- decay estimate
- weak Harnack $\Rightarrow C^{\alpha} \Rightarrow$ Liouville
- Harnack
- L^{∞} bound in terms of L^{ε} / L^{p}

Theorem 1 (Krylov-Safonov) Let $u \in C^{0}$ be a viscosity solution of $S(\mu, 0)=0$. Then u is Hölder continuous and

$$
\|u\|_{C^{\alpha}\left(B_{1 / 2}\right)} \leq C(n, \mu)\|u\|_{L^{\infty}\left(B_{1}\right)} \text { with (small) } \alpha=\alpha(n, \mu)>0 .
$$

RMK. In this nondivergence case, the proof is relatively "easier". It only took 20 years to achieve it after the divergence results in the 1950s. The viscosity version was adapted by Caffarelli in the late 1980s.

Proof. Outline Step 1. Let

$$
\begin{gathered}
u \in \bar{S}(\mu, 0), \text { i.e. } M^{-}\left(D^{2} u\right) \leq 0 \\
u \geq 0 \text { in } Q_{4 \sqrt{n}} \\
\inf _{Q_{3}} u \leq 1
\end{gathered}
$$

Then there exist large $M(\mu, n)$ and small $\eta(\mu, n)>0$ such that

$$
\left|\{u<M\} \cap Q_{1}\right|>\eta \text { or }\left|\{u \geq M\} \cap Q_{1}\right| \leq 1-\eta .
$$

Step 2. Iterate

$$
\left|\left\{u \geq M^{k}\right\} \cap Q_{1}\right| \leq(1-\eta)^{k}
$$

RMK. The right formulation/consequence is: if

$$
\begin{gathered}
u \in \bar{S}(\mu, 0), \text { i.e. } M^{-}\left(D^{2} u\right) \leq 0 \\
u \geq 0 \text { in } Q_{4 \sqrt{n}} \\
\inf _{Q_{3}} u \leq 1
\end{gathered}
$$

then there exists $\varepsilon=\varepsilon(\mu, n)$ such that

$$
\begin{aligned}
\int_{Q_{1}} u^{\varepsilon} & \leq M^{\varepsilon}|\{u<M\}|+M^{2 \varepsilon}\left|\left\{M \leq u<M^{2}\right\}\right|+M^{3 \varepsilon}\left|\left\{M^{2} \leq u<M^{3}\right\}\right|+\cdots \\
& \leq M^{\varepsilon} 1+M^{2 \varepsilon}(1-\eta)+M^{3 \varepsilon}(1-\eta)^{2}+\cdots \\
& =\frac{M^{\varepsilon}}{1-M^{\varepsilon}(1-\eta)} \stackrel{\text { def }}{=} C(\mu, n) .
\end{aligned}
$$

[^0]Without the assumption $\inf _{Q_{3}} u \leq 1$ for $0 \leq u \in \bar{S}(\mu, 0)$ in $Q_{4 \sqrt{n}}$, we just apply the above to $v=u / \inf _{Q_{3}} u$, then

$$
\left(\int_{Q_{1}} u^{\varepsilon}\right)^{1 / \varepsilon} \leq C^{1 / \varepsilon}(\mu, n) \inf _{Q_{3}} u
$$

Step 3. Oscillation
Step 1. First heuristic: If

$$
\begin{aligned}
\sum a_{i j} D_{i j} u & \leq 0 \text { in } B_{1} \\
u(0) & \leq 1 \\
u & \geq 0,
\end{aligned}
$$

then

$$
\left|\{u<M\} \cap B_{1}\right| \geq \eta
$$

That is, positive super solution small at one point implies it is not too large in a nontrivial portion.

envelope figure

Let $w=u+2\left(|x|^{2}-1\right)$, then $\sum a_{i j} D_{i j} w \leq 4 \sum a_{i i}$. It follows that

$$
1 \leq \inf _{B_{1}} w^{-} \leq C(n, \mu)\left[\int_{w=\Gamma(w)}\left(4 \sum a_{i i}\right)^{n}\right]^{1 / n} \leq C(n, \mu)|\{w=\Gamma(w)\}|^{1 / n}
$$

Now

$$
\{w=\Gamma(w)\} \subset\{w<0\} \subset\{u<2\} .
$$

Thus

$$
\left|\{u \leq 2\} \cap B_{1}\right| \geq\left[\frac{1}{C(n, \mu)}\right]^{n} \stackrel{\text { def }}{=} \eta .
$$

Second realization: construct $h=A-B / r^{\alpha}$ such that
$M^{+}\left(D^{2} h\right) \leq 0$ outside Q_{1}, to pick out Q_{1}, $h \leq-2$ in $\left(Q_{3} \subset\right) B_{2 \sqrt{n}}, \quad$ to have inf over Q_{3}, $h \geq 0$ outside $\left(Q_{4} \subset\right) B_{3 \sqrt{n}}$, to have nonnegative boundary data for Alexandrov, $\left|D^{2} h\right| \leq C$, to bound determinant from above.
set inclusion figure
Let

$$
h=\left\{\begin{array}{ll}
2-2 \frac{(3 \sqrt{n})^{\alpha}}{r^{\alpha}} & \text { outside } B_{1 / 2} \subset Q_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} . \\
\text { smooth inside } B_{1 / 2}
\end{array} .\right.
$$

Then

$$
D^{2} h=\frac{2(3 \sqrt{n})^{\alpha}}{r^{\alpha+2}}\left[\begin{array}{llll}
-\alpha(\alpha+1) & & & \\
& \alpha & & \\
& & \ldots & \\
& & & \alpha
\end{array}\right]
$$

$M^{+}\left(D^{2} h\right)=\frac{2(3 \sqrt{n})^{\alpha}}{r^{\alpha+2}}\left[-\alpha(\alpha+1) \mu+(n-1) \alpha \mu^{-1}\right] \leq 0$ if $\alpha(n, \mu) \quad$ large enough.
Set $w=u+h$, apply Alexandrov-B-P to $\min (u+h, 0)$ in $B_{3 \sqrt{n}} \subset Q_{4 \sqrt{n}}$, we have
$\left|\inf _{B_{3 \sqrt{n}}} w\right| \leq C(n, \mu) \operatorname{diam}\left(B_{3 \sqrt{n}}\right)\left[\int_{w=\Gamma(w)}\left[\left[M^{-}\left(D^{2} w\right)\right]^{+}\right]^{n}\right]^{1 / n} \quad$ (minimal arithmetic mean).
Observe

$$
\inf _{B_{3 \sqrt{n}}} w \leq \inf _{Q_{3}} w \leq 1-2=-1
$$

Near contact points

$$
\begin{aligned}
& w=u+h \geq \Gamma \geq P \\
& u \geq P-h \\
& u \geq P-T_{2} h \quad "={ }^{\prime \prime} \text { at contact point. }
\end{aligned}
$$

Recall $u \in \bar{S}(\mu, 0)$ means

$$
\begin{aligned}
0 & \geq M^{-}\left(D^{2} P-D^{2} T_{2} h\right) \stackrel{\text { fixed point }}{=} \operatorname{Tr} A\left(D^{2} P-D^{2} T_{2} h\right)=\operatorname{Tr} A D^{2} P-\operatorname{Tr} A\left(D^{2} T_{2} h\right) \\
& \geq M^{-}\left(D^{2} P\right)-M^{+}\left(D^{2} T_{2} h\right) .
\end{aligned}
$$

It follows

$$
M^{-}\left(D^{2} P\right) \leq M^{+}\left(D^{2} T_{2} h\right) \leq C(n, \mu) \chi_{Q_{1}} .
$$

Thus

$$
1 \leq C(n, \mu)\left\{\int_{w=\Gamma(w)}\left[C(n, \mu) \chi_{Q_{1}}\right]^{n}\right\}^{1 / n} \leq C(n, \mu)\left|\{w=\Gamma(w)\} \cap Q_{1}\right|^{1 / n}
$$

Also

$$
\{w=\Gamma(w)\} \subset\{w<0\} \subset\{u<-h \leq \sup -h \stackrel{\text { def }}{=} M(n, \mu)\} .
$$

Finally we have

$$
\begin{aligned}
& \frac{\left|\{u<M\} \cap Q_{1}\right|}{\left|Q_{1}\right|}=\left|\{u<M\} \cap Q_{1}\right| \geq \eta(n, \mu) \quad \text { or } \\
& \frac{\left|\{u \geq M\} \cap Q_{1}\right|}{\left|Q_{1}\right|}<1-\eta .
\end{aligned}
$$

Step 2. Claim: If

$$
\begin{aligned}
u & \in \bar{S}(\mu, 0), \text { i.e. } M^{-}\left(D^{2} u\right) \leq 0 \\
u & \geq 0 \text { in } Q_{4 \sqrt{n}} \\
\inf _{Q_{3}} u & \leq 1,
\end{aligned}
$$

then

$$
\left|\left\{u \geq M^{k}\right\} \cap Q_{1}\right| \leq(1-\eta)^{k} .
$$

Step 1 shows $k=1$ is true. Suppose the decay estimate is true for $k-1$, we show "so is $k^{\prime \prime}$. Let

$$
A=\left\{u \geq M^{k}\right\} \cap Q_{1} \quad B=\left\{u \geq M^{k-1}\right\} \cap Q_{1} .
$$

Already

$$
|A| \leq\left|\{u \geq M\} \cap Q_{1}\right| \leq 1-\eta
$$

C-Z cube figure

We prove $|A| \leq(1-\eta)|B|$ at every "effective" small scale via (Calderon-Zygmund) dyadic splitting Q_{1} according to A.

Keeping case: $\frac{|Q \cap A|}{|Q|}>1-\eta$, keep Q;
Splitting case: $\frac{|Q \cap A|}{|Q|} \leq 1-\eta$, continue splitting Q.
Let $\left\{Q^{j}\right\}$ be the collection, for the predecessor $Q^{j *}$ of each Q^{j}, we show that $Q^{j *} \subset B$, that is, $u \geq M^{k-1}$ in $Q^{j *}$. Suppose $Q^{j *} \nsubseteq B$ or $\inf _{Q^{j *}} u \leq M^{k-1}$. We have

$$
\begin{gather*}
\frac{\left|Q^{j *} \cap A\right|}{\left|Q^{j *}\right|} \leq 1-\eta \\
\frac{\left|Q^{j} \cap A\right|}{\left|Q^{j}\right|}>1-\eta . \tag{}
\end{gather*}
$$

Now

$$
\begin{aligned}
0 \leq & \frac{u}{M^{k-1}} \in \bar{S}(\mu, 0) \\
& \inf _{Q^{j *}} \frac{u}{M^{k-1}} \leq 1
\end{aligned}
$$

Apply Step 1 to u / M^{k-1}, we get

$$
\frac{\left|\left\{\frac{u}{M^{k-1}} \geq M\right\} \cap Q^{j}\right|}{\left|Q^{j}\right|}<1-\eta
$$

which contradicts $\left(^{*}\right)$. Hence $Q^{j *} \subset B$. We can then finish the decay estimate

$$
\begin{gathered}
|A| \stackrel{\text { Lebesgue }}{=} \sum_{j}\left|Q^{j} \cap A\right| \leq \sum_{\substack{j^{\prime} \\
\text { disjoint } \\
Q^{j^{\prime} *} \text { cover all } Q^{j}}} \mid Q^{j^{\prime *} \cap A \mid} \\
\stackrel{\text { case splitting }}{\leq}(1-\eta) \sum_{j^{\prime}}\left|Q^{j^{\prime} *}\right| \stackrel{Q^{j *} \subset B}{\leq}(1-\eta)|B| .
\end{gathered}
$$

Therefore,

$$
\left|\left\{u \geq M^{k}\right\} \cap Q_{1}\right| \leq\left|\quad\left\{u \geq M^{k-1}\right\} \cap Q_{1}\right| .
$$

Corollary 2 (Krylov-Safonov's weak Harnack) Let $0 \leq u \in \bar{S}(\mu, 0)$. Then

$$
\left(\int_{Q_{1}} u^{\varepsilon}\right)^{1 / \varepsilon} \leq C(n, \mu) \inf _{Q_{3}} u \leq C(n, \mu) u(0)
$$

RMK. One immediate consequence of this corollary is the strong minimum principle for super solutions.

Step 3. Claim: For continuous $u \in S(\mu, 0)=\bar{S}(\mu, 0) \cap \underline{S}(\mu, 0)$, we have

$$
\underset{Q_{1}}{\operatorname{OSc}} u \leq \theta \underset{Q_{4 \sqrt{n}}}{\text { osc }} u \quad \text { with positive } \theta=\theta(n, \mu)<1 .
$$

In fact let

$$
w=\frac{u-\min _{Q_{4 \sqrt{n}}} u}{\operatorname{osc}_{Q_{4 \sqrt{n}}} u}
$$

then $w \in S(\mu, 0)$ and $0 \leq w \leq 1$.
Case $\left|\{w \geq 1 / 2\} \cap Q_{1}\right| \geq 1 / 2$. By the corollary applied to $w \in \bar{S}$,

$$
\frac{1}{2}\left(\frac{\left|Q_{1}\right|}{2}\right)^{1 / \varepsilon} \leq\left(\int_{Q_{1}} w^{\varepsilon}\right)^{1 / \varepsilon} \leq C(n, \mu) \inf _{Q_{3}} w \leq C(n, \mu) \inf _{Q_{1}} w
$$

Then

$$
\inf _{Q_{1}} w \geq \frac{\left(\frac{1}{2}\right)^{1+\frac{1}{\varepsilon}}}{C(n, \mu)}=\delta(n, \mu) \in(0,1)
$$

Consequently

$$
\underset{Q_{1}}{\operatorname{Osc} w} \mathbf{\operatorname { O s }}
$$

or

$$
\underset{Q_{1}}{\operatorname{osc}} u \leq(1-\delta) \underset{Q_{4 \sqrt{n}}}{\operatorname{osc}} u .
$$

Case $\left|\{w \geq 1 / 2\} \cap Q_{1}\right|<1 / 2$. Apply the corollary to

$$
1-w \in \bar{S} \quad \text { with }\left|\{1-w>1 / 2\} \cap Q_{1}\right|>1 / 2
$$

and repeat the argument in the first case, we get

$$
\underset{Q_{1}}{\operatorname{osc}} w=\underset{Q_{1}}{\operatorname{osc}}(1-w) \leq 1-\delta
$$

or

$$
\underset{Q_{1}}{\operatorname{osc}} u \leq(1-\delta) \underset{Q_{4 \sqrt{n}}}{\operatorname{osc}} u
$$

The theorem is completely proved.

Corollary 3 (Krylov-Safonov's Liouville) Let continuos u be a viscosity solution to

$$
\sum_{i, j} a_{i j}(x) D_{i j} u=0 \quad \text { in } \mathbb{R}^{n}
$$

with the continuos coefficients $a_{i j}(x)$ satisfying $\mu I \leq\left(a_{i j}\right) \leq \mu^{-1} I \quad$ and

$$
|u| \leq C
$$

Then u is constant.
The proof goes as follows.

$$
\underset{Q_{1}}{\operatorname{osc}} u \leq(1-\delta) \underset{Q_{4 \sqrt{n}}}{\operatorname{osc}} u \leq \cdots \leq(1-\delta)^{k} \underset{Q_{(4 \sqrt{n})^{k}}^{\text {osc }}}{\operatorname{osc}} u \rightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

Theorem 4 (Krylov-Safonov) Let continuos u be a solution in the viscosity sense to

$$
\sum_{i, j} a_{i j}(x) D_{i j} u=0 \quad \text { in } Q_{4 \sqrt{n}}
$$

with the continuos coefficients $a_{i j}(x)$ satisfying $\mu I \leq\left(a_{i j}\right) \leq \mu^{-1} I$. Suppose u satisfies

$$
u \geq 0 \quad \text { in } Q_{4 \sqrt{n}}
$$

Then

$$
\sup _{Q_{1}} u \leq C(n, \mu) u(0)
$$

As in the divergence case, we can also "flip" the large distribution decay estimate in Step 2 to obtain the Harnack inequality. Say $u(0)=1$, if $\sup _{Q_{1}} u<M$, then there exist $x_{1}, x_{2}, x_{3}, \cdots$ goes to $x_{*} \in Q_{2}$ such that $u\left(x_{k}\right)>l^{k-1} M$ goes to ∞. A contradiction.

Local Maximum Principle. Let $u \in \mathbb{S}(\mu, 0)$ in Q_{1}. Then for any $p>0$, we have

$$
\sup _{Q_{1 / 2}} u \leq C(p, n, \mu)\left[\int_{Q_{1}}\left(u^{+}\right)^{p}\right]^{1 / p} .
$$

Exercise: Proof this LMP. Hints: Indeed, by scaling $u /\left\|u^{+}\right\|_{L^{p}\left(Q_{1}\right)}$, we assume $\left\|u^{+}\right\|_{L^{p}\left(Q_{1}\right)}=1$. Then

$$
\left|\{u>t\} \cap Q_{1}\right| \leq \int_{Q_{1}} \frac{\left(u^{+}\right)^{p}}{t^{p}} \leq \frac{1}{t^{p}}
$$

Note $u^{+}=\max \{u, 0\}$ is a subsolution, we have the large distribution decay estimate by "look down" version of Step2. If $\sup _{Q_{1 / 2}} u^{+}>M$, then similar to the "blowup" argument for the Harnack, there exist $x_{1}, x_{2}, x_{3}, \cdots$ goes to $x_{*} \in Q_{1}$ such that $u\left(x_{k}\right)>l^{k-1} M$ goes to ∞. A contradiction.

[^0]: ${ }^{0}$ May 19, 2010

