Lecture 10 Evans-Krylov-(Safonov)

 \circ skip $C^{1,\alpha}$

 $\circ C^{2,\alpha}$ estimate

Recall Krylov-Safonov for $C^0 \ni u \in S(\mu, 0)$. Now for μ -elliptic equation

$$F\left(D^2u\right) = 0$$

we have

i) $u \in C^{\alpha}$;

ii) $u \in C^{1,\alpha}$;

smooth version:

$$\sum F_{ij}D_{ij}u_e = 0.$$

 C^0 version:

$$\frac{u\left(x+\varepsilon e\right)-u\left(x\right)}{\varepsilon}\in S\left(\mu,0\right).$$

The strong argument already gives $u-v\in S\left(\mu,0\right)$, then the uniqueness of viscosity solution,

$$\left\{ \begin{array}{cc} F\left(D^2 u\right) = F\left(D^2 v\right) & \text{in } \Omega \\ u = v & \text{on } \partial \Omega \end{array} \right\} \Rightarrow u = v \text{ in } \Omega.$$

RMK. One can argue for the uniqueness "directly" when F is not uniformly elliptic, say only strictly elliptic or just elliptic. In such cases, there is no intermediate conclusion $u-v\in S\left(\mu,0\right)$.

iii) $C^{1,1}/C^{2,\alpha}$ provided F is convex.

Smooth case: Analytic*

$$\sum F_{ij} D_{ij} u_{ee} + \sum F_{ij,kl} D_{ij} u_e D_{kl} u_e = 0,$$

that is $\sum F_{ij}D_{ij}u_{ee} \leq 0$. Then

$$\left\{ \begin{array}{l} u_{ee} \in \bar{S}\left(\mu,0\right) \\ F\left(D^{2}u\right) = 0 \end{array} \right\} \Rightarrow D^{2}u \in C^{\alpha}.$$

Continuous case:

$$\left\{ \begin{array}{c} \frac{u(x+\varepsilon e)+u(x-\varepsilon e)-2u(x)}{\varepsilon^2} \in \bar{S}\left(\mu,0\right) \\ F\left(D^2u\right) = 0 \end{array} \right\} \Rightarrow D^2u \in C^{\alpha}.$$

$$\left\{ \begin{array}{c} u_{\rho}^* = \frac{1}{\rho^2} \left[\oint_{\partial B_{\rho}(x)} u - u\left(x\right) \right] \in \bar{S}\left(\mu,0\right) \\ \log \operatorname{al} \operatorname{maximum principle} \end{array} \right\} \Rightarrow D^2u \in L^{\infty}.$$

 $^{^{0}}$ May 27, 2010

*Geometric

convex level figure

$$F(M) = 0$$
 $D^{2}u(x - \varepsilon e)$ $D^{2}u(x + \varepsilon e)$ $\nabla F(D^{2}u(x))$

$$\nabla F \cdot \frac{D^{2}u\left(x - \varepsilon e\right) + D^{2}u\left(x + \varepsilon e\right) - 2D^{2}u\left(x\right)}{\varepsilon^{2}} \le 0 \text{ or }$$

$$F_{ij}D_{ij}u_{ee} \le 0.$$

Theorem 1 Let $u \in C^2(C^4)$ be a solution to μ -elliptic equation $F(D^2u) = 0$, F convex. Then $u \in C^{2,\alpha}$ and

$$||D^2u||_{C^{\alpha}(B_{1/2})} \le C(n,\mu) ||D^2u||_{L^{\infty}(B_1)},$$

where small $\alpha = \alpha(n, \mu) > 0$.

Heuristic: Recall C^{α} estimate for solutions $0 \le u \le 1$ to $\sum D_i(a_{ij}D_ju) = 0$ or $\sum a_{ij}D_{ij}u = 0$,

$$\underset{B_{1/2}}{\operatorname{osc}} u \leq \theta \underset{B_1}{\operatorname{osc}} u.$$

domain target pic

$$\mathcal{B}^{+} = \left[0, \frac{1}{2}\right] \quad \mathcal{B}^{-} = (\frac{1}{2}, 1].$$

Either i) $|u^{-1}(\mathcal{B}^+)| \ge \frac{1}{2} |B_1|$ or ii) $|u^{-1}(\mathcal{B}^-)| \ge \frac{1}{2} |B_1|$.

Case i) u > 0 super solution satisfies

$$\inf_{B_{1/2}} u \ge C\left(n, \mu\right) \left(\int_{B_1} u^{\varepsilon}\right)^{1/\varepsilon} \ge C\left(n, \mu\right) \frac{1}{2} \left(\frac{1}{2} |B_1|\right)^{\varepsilon} \stackrel{\text{def}}{=} \eta\left(n, \mu\right).$$

Case ii) 1-u super solution satisfies

$$\inf_{B_{1/2}} \left(1 - u \right) \ge C\left(n, \mu \right) \left(\int_{B_1} \left(1 - u \right)^{\varepsilon} \right)^{1/\varepsilon} \ge C\left(n, \mu \right) \frac{1}{2} \left(\frac{1}{2} \left| B_1 \right| \right)^{\varepsilon} \stackrel{\text{def}}{=} \eta\left(n, \mu \right).$$

Either way, we conclude

$$\underset{B_{1/2}}{\operatorname{osc}} u \le (1 - \eta) \underset{B_1}{\operatorname{osc}} u.$$

RMK. We really only used u along positive and negative directions are super solutions. One does similar things in the vector case:

- \circ Fully nonlinear equations $F(D^2v) = 0$, $u \longrightarrow D^2v$, and v_{ee} directions are enough (note there is no negative direction now).
 - \circ Harmonic maps $\triangle U = Q(U, DU)$, $u \longrightarrow U$ (no negative direction either).

Now heuristic for $C^2 \Rightarrow C^{2,\alpha}$ for $F(D^2u) = 0$.

domain target pic $D^2u(B_1) = \mathcal{B}^1 \cup \mathcal{B}^2 \cup \mathcal{B}^3$

$$\mathrm{Diam}D^2u\left(B_1\right) = 1$$

One of the preimages, say

$$\left| \left(D^2 u \right)^{-1} \left(\mathcal{B}^2 \right) \cap B_1 \right| \ge \frac{1}{3} \left| B_1 \right|.$$

From $D^2u \in \{M: F(M) = 0\}$, we find $e \in \mathbb{R}^n$ such that

$$u_{ee} - \overbrace{\inf_{B_1} u_{ee}}^m \ge \bar{C}(n, \mu) > 0 \text{ in } (D^2 u)^{-1} (\mathcal{B}^2).$$

Note

 $u_{ee} \in \bar{S}(\mu, 0) \quad (u \in C^4 \text{ straightforward for } u \in C^4, \text{ little involved for } u \in C^2).$

From Krylov-Safonov, we obtain

$$\inf_{B_{1/2}} (u_{ee} - m) \ge C(n, \mu) \left(\int_{B_1} (u_{ee} - m)^{\varepsilon} \right)^{1/\varepsilon}$$

$$\ge C(n, \mu) \cdot \bar{C}(n, \mu) \left(\frac{1}{3} |B_1| \right)^{1/\varepsilon} \stackrel{\text{def}}{=} \eta(n, \mu) > 0.$$

Then we can "drop" say \mathcal{B}^3 in the covering of $D^2u\left(B_{1/2}\right)$ or at least a fixed portion of \mathcal{B}^3 . Iterate, we have D^2u -image shrinks as we shrink our domain, in a Hölder fashion, then Hölder for D^2u .

Lemma 2 Assume F is μ -elliptic (no convexity assumption) and $F(M_1) = F(M_2)$. Then (in fact \iff)

$$\|M_1 - M_2\| \stackrel{C(\mu)}{\approx} \|(M_1 - M_2)^-\| \stackrel{C(\mu)}{\approx} \|(M_1 - M_2)^+\| \stackrel{C(n)}{\approx} \sup_{|e|=1} (M_1 - M_2) \cdot e^T e,$$

in particular

$$||M_1 - M_2|| \ge \sup_{|e|=1} (M_1 - M_2) \cdot e^T e \ge C_E C_E ||M_1 - M_2||.$$

Here $\|M\|^2 = \sum M_{ij}^2$.

Proof. By μ -ellipticity, we have

$$\underline{F(M_1)} = F(M_1 - M_2 + M_2) \le \underline{F(M_2)} + \mu^{-1} \| (M_1 - M_2)^+ \| - \mu \| (M_1 - M_2)^- \|.$$

Then

$$\mu \| (M_1 - M_2)^- \| \le \mu^{-1} \| (M_1 - M_2)^+ \|.$$

By symmetry

$$\mu \| (M_1 - M_2)^+ \| = \mu \| (M_2 - M_1)^- \| \le \mu^{-1} \| (M_2 - M_1)^+ \| = \mu^{-1} \| (M_1 - M_2)^- \|.$$

Next from

$$(M_1 - M_2)^+ = \left[egin{array}{cccc} \lambda_1^+ & & & & & \\ & \cdots & & & & \\ & & \lambda_k^+ & & & \\ & & & 0 & & \\ & & & \cdots & & \\ & & & & 0 \end{array}
ight]$$

we have

$$||(M_1 - M_2)^+|| \le ||M_1 - M_2|| \le ||(M_1 - M_2)^+|| + ||(M_1 - M_2)^-||$$

$$\le (1 + \mu^{-2}) ||(M_1 - M_2)^+||.$$

Then

$$\sup_{|e|=1} (M_1 - M_2) \cdot e^T e \le \|(M_1 - M_2)^+\| \le \sqrt{n} \lambda_{\max}^+ = \sqrt{n} \sup_{|e|=1} e (M_1 - M_2) e^T$$

and

$$\sup_{|e|=1} e(M_1 - M_2) e^T \ge \frac{1}{\sqrt{n}(1 + \mu^{-2})} \|M_1 - M_2\|.$$

Proof of the theorem (Caffarelli).

Step 0. Suppose $\operatorname{diam}(D^2u(B_1)) = 1$. Otherwise let $v = u/\operatorname{diam}$, $G(M) = F(\operatorname{diam} M)/\operatorname{diam}$, then $G(D^2v) = 0$ with G still being μ -elliptic and convex.

Step 1. There exists small $\varepsilon_0(n,\mu)$ (from weak Harnack) such that if $\{\mathcal{B}_{\varepsilon_0}(M_k)\}_{k=1}^{k=N}$ cover $D^2u(B_1)$, then

either a) $D^2u\left(B_{1/2}\right)$ has diameter less than 1/2

or b) we can cover $D^2u(B_{1/2})$ with N-1 balls.

Suppose a) does not happen, then $\operatorname{diam} D^2 u\left(B_1\right) \geq \operatorname{diam} D^2 u\left(B_{1/2}\right) \geq 1/2$. "Enlarge" the covering of $D^2 u\left(B_1\right)$ by N' (finitely many overlapping, "decoys") balls in $\mathbb{R}^{n\times n}$ $\{\mathcal{B}_h\left(H_l\right)\}_{l=1}^{l=N'}$ with $h=h\left(n,\mu\right)=\min\left\{\frac{1}{8},\frac{1}{8}c_E\right\}$ (much larger than ε_0 such that $(h^{n\times n})^{1/\varepsilon}>\varepsilon_0$) and c_E is from the above lemma.

domain target covering figure

We know $N'(n,\mu) \leq \left(\frac{1}{h}\right)^{n\times n}$, then there exists one ball, say $\mathcal{B}^1 = \mathcal{B}_h(H_1)$ and $H_1 = D^2u(x_1)$ such that

$$\left| \left(D^2 u \right)^{-1} \left(\mathcal{B}^1 \right) \right| \ge \frac{\left| B_1 \right|}{N'} \text{ or } \frac{\left| B_{1/2} \right|}{N'}.$$

Also there exists H_* with $H_* = D^2 u(x_*)$ such that $||H_1 - H_*|| \ge 1/4$. By the above lemma, there exists $e \in \mathbb{R}^n$ such that

$$u_{ee}(x_1) - u_{ee}(x_*) \ge c_E \|D^2 u(x_1) - D^2 u(x_*)\| \ge \frac{1}{4} c_E$$

and with $m = \inf_{B_1} u_{ee}(x) = u_{ee}(\underline{x})$

$$u_{ee}(x) - m \ge u_{ee}(x) - u_{ee}(x_*) = u_{ee}(x) - u_{ee}(x_1) + u_{ee}(x_1) - u_{ee}(x_*)$$

$$\ge - \|D^2 u(x) - D^2 u(x_1)\| + \frac{1}{4} c_E$$

$$\ge -\frac{1}{8} c_E + \frac{1}{4} c_E = \frac{1}{8} c_E$$

for all x satisfying $||D^2u(x) - D^2u(x_1)|| \le h \le \frac{1}{8}c_E$.

Recall F is convex and $u \in C^4$ (C^0 is enough), then we have the important

$$u_{ee}(x) - m \in \bar{S}(\mu, 0)$$
.

By Krylov-Safonov, we derive

$$\inf_{B_{1/2}} (u_{ee}(x) - m) \ge c(n, \mu) \left[\int_{B_1} (u_{ee} - m)^{\varepsilon} \right]^{1/\varepsilon}$$

$$\ge c(n, \mu) \frac{1}{8} c_E \left(\frac{B_1}{N'} \right)^{1/\varepsilon} = \eta(n, \mu) > 0.$$

Let, say $\mathcal{B}_{\varepsilon_0}\left(M_1\right)$ contain $D^2u\left(\underline{x}\right)$, then for $D^2u\left(y\right)\in\mathcal{B}_{\varepsilon_0}\left(M_1\right)$

$$u_{ee}(y) - u_{ee}(\underline{x}) \le ||D^2u(y) - D^2u(\underline{x})|| \le 2\varepsilon_0 < \eta$$

provided we (now) choose ε_0 such that $2\varepsilon_0(n,\mu) < \eta(n,\mu)$ (essentially $h^{n \times n/\varepsilon} > \varepsilon_0$).

$$D^2u\left(B_{1/2}\right)$$
 and $\mathcal{B}_{\varepsilon_0}\left(M_1\right)$ figure

Therefore, we can still cover $D^2u\left(B_{1/2}\right)$ with N-1 balls of $\left\{\mathcal{B}_{\varepsilon_0}\left(M_k\right)\right\}_{k=1}^{k=N}$, after throwing away one ball $\mathcal{B}_{\varepsilon_0}\left(M_1\right)$.

Step 2. Let

$$v(x) = 2^2 u(x/2) : B_1 \subset \mathbb{R}^n \to \mathbb{R}^1,$$

then

$$D^{2}v(x) = D^{2}u(x/2), \ D^{2}v(B_{1/2}) = D^{2}u(B_{1/4})$$

 $F(D^{2}v(x)) = F(D^{2}u(x/2)) = 0.$

Repeat Step 1, $D^2u\left(B_{1/4}\right) = D^2v\left(B_{1/2}\right)$ is either a) or b). After $l < N \lesssim \left(1/\varepsilon_0\right)^{n \times n}$ many steps, we have

$$\operatorname{diam}\left(D^2u\left(B_{1/2^l}\right)\right) \le \frac{1}{2}.$$

Let
$$\gamma = \gamma(n, \mu) = 1/2^l$$
, then

$$\operatorname{diam}\left(D^{2}u\left(B_{\gamma}\right)\right) \leq \frac{1}{2}\operatorname{diam}\left(D^{2}u\left(B_{1}\right)\right)$$
$$\operatorname{diam}\left(D^{2}u\left(B_{\gamma^{2}}\right)\right) \leq \frac{1}{2^{2}}\operatorname{diam}\left(D^{2}u\left(B_{1}\right)\right)$$
$$\cdots$$
$$\operatorname{diam}\left(D^{2}u\left(B_{\gamma^{k}}\right)\right) \leq \frac{1}{2^{k}}\operatorname{diam}\left(D^{2}u\left(B_{1}\right)\right).$$

Iterate, we obtain the desired Hölder estimate of D^2u . The proof of Evans-Krylov-(Safonov) is complete.

RMK. For complex Monge-Ampere equation det $\partial \bar{\partial} u = 1$, one obtains real Hessian $\|D^2 u\|_{C^{\alpha}}$ estimates in terms of complex Hessian $\|\partial \bar{\partial} u\|_{L^{\infty}}$ and $\|u\|_{L^{\infty}}$ as follows.

Curvature way (Yau): By Calabi $\|D\partial\bar{\partial}u\|_{L^{\infty}} \leq C(\|\partial\bar{\partial}u\|_{L^{\infty}})$. By Schauder, $\|D^2u\|_{C^{\alpha}} \leq C(\|\partial\bar{\partial}u\|_{L^{\infty}}, \|u\|_{L^{\infty}})$.

Bernstein way (X-J Wang): By Bernstein, $||D^2u||_{L^{\infty}} \leq C\left(||\partial\bar{\partial}u||_{L^{\infty}}, ||u||_{L^{\infty}}\right)$. By Evans-Krylov-(Safonov), $[D^2u]_{C^{\alpha}} \leq C\left(||D^2u||_{L^{\infty}}\right)$.

Complex way: Replace real $e \otimes e$ by complex $\partial z \otimes \partial \bar{z}$, by Evans-Krylov-(Safonov), $\left[\partial \bar{\partial} u\right]_{\alpha} \leq C\left(\left\|\partial \bar{\partial} u\right\|_{L^{\infty}}\right)$. Then $trD^2u = \Delta u \in C^{\alpha}$. By Schauder, $\|D^2u\|_{C^{\alpha}} \leq C\left(\left\|\partial \bar{\partial} u\right\|_{L^{\infty}}\right) \cdot \left(\left\|\partial \bar{\partial} u\right\|_{L^{\infty}} + \|u\|_{L^{\infty}}\right)$.