
Lecture 9 W 1,2 or H1 space, trace

◦ W 1,2 space different characterizations
◦ Trace
◦ Chain rule

Sobolev space W 1,2, different characterizations.
Approximation: u ∈ W 1,2 (Ω) if there exist a sequence uk s.t. uk → u in L2 (Ω)

and {Duk} is a Cauchy sequence in L2 (Ω) .
IBP: u ∈ W 1,2 (Ω) if u ∈ L2 (Ω) and

∫
uDeϕ ≤ C ‖ϕ‖L2(Ω) for all ϕ ∈ C1

0 (Ω) and

e ∈ Sn−1.

Finite difference: u ∈ W 1,2 (Ω) if u ∈ L2 (Ω) and

∥∥∥∥u (x+ he)− u (x)

h

∥∥∥∥
L2(Ω)

≤ C for

h-free C and all e ∈ Sn−1.

Proposition. The above approximation, IBP, and finite difference characteriza-
tions of Sobolev space W 1,2 (Ω) are equivalent.

Proof. Approximation⇒IBP
We have ∫

ukDeϕ = −
∫
Deuk ϕ ≤ ‖Deuk‖L2 ‖ϕ‖L2 ≤ C ‖ϕ‖L2 .

Take limit of the left side, we have∫
uDeϕ ≤ C ‖ϕ‖L2 .

IBP⇒Finite difference
For test function to produce finite difference, one integrates the difference of two

delta functions along the given direction. We construct Φ ∈ W 1,∞ (Rn) so that Φe = φ
where

φ =
1

|Bε|
[
χBε(he) − χBε(0)

]
.

figureS: graphs of φ and Φ

graph of Φ cylinder like Bn−1
ε × (0, h)

Note that ∫
|Φ| ∼ h.

Now for ϕ ∈ C1
0 (Ω)∫

u (y)De (ϕ ∗ Φ) dy ≤ Cu ‖ϕ ∗ Φ‖L2 ≤ Cu ‖ϕ‖L2 ‖Φ‖L1 ≤ Cu h ‖ϕ‖L2 ,
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and the left hand side equals∫
u (y)

(∫
ϕ (x)φ (y − x) dx

)
dy =

∫
ϕ (x)

(∫
u (y)φ (y − x) dy

)
dx

=

∫
ϕ (x)

(∫
u (y + x)φ (y) dy

)
dx =

∫
ϕ (x)

(∫
u (y + x)

1

|Bε|
[
χBε(he) − χBε(0)

]
dy

)
dx.

Let ε→ 0, we have ∫
ϕ (x) [u (he+ x)− u (x)] ≤ Cu h ‖ϕ‖L2

that is ∫
ϕ (x)

[
u (he+ x)− u (x)

h

]
≤ Cu ‖ϕ‖L2 .

So by duality ∥∥∥∥u (x+ he)− u (x)

h

∥∥∥∥
L2(Ω)

≤ Cu.

Finite difference⇒Approximation
As L2 (Ω) space is reflexive and separable, the sequence u(x+he)−u(x)

h
has a weak

limit v in L2 (Ω) , that is for all ϕ ∈ C1
0 (Ω)∫

u (x+ he)− u (x)

h
ϕ (x)→

∫
vϕ.

The left hand side equals∫
u (x)

ϕ (x− he)− ϕ (x)

h
→ −

∫
u (x)Deϕ (x) as h→ 0.

So

−
∫
u (x)Deϕ (x) =

∫
vϕ.

Next we construct a Cauchy sequence by taking ϕ to be a usual mollifier ρ ∈ C∞0 (Rn)
with

∫
ρ = 1.

Claim: De (u ∗ ρ) = v ∗ ρ.
Indeed

De (u ∗ ρ) =

∫
u (y)De(x)ρ (x− y) dy =

∫
u (y)

[
−De(y)ρ (x− y)

]
dy

=

∫
v (y) ρ (x− y) dy by the derived IBP identity above the claim.

= v ∗ ρ.

It is also true that De (u ∗ ρε) = v ∗ ρε with ρε (x) = ρ (x/ε) /εn. Certainly v ∗ ρε → v
in L2 (Ω) . Therefore we have a Cauchy sequence with u ∗ ρε → u and De (u ∗ ρε)→ v
in L2 (Ω) . Replace e with all axis directions we have the desired full gradient version.
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Trace

figure: Q =flat piece Γ in x-Rn−1 × δ height in y-R1

We show that u ∈ W 1,2 has a well-defined restriction (trace) on the boundary. We
first assume u ∈ C1, then use approximation to reach the general conclusion. From

u (x, y)− u (x, 0) =

∫ y

0

uy (x, s) ds

it follows that ∫
Γ

|u (x, y)− u (x, 0)|2 dx ≤
∫

Γ

[∫ y

0

uy (x, s) ds

]2

dx

≤
∫

Γ

y

∫ y

0

u2
y (x, s) dsdx

≤ y

∫
Q

|Du|2

and ∫ δ

0

∫
Γ

u2 (x, 0) dxdy =

∫ δ

0

∫
Γ

[
−u (x, y) +

∫ y

0

uy (x, s) ds

]2

dxdy

≤ 2

∫ δ

0

∫
Γ

u2 (x, y) +

[∫ y

0

uy (x, s) ds

]2

dxdy

≤ 2

∫ δ

0

∫
Γ

[
u2 (x, y) + δ

∫ δ

0

u2
y (x, s) ds

]
dxdy

≤ 2

∫
Q

u2 + 2δ2

∫
Γ

∫ δ

0

u2
y (x, s) dsdx

≤ 2

∫
Q

u2 + 2δ2

∫
Q

|Du|2 .

The last inequality becomes∫
Γ

u2 (x, 0) dx ≤ 2

δ

∫
Q

u2 + 2δ

∫
Q

|Du|2 .

Therefore u (·, y) is a Cauchy sequence in L2 (Γ) as y → 0. The limit of the Cauchy
sequence is defined as the trace of u on Γ.

RMK. Inspecting the above argument, we can also go along W 1,1 function to leave
a trace, as long as notice that the integral of L1 function over a small measure set is
small: ∫

Γ

|u (x, y)− u (x, 0)| dx ≤
∫

Γ

∫ y

0

|Du| dsdx→ 0 as y → 0.

Chain Rule
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Given f ∈ C1 (R1) and u ∈ W 1,2 (Ω) , then f (u) ∈ W 1,2 (Ω) and Df (u) =
f ′ (u)Du.

Proof. We use the approximation version of W 1,2 space. Let uk be an approxi-
mating sequence for u in W 1,2 norm, that is uk → u in L2 (Ω) and Duk → Du or Duk
is a Cauchy sequence in L2 (Ω) . We have

∫
Ω

|f (uk)− f (u)|2 dx ≤
∫

Ω

|Df (∗)|2 |uk − u|2 dx ≤ sup
R
|Df |2

∫
Ω

|uk − u|2 dx→ 0

and ∫
Ω

|f ′ (uk)Duk − f ′ (u)Du|2 dx

≤ 2

∫
Ω

[f ′ (uk)]
2 |Duk −Du|2 dx+ 2

∫
Ω

|f ′ (uk)− f ′ (u)|2 |Du|2 dx

→ 0 (1st limit by Cauchy Duk, 2nd limit by Lebesgue dom. con.).

Prop. For u ∈ W 1,2, we have u ∨ 0 ∈ W 1,2 and D (u ∨ 0) =

{
Du u > 0
0 u ≤ 0

a.e. .

Proof. Smooth out the function f (t) =

{
t t > 0
0 t ≤ 0

by convolution with an even

(radial) mollifier ρε in R1. Then the mollified function f̃ε (t) =


t t > ε
∼ ε |t| ≤ ε
0 t < −ε

. Let

fε (t) = f̃ε (t+ ε) .

By the Chain Rule, Dfε (u) = f ′ε (u)Du. Hence for any ϕ ∈ C1
0 (Ω) (by Lebesgue

D.C.T twice)

−
∫

Ω

f (u)Dϕ = lim
ε→0
−
∫

Ω

fε (u)Dϕ = lim
ε→0

∫
Ω

Dfε (u)ϕ =

∫
Ω

Duχ{u>0}ϕ.

Therefore (by IBP characterization of W 1,2 : f (u) ∈ W 1,2 then Df (u) = f ′ (u)Du)

u ∨ 0 = f (u) =

{
u u > 0
0 u ≤ 0

∈ W 1,2.

RMK. One can just take fε (t) =

{ √
t2 + ε2 − ε t > 0
0 t ≤ 0

as in [GT].

Cor. If u and v are in W 1,2, then so are the following: u∧0 = − (−u ∨ 0) , u+ and

u− with u = u+−u−, |u| = u+ +u−, and also u∨v = (u− v)∨0+v =

{
u u > v
v v ≥ u

,

u ∧ v = (u− v) ∧ 0 + v =

{
u u < v
v v ≤ u

.

eg.
∫
|Du|2 =

∫
|Du+|2 +

∫
|Du−|2 ≥

∫
|Du+|2 .
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