
Lecture 7 Calderon-Zygmund for 4 ‖ Schauder for 4

◦ egs
◦ L2 weak 2-2
◦ Weak 1-1
◦ interpolation to Lp

◦ Lp for aijDij w/ aij ∈ C0

◦ Bdry/Global Lp

◦ L2 for
∑2

i,j aijDij w/ aij ∈ L∞&elliptic

Question: 4u = f ∈ Lp ?⇒ D2u ∈ Lp

eg1. p = 2 D̂iju = −ξiξjû =
ξiξj

|ξ|2
f̂ implies ‖Diju‖L2 ≤

∥∥∥f̂∥∥∥
L2

= ‖f‖L2 .

eg2. p =∞ Let f = χ{x1x2>0}∩B1 , u = Γ ∗ f, recall D12u /∈ L∞.
eg3. p = 1 Let fε = ϕε (x) = ϕ (x/ε) /εn with ϕ (x) = ϕ (|x|) ∈ C∞0 (Rn) and∫
ϕ = 1. Then the convolution with fundamental solution

uε = Γ ∗ fε =

{
Γ |x| ≥ ε
˜ |x| < ε

.

Then
Dijuε =

xixj

|x|n+2 for |x| ≥ ε.

It follows

C ‖fε‖L1 � ‖Dijuε‖L1(B1) >

∫
B1/Bε

|xixj|
|x|n+2 >

∫
B1/Bε

1

|x|n
> ln ε→∞.

Recall for ϕ ∈ C∞0 (Rn) , u = Γ ∗ ϕ

Diju =

{
cn
∫
Rn

yiyj

|y|n+2ϕ (x− y) dy i 6= j

cn
∫
Rn

y2i−n−1|y|2

|y|n+2 ϕ (x− y) dy + 1
n
ϕ (x) i 6= j

.

Next the above convolution u = Γ ∗ f and Diju also make sense for f ∈ Lp. Indeed
by Young

‖Γ ∗ f‖p ≤ ‖Γ‖1 ‖f‖p .
We define Diju by approximating f with fε ∈ C∞0 (Rn) in Lp, provided the singular
integrals have the right Lp estimates. For example, p = 2 is fine as in eg1 ‖Diju‖L2 ≤∥∥∥f̂∥∥∥

L2
= ‖f‖L2 .

Theorem. Let u = Γ ∗ f and f ∈ Lp (Ω) with Ω bounded and also 1 < p < ∞.
Then we have

a) ‖D2u‖L2(Rn) ≤ ‖f‖L2(Ω)

b) |{|D2u| > t} ∩ Ω| ≤ C
t
‖f‖L1(Ω) (weak 1-1)

c) ‖D2u‖Lp(Ω) ≤ Cp ‖f‖Lp(Ω)

.
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Proof. a)
First way. Fourier transform.
Second way. We approximate f ∈ L2 (Ω) by f ∈ C∞0 (Rn) , then as before 4u =

4Γ ∗ f = f. By Green’s identity∫
BR

4u 4 u =

∫
∂BR

4u uγ −
∫
BR

54 u · 5u

=

0︷ ︸︸ ︷∫
∂BR

f uγ −
∫
BR

4uk uk

= −
∫
∂BR

∂γuk uk +

∫
BR

5uk · 5uk

=∼ 1

Rn

1

Rn−1
Rn−1 +

∫
BR

∣∣D2u
∣∣2

→
∫
Rn

∣∣D2u
∣∣2 as R→∞,

where we used the fact for f with bounded support

uk (x) =

∫
Ω

xk − yk
|x− y|n

f (y) dy ∼ 1

Rn−1

ukj (x) =

∫
Ω

(xk − yk) (xj − yj)
|x− y|n+2 f (y) dy ∼ 1

Rn

uii = similar.

b)
Idea. W.L.O.G. Assume f ≥ 0.
Warm up: ∫

Ω

fdx =

∫ ∞
0

|{f > t}|︸ ︷︷ ︸
˜1/t

dt

|{f > t}| ≤
∫

Ω

f

t
=

1

t
‖f‖L1(Ω)

|{f > t}| ≤
∫

Ω

fp

tp
=

1

tp
‖f‖pLp(Ω)

We split f in two parts: f itself where f ≤ t and its average where f > t.

figure f itself where f ≤ t and its average where f > t

In {f ≤ t} , the distribution of K ∗ f = DijΓ ∗ f can be controlled by L2 estimate
of L2 lower part in a);
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In {f > t} , the distribution of K ∗f can be taken care of by the cancellation effect
of the average and the integrability for the gradient of singular kernel DK near ∞.

Now Calderon-Zygmund decomposition.
Step0. Fix t, choose large enough cube Q0 (possibly larger than Ω) s.t.

1

|Q0|

∫
Q0

f < t.

Step1. Split Q0 in half along all axis directions and check
∫
−
Q
f on each subcube

Q :
figure cubes collected and cubes splitting

If

∫
−
Q

f ≥ t, collect Q;

if

∫
−
Q

f < t, keep splitting.

For the collection of cubes Qj and their predecessor Q̃j we know

t ≤ 1

|Qj|

∫
Qj

f ≤ 2n

2n |Qj|

∫
Q̃j

f = 2n
∫
−
Q̃j

f < 2nt.

Set (good) set G = Ω/ ∪j Qj. For a.e. x ∈ G, there exist a sequence of cubes Q
shrinking to x such that

∫
−
Q
f < t, thus by Lebesgue f (x) ≤ t a.e. in G. Then (good)

function

g (x) =

{
f (x) x ∈ G∫
−
Qj
f x ∈ Qj

≤ 2nt a.e. in Ω.

Its square integral ∫
Ω

g2 ≤ 2nt

∫
Ω

g = 2nt

∫
f = 2nt ‖f‖L1.

Step2. Let (bad) function b = f − g =

{
0 x ∈ G
f −

∫
−
Qj
f x ∈ Qj

. Then

K ∗ f = K ∗ (g + b) = K ∗ g +K ∗ b

and

{K ∗ f > t} ⊂
{
K ∗ g > t

2

}
∪
{
K ∗ b > t

2

}
.

From a) and Step1∣∣∣∣{K ∗ g > t

2

}∣∣∣∣ ≤ 1(
t
2

)2 ‖K ∗ g‖
2
L2(Ω) ≤

1(
t
2

)2 ‖g‖
2
L2(Ω) ≤

2n+1

t
‖f‖L1(Ω) .
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Next we cover the latter set (go with 2Qj for easy calculation of following improper
integrals) {

K ∗ b > t

2

}
⊂
⋃
j

2Qj ∪

({
K ∗ b > t

2

}
\
⋃
j

2Qj

)
.

For
⋃
j 2Qj, summing the collection criterion∑

j

: |Qj| <
1

t

∫
Qj

f

we get ∣∣∣∣∣⋃
j

2Qj

∣∣∣∣∣ ≤ 2n

∣∣∣∣∣⋃
j

Qj

∣∣∣∣∣ < 2n

t
‖f‖L1(Ω) .

For x ∈ Ω\2Qj, the convolution

K ∗ b (x) =

∫
Ω

K (x− y) b (y) dy =

∫
Qj

K (x− y) b (y) dy

=

∫
Qj

K (x− y) b (y) dy

=

∫
Qj

[K (x− y)−K (x− yj)] b (y) dy as

∫
Qj(yj)

b = 0

≤
∫
Qj

CndiamQj

|x− yj|n+1 b (y) dy

≤ CndiamQj

|x− yj|n+1 2 ‖f‖L1(Qj) since

∣∣∣∣∣
∫
Qj

b (y) dy

∣∣∣∣∣ ≤ 2

∫
Qj

|f | dy.

Integrate
figure: 2 concentric cubes nesting a concentric sphere∫

Ω\
⋃

j 2Qj

|K ∗ b (x)| dx ≤
∑
j

∫
Ω\2Qj

CndiamQj

|x− yj|n+1 2 ‖f‖L1(Qj) dx

≤
∑
j

2 ‖f‖L1(Qj)

∫
|x−yj |≥diamQj/2

CndiamQj

|x− yj|n+1 dx

=
∑
j

2 ‖f‖L1(Qj)

CndiamQj

r

∣∣∣∣diamQj/2

∞

=
∑
j

Cn ‖f‖L1(Qj) ≤ Cn ‖f‖L1(Ω) .

It follows that ∣∣∣∣∣
{
K ∗ b > t

2

}
\
⋃
j

2Qj

∣∣∣∣∣ ≤ Cn
t/2
‖f‖L1(Ω)

4



and then ∣∣∣∣{K ∗ b > t

2

}∣∣∣∣ ≤ Cn
t
‖f‖L1(Ω) .

Therefore from this and the distribution estimate for K ∗ g in the beginning, we
obtain

|{K ∗ f > t}| ≤
∣∣∣∣{K ∗ g > t

2

}∣∣∣∣+

∣∣∣∣{K ∗ b > t

2

}∣∣∣∣
≤ Cn

t
‖f‖L1(Ω) .

c) Case 1 < p < 2.
Again, w.l.o.g. assume Lp f ≥ 0 a.e. First

‖K ∗ f‖pLp(Ω) =

∫
Ω

|K ∗ f |p dx =

∫ ∞
0

|{|K ∗ f |p > s}| ds

s=tp
=

∫ ∞
0

|{|K ∗ f | > t}| ptp−1dt.

Split f into two parts along t line

figure above t f1 below t f2

f1 =

{
f f ≥ t
0 f < t

and f2 =

{
0 f ≥ t
f f < t

.

By weak 1-1 b) and L2 estimate a), we have

|{|K ∗ f | > t}| ≤
∣∣∣∣{|K ∗ f1| >

t

2

}∣∣∣∣+

∣∣∣∣{|K ∗ f2| >
t

2

}∣∣∣∣
≤ 2C1

t
‖f1‖L1 +

2C2

t2
‖f2‖2

L2

=
2C1

t

∫
{f≥t}

fdx+
2C2

t2

∫
{f<t}

f 2dx.

Integrating, we have∫ ∞
0

(
2C1

t

∫
{f≥t}

fdx

)
ptp−1dt = 2C1p

∫
Ω

f

∫ f

0

tp−2dt dx = 2C1p

∫
Ω

f
fp−1

p− 1
dx

=
2C1p

p− 1

∫
Ω

fpdx

and∫ ∞
0

(
2C2

t2

∫
{f<t}

f 2dx

)
ptp−1dt = 2C2p

∫
Ω

f 2

∫ ∞
f

tp−3dt dx = 2C2p

∫
Ω

f 2 fp−2

2− p
dx

=
2C2p

2− p

∫
Ω

fpdx.
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Thus

‖K ∗ f‖pLp(Ω) ≤ p

(
2C1

p− 1
+

4C2

2− p

)
‖f‖pLp(Ω) .

RMK. The coefficient C (p) ∼ 1
p−1

blows up for p near 1 as expected. But C (p) ∼
1

2−p for p near 2 is bad.

Question/Exercise. Make C (p) bounded near 2. Hint: as above interpolate be-
tween L1 and L4.

Case 2 < p <∞
Let g ∈ Lp′ (Ω) with 1

p′
+ 1

p
= 1. Let us do a duality argument,∫

Ω

K ∗ f (x) g (x) dx =

∫
Ω

∫
Ω

K (x− y) f (y) dy g (x) dx

=

∫
Ω

∫
Ω

K (x− y) g (x) dx f (y) dy

=

∫
Ω

∫
Ω

K̄ (y − x) g (x) dx f (y) dy with K̄ (x) = K (−x)

≤
∥∥K̄ ∗ g∥∥

Lp′ ‖f‖Lp

≤ C (p′) ‖g‖Lp′ ‖f‖Lp .

Thus
‖K ∗ f‖Lp(Ω) ≤ C (p′) ‖f‖Lp .

RMK. To get bounded C (p) for p near 2, one can also do a strong interpolation
between say L1.5 and L4 by Riesz convexity theorem: Given ‖K ∗ f‖p ≤ Cp ‖f‖p and
‖K ∗ f‖q ≤ Cq ‖f‖q . Then

‖K ∗ f‖r ≤ Cα
p C

1−α
q ‖f‖r with

1

r
=
α

p
+

1− α
q

.

Or the coefficient Cr is log convex in terms of 1
r
.

Model equation: 4u = f ∈ Lp in B1 :

4 (u− Γ ∗ f) = 0

then the the interior estimate for harmonic function and C-Z, we have

‖u− Γ ∗ f‖W 2,p(B1/2) ≤ Cn ‖u− Γ ∗ f‖L∞(B3/4) ≤ Cn ‖u− Γ ∗ f‖Lp(B1)

≤ Cn ‖u‖Lp(B1) + ‖Γ ∗ f‖Lp(B1)

≤ C (n, p)
(
‖u‖Lp(B1) + ‖f‖Lp(B1)

)
.

Note that 1
|x|n−2 and 1

|x|n−1 are in L1 (Ω) , by Young’s inequality

‖Γ ∗ f‖Lp(Ω) ≤ ‖Γ‖L1(Ω) ‖f‖Lp(Ω) ≤ C ‖f‖Lp(Ω)

‖DΓ ∗ f‖Lp(Ω) ≤ ‖DΓ‖L1(Ω) ‖f‖Lp(Ω) ≤ C ‖f‖Lp(Ω) .
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Therefore we obtain

‖u‖W 2,p(B1/2) ≤ C (n, p)
(
‖u‖Lp(B1) + ‖f‖Lp(B1)

)
.

Perturbation.∑
aij (0)Diju =

∑
[aij (0)− aij (x)]Diju− bi (x)Diu− c (x)u+ f

we have (heuristically)∥∥D2u
∥∥
Lp(B1/2)

≤ ‖u‖Lp(B1) + ‖f‖Lp(B1) + ε
∥∥∥∥∥D2u

∥∥
Lp(B1)

∥∥∥ .
As for interior Schauder estimate, via weigthted norm, we move ε-term to the left
hand side to obtain W 2,p estimates for∑

aij (x)Diju+ bi (x)Diu+ c (x)u = f

with coefficients aij (x) ∈ C0 λI ≤ (aij) ≤ λ−1I, |b| , |c| ≤ Λ∥∥D2u
∥∥
Lp(B1/2)

≤ C (‖a‖C0 , λ,Λ, n, p)
[
‖u‖Lp(B1) + ‖f‖Lp(B1)

]
.

For boundary Lp estimates on C1,1 domains, again it is parallel to boundary
Schauder estimates (Poisson convolution is fine, Dirichlet to Neumann singular con-
volution is handled as in the interior case but with one dimension less, still use
weighted norm device ...). Skip.

Instead study 2-d situation: For u ∈ W 2,2
0 (Ω) or u ∈ C2 satisfying{ ∑2

i,j=1 aij (x)Diju = f in Ω convex

u = 0 on ∂Ω

with L∞ coefficients λI ≤ (aij) ≤ λ−1I. Then∥∥D2u
∥∥
L2(Ω)

≤ C (λ) ‖f‖L2(Ω) .

Proof. At each point, rotate coordinates so that

(aij (x)) =

[
λ1

λ2

]
.

Then the equation becomes

(λ1u11 + λ2u22)2 = f 2

or
λ2

1u
2
11 + λ2

2u
2
22 + 2λ1λ2u

2
12 + 2λ1λ2

(
u11u22 − u2

11

)
= f 2.
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Use ellipticity λ ≤ λi ≤ λ−1, we have

λ4
∣∣D2u (x)

∣∣2 + 2 detD2u (x) ≤ 1

λ2
f 2 (x) .

This coordinate invariant inequality is in fact true everywhere under one same coor-
dinate. Integrate, we have∫

Ω

λ4
∣∣D2u

∣∣2 +

∫
Ω

2 detD2u ≤
∫

Ω

1

λ2
f 2.

Next we show that the integral of the determinant with u vanishing on the bounded
convex boundary is positive. Note

2 detD2u = (4u)2 −
∣∣D2u

∣∣2 .
Exercise (exactly as in the proof of W 2,2 estimate in C-Z a), by Green’s identity)∫

Ω

(4u)2 −
∣∣D2u

∣∣2 =

∫
∂Ω

4u ∂γu− uk∂γuk.

We finish the proof by proving that the integrand in the boundary integral is positive
pointwise. Fix a point on the boundary, say this point at the origin, x-axis is tangent
to the boundary, and y-axis is along γ direction.

figure x-axis is tangent to the boundary,and y-axis is along γ direction

As u = 0 on ∂Ω, ux (0) = 0. Also uγ (0) = uy (0) . We have

integrand
0
= 4u uy − uyuyy = uyuxx.

W.l.o.g. assume uy (0) = |Du (0)| > 0, otherwise, consider −u. Observe near 0, u
becomes negative entering the domain Ω from 0 boundary. By double finite difference
to approximate uxx (0) , one sees that

uxx (0) ≥ 0.

Thus the integrand is positive.
Therefore ∫

Ω

2 detD2u ≥ 0

and ∫
Ω

∣∣D2u
∣∣2 ≤ 1

λ4

∫
Ω

f 2.

RMK. In general n-d∫
Ω

detD2u =

∫
Ω

d (u1 ∧ du2 ∧ · · · ∧ dun) =

∫
∂Ω

u1du2 ∧ · · · ∧ dun.

Is there a sign restriction on the boundary integrand for C2 u vanishing on the convex
boundary? (Positive in even-dim and negative in odd-dim)
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