Lecture 2 Harmonic functions

- invariance
- o mean value

maximum principle,

(higher order) derivative estimates,

Harnack

• weak formulations

mean value

weak/Weyl

viscosity

Invariance for Harmonic functions, solutions to $\Delta u = 0$

- $u(x+x_0)$
- $\cdot u(Rx)$
- $\cdot u(tx)$

RMK. Equations don't know/care which coordinates they are in.

- u + v, au, where $\triangle v = 0$
- $\int_{u(x+\varepsilon e)-u(x)} u(x-y) \varphi(y) dy$ $\int_{\varepsilon} u(x+\varepsilon e)-u(x) \to D_e u, \text{ so is } D^k u$
- $\frac{u(R\varepsilon x)-u(x)}{\varepsilon} \to D_{\theta}u = x_{i}u_{j} x_{j}u_{i}$ $\frac{u((1+\varepsilon)x)-u(x)}{\varepsilon} \to Du(x) \cdot x = ru_{r}, \text{ so are } r\partial_{r}(ru_{r}) = ru_{r} + \underline{r^{2}u_{rr}}, r^{3}u_{rrr}, \cdots$
- $\cdot |x|^{2-n} u \left(\frac{x}{|x|^2}\right)$ Kelvin transformation

Rmk. "Kelvin" transformation for the heat equation $u_t - \Delta u = 0$, $\frac{1}{t^{n/2}} e^{-\frac{|x|^2}{4t}} u\left(\frac{x}{t}, \frac{-1}{t}\right)$. More harmonic functions.

eg1.

$$D_1 r^{2-n} = (2-n) r^{1-n} \frac{x_1}{r} = (2-n) r^{-n} x_1 = (2-n) \frac{x_1}{r^n}$$

$$D_{11} r^{2-n} = (2-n) \left[-n r^{-n-1} \frac{x_1}{r} x_1 + r^{-n} \right] = (2-n) \frac{r^2 - n x_1^2}{r^{n+2}}$$

$$D_{12} r^{2-n} = (2-n) \frac{-n x_1 x_2}{r^{n+2}}$$

Let $P_k(x)$ be any homogeneous polynomial of degree k, $P_k(D) r^{2-n} = \frac{H_k(x)}{r^{n-2-2k}}$. For example, $\sigma_k(D) r^{2-n} = \frac{\sigma_k(x)}{r^{n-2-2k}}$. Note $H_k \neq P_k$ in general, but $H_k(x) = r^{2-n} \frac{H_k\left(\frac{x}{r^2}\right)}{\left|\frac{x}{r^2}\right|^{n-2-2k}}$ is the Kelvin transform of harmonic function $P_k(D) r^{2-n}$, thus harmonic.

Exercise: $H_k(x)$ are ALL harmonic polynomials of degree k.

eg2. Harmonic function

$$|x-x_0|^{2-n} - |x|^{2-n} \left| \frac{x}{|x|^2} - x_0 \right|^{2-n} \stackrel{|x|=1}{=} |x-x_0|^{2-n} - |x-x_0|^{2-n} = 0,$$

⁰October 27, 2013

is Green's function (up to a multiple) for the unit ball.

Mean value equality

Recall the divergence formula (the fundamental theorem of calculus)

$$\int_{\Omega} div \left(\vec{V} \right) dx = \int_{\partial \Omega} \left\langle \vec{V}, \gamma \right\rangle dA.$$

 $\vec{V} = Du$, then $0 = \int_{\partial\Omega} u_{\gamma} dA$.

 $\vec{V} = vDu$, then $\int_{\Omega} \langle Dv, Du \rangle + v \triangle u = \int_{\partial \Omega} vu_{\gamma} dA$. $\vec{V} = uDv$, then $\int_{\Omega} \langle Du, Dv \rangle + u \triangle v = \int_{\partial \Omega} uv_{\gamma} dA$.

$$\int_{\Omega} v \triangle u - u \triangle v = \int_{\partial \Omega} v u_{\gamma} - u v_{\gamma} dA.$$

Mean value case. Now $\triangle u = 0$ in B_1 , $v = |x|^{2-n}$, $\Omega = B_1 \backslash B_{\varepsilon}$

figure

 $0 = \int_{\partial \Omega} v u_{\gamma} - u v_{\gamma} dA$, or

$$\underbrace{\int_{\partial(B_1\setminus B_{\varepsilon})}^{0} vu_{\gamma} dA}_{} = \int_{\partial(B_1\setminus B_{\varepsilon})} uv_{\gamma} dA = \int_{\partial B_1} u \frac{(2-n)}{r^{n-1}} dA - \int_{\partial B_{\varepsilon}} u \frac{(2-n)}{r^{n-1}} dA. \quad (*)$$

We get $\int_{\partial B_1} u dA = \int_{\partial B_{\varepsilon}} u \frac{1}{\varepsilon^{n-1}} dA \stackrel{\varepsilon \to 0}{\to} c_n u(0)$. So $u(0) = \frac{1}{c_n} \int_{\partial B_1} u dA$. Taking $u \equiv 1$ leads to $c_n = |\partial B_1| = n |B_1|$.

Also

$$u\left(0\right) = \frac{1}{\left|\partial B_{r}\right|} \int_{\partial B} u dA.$$

Take a weight function $|\partial B_r|$, $u(0)|B_1| = \int_0^1 u(0)|\partial B_r| dr = \int_0^1 \int_{\partial B_r} u dA dr =$ $\int_{B_1} u dx$. So $u(0) = \frac{1}{|B_1|} \int_{B_1(0)} u dx$.

 $u\left(0\right) = \frac{1}{|B_{r}|} \int_{B_{r}\left(0\right)} u dx.$

RMK. "... all the women are strong, all the men are good-looking, and all the children are above average." –A Prairie Home Companion with Garrison Keillor.

Also

$$u\left(x\right) = \int_{\mathbb{R}^{n}} \frac{-1}{\left(n-2\right) n \left|B_{1}\right|} \frac{1}{\left|x-y\right|^{n-2}} \bigtriangleup u\left(y\right) dy \text{ for } u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right).$$

Green case. Still $\triangle u = 0$ in B_1 , but

$$v = G(x, x_0) = \frac{-1}{(n-2)|\partial B_1|} \left(|x - x_0|^{2-n} - |x|^{2-n} \left| \frac{x}{|x|^2} - x_0 \right|^{2-n} \right),$$

$$\Omega = B_1 \backslash B_{\varepsilon} (x_0) .$$

figure

Taking limits on two ends of (*), we get

$$u(x_0) = \int_{\partial B_1} \frac{\partial G(x, x_0)}{\partial \gamma_x} u(x) dA.$$

Note $u(x_0) = \int_{\partial B_1} \frac{\partial G(x,x_0)}{\partial \gamma_x} \varphi(x) dA$, as sum of harmonic functions $\frac{\partial G(x,x_0)}{\partial \gamma_x}$, is harmonic for $\varphi \in C^0, L^1, \cdots$.

Application 1. Strong maximum principle (No toughing).

$$\Delta u_1 = \Delta u_2 = 0$$

 $u_1 \ge u_2$, "=" at 0

then

$$0 = u_1(0) - u_2(0) = \frac{1}{|B_r|} \int_{B_r} (u_1 - u_2) dx \ge 0.$$

It follows that $u_1 \equiv u_2$.

Application 2. Smooth effect and derivative test.

Take radial weight $\varphi(y) = \varphi(|y|) \in C_0^{\infty}(\mathbb{R}^n)$ such that $1 = \int \varphi(y) dy = \int_0^{\infty} \varphi(r) |\partial B_r| dr$. Then

$$\int_{R^{n}} u(y) \varphi(x - y) dy = \int_{0}^{\infty} \int_{\partial B_{r}(x)} u(y) \varphi(x - y) dAdr$$

$$= \int_{0}^{\infty} u(x) \varphi(r) |\partial B_{r}| dr = u(x) \int \varphi(y) dy$$

$$= u(x).$$

Consequence $u\left(x\right)=\int_{R^{n}}u\left(y\right)\varphi\left(x-y\right)dy$ is smooth for continuous initial $u\left(y\right)$, and

$$D^{k}u\left(0\right) = \int u\left(y\right)D_{x}^{k}\varphi\left(x-y\right)dy = \left(-1\right)^{k}\int u\left(y\right)D_{y}^{k}\varphi\left(x-y\right)dy.$$

Thus

$$|D^k u(0)| \le C(k, n, \varphi) ||u||_{L^1(B_1)}.$$

Scaled version

$$|D^k u(0)| \le \begin{cases} \frac{C(k,n,\varphi)||u||_{L^1(B_R)}}{R^{n+k}} \\ \frac{C(k,n,\varphi)||u||_{L^\infty(B_R)}}{R^k} \end{cases}$$
.

That is the larger the domain, the flatter the harmonic graph.

Application 3. Harnack inequalities.

eg. Consider positive harmonic functions r^{2-n} , x_1r^{-n} on $\{x_1 > 0\}$.

figure

Now for $\triangle u = 0$, u > 0 in $B_1(0)$,

$$u(x) = \frac{1}{B_{1-|x|}(x)} \int_{B_{1-|x|}(x)} u dx \le \frac{1}{|B_{1-|x|}|} \int_{B_{1}(0)} u dx = \frac{|B_{1}|}{|B_{1-|x|}|} u(0) = \frac{1}{(1-|x|)^{n}} u(0).$$

Rmk. As those two examples suggest, from Poisson representation, we have

$$c_n (1 - |x|) u (0) \le u (x) \le \frac{2}{(1 - |x|)^{n-1}} u (0).$$

Cor. Suppose $\triangle u = 0$, u > 0 in $B_r(x_0)$. Then we have

$$\sup_{B_{r/4}(x_0)} u \le 3^n \inf_{B_{r/4}(x_0)} u$$

Consequences · · · , for example one sided Liouville for entire harmonic functions.

Weak formulation

Mean value way.

Suppose $u \in L^{1}$ satisfy $u\left(x\right) = \int_{B_{r}\left(x\right)} u\left(y\right) dy$ for all x and r.

Exercise. Then u is continuous, since

$$u(x) - u(x_0) = \int_{B_1(x)} u(y) dy - \int_{B_1(x_0)} u(y) dy \stackrel{x \to x_0}{\to} 0.$$

$$figure$$

In turn, we have $u\left(x\right)=\oint_{\partial B_{r}\left(x\right)}\!u\left(y\right)dy.$ In fact

$$\frac{d}{dr}: r^{n} |B_{1}| u(x) = \int_{B_{r}(x)} u(y) dy$$

$$nr^{n-1} |B_{1}| u(x) = \int_{\partial B_{r}(x)} u(y) dy$$

$$|\partial B_{r}| u(x) = \int_{\partial B_{r}(x)} u(y) dy$$

Then

$$u(x) = \int_{\mathbb{R}^n} \varphi(x - y) u(y) dy \in C^{\infty}$$

for $\varphi(x) = \varphi(|x|)$ with $\int_{\mathbb{R}^n} \varphi(|x|) dx = 1$. Let us check $\Delta u = 0$.

$$\int_{\partial B_{\varepsilon}(0)} u dA = \int_{\partial B_{\varepsilon}(0)} u(0) + Du(0) \cdot x + \frac{1}{2} \underbrace{D_{ij} u(0) x_{i} x_{j}}_{\lambda_{1} x_{1}^{2} + \dots + \lambda_{n} x_{n}^{2}} + \varepsilon^{3} dA$$

$$|\partial B_{\varepsilon}| u(0) = |\partial B_{\varepsilon}| u(0) + 0 + \frac{1}{2} \left(\lambda_{1} \frac{\varepsilon^{2}}{n} + \dots + \lambda_{n} \frac{\varepsilon^{2}}{n} \right) |\partial B_{\varepsilon}| + O(\varepsilon^{3}) |\partial B_{\varepsilon}|$$

$$\Rightarrow \frac{1}{2n} \Delta u(0) = 0.$$

Integration by parts way.

For $u \in C^0/L^1/\text{distribution}$ $\int u \triangle \varphi = 0$ for any $\varphi \in C_0^{\infty}$. How to move to mean value formulation?

Q. How to find $\varphi \in C_0^{\infty}$ such that

$$\Delta \varphi = \frac{1}{|B_2|} \chi_{B_2} - \frac{1}{|B_1|} \chi_{B_1}?$$

$$C^{1,1}$$
approach (Caffarelli) $\varphi \sim \ ``\frac{|x|^2}{2n|B_2|}\chi_{B_2}" - \ ``\frac{|x|^2}{2n|B_1|}\chi_{B_1}"$
$$figure$$

Convolution way: $\varphi * \Gamma \cdots$.

Fun way. This requires $\varphi_2 = \frac{|x|^2}{2n|B_2|} - A$ to touch r^{2-n} , in fact $\frac{-1}{?r^{n-2}}$ at |x| = 2. We have a system $\frac{2^2}{2n|B_2|} - A = \frac{-1}{?2^{n-2}}$ and $\frac{2\cdot 2}{2n|B_2|} = \frac{(n-2)}{?2^{n-1}}$ which implies $? = n(n-2)|B_1|$

and $A = \frac{2(n-1)}{n(n-2)|B_2|}$. Similarly we get $\varphi_1 = \frac{|x|^2}{2n|B_1|} - A'$ touching $\frac{-1}{2(n-2)} = \frac{-1}{n(n-2)|B_1|}$ at |x| = 1. Thus $\varphi = \varphi_2 - \varphi_1 \in C_0^{1,1}$ answers the above question.

For
$$u \in L^1$$
, $\int u \triangle \varphi = 0 \Rightarrow \int_{B_2} u = \int_{B_1} u$.

Therefore (exercise)

$$u\left(x\right)=\lim_{r\to0}\int_{B_{r}\left(x\right)}\!\!\!u\;\;\text{a.e. at Lebesgue point of }L^{1}\;u.$$

Cor. (Weyl) $u \in L^1/C^0$ satisfying $\int u \triangle \varphi = 0$ for any $\varphi \in C_0^{\infty}$. Then $u \in C^{\infty}$ and $\triangle u = 0$.

Warning:

$$\int \frac{1}{|x|^{n-2}} \triangle \varphi = c_n \varphi (0) \neq 0 !$$

 C^{∞} approach (Weyl)

Work for $u \in \text{distribution}$

$$\psi(x) = \psi(|x|) \in C_0^{\infty} \text{ with } \int \psi = 1$$

$$\psi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \psi\left(\frac{x}{\varepsilon}\right)$$

figure

Step 1.
$$\varphi_{\varepsilon} = \Gamma * \psi_{\varepsilon} = \begin{cases} \Gamma & \text{for } |x| \geq \varepsilon \\ \text{smooth for } |x| \leq \varepsilon \end{cases}$$
.

Step 2. $\triangle \Gamma * \psi = \psi$.

Step 3. $\varphi_{\varepsilon_2} - \varphi_{\varepsilon_1} \in C_0^{\infty}$

$$\int_{\mathbb{R}^n} u \bigtriangleup (\varphi_{\varepsilon_2} - \varphi_{\varepsilon_1}) = 0 \Rightarrow \int_{\mathbb{R}^n} u \psi_{\varepsilon_2} = \int_{\mathbb{R}^n} u \psi_{\varepsilon_1}$$

- $u * \psi_{\varepsilon}$ is independent of ε

- $u * \psi_{\varepsilon} \in C^{\infty}$ (Review distribution theory, try it.)

- $u * \psi_{\varepsilon} = u$ as a distribution (Exercise).

Pointwise (viscosity) way.

Definition: $u \in C^0$ is a viscosity solution to $\Delta u = 0$, if for any quadratic $P \geq u$ near an interior point x_0 and "=" at x_0 , then $\triangle P \geq 0$.

Rmk. We can replace those quadratics by equivalent C^2/C^{∞} testing functions. Certainly C^2 harmonic functions satisfy this definition. We do have C^0 but non C^2 solutions to (fully nonlinear) elliptic equations such as Monge-Ampere/Special Lagrangian equations.

We verify C^0 harmonic functions in the viscosity sense are in fact smooth by Poisson representation formula. Note explicitly representation for solutions to nonlinear equations are NOT available in general.

Let

$$h = \int_{\partial B_1} P(x, y) |u(y)|_{\partial B_1} dA_y$$

- $\cdot h = u \text{ on } \partial B_1.$
- $\cdot \triangle h = 0 \text{ in } B_1.$

Now if u > h somewhere at $x_0 \in \overset{0}{B}_1$, say $(u - h)(x_0) = \max_{B_1} (u - h) > 0$

figure

 $h + \max \ge u$ in B_1 , "=" at x_0 .

Also $h + \max' -\varepsilon |x|^2 \ge u$, "=" at $x'_0 \in \overset{0}{B}_1$, yes we can replace. But $\triangle \text{left} = -2n\varepsilon < 0$. This contradiction shows $u \le h$.

Similarly, if u < h somewhere at $x_0 \in \overset{\circ}{B}_1$, say $(u - h)(x_0) = \min_{B_1} (u - h) < 0$

figure

 $h + \min \le u \text{ in } B_1, \text{ "} = " \text{ at } x_0.$

Also $h + \min' + \varepsilon |x|^2 < u$, "=" at $x'_0 \in \overset{0}{B}_1$, yes we can replace.

But \triangle left= $2n\varepsilon > 0$. This contradiction shows $u \ge h$.

Thus $u \equiv h$.