Elliptic PDE Fall 2013 HW4

1. Let Ω be a strongly convex and bounded C^2 domain, let $\varphi(x) = \varphi(x', x_n) \in C^2(\partial\Omega)$. For any point on the boundary, say (0,0). Show that there exists a large positive M such that

$$L^{+}(x) = \varphi(0,0) + \varphi_{x'}(0,0) x' + Mx_n \ge \varphi(x)$$
 on $\partial\Omega$

and

$$L^{-}(x) = \varphi(0,0) + \varphi_{x'}(0,0) x' - Mx_n \ge \varphi(x)$$
 on $\partial\Omega$.

2. Let

$$u(x, y, z) = \int_0^1 \frac{t}{|(x - t, y, z)|} dt.$$

Show that $\Delta u = 0$ in $\mathbb{R}^3 \setminus [0,1]$ and compute the integral for u explicitly.

3. Let Γ be the fundamental solution for the Laplacian on \mathbb{R}^n . Let $f \in C_0^{\infty}(\mathbb{R}^n)$. Then the convolution $\Gamma * f$ satisfies $\Delta \Gamma * f = f$. Show that

$$D_{ij}u(x) = \int_{R^n} \Gamma_{ij}(y) f(x-y) dy = \lim_{\varepsilon \to 0} \int_{R^n \setminus B_{\varepsilon}(x)} c_n \frac{y_i y_j - \delta_{ij} n^{-1} |y|^2}{|y|^{n+2}} f(x-y) dy + \frac{\delta_{ij}}{n} f(x).$$