Lecture 11 Dirichlet problem for special Lagrangian equations-a model case

- continuity method
- a priori estimate

We have answered Dirichlet problem for minimal surface equation with smooth boundary data. Now we solve Monge-Ampere equations and special Lagrangian equations. Let

$$
f(\lambda)=\left\{\begin{array}{l}
\ln \lambda_{1}+\cdots+\ln \lambda_{n} \\
\arctan \lambda_{1}+\cdots+\arctan \lambda_{n}-\Theta, \text { for } \Theta \geq(\mathbf{n}-\mathbf{2}) \frac{\pi}{2}
\end{array}\right.
$$

When $n=2, \ln \lambda_{1}+\ln \lambda_{2}=0 \Leftrightarrow \arctan \lambda_{1}+\arctan \lambda_{2}=\frac{\pi}{2}$.
Theorem 1 There exists a unique solution $u \in C^{2, \alpha}\left(\bar{B}_{1}\right)$ to

$$
\left\{\begin{array}{l}
f\left(\lambda\left(D^{2} u\right)\right)=0 \text { in } B_{1} \subset \mathbb{R}^{n} \tag{E}\\
u=\phi \in C^{4}\left(\partial B_{1}\right)
\end{array}\right.
$$

RMK. For subcritical special Lagrangian equations $\left(|\Theta|<(n-2) \frac{\pi}{2}\right)$, even with analytic boundary data, the C^{0} viscosity solution may be only $C^{1, \varepsilon}$, NO better; see the recent work [Wang-Yuan]. In the "ln" case, the solution is convex from the continuity process.

Proof.
The uniqueness is an easy exercise.
For existence, consider a family of equations

$$
\left\{\begin{array}{l}
f(\lambda)=0 \text { in } B_{1} \subset \mathbb{R}^{n} \tag{t}\\
u=t \phi \in C^{4}\left(\partial B_{1}\right)
\end{array}\right.
$$

Let

$$
I=\left\{t \in[0,1] \mid E_{t} \text { has a solution } u_{t} \in C^{2, \alpha}\left(\bar{B}_{1}\right), \alpha=\alpha(\phi, n)>0\right\}
$$

Step 0. $0 \in I$.

$$
u_{0}= \begin{cases}\frac{1}{2}\left(|x|^{2}-1\right) \exp \left(\frac{0}{n}\right) & f=\ln \lambda \\ \frac{1}{2}\left(|x|^{2}-1\right) \tan \left(\frac{\Theta}{n}\right) & f=\arctan \lambda\end{cases}
$$

Step 1. I is open. Suppose $t_{0} \in I$, the linearized equation near $u_{t_{0}}$ is

$$
\left\{\begin{array}{l}
F_{m_{i j}}\left(D^{2} u_{t_{0}}\right) D_{i j} v=0 \text { in } B_{1} \\
v=\varphi \in C^{2, \alpha} \text { on } \partial B_{1}
\end{array}\right.
$$

and $\mu\left(\left\|u_{t_{0}}\right\|_{C^{2}}\right) \leq\left(F_{m_{i j}}\right) \leq \mu^{-1}\left(\left\|u_{t_{0}}\right\|_{C^{2}}\right)$. It follows from Schauder theory that the equation is solvable for any $\varphi \in C^{2, \alpha}\left(\partial B_{1}\right)$ with solution $v \in C^{2, \alpha}\left(\bar{B}_{1}\right)$.

[^0]By Implicit Function Theorem, there exists solution $u_{t} \in C^{2, \alpha}\left(\bar{B}_{1}\right)$ to the equation E_{t} for t close to t_{0}.

Step 2. I is closed. We show that

$$
\left\|u_{t}\right\|_{C^{2, \alpha}\left(\bar{B}_{1}\right)} \leq C(\phi)
$$

independent of t for all $C^{2, \alpha}\left(\bar{B}_{1}\right)$ solutions to E_{t}. Then Ascoli-Arzela theorem implies I is closed.

We will show

$$
\left\|u_{t}\right\|_{C^{1,1}\left(\bar{B}_{1}\right)} \leq C\left(\|\phi\|_{C^{4}}, n, \Theta\right)
$$

then the concave equation is $\mu(C(\phi, n, \Theta))$-elliptic.
By interior Evans-Krylov-(Safonov) and boundary Krylov (which we did not prove),

$$
\left\|D^{2} u_{t}\right\|_{C^{\alpha}\left(\bar{B}_{1}\right)} \leq C\left(\|\phi\|_{C^{4}}, n, \Theta\right)
$$

For simplicity, we skip the index t in u_{t} and $t \phi$ in the following.
$2.1 L^{\infty}$ bound.

We have
$\underbrace{-\|\phi\|_{L^{\infty}}+\frac{\exp \left(\frac{0}{n}\right) \text { or } \tan \left(\frac{\Theta}{n}\right)}{2}\left(|x|^{2}-1\right)}_{\underline{u}} \leq u \leq \underbrace{\|\phi\|_{L^{\infty}}+\frac{\exp \left(\frac{0}{n}\right) \text { or } \tan \left(\frac{\Theta}{n}\right)}{2}\left(|x|^{2}-1\right)}_{\bar{u}}$ on ∂B_{1}
and

$$
f\left(\lambda\left(D^{2} \underline{u}\right)\right)=f\left(\lambda\left(D^{2} u\right)\right)=f\left(\lambda\left(D^{2} \bar{u}\right)\right) \quad \text { in } B_{1} .
$$

By the comparison principle

$$
\|u\|_{L^{\infty}\left(B_{1}\right)} \leq\|\phi\|_{L^{\infty}\left(\partial B_{1}\right)}+\frac{\exp \left(\frac{0}{n}\right) \text { or } \tan \left(\frac{\Theta}{n}\right)}{2} .
$$

2.2 Lipschitz bound.

For any (unit) direction $e \in R^{n}$, we have

$$
F_{m_{i j}} D_{i j} u_{e}=0,
$$

where $F\left(D^{2} u\right)=f\left(\lambda\left(D^{2} u\right)\right)$. The maximum principle leads

$$
\sup _{B_{1}}|D u|=\sup _{\partial B_{1}}|D u| \leq \sup _{\partial B_{1}}\left(\left|u_{r}\right|+\left|\phi_{\theta}\right|\right) .
$$

Next we estimate the boundary normal derivative u_{r}. Fix $y \in \partial B_{1}$. Since ∂B_{1} is strongly convex, $\phi \in C^{2}\left(\partial B_{1}\right)$, there exist two linear functions $L^{ \pm}$whose C^{1} norms depend on $C^{1,1}$ norm of ϕ so that (see the Minimal surface equation lecture notes.)

$$
L^{-} \leq \phi \leq L^{+} \text {on } \partial B_{1} \text { and " }=" \text { at } y .
$$

Let

$$
B^{ \pm}=L^{ \pm}+\frac{\exp \left(\frac{0}{n}\right) \text { or } \tan \left(\frac{\Theta}{n}\right)}{2}\left(|x|^{2}-1\right)
$$

Then

$$
\left\{\begin{array}{l}
F\left(D^{2} B^{ \pm}\right)=F\left(D^{2} u\right) \quad \text { in } B_{1} \\
B^{-} \leq u \leq B^{+} \quad \text { on } \partial B_{1} \text { and " }=" \text { at } y
\end{array} .\right.
$$

It follows from the comparison principle, $B^{-} \leq u \leq B^{+}$in \bar{B}_{1}. Hence

$$
\frac{B^{-}-u(y)}{x_{1}-y_{1}} \leq \frac{u-u(y)}{x_{1}-y_{1}} \leq \frac{B^{+}-u(y)}{x_{1}-y_{1}}
$$

Let $x_{1} \rightarrow y_{1}^{+}$, we get

$$
\left|\frac{\partial}{\partial x_{1}} u(y)\right| \leq C\left(\|\phi\|_{C^{2}}\right)
$$

Thus

$$
\|D u\|_{L^{\infty}\left(B_{1}\right)} \leq\|D u\|_{L^{\infty}\left(\partial B_{1}\right)} \leq C\left(\|\phi\|_{C^{2}}\right) .
$$

$2.3 C^{1,1}$ bound.
First observe

$$
\begin{aligned}
& \text { convex level set over tangent plane figures } \\
& \qquad u \geq n \exp \left(\frac{0}{n}\right) \text { or } n \tan \left(\frac{\Theta}{n}\right)
\end{aligned}
$$

then an upper bound for $D^{2} u$ would lead to a corresponding lower bound, which we estimate next.

Second, since $u \in C^{2, \alpha}$ (no bound yet), Schauder implies $u \in C^{3, \alpha}$, and then $C^{4, \alpha}$ (Hard Exercise). Thus we can differentiate the equation twice,

$$
F_{m_{i j}} D_{i j} u_{e e}+\underbrace{F_{m_{i j}, m_{k l}} D_{i j} u_{e} D_{k l} u_{e}}_{\leq 0}=0
$$

By the concavity of F, we have

$$
F_{m_{i j}} D_{i j} u_{e e} \geq 0
$$

Maximal principle then implies

$$
\sup _{B_{1}} u_{e e} \leq \sup _{\partial B_{1}} u_{e e} .
$$

The only thing left is the boundary $C^{1,1}$ (upper) estimate for u in terms of the boundary data ϕ. There are tangential derivative and normal derivative on the boundary of the circle:

$$
\begin{aligned}
& u_{T T}, \text { say } u_{11}=\frac{1}{r^{2}} u_{\theta \theta}+\frac{1}{r} u_{r}=\phi_{\theta \theta}+u_{r} \leq C\left(\|\phi\|_{C^{2}}\right) ; \\
& u_{T N}, \text { say } u_{n 1}=\frac{1}{r} u_{r \theta}-\frac{1}{r^{2}} u_{\theta}=u_{r \theta}-\phi_{\theta} .
\end{aligned}
$$

We show that $\left|u_{r \theta}(y)\right| \leq C\left(\|\phi\|_{C^{3}}\right)$. Apply

$$
\partial_{\theta}=x_{n} \partial_{x_{1}}-x_{1} \partial_{x_{n}} .
$$

to the equation $F\left(D^{2} u\right)=0$ (exercise), we get

$$
\left\{\begin{array}{l}
F_{i j} D_{i j} u_{\theta}=0 \\
u_{\theta}=\phi_{\theta} \text { on } \partial B_{1}
\end{array}\right.
$$

Since $\phi_{\theta} \in C^{2}\left(\partial B_{1}\right)$ and ∂B_{1} strongly convex, we have

$$
\begin{gathered}
L^{-} \leq \phi_{\theta} \leq L^{+} \quad \text { (as in the Minimal surface equation lecture notes) } \\
\qquad \sum F_{i j} D_{i j} L^{ \pm}=0
\end{gathered}
$$

The comparison principle implies

$$
\begin{aligned}
L^{-} & \leq u_{\theta} \leq L^{+} \text {in } B_{1} \\
\frac{L^{-}-u_{\theta}(y)}{x_{n}-(-1)} & \leq \frac{u_{\theta}-u_{\theta}(y)}{x_{n}-(-1)} \leq \frac{L^{+}-u_{\theta}(y)}{x_{n}-(-1)} \text { in } B_{1}
\end{aligned}
$$

Let $x_{n} \rightarrow-1^{+}$, we get $u_{r \theta}=\left|\frac{\partial}{\partial x_{n}} u_{\theta}(y)\right| \leq C\left(\|\phi\|_{C^{3}}\right)$.
Thus only the upper bound of double normal derivative is left to estimate.
Idea: we have, $F_{i j} D_{i j}\left(r u_{r}-2 u\right)=0=F_{i j} D_{i j} L^{-}$, exercise! Now if $r u_{r}-2 u \geq$ $L^{-}\left(x^{\prime}, x_{n}\right)$ on ∂B_{1}. Then

$$
\begin{gathered}
r u_{r}-2 u \geq L^{-} \text {in } B_{1} \\
\frac{r u_{r}-2 u-L^{-}(y)}{r-1} \leq \frac{L^{-}-L^{-}(y)}{r-1} \Rightarrow u_{r r} \leq L_{r}^{-}-u_{r}\left(^{*}\right)
\end{gathered}
$$

But L^{-}coefficients involve C^{3} norms of u on ∂B_{1}, which is not available yet!
We get around in the following (Trudinger) way. We can have $\left(^{*}\right)$ at "minimal" $u_{T T}$ (or rather $f\left(u_{T T}\right)$). Then by the equation (still heuristic)

$$
f\left(u_{T T}\right)+f\left(u_{r r}\right)=0
$$

we would get the upper bound

$$
f\left(u_{r r}(y)\right)=-f\left(u_{T T}(y)\right) \leq-f\left(u_{T T}\left(y_{\min }\right)\right)=f\left(u_{r r}\left(y_{\min }\right)\right) \leq C .
$$

Realization:

$$
D^{2} u=\left[\begin{array}{ll}
u_{T T} & u_{T r} \\
u_{r T} & u_{r r}
\end{array}\right] \sim\left[\begin{array}{cc}
\lambda^{\prime} & u_{T r} \\
u_{r T} & u_{r r}
\end{array}\right]
$$

where tangent vector T acts as

$$
u_{T T}=\frac{1}{r^{2}} u_{\theta \theta}+\frac{1}{r} u_{r}=\phi_{\theta \theta}+u_{r} .
$$

We estimate the lower bound of $\left.\operatorname{tr} D^{2} u\right|_{T}=\lambda_{1}^{\prime}+\cdots+\lambda_{n}^{\prime}$. Suppose $y_{\min }$ is one minimal point for $\left.f^{\prime}\left(\lambda^{\prime}\right)\right|_{\partial B_{1}}$, where

$$
f^{\prime}\left(\lambda^{\prime}\right)=\left\{\begin{array}{l}
\ln \lambda_{1}^{\prime}+\cdots+\ln \lambda_{n-1}^{\prime} \\
\arctan \lambda_{1}^{\prime}+\cdots+\arctan \lambda_{n-1}^{\prime}-\Theta
\end{array}\right.
$$

Let $\lambda_{0}^{\prime}=\lambda^{\prime}\left(x_{\min }\right)$. Then the $f^{\prime}\left(\lambda_{0}^{\prime}\right)$-level set of the function $f^{\prime}\left(\lambda^{\prime}\right)$ is convex. Indeed $f^{\prime}\left(\lambda^{\prime}\right) \geq f^{\prime}\left(\lambda_{0}^{\prime}\right)>\Theta-\pi / 2$ or $0-C$ by the following linear algebra lemma, thus λ^{\prime} is in a convex set

> convex set figure

$$
\begin{aligned}
& \left\{\lambda^{\prime}: \arctan \lambda^{\prime} \geq \arctan \lambda_{0}^{\prime}>\Theta-\frac{\pi}{2} \geq(n-1-2) \frac{\pi}{2}\right\} \text { or } \\
& \left\{\lambda^{\prime}: \ln \lambda^{\prime} \geq \ln \lambda_{0}^{\prime}>0-C\right\} .
\end{aligned}
$$

(Note the above inequality holds without the full concavity of function $f^{\prime}\left(\lambda^{\prime}\right)$ in arctan case.) We conclude

$$
\begin{gathered}
\left\langle D f^{\prime}\left(\lambda_{0}\right), \lambda^{\prime}-\lambda_{0}^{\prime}\right\rangle \geq 0 \\
\left\langle D f^{\prime}\left(\lambda_{0}\right), \lambda^{\prime}\right\rangle \geq\left\langle D f^{\prime}\left(\lambda_{0}\right), \lambda_{0}^{\prime}\right\rangle=c_{0}\left(\text { not necessarily }+ \text {) and " }=" \text { at } y_{\min } .\right.
\end{gathered}
$$

Recall $f^{\prime}\left(\lambda^{\prime}\right)$ is a symmetric function of λ^{\prime}. After symmetrizing λ^{\prime}, we get

$$
\left\langle D f^{\prime}\left(\lambda_{0}\right), \frac{\operatorname{tr} \lambda^{\prime}}{n-1}(1, \ldots, 1)\right\rangle \geq c_{0}
$$

that is

$$
\frac{1}{n-1}\left(f_{1}^{\prime}\left(\lambda_{0}\right)+\cdots+f_{n-1}^{\prime}\left(\lambda_{0}\right)\right) \operatorname{tr} \lambda^{\prime} \geq c_{0} .
$$

It follows that

$$
\left.\operatorname{tr} D^{2} u\right|_{T}=\operatorname{tr} \lambda^{\prime} \geq \frac{(n-1) c_{0}}{f_{1}^{\prime}\left(\lambda_{0}\right)+\cdots+f_{n-1}^{\prime}\left(\lambda_{0}\right)}=c_{0}\left(\|\phi\|_{C^{2}}\right) .
$$

Then

$$
(n-1) u_{r}+\left.\operatorname{tr} D^{2} \phi\right|_{T}=\left.\operatorname{tr} D^{2} u\right|_{T} \geq c_{0}
$$

or

$$
r u_{r} \geq \frac{r}{n-1} c_{0}-\left.\frac{r}{n-1} \operatorname{tr} D^{2} \phi\right|_{T} \quad \text { on } \partial B_{1} \text { and } "=" \text { at } y_{\min } .
$$

As in the Minimal surface equation lecture, for $r u_{r}$ and also $r u_{r}-2 u$, we can find linear barrier L^{-}, whose C^{1} norm now depends on $C^{3,1}$ norm of ϕ, so that

$$
r u_{r}-2 u \geq L^{-}\left(x^{\prime}, x_{n}\right) \text { on } \partial B_{1} \text { and still } "=" \text { at } y_{\text {min }} .
$$

Recall

$$
F_{i j} D_{i j}\left(r u_{r}-2 u\right)=0=F_{i j} D_{i j} L^{-} \text {in } B_{1} .
$$

The comparison principle implies

$$
r u_{r}-2 u \geq L^{-} \text {in } B_{1},
$$

then for $r<1$

$$
\frac{r u_{r}-2 u-L^{-}\left(y_{\min }\right)}{r-1} \leq \frac{L^{-}-L^{-}\left(y_{\min }\right)}{r-1} \text { in } B_{1} .
$$

Let $r \rightarrow 1^{-}$, we get

$$
\left(u_{r r}-u_{r}\right)\left(y_{\min }\right) \leq C\left(\|\phi\|_{C^{4}}\right) .
$$

Because we have already bounded $D u$ in terms of the $C^{1,1}$ norm of ϕ, we thus obtain

$$
u_{r r}\left(y_{\min }\right) \leq \bar{C}\left(\|\phi\|_{C^{4}}\right)
$$

Lemma 2 (Linear algebra lemma) Let

$$
M=\left[\begin{array}{cccc}
\lambda_{1}^{\prime} & & & a_{1} \\
& \ddots & & \vdots \\
& & \lambda_{n-1}^{\prime} & a_{n-1} \\
a_{1} & \cdots & a_{n-1} & a
\end{array}\right]
$$

where $\lambda_{1}^{\prime}, \ldots, \lambda_{n-1}^{\prime}$ are fixed, $\left|a_{i}\right| \leq C$ and $|a| \rightarrow+\infty$.
Then the eigenvalues of M behave like

$$
\lambda_{1}^{\prime}+o(1), \ldots, \lambda_{n-1}^{\prime}+o(1), a+O(1)
$$

where $o(1)$ and $O(1)$ are uniform as $a \rightarrow \infty$.
We proceed separately for Monge-Ampere equation and special Lagrangian equation.

M-A: In case

$$
\begin{gathered}
0 \leq D^{2} u\left(y_{\text {min }}\right) \leq c\left(\|\phi\|_{C^{4}}\right) \\
\ln \lambda_{1}+\cdots \ln \lambda_{n}=0 \\
\Rightarrow \lambda_{i}\left(y_{\text {min }}\right) \geq c\left(\|\phi\|_{C^{4}}\right)>0 \\
\left.\Rightarrow\left[\begin{array}{ccc}
\lambda_{1}^{\prime} & & \\
& \ddots & \\
& & \lambda_{n-1}^{\prime}
\end{array}\right] \sim D^{2} u\right|_{T}\left(y_{\text {min }}\right) \geq \min _{i} \lambda_{i}\left(y_{\min }\right) \geq c\left(\|\phi\|_{C^{4}}\right)>0 .
\end{gathered}
$$

Then from the definition of $y_{\text {min }}$, we have

$$
\left(\ln \lambda_{1}^{\prime}+\cdots+\ln \lambda_{n-1}^{\prime}\right)(y) \geq\left(\ln \lambda_{1}^{\prime}+\cdots+\ln \lambda_{n-1}^{\prime}\right)\left(y_{\min }\right) \geq-C\left(\|\phi\|_{C^{4}}\right)
$$

Recall we have estimated $\lambda^{\prime}(y) \leq C\left(\|\phi\|_{C^{2}}\right)$, then we get

$$
\lambda_{i}^{\prime}(y) \geq c\left(\|\phi\|_{C^{4}}\right)>0, \forall y \in \partial B_{1} .
$$

Finally choose $K=K\left(\lambda_{i}^{\prime}(y)\right)=K\left(c\left(\|\phi\|_{C^{4}}\right)\right)$ large, to be determined. If

$$
u_{r r}(y) \leq K
$$

then OK. Otherwise by the linear algebra lemma

$$
\left[\begin{array}{cccc}
\lambda_{1}^{\prime} & & & u_{1 n} \\
& \ddots & & \vdots \\
& & \lambda_{n-1}^{\prime} & u_{n-1, n} \\
u_{n 1} & \cdots & a_{n, n-1} & u_{n n}
\end{array}\right](y) \sim\left[\begin{array}{cccc}
\lambda_{1}^{\prime}+o(1) & & & \\
& \ddots & & \\
& & \lambda_{n-1}^{\prime}+o(1) & \\
& & & u_{n n}+O(1)
\end{array}\right](y)
$$

From equation $\left(E_{t}\right)$, we have at y

$$
\ln \left(\lambda_{1}^{\prime}+o(1)\right)+\cdots+\ln \left(\lambda_{n-1}^{\prime}+o(1)\right)+\ln \left(u_{n n}+O(1)\right)=0
$$

Now we choose K large enough so that at y

$$
\ln \left(\lambda_{1}^{\prime}+o(1)\right)+\cdots+\ln \left(\lambda_{n-1}^{\prime}+o(1)\right)=\ln \lambda_{1}^{\prime}+\cdots+\ln \lambda_{n-1}^{\prime}+o(1) \geq-C\left(\|\phi\|_{C^{4}}\right) .
$$

Thus it follows that

$$
u_{n n}(y) \leq C\left(\|\phi\|_{C^{4}}\right)
$$

Special Lagrangian case:

$$
\left|D^{2} u\left(y_{\text {min }}\right)\right| \leq C\left(\|\phi\|_{C^{4}}\right)
$$

At $y_{\text {min }}$,

$$
f\left(D^{2} u+100 e_{n} \otimes e_{n}\right)-f\left(D^{2} u\right)=\left\langle " \nabla^{2} F(*) ", 100 e_{n} \otimes e_{n}\right\rangle=\delta_{1}\left(\|\phi\|_{C^{4}}\right)>0 .
$$

Also we have

$$
\lim _{a \rightarrow \infty} f\left(D^{2} u+a \cdot e_{n} \otimes e_{n}\right) \geq f\left(D^{2} u+100 e_{n} \otimes e_{n}\right) \geq f\left(D^{2} u\right)+\delta_{1}=\Theta+\delta_{1}
$$

It follows from the linear algebra lemma

$$
\sum \arctan \lambda_{i}^{\prime}\left(y_{m i n}\right) \geq \Theta+\delta_{1}-\frac{\pi}{2}
$$

As in the M-A case we choose $K=K\left(\|\phi\|_{C^{4}}\right)$ large enough to be determined shortly. If

$$
u_{N N}(y) \leq k
$$

then OK. Otherwise, we have at y

$$
\begin{aligned}
\Theta & =f\left(D^{2} u\right)=f\left(\lambda^{\prime}+o(1)\right)+f\left(u_{n n}+O(1)\right) \\
& =\sum_{i=1}^{n-1} \arctan \lambda_{i}^{\prime}(y)+o(1)+\arctan \left(u_{n n}+O(1)\right) \\
& \geq \Theta+\delta_{1}-\frac{\pi}{2}-\frac{\delta_{1}}{2}+\arctan \left(u_{n n}+O(1)\right)
\end{aligned}
$$

We now take K large enough, then

$$
u_{n n}(y) \leq \tan \left(\frac{\pi}{2}-\frac{\delta_{1}}{2}\right)-O(1) \leq C\left(\|\phi\|_{C^{4}}\right)
$$

Therefore

$$
\|u\|_{C^{1,1}\left(\bar{B}_{1}\right)} \leq C\left(\|\phi\|_{C^{4}}\right) .
$$

Our proof is complete.
RMK. Our adapted presentation from $[\mathrm{T}]$ is shorter and works simultaneously for both critical and supercrticial phases, whose corresponding equations are type I (the origin-level-set cone has λ_{i}-axis on its boundary) and type II (the origin-level-set cone is larger than the positive cone) respectively. Type I and II equations were handled separately in [CNS] and [T?]. Note that the pioneering paper [CNS] solves Slag equation, the convex branch of

$$
\begin{aligned}
0 & =\operatorname{Im} \prod\left(1+\sqrt{-1} \lambda_{i}\right)=\operatorname{Im} \sqrt{\left(1+\lambda_{1}^{2}\right) \cdots\left(1+\lambda_{n}^{2}\right)} \exp (\sqrt{-1} \Theta) \\
& =\sqrt{\left(1+\lambda_{1}^{2}\right) \cdots\left(1+\lambda_{n}^{2}\right)} \sin \Theta
\end{aligned}
$$

which corresponds to

$$
\left\{\begin{array}{cc}
\Theta=(n-1) \frac{\pi}{2} & n \text { is odd } \\
\Theta=(n-2) \frac{\pi}{2} & n \text { is even }
\end{array}\right.
$$

[^0]: ${ }^{0}$ July 25, 2010

