Lecture 2 Harmonic functions

o invariance

o mean value
maximum principle,
(higher order) derivative estimates,
Harnack

o weak formulations

mean value

weak /Weyl

viscosity

Invariance for Harmonic functions, solutions to Au =0

- u(x + o)

- u (Rx)

- u (tx)

RMK. Equations don’t know/care which coordinates they are in.
- u+ v, au, where Av =0

fulz—y) ey dy

Juleted)—ule) _, D.u, so is D*u
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. M — Du(x) - = ru,, so are 10, (Tu,) = 1ty + T*Upy, T3Uppp, - - -

2— . .
el (#) Kelvin transformation

. . . _l=? _
Rmk. “Kelvin” transformation for the heat equation u;—Au = 0, tn%e 1wy (%, 71) .
More harmonic functions.

egl.
Dir?™" = (2 —n) plnZl (2—n)r "z =(2-—n) o
T re
_ 1 T . r? — na?
Dyr*™™ = (2 —n) [—nr 171:1:1 +r7" =(2—n) — !
_n —NIT1T2
Dygr®™" = (Q—H)W

Let Py (z) be any homogeneous polynomial of degree k, Py, (D) r*™" = Tfﬁg(f%k. For

rn

example, oy (D) r?™" = _ox@) . Note H), # Py in general, but Hy (z) = r2”|frn(—"z§>2k
rZ

is the Kelvin transform of harmonic function P, (D) r?*~", thus harmonic.
Exercise: Hy (x) are ALL harmonic polynomials of degree k.
eg2. Harmonic function
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is Green’s function (up to a multiple) for the unit ball.
Mean value equality
Recall the divergence formula (the fundamental theorem of calculus)

/de (V) dz = /m <x7,7> dA,

V= Du, then 0= fag u,dA.
V = wvDu, then [, (Dv, Du) +v Au= [, vu,dA.
V = uDu, then [, (Du, Dv) +u /v = Joq uvydA.

/UAu—uAv:/ VU, — uv,dA.
0 a0

Mean value case. Now Au=01in By, v = |x|2_", Q= B\ B-:

figure

0= fBQ vu, — uv,dA, or

0
A

Ve

K 2 2
/ vu,dA :/ uv,dA :/ u(—_ln)dA —/ u%dfl. (*)
d(B1\B:) 8(B1\B-) oB, " oB. ™

We get [yp udA = [0 umirdA = cou(0). So u(0) = = Jop, udA. Taking
u =1 leads to ¢, = |0B1| =n|By|.

Also
1

B |8BT| 8BT
Take a weight function |0B,|, u(0)|B;| = folu(()) |0B,|dr = fol f(‘)Br udAdr =
[, udz. So u(0) = ﬁ fBl(O) udx.

u (0) udA.

Also .
u(0) = udx.
| B:| /B, 0
RMK. “ .. all the women are strong, all the men are good-looking, and all the

children are above average.” —A Prairie Home Companion with Garrison Keillor.
Also

u(@) /n (n_Q)”’BlHa:—yV“Z u(y)dy for u e C;° (R")
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Green case. Still Au = 0 in By, but

o o _—1 . 2-n 2—n
U—G(Z’,l‘o)— (n—2)|831| (’iﬂ 1’0’ ’fl?l

Q= Bl\Ba (l’o) .

2—n
;

T
P

figure

Taking limits on two ends of (*), we get

B 0G (z, xp)
u(xg) = /831 (‘9—% u(x) dA.

aG(

Gx20) 5 (1) d A, as sum of harmonic functions a‘j’zo), is harmonic
x

'71‘

Note u (zg) f 831
for p € CO L,
Application 1. Strong maximum principle (No toughing).

Aul AUZ =0
up > ug, “="at0

then
1

B Js,

(up — ug) dx > 0.
It follows that u; = wus.

Application 2. Smooth effect and derivative test.
Take radial weight ¢ (y) = ¢ (Jy]) € Cg° (R™) such that 1 = [ (y)dy = [;" ¢ (r) [0B,]| dr.

Then
[rwee-na=["[  wwee-pan
= [ u@ e Bdr = u ) [ o)

=u(x).

Consequence u (z) = [, u(y) ¢ (z — y) dy is smooth for continuous initial u (y) , and

Thus



Scaled version
C(kanv‘P) ||u||L1 (BR)

k n—+k
DM (0)] < { D) .
Rk
That is the larger the domain, the flatter the harmonic graph.
Application 3. Harnack inequalities.
eg. Consider positive harmonic functions r2~", z;7~" on {x; > 0}.

figure

Now for Au=0, v > 0in By (0),

1 | B 1
:—/ udr < —— udx:lu(O):—nu(O).
Bi—ja) (2) JB,_ ) | Bi-jal| J5100) | B1-pa]| (1 = fz)

Rmk. As those two examples suggest, from Poisson representation, we have

(1= |2))u(0) <u(z) < u (0) .

(1= [a)" ™
Cor. Suppose Au =0, u > 0in B, (zg). Then we have

sup u <3" inf wu
BT/4(I0) Br/4(x0)

Consequences - - - , for example one sided Liouville for entire harmonic functions.
Weak formulation

Mean value way.

Suppose u € L' satisty u (z) =+, , u(y)dy for all z and r.
Exercise. Then u is continuous, since

u(m)—u(xo):][

u(y) dy — ][ u (y) dy “=° 0.
Bi(z) Bi(zo)

figure



In turn, we have u (z) = o8, (¥) dy. In fact

r”|Bnu<x>:/()u<y>dy

| By u () — / u(y) dy
OB, (z)

9B, u () = / u(y) dy
OBy (x)

Then

U(:v)z/nw(x—y)U(y)dyeOm

for ¢ (x) = ¢ (|z]) with [4. ¢ (Jz|) dz = 1. Let us check Au = 0.

/ udA = / uw(0) + Du(0) -z + 1Diju (0) xy; + e°dA
9B.(0) 2B.(0) 2o —
Alx%+~-v+)\nm%
2 2
0B.|u (0) = |0B| u (0) + 0+ = 5 ()\1— . )‘"ﬁ) |0B.| + O (63) |0B.|

1
= — Au(0)=0.
5, D u(0)
Integration by parts way.
For u € CY/L'/distribution [u A ¢ =0 for any ¢ € C§°. How to move to mean
value formulation?
Q. How to find ¢ € C§° such that

1 1
A
Y= |B2|XB2 |B |XBl

«_lz? «_lef?

C™! approach (Caffarelli) ¢ ~ i XB: — “gamXB
figure
Convolution way: @I ---
2
Fun way. This requires g = % — A to touch 7" in fact 5515 at |z = 2. We
have a system - ‘BQ| — A= L and %‘B = ,(,;;21) which implies 7 = n (n — 2) | By|

5



—1
n(n—2)|By|rn—2

and A = (2("—_1) Similarly we get ¢ = Y touching ?T_nl,z =

n(n—2)|Ba|" 2n|B1|
at |z| = 1. Thus ¢ = py — 1 € Cy" answers the above question.

ForuELl,/uA90:0:>][ u:][ u.
By B

Therefore (exercise)

u(z) = lim u a.e. at Lebesgue point of L' u.
r—0 Br(x)

Cor. (Weyl) u € L'/C? satisfying [u A ¢ = 0 for any ¢ € Cg°. Then u € C™
and Au = 0.
Warning;:

1
/Wﬁwzcnw(o)#m

C* approach (Weyl)
Work for u €distribution
U (x) =¥ (|z[) € C§° with [¢ =1
e () = 59 (%)
figure

B B I for |z|>e
Step 1. g =T x4 = { smooth for |z| <e °
Step 2. AT % 1) = 1.

Step 3. e, — e, € Cg°

/ UA(QOQ_QO&):O:} u1/J52:/ u¢61
n R™ R~

- u * 1), is independent of ¢
- ux 1. € C* (Review distribution theory, try it.)
- u* 1. = u as a distribution (Exercise).

Pointwise (viscosity) way.
Definition: u € C° is a viscosity solution to Au = 0, if for any quadratic P > u
&)
near an interior point xy and “ =" at xy, then AP > 0.
()
Rmk. We can replace those quadratics by equivalent C?/C testing functions.
Certainly C? harmonic functions satisfy this definition. We do have C° but non



C? solutions to (fully nonlinear) elliptic equations such as Monge-Ampere/Special
Lagrangian equations.

We verify C° harmonic functions in the viscosity sense are in fact smooth by Pois-
son representation formula. Note explicitly representation for solutions to nonlinear
equations are NOT available in general.

Let
he [P s, a4,
0B1
-h=wuon 0B;.

0
Now if u > h somewhere at xg € By, say (u — h) (x¢) = maxp, (u —h) >0

figure

h + max > u in By, “ =" at x,.
0
2
Also h + max’ —¢|z|” > u, “ =" at xj, € By, yes we can replace.

But Aleft= —2ne < 0. This contradiction shows u < h.

0
Similarly, if v < h somewhere at zy € By, say (u — h) (z9) = ming, (u —h) <0

figure
h+min < wu in By, “ =" at xq.
0
Also h + min’ +e |x\2 <u, “="at x € By, yes we can replace.
But Aleft= 2ne > 0. This contradiction shows u > h.
Thus u = h.



