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1. Introduction

In this paper, we resolve the singularities of the minimal Hopf cones found in Lawson
and Osserman [1]. The Lipschitz yet non C1 minimal graph cone in R2m × Rm+1 is

Cm =
{(

x, Sm
H (x)

r

)
: x ∈ R2m

}
,

where m = 2, 4, 8, Sm =
√

2m+1
4(m−1) , r = |x| , and the Hopf map H : Rm × Rm → Rm+1

is defined as follows. One identifies Rm with the normed algebra, complex numbers C
(m = 2), quaternions H (m = 4), and octonions O (m = 8). Let x = (u, v) ∈ Rm×Rm,
then

H (x) =
(
|u|2 − |v|2 , 2vū

)
.

For each of the minimal Hopf cones, we prove there exist a family of regular minimal
graphs in R2m×Rm+1 whose tangent cone at ∞ are the minimal Hopf cone Cm. To be
precise, we have
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Theorem 1.1 There exist a family of analytic minimal graphs

Gµ =
{(

x, µ−1f(µr)
H(x)

r2

)
: x ∈ R2m

}

for m = 2, 4, 8, where µ > 0 and f satisfies

0 ≤ f (r) < Smr,

0 ≤ fr (r) ;

and for small r near 0

f (r) = O
(
r2

)
,

fr (r) = O (r) ;

while for large r

f (r) = Smr + O

(
1
rδ

)
,

fr (r) = Sm + O

(
1

r1+δ

)

with δ = m−
√

m2 − 2m + 1
2m − 1 > 0.

Further we have another family of minimal graphs which are “above” each of the
minimal Hopf cones in the sense that f (r) > Smr. Their tangent cones at ∞ are still
the minimal Hopf cone Cm. This family of minimal graphs are only regular away from
0× Rm+1, but have finite area near the singular points.

Theorem 1.1. Theorem 1.2 There exist a family of analytic minimal graphs

Gµ =
{(

x, µ−1f(µr)
H(x)

r2

)
: x ∈ R2m\ {0} ,

}

for m = 2, 4, 8, where µ > 0 and f satisfies

f (r) > Smr,

fr (r) ≥ 0;

for small r near 0

f (r) = O (1) ,

fr (r) = O (r) ;

for large r

f (r) = Smr + O

(
1
rδ

)
,

fr (r) = Sm + O

(
1

r1+δ

)
.

Moreover, in the case m = 2, one can take δ = m +
√

m2 − 2m + 1
2m − 1 = 3

2 .
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Remark In fact, f satisfies f
(
4f2 − 5r2

)2 = 1 in the case m = 2, see Harvey and
Lawson [2, p.137].

Theorem 1.1 says there exist a family of global non-trivial minimal graphs of high co-
dimension with bounded slope. By contrast, any global minimal graph of co-dimension
one with bounded slope must be a hyperplane by the work of De Giorgi-Nash (cf. Moser
[3]).

In the co-dimension one setting, the resolution of the singularities of minimal (Si-
mons) cone by regular minimal graphs was first treated by Bombieri, De Giorgi and
Giusti [4], as a key step to solve completely the famous Bernstein problem. See also
Hardt and Simon [5] , McIntosh [6] , and Chan [7] for the resolution of the singularities
of other minimal cones.

The proof of our theorems relies on a symmetry reduction which reduces the prob-
lem to solving a nonlinear ordinary differential equation of second order. By suitable
transforms of both independent and dependent variables it turns out that the ode is
equivalent to an autonomous one. Then by a phase plane analysis we are able to find
the orbit which corresponds to the function f in our theorems.

We end the introduction by mentioning the area minimizing issue of the minimal
Hopf cones. In the case m = 2, Harvey and Lawson proved that C2 is area minimizing
by their calibration device. In fact, C2 and the graph Gµ in Theorem 1.2 with m = 2
are Sp1 invariant fourfolds in R7 which are coassociative, hence area minimizing, see
[2, Theorem 3.2]. It is tempting to guess that the other minimal Hopf cones and the
minimal graphs Gµ in Theorem 1.1 and 1.2 are also area minimizing.

2. Proof of Theorem 1.1

By the equi-variance of the Hopf map, for any fixed y ∈ R2m, there exists an
orthogonal transformation T ∈ O (2m) and an induced orthogonal transformation T ∈
O (m + 1) such that

y = (|y| , 0, · · · , 0) T,

and
H (xT ) = H (x) T for all x ∈ R2m

see the proposition in the appendix.
It follows that the minimal surface system

4gF = 0,

where F (x) =
(
x, f (r) H(x)

r2

)
, or equivalently (see Osserman [8, Theorem 2.2])

2m∑

i,j=1

gij ∂2

∂xi∂xj
F = 0,

holds if and only if it holds at (r, 0, · · · , 0) ∈ R2m, where the induced metric g =
∇F (∇F )′ and

(
gij

)
= g−1.
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Now at (r, 0, · · · , 0), the induced metric g takes the form




g11 = 1 + f2
r

gii = 1 2 ≤ i ≤ m

gii = 1 + 4f2

r2 m + 1 ≤ i ≤ 2m

gij = 0 i 6= j

,

and the double derivatives of F satisfy




F 2m+1
11 = frr

F 2m+1
ii = fr

r 2 ≤ i ≤ m

F 2m+1
ii = fr

r − 4f
r2 m + 1 ≤ i ≤ 2m

F k
ii = 0 k 6= 2m + 1

.

Thus the minimal surface system reduces to

frr

1 + f2
r

+ (m− 1)
fr

r
+ m

1

1 + 4f2

r2

(
fr

r
− 4f

r2

)
= 0

or
frr

1 + f2
r

+
[
m− 1 +

mr2

r2 + 4f2

]
fr

r
− 4mf

r2 + 4f2
= 0, (2.1)

where m = 2 (complex), 4 (quaternion), or 8 (octonion).
Set ϕ = f/r, t = ln r, then fr = rϕr + ϕ = ϕt + ϕ, and frr = (ϕtt + ϕt) /r. The ode

(2.1) becomes

ϕtt + ϕt

1 + (ϕt + ϕ)2
+

(
m− 1 +

m

1 + 4ϕ2

)
ϕt +

(
m− 1− 3m

1 + 4ϕ2

)
ϕ = 0.

Now we have the system
{

ϕt = ψ

ψt = −ψ −
[(

m− 1 + m
1+4ϕ2

)
ψ +

(
m− 1− 3m

1+4ϕ2

)
ϕ
] [

1 + (ψ + ϕ)2
]

or




ϕt = ψ

ψt = −ψ −
[(

m− 1 + m
1+4ϕ2

)
ψ + 4 (m− 1)

ϕ2− 2m+1
4(m−1)

1+4ϕ2 ϕ

] [
1 + (ψ + ϕ)2

]
.

(2.2)

At the saddle critical point (0, 0) , the linearized system is
[

0 1
2m + 1 −2m

]

and λ1 = 1, V1 = (1, 1) , λ2 = − (2m + 1) , V2 = (1,− (2m + 1))
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At the stable critical point (Sm, 0), the linearized system is
[

0 1
−2m + 1

2m −2m

]
,

the two eigenvalues are both negative, λ1,2 = −m±
√

m2 − 2m + 1
2m < −1.

(2.2) is an autonomous system. We simply write it as

zt = X(z),

where z = (ϕ,ψ) and X = (X1, X2). Let ∆ be the (closed) triangle with the three
vertices P0(0, 0), P1(Sm, 0) and P2(0,mSm). Then one can check that ∆ is a positive
invariant set of the system by verifying that the vector field X points inward at the three
boundary segments except at the two singular points P0 and P1, where X vanishes. In
other words, we need to show

(1) X2(ϕ, 0) > 0, for ϕ ∈ (0, Sm);
(2) X1(0, ψ) > 0, for ψ ∈ (0,mSm];
(3) X2(ϕ,m(Sm − ϕ))/X1(ϕ,m(Sm − ϕ)) < −m, for ϕ ∈ [0, Sm).

(1) and (2) are obvious, (3) needs a little calculation.
Indeed along segment P1P2

X2

X1
= −1−

[(
m− 1 +

m

1 + 4ϕ2

)
+ 4 (m− 1)

ϕ + Sm

1 + 4ϕ2

ϕ

−m

] [
1 + (ψ + ϕ)2

]

= −1−
[(

m− 1 +
m

1 + 4ϕ2

)
−

(
m− 1

m

)(
1 +

4Smϕ− 1
1 + 4ϕ2

)] [
1 + (ψ + ϕ)2

]

= −1−

m +

1
m
− 2 +

(
m− 1

m

)
4Sm

m2+m−1
(m−1)4Sm

− ϕ

1 + 4ϕ2




[
1 + (ψ + ϕ)2

]
.

Notice that the function h =
m2+m−1
(m−1)4Sm

−ϕ

1+4ϕ2 = c−ϕ
1+4ϕ2 has two critical points c±

√
c2 + 1

4 , h

is decreasing for 0 < ϕ < c+
√

c2 + 1
4 , and increasing for ϕ > c+

√
c2 + 1

4 . Furthermore,
h′ (Sm) < 0, we see that h is decreasing on [0, Sm] . Then


m +

1
m
− 2 +

(
m− 1

m

)
4Sm

m2+m−1
(m−1)4Sm

− ϕ

1 + 4ϕ2




≥
(

m +
2
m
− 3 +

(m− 1)
(
m2 + 2m− 2

)

3m2

)
> 0.

Also ψ + ϕ ≥ Sm on the segment P1P2. Thus one checks (3) directly.
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Since ∆ is a positive invariant set, any orbit starting at a point in ∆ will stay in
∆ for all t > 0. Now, P0 is a saddle point, and from the linearized system at P0 one
sees that exactly one orbit Γ in ∆ goes to P0 as t → −∞, see Hartman [9, p.217]. As
t → ∞, the ω-limit set of Γ can only be a limit cycle or a singular point inside the
triangle ∆. Since there are no singular points in the interior of ∆, there cannot be
limit cycles in ∆ (cf. [9, p.150-151]). Also, the other separatrix to P0 are outside the
triangle ∆, so the orbit Γ cannot go back to P0 as t →∞. It follows that Γ has to go
to the singular point P1, and we see that Γ is the unique orbit in ∆ connecting P0 and
P1.

Now from Γ ⊂ ∆, it follows immediately that 0 ≤ f (r) = rϕ < Smr, and fr (r) =
ϕ + rϕr = ϕ + ψ ≥ 0.

Next we know that f (r) is smooth for r > 0. By Theorem 3.5 in [9]

ϕ (t) = O
(
et

)

ψ (t) = O
(
et

)

as t → −∞, then as r → 0,

f (r) = rϕ = O
(
r2

)

fr (r) = ϕ + ψ = O (r) .

It follows that F (x) is C1 near 0. Finally the minimal surface is analytic, see Morrey
[10, Theorem 6.8.1].

Asymptotic behavior of f for large r follows from that the two eigenvalues of the
linearized system at the attractor (Sm, 0) are both less than −1. By Theorem 3.5 in
chapter VIII of [9],

ϕ (t) = Sm + O

(
e

�q
m2−2m+ 1

2m
−m

�
t
)

ψ (t) = O

(
e

�q
m2−2m+ 1

2m
−m

�
t
)

as t → +∞. Then for large r

f (r) = rϕ = r

(
Sm + O

(
r

q
m2−2m+ 1

2m
−m

))

= Smr + O

(
1
rδ

)

and

fr (r) = ϕ + ψ = Sm + O

(
1

r1+δ

)
.

Once ϕ (t) is a solution, ϕ (t + c) is also a solution for any constant c. Correspond-
ingly, we have a family of solutions f(µr)

µ with µ = ec > 0.
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Remark In the complex case m = 2, one can rewrite the ode (2.1) in a different
form.

ϕtt + ϕt

1 + (ϕ + ϕt)
2 +

4ϕt

1 + 4ϕ2
+

4ϕ2 − 1
4ϕ2 + 1

(
ϕt + ϕ− 4ϕ

4ϕ2 − 1

)
= 0,

d

dt
[arctan (ϕt + ϕ) + 2 arctan 2ϕ] +

4ϕ2 − 1
4ϕ2 + 1

(
ϕt + ϕ− 4ϕ

4ϕ2 − 1

)
= 0,

d

dt

[
arctan (ϕt + ϕ)− arctan

4ϕ

4ϕ2 − 1

]
+

4ϕ2 − 1
4ϕ2 + 1

(
ϕt + ϕ− 4ϕ

4ϕ2 − 1

)
= 0,

d

dt

[
arctan

ϕt + ϕ− 4ϕ
4ϕ2−1

1 + (ϕt + ϕ) 4ϕ
4ϕ2−1

]
+

4ϕ2 − 1
4ϕ2 + 1

(
ϕt + ϕ− 4ϕ

4ϕ2 − 1

)
= 0.

Then solutions to the first order ode

ϕt + ϕ− 4ϕ

4ϕ2 − 1
= 0 (2.3)

are also solutions to (2.1). In terms of f, the above equation reads

d

dr

[
arctan

fr − 4rf
4f2−r2

1 + 4rffr

4f2−r2

]
+

4f2 − r2

4f2 + r2

(
fr − 4rf

4f2 − r2

)
= 0,

the first order ode for f is fr − 4rf
4f2−r2 = 0, which was first found in [2, Lemma 3.7].

3. Proof of Theorem 1.2

We first handle the case m = 4 and 8. With the set up in the proof of Theorem
1.1, we start from (2.2). We look for solutions f (r) to (2.1) satisfying in particular
f (r) > Smr and fr (r) = O (r) for small r. Note that ϕ = f/r and ϕ + ψ = fr, we are
led to the following transformation

{
η = 1

ϕ

ξ = ϕ + ψ
.

With (2.2) and {
ϕ = 1

η

ψ = ξ − 1
η

we get the system for (η, ξ)
{

ηt = η (1− ηξ)
ξ = {4mη − [4 (m− 1) + (2m− 1) ξ]} 1+ξ2

4+η2

. (3.1)

We analyze (3.1) in a similar way as for (2.2).
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At the saddle critical point (0, 0) , the linearized system is
[

1 0
m 1−m

]

and λ1 = 1, V1 = (1, 1) , λ2 = 1−m, V2 = (0, 1) .
At the stable critical point (1/Sm, Sm), the linearized system is

[
−1 − 1

S2
m

2m−1
2m S2

m 1− 2m

]

and

λ1 = −m +

√
m2 − 2m +

1
2m

< −1, V1 =
(
1, (−1− λ1) S2

m

)
,

λ2 = −m−
√

m2 − 2m +
1

2m
< −1, V2 =

(
1, (−1− λ2) S2

m

)
.

(3.1) is again an autonomous system. We write it as

zt = X(z),

where z = (η, ξ) and X = (X1, X2). Let Θ be the “trapped” region bounded by

ξ = kη for large k,

ξ = S2
mη,

ηξ = 1,

we see that Θ is a positive invariant set of the system by verifying that the vector field
X points inward along the boundary of Θ except the two singular points (0, 0) and
(1/Sm, Sm) . Indeed along {ξ = kη} ∩Θ we have

X2

X1
=

4m− [
4 (m− 1) + (2m + 1) η2

]
k

1− ηξ

(
1 + kη2

4 + η2

)
< 0 < k,

for large k say k > m/ (m− 1) .
Along {ηξ = 1} ∩Θ we have

X1 = 0,

X2 =
{
4mη2 − [

4 (m− 1) + (2m + 1) η2
]
ξη

} 1
η

1 + ξ2

4 + η2

=
[
4mη2 − 4 (m− 1)− (2m + 1) η2

] 1
η

1 + ξ2

4 + η2

= (2m + 1)
[
η2 − 1

S2
m

]
1
η

1 + ξ2

4 + η2

< 0.
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Along
{
ξ = S2

mη
} ∩Θ we have

X2

X1
=

4m− [
4 (m− 1) + (2m + 1) η2

]
S2

m

1− S2
mη2

1 + S2
mη2

4 + η2

= (2m− 1)
1 + S2

mη2

4 + η2

> (2m− 1)
1
4

> S2
m for m = 4 and 8.

The following argument is similar to the one in the proof of Theorem 1.1. Since
Θ is a positive invariant set, any orbit starting at a point in Θ will stay in Θ for all
t > 0. Now (0, 0) is a saddle point, and from the linearized system at (0, 0) one sees
that exactly one orbit Γ in Θ goes to (0, 0) as t → −∞, see Hartman [9, p.217] . As
t → ∞, the ω-limit set of Γ can only be a limit cycle or a singular point inside Θ.
Since there are no singular points in the interior of Θ, there cannot be limit cycles in
Θ (cf. [9, p.150-151]). Also, since the other separatrix to (0, 0) are outside Θ, the orbit
Γ cannot go back to (0, 0) as t → ∞. It follows that Γ must go to the singular point
(1/Sm, Sm) as t → ∞. Therefore, we see that Γ is the unique orbit in Θ connecting
(0, 0) and (1/Sm, Sm) .

Now from Γ ⊂ Θ, it follows immediately that f(r)
r = ϕ = 1

η > Sm, and fr (r) =
ϕ + ψ = ξ ≥ 0.

By Theorem 3.5 in chapter VIII of [9]

η (t) = O
(
et

)

ξ (t) = O
(
et

)

as t → −∞, then as r → 0,

f (r) = rϕ = r
1
η

= O (1)

fr (r) = ϕ + ψ = ξ = O (r) .

Also we know f (r) is smooth for r > 0, the minimal surface F is analytic away from
0× Rm+1, see Morrey [10, Theorem 6.8.1].

By Theorem 3.5 in [9] again,

η (t) =
1

Sm
+ O

(
e

�q
m2−2m+ 1

2m
−m

�
t
)

ξ (t) = Sm + O

(
e

�q
m2−2m+ 1

2m
−m

�
t
)

as t → +∞. Then for large r

f (r) = rϕ = r
1
η

= r

(
1

Sm
+ O

(
r

q
m2−2m+ 1

2m
−m

))

=
r

Sm
+ O

(
1
rδ

)
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and

fr (r) = ϕ + ψ = ξ = Sm + O

(
1

r1+δ

)
.

Once ϕ (t) is a solution, ϕ (t + c) is also a solution for any constant c. Correspond-
ingly, we have a family of solutions f(µr)

µ with µ = ec > 0.
Finally we deal with the case m = 2 separately, since the “trapped” region is not

easy to find. However from the remark in section 2, we know ϕ = f/r satisfies (2.3)
which can be solved explicitly. In fact it was already done in [2, Lemma 3.7]. We
include it here for completeness. Integrate (2.3) and use the original variable r, we
have

r =
1
µ

[
1

ϕ (4ϕ2 − 5)2

]1/5

,

with constant µ > 0. From this, one easily see the conclusion in Theorem 1.2. And the
proof for Theorem 1.2 is complete.

Remark In the case m = 2, observe that the corresponding orbit (η, ξ) is still
the unique one connecting (0, 0) and (1/Sm, Sm) because (0, 0) is a saddle point, see
[9, p.217].

4. Appendix: Cayley-Dickson Process for B = O⊕O
In this appendix, we present some simple algebra needed to justify the equi-variance

of the Hopf maps in the complex, quaternionic, and octonionic cases. We mainly deal
with the octonionic case, the former two cases follows easily along the same lines,
because the alternativity and Moufang identity are already available for the normed
quaternions and octonions. The complex case is straight forward, in fact it could be
done by other means (see Harvey-Lawson [2, p.135]).

Given a normed algebra A, one obtains a new algebra B = A ⊕ A via the Cayley-
Dickson process, where the product is defined by

(a, b) (c, d) =
(
ac− d̄b, da + bc̄

)
,

and the conjugate of (a, b) is defined by

(a, b) = (ā,−b) .

This way, we have the complex numbers, quaternions (Hamilton numbers), and octo-
nions (Cayley numbers)

C = R⊕ R, H = C⊕ C, O = H⊕H.

However the next algebra B = O⊕O is not normed any more by Hurwitz theorem (cf.
[2, Theorem A.12]), that is, |(a, b) (c, d)| = |(a, b)| |(c, d)| does not hold in general for all
a, b, c, d ∈ O. Yet

∣∣∣(a, b) (a, b)
∣∣∣ = |(a, b)|2 is still valid. We start our presentation here.

1. Cayley-Dickson
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For x = (u, v) ∈ O⊕O, the Hopf map

H (x) = (ū, v) (u, v) =
(
|u|2 − |v|2 , 2vū

)
.

Set (U, V ) = (u, v) (β, b) , then

(U, V ) =
(
uβ − b̄v, bu + vβ̄

)
=

(
uβ − b̄v, bu + vβ

)
,(

Ū , V
)

=
(
β̄ū− v̄b, bu + vβ̄

)
=

(
β̄, b

)
(ū, v) = (β, b) (ū, v)

for real β.

2. Alternativity

[(1, a) (c, d)] (1, a) = (1, a) [(c, d) (1, a)] .

In fact

LHS =
(
c− d̄a, d + ac̄

)
(1, a) =

(
c− d̄a− ād− |a|2 c̄, ac− ad̄a + d + ac̄

)
,

RHS = (1, a) (c− ād, ac + d) =
(
c− ād− c̄ |a|2 − d̄a, ac + d + ac̄− ad̄a

)
,

so LHS = RHS, where we use the alternativity of octonions, ā (ac̄) = (āa) c, (c̄ā) a =
c̄ (āa) , and a

(
d̄a

)
=

(
ad̄

)
a, or Artin Theorem, which says the subalgebra with unit

generated by any two octonions is associative (cf. [2, Theorem A.13]).
3. Moufang Identity

[(1, a) (c̄, d)] [(c, d) (1, a)] = (1, a) [(c̄, d) (c, d)] (1, a)

= (1, a)
(
|c|2 − |d|2 , 2dc̄

)
(1, a) . (4.1)

By 2. the right hand sides make sense. We compute

[(1, a) (c̄, d)] [(c, d) (1, a)]
=

(
c̄− d̄a, d + ac

)
(c− ād, ac + d)

=
((

c̄− d̄a
)
(c− ād)− (

c̄ā + d̄
)
(d + ac) , (ac + d)

(
c̄− d̄a

)
+ (d + ac)

(
c̄− d̄a

))

=

(
|c|2 − c̄ (ād)− (

d̄a
)
c + |d|2 |a|2

− (c̄ā) d− |c|2 |a|2 − |d|2 − d̄ (ac)
,

a |c|2 − (ac)
(
d̄a

)
+ dc̄− |d|2 a

+dc̄− |d|2 a + a |c|2 − (ac)
(
d̄a

)
)

=

( (
1− |a|2

)(
|c|2 − |d|2

)

−c̄ (ād)− (
d̄a

)
c− (c̄ā) d− d̄ (ac)

, 2
(
|c|2 − |d|2

)
a− 2a

(
cd̄

)
a + 2dc̄

)
,

where again we use Artin Theorem and Moufang identity for Octonions. We also use
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them in the following

(1, a)
(
|c|2 − |d|2 , 2dc̄

)
(1, a)

=
(
|c|2 − |d|2 − 2

(
cd̄

)
a, 2dc̄ + a

(
|c|2 − |d|2

))
(1, a)

=


 |c|2 − |d|2 − 2

(
cd̄

)
a

−2ā (dc̄)− |a|2
(
|c|2 − |d|2

) ,
a

(
|c|2 − |d|2

)
− 2a

(
cd̄

)
a

+2dc̄ + a
(
|c|2 − |d|2

)



=

( (
1− |a|2

)(
|c|2 − |d|2

)

−2
(
cd̄

)
a− 2ā (dc̄)

, 2
(
|c|2 − |d|2

)
a− 2a

(
cd̄

)
a + 2dc̄

)
.

Claim:
c̄ (ād) +

(
d̄a

)
c + (c̄ā) d + d̄ (ac) = 2

(
cd̄

)
a + 2ā (dc̄) .

Applying Artin Theorem, we have

c̄ (ād) +
(
d̄a

)
c + (c̄ā) d + d̄ (ac)

=
c
[
c̄ (ād) +

(
d̄a

)
c
]
c̄

|c|2 +
d

[
(c̄ā) d + d̄ (ac)

]
d̄

|d|2
= (ād) c̄ + c

(
d̄a

)
+ d (c̄ā) + (ac) d̄,

and

2
(
cd̄

)
a + 2ā (dc̄) =

(
cd̄

)
a + ā (dc̄) +

(
cd̄

)
a + ā (dc̄)

=
(
cd̄

)
a + ā (dc̄) +

a
[(

cd̄
)
a + ā (dc̄)

]
ā

|a|2
=

(
cd̄

)
a + ā (dc̄) + a

(
cd̄

)
+ (dc̄) ā.

Then
[
(ād) c̄ + c

(
d̄a

)
+ d (c̄ā) + (ac) d̄

]− [(
cd̄

)
a + ā (dc̄) + a

(
cd̄

)
+ (dc̄) ā

]

= [ā, d, c̄]− [
c, d̄, a

]
+

[
a, c, d̄

]− [d, c̄, ā] ,

where the associator [a, b, c] , (ab) c− a (bc) . Observe that if one of a, c, d is real, then
all [ ] terms vanish. Without loss of generality, we assume a, c, d are all imaginary,
then

[ā, d, c̄]− [
c, d̄, a

]
+

[
a, c, d̄

]− [d, c̄, ā]
= [a, d, c] + [c, d, a]− [a, c, d]− [d, c, a]
= [a, d, c] + [a, c, d]− [a, c, d]− [a, d, c]
= 0,

where we use the alternativity of octonions (cf. [2, Lemma A.4]). The claim is proved,
and we have the Moufang identity (4.1).
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4. Partial Norm

|(1, a) (c, d)| = |(1, a)| |(c, d)| ,
|(c, d) (1, a)| = |(c, d)| |(1, a)| .

We show the first identity first.

|(1, a) (c, d)|2 =
∣∣(c− d̄a, d + ac̄

)∣∣2
=

(
c− d̄a

)
(c̄− ād) + (d + ac̄)

(
d̄ + cā

)

= |c|2 − c (ād)− (
d̄a

)
c̄ + |d|2 |a|2 + |d|2 + d (cā) + (ac̄) d̄ + |a|2 |c|2

=
(
1 + |a|2

)(
|c|2 + |d|2

)
− c (ād)− (

d̄a
)
c̄ +

d̄
[
d (cā) + (ac̄) d̄

]
d

|d|2

=
(
1 + |a|2

)(
|c|2 + |d|2

)
− c (ād)− (

d̄a
)
c̄ + (cā) d + d̄ (ac̄)

=
(
1 + |a|2

)(
|c|2 + |d|2

)
+ [c, ā, d]− [

d̄, a, c̄
]
.

We handle the two [ ] terms similarly as in 3. If one of a, c, d is real, then both [ ]
terms vanish. Without loss of generality, we assume a, c, d are all imaginary, then

[c, ā, d]− [
d̄, a, c̄

]
= − [c, a, d]− [d, a, c] = [d, a, c]− [d, a, c] = 0.

Thus we have |(1, a) (c, d)| = |(1, a)| |(c, d)| . Relying on this first identity, we show the
second.

|(c, d) (1, a)| =
∣∣∣(c, d) (1, a)

∣∣∣ =
∣∣∣(1, a) (c, d)

∣∣∣ = |(1,−a) (c̄,−d)|
= |(1,−a)| |(c̄,−d)| = |(1, a)| |(c, d)| .

Proposition 4.1 For any fixed y ∈ H ∼= R4, O ∼= R8, or B = O⊕O ∼= R16, there
exists an orthogonal transformation T ∈ O (2m) and an induced orthogonal transfor-
mation T ∈ O (m + 1) with m = 2, 4, or 8 such that

y = (|y| , 0, · · · , 0) T,

H (xT ) = H (x) T for all x ∈ R2m,

where we also identify T and T with the orthogonal matrices.
Proof First we deal with the octonionic case B = O ⊕ O ∼= R16. Let x = (u, v) ,

define D (x) = xD = (u, v) (β, b) for |(β, b)| = 1 with real β. By 4. |D (x)| =
|(u, v)| |(β, b)| = |(u, v)| , then D is an orthogonal transformation in O (16) . It follows
from the above 3. and 2. that

H (D (x)) =
(
Ū , V

)
(U, V )

= [(β, b) (u, v)] [(u, v) (β, b)]

= (β, b)
(
|u|2 − |v|2 , 2vū

)
(β, b)

,
(
|u|2 − |v|2 , 2vū

)
D.
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By the above 4., we have
∣∣∣
(
|u|2 − |v|2 , 2vū

)
D

∣∣∣ = |(β, b)|
∣∣∣
(
|u|2 − |v|2 , 2vū

)∣∣∣ |(β, b)| =
∣∣∣
(
|u|2 − |v|2 , 2vū

)∣∣∣ .

We see that the induced D belongs to orthogonal transformation O (9) .
Further, we define E (x) = xE = (ēu, ev) for e ∈ O with |e| = 1. Then E ∈ O (16)

and

H (E (x)) =
(
|u|2 − |v|2 , 2 (ev) (ūe)

)

=
(
|u|2 − |v|2 , 2e (vū) e

)

,
(
|u|2 − |v|2 , 2vū

)
E ,

where we use Moufang identity for octonions (cf. [2, Lemma A. 16]). We have
∣∣∣
(
|u|2 − |v|2 , 2vū

)
E
∣∣∣ =

∣∣∣
(
|u|2 − |v|2 , 2vū

)∣∣∣ ,

then the induced E is an orthogonal transformation in O (9) .
Now set T = ED and T = ED, note that T (r, 0, · · · , 0) = (ēr, 0) (β, b) = (ērβ, bēr)

with r real runs over B = O⊕O, we thus prove the Proposition in the octonionic case.
Because the alternativity and Moufang identity are already available for octonions

(cf. [2, Appendix IV.A]), the other two cases of the proposition follows along the same
lines as above.
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