- Statement
- strong maximal principle

Theorem 1 (Moser) Let u be a weak solution to

$$\sum_{i,j=1}^{n} D_i \left(a_{ij} \left(x \right) D_j u \right) = 0 \quad in \ B_1 \subset \mathbb{R}^n$$

with

$$\mu I \leq (a_{ij}) \leq \mu^{-1} I \qquad \text{when } (a_{ij}) \stackrel{\text{def}}{=} A = A^T,$$

$$\mu I \leq (a_{ij}) \quad \text{and } |a_{ij}| < \mu^{-1} \quad \text{when } A \neq A^T.$$
 (*)

Suppose u satisfies

$$u \ge 0 \quad in \ B_1(0),$$

 $u(0) \le 1.$

Then

$$\sup_{B_{1/2}} u \le C\left(n, \mu\right).$$

Recall the examples r^{2-n} and $x_1 r^{1-n}$.

Proof.

Step 1. Distribution estimate of solution

Step 2. Divergent sequence

Step 1. Claim: Suppose (**super**) solution $v \ge 0$ in Q_2 cube and $v(0) \le 1$. Then

$$\frac{|\{v>t\}\cap Q_1|}{|Q_1|} \le \frac{2}{t^{\gamma}},$$

where $\gamma = \gamma(n, \mu) > 0$, could be small.

RMK. Norm $||v||_{L^2(Q_1)}$ is not available. One cannot normalize so that $||v||_{L^2(Q_1)} = 1$ and $v(0) \le 1$ simultaneously. Otherwise the claim the trivial with $\gamma = 2$.

RMK. The assumption $v(0) \le 1$ is a conflicting condition for positive solution v, hence the reverse control of the large distribution of the positive solution v.

Let $\Sigma_k = \{v \geq N^k\} \cap Q_1$ with $N = N(n, \mu)$ to be chosen in the inductive step. Recall Step 3 in the proof of De Giorgi: Suppose

$$v$$
 sub solution in B_2
 $v \le 1$ in B_2

$$\frac{|\{v \le 0\} \cap B_1|}{|B_1|} \ge \delta_0$$

 $^{^{0}}$ May 5, 2010

Then $v < 1 - \varepsilon(\delta_0, n, \mu)$ in $B_{1/2}$, where $\delta_0 = 2^{-2n-1}$ is chosen in the inductive step. Now a "variant" claim: Suppose

$$v \text{ sub solution in } Q_2$$

$$v \le 1 \text{ in } Q_2$$

$$\frac{|\{v \le 0\} \cap Q_1|}{|Q_1|} \ge \delta_0 \text{ or } \frac{|\{v \le 0\} \cap Q_2|}{|Q_2|} \ge \frac{\delta_0}{2^n}.$$

Then $v < 1 - \varepsilon \left(\delta_0 2^{-n}, n, \mu \right)$.

Initial Step. $|\Sigma_1| < \frac{1}{2}$ with $N = \frac{2}{\varepsilon}$. Otherwise if $|\Sigma_1| \ge \frac{1}{2}$, we seek a contradiction. Now the (sub) solution

$$w = 1 - \frac{v}{N} = 1 - \frac{\varepsilon}{2}v$$

satisfies

$$\frac{w \le 1 \text{ in } Q_2}{|\{w \le 0\} \cap Q_1|} \ge \frac{1}{2}.$$

By the "variant" claim, $w \leq 1 - \varepsilon$ in Q_1 or v > 2 in Q_1 , which contradicts $v(0) \leq 1$. Inductive step. $|\Sigma_{k+1}| \leq \frac{1}{2} |\Sigma_k|$.

RMK. The strategy is to prove $|\Sigma_{k+1}| \leq \frac{1}{2} |\Sigma_k|$ at every small scale, namely $|\Sigma_{k+1} \cap Q| \leq \frac{1}{2} |\Sigma_k \cap Q|$ for all Qs. Only density points of Σ_{k+1} make contributions toward its measure. We (Calderon-Zygmund) decompose Q_1 forever.

cube
$$Q_1$$

Case splitting: $\frac{|\Sigma_{k+1} \cap Q|}{|Q|} < \frac{1}{2}$, continue splitting.

Case keeping: $\frac{|\Sigma_{k+1}\cap Q|}{|Q|} \geq \frac{1}{2}$, keep Q. And in this case the predecessor Q^* of Qsatisfies $\frac{|\Sigma_{k+1} \cap Q^*|}{|Q^*|} < \frac{1}{2}$ and

$$Q^* \subset \Sigma_k$$
.

Indeed consider sub solution

$$w = 1 - \frac{v/N^k}{N} < 1 \text{ in } 2Q^*$$
$$\frac{|\{w \le 0\} \cap 2Q^*|}{|2Q^*|} \ge \frac{\frac{1}{2}|Q|}{|2Q^*|} = 2^{-2n-1}.$$

By the "variant" claim, $w \leq 1 - \varepsilon = 1 - \frac{2}{N}$ in Q^* or $v > 2N^k$ in Q^* , which implies $Q^* \subset \Sigma_k$.

Now let the (disjoint) collection of Q be $\{Q^j\}$, we have

$$|\Sigma_{k+1}| \overset{\text{Lebesgue}}{\leq} \sum_{j} |Q^{j} \cap \Sigma_{k+1}| \leq \sum_{l \text{ not all predecessor}} |Q^{l}|^{*} \cap \Sigma_{k+1}|$$

$$\overset{\text{case splitting}}{\leq} \frac{1}{2} \sum_{l} |(Q^{l})^{*}| \overset{Q^{*} \subset \Sigma_{k}}{\leq} \frac{1}{2} |\Sigma_{k}|.$$

So we have the claim

$$|\{v \ge t\}| \le |\{v \ge N^k\}| \le \frac{1}{2^k} = \frac{2}{2^{k+1}} = \frac{2}{(N^{\log_N 2})^{k+1}} = \frac{2}{(N^{k+1})^{\log_N 2}} < \frac{2}{t^{\log_N 2}} = \frac{2}{t^{\gamma}},$$

where

$$N^k \le t < N^{k+1}$$
$$\gamma = \log_{N(n,\mu)} 2 > 0.$$

Step 2. Claim: The positive solution u in the theorem satisfies

 $\sup_{Q_{1/2}} u \leq M(n, \mu)$, large enough to be chosen in the end.

Otherwise, there exist $\{x_k\} \subset Q_1$ such that

 $u\left(x_{k}\right) \geq l^{k-1}M \to \infty$ with $1 < l = l\left(n, \mu\right)$ to be chosen shortly.

blow up sequence figure

This contradiction proves the claim. Now let us find a blow-up sequence.

Step x_1 . There exists $x_1 \in Q_{1/2}$ such that $u(x_1) \ge M$.

Step x_2 . From Step 1.

$$\left| \left\{ u > \frac{M}{2} \right\} \cap Q_1 \right| \le \frac{2}{\left(\frac{M}{2}\right)^{\gamma}} = \frac{1}{2} \left(\frac{h_1}{2}\right)^n \text{ with } h_1 = 2 \left[\frac{4}{\left(\frac{M}{2}\right)^{\gamma}}\right]^{1/n}.$$

Then

$$\frac{\left|\left\{u \le \frac{M}{2}\right\} \cap Q_{h_1/2}(x_1)\right|}{\left|Q_{h_1/2}(x_1)\right|} > \frac{1}{2}.$$
 (*2)

From this we show that there exists $x_2 \in Q_{h_1}(x_1)$ such that $u(x_2) \ge lM$. Suppose otherwise, then u(x) < lM in $Q_{h_1}(x_1)$.

(The heuristic idea of the following argument is, to look down u from lM with $l = 1 + \frac{1}{100000000}$, then **relatively** $u(x_1) \ge M$ is near lM, but M/2 is far away from

lM. By Step 1, the M/2 far away distribution of the "flipped" solution is small. The competition of distributions from two ends then leads to a collision.)

flip figure

We have (sub) solution

$$w = \frac{lM - u}{lM - M} \ge 0 \text{ in } Q_{h_1}(x_1)$$
$$w(x_1) \le 1.$$

By "scaled" Step 1,

$$\frac{\left| \left\{ w \ge \frac{lM - \frac{M}{2}}{lM - M} \right\} \cap Q_{h_1/2} (x_1) \right|}{\left| Q_{h_1/2} (x_1) \right|} \le \frac{2}{\left(\frac{l - \frac{1}{2}}{l - 1} \right)^{\gamma}} < \frac{1}{2}$$

if $l = l(n, \mu) > 1$ and close to 1. In terms of u

$$\frac{\left|\left\{u \le \frac{M}{2}\right\} \cap Q_{h_1/2}(x_1)\right|}{\left|Q_{h_1/2}(x_1)\right|} < \frac{1}{2}.$$

This contradicts (*2).

Step x_3 . Again from Step 1

$$\left| \left\{ u > \frac{lM}{2} \right\} \cap Q_1 \right| \le \frac{2}{\left(\frac{lM}{2}\right)^{\gamma}} = \frac{1}{2} \left(\frac{h_2}{2}\right)^n \quad \text{with } h_2 = 2 \left[\frac{4}{\left(\frac{M}{2}\right)^{\gamma}} \right]^{1/n} \frac{1}{(l^{1/n})^{\gamma}}.$$

Then

$$\frac{\left|\left\{u \le \frac{lM}{2}\right\} \cap Q_{h_2/2}(x_2)\right|}{\left|Q_{h_2/2}(x_2)\right|} > \frac{1}{2}.$$
 (*3)

From this we show that there exists $x_3 \in Q_{h_2}(x_2)$ such that $u(x_3) \ge l^2 M$. Suppose otherwise, then $u(x) < l^2 M$ in $Q_{h_2}(x_2)$. We have (sub) solution

$$w = \frac{l^2 M - u}{l^2 M - lM} \ge 0 \text{ in } Q_{h_2}(x_2)$$
$$w(x_2) \le 1.$$

By "scaled" Step 1, we have

$$\frac{\left|\left\{w \ge \frac{l^2 M - \frac{lM}{2}}{l^2 M - lM}\right\} \cap Q_{h_2/2}(x_2)\right|}{\left|Q_{h_2/2}(x_2)\right|} \le \frac{2}{\left(\frac{l - \frac{1}{2}}{l - 1}\right)^{\gamma}} < \frac{1}{2}.$$

In terms of u, it is

$$\frac{\left|\left\{u \le \frac{lM}{2}\right\} \cap Q_{h_2/2}(x_2)\right|}{\left|Q_{h_2/2}(x_2)\right|} < \frac{1}{2}.$$

It contradicts (*3).

. . .

In particular

$$h_1 + h_2 + h_3 + \cdots$$

$$= h_1 \left(1 + \frac{1}{\left(l^{\frac{\gamma}{n}} \right)} + \frac{1}{\left(l^{\frac{\gamma}{n}} \right)^2} + \cdots \right)$$

$$= 2 \left[\frac{4}{\left(\frac{M}{2} \right)^{\gamma}} \right]^{1/n} \frac{1}{1 - \frac{1}{\left(l^{\frac{\gamma}{n}} \right)}} < 1$$

provided we choose $M=M\left(\gamma,n,\mu\right)$ large enough. The proof of Moser is complete.

Strong Maximum Principle. Suppose ${\cal W}^{1,2}$

$$u$$
 is a weak solution to $\sum D_i\left(a_{ij}D_ju\right)=0$
$$u\geq 0 \ \text{in } B_1$$

$$u\left(0\right)=0.$$

Then $u \equiv 0$.

Proof. For arbitrarily large $K, Ku \ge 0$ in $B_1, Ku(0) = 0$. By Moser

$$Ku \leq C\left(n,\mu\right) \text{ in } B_{1/2} \text{ or } 0 \leq \sup_{B_{1/2}} u \leq \frac{C\left(n,\mu\right)}{K} \to 0 \text{ as } K \to \infty.$$

Similarly $u \equiv 0$ in $B_{\frac{1}{2} + \frac{1}{4}}, B_{\frac{1}{2} + \frac{1}{4} + \frac{1}{8}}, \cdots, B_1$.