u-u_{t}=0$ in $R^{n} \times(0, \infty)$, the solution (with quadratic exponential growth) can be determined from all previous time $t \in\left[0, t_{0}\right)$ via convolution with heat kernel

$$
\begin{aligned}
u\left(x_{0}, t_{0}\right) & =\int_{R^{n}} u(x, t) \frac{1}{\left[4 \pi\left(t_{0}-t\right)\right]^{n / 2}} \exp \left(\frac{\left|x_{0}-x\right|^{2}}{-4\left(t_{0}-t\right)}\right) d x \\
& =\int_{R^{n}} u(x, t) \Phi\left(x-x_{0}, t-t_{0}\right) d x
\end{aligned}
$$

where we denote the heat kernel term in terms of the backward heat kernel $\triangle_{R^{n}} \Phi+$ $\Phi_{t}=0$. This representation is independent of the time t, that is $\frac{d}{d t} u\left(x_{0}, t_{0}\right)=0$. Let us also take the time derivative of the right hand side

$$
\begin{aligned}
\frac{d}{d t} \int_{R^{n}} u(x, t) \Phi\left(x-x_{0}, t-t_{0}\right) d x & =\int_{R^{n}} u_{t} \Phi+u \Phi_{t} d x=\int_{R^{n}} u_{t} \Phi-u \triangle \Phi d x \\
& =\int_{R^{n}}\left(u_{t}-\triangle u\right) \Phi d x=0 .
\end{aligned}
$$

We follow this route to derive Huisken's monotonicity formula for mean curvature flow of n-dim hypersurface (same for any codimensions) in $R^{n+1} \times(0, T)$.

Huisken. Let $M_{t}=X(p, t) \subset R^{n+1}$ be a smooth solution (compact or noncompact complete) to the mean curvature flow $X_{t}=\triangle_{g} X$ for $t \in(0, T)$. Let $u(p, t)$ be a smooth function on M_{t} for $t \in(0, T)$. Then we have for $t<t_{0}$

$$
\frac{d}{d t} \int_{M_{t}} u(p, t) \Phi\left(X-X_{0}, t-t_{0}\right) d v_{g}=\int_{M_{t}}\left\{\left(u_{t}-\triangle_{g} u\right)-\left|\triangle_{g} X+\frac{\left(X-X_{0}\right)^{N}}{2\left(t_{0}-t\right)}\right|^{2}\right\} \Phi d v_{g}
$$

where we assume all integrals are finite, in particular they are so when M_{t} is compact.

For simplicity of notation, let us assume $X_{0}=0$ and $t_{0}=0$. Thus $t<0$ from now on. we calculate

$$
\frac{d}{d t} \int_{M_{t}} u(p, t) \Phi(X, t) d v_{g}=\int_{M_{t}}\left(u_{t} \Phi+u \frac{d}{d t} \Phi-u \Phi|H|^{2}\right) d v_{g}
$$

We convert time derivative of $\Phi(X, t)=(-4 \pi t)^{-n / 2} \exp \left(|X|^{2} / 4 t\right)$ to space derivatives. Note now

$$
\left(\triangle_{R^{n+1}}+\partial_{t}\right) \frac{\Phi}{\sqrt{-t}}=0
$$

We continue

$$
\begin{aligned}
\frac{d}{d t} \Phi(X, t) & =\partial_{t}\left[\frac{1}{(-t)^{1 / 2}} \Phi \cdot(-t)^{1 / 2}\right]+\left\langle D \Phi, X_{t}\right\rangle_{R^{n+1}} \\
& =-\triangle_{R^{n+1}}\left[\frac{1}{(-t)^{1 / 2}} \Phi\right] \cdot(-t)^{1 / 2}+\frac{1}{(-t)^{1 / 2}} \Phi \cdot \frac{1}{2}(-t)^{\frac{1}{2}-1}(-1)+\left\langle D \Phi, X_{t}\right\rangle_{R^{n+1}} \\
& =-\triangle_{R^{n+1}} \Phi+\frac{\Phi}{2 t}+\left\langle D \Phi, X_{t}\right\rangle \\
& =-\left[\triangle_{g} \Phi-\langle D \Phi, \vec{H}\rangle+\left\langle D^{2} \Phi N, N\right\rangle\right]+\frac{\Phi}{2 t}+\langle D \Phi, \vec{H}\rangle \\
& =-\triangle_{g} \Phi+2\langle D \Phi, \vec{H}\rangle-\left\langle D^{2} \Phi N, N\right\rangle+\frac{\Phi}{2 t}
\end{aligned}
$$

Then

$$
\begin{aligned}
u_{t} \Phi+u \frac{d}{d t} \Phi-u \Phi|\vec{H}|^{2} & =u_{t} \Phi-u \triangle_{g} \Phi+u\left[2\langle D \Phi, \vec{H}\rangle-\Phi|\vec{H}|^{2}-\left\langle D^{2} \Phi N, N\right\rangle+\frac{\Phi}{2 t}\right] \\
& =u_{t} \Phi-u \triangle_{g} \Phi+u\left[-\left|\vec{H}-\frac{D^{N} \Phi}{\Phi}\right|^{2} \Phi+\frac{\left|D^{N} \Phi\right|^{2}}{\Phi}-\left\langle D^{2} \Phi N, N\right\rangle+\frac{\Phi}{2 t}\right] \\
& =u_{t} \Phi-u \triangle_{g} \Phi-u\left|\vec{H}-\frac{D^{N} \Phi}{\Phi}\right|^{2} \Phi
\end{aligned}
$$

where the last three terms in the second line sum up to 0 . At the current point X, we rotated coordinates so that $N=\partial_{x_{n+1}}$ and $\partial_{x_{1}}, \cdots \partial_{x_{n}}$ are along the tangent space. Then

$$
\begin{aligned}
\frac{\left|D^{N} \Phi\right|^{2}}{\Phi}-\left\langle D^{2} \Phi N, N\right\rangle+\frac{\Phi}{2 t} & =\frac{\left(\Phi_{x_{n+1}}\right)^{2}}{\Phi}-\Phi_{x_{n+1}, x_{n+1}}+\frac{\Phi}{2 t} \\
& =\frac{\left(\Phi \frac{x_{n+1}}{2 t}\right)^{2}}{\Phi}-\left[\frac{\Phi}{2 t}+\Phi\left(\frac{x_{n+1}}{2 t}\right)^{2}\right]+\frac{\Phi}{2 t} \\
& =0
\end{aligned}
$$

RMK. For k co-dimension submanifolds in R^{n+k}, the normal N means N^{1}, \cdots, N^{k} or $\partial_{x_{n+1}}, \cdots, \partial_{x+k}$ at this particular point under the tangent coordinates.

We collect all terms together

$$
\begin{aligned}
\frac{d}{d t} \int_{M_{t}} u(p, t) \Phi(X, t) d v_{g} & =\int_{M_{t}}\left[u_{t} \Phi-u \triangle_{g} \Phi-u\left|\vec{H}-\frac{D^{N} \Phi}{\Phi}\right|^{2} \Phi\right] d v_{g} \\
& =\int_{M_{t}}\left[u_{t} \Phi-\Phi \triangle_{g} u-u\left|\vec{H}-\frac{D^{N} \Phi}{\Phi}\right|^{2} \Phi\right] d v_{g} \\
& \stackrel{I B P}{=} \int_{M_{t}}\left[\left(u_{t}-\triangle_{g} u\right)-u\left|\vec{H}-\frac{D^{N} \Phi}{\Phi}\right|^{2}\right] \Phi d v_{g}
\end{aligned}
$$

Lastly note

$$
D^{N} \Phi=\langle D \Phi, N\rangle N=\Phi\left\langle\frac{X}{2 t}, N\right\rangle N=\Phi \frac{X^{N}}{2 t}
$$

we arrive the desired formula.
Self shrinking solutions out of "minimal" blow up rate.
First we list a few evolution formulas under mean curvature flow of hypersurfaces $X_{t}(p, t)=\triangle_{g} X(p, t)$ in $R^{n+1}:$

$$
\begin{aligned}
\partial_{t} g_{i j} & =-2 h A_{i j} \\
\partial_{t} N & =-h_{i} g^{i j} X_{j}=-\nabla h \\
\partial_{t} A_{i j} & =\triangle_{g} A_{i j}+2 h A_{i a} g^{a b} A_{b j}-|A|^{2} A_{i j} \\
\partial_{t} h & =\triangle_{g} h-h|A|^{2} \\
\partial_{t}|A|^{2} & =\triangle_{g}|A|^{2}-2\left|\nabla_{g} A\right|^{2}+2|A|^{4} .
\end{aligned}
$$

Actually the first two are straight forward. The maneuver is to switch higher order derivatives to lower ones by the perpendicular relation. We compute

$$
\begin{aligned}
\partial_{t} g_{i j}=\partial_{t}\left\langle X_{i},\right. & \left.X_{j}\right\rangle=\left\langle\left(X_{t}\right)_{i}, X_{j}\right\rangle+\left\langle X_{i},\left(X_{t}\right)_{j}\right\rangle=-\left\langle\triangle_{g} X, X_{j i}\right\rangle-\left\langle X_{i j}, \triangle_{g} X\right\rangle=-2 h A_{i j} \\
\partial_{t} N & =\left\langle\partial_{t} N, X_{a}\right\rangle g^{a b} X_{b}=-\left\langle N, X_{a t}\right\rangle g^{a b} X_{b}=-\left\langle N,(h N)_{a}\right\rangle g^{a b} X_{b} \\
& =-h_{a} g^{a b} X_{b}=\nabla_{g} h
\end{aligned}
$$

What prevents the mean curvature flow continues is that the second fundamental form become infinity. Thus the maximal existence time T is either (ii) finite and $\max _{X(\cdot, t)}|A|$ blows up as t goes to T or (ii) $T=\infty$. In the finite time blow up case, let us see the asymptotic behavior of $|A|$.

Proof. The blow up rate for $\max _{X(\cdot, t)}|A|^{2}$ satisfies

$$
\max _{X(, t)}|A|^{2} \geq \frac{1}{2(T-t)} .
$$

Proof. Denote $u(t)=\max _{X(\cdot, t)}|A|^{2}$ (as max of Lipschitz function, still Lip). From the evolution equation for $|A|^{2}$

$$
\frac{d u}{d t} \leq 2 u^{2} \quad \text { or } \frac{d \frac{1}{u}}{d t} \geq-2
$$

Integrate, we have

$$
0-\frac{1}{u(t)} \geq-2(T-t)
$$

that is

$$
u(t) \geq \frac{1}{2(T-t)}
$$

So we distinguish two types of blow up rate or types of singularity, minimal $\frac{1}{2(T-t)}$ rate or large ones.

Type I. $\frac{1}{2(T-t)} \leq \max _{X(\cdot, t)}|A|^{2} \leq \frac{C}{2(T-t)}$;
Type II. $\max _{X(\cdot, t)}|A|^{2}(T-t) \rightarrow \infty$, as $t \rightarrow T$.
In the following, we extract a subconvergence sequence of the evolving hypersurface to self shrinking surface. We rescale the evolving surface or blow it up near the type I singular point P, where the whole surface collapses, $X(p, t) \rightarrow P$ as $t \rightarrow T$. Set

$$
Y(p, t)=\frac{1}{\sqrt{T-t}}(X(p, t)-P) .
$$

Observe $Y(p, t)$ is bounded, as

$$
|X(p, t)-P|=\left|\int_{t}^{T} X_{t} d t\right| \leq \int_{t}^{T}|h| d t \leq \int_{t}^{T} \frac{C}{\sqrt{T-t}} d t=2 C \sqrt{T-t}
$$

Further note the whole second fundamental of the rescaled surface now becomes bounded, as $|A(Y)|=\sqrt{T-t}|A(X)| \leq C$.

Once we manage to find a subconvergence sequence $Y\left(\cdot, t_{k}\right)$ (doable because of the above two observation and higher order derivative estimates Schauder), then any limit $Z(p)$ satisfies our self shrinking equation

$$
\vec{H}+\frac{1}{2} Z^{N}=0 \quad \text { or } \quad \triangle_{g} Z=-\frac{1}{2} Z^{N}
$$

Indeed, now $P=(0, T)$, here we just assume the space component of the singular point P is 0 , by the above Huisken's monotonicity formula with heat kernel weight

$$
\begin{aligned}
\frac{d}{d t} \int_{X(t)} \frac{1}{(T-t)^{n / 2}} e^{-\frac{|X|^{2}}{4(T-t)}} d v_{g(X)} & =\int_{X(t)}-\left|\triangle_{g(X)} X+\frac{X^{N}}{2(T-t)}\right|^{2} \frac{1}{(T-t)^{n / 2}} e^{-\frac{|X|^{2}}{4(T-t)}} d v_{g(X)} \\
& =\frac{-1}{T-t} \int_{Y(t)}\left|\triangle_{g(Y)} Y+\frac{1}{2} Y^{N}\right|^{2} e^{-\frac{|Y|^{2}}{4}} d v_{g(Y)}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
-\int_{X(0)} \frac{1}{T^{n / 2}} e^{-\frac{|X|^{2}}{4 T}} d v_{g(X)} & \leq\left.\int_{X(t)} \frac{1}{(T-t)^{n / 2}} e^{-\frac{|X|^{2}}{4(T-t)}} d v_{g(X)}\right|_{0} ^{t_{k}} \\
& =\int_{0}^{t_{k}} \frac{-1}{T-t} \int_{Y(t)}\left|\triangle_{g(Y)} Y+\frac{1}{2} Y^{N}\right|^{2} e^{-\frac{|Y|^{2}}{4}} d v_{g(Y)} d t
\end{aligned}
$$

or

$$
\int_{0}^{t_{k}} \frac{1}{T-t} \int_{Y(t)}\left|\triangle_{g(Y)} Y+\frac{1}{2} Y^{N}\right|^{2} e^{-\frac{|Y|^{2}}{4}} d v_{g(Y)} d t \leq \int_{X(0)} \frac{1}{T^{n / 2}} e^{-\frac{|X|^{2}}{4 T}} d v_{g(X)}<\infty
$$

As $\int_{0}^{T} \frac{1}{T-t} d t=\infty$, we conclude that any limit $Z(p)$ of $Y\left(p, t_{k}\right)$ as t_{k} goes to T should satisfy our self shrinking equation.

One can also present this self similar equation derivation via a change of time. The rescaled surface satisfies

$$
\begin{aligned}
Y_{t} & =\frac{1}{\sqrt{T-t}} X_{t}+\frac{1}{2}(T-t)^{-3 / 2}(X(p, t)-P) \\
& =\frac{1}{\sqrt{T-t}} \triangle_{g(X)} X+\frac{1}{2}(T-t)^{-1} Y \\
& =\triangle_{g(\underline{X})} Y+\frac{1}{2}(T-t)^{-1} Y \\
& =\frac{1}{(\sqrt{T-t})^{2}} \triangle_{g(\underline{Y})} Y+\frac{1}{2}(T-t)^{-1} Y
\end{aligned}
$$

that is

$$
(T-t) Y_{t}=\triangle_{g(Y)} Y+\frac{1}{2} Y
$$

We change time scale

$$
\tau=-\log \frac{T-t}{T} \in[0, \infty)
$$

Then

$$
Y_{\tau}=\frac{1}{\frac{d \tau}{d t}} Y_{t}=(T-t) Y_{t}=\triangle_{g(Y)} Y+\frac{1}{2} Y
$$

Huisken. (Monotonicity with weight $\exp \left(-|Y|^{2} / 4\right)$). The rescaled flow $Y_{\tau}=$ $\triangle_{g(Y)} Y+\frac{1}{2} Y$ satisfies

$$
\frac{d}{d \tau} \int_{Y} e^{-\frac{|Y|^{2}}{4}} d v_{g}=-\int_{Y}\left|\triangle_{g} Y+\frac{1}{2} Y^{N}\right|^{2} e^{-\frac{|Y|^{2}}{4}} d v_{g}
$$

Proof. Let $\phi(Y)=\exp \left(-|Y|^{2} / 4\right)$. We compute

$$
\begin{aligned}
\frac{d}{d \tau} \int_{Y} \phi d v_{g} & =\int_{Y}\left\langle D \phi, Y_{\tau}\right\rangle+\phi \operatorname{div}_{Y} Y_{\tau} d v_{g}=\int_{Y} \underline{\left\langle D \phi, Y_{\tau}\right\rangle}+\operatorname{div}_{Y} \phi Y_{\tau}-\underline{\left\langle D^{T} \phi, Y_{\tau}\right\rangle} d v_{g} \\
& =\int_{Y} \underline{\left\langle D^{N} \phi, Y_{\tau}\right\rangle}+\operatorname{div}_{Y} \phi Y_{\tau}^{T}+\operatorname{div}_{Y} \phi Y_{\tau}^{N} d v_{g} \\
& =\int_{Y} \phi\left\langle-\frac{1}{2} Y^{N}, Y_{\tau}\right\rangle-\phi\left\langle Y_{\tau}^{N}, \vec{H}\right\rangle d v_{g}+\int_{Y} \operatorname{div}_{Y} \phi Y_{\tau}^{T} d v_{g 0} \\
& =-\int_{Y} \phi\left\langle\vec{H}+\frac{1}{2} Y^{N}, Y_{\tau}\right\rangle d v_{g}=-\int_{Y} \phi\left|\vec{H}+\frac{1}{2} Y^{N}\right|^{2} d v_{g}
\end{aligned}
$$

One consequence is

$$
\int_{Y(\infty)} e^{-\frac{\mid Y Y^{2}}{4}} d v_{g}-\int_{Y(0)} e^{-\frac{|Y|^{2}}{4}} d v_{g}=-\int_{0}^{\infty} \int_{Y} \phi\left|\vec{H}+\frac{1}{2} Y^{N}\right|^{2} d v_{g} d \tau
$$

and then

$$
\int_{0}^{\infty} \int_{Y} \phi\left|\vec{H}+\frac{1}{2} Y^{N}\right|^{2} d v_{g} d \tau<\int_{Y(0)} e^{-\frac{|Y|^{2}}{4}} d v_{g}<\infty
$$

Once we manage to find a subconvergence sequence $Y\left(\cdot, \tau_{k}\right)$ with $\int_{Y\left(\tau_{k}\right)} \phi\left|\vec{H}+\frac{1}{2} Y^{N}\right|^{2} d v_{g} \rightarrow$ 0 (doable), then limit $Z(p)$ satisfies our self shrinking equation

$$
\vec{H}+\frac{1}{2} Z^{N}=0 \quad \text { or } \quad \triangle_{g} Z=-\frac{1}{2} Z^{N}
$$

Rigidity of entire self shrinking graph in R^{n+1}.
We need another evolution formula in terms the normal N with the second fundamental showing up. Under the non-divergence flow of hyper surface $X_{t}(x, t)=$ $g^{i j} \partial_{i j} X(x, t)$, we have

$$
\left(\partial_{t}-g^{i j} \partial_{i j}\right) N=|A|^{2} N
$$

Indeed, we have obtained the N_{t} part for the divergence flow, now we go with the non-divergence one

$$
\begin{aligned}
N_{t} & =\left\langle N_{t}, X_{a}\right\rangle g^{a b} X_{b}=-\left\langle N, X_{t a}\right\rangle g^{a b} X_{b}=\underbrace{-\left\langle N, X_{t}\right\rangle_{a}} g^{a b} X_{b}+\underline{\left\langle N_{a}, X_{t}\right\rangle} g^{a b} X_{b} \\
& \left(=-\nabla_{g} h+\left\langle N_{a}, X_{t}\right\rangle g^{a b} X_{b}\right) .
\end{aligned}
$$

Next for the $\partial_{i j} N$ part,

$$
\begin{gathered}
N_{i}=\left\langle N_{i}, X_{a}\right\rangle g^{a b} X_{b}=-\left\langle N, X_{a i}\right\rangle g^{a b} X_{b} \\
N_{i j}=\left[-\left\langle N, X_{a i j}\right\rangle-\left\langle N_{j}, X_{a i}\right\rangle\right] g^{a b} X_{b}-\left\langle N, X_{a i}\right\rangle \partial_{j} g^{a b} X_{b}-\left\langle N, X_{a i}\right\rangle g^{a b} X_{b j}
\end{gathered}
$$

and

$$
\begin{aligned}
g^{i j} N_{i j} & =\left[-\left\langle N, g^{i j} X_{a i j}\right\rangle-g^{i j}\left\langle N_{j}, X_{a i}\right\rangle\right] g^{a b} X_{b}-g^{i j}\left\langle N, X_{a i}\right\rangle \partial_{j} g^{a b} X_{b}-g^{i j}\left\langle N, X_{a i}\right\rangle g^{a b} X_{b j} \\
& =[\underbrace{-\left\langle N, g^{i j} X_{i j}\right\rangle_{a}}+\underline{\left\langle N_{a}, g^{i j} X_{i j}\right\rangle}+\partial_{a} g^{i j}\left\langle N, X_{i j}\right\rangle-g^{i j}\left\langle N_{j}, X_{a i}\right\rangle] g^{a b} X_{b} \\
& -g^{i j}\left\langle N, X_{a i}\right\rangle \partial_{j} g^{a b} X_{b}-g^{i j}\left\langle N, X_{a i}\right\rangle g^{a b} X_{b j} .
\end{aligned}
$$

Then

$$
\left(\partial_{t}-g^{i j} \partial_{i j}\right) N=\left[-\partial_{a} g^{i j} A_{i j}+g^{i j}\left\langle N_{j}, X_{a i}\right\rangle\right] g^{a b} X_{b}+g^{i j} A_{a i} \partial_{j} g^{a b} X_{b}+g^{i j} A_{a i} g^{a b} X_{b j}
$$

Note at the tangent point under the tangent coordinates, $\partial_{a} g=0, \partial_{a} g^{-1}=0$, and $X_{a b} \| N$, in turn, the evolution for N is already valid. Recall our non-divergence system is invariant under orthogonal rotation in R^{n+1}, consequently we have proved the desired equation for the normal.

Here we also include a direct proof:

$$
\left.\left.\begin{array}{rl}
\left(\partial_{t}-g^{i j} \partial_{i j}\right) N & =\left[-\partial_{a} g^{i j} A_{i j}+g^{i j}\left\langle N_{j}, X_{a i}\right\rangle\right] g^{a b} X_{b}+g^{i j} A_{a i} \partial_{j} g^{a b} X_{b}+g^{i j} A_{a i} g^{a b} X_{b j} \\
& =\left[g^{i \alpha}\left(\left\langle X_{\alpha a}, X_{\beta}\right\rangle+\left\langle X_{\alpha}, X_{\beta a}\right\rangle\right) g^{\beta j} A_{i j}-g^{i j} A_{j \alpha} g^{\alpha \beta}\left\langle X_{\beta}, X_{a i}\right\rangle\right] g^{a b} X_{b} \\
& -g^{i j} A_{a i} g^{a \alpha}\left(\left\langle X_{\alpha j}, X_{\beta}\right\rangle+\left\langle X_{\alpha}, X_{\beta j}\right\rangle\right) g^{\beta b} X_{b}+g^{i j} A_{a i} g^{a b} X_{b j} \\
& =[g^{i \alpha} A_{i j} g^{\beta j}(\underbrace{\left\langle X_{\beta}, X_{\alpha a}\right\rangle}+\underbrace{\left\langle X_{\alpha}, X_{\beta a}\right\rangle})-g^{i j} A_{j \alpha} g^{\alpha \beta}\left\langle X_{\beta}, X_{a i}\right\rangle
\end{array}\right] g^{a b} X_{b}\right)
$$

RMK. Under the effective mean curvature flow $Y_{t}(p, t)=\triangle_{g} Y(p, t)$ for $Y(p, t)=$ $X(x(p, t), t)$, the equation for $N(p, t)$ takes a similar form

$$
\left(\partial_{t}-\triangle_{g} X\right) N=|A|^{2} N .
$$

This is just because of the ODE system for the reparametrization $x(p, t)$

$$
\frac{d x_{k}}{d t}=-g^{i j}(x) \Gamma_{i j}^{k}(x)
$$

Theorem(Lu Wang): Any ancient self-similar solution $(x, f(x, t))=\left(x, \sqrt{-t} u\left(\frac{x}{\sqrt{-t}}\right)\right)$ to

$$
f_{t}=g^{i j}(D f) \partial_{i j} f \text { in } R^{n} \times(-\infty, 0) \quad \Leftrightarrow g^{i j}(D u) \partial_{i j} u=\frac{1}{2} x \cdot D u-\frac{1}{2} u \text { in } R^{n}
$$

is linear, $f(x, t)=D u(0) \cdot x=u(x)$.
Lu Wang's original proof is in an integral way. We have a shorter pointwise subharmonic approach. Here we present yet an even shorter superharmonic argument.

Step1. Superharmonic inner product $W(x, t)=\left\langle N, e_{n+1}\right\rangle=1 / \sqrt{1+|D f|^{2}}>0$ satisfies

$$
\left(g^{i j} \partial_{i j}-\partial_{t}\right) W=-|A|^{2} W \leq 0,
$$

from the above evolution equation for N. By self-similarity
$W(x, t)=w(x / \sqrt{-t}), \quad g_{f}(x, t)=g_{u}(x / \sqrt{-t}), \quad$ and $\left|A_{f}(x, t)\right|^{2}=\left|a_{u}(x / \sqrt{-t})\right|^{2} /(-t)$.
The equation for W becomes

$$
g^{i j} \partial_{i j} w-\frac{1}{2} x \cdot D w=-|a|^{2} w \leq 0
$$

Heuristic: As $g^{i j} \partial_{i j} w \leq \frac{1}{2} x \cdot D w$, the amplifying force in the right forces w up near ∞. Otherwise, bounded w becomes unboundedly negative near ∞. Hence super solution w attains its min at a finite point, then constant.

Step2. The self-similar term $r w_{r}$ with barrier like $v(x)=-\varepsilon\left(|x|^{2}-4 n^{2}\right)+$ $\min _{B_{2 n}} w$ forces superharmonic w attains its global minimum at a finite point. This is because

$$
g^{i j} \partial_{i j} v-\frac{1}{2} x \cdot D v=-\varepsilon\left(2 g^{i j} \delta_{i j}-|x|^{2}\right) \geq-\varepsilon\left(2 n-|x|^{2}\right) \geq 0 \text { for }|x| \geq 2 n
$$

and the subharmonic function v is less than or equal to w at the boundary $B_{2 n}$ and near ∞. Then the maximum principle implies $w \geq v$. Let ε go to 0 , we conclude

$$
w(x) \geq \min _{B_{2 n}} w \text { for }|x| \geq 2 n
$$

Hence we see w attains its global minimal at some finite point. Now the strong maximum principle then implies that $w \equiv$ const. >0.

Step3. By the equation for w, one concludes the second fundamental form $|a|=0$.

[^0]: ${ }^{0}$ December 2, 2014

