Lecture 1 Introduction

o equations
o source for equations
o examples, stationary & dynamical (symmetries)

The equation

Deform surface canonically (independent of coordinates ...) or geometrically, such
as along mean curvature flow, Gauss curvature flow (needs convex surface, other-
wise equation hyperbolic, even initial condition is obviouly posed), along the normal
direction (tangential deformation has no effect on the shape change).

Surprisingly, in reality, mean curnvature flow resembles nature such as in metal
melting...

In application, mean curvaure (and other curvature) flow provides very efficient
way of image processing and restoring ....

Mean curvature vector

A --+ k= (K1, ,Kn), principle curvatures of hypersurface (z,u (z)).
o (k) = ¢,

i ticul t H = e = div | ==L

in particular, mean curvature K1+ -+ Kkp = div ( m) ,

det D?u

and Gauss curvature K = kq -+« - - Ky = T
(1+|Dul?) 2

Tangent way: Re-represent graph (z,u (z)) at (zo, u (z9)) = (0,0) over its tangent
plane, 4 (Z) =0+ 0-Z + 5 (k173 + -+ + K, T2) .
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Assume Du 2 (0,---,0,u,) and u, = tan@, then
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and
(.1’1, s ,xn_l,xn) = (Zfl, e ,[fn_l,ffn COSs 0) .
Now at 0
U11 Ul,n—1 Uy cos 0
D24 (%) = cos @
Un—1,1
Upy €OSO Uy 11 €080 Uy, cOS?
1 1
= cos 1 D?u 1

cos 6 cos

OSeptember 29, 2014



Hence H = cos0 [uy + -+ + Up_1n-1 + Upp cOs> 0] Pu=(0 0m) i, <¢) and
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Examples.

Stationary, X; = 0 leads to H = 0 or minimal surface surface equation, its linear
version is Laplace equation.

Dynamical, linear version is heat equation, special solutions could be generated
via symmetry such as homothetic shrinking/expanding, translating, rotating.

egl. Sphere
eg2. cylinder
eg3. torus, mean convex torus and Angent’s torus

o shrinker.
X (z,t) = +/—tF (x)
1 1
- FN = o F
o v
or )
A F = —§FN

In particular F' = (z, f (z)) € R* x R!

di Df —x-Df+f
| —m— =

1
V1+I[Df 5\/1+|Df|



or

fif

ATy

2f2j:_( Df_f)

when f radial
frr n—1 1

== (x-Df —
examples: sphere, cylinder, shamrock ...
o Translator
X (z,t) = F (z) + te
eN =AF

g

In particular F' = (z, f (z)), e = (0,--- ,0,1)

div Df ) = !
(\/H IDf*)  \J1+|Df

Jes — 1 f=—1Incosz

1+f2

eg. grim reaper
o Rotator

X (z,t) = F (x) + t0y

1d X (z,t) = F (z) + tJF ()

N
(JF)N = A, F

In particular F' = (z, f (z))

o Df ) _ <(_f g, L) > _ fhta
/Tnyy? /14 f2 1+ f2
In polar coordinates (r (6,t),0)
1st mean curvature flow
(Ttar)N =
N =JT/|T|= J[rg(cosf,sinf) +r(—sinb,cosh)] /|T| = [rg (—sinfd,cos @) + r (— cos b, —sinf)] /

Ty dﬁ dﬁ do

IT|  ds dfds

or
. 98
T = d@
2nd rotator
r(0,t)=r(0+1t)
T
then
ag _ _
dr



and 3 = —1r? or

1
arctan f, = —3 (* + f?).
By symmetry, r = /=25 & r = /2 (8 — 7) form the Yin-Yang rotator.
RMK. One obvious thing
1d principle curvature of curve (x, f (x))

(Vie2) Vitiz )

also [ kds = [ ﬁ\/l + f2dz = [ (arctan f,), do = arctan f,|s
oH=0

catenoid: |(z,y)| = cosh z
helicoid: z = arctan £
Sherk’s surface: z = In
o H, = const.

unit sphere

cosy
cos x

o Au=0

complex analysis in even d: u = Rez¥, 27%, €%, zje®2, ...
algebraic n-d u = oy, (z1,- -+ , T2)

radial
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u= In |(z1,x9)|, or |xq]

Comparison principle
two solutions cannot touch each other

figure
Au=0
D2U1 > D2U2 = 0= Aul — A’LLQ >0 —«—
two solutions can cross each other
figure

In contrast to wy — Wy = 0, wy = 2% + 12, wy = 0.



