
Lecture 3 Solvability for 4 in Ω

◦
{
4u = 0 in B1

u = ϕ on ∂B1
Poisson formula

◦ Perron method
◦ Boundary values/Barriers/“Harnack”

Poisson formula
Recall for

4u = 0 (4 (u− Γ ∗RHS) = 0)

u (0) =
1

|∂B1|

∫
∂B1

u (y) dAy.

Question: u (x) =

∫
∂B1

u (y) dAy (x)?

Recall in the derivation of the mean value equality, we use∫
Ω

v4 u− u4 v =

∫
∂Ω

vuγ − uvγdA.

Now take Ω = B1 (0) \Bε (x) and

v (x, y) = G (x, y) = cn

[
1

|x− y|n−2 −
1

|y|n−2 |x− ȳ|n−2

]
|y|=1

= 0
with ȳ =

y

|y|2

= cn

[
1

|y − x|n−2 −
1

|x|n−2 |y − x̄|n−2

]
,

as |y| |x− ȳ| = |x| |y − x̄| , which can be seen from similarity of 4oxȳ and 4oyx̄ or
just squaring both sides.

We continue for harmonic function u,∫
∂B1

u (y)DyG (x, y) · γy dAy = lim
ε→0

[∫
∂Bε

u (y)DyG (x, y) · γy −G (x, y)uγy dAy

]
= lim

ε→0

∫
∂Bε

u (y)DyG (x, y) · γy dAy

= − (n− 2) cn |∂B1| u (x) = u (x) ,

if cn is chosen as
−1

(n− 2) |∂B1|
.

Using the above symmetry of Green’s function,

DyG (x, y) = cn

[
− (n− 2) (y − x)

|y − x|n
− − (n− 2) (y − x̄)

|x|n−2 |y − x̄|n

]
= − (n− 2) cn

[
(y − x)

|y − x|n
− |x|

2 (y − x̄)

|x|n |y − x̄|n

]
|y|=1
=

|y||x−ȳ|=|x||y−x̄|

1

|∂B1|

(
1− |x|2

)
y

|y − x|n
,
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then

DyG (x, y) · y
|y|

=
1

|∂B1|

(
1− |x|2

)
|y − x|n

.

Thus

u (x) =
1

|∂B1|

∫
∂B1

(
1− |x|2

)
|y − x|n

u (y) dAy.

Note that as a linear combinations of harmonic functions DyG (x, y) for |y| = 1, the

kernel
1− |x|2

|y − x|n
is still harmonic in terms of x. This can also be checked easily (assume

y = (1, 0 · · · , 0) or change variable x− y to x).
Exercise (Inverse problem): Given

u (x) =
1

|∂B1|

∫
∂B1

(
1− |x|2

)
|y − x|n

ϕ (y) dAy for ϕ ∈ C0 (∂B1) ,

then 4u (x) = 0 and lim
x→y

u (x) = ϕ (y) .

RMK. If u (x) =
∫
B1
G (x, y) f (y) dy, then

{
4u = f (x) in B1

u = 0 on ∂B1
. We have the

following asymptotic behavior–obvious in 1-d. Here d (y) denotes the distance to the
boundary.

If f (y) ∼ d−2 (y) , then u (x) ∼
∫
d (y)

1

d2 (y)
=∞.

If f (y) ∼ d−2+β (y) , then u (x) ∼
∫ d(x)

0

d (y)
1

d2−β (y)
∼ dβ (x) .

RMK. From the Poisson formula, we see u (x) is analytic. In fact
1− |x|2

|y − x|n
is

analytic in terms of x for |y| = 1. That is

|y − x|2 = |y|2 − 2y · x+ |x|2 |y|=1
= 1− 2y · x+ |x|2

1

|y − x|n
=
(
1− 2y · x+ |x|2

)−n/2
= 1− n

2

(
|x|2 − 2y · x

)
+ · · · .

Then integrate, we find u (x) is analytic.

RMK. For

{
4u = 0 in BR

u = ϕ on ∂BR
, after scaling we have

u (x) =
1

|∂B1|

∫
∂BR

R2 − |x|2

R |y − x|n
ϕ (y) dAy.

Perron method
Preliminary.
Def. u is a super (sub) harmonic function in the classical sense for u ∈ C2 if

4u ≤
(≥)

0; in the viscosity sense for u ∈ C0 if for any quadratic P ≤
(≥)

u near an interior
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point x0 and “ =′′ at x0, then 4P ≤
(≥)

0; in the distribution/IBP sense for u ∈ L1 if∫
u4 ϕ ≤

(≥)
0 for all ϕ ∈ C∞/1,10 (Rn) and ϕ ≥ 0.

Proposition. For u ∈ C0, 4u ≤ 0 in the distribution/IBP sense ⇔ 4u ≤ 0 in

the mean value inequality sense u (x) ≥
∫
−
Bρ(x)

u (y) dy for all x and ρ⇔ 4u ≤ 0 in

the viscosity sense.
Proof.
IBP⇒MVI.
If we take ϕ = Γρ − Γε, as before with Γρ being the C1,1 modification of the

fundamental solution Γ by
|x|2

2n
χBρ − A in Bρ, then

1

|Bρ|

∫
Bρ

u ≤ 1

|Bε|

∫
Bε

u→ u (0) as ε→ 0.

MVI⇐IBP.
Take ψ (x) = ψ (|x|) ∈ C∞0 (Rn) s.t. ψ ≥ 0 and

∫
ψ = 1. First

u ∗ ψ (x) =

∫
Rn
u (y)ψ (x− y) dy =

∫
Rn
u (y)ψ (y − x) dy

=

∫
Rn
u (z + x)ψ (z) dz.

Then ∫
−
Bρ(x)

u ∗ ψ (y) dy =

∫
−
Bρ(x)

∫
Rn
u (z + y)ψ (z) dz dy

=

∫
Rn

∫
−
Bρ(x)

u

(
+x −x
z + y

)
dy ψ (z) dz

ψ≥0

≤
∫
Rn
u (z + x) ψ (z) dz

= u ∗ ψ (x) .

Recall the argument from
∫
−
Bρ(x)

u (y) dy = u (0) for all ρ leading to 4u (0) = 0 for

u ∈ C2. Similarly for u ∗ψ ∈ C∞ with
∫
−
Bρ(x)

u ∗ψ (y) dy ≤ u ∗ψ (x) for all ρ and x we

show
4u ∗ ψ (x) ≤ 0.

It follows that for all ϕ ∈ C∞0 (Rn) and ϕ ≥ 0∫
u ∗ ψ 4 ϕ ≤ 0

and also ∫
u ∗ ψε 4 ϕ ≤ 0.
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Let ε go to 0, we have

∫
u4 ϕ ≤ 0 for all ϕ ∈ C∞0 (Rn) and ϕ ≥ 0.

MVI⇒Viscosity.
For any quadratic P touching u from below at, say 0, we have P (0) ≥ u (0) ≥∫

−
Bρ(0)

u ≥
∫
−
Bρ(0)

P for all small ρ. That is

P (0) ≥
∫
−
Bρ(0)

P = P (0) +
ρ2

2 (n+ 2)
4 P.

Thus
4P ≤ 0.

Viscosity⇒MVI.
For any x, say 0 and all r ≤ ρ, let h be the harmonic function by Poisson repre-

sentation s. t. 4h = 0 in Br and h = u on ∂Br. Using the “shifting” argument for
equivalency of viscosity harmonicity and classical harmonicity, we see the comparison
u (x) ≥ h (x) in Br, in particular

u (0) ≥ h (0) ≥ 1

|∂Br|

∫
∂Br

u.

Integrate we get

u (0) ≥ 1

|Bρ|

∫
Bρ

u.

RMK. Certainly the subharmonic version of the above proposition is also true.
• Local property RMK. As super/sub harmonicity in the viscosity sense is a

local property–only requires a local touching, so is super/sub harmonicity in the
distribution/IBP (the compact support set of the test function could be small) or
mean value sense (the valid radius could be less than any small fixed number)

We also need and are ready for the following three properties.
• Comparison Theorem.
a) u and v are C0 viscosity super and sub solutions respectively to 4w = 0 in Ω.
b) u ≥ u on ∂Ω.
THEN u ≥ v in Ω.
Proof. It is straightforward if we use the mean value inequality formulation.
RMK. If we only use the viscosity formulation (which is only available for a large

class of general fully nonlinear elliptic equations), and if u or v is C2, then the proof
is the same as the “shifting” argument for equivalency of viscosity harmonicity and
classical harmonicity–just replace the C2 harmonic function h with the C2 sub/super
solution. If both u and v are only continuous, the comparison was achieved for general
fully nonlinear equations in late 1980s.
• “Minimum”” or “Maximum choice property.
If u1 and u2 are both C0 continuous super or sub viscosity solutions to 4w = 0,

then so is continuous u1 ∧ u2 = min {u1, u2} or u1 ∨ u2 = max {u1, u2} .
Proof. For any quadratic P touches u1 ∧ u2 from below near an interior point, it

automatically lower-touches u1 or u2 (both if u1 = u1 at the point) near this point.

4



As both u1 and u2 are viscosity super solution, then 4P ≤ 0. The subsolution part
is just an upper touching argument.

RMK.The mean value proof is similarly easy, the distribution/IBP way is not so
obvious
• Replacement property.
Let u ∈ C0 (Ω) be a super (sub) solution to 4w = 0. For any interior ball, say

centered at 0, Br ∈ Ω, let h be harmonic inside Br and shares u value on the boundary,
that is {

4h = 0 in Br

h = u on ∂Br
.

Then the the harmonic replacement of u : v =

{
u outside Br

h inside Br
is also super (sub)

harmonic.
Proof. By the comparison theorem, v ≥ h in Br. For any quadratic P touches v

from below near an interior point x0 of Ω, if x0 is inside Br, then P lower-touches h
near x0; if x0 is on the boundary or outside of Br, then P lower-touched u nearby. In
either case, we get 4P ≤ 0. (The sub case is similar.)

Preliminary example. In 1-d the harmonic/linear function u = sup
v′′≥0
v(a)=A
v(b)=B

v.

convex functions wrapping up the linear one

Perron method for

{
4u = 0 in Ω (nice domain)
u = ϕ on ∂Ω

. Set

S =
{
u : u ∈ C0

(
Ω̄
)
, 4u ≥ 0 in Ω, u ≤ ϕ on ∂Ω

}
.

Then
w (x) = sup

u∈S
u (x)

is the desired harmonic solution.
Part I. 4w = 0 in Ω
Step1. S is nonempty and w is well defined.
Choose M such that |ϕ| ≤ M on ∂Ω, then constant function −M ∈ S. And

w ≥ −M, otherwise,w = sup
−M∨u∈S

−M ∨ u. Also w ≤M as u ≤M for all u ∈ S.

Step2. Convergence to w.
Step2.1 Fix x0 ∈ Ω, say x0 = 0, there exist a sequence of uk in S such that lim

k→∞
uk (0) =

u (0) . Let Ūk be the harmonic lift of uk in Br (0) ⊂ Ω. Then by the replacement prop-
erty Uk ∈ S and by the comparison

w ≥ Uk ≥ uk

w (0) = lim
k→∞

Uk (0) .
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By the a priori C2, C3, · · · interior estimate estimate, we can extract a subse-
quence, still denoted by Uk such that

Uk → v in C2,α norm, in any fixed subdomain of Br.

Then 4v = 0 in classical sense and v ≤ w in Bρ and v (0) = w (0) .
Step2.2 Claim v = w in Br (0) . Suppose there is x1 s.t. v (x1) < w (x1) . From the

definition of w, there exists u ∈ S s.t.

w (x1) ≥ u (x1) > v (x1) .

Let Ūkbe the harmonic lift of u ∨ Uk in Br. Repeat Step2.1, we have

Ūk → v̄ in C2,α norm, in any fixed subdomain of Br

4v̄ = 0

w ≥ v̄ ≥ v

v̄ (0) = v (0) = w (0) and v̄ (x1) > v (x1) .

By the strong maximum principle, v̄ must coincide with v, It contradicts v̄ (x1) >
v (x1) .

Part II When lim
x→y

u (x) = ϕ (x)?

eg1/Exercise Let Ω be a C2 strongly convex domain (principle curvatures κ ≥ η >
0) and ϕ ∈ C2. Locally near every boundary point, ∂Ω is written as xn = g (x′) ≈
1
2

(
κ1x

2
1 + · · ·+ κn−1x

2
n−1

)
ϕ (x′, g (x′)) = ϕ (0, 0) + ϕx′ (0, 0)x′ + ϕxn (0, 0) g (x′) +O

(
|x′|2

)
>

Let
B± (x′, xn) = ϕ (0, 0) + ϕx′ (0, 0)x′ ±Nxn.

figure ϕ between two linear functions on the boundary

Then {
4B± = 0 in Ω

B− ≤ ϕ ≤ B+ on ∂Ω for large enough N
.

It follows that Perron solution satisfies

B− ≤ u ≤ B+.

Hence lim
x→0

u (x) = ϕ (0) .

eg2. 2-d For any domain missing the negative x-axis, at locally. Let

B (x) = −Re
1

log z
=
− log r

log2 r + θ2
≥ 0 and → 0 as x→ 0.
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Then 4B = 0.
figure domain missing the negative x-axis

Claim: Perron solution satisfies lim
x→0

u (x) = ϕ (0) .

Indeed for any ε > 0, there exists δ s.t. ϕ (0)+ε ≥ ϕ (x) ≥ ϕ (0)−ε on Bδ (0)∩∂Ω.
Lower bound. There exists large N s.t. B̃− = −N B+ϕ (0)− ε ≤ ϕ on ∂Ω. Also

harmonic function B̃− ∈ S. Hence

u = sup
v∈S

v ≥ B̃−.

Thus there exists δ1 s.t. in Bδ1 (0) ∩ Ω

u ≥ ϕ (0)− 2ε.

Upper bound. There exists large N s.t. harmonic function B̃+ = N B+ϕ (0)+ε ≥
ϕ ≥ v on ∂Ω for all v ∈ S. By the comparison

B̃+ ≥ v in Ω.

Thus there exists δ2 s.t. in Bδ2 (0) ∩ Ω

u ≤ ϕ (0) + 2ε.

RMK. For u taking the continuous boundary value ϕ at x0, for the above argument,
only need 

4B = 0
B ≥ 0 “ =′′ only at x0

B ∈ C0
(
Ω̄
) .

eg3. Counterexample. Lebesgue spine 3-d. Set ρ =
√
y2 + z2

figure ρ = e−
1
kx graph w/ k = 1, 2, k

Set X = (x, y, z) , integrate harmonic fundamental solution 1
|X| along x-axis

u (X) =

∫ 1

0

t√
(x− t)2 + y2 + z2

dt

= |X − (1, 0, 0)| − |X|+ x log
1− x+

√
(x− 1)2 + ρ2

−x+
√

(x− 1)2 + ρ2

= nice − 2x log ρ.

Thus

lim
X→0

u (X) =
0

2/k
2

.
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doesn’t exist.
eg4. Let Ω = B1\ (0) 

4u = 0 in Ω
u = 1 on ∂B1

u (0) = 2

has no solution. As lim
x→0

u (x) equals 1 for u ≡ 1 and ∞ for u = 1
rn−2 .

Proposition. If ∂Ω satisfies the exterior sphere condition at x0 (one C1,1 condi-
tion) then Perron solution u takes the continuous boundary value ϕ (x0) , that is,
lim
x→x0

u (x) = ϕ (x0) .

figure exterior sphere condition

figure graph of
1

δn−2
− 1

|x− x1|n−2 .

Proof. Set B =
1

δn−2
− 1

|x− x1|n−2 . Then B ≥ 0 and = 0 at x0; and also 4B = 0.

Theorem. If ∂Ω∩BR (x0) = {xn = L (x′)} where L (x′) is Lipshittz with |DL| ≤ N.
Then the Perron solution u takes the continuous boundary value ϕ (x0) .

figure Lip domain

Barrier way. Construct barrier directly in 2-d rα cosαθ, implicitly in 3-d and
above rαf (θ) , where θ is the angle from the Lip cone axis.

Mean value way. · · · More powerful/general but long.
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