Lecture 8 Energy method—preliminary: capacity, Poincaré, Sobolev

o egs
o Capacity
o Poincaré/Sobolev

Question: Besides Perron method, can one use energy/variational way to solve

Au =0 1n ) )
? _ _
u = @ nice on Jf) That is, let E(v) fQ |Do|”. If E(u)

inf F' (v), then Au = 0.
veS

Objections:
egl. Let w = Imlogz = @, then A§ =0 1in Q = B; (1,0) . Recall

Du = (aru, %%u) ,

|DO|* = L rdrds = ool
Q Qr?

1
figure: By (1,0) and gradient components 0, &—0dy
r

Laplace equation

then

The minor defect is that 6 has a jump on 0.

eg2. Set u = ﬁlm H = ETH sin k*@ (fast enough oscillation on the

k=1 k=1
circle). Then u € C° (B, (0)) and Au = 0 in B. Let us calculate its Dirichlet energy.

1 .
Du=3 - (k4rk4_1 sin k40, k%1 cos k48)
k

and

2 _ a (1N [ a0\ 2 A2
. | D —//;k‘ (7’ ) [(smk: 0)” + (cos k*0) ]rdrd@

Moral: Unless u|y, is really nice, the energy/variational method cannot capture
pointwise info of general continuous u|,, .

RMK. One remedy would be approximate continuous ul,, by nice (say smooth)
boundary data in C° norm; run variational method to get approximated solutions;
by maximum principle, those solutions approach to a unique function on C° (Bl) ,
by interior estimates for Harmonic functions, the unique limit is harmonic inside Bj.

9December 2, 2013



As one application of energy method, let us study capacity. The capacity for the
boundary of a domain {2 is defined as

Cap (092) = ueci?(fm)/ |Dvl* .
UZloon Q

If there exists a minimizer u, then the unique minimizer satisfies

Au=0
u=1 ondf) .
u=0 at oo

RMK. The uniqueness follows from convexity of the energy functional as we will see
shortly. The fact u = 1 on 02 follows from local energy comparison?, or uniqueness
of the minimizer and existence for the above boundary value problem.

eg. 3-d. Let Q = Bg. For fundamental solution w = R/r =1 on 0Bpg and 0 at oo,
certainly Au = 0. Now

9 R? , o — 1™
|Du|” = —ridrdw = ATR*—| = 47R.
R3\BR R3\BR T T R
Another way
/ |Du|2:—/ uAu+/ U
R3\Bgr R3\Bgr O(R3\BRg)
= / 1 %dA =4nR.
; r
9Bg
Thus Cap (0Br) = 47 R.
1 r<k
eg. 2-d. Cap (0B;) =0. Let v, = ¢ 2 — %ggz E<r<k?
0 r> k2

figure graph of vy, (r) and even wuy (r) = vy (kr)

1 1 2
/ |Dug|* = / ———rdrdf = 7; (log k* — log k) =
R2\B; B log” k

T3 —0as k — oo.
2\ By log” kr

log k
So Cap (0By) = 0. In fact the same estimate shows for any bounded 2, Cap (0€2) = 0.

Existence of minimizer for capacity.

1st way. Perron method.

2nd way. Variational.

Consider Hilbert space Hj (R") with inner product (u,v) = [, Du - Dv. Set
convex and closed set

S={veH;(R"): v>1onQ}.
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Theorem. Given a convex (closed) set, say S. Then there exists a unique point
u € S closest to the origin.

Proof. Notice that ing |lv]] = a > 0. There exist a sequence v, € S such that
ve

|lvk|| = «. For any € > 0, there exists large N so that once k,l > N, we have

a< ||l <a+e
a< ||lul| <a+e.

From the parallelogram identity in Hilbert space
o, = wall® + o+ wil|* = 2o ||* + 2 flun]

it follows that

2 2 2 Uk + U ?
lon = wl|” < 2 fJogl|” + 2 f|u " — 5
<4(a+e) —40? asva—'—vleS

= Sae + 4e2.

Therefore the Cauchy sequence has a limit inside the closed subset S of the complete
space H.
The uniqueness also follows from the parallelogram identity.

RMK. For certain non-quadratic convex functional like area one / \/ 1+ |DU|2,

more complicated argument is needed for the existence and uniqueness of the mini-
mizer.

Poincaré inequality.
Compact support version. Given u € C} (€2), one has

[ull 20y < C (diam®) || Dul| (g, -

Proof. We integrate the gradient Du along each direction to the boundary and
average over all directions:

u(y) / / —u, (y +rw) dr dw
1331! 9B,

—x
raBlr Errerak
= B
So by Young’s inequality
1 T
el < g 1Pl | e

< C (@) [Dulyy -



Average version. Given C! function u on convex domain 2, one has
lu = all () < C (diam®Q) || Dul| ) -

Proof. By convexity any two points in {2 can be joined by a segment inside €2,
then

|lz—yl T—y
u(y)—u(:r;):—/ ur (y + rw) dr with w = :
0 |z =yl

Integrate w.r.t. x,

(u(y)—ﬁ)\m:—/g/[)'zy|Du(y+rw)-wdr dx

:—/ / Du(y+rw)-wdrd(z—vy) extend u as 0 outside 2
lz—y|<d

d . %)
= —/ / / Du(y +rw) -wdr p" dwdp
0B,

= ——d" / / Du ( y+7w) dw dr
0B1

1
= /D —Y — ldx.
|Z—y| 12—y

d"” T
u(y) —u = —=Du* —=Xxaq.
n [ ||

Then

Again by Young’s inequality

[ =@l oy < C (diam®Q) || Dul| g -

RMK. As the regular kernel W is almost in L™™ ' by the general Young’s
inequality
T o1 1 1
Jull ;- < N[ Dullpy || 77 with — = — 4+ - — 1.
[z ][ 1o rop oq
When % = ”T_l, then % = %—%. Thus we already have u € L* for s < n"—_’; for Du € LP.

The borderline case in the compact case in the following

1
Sobolev inequality. Given u € Cj (), one has [[ull pn/n-1(q) < NG [

Proof. Stepl. As a preparation, we derive Holder inequality:

1

o1
Ififo ille < Wl el with 2= 2 = 1



W.Lo.g. assume || fx[|, = 1 for all k. By convexity of exponential function e’, we have

1 1
Jifaeo- fio = exp <—hlff1 et _lnflfk)
D1 Pk

1 1 D1 Dk
< —explnfP' -+ —expln fPr =2 .. 4 2B
b1 Dk D1 Dk
Integrating, we have
1 1
/f1f2"'fk§ — 4+ —=1
b1 Dk
Step2. 1-d u(y) = [ widzy, then |u (y)| < [T |wi| dzy = [, |Dul da.
2-d.
Y1 Y2 0 e’}
u? (y) = / uy (21,Y2) dfl/ us (Y1, T) dry < / [uy (21, y2)| dxl/ lusg (y1, z2)| dza,
then

/u2<y>dy1s iy (21, o) dy / s (91, )| deradlys
R! R!

R! JR!

and
/ / W (y) dyndys < / sy (21, 30)| dadyo / / iy (1, 22)| deadyr.
Rl Rl Rl Rl Rl Rl

It follows that
1/2
lll ey < (110l gy 1Dl 1)

D D
2 V2 Ja

1/n—1 1/n—1
u (y) " < ( / ru1|d:c1) ( / |un|dxn)

where [ means [, . Integrating w.r.t.

Jrer = < (fradan) ™ [([rutan) ™ ( fluddn) ™ oy,
< (/|u1]d:x1> . (/|uz|dx2dy1) B (/|un|d:vndy1> . by Hélder.

Continue integration w.r.t. o

[ [ 1utr " dy
= = = =t
< </ |us| d@dyl) / (/ |uy | dxl) </ |us| d@dyl) (/ | | dxndy1> dy,
1 1 1 1
Holder n—1 n—1 n—1 n—1
< (/ |us| dxgdy1> (/ |y | dmldy2) (/ |us| dxgdyldyQ) (/ [ | dmndyldyQ) )
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/Q Ju ()" dyy - - - dy,
1

=) =) =)
< </ |uq| dzydys - - - dyn) </ |us| dyy dzodys - - -dyn) e (/ |t | dyy - - - dyn_ldxn) )
Q Q Q
Hence
n—1/n 1/
(Lrewrea) < | [ ldr [ juldy- / onl ]
Q Q

<datultihol o 2 Fipy,
n \/_

Corollary. For u € C§ (), one has

1 (n—1)p
[l i /m ) < N [ Dull 1o -

Proof. By the above

{/Q(MW)"/n_lr‘””g %/D\ulv< /|Du\ o
e (Lr)”

—1
u,then
n—p

Now choose v =

(y—1) -2 :[(”—1)2?_1}]?]? _np

and

Therefore we have

()™ < R (o)

RMK. Sobolev inequality is scaling invariant. Poincaré is scaling variant. For
example given
||u||L2(B1) S Cl ||Du||L2(B1) fOI" u € Cé (Bl) .

For w € C} (Bg), let u(x) = w (Rz), then Du(x) = RDw (Rz). And
/ u? (v) dv = / w? (Rz) dx = 1 w? (z) dx
B1 Bi R™ Jp,

2
| Du (x)]zd:v:/ R?|Dw (Rx)|* dz = %/ |Dw (z)|? da.
B B Br

It follows
1wl 25y < RO DW|| 12, -



