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1. Introduction

In this paper we derive a Bernstein type result for the special Lagrangian
equation

F
(
D2u

) = arctan λ1 + · · · + arctan λn = c,(1.1)

where λis are the eigenvalues of the Hessian D2u. Namely, any global
convex solution to (1.1) in Rn must be a quadratic polynomial. Recall the
classical result, any global convex solution in Rn to the Laplace equation
�u = λ1 + · · · + λn = c or the Monge-Ampère equation log det D2u =
log λ1 + · · · + log λn = c must be quadratic.

Equation (1.1) originates from special Lagrangian geometry [HL]. The
(Lagrangian) graph (x,�u (x)) ⊂ Rn ×Rn is called special when the argu-
ment of the complex number

(
1 + √−1λ1

) · · · (1 + √−1λn
)

is constant c
or u satisfies (1.1), and it is special if and only if (x,�u (x)) is a minimal
surface in Rn × Rn [HL, Theorem 2.3, Proposition 2.17].

In terms of minimal surface, our result is the following

Theorem 1.1. Suppose M = (x,�u) is a minimal surface in Rn × Rn and
u is a smooth convex function in Rn. Then M is a plane.

In fact, we have stronger results.

Theorem 1.2. Suppose M = (x,�u) is a minimal surface in Rn × Rn and
u is a smooth function in Rn whose Hessian satisfies D2u ≥ −ε(n)I, where
ε (n) is a small dimensional constant. Then M is a plane.
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Theorem 1.3. Suppose M = (x,�u) is a minimal surface in R3× R3 and
u is a smooth function in R3 whose Hessian satisfies D2u ≥ −CI. Then M
is a plane.

The lower bound on the Hessian D2u is necessary for Theorem 1.3, as
one sees from the following example. Let u be a harmonic function in R2,
say, u = x3

1 − 3x1x2
2, then (x,�u (x)) is a minimal surface in R4, which is

not a plane.
Borisenko [Bo] proved Theorem 1.1 under the additional assumption

that u grows linearly at ∞ and arctan λ1 + · · · + arctan λn = kπ. For
c = kπ, the special Lagrangian equation (1.1) in R3 also takes the form

�u = det D2u.(1.2)

It was proved in [BCGJ] that any strictly convex solution to (1.2) in R3 with
quadratic growth at ∞ must be quadratic.

Fu [F] showed that any global minimal surface (x,�u (x)) ⊂ R2× R2

is either a plane or the potential u is harmonic. This result also follows
from Theorem 1.3 easily. We may assume c ≥ 0 in the special Lagrangian
equation arctan λ1 + arctan λ2 = c. Then either c = 0, that is �u = 0, or(
D2u

)
> − 1

tan c I, which in turn implies that u is quadratic by Theorem 1.3.
The heuristic idea of the proof of Theorem 1.1 is to find a subharmonic

function S in terms of the Hessian D2u such that S achieves its maximum at
a finite point in Rn. By the strong maximum principle, S is constant. Conse-
quently, D2u is a constant matrix. The right function S is the one associated
to the volume form of M in R2n, det

(
I + D2uD2u

)
, see Lemma 2.1. How-

ever the nonnegative Hessian D2u has no upper bound. We make a (Lewy)
rotation of the (x, y) ∈ Rn × Rn coordinate system to x̄ = (x + y) /

√
2,

ȳ = (−x + y) /
√

2. The special Lagrangian property of M is invariant,
and M has a new representation

(
x̄,�ū

(
x̄
))

with the potential function ū

satisfying −I ≤ (
D2ū

) = (
I + D2u

)−1 (−I + D2u
) ≤ I. To make the

whole idea work, we need the machinery from geometric measure theory,
see Sect. 3.

Note that the special Lagrangian feature of the minimal surface M =(
x̄,�ū

(
x̄
))

is essential in finding a subharmonic function. The function
det

(
I + D2ūD2ū

)
is subharmonic as long as −I ≤ (

D2ū
) ≤ I, in which

case det
(
I + D2ūD2ū

) ≤ 2n. In contrast, for general minimal surface
M = (x, f (x)) ⊂ Rn × Rk with high co-dimension k ≥ 2, assuming that

det
[
I + (� f )t (� f )

] ≤ K <
[
cos

(
π/

(
2
√

2p
))]−2p

with p = min {n, k} , Fischer-Colbrie [F-C] and Hildebrandt, Jost, and
Widman [HJW] were able to show that the composition of the square of the
distance function on the Grassmanian manifold G (n, k) with the harmonic
map from M to G (n, k) is subharmonic. Later on, Jost and Xin [JX] proved
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the same thing under the assumption that det
[
I + (� f )t (� f )

] ≤ K < 4.
As a consequence, Bernstein type results were obtained in all these papers.

Theorem 1.2 is just a consequence of Allard’s ε-regularity theory, once
Theorem 1.1 is available.

Theorem 1.3 relies on the well-known result that any non-parametric
minimal cone of dimension three must be flat, see [F-C] and [B]. A quick
“PDE” proof of this fact was found in a recent paper [HNY]. Whether
Theorem 1.3 holds true in higher dimensional case remains an issue to us.

Notation. ∂i = ∂
∂xi

, ∂ij = ∂2

∂xi∂x j
, ui = ∂iu, u ji = ∂iju, etc.

2. Preliminary computations

Let (x,�u (x)) ⊂ Rn × Rn be a non-parametric minimal surface, then we
have

�g (x,�u (x)) = 0,(2.1)

where �g = ∑n
i, j=1

1√
det g

∂i
(√

det ggij∂ j
)

is the Laplace-Beltrami operator

of the induced metric g = (
gij

) = (
I + D2uD2u

)
with

(
gij

) = (
gij

)−1
.

Notice that �gx = 0, �g also takes the form

�g =
n∑

i, j=1

gij∂ij .(2.2)

Lemma 2.1. Let (x,�u (x)) ⊂ Rn × Rn be a minimal surface. Suppose
the Hessian D2u of the smooth function u is diagonalized at p, D2u (p) =
diag[λ1, · · · , λn]. Then

�g log det g =
n∑

i, j=1

gij∂ij log det g
p=

n∑
a,b,c=1

2gaagbbgccu2
abc (1 + λbλc) .

(2.3)

Proof. As preparation, we first compute the first and second order deriva-
tives of the metric g.

∂ j gab =
n∑

k=1

(
uak jukb + uakukb j

)
(2.4)

p= uab j (λa + λb) .

∂ig
ab =

n∑
k=1

−gak∂igkl g
lb(2.5)

p= −gaa∂igabgbb

p= −gaagbbuabi (λa + λb) .
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∂ij gab =
n∑

k=1

(
uak jiukb + uak jukbi + uakiukb j + uakukb ji

)
p= uab ji (λa + λb) +

n∑
k=1

(
uak jukbi + uakiukb j

)
.

We need to substitute the 4th order derivative of u with lower order deriva-
tives, we use the minimal surface equation (2.1) with (2.2),

�gua =
n∑

i, j=1

gij∂ijua = 0.

Take the derivative with respect to xb, we have

n∑
i, j=1

(
gij∂ijuab + ∂bgij∂ijua

) = 0.

Then
n∑

i, j=1

gij∂ijuab
p=

n∑
i, j=1

gii g jjuijb
(
λi + λ j

)
ua ji

and

n∑
i, j=1

gij∂ij gab
p=

n∑
i, j=1

gii g jjuijbua ji

(
λi + λ j

)
(λa + λb) +

n∑
i,k=1

2giiuakiukbi .

(2.6)

Relying on (2.4) (2.5) (2.6), we arrive at

n∑
i, j=1

gij∂ij log det g

=
n∑

i, j,a,b=1

gij∂i
(
gab∂ jgab

)

=
n∑

i, j,a,b=1

(
gij∂ig

ab∂ j gab + gij gab∂ij gab
)

p=
n∑

i,a,b=1

−gii gaagbbu2
abi (λa + λb)

2 +
n∑

i, j,a=1

2gaagii g jju2
a ji

(
λi + λ j

)
λa

+
n∑

i,k,a=1

2gaagiiu2
aki
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p=
n∑

a,b,c=1

−gaagbbgccu2
abc (λa + λb)

2 +
n∑

a,b,c=1

2gaagbbgccu2
abc (λb + λc) λa

+
n∑

a,b,c=1

2gaagccu2
abc

p=
n∑

a,b,c=1

−2gaagbbgccu2
abc

(
λ2

b + λaλb
) +

n∑
a,b,c=1

4gaagbbgccu2
abcλaλb

+
n∑

a,b,c=1

2gaagccu2
abc

p=
n∑

a,b,c=1

2gaagccu2
abc

(−gbbλ2
b + 1

) +
n∑

a,b,c=1

2gaagbbgccu2
abcλaλb

p=
n∑

a,b,c=1

2gaagbbgccu2
abc (1 + λaλb)

p=
n∑

a,b,c=1

2gaagbbgccu2
abc (1 + λbλc) ,

where we use gbb p= 1
1+λ2

b
. This finishes the proof of Lemma 2.1. ��

Proposition 2.1. Let C = (x,�u (x)) ⊂ R2n be a minimal cone, smooth
away from the origin. Suppose the Hessian D2u satisfies −I ≤ (

D2u
) ≤ I.

Then C is a plane.

Proof. Since (x,�u (x)) is cone, �u (x) is homogeneous degree one and
D2u (x) is homogeneous degree zero. It follows that log det g = log det (I+
D2uD2u

)
takes its maximum at a finite point (away from 0) in Rn. By the

assumption −I ≤ (
D2u

) ≤ I, it follows from Lemma 2.1 that

n∑
i, j=1

gij∂ij log det g ≥ 0.

By the strong maximum principle, we see that log det g ≡ const. Applying
Lemma 2.1 again, we obtain

0
p=

n∑
a,b,c=1

2gaagbbgccu2
abc (1 + λbλc) ≥ 0.

Then

u2
abc (1 + λaλb) = u2

abc (1 + λbλc) = u2
abc (1 + λcλa) = 0.
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Observe that one of λaλb, λbλc, and λcλa must be nonnegative, we get
uabc (p) = 0. Since the point p in Lemma 2.1 can be arbitrary, we con-
clude that D3u ≡ 0. Consequently, u is a quadratic function and the cone
(x,�u (x)) is a plane. ��

3. Proof of theorems

Proof of Theorem 1.1. Step A. We first seek a better representation of M via
Lewy transformation. We rotate the (x, y) ∈ Rn × Rn coordinate system to(
x̄, ȳ

)
by π/4, namely, set x̄ = (x + y) /

√
2, ȳ = (−x + y) /

√
2. Then M

has a new parametrization{
x̄ = 1√

2
(x + �u (x))

ȳ = 1√
2
(−x + �u (x))

.

Since u is convex, we have

∣∣x̄2 − x̄1
∣∣2 = 1

2

[∣∣x2 − x1
∣∣2 + 2

(
x2 − x1

) · (�u
(
x2

) − �u
(
x1

))
+ ∣∣�u

(
x2) − �u

(
x1)∣∣2

]
≥ 1

2

∣∣x2 − x1
∣∣2

.

It follows that M is still a graph over the whole x̄ spaceRn. Further M is still
a Lagrangian graph over x̄, that means M has the representation

(
x̄,�ū

(
x̄
))

with a potential function ū ∈ C∞ (Rn) (cf. [HL, Lemma 2.2]).
Note that any tangent vector to M takes the form

1√
2

((
I + D2u (x)

)
e,

(−I + D2u (x)
)

e
)
,

where e ∈ Rn. It follows that

D2ū
(
x̄
) = (

I + D2u (x)
)−1 (−I + D2u (x)

)
.

By the convexity of u, we have

−I ≤ (
D2ū

) ≤ I.

Step B. The remaining proof is routine. We “blow down” M at ∞. Without
loss of generality, we assume ū (0) = 0, �ū (0) = 0. Set Mk = (

x̄,�ūk
)
,

where

ūk
(
x̄
) = ū

(
kx̄

)
k2

, k = 1, 2, 3, · · · .
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We see that Mk is still a minimal surface and −I ≤ (
D2ūk

) ≤ I. Then there
exists a subsequence, still denoted by

{
ūk

}
and v ∈ C1,1 (Rn) such that

ūk → v in C1,α
loc

(
Rn

)
and

−I ≤ (
D2v

) ≤ I.

We apply the compactness theorem (cf. [S, Theorem 34.5] to conclude that
Mv = (

x̄,�v
(
x̄
))

is a minimal surface, By the monotonicity formula (cf. [S,
p. 84]) and Theorem 19.3 in [S], we know that Mv is a minimal cone.

We claim that Mv is smooth away from the vertex. Suppose Mv is
singular at P away from the vertex. We blow up Mv at P to get a tangent
cone, which is a lower dimensional special Lagrangian cone cross a line,
repeat the procedure if the resulting cone is still singular away from the
vertex. Finally we get a special Lagrangian cone which is smooth away
from the vertex, and the eigenvalues of the Hessian of the potential function
are bounded between −1 and 1. By Proposition 2.1, the cone is flat. This is
a contradiction to Allard’s regularity result (cf. [S, Theorem 24.2]).

Applying Proposition 2.1 to Mv, we see that Mv is flat.
Step C. By our blow-down procedure and the monotonicity formula, we see
that

lim
r→+∞

µ(Br (0, 0) ∩ M)

|Br| = 1,

where Br is the ball with radius r in Rn, Br (0, 0) is the ball with radius r
and center (0, 0) in Rn ×Rn, and µ(Br (0, 0) ∩ M) is the area of M inside
Br (0, 0). Since M is smooth, we have

lim
r→0

µ(Br (0, 0) ∩ M)

|Br| = 1.

Consequently, for r2 > r1 > 0, the monotonicity formula reads

0 = µ
(
Br2 (0, 0) ∩ M

)∣∣Br2

∣∣ − µ
(
Br1 (0, 0) ∩ M

)∣∣Br1

∣∣ =
∫
Br2 \Br1

∣∣D⊥r
∣∣2

rn
dµ,

where r = |(x, y)| , D⊥r is the orthogonal projection of Dr to the normal
space of M, and dµ is the area form on M. Therefore, we see that M is
a plane. ��
Remark. In Step B, we use the heavy compactness result (cf. [S, Theo-
rem 34.5]) just for a short presentation of the proof. One can also take
advantage of the special Lagrangian equation (1.1), use the compactness
result for viscosity solution to derive that Mv = (

x̄,�v
(
x̄
))

is a minimal
surface, see Lemma 2.2 in [Y].
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Proposition 3.1. There exist a dimensional constant ε′ (n) > 0 such that
any minimal surface (x,�u (x)) ⊂ Rn×Rn with − (

1 + ε′ (n)
)

I ≤ (
D2u

)≤(
1 + ε′ (n)

)
I for x ∈ Rn, must be a plane.

Proof. Suppose not. Then there exists a sequence of minimal surface Mk =
(x,�uk) ⊂ Rn ×Rn such that − (

1 + 1
k

)
I ≤ (

D2uk
) ≤ (

1 + 1
k

)
I and Mk is

not a plane. By Allard’s regularity result (cf. [S, Theorem 24.2]) the density
Dk for Mk satisfies

Dk ≥ 1 + δ (n) ,

where δ (n) > 0 is a dimensional constant and

Dk = lim
r→+∞

µ(Br ∩ Mk)

|Br| .

By a similar argument as Step B in the proof of Theorem 1.1, we ex-
tract a subsequence of {vk} converging to V∞ in C1,α

loc (Rn) such that M∞ =
(x,�V∞ (x)) is a smooth minimal surface inRn×Rn with −I ≤ (

D2u∞
) ≤ I

and D∞ ≥ 1 + δ (n) . By our Theorem 1.1, M∞ is a plane and D∞ = 1.
This contradiction finishes the proof of the proposition. ��
Proof of Theorem 1.2. We repeat the rotation argument in Step A of the
proof of Theorem 1.1 to get a new representation for M,

(
x̄,�ū

(
x̄
))

with

−
(

1 + 2ε (n)

1 − ε (n)

)
I ≤ (

D2ū
) ≤ I.

We choose ε (n) = ε′(n)

2+ε′(n)
and apply Proposition 3.1. Then Theorem 1.2

follows. ��
Proof of Theorem 1.3. The strategy is similar to the proof of Theorem 1.1.
Step A. We first make a different rotation of the coordinate system
to get a better representation of M. Set x̄ = 1√

1+4C2
(2Cx + y) , ȳ =

1√
1+4C2

(−x + 2Cy) . Then M has a new parametrization




x̄ = 1√
1+4C2

(2Cx + �u (x))

ȳ = 1√
1+4C2

(−x + 2C�u (x))
.

Since u + 1
2 C |x|2 is convex, we have

∣∣x̄2 − x̄1
∣∣2 = 1

1 + 4C2




C2
∣∣x2 − x1

∣∣2 + 2C
(
x2 − x1

)
· (�u

(
x2

) + Cx2 − �u
(
x1

) − Cx1
)

+ ∣∣�u
(
x2

) + Cx2 − �u
(
x1

) − Cx1
∣∣2




≥ 1

1 + 4C2
C2

∣∣x2 − x1
∣∣2

.
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As in the proof of Theorem 1.1, we get a new representation for M =(
x̄,�ū

(
x̄
))

and

D2ū
(
x̄
) = (

2CI + D2u
)−1 (−I + 2CD2u (x)

)
.

From D2u ≥ −CI, we see that

−1 + 2C2

C
I ≤ (

D2ū
) ≤ 2CI.

Step B. As Step B in the proof of Theorem 1.1, any tangent cone of M at
∞ is flat. The only difference is that, instead of relying on Proposition 2.1,
we use the fact that any non-parametric minimal cone of dimension three
must be flat, see [F-C, Theorem 2.3], [B, Theorem]. For a quick PDE proof
of this fact, see [HNY, p. 2].
Step C is exactly as in the proof of Theorem 1.1.

Therefore, we conclude Theorem 1.3. ��
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