Elliptic PDE Fall 2013 HW3

1. Show that for $u \in C^{0}$, the subharmonicity $\triangle u \geq 0$ in the distribution/IBP sense and the subharmonicity $\triangle u \geq 0$ in the viscosity sense are equivalent.
2. Show that

$$
\left\{\begin{array}{l}
\triangle p=q \quad q \in \mathcal{P}^{k} \\
p=0 \text { on } \partial B_{1}
\end{array}\right.
$$

always has a polynomial solution $p \in \mathcal{P}^{k+2}$, where \mathcal{P}^{k} represents the set of polynomials of degree at most k.
3. Show that

$$
\left\{\begin{array}{l}
\triangle p=q \quad q \in \mathcal{P}^{k} \\
p=0 \text { on } \partial \Omega
\end{array}\right.
$$

always has a polynomial solution $p \in \mathcal{P}^{k+2}$, where $\partial \Omega=\left\{x: \sum_{i=1}^{n} x_{i}^{4}=1\right\}$.

