- $C^{1,1} / W^{2, n}$ version
- viscosity version statement

Alexandrov-Bakelman-Pucci maximum principle:
Let $u \in C^{1,1}$ be a solution to

$$
\begin{gathered}
\sum a_{i j}(x) D_{i j} u=f \\
u \geq 0 \text { on } B_{1}
\end{gathered}
$$

where

$$
\mu I \leq\left(a_{i j}\right) \leq \mu^{-1} I
$$

Then

$$
\sup _{B_{1}} u^{-} \leq C(n, \mu)\left[\int_{B_{1}}\left(f^{+}\right)^{n}\right]^{1 / n} .
$$

Proof.
cone figure
Consider the cone with base ∂B_{1} and vertex $\left(x_{0}, u\left(x_{0}\right)\right)$, where $u\left(x_{0}\right)=\inf _{B_{1}} u$. Then

$$
\sup _{B_{1}} u^{-} \leq \overbrace{2}^{\text {diameter }} \cdot \overbrace{\inf \mid D \text { cone } \mid}^{m} .
$$

We next estimate m from above. Consider the $\widetilde{\text { cone }}$ with vertex $\left(x_{0}, u\left(x_{0}\right)\right)$ and a uniform slope m. For each and every tangent plane to the cone (along its generator), we move down parallelly the plane until it touched u (and leaves u after further down). At the touching points, which we denote by Σ,

$$
\begin{gathered}
D u=D \text { plane }=D \text { cone } \\
u<0 \\
D^{2} u \geq 0
\end{gathered}
$$

It follows that

$$
B_{m} \subset D u(\Sigma)
$$

RMK. To better describe the contact set Σ, we let Γ be the convex envelope of $\min (u, 0)$ in B_{1} (mainly for viscosity version). We have

$$
\begin{aligned}
\Sigma & =\{u=\Gamma\} \\
L(x) & \leq \Gamma \leq u \\
L\left(x^{*}\right) & =u\left(x^{*}\right) \quad x^{*} \text { touching point. }
\end{aligned}
$$

[^0]We infer

$$
\begin{gathered}
\left|B_{1}\right| m^{n} \leq|D u(\Sigma)|=\int_{D u(\Sigma)} d y \\
\begin{array}{c}
u \in C^{1,1} \\
D^{2} u \geq 0
\end{array} \int_{\Sigma} \operatorname{det} D^{2} u=\int_{\Sigma} \frac{\operatorname{det}\left(A D^{2} u\right)}{\operatorname{det} A} \\
\leq \int_{\Sigma} \frac{1}{\operatorname{det} A}\left[\frac{\operatorname{tr}\left(A D^{2} u\right)}{n}\right]^{n} \\
=\int_{\Sigma} \frac{1}{\operatorname{det} A}\left(f^{+}\right)^{n} \leq C(n, \mu) \int_{\Sigma}\left(f^{+}\right)^{n} .
\end{gathered}
$$

Thus we get

$$
\sup _{B_{1}} u^{-} \leq C(n, \mu)\left[\int_{\Sigma}\left(f^{+}\right)^{n}\right]^{1 / n}=C(n, \mu)\left[\int_{\Gamma=u}\left(f^{+}\right)^{n}\right]^{1 / n} .
$$

In order to have a short notation, mainly to avoid linearization of fully nonlinear equations, we introduce the viscosity sub and super classes: for $\mu>0$ and $f \in C^{0}$

$$
\begin{aligned}
\underline{\mathrm{S}}(\mu, f) & =\left\{u: M^{+}\left(D^{2} u\right) \geq f \text { in viscosity sense }\right\} \\
\bar{S}(\mu, f) & =\left\{u: M^{-}\left(D^{2} u\right) \leq f \text { in viscosity sense }\right\} \\
S & =\underline{\mathrm{S}} \cap \bar{S} .
\end{aligned}
$$

Here the sub viscosity sense means whenever a quadratic Q (touching u from below, " $\triangle Q^{\prime \prime} \geq f\left(x^{0}\right)$) satisfying

$$
\left\{\begin{array}{c}
u \geq Q \text { near } x^{0} \\
=\text { at } x_{0}
\end{array}\right\}
$$

then

$$
M^{+}\left(D^{2} Q\right)=\sum_{\lambda_{i} \geq 0} \mu^{-1} \lambda_{i}+\sum_{\lambda_{i}<0} \mu \lambda_{i} \geq f\left(x^{0}\right) ;
$$

and the super viscosity sense means whenever a quadratic Q (touching u from above, " $\triangle Q^{\prime \prime} \leq f\left(x^{0}\right)$) satisfying

$$
\left\{\begin{array}{c}
u \leq Q \text { near } x^{0} \\
=\text { at } x_{0}
\end{array}\right\}
$$

then

$$
M^{-}\left(D^{2} Q\right)=\sum_{\lambda_{i} \geq 0} \mu \lambda_{i}+\sum_{\lambda_{i}<0} \mu^{-1} \lambda_{i} \leq f\left(x^{0}\right)
$$

Theorem 1 (Caffarelli) Let $u \in C^{0}\left(B_{1}\right)$ with $u \geq 0$ on ∂B_{1} and $u \in \bar{S}(\mu, f)$. Then

$$
\sup _{B_{1}} u^{-} \leq C(n, \mu) C(n, \mu)\left[\int_{\Sigma}\left(f^{+}\right)^{n}\right]^{1 / n}=C(n, \mu)\left[\int_{\Gamma=u}\left(f^{+}\right)^{n}\right]^{1 / n} .
$$

The proof is via justifying Γ is $C^{1,1} \cdots$ to be added.

[^0]: ${ }^{0}$ May 17, 2010

