Lecture 5 Moser

- Statement
- strong maximal principle

Theorem 1 (Moser) Let u be a weak solution to

$$
\sum_{i, j=1}^{n} D_{i}\left(a_{i j}(x) D_{j} u\right)=0 \quad \text { in } B_{1} \subset \mathbb{R}^{n}
$$

with

$$
\begin{align*}
& \mu I \leq\left(a_{i j}\right) \leq \mu^{-1} I \quad \text { when }\left(a_{i j}\right) \stackrel{\text { def }}{=} A=A^{T}, \\
& \mu I \leq\left(a_{i j}\right) \quad \text { and }\left|a_{i j}\right|<\mu^{-1} \quad \text { when } A \neq A^{T} . \tag{*}
\end{align*}
$$

Suppose u satisfies

$$
\begin{aligned}
u & \geq 0 \quad \text { in } B_{1}(0), \\
u(0) & \leq 1 .
\end{aligned}
$$

Then

$$
\sup _{B_{1 / 2}} u \leq C(n, \mu) .
$$

Recall the examples r^{2-n} and $x_{1} r^{1-n}$.
Proof.
Step 1. Distribution estimate of solution
Step 2. Divergent sequence
Step 1. Claim: Suppose (super) solution $v \geq 0$ in Q_{2} cube and $v(0) \leq 1$. Then

$$
\frac{\left|\{v>t\} \cap Q_{1}\right|}{\left|Q_{1}\right|} \leq \frac{2}{t^{\gamma}}
$$

where $\gamma=\gamma(n, \mu)>0$, could be small.
RMK. Norm $\|v\|_{L^{2}\left(Q_{1}\right)}$ is not available. One cannot normalize so that $\|v\|_{L^{2}\left(Q_{1}\right)}=1$ and $v(0) \leq 1$ simultaneously. Otherwise the claim the trivial with $\gamma=2$.

RMK. The assumption $v(0) \leq 1$ is a conflicting condition for positive solution v, hence the reverse control of the large distribution of the positive solution v.

Let $\Sigma_{k}=\left\{v \geq N^{k}\right\} \cap Q_{1}$ with $N=N(n, \mu)$ to be chosen in the inductive step.
Recall Step 3 in the proof of De Giorgi: Suppose

$$
\begin{gathered}
v \text { sub solution in } B_{2} \\
v \leq 1 \text { in } B_{2} \\
\frac{\left|\{v \leq 0\} \cap B_{1}\right|}{\left|B_{1}\right|} \geq \delta_{0}
\end{gathered}
$$

[^0]Then $v<1-\varepsilon\left(\delta_{0}, n, \mu\right)$ in $B_{1 / 2}$, where $\delta_{0}=2^{-2 n-1}$ is chosen in the inductive step. Now a "variant" claim: Suppose

$$
\begin{gathered}
v \text { sub solution in } Q_{2} \\
v \leq 1 \text { in } Q_{2} \\
\frac{\left|\{v \leq 0\} \cap Q_{1}\right|}{\left|Q_{1}\right|} \geq \delta_{0} \quad \text { or } \frac{\left|\{v \leq 0\} \cap Q_{2}\right|}{\left|Q_{2}\right|} \geq \frac{\delta_{0}}{2^{n}} .
\end{gathered}
$$

Then $v<1-\varepsilon\left(\delta_{0} 2^{-n}, n, \mu\right)$.
Initial Step. $\left|\Sigma_{1}\right|<\frac{1}{2}$ with $N=\frac{2}{\varepsilon}$.
Otherwise if $\left|\Sigma_{1}\right| \geq \frac{1}{2}$, we seek a contradiction. Now the (sub) solution

$$
w=1-\frac{v}{N}=1-\frac{\varepsilon}{2} v
$$

satisfies

$$
\begin{gathered}
w \leq 1 \text { in } Q_{2} \\
\frac{\left|\{w \leq 0\} \cap Q_{1}\right|}{\left|Q_{1}\right|} \geq \frac{1}{2} .
\end{gathered}
$$

By the "variant" claim, $w \leq 1-\varepsilon$ in Q_{1} or $v>2$ in Q_{1}, which contradicts $v(0) \leq 1$.
Inductive step. $\left|\Sigma_{k+1}\right| \leq \frac{1}{2}\left|\Sigma_{k}\right|$.
RMK. The strategy is to prove $\left|\Sigma_{k+1}\right| \leq \frac{1}{2}\left|\Sigma_{k}\right|$ at every small scale, namely $\left|\Sigma_{k+1} \cap Q\right| \leq \frac{1}{2}\left|\Sigma_{k} \cap Q\right|$ for all $Q s$. Only density points of Σ_{k+1} make contributions toward its measure. We (Calderon-Zygmund) decompose Q_{1} forever.

$$
\text { cube } Q_{1}
$$

Case splitting: $\frac{\left|\Sigma_{k+1} \cap Q\right|}{|Q|}<\frac{1}{2}$, continue splitting.
Case keeping: $\frac{\left|\Sigma_{k+1} \cap Q\right|}{|Q|} \geq \frac{1}{2}$, keep Q. And in this case the predecessor Q^{*} of Q satisfies $\frac{\left|\Sigma_{k+1} \cap Q^{*}\right|}{\left|Q^{*}\right|}<\frac{1}{2}$ and

$$
Q^{*} \subset \Sigma_{k} .
$$

Indeed consider sub solution

$$
\begin{gathered}
w=1-\frac{v / N^{k}}{N}<1 \text { in } 2 Q^{*} \\
\frac{\left|\{w \leq 0\} \cap 2 Q^{*}\right|}{\left|2 Q^{*}\right|} \geq \frac{\frac{1}{2}|Q|}{\left|2 Q^{*}\right|}=2^{-2 n-1} .
\end{gathered}
$$

By the "variant" claim, $w \leq 1-\varepsilon=1-\frac{2}{N}$ in Q^{*} or $v>2 N^{k}$ in Q^{*}, which implies $Q^{*} \subset \Sigma_{k}$.

Now let the (disjoint) collection of Q be $\left\{Q^{j}\right\}$, we have

$$
\begin{aligned}
&\left|\Sigma_{k+1}\right| \stackrel{\text { Lebesgue }}{\leq} \sum_{j}\left|Q^{j} \cap \Sigma_{k+1}\right| \leq \sum_{l}\left|\left(Q^{l}\right)^{*} \cap \Sigma_{k+1}\right| \\
& \text { not all predecessor } \\
& \text { case splitting } \frac{1}{2} \sum_{l}\left|\left(Q^{l}\right)^{*}\right| \stackrel{Q^{*} \subset \Sigma_{k}}{\leq} \frac{1}{2}\left|\Sigma_{k}\right| .
\end{aligned}
$$

So we have the claim

$$
|\{v \geq t\}| \leq\left|\left\{v \geq N^{k}\right\}\right| \leq \frac{1}{2^{k}}=\frac{2}{2^{k+1}}=\frac{2}{\left(N^{\log _{N} 2}\right)^{k+1}}=\frac{2}{\left(N^{k+1}\right)^{\log _{N} 2}}<\frac{2}{t^{\log _{N} 2}}=\frac{2}{t^{\gamma}},
$$

where

$$
\begin{aligned}
N^{k} & \leq t<N^{k+1} \\
\gamma & =\log _{N(n, \mu)} 2>0 .
\end{aligned}
$$

Step 2. Claim: The positive solution u in the theorem satisfies

$$
\sup _{Q_{1 / 2}} u \leq M(n, \mu), \quad \text { large enough to be chosen in the end. }
$$

Otherwise, there exist $\left\{x_{k}\right\} \subset Q_{1}$ such that

$$
u\left(x_{k}\right) \geq l^{k-1} M \rightarrow \infty \text { with } 1<l=l(n, \mu) \text { to be chosen shortly. }
$$

blow up sequence figure

This contradiction proves the claim. Now let us find a blow-up sequence.
Step x_{1}. There exists $x_{1} \in Q_{1 / 2}$ such that $u\left(x_{1}\right) \geq M$.
Step x_{2}. From Step 1.

$$
\left|\left\{u>\frac{M}{2}\right\} \cap Q_{1}\right| \leq \frac{2}{\left(\frac{M}{2}\right)^{\gamma}}=\frac{1}{2}\left(\frac{h_{1}}{2}\right)^{n} \quad \text { with } h_{1}=2\left[\frac{4}{\left(\frac{M}{2}\right)^{\gamma}}\right]^{1 / n} .
$$

Then

$$
\begin{equation*}
\frac{\left|\left\{u \leq \frac{M}{2}\right\} \cap Q_{h_{1} / 2}\left(x_{1}\right)\right|}{\left|Q_{h_{1} / 2}\left(x_{1}\right)\right|}>\frac{1}{2} . \tag{*2}
\end{equation*}
$$

From this we show that there exists $x_{2} \in Q_{h_{1}}\left(x_{1}\right)$ such that $u\left(x_{2}\right) \geq l M$. Suppose otherwise, then $u(x)<l M$ in $Q_{h_{1}}\left(x_{1}\right)$.
(The heuristic idea of the following argument is, to look down u from $l M$ with $l=1+\frac{1}{100000000}$, then relatively $u\left(x_{1}\right) \geq M$ is near $l M$, but $M / 2$ is far away from
$l M$. By Step 1 , the $M / 2$ far away distribution of the "flipped" solution is small. The competition of distributions from two ends then leads to a collision.)
flip figure
We have (sub) solution

$$
\begin{aligned}
w & =\frac{l M-u}{l M-M} \geq 0 \quad \text { in } Q_{h_{1}}\left(x_{1}\right) \\
w\left(x_{1}\right) & \leq 1
\end{aligned}
$$

By "scaled" Step 1,

$$
\frac{\left|\left\{w \geq \frac{l M-\frac{M}{2}}{l M-M}\right\} \cap Q_{h_{1} / 2}\left(x_{1}\right)\right|}{\left|Q_{h_{1} / 2}\left(x_{1}\right)\right|} \leq \frac{2}{\left(\frac{l-\frac{1}{2}}{l-1}\right)^{\gamma}}<\frac{1}{2}
$$

if $l=l(n, \mu)>1$ and close to 1 . In terms of u

$$
\frac{\left|\left\{u \leq \frac{M}{2}\right\} \cap Q_{h_{1} / 2}\left(x_{1}\right)\right|}{\left|Q_{h_{1} / 2}\left(x_{1}\right)\right|}<\frac{1}{2} .
$$

This contradicts (*2).
Step x_{3}. Again from Step 1

$$
\left|\left\{u>\frac{l M}{2}\right\} \cap Q_{1}\right| \leq \frac{2}{\left(\frac{l M}{2}\right)^{\gamma}}=\frac{1}{2}\left(\frac{h_{2}}{2}\right)^{n} \quad \text { with } h_{2}=2\left[\frac{4}{\left(\frac{M}{2}\right)^{\gamma}}\right]^{1 / n} \frac{1}{\left(l^{1 / n}\right)^{\gamma}} .
$$

Then

$$
\begin{equation*}
\frac{\left|\left\{u \leq \frac{l M}{2}\right\} \cap Q_{h_{2} / 2}\left(x_{2}\right)\right|}{\left|Q_{h_{2} / 2}\left(x_{2}\right)\right|}>\frac{1}{2} \tag{*3}
\end{equation*}
$$

From this we show that there exists $x_{3} \in Q_{h_{2}}\left(x_{2}\right)$ such that $u\left(x_{3}\right) \geq l^{2} M$. Suppose otherwise, then $u(x)<l^{2} M$ in $Q_{h_{2}}\left(x_{2}\right)$. We have (sub) solution

$$
\begin{aligned}
w & =\frac{l^{2} M-u}{l^{2} M-l M} \geq 0 \text { in } Q_{h_{2}}\left(x_{2}\right) \\
w\left(x_{2}\right) & \leq 1 .
\end{aligned}
$$

By "scaled" Step 1, we have

$$
\frac{\left|\left\{w \geq \frac{l^{2} M-\frac{l M}{2}}{l^{2} M-l M}\right\} \cap Q_{h_{2} / 2}\left(x_{2}\right)\right|}{\left|Q_{h_{2} / 2}\left(x_{2}\right)\right|} \leq \frac{2}{\left(\frac{l-\frac{1}{2}}{l-1}\right)^{\gamma}}<\frac{1}{2} .
$$

In terms of u, it is

$$
\frac{\left|\left\{u \leq \frac{l M}{2}\right\} \cap Q_{h_{2} / 2}\left(x_{2}\right)\right|}{\left|Q_{h_{2} / 2}\left(x_{2}\right)\right|}<\frac{1}{2} .
$$

It contradicts ($\left.{ }^{*} 3\right)$.
In particular

$$
\begin{aligned}
& h_{1}+h_{2}+h_{3}+\cdots \\
& =h_{1}\left(1+\frac{1}{\left(l^{\frac{\gamma}{n}}\right)}+\frac{1}{\left(l^{\frac{\gamma}{n}}\right)^{2}}+\cdots\right) \\
& =2\left[\frac{4}{\left(\frac{M}{2}\right)^{\gamma}}\right]^{1 / n} \frac{1}{1-\frac{1}{\left(l^{\frac{\gamma}{n}}\right)}}<1
\end{aligned}
$$

provided we choose $M=M(\gamma, n, \mu)$ large enough. The proof of Moser is complete.
Strong Maximum Principle. Suppose $W^{1,2}$

$$
\begin{aligned}
& u \text { is a weak solution to } \sum D_{i}\left(a_{i j} D_{j} u\right)=0 \\
& u \geq 0 \text { in } B_{1} \\
& u(0)=0
\end{aligned}
$$

Then $u \equiv 0$.
Proof. For arbitrarily large $K, K u \geq 0$ in $B_{1}, K u(0)=0$. By Moser

$$
\begin{aligned}
K u & \leq C(n, \mu) \quad \text { in } B_{1 / 2} \text { or } \\
0 & \leq \sup _{B_{1 / 2}} u \leq \frac{C(n, \mu)}{K} \rightarrow 0 \text { as } K \rightarrow \infty .
\end{aligned}
$$

Similarly $u \equiv 0$ in $B_{\frac{1}{2}+\frac{1}{4}}, B_{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}}, \cdots, B_{1}$.

[^0]: ${ }^{0}$ May 5, 2010

