Lecture 2 Harmonic functions

o invariance

o mean value
maximum principle,
(higher order) derivative estimates,
Harnack

o weak formulations

mean value

weak /Weyl

viscosity

Invariance for Harmonic functions, solutions to Au =0

- u(x + o)

- u (Rx)

- u (tx)

RMK. Equations don’t know/care which coordinates they are in.
- u+ v, au, where Av =0

fulz—y) ey dy

Juleted)—ule) _, D.u, so is D*u

&

u((lfe)n)—u(z)
€

2— . .
el (#) Kelvin transformation

— Du(x) - = ru,, so are 10, (Tu,) = 1ty + T*Upy, T3Uppp, - - -

. . . |z |2
RNK. “Kelvin” transformation for the heat equation u;—Awu = 0, tn%e’?u (%, ’71) .
More harmonic functions.

egl.
Dir?™" = (2 —n) plnZl (2—n)r "z =(2-—n) o
T re
- 1T . r? — na?
D117”2 "= (2 — n) [—m” 171-771 +7r = (2 - n) rnt2 :
_n —NIT1T2
Dygr®™" = (Q—H)W

Let Py (z) be any homogeneous polynomial of degree k, Py, (D) r*™" = Tfﬁg(f%k. For

example, oy (D) r?™" = _ox@) . Note H), # Py in general, but Hy (z) = r2”|frn(—"z§>2k
rZ

is the Kelvin transform of harmonic function P, (D) r?*~", thus harmonic.
Exercise: Hy (x) are ALL harmonic polynomials of degree k.
eg2. Harmonic function
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is Green’s function (up to a multiple) for the unit ball.
Mean value equality
Recall the divergence formula (the fundamental theorem of calculus)

/de (V) dr = /89 <V,7> dA.

V = Du, then 0= Joq urdA.
V =wDu, then [, (Dv, Du) +vAu= [, vu,dA.
V = uDuv, then Jo (Du, Dv) + u Av = [, uv,dA.

/vAu—uAv:/ VU — uv,dA.
Q a0

Mean value case. Now Au = 0 in By, take v = |z|*™", Q = B;\B.,

B)\B. figure

we then have 0 = fm vuy, — uv,dA, or

0
A

[ ia [ waae [ ol [ Loy
d(B1\B¢) 9(B1\B:) 9B, r OB r

1 e
We get / udA :/ u——=dA 22108, u (0). So u (0) = ﬁf% udA.
oB1 oB. € . . ! !
RMK. In hindsight one just takes v = _ dof r
s ! (n —2) 0By [z
Also .
u(0) = udA.
=121 s,

Take a weight function |9B,], w(0)|By| = [) u(0)|0B,|dr = [, [, udAdr =

[, udz. So u(0) = ﬁ 5. (0) udz.

Also
1

N |BT| Br(0)

udzx.

u (0)

RMKI1. Tracing the sign of Au, one gets mean value inequalities for superharmonic

functions Au < 0: u (0) < fu and subharmonic functions Au > 0: u (0) < fu.



RMK2. “ .. all the women are strong, all the men are good-looking, and all the
children are above average.” —A Prairie Home Companion with Garrison Keillor.
RMKS3. Also for u € C§° (R")

-1 1
u(z) = Auly)dy =T *xu.
@)= | g am e A

Green case. Still Au =0 in By, but

— _ _—1 . 2—n 2—n
U—G(Z’,J)())— (n—2)|331| <|$ Jfo’ |ZE|

i
P

2—n
)

0= BI\BE (I‘()) .
B1\B. (z¢) figure

Taking limits on two ends of (*), we get

B 0G (x, x9) 1 1 — |mo|”
u(xo) = /681 —8% u(zr)dA = BB Jop, To = x0|nu(x) dA.

1-
Note u (z) = [, 8%5 )5 (y) dA,, as sum of harmonic functions - o ‘|n, is harmonic—
Y

smooth, analytlc in terms regularity—for ¢ € C°, L!,-
Application 1. Strong maximum principle (No toughing).

Aul = AUQ =0
Uy Z Uz, “ = at 0
then )
0=1wuy(0) —uy(0) = (uy — ug)dx > 0.
|B| JB,

It follows that u; = wus.
Application 2. Smooth effect and derivative test.
Take radial weight ¢ (y) = ¢ (|y|) € C5° (R") such that 1 = [ ¢ (y)dy = [7 ¢ (r)|0B,|dr.

Then
/n“(y)sf)(fc—y)dy—/OOO/QBT(x)u(y)sO(x—y)dAdr
:/OOOU(SUW(T)\GBAdr:u(x)/¢(y)dy

=u(z).

Consequence u (z) = [, u(y) ¢ (x — y) dy is smooth for continuous initial u (y) , and

D*u (0) =/ (y) Dy (x —y) dy = (—1)k/U(y) Dy (x —y) dy.

3



Thus
‘Dku (0)| < C (k;?n?sp) ||u||L1(B1) '

Scaled version
Clkn)llullL1(p,)

DM (0)] < { C(hﬂ»@ﬁ?ﬂﬁlﬁm@ﬂ
Rk
That is the larger the domain, the flatter the harmonic graph.
Application 3. Harnack inequalities—a quantitative version of the strong maximum
principle.
eg. Consider positive harmonic functions 72", 17" on {x; > 0} .

P27 ™ graph figure

eg. In general for Au=0, v > 01in B; (0), we have

1 1 B 1
udr < — udr = lu (0) =

7u (0).
| Bi-jal| JB10) | B1 |

(1= Jal)

RNK. As those two examples suggest, from estimating the kernal of Poisson repre-
sentation, we have a sharper comparison

A lel) < ey < 2
g O = = e

T Bl ey

u (0).

Harnack. Suppose Au =0, u > 0in B, (xy). Then we have

sup u <3" inf wu.
BT/4((E0) Br/4($0)

In fact
4 circle figure By, By /4, B1/4 (Tmax) s B34 (min)

1
maxu = U (Tpax) = —— udx
Bl/4 |Bl/4‘ 31/4($max)

1

udx
}131/4‘ 133/4($nﬂn)

A

= 3"u (Tpin) = 3" min u.
B4



Consequences - - - , for example one sided Liouville for entire harmonic functions.

RMK. Harnack inequality is in fact a quantitative version of the strong maximum
principle. It measures how much the minimum leaps when moving inside, or flipping
around how much the maximum drops when moving inside. For example, to move
inside B4 from By,

min (u —my) > 37" max (u — my)
Bija By

or
m1/4 Z my + 3" (M1/4 - ml) .

The flip version is

min (M; —u) > 37" max (M; — u)
By By

or
My > My — 37" (My — myy) .

(This should be Moser’s observation: subtracting the leap from the drop, one has
oscillation decay of the “harmonic” function.)

Weak formulation for Laplace equation: Au = 0.

Mean value formulation.

Suppose u € L' satisfy u (x) = ngT_(x)u (y) dy for all z and r.

Exercise. Then w is continuous, since

u(m)—u<x0>:][ w(y) dy — ][ u () dy "5 0.
Bi(x) Bi(zo)

2 minor overlap circle figure

In turn, we have u () :DfaB,.(a:)u (y) dy. In fact

Sl = [ )y

Br(z0)

01" | By (o) = / u(y) dy

OB (x0)

|0B,| u (zg) = / u(y)dy.

OBr(z0)

Then



for ¢ (x) = ¢ (|z]) with [, ¢ (Jz|) dz = 1. Let us check Au = 0.

1
/ udA = u (0) + Du (0) - © 4 = Diju (0) ziz; + *dA
B (0) dB:(0) e

Mzt 4 Anz2

2 2
|0B:|u (0) = |0B.|u (0) + 0+ = 5 (Al— -+An%) 0B:| + O (£°) |0B.]

1
= — Au(0)=0.
2n u(0)
Integration by parts formulation.
For u € CY/L'/distribution [u A ¢ =0 for any ¢ € C§°. How to move to mean
value formulation?
Q. How to find ¢ € C§° such that

1 1
ANp = —==XB, — T5XB, !
By By M
1,1 « |z ”» « |z
CH' approach. ¢ ~ B XB2 2n|Bl|XBl'

Analytic way. We just look for those radial ones by solving

n—1 1 1
SOrr+T$0r |Bl|XBl or ’32‘)(32
For r <1
1 r?
w = |B|2 - X[0,1] T C1-
Forr > 1

2—
@ =cor " +cs.

After CY! matching at r = 1, we have

for |z| > 1

1 r? 1 1
oy = { TBIZXB ™ T~ Bln—2n for o] <1
- —1 1

|B1](n—2)n rn—2

Similarly

1 72 22 1
0y = Bal 20 XB2 ~ Baf2n — [Bil(n—2)n for [z] <1
= ! for |z| > 1

[Bi[(n—2)n r"—2
“Incidentally” the gradient matching coefficient ¢, leads exactly the coefficient for the

; — -1 1
fundamental solution I' = Brl(n—2)n a2

Geometric way (Caffarelli).

quadratics drop down to fundamental figure



||
2n|Ba|

This requires g = — A to touch 727", in fact ,,T;—l,z at |z| = 2. We have a

22 -1 22 _ (n—2) D . -

system 5p— — A = 5 and 55 —| Tgn_l which implies ? = n(n —2)|B;| and
— _2(-1) S _ = : -1 _ -1

A= FICSCITAR Similarly we get ¢; = SnlBr] A’ touching 5= = PR T at

|z| = 1. Thus ¢ = @y — 1 € C’é’l answers the above question.

ForuELl,/uAgpzo:][ u:][ u.
Bs B

Therefore (exercise)

u(x) = lim u a.e. at Lebesgue point of L' u.
r—0 BT(:L‘)

Cor. (Weyl) u € L'/C" satisfying [u A ¢ = 0 for any ¢ € C§°. Then u € C™
and Au = 0.
Warning:

1
/Wﬁwzcmo#m

C> approach (Weyl)
Work for u €distribution
) (x) = ¢ (|z]) € CF° with [+ =1
Ve () = ¢ (%)
I x 1. graph figure

B B I for |z|>¢
Step 1. . =T x4, = { smooth for |z| <e
Step 2. AL x ) = 1.

Step 3. Pey — Pe; € C(())O

_ -1 1
. Recall ' = (n72)\631||x|ﬁ'

/ UA(<P€2_9061):O:> 1“/}62:/ W%
n R™ Rn

- u * 1, is independent of
- ux 1. € C*™ (Review distribution theory, try it.)
- u* 1. = u as a distribution (Exercise).

Pointwise (viscosity) formulation.
Definition: u € C? is a viscosity solution to Au = 0, if for any quadratic P > u
&9
near an interior point xy and “ =" at xg, then AP > 0.
(<)



RMK. If there is no quadratic touching u from above or blow at z(, then one
checks nothing. No touching, no checking!

RMK. We can replace those quadratics by equivalent C*/C testing functions.
Certainly C? harmonic functions satisfy this definition. We do have C° but non
C? solutions to (fully nonlinear) elliptic equations such as Monge-Ampere/Special
Lagrangian equations.

We verify C° harmonic functions in the viscosity sense are in fact smooth and
satisfy the “harmonic” equation by Poisson representation formula. Note explicitly
representation for solutions to nonlinear equations are NOT available in general.

Let

h— / P (2,y) u(y)lyp dA,
0B,

-h=wuon 0B;.

0
Now if u > h somewhere at xy € By, say (u — h) (xg) = maxp, (u—h) >0

u,h graph figure

h+ max > u in By, “ =" at z,.

0
Also h + max’ —¢ ]a:\Q > u, “ =" at z{, € By, yes we can replace.
But Aleft= —2ne < 0. This contradiction shows u < h.

0
Similarly, if v < h somewhere at xy € By, say (u— h) (zo) = ming, (u —h) <0

u,h graph figure

h+ min < wu in By, “ =" at z,.
0
Also h + min’ +& |93|2 <u, “="at x € By, yes we can replace.
But Aleft= 2ne > 0. This contradiction shows u > h.
Thus u = h.



