Lecture 11 Dirichlet problem for special Lagrangian equations—a model case

o continuity method
o a priori estimate

We have answered Dirichlet problem for minimal surface equation with smooth
boundary data. Now we solve Monge-Ampere equations and special Lagrangian equa-
tions. Let

FO) = InA\+---+1n),
~ |arctan A\ + - - - + arctan A, — ©, for © > (n —2)7.

When n =2, InA\; +1n Xy = 0 & arctan \; + arctan Ay = 7.

Theorem 1 There exists a unique solution u € C*>(By) to

{ fOA(D*u)) =0 1in B; CR" ()

U = Qb c 04(8.81)

RMK. For subcritical special Lagrangian equations (|0 < (n —2) %), even with
analytic boundary data, the C? viscosity solution may be only C*¢, NO better; see the
recent work [Wang-Yuan]. In the “In” case, the solution is convex from the continuity
process.

Proof.
The uniqueness is an easy exercise.
For existence, consider a family of equations

f(\) =0in B, C R
u = t¢ S O4<8B1)

Let
I ={te0,1] | E has a solution u; € C**(By), o = a(¢,n) > 0} .

Step 0. 0 € 1.

Uug = %(’x‘z_l)eXp (2) f=InA
5(z[* — 1) tan (;) f = arctan A

Step 1. [ is open. Suppose ¢y € I, the linearized equation near u,, is

Fmi]' (D2Ut0)Di]’U =0in Bl
v= € C? on B

and pu([[u|le2) < (Finy;) < ([Jugyl|e2). Tt follows from Schauder theory that the
equation is solvable for any ¢ € C*%(9B;) with solution v € C**(By).
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By Implicit Function Theorem, there exists solution u; € C**(B;) to the equation
FE, for t close to tg.
Step 2. I is closed. We show that

l[uel|c2omy) < C(0),

independent of ¢ for all C%%(B;) solutions to E;. Then Ascoli-Arzela theorem implies
I is closed.
We will show

||utHCl’1(B1) < C(H¢|’C4 » 1, @)7

then the concave equation is u(C(¢,n, ©))-elliptic.
By interior Evans-Krylov-(Safonov) and boundary Krylov (which we did not prove),

D%l ca(py) < C(lI8llca 1, ©).

For simplicity, we skip the index ¢ in u; and t¢ in the following.
2.1 L™ bound.

We have

exp (%) or tan (%) exp (%) or tan (%)

(J2* = 1) <u <16l +

(.

— oMl +

[ J/

s g

\:{M

and
FOV(DP) = £ (A (D)) = £ (3 (DF))in B,
By the comparison principle
exp (%) or tan (%)
2

|[ul|ze 1) < |l (0B1) +

2.2 Lipschitz bound.

For any (unit) direction e € R", we have
FmijDijue =0,
where F'(D?*u) = f (A (D%u)) . The maximum principle leads

sup | Du| = sup |Du| < sup(|u,| + |pg]).
B1 0B1 0B1

Next we estimate the boundary normal derivative u,. Fix y € 0B;. Since 0B is
strongly convex, ¢ € C%(0B,), there exist two linear functions L* whose C! norms
depend on C™! norm of ¢ so that (see the Minimal surface equation lecture notes.)

L <¢<L"ondB;and “=" at y.

(|9[:|2 —1) on 0B



Let

0 ]
B:t — L:I: + exXp (n) 02rtan (n) (|I|2 . 1) ]
Then

F(D?*B*) = F(D*u) in By
B~ <u< Bt on 0By and “=" at y
It follows from the comparison principle, B~ < u < BT in By. Hence

B™ —uly) _u—uly) _ B*—U(y)‘

rT1—Wh o ri—W%n T1— W

Let 21 — ", we get
2t < Cllolce)
Thus
|1Dul[L(5,) < [|Duf|~om,) < C(l|¢]]c2)-
2.3 C'*! bound.
First observe

’convex level set over tangent plane ﬁgures‘

0 S}
Au > nexp - or ntan )

then an upper bound for D?u would lead to a corresponding lower bound, which we
estimate next.

Second, since u € C** (no bound yet), Schauder implies u € C*, and then C*
(Hard Exercise). Thus we can differentiate the equation twice,

FmijDijuee + Fmij’mleijueDklui = 0.

<0

By the concavity of F, we have
FmijDijuee Z 0.
Maximal principle then implies

SUP Uee < SUP Uee-
Bl 831

The only thing left is the boundary C''! (upper) estimate for u in terms of the bound-
ary data ¢. There are tangential derivative and normal derivative on the boundary
of the circle:



1 1
urr, say UuUpp = ﬁuee + ;Ur = ¢op + u, < O(|]@]|c2);

1 1
UTN, SAY Unl = —Upp = Uy = Urg — ®o.

We show that |u.g(y)| < C(||¢||c2). Apply
Oy = 24,04y — 10,

to the equation F(D?u) = 0 (exercise), we get

Fz‘jDz‘jue =0
Uy = gbg on 831

Since ¢y € C*(0B;) and By strongly convex, we have
L™ <¢g < LT (as in the Minimal surface equation lecture notes)

The comparison principle implies

L™ <wuy<LTin Bl
L™ —up(y) _ g —Ue( ) —ue(y) .
(1) S (-1 S Y=Y in By

Let 2, — —1*, we got uyg = ‘%Ue(y)‘ < C(lld]cx).

Thus only the upper bound of double normal derivative is left to estimate.

Idea: we have, F;;D;;(ru, —2u) = 0 = F;;D;; L™, exercise! Now if ru, — 2u >
L= (a2',z,) on OB;. Then
ru, —2u > L~ in By
ru, —2u — L™ (y) < L= — L (y)
r—1 - r—1
But L~ coefficients involve C® norms of u on dB;, which is not available yet!

We get around in the following (Trudinger) way. We can have (*) at “minimal”
upr (or rather f(upr)). Then by the equation (still heuristic)

flurr) + f(up) =0

= Upy S L; — Uy <*)

we would get the upper bound
f (UTT’(y)) = _f(UTT (y)) < _f(UTT (ymm)) = f(uﬂ“(ymm)) < C.

Realization:
u U Nowu
D2U — TT Tr ~ Tr :
U Upr Urp  Upy
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where tangent vector 1" acts as

1 1
U = ﬁuee + ;Ur = ¢ + Uy

We estimate the lower bound of trD?ulr = X + -+ + \.. Suppose ¥, is one
minimal point for f'(\)|gp,, where

FN) = In N +---+InA _,
arctan \] + --- + arctan \),_; — ©

Let Ay = N (Zmin). Then the f'(Aj)-level set of the function f/'(\') is convex. Indeed
') > f'(Ny) > O —m/2 or 0—C by the following linear algebra lemma, thus X is
in a convex set

’ convex set figure ‘

{X : arctan \' > arctan A\ > © — g >(n—1-2) g} or
{N:InXN >In);>0-C}.
(Note the above inequality holds without the full concavity of function f’ (') in arctan

case.) We conclude
(Df' (M), = Xg) = 0

(Df'"( M), \Y > (Df"(No), No) = o (not necessarily +) and “=" at Ymin-

Recall f'(X) is a symmetric function of X. After symmetrizing X', we get

, tr N
<Df (/\0)7n_1<1771)> > Co,
that is ]
m (f{()\(]) + -+ frllfl()\())) tr )\/ Z Cp-

It follows that

-1
tr D*ulp =tr X' > (n=1)co

Z w0+ g~ @l9lle)

Then
(n — Vu, + tr D*¢|r = tr D*u|p > co

or
r r

Co —

n—1 n—1
As in the Minimal surface equation lecture, for ru, and also ru, — 2u, we can find
linear barrier L=, whose C'!' norm now depends on C®! norm of ¢, so that

ru, > tr D*¢|p on OB; and “=" at Y.

T, — 2u > L_(ZL',; l’n) on 0B and still “=" at Ymin -
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Recall
EjDij(Tur - 2U) =0= EjDijL_ in Bl.

The comparison principle implies
ru, —2u > L~ in By,

then for r < 1
Ty — 20 — L™ (Ymin) < L™ — L™ (Ymin)

=~ iIlBl.
r—1 r—1

Let r — 17, we get
(Urr = ) (Ymin) < C(]|9]]c1)-

Because we have already bounded Du in terms of the C1! norm of ¢, we thus obtain

urr(ymin) < C’<| |¢HC4)'

Lemma 2 (Linear algebra lemma) Let

)\/1 aq
M = .
)\nfl n—1
a - Ap—q a
where N, ..., N, are fized, |a;| < C and |a| — +o0.

Then the eigenvalues of M behave like
N +o(1),..., N,y +o(l),a+ O(1),

where o(1) and O(1) are uniform as a — 0.
We proceed separately for Monge-Ampere equation and special Lagrangian equa-
tion.

M-A: In case
0 < D*w(ymin) < c(||9]]cs)
InA\+---In\, =0
= Al(ymm) > C(||¢||C4) >0
A
= ~ D*u|r(Ymin) > miin Ai(Ymin) = c([|9]]|c4+) > 0.
An—1

Then from the definition of y,;,, we have
(I A+ I N ) (y) = (I + -+ I ) (Ymin) = —C([[0]]ca)-
Recall we have estimated X (y) < C(||¢||c2), then we get

Ai(y) = c(||9]lcs) > 0, Vy € 9B

6



Finally choose K = K(X,(y)) = K(c(||9||c1)) large, to be determined. If
ur(y) < K,

then OK. Otherwise by the linear algebra lemma

' y) ~ h y) .-
Anc1 Un—1n ) An—1 +o(1) )
Up1 - an,n—l Unn Unn + 0(1)

From equation (F;), we have at y
In(A] 4+ 0(1)) + - +1In(\,_; + 0o(1)) + In(up, + O(1)) =0
Now we choose K large enough so that at y
(A +0(1)) + -+ +In(X,; +0(1)) =InX; + - +In X, +0(1) =2 =C([[¢|cs)-

Thus it follows that
unn(y) § C(H¢HC4)

Special Lagrangian case:
| D*u(Ymin)| < C(ll¢]] )
Ab Ymin,
f(D*u+ 100e, ® €,) — f(D*u) = (“V*F (x)7,100e, @ e,) = 61(||¢||c1) > 0.
Also we have

lim f(D*u+a-e,®e,) > f(D*u+100e, @ e,) > f(D*u) + 6, = O + 6;.

a—00

It follows from the linear algebra lemma
Z arctan \ (Ymin) > © + 01 — g

As in the M-A case we choose K = K(||¢]|c4) large enough to be determined shortly.
If

unn(y) < k.

then OK. Otherwise, we have at y
© = f(D*u) = f(N' + 0(1)) + [ (tn + O(1))

n—1
= Z arctan \(y) + o(1) + arctan(u,, + O(1))
i=1

> 046 — g - % + arctan(u,, + O(1)).



We now take K large enough, then

anly) < tan( — )~ 0(1) < C(Jol|ex).

Therefore
ullcraz,) < C([19]]es)-

Our proof is complete.

RMK. Our adapted presentation from [T] is shorter and works simultaneously for
both critical and supercrticial phases, whose corresponding equations are type I (the
origin-level-set cone has \;-axis on its boundary ) and type II (the origin-level-set
cone is larger than the positive cone) respectively. Type I and II equations were
handled separately in [CNS] and [T?]. Note that the pioneering paper [CNS] solves
Slag equation, the convex branch of

0=Tm [ (14+V=IA) =Tm /(1 +X3) (1 +X2) exp (V- 16)

= L+ X)) (14 X2)sin @,

which corresponds to

©=(n—-1)% nisodd
O=Mn-2)7%

2) n is even



