Elliptic PDE Fall 2013 HW2

1. Recall that for harmonic function u

$$u\left(0\right) = \frac{1}{\left|\partial B_{1}\right|} \int_{\partial B_{1}} u\left(y\right) dA_{y}.$$

Is the mean value property still true for the boundary of a cube instead of the boundary of a ball?

2. Let $u \in L^1$ and fix r, assume

$$u(x) - u(x_0) = \frac{1}{|B_r|} \left[\int_{B_r(x)} u(y) dy - \int_{B_r(x_0)} u(y) dy \right].$$

Show that the right hind side goes to 0 as x goes to x_0 .

- 3. Let $\psi_{\varepsilon} = \frac{1}{\varepsilon^n} \psi\left(\frac{x}{\varepsilon}\right)$, where ψ is a smooth approximation to the characteristic function $\chi_{B_r(x)}$ (and $\psi \in C_0^{\infty}$). Let $u \in \mathcal{D}$ (or just L^1) such that $u * \psi_{\varepsilon}$ is independent of ε . Show that $u = u * \psi_{\varepsilon}$ in the distribution sense.
 - 4. Let

$$u\left(x\right) = \frac{1}{\left|\partial B_{1}\right|} \int_{\partial B_{1}} \frac{\left(1 - \left|x\right|^{2}\right)}{\left|y - x\right|^{n}} \varphi\left(y\right) dA_{y} \text{ for } \varphi \in C^{0}\left(\partial B_{1}\right),$$

show that $\triangle u\left(x\right)=0$ and $\lim_{x\in B_{1}\to y}u\left(x\right)=\varphi\left(y\right)$ for |y|=1.