1. Recall that for harmonic function u

$$
u(0)=\frac{1}{\left|\partial B_{1}\right|} \int_{\partial B_{1}} u(y) d A_{y} .
$$

Is the mean value property still true for the boundary of a cube instead of the boundary of a ball?
2. Let $u \in L^{1}$ and fix r, assume

$$
u(x)-u\left(x_{0}\right)=\frac{1}{\left|B_{r}\right|}\left[\int_{B_{r}(x)} u(y) d y-\int_{B_{r}\left(x_{0}\right)} u(y) d y\right] .
$$

Show that the right hind side goes to 0 as x goes to x_{0}.
3. Let $\psi_{\varepsilon}=\frac{1}{\varepsilon^{n}} \psi\left(\frac{x}{\varepsilon}\right)$, where ψ is a smooth approximation to the characteristic function $\chi_{B_{r}(x)}$ (and $\psi \in C_{0}^{\infty}$). Let $u \in \mathcal{D}$ (or just L^{1}) such that $u * \psi_{\varepsilon}$ is independent of ε. Show that $u=u * \psi_{\varepsilon}$ in the distribution sense.
4. Let

$$
u(x)=\frac{1}{\left|\partial B_{1}\right|} \int_{\partial B_{1}} \frac{\left(1-|x|^{2}\right)}{|y-x|^{n}} \varphi(y) d A_{y} \text { for } \varphi \in C^{0}\left(\partial B_{1}\right)
$$

show that $\triangle u(x)=0$ and $\lim _{x \in B_{1} \rightarrow y} u(x)=\varphi(y)$ for $|y|=1$.

