1. For $f \in C_{0}^{\infty}\left(R^{n}\right)$, show that a solution to $\Delta u=f$ is given by

$$
u(x)=c_{n} \int \frac{f(y)}{|x-y|^{n-2}} d y
$$

for some constant c_{n}.
2. Let $r=|x|$. Let $P_{k}(x)$ be a homogeneous polynomial of order k. Show that $P_{k}(D) r^{2-n}$ is homogeneous of order $2-n-k$ and can be written in the form

$$
P_{k}(D) \frac{1}{r^{n-2}}=\frac{H_{k}(x)}{r^{n-2+2 k}} .
$$

3. Show that not only are those $H_{k} \mathrm{~s}$ derived the previous problem harmonic polynomial of degree k, but all harmonic polynomial of degree k are an H_{k}. The H_{k} s form a linear space, find its dimension.
4. Show that if $u(x)$ is harmonic, then so is $|x|^{2-n} u\left(x /|x|^{2}\right)$.
5. Suppose v is a real harmonic function. Show that if

$$
|v(x)| \leq C\left(|x|^{k}+1\right)
$$

then $v=H_{k}$, a harmonic polynomial of degree k.

