
Lecture 9 Krylov-Safonov

◦ decay estimate
- weak Harnack ⇒ Cα ⇒ Liouville
- Harnack
- L∞ bound in terms of Lε/Lp

Theorem 1 (Krylov-Safonov) Let u ∈ C0 be a viscosity solution of S (µ, 0) = 0.
Then u is Hölder continuous and

‖u‖Cα(B1/2) ≤ C (n, µ) ‖u‖L∞(B1) with (small) α = α (n, µ) > 0.

RMK. In this nondivergence case, the proof is relatively “easier”. It only took 20
years to achieve it after the divergence results in the 1950s. The viscosity version was
adapted by Caffarelli in the late 1980s.

Proof. Outline Step 1. Let

u ∈ S̄ (µ, 0) , i.e. M− (
D2u

)
≤ 0

u ≥ 0 in Q4
√

n

inf
Q3

u ≤ 1.

Then there exist large M (µ, n) and small η (µ, n) > 0 such that

|{u < M} ∩Q1| > η or |{u ≥ M} ∩Q1| ≤ 1− η.

Step 2. Iterate ∣∣{u ≥ Mk
}
∩Q1

∣∣ ≤ (1− η)k .

RMK. The right formulation/consequence is: if

u ∈ S̄ (µ, 0) , i.e. M− (
D2u

)
≤ 0

u ≥ 0 in Q4
√

n

inf
Q3

u ≤ 1,

then there exists ε = ε (µ, n) such that∫
Q1

uε ≤ M ε |{u < M}|+ M2ε
∣∣{M ≤ u < M2

}∣∣ + M3ε
∣∣{M2 ≤ u < M3

}∣∣ + · · ·

≤ M ε 1 + M2ε (1− η) + M3ε (1− η)2 + · · ·

=
M ε

1−M ε (1− η)
def
= C (µ, n) .
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Without the assumption infQ3 u ≤ 1 for 0 ≤ u ∈ S̄ (µ, 0) in Q4
√

n, we just apply the
above to v = u/ infQ3 u, then(∫

Q1

uε

)1/ε

≤ C1/ε (µ, n) inf
Q3

u.

Step 3. Oscillation
Step 1. First heuristic: If ∑

aijDiju ≤ 0 in B1

u (0) ≤ 1

u ≥ 0,

then
|{u < M} ∩B1| ≥ η.

That is, positive super solution small at one point implies it is not too large in a
nontrivial portion.

envelope figure

Let w = u + 2
(
|x|2 − 1

)
, then

∑
aijDijw ≤ 4

∑
aii. It follows that

1 ≤ inf
B1

w− ≤ C (n, µ)

[∫
w=Γ(w)

(
4
∑

aii

)n
]1/n

≤ C (n, µ) |{w = Γ (w)}|1/n .

Now
{w = Γ (w)} ⊂ {w < 0} ⊂ {u < 2} .

Thus

|{u ≤ 2} ∩B1| ≥
[

1

C (n, µ)

]n
def
= η.

Second realization: construct h = A−B/rα such that

M+
(
D2h

)
≤ 0 outside Q1, to pick out Q1,

h ≤ −2 in (Q3 ⊂) B2
√

n, to have inf over Q3,

h ≥ 0 outside (Q4 ⊂) B3
√

n, to have nonnegative boundary data for Alexandrov,∣∣D2h
∣∣ ≤ C, to bound determinant from above.

set inclusion figure

Let

h =

{
2− 2

(3
√

n)
α

rα outside B1/2 ⊂ Q1 =
[
−1

2
, 1

2

]n

smooth inside B1/2

.
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Then

D2h =
2 (3

√
n)

α

rα+2


−α (α + 1)

α
· · ·

α


M+

(
D2h

)
=

2 (3
√

n)
α

rα+2

[
−α (α + 1) µ + (n− 1) αµ−1

]
≤ 0 if α (n, µ) large enough.

Set w = u + h, apply Alexandrov-B-P to min (u + h, 0) in B3
√

n ⊂ Q4
√

n, we have∣∣∣∣ inf
B3

√
n

w

∣∣∣∣ ≤ C (n, µ) diam
(
B3

√
n

) [∫
w=Γ(w)

[[
M− (

D2w
)]+

]n
]1/n

(minimal arithmetic mean).

Observe
inf

B3
√

n

w ≤ inf
Q3

w ≤ 1− 2 = −1.

Near contact points

w = u + h ≥ Γ ≥ P

u ≥ P − h

u ≥ P − T2h “ =′′ at contact point.

Recall u ∈ S̄ (µ, 0) means

0 ≥ M− (
D2P −D2T2h

) fixed point
= TrA

(
D2P −D2T2h

)
= TrAD2P − TrA

(
D2T2h

)
≥ M− (

D2P
)
−M+

(
D2T2h

)
.

It follows
M− (

D2P
)
≤ M+

(
D2T2h

)
≤ C (n, µ) χQ1 .

Thus

1 ≤ C (n, µ)

{∫
w=Γ(w)

[C (n, µ) χQ1 ]
n

}1/n

≤ C (n, µ) |{w = Γ (w)} ∩Q1|1/n .

Also
{w = Γ (w)} ⊂ {w < 0} ⊂

{
u < −h ≤ sup−h

def
= M (n, µ)

}
.

Finally we have

|{u < M} ∩Q1|
|Q1|

= |{u < M} ∩Q1| ≥ η (n, µ) or

|{u ≥ M} ∩Q1|
|Q1|

< 1− η.
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Step 2. Claim: If

u ∈ S̄ (µ, 0) , i.e. M− (
D2u

)
≤ 0

u ≥ 0 in Q4
√

n

inf
Q3

u ≤ 1,

then ∣∣{u ≥ Mk
}
∩Q1

∣∣ ≤ (1− η)k .

Step 1 shows k = 1 is true. Suppose the decay estimate is true for k− 1, we show
“so is k′′. Let

A =
{
u ≥ Mk

}
∩Q1 B =

{
u ≥ Mk−1

}
∩Q1.

Already
|A| ≤ |{u ≥ M} ∩Q1| ≤ 1− η.

C-Z cube figure

We prove |A| ≤ (1− η) |B| at every “effective” small scale via (Calderon-Zygmund)
dyadic splitting Q1 according to A.

Keeping case: |Q∩A|
|Q| > 1− η, keep Q;

Splitting case: |Q∩A|
|Q| ≤ 1− η, continue splitting Q.

Let {Qj} be the collection, for the predecessor Qj∗ of each Qj, we show that
Qj∗ ⊂ B, that is, u ≥ Mk−1 in Qj∗. Suppose Qj∗ * B or infQj∗ u ≤ Mk−1. We have

|Qj∗ ∩ A|
|Qj∗|

≤ 1− η

|Qj ∩ A|
|Qj|

> 1− η. (*)

Now

0 ≤ u

Mk−1
∈ S̄ (µ, 0)

inf
Qj∗

u

Mk−1
≤ 1.

Apply Step 1 to u/Mk−1, we get∣∣{ u
Mk−1 ≥ M

}
∩Qj

∣∣
|Qj|

< 1− η

which contradicts (*). Hence Qj∗ ⊂ B. We can then finish the decay estimate

|A| Lebesgue
=

∑
j

∣∣Qj ∩ A
∣∣ ≤ ∑

j′

disjoint Qj′∗ cover all Qj

∣∣∣Qj′∗ ∩ A
∣∣∣

case splitting

≤ (1− η)
∑

j′

∣∣∣Qj′∗
∣∣∣ Qj∗⊂B

≤ (1− η) |B| .
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Therefore, ∣∣{u ≥ Mk
}
∩Q1

∣∣ ≤ ∣∣ {
u ≥ Mk−1

}
∩Q1

∣∣ .

Corollary 2 (Krylov-Safonov’s weak Harnack) Let 0 ≤ u ∈ S̄ (µ, 0) . Then(∫
Q1

uε

)1/ε

≤ C (n, µ) inf
Q3

u ≤ C (n, µ) u (0) .

RMK. One immediate consequence of this corollary is the strong minimum prin-
ciple for super solutions.

Step 3. Claim: For continuous u ∈ S (µ, 0) = S̄ (µ, 0)∩S
¯
(µ, 0) , we have

osc
Q1

u ≤ θ osc
Q4

√
n

u with positive θ = θ (n, µ) < 1.

In fact let

w =
u−minQ4

√
n
u

oscQ4
√

n
u

,

then w ∈ S (µ, 0) and 0 ≤ w ≤ 1.
Case |{w ≥ 1/2} ∩Q1| ≥ 1/2. By the corollary applied to w ∈ S̄,

1

2

(
|Q1|
2

)1/ε

≤
(∫

Q1

wε

)1/ε

≤ C (n, µ) inf
Q3

w ≤ C (n, µ) inf
Q1

w.

Then

inf
Q1

w ≥
(

1
2

)1+ 1
ε

C (n, µ)
= δ (n, µ) ∈ (0, 1) .

Consequently
osc
Q1

w ≤ 1− δ

or
osc
Q1

u ≤ (1− δ) osc
Q4

√
n

u.

Case |{w ≥ 1/2} ∩Q1| < 1/2. Apply the corollary to

1− w ∈ S̄ with |{1− w > 1/2} ∩Q1| > 1/2,

and repeat the argument in the first case, we get

osc
Q1

w = osc
Q1

(1− w) ≤ 1− δ

or
osc
Q1

u ≤ (1− δ) osc
Q4

√
n

u.

The theorem is completely proved.
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Corollary 3 (Krylov-Safonov’s Liouville) Let continuos u be a viscosity solution
to ∑

i,j

aij (x) Diju = 0 in Rn

with the continuos coefficients aij (x) satisfying µI ≤ (aij) ≤ µ−1I and

|u| ≤ C.

Then u is constant.

The proof goes as follows.

osc
Q1

u ≤ (1− δ) osc
Q4

√
n

u ≤ · · · ≤ (1− δ)k osc
Q

(4
√

n)k

u → 0, as k →∞.

Theorem 4 (Krylov-Safonov) Let continuos u be a solution in the viscosity sense
to ∑

i,j

aij (x) Diju = 0 in Q4
√

n

with the continuos coefficients aij (x) satisfying µI ≤ (aij) ≤ µ−1I. Suppose u satisfies

u ≥ 0 in Q4
√

n.

Then
sup
Q1

u ≤ C (n, µ) u (0) .

As in the divergence case, we can also “flip” the large distribution decay estimate
in Step 2 to obtain the Harnack inequality. Say u (0) = 1, if supQ1

u < M, then
there exist x1, x2, x3, · · · goes to x∗ ∈ Q2 such that u (xk) > lk−1M goes to ∞. A
contradiction.

Local Maximum Principle. Let u ∈S
¯
(µ, 0) in Q1. Then for any p > 0, we have

sup
Q1/2

u ≤ C (p, n, µ)

[∫
Q1

(
u+

)p
]1/p

.

Exercise: Proof this LMP. Hints: Indeed, by scaling u/ ‖u+‖Lp(Q1) , we assume

‖u+‖Lp(Q1) = 1. Then

|{u > t} ∩Q1| ≤
∫

Q1

(u+)
p

tp
≤ 1

tp
.

Note u+ = max {u, 0} is a subsolution, we have the large distribution decay estimate
by “look down” version of Step2. If supQ1/2

u+ > M, then similar to the “blow-
up” argument for the Harnack, there exist x1, x2, x3, · · · goes to x∗ ∈ Q1 such that
u (xk) > lk−1M goes to ∞. A contradiction.
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