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Minimal Cones with Isotropic Links

Jingyi Chen and Yu Yuan

We show that any closed oriented immersed isotropic minimal surface Σ with genus gΣ

in S5 ⊂ C
3 is (1) Legendrian (and totally geodesic) if gΣ = 0; (2) either Legendrian or with

exactly 2gΣ − 2 Legendrian points if gΣ ≥ 1. In general, any compact oriented immersed

isotropic minimal submanifold Ln−1 ⊂ S2n−1 ⊂ C
n must be Legendrian if its first Betti

number is zero. Corresponding results for nonorientable links are also provided.

1 Introduction

In this paper we study the problem of when a minimal cone C(L) with isotropic link L on

S2n−1 in C
n becomes special Lagrangian. Equivalently, given a minimal isotropic sub-

manifold L ⊂ S2n−1 ⊂ C
n, when is L Legendrian?

Following Harvey and Lawson [5, page 110], the isotropy condition for submani-

foldM in C
n means

J(TM) ⊥ TM, (1.1)

where J is the complex structure in C
n, or the standard symplectic 2-form on R

2n van-

ishes onM. The dimension of an isotropic submanifold is at most the half-dimension n,

and when it is n the submanifold is Lagrangian. For an immersed (n − 1)-dimensional

submanifold L in S2n−1, let u : L → S2n−1 be the restriction of the coordinate functions in
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R
2n to L. A point u ∈ L is Legendrian if TuL is isotropic in R

2n and

J
(
TuL

) ⊥ u. (1.2)

L is Legendrian if all the points u are Legendrian. This is equivalent to that L is an (n −

1)-dimensional integral submanifold of the standard contact distribution on S2n−1. All

links Σ and L are assumed to be connected in this paper.

Theorem 1.1. Let Σ be a closed oriented immersed isotropic minimal surface with genus

gΣ in S5 ⊂ C
3. Then (1) if gΣ = 0, Σ is Legendrian (and totally geodesic); (2) if gΣ ≥ 1, Σ

is either Legendrian or has exactly 2gΣ − 2 Legendrian points counting the multiplicity.

�

It is known that the immersed minimal Legendrian sphere (gΣ = 0) must be a

great two sphere in S5 (cf. [6, Theorem 2.7]). Bryant’s classification [3, page 269] of min-

imal surfaces with constant curvature in spheres provides examples of flat Legendrian

minimal tori as well as flat non-Legendrian isotropic minimal tori (gΣ = 1) in S5. The

constructions of Haskins [6] and Haskins and Kapouleas [7] show that there are infinitely

many immersed (embedded if gΣ = 1) minimal Legendrian surfaces for each odd genus

in S5.

For a preliminary study of the problem of when a minimal cone with isotropic

link becomes isotropic in general dimensions and codimensions, we have the following.

Theorem 1.2. Let Lm be a compact isotropic immersed oriented minimal submanifold in

the unit sphere S2n−1 ⊂ C
n. If the first Betti number of Lm is 0, then the minimal cone

C(Lm) is isotropic, in particular, C(Ln−1) is Lagrangian (or equivalently Ln−1 is Legen-

drian) whenm is the top dimension n − 1. �

Certain Bochner conditions would imply the vanishing of the first Betti number,

such as the following. The Ricci curvature of Lm is nonnegative (e.g., when the norm of

the second fundamental form of Lm in S2n−1 is less than
√
m − 1), and is positive some-

where or the Euler characteristic of Lm is nonzero. A direct approach from the above

geometric intrinsic conditions to the isotropy conclusion is also included in Section 3.

When the dimensionm of the link is 2, Theorem 1.2 also implies Theorem 1.1(1).

Even if the first Betti number is not zero (gL2 > 0) in Theorem 1.2, we can still conclude

that the coneC(L2) is isotropic either everywhere or along exactly 2gL2 −2 = −χ(L2) lines.

This generalization of Theorem 1.1(2) to higher codimensions can be proved in the same

way as for Theorem 1.1(2).
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All of our results, Theorems 1.2, 1.1 (except the totally geodesic part) and their

generalization to higher codimensions are valid for nonorientable links (note that χ(Σ) =

2 − gΣ for a compact nonorientable surface Σ), see Remarks 2.2 and 3.1. In particular,

the nonorientable version of Theorem 1.2 implies that one cannot immerse a compact

nonorientable Ln−1 with 0 first Betti number minimally and isotropically into S2n−1 ⊂
C

n. Otherwise, the coneC(Ln−1) would be a special Lagrangian cone, thenC(Ln−1) would

be orientable, and Ln−1 would also be orientable. This is a contradiction. As a simple

example, there exists no isotropic minimal immersion of a real projective sphere RP2

into S5 ⊂ C
3.

Our local example in Section 4, of non-Lagrangian minimal cones with isotropic

links in R
5 ⊂ C

3 suggests there might be non-Legendrian yet isotropic minimal Riemann

surfaces of genus gΣ > 1 in S5 ⊂ C
3.

It is not clear to us whether there exists an isotropic minimal surface in S5 with

exactly 2gΣ − 2 Legendrian points for gΣ > 1, or some necessary condition such as the

moment condition explored by Fu in [4] to force those isotropic minimal surfaces to be

Legendrian.

2 Hopf differentials and proof of Theorem 1.1

To measure how far the isotropic Σ is away from being Legendrian, or the deviation of

the corresponding cone from being Lagrangian, we project Ju onto the tangent space of

Σ in C
3, where J is the complex structure in C

3. Denote the length of the projection by

f =
∣
∣Pr Ju

∣
∣2. (2.1)

To compute the length, we need some preparation. Locally, take an isothermal coordinate

system (t1, t2) on the isotropic minimal surface

u : Σ −→ S5 ⊂ C
3. (2.2)

Set the complex variable

z = t1 +
√

−1t2. (2.3)

Then the induced metric has the local expression with the conformal factor ϕ

g = ϕ2
[(
dt1
)2

+
(
dt2
)2]

= ϕ2 dzdz. (2.4)



4 J. Chen and Y. Yuan

We project Ju to each of the orthonormal bases ϕ−1u1, ϕ
−1u2 with ui = ∂u/∂ti. Then the

sum of the squares of each projection is

f =

∣
∣〈Ju, u1

〉∣∣2 +
∣
∣〈Ju, u2

〉∣∣2

ϕ2
=
4
∣
∣〈Ju, uz

〉∣∣2

ϕ2
, (2.5)

where uz = ∂u/∂z and 〈·, ·〉 is the Euclidean inner product on R
6, and in particular 0 ≤

f ≤ 1. In fact, f is the square of the norm of the symplectic formω in C
3 restricted on the

cone C(Σ) with link Σ:

ω
∣
∣
C(Σ) ∧ ∗ω∣∣

C(Σ) = f · volume form of C(Σ). (2.6)

The minimality condition

Δgu =
4

ϕ2
uzz = −2u (2.7)

and the isotropy condition

〈
Jui, uj

〉
= 0 (2.8)

imply the holomorphic condition

〈
Ju, uz

〉
z

=
〈
Ju

z
, uz

〉
+
〈
Ju, uzz

〉
=

〈
Ju,−

ϕ2

2
u

〉
= 0. (2.9)

The induced metric g yields a compatible conformal structure on the oriented

surface Σwhich makes Σ a Riemann surface. We will consider two cases according to the

genus gΣ.

(1) gΣ = 0: by the uniformization theorem for Riemann surfaces (cf. [1, pages 125,

181]), there exists a holomorphic covering map

Φ :
(
S2, gcanonical

) −→ (Σ, g) (2.10)

or locally

Φ :

(
C

1,
1

(
1 +w2

)2 dwdw
)

−→ (Σ, g). (2.11)

For z = Φ(w) one has

1
(
1 +w2

)2 dwdw = Φ∗(ψ2g
)

= Φ∗(ψ2ϕ2 dzdz
)

= ψ2ϕ2
∣
∣zw
∣
∣2 dwdw, (2.12)
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where ψ is a positive (real analytic) function on Σ. In particular

∣
∣zw
∣
∣2 =

1

ψ2ϕ2
(
1 +w2

)2 . (2.13)

Note that

〈
Ju, uw

〉
=
〈
Ju, uz

〉
zw =

〈
Ju, uz

〉 1
wz

(2.14)

is a holomorphic function of z, in turn it is a holomorphic function of w. Also 〈Ju, uw〉 is

bounded, approaching 0 asw goes to ∞, because

∣
∣〈Ju, uw

〉∣∣2 =

∣
∣〈Ju, uz

〉∣∣2

ϕ2

1

ψ2
(
1 +w2

)2 . (2.15)

So 〈Ju, uw〉 ≡ 0. Therefore f ≡ 0 and Σ is Legendrian.

For completeness, we present a simple direct proof of the known result that any

immersed minimal Legendrian S2 ⊂ S5 ⊂ C
3 must be totally geodesic. We still use the

above isothermal coordinates now on the Legendrian minimal sphere. Note that Ju, Ju1,

and Ju2 are orthogonal vectors in the normal space of S2 in S5 ⊂ C
3. The second funda-

mental form of the minimal Legendrian S2 in S5 ⊂ C
3 can be represented as

I(i, j) =
〈
uij, Ju

〉
Ju +

〈
uij, Ju1

〉Ju1

ϕ2
+
〈
uij, Ju2

〉Ju2

ϕ2

=
〈
uij, Ju1

〉Ju1

ϕ2
+
〈
uij, Ju2

〉Ju2

ϕ2
,

(2.16)

where we use 〈uij, Ju〉 = 〈ui, Ju〉j − 〈ui, Juj〉 = 0, because S2 is Legendrian.

|I|2 =
1

ϕ6

2
∑

i,j=1

(〈
uij, Ju1

〉2
+
〈
uij, Ju2

〉2)

=
4

ϕ6

2
∑

i,j=1

∣
∣〈uij, Juz

〉∣∣2

=
4

ϕ6

⎛

⎜
⎝

∣
∣〈uzz + uzz + 2uzz, Juz

〉∣∣2 + 2
∣
∣
√

−1
〈
uzz − uzz, Juz

〉∣∣2

+
∣
∣ −
〈
uzz + uzz − 2uzz, Juz

〉∣∣2

⎞

⎟
⎠

=
4

ϕ6

(∣
∣〈uzz, Juz

〉∣∣2 + 2
∣
∣〈uzz, Juz

〉∣∣2 +
∣
∣〈uzz, Juz

〉∣∣2
)

=
16

ϕ6

∣
∣〈uzz, Juz

〉∣∣2,

(2.17)
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where in the third line we convert uij from real coordinates to the complex ones and then

we use the identities induced from the Legendrian and minimal conditions

〈
uzz, Juz

〉
=
〈
uz, Juz

〉
z

−
〈
uz, Juzz

〉
= −

〈
uz, J

(
−ϕ2

2
u

)〉
= 0,

〈
uzz, Juz

〉
=

〈
−ϕ2

2
u, Juz

〉
= 0.

(2.18)

Next we claim the Hopf cubic differential 〈uzz, Juz〉dzdzdz is holomorphic and globally

defined on S2. Again the Legendrian and minimal conditions lead to

〈
uzz, Juz

〉
z

=
〈
uzzz, Juz

〉
+
〈
uzz, Juzz

〉

=

〈(
−ϕ2

2
u

)

z

, Juz

〉
+

〈
uzz, J

(
−ϕ2

2
u

)〉

=

〈(
−ϕ2

2

)

z

u −
ϕ2

2
uz, Juz

〉
−
ϕ2

2

〈
uzz, Ju

〉

= −
ϕ2

2

(〈
uz, Ju

〉
z

−
〈
uz, Juz

〉)
= 0.

(2.19)

For any change of holomorphic variables z = z(w) on S2 we have

〈
uww, Juw

〉
dwdwdw =

〈
uzzzwzw + uz

(
zw
)
w
, J
(
uzzw

)〉(
wz

)3
dzdzdz

=
〈
uzzzwzw + uz

(
zw
)
w
, Juz

〉
zw
(
wz

)3
dzdzdz

=
(
zwzw

〈
uzz, Juz

〉
+
(
zw
)
w

〈
uz, Juz

〉)
zw
(
wz

)3
dzdzdz

=
〈
uzz,Juz

〉(
zw
)3(
wz

)3
dzdzdz

=
〈
uzz,Juz

〉
dzdzdz.

(2.20)

This shows that the cubic holomorphic differential is independent of the choice of local

holomorphic coordinates, hence it is defined on entire S2.

Finally one repeats the above argument of showing that any holomorphic Hopf

one differential on S2 must vanish to conclude that the Hopf cubic differential

〈
uzz,Juz

〉
dzdzdz (2.21)

on S2 must also vanish everywhere.

Therefore the second fundamental form of the immersed minimal Legendrian S2

on S5 vanishes everywhere and then the immersed minimal Legendrian S2 is totally geo-

desic.
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Remark 2.1. For an isotropic minimal immersed cone C(S2) ⊂ C
n with immersed S2 link

on S2n−1, the above argument leads to the vanishing of the second fundamental form of

the cone along the normal subspace J(T(C(S2))).

(2) gΣ ≥ 1: as in the gΣ = 0 case, the isotropic and minimal condition gives

us a local holomorphic function 〈Ju, uz〉 and global holomorphic Hopf one differential

〈Ju, uz〉dz. We only consider the case that 〈Ju, uz〉dz is not identically 0. The zeros of

〈Ju, uz〉 are therefore isolated and near each of the zeros, we can write

〈
Ju, uz

〉
= h(z)zk, (2.22)

where h is a local holomorphic function nonvanishing at the zero point z = 0 and k is a

positive integer. One can also view

〈
Ju, uz

〉
=
1

2

(〈
Ju, u1

〉
−
√

−1
〈
Ju, u2

〉)
(2.23)

as the tangent vector

1

2

〈
Ju, u1

〉
u1 −

1

2

〈
Ju, u2

〉
u2 =

1

2

〈
Ju, u1

〉
∂1 −

1

2

〈
Ju, u2

〉
∂2 (2.24)

along the tangent space TΣ, where ∂i = ∂u/∂ti. The projection Pr Ju on the tangent space

of TΣ is locally represented as

Pr Ju =

〈
Ju, u1

〉
∂1 +

〈
Ju, u2

〉
∂2

ϕ2
. (2.25)

The index of the globally defined vector field Pr Ju at each of its singular points, that is,

Pr Ju = 0 is the negative of that for the vector field (1/2)〈Ju, u1〉∂1 − (1/2)〈Ju, u2〉∂2. Note

that the index of the latter is k.

From the Poincaré-Hopf index theorem, for any vector field V with isolated sin-

gularities on Σ, one has

∑

V=0

index(V) = χ(Σ) = 2 − 2gΣ ≤ 0. (2.26)

The zeros of Pr Ju are just the Legendrian points on Σ. So we conclude that the

number of Legendrian points is 2gΣ − 2 counting the multiplicity. This completes the

proof of Theorem 1.1.
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Remark 2.2. As mentioned in the introduction, Theorem 1.1 (except the totally geodesic

part)and its generalization to higher codimensions can be extended for the nonorientable

links. This can be seen as follows. The Poincaré-Hopf index theorem holds on compact

nonorientable surfaces, our count of the indices of the still globally defined Pr Ju via lo-

cal holomorphic functions is valid too, and the index of a singular point of a vector field

is independent of local orientations. Moreover, this index counting argument yields an

alternative proof for Theorem 1.1(1) (except the totally geodesic part) and its general-

ization.

3 Harmonic forms and proof of Theorem 1.2

Consider an immersed isotropic minimal submanifold in S2n−1,

u : Lm −→ S2n−1 ⊂ C
n, (3.1)

the minimality condition reads

Δgu = −mu (3.2)

with g being the induced metric. The isotropy condition reads for any local coordinates

(t1, . . . , tm) on Lm,

〈
Jui, uj

〉
= 0 (3.3)

with J being the complex structure of C
n and ui = ∂u/∂ti.

Again, to measure the deviation of the corresponding cone C(u(Lm)) from being

isotropic, we project Ju onto the tangent space of u(Lm) in C
n. Note that the projection is

the vector

Pr Ju =

m
∑

i,j=1

gij
〈
Ju, ui

〉
uj, (3.4)

where gij = 〈ui, uj〉, 1 ≤ i, j ≤ m. The corresponding one form

α =

m
∑

i=1

〈
Ju, ui

〉
dti (3.5)
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is of course globally defined on Lm. In fact it is a harmonic one form, because α is closed

and coclosed:

dα =

m
∑

i,j=1

〈
Ju, ui

〉
j
dtj ∧ dti =

m
∑

i,j=1

(〈
Juj, ui

〉
+
〈
Ju, uij

〉)
dtj ∧ dti

=

m
∑

i,j=1

〈
Ju, uij

〉
dtj ∧ dti = 0,

δα = (−1)m·1+m+1 ∗ d ∗ α

= − ∗ d
(

m
∑

i,j=1

(−1)j+1√ggij
〈
Ju, ui

〉
dt1 ∧ · · · ∧ d̂tj ∧ · · · ∧ dtm

)

= − ∗
m

∑

i,j=1

∂j

(√
ggij

〈
Ju, ui

〉)
dt1 ∧ · · · ∧ dtj ∧ · · · ∧ dtm

= −
1√
g

m
∑

i,j=1

∂j

(√
ggij

〈
Ju, ui

〉)

= −

m
∑

i,j=1

(
〈
Juj, g

ijui

〉
+

〈
Ju,

1√
g
∂j

(√
ggijui

)
〉)

= −〈Ju,−mu〉 = 0,

(3.6)

where we use the isotropy and minimality conditions.

Now the Hodge-de Rham theorem implies that the harmonic one form α must

vanish because of the first Betti number zero assumption. It follows that Pr Jumust van-

ish. Therefore, the cone C(Lm) is isotropic. The proof of Theorem 1.2 is complete.

Remark 3.1. As the projection Pr Ju and the adjoint operator δ is independent of the lo-

cal orientations and the Hodge-de Rham theorem holds for compact nonorientable man-

ifolds (cf. [9, pages 125-126]), we see that Theorem 1.2 remains true for nonorientable

links Lm.

Corollary 3.2. Let Lm be a compact immersed isotropic minimal submanifold in the unit

sphere S2n−1 ⊂ C
n. If the Ricci curvature of Lm is nonnegative, and it is positive some-

where, or the Euler characteristic χ(Lm) is not zero, then the minimal cone C(Lm) is

isotropic, in particular,C(Ln−1) is Lagrangian (or equivalently Ln−1 is Legendrian) when

m is the top-dimension n − 1. �



10 J. Chen and Y. Yuan

Under the above condition, from Bochner [2, page 381], it follows immediately

that the first Betti number of Lm is zero. Then Theorem 1.2 and its nonorientable version

imply the corollary.

Still we present a direct proof of the corollary based on the Bochner-type compu-

tation. Denote the square of the length of the projection Pr Ju by f, so

f =

m
∑

i,j=1

gij
〈
Ju, ui

〉〈
Ju, uj

〉
. (3.7)

Note that f is the square of the norm of the restriction on the cone C(Lm) of the standard

symplectic formω on C
n.

If Ric(Lm) ≥ 0, the Bochner-type formula (∗) in the following proposition implies

that f is subharmonic, hence constant because Lm is compact. If Ric(Lm) > 0 at a point

p, then 〈Ju, ui〉 = 0 at p for i = 1, . . . ,m. It follows that f is identically zero, so Lm is

Legendrian. If χ(Lm) is nonzero, then every vector field on Lm must vanish somewhere

(cf. [8, page 133]). In particular, the globally defined vector field PrJu, the projection of

Ju on T Lm, has zeros. This means that f is zero somewhere, hence f is zero everywhere.

So C(Lm) is isotropic. The direct approach to the corollary is complete, pending to the

following.

Proposition 3.3 (Bochner-type formula for f). Let u : Lm
→ S2n−1 be an isotropic mini-

mal immersion and let f = | Pr Ju|2. Then at the center p of a normal coordinate chart on

Lm,

1

2
Δgf =

m
∑

i,j=1

Rij

〈
Ju, ui

〉〈
Ju, uj

〉
+

m
∑

i,j=1

〈
Ju, uij

〉2
, (∗)

where Rij is the Ricci curvature of Lm. �

Proof. We will use the summation convention for repeated indices and all computations

will be at the center p of a normal coordinate chart. First, we have

(
Δgu

)
α

= ∂α

(
gij∂i∂ju − gijΓk

ij∂ku
)

= uαii −

(
gki,iα −

1

2
gii,kα

)
uk.

(3.8)
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Then using isotropy condition 〈Jui, uj〉 = 0 and the minimality assumption Δgu = −mu,

we have

Δgf = gij
(
∂i∂j − Γk

ij∂k

)(
gαβ

〈
Ju, uα

〉〈
Ju, uβ

〉)

= ∂i

(
∂ig

αβ
〈
Ju, uα

〉〈
Ju, uβ

〉
+ 2∂i

〈
Ju, uα

〉〈
Ju, uα

〉)

= ∂2
iig

αβ
〈
Ju, uα

〉〈
Ju, uβ

〉
+ 2∂2

ii

〈
Ju, uα

〉〈
Ju, uα

〉
+ 2∂i

〈
Ju, uα

〉
∂i

〈
Ju, uα

〉

= −
(
∂2

iigαβ

)〈
Ju, uα

〉〈
Ju, uβ

〉
+ 2∂i

(〈
Jui, uα

〉
+
〈
Ju, uαi

〉)〈
Ju, uα

〉

+ 2
(〈
Jui, uα

〉
+
〈
Ju, uαi

〉)(〈
Jui, uα

〉
+
〈
Ju, uαi

〉)

= −gαβ,ii

〈
Ju, uα

〉〈
Ju, uβ

〉
+ 2
(〈
Jui, uαi

〉
+
〈
Ju, uαii

〉)〈
Ju, uα

〉
+ 2
〈
Ju, uαi

〉2

= −gαβ,ii

〈
Ju, uα

〉〈
Ju, uβ

〉

+ 2
(
∂i

〈
Jui, uα

〉
−
〈
Juii, uα

〉
+
〈
Ju, uαii

〉)〈
Ju, uα

〉
+ 2
〈
Ju, uαi

〉2

= −gαβ,ii

〈
Ju, uα

〉〈
Ju, uβ

〉
− 2
〈
JΔgu, uα

〉〈
Ju, uα

〉

+ 2

〈
Ju,
(
Δgu

)
α

+

(
gβi,iα −

1

2
gii,βα

)
uβ

〉
〈
Ju, uα

〉
+ 2
〈
Ju, uαi

〉2

=
(
2giβ,iα − gαβ,ii − gii,αβ

)〈
Ju, uα

〉〈
Ju, uβ

〉
+ 2(m)

〈
Ju, uα

〉〈
Ju, uα

〉

− 2(m)
〈
Ju, uα

〉〈
Ju, uα

〉
+ 2
〈
Ju, uαi

〉2

= 2Rαiβi

〈
Ju, uα

〉〈
Ju, uβ

〉
+ 2
〈
Ju, uαi

〉2

= 2Rαβ

〈
Ju, uα

〉〈
Ju, uβ

〉
+ 2
〈
Ju, uαi

〉2
.

(3.9)

This completes the proof of the Bochner-type formula for f. �

4 Local example

In this section, we construct non-Lagrangian minimal cones in C
3 with isotropic link in

R
5. The local example illustrates there might be non-Lagrangian minimal cones in C

3

with isotropic link on S5 with genus gΣ > 1.

Consider the cone in R
6

X =

(
x1, x2, x3, x1, x2, x3h

(
x1, x2

x3

))
, (4.1)
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where h : R
2

→ R is a scalar function. For the homogeneous order-one function

H
(
x1, x2, x3

)
= x3h

(
x1

x3
,
x2

x3

)
, (4.2)

one has

∇H(x) = ∇H
(
x1

x3
,
x2

x3
, 1

)

=

(
h1

(
x ′

x3

)
, h2

(
x ′

x3

)
, h

(
x ′

x3

)
−
x1

x3
h1

(
x ′

x3

)
−
x2

x3
h2

(
x ′

x3

))
,

(4.3)

where x ′ = (x1, x2). Take the complex structure on R
3 × R

3 and let ω be the standard

symplectic form on C
3. Then

ω|X = dx3 ∧ dH

= h1

(
x ′

x3

)
dx3 ∧ dx1 + h2

(
x ′

x3

)
dx3 ∧ dx2.

(4.4)

In particular,ω|X = 0when x3 ≡ 1, that is, the cone has an isotropic link in R
5 = {x3 = 1}.

The induced metric on the cone in coordinates (x1, x2, x3) is

g(x) = 2
(
dx1

)2
+ 2
(
dx2

)2
+
(
dx3

)2
+ (dH)2 (4.5)

and satisfies

gij(x) = gij

(
x ′

x3
, 1

)
. (4.6)

The Hessian ofH(x) satisfies

D2H(x) =
1

x3
D2H

(
x ′

x3
, 1

)

=
1

x3

⎡

⎢
⎣
I2×2 0

−x ′

x3
1

⎤

⎥
⎦

[
D2h 0

0 0

]⎡

⎣I2×2
−x ′

x3

0 1

⎤

⎦ .

(4.7)

The minimal surface system is

3
∑

i,j=1

gij∂ijX = 0. (4.8)
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In the above setting, the minimal surface system reduces to

3
∑

i,j=1

gij(x)∂ijH(x) =
1

x3

3
∑

i,j=1

gij

(
x ′

x3
, 1

)
Hij

(
x ′

x3
, 1

)
= 0, (4.9)

or

3
∑

i,j=1

gij

(
x ′

x3
, 1

)
Hij

(
x ′

x3
, 1

)
= 0, (4.10)

or even the equation with x3 = 1:

0 = Tr
(
g−1(x ′, 1)D2H(x ′, 1)

)

= Tr

([
I2×2 −x ′

0 1

]

g−1(x ′, 1)

[
I2×2 0

−x ′ 1

][
D2h 0

0 0

]

= F
(
h11, h12, h22, h1, h2, h, x

1, x2
)
)

.

(4.11)

Now that F(h11, h12, h22, h1, h2, h, x
1, x2) = 0 is an elliptic equation, by the Cauchy-

Kowalewski theorem one can solve the Cauchy problem with analytic data:

F
(
h11, h12, h22, h1, h2, h, x

1, x2
)

= 0,

h
(
x1, 0

)
= ϕ

(
x1
)
,

h2

(
x1, 0

)
= ψ

(
x1
)
.

(4.12)

Conclusion. One can prescribe the Cauchy data for the minimal cone with isotropic link

in R
5 so that

h1 = ϕ ′ = 0, h2 = ψ = 0, (4.13)

in turn, we have constructed the non-Lagrangian minimal cone

ω|X = h1

(
x1, x2

x3

)
dx3 ∧ dx1 + h2

(
x1, x2

x3

)
dx3 ∧ dx2 = 0. (4.14)
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