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GLOBAL SOLUTIONS TO SPECIAL LAGRANGIAN EQUATIONS

YU YUAN

(Communicated by Jon G. Wolfson)

Abstract. We show that any global solution to the special Lagrangian equa-
tions with the phase larger than a critical value must be quadratic.

1. Introduction

In this note, we show that any global solution u in Rn to the special Lagrangian
equation

(1.1)
n∑

i=1

arctan λi = c

with phase |c| > π
2 (n − 2) must be a quadratic polynomial, which states the λi’s

are the eigenvalues of the Hessian D2u. Recall the Bernstein theorem, where any

global solution to the minimal surface equation div

(
∇u√

1+|∇u|2

)
= 0 in R7 must be

a linear function.
Equation (1.1) stems from the special Lagrangian geometry [HL]. The La-

grangian graph (x,∇u (x)) ⊂ Rn × Rn is called special when the phase or the
argument of the complex number

(
1 +

√
−1λ1

)
· · ·

(
1 +

√
−1λn

)
is constant c, that

is, u satisfies equation (1.1), and it is special if and only if (x,∇u (x)) is a minimal
surface in R

n × R
n [HL, Theorem 2.3, Proposition 2.17]. To be precise, we state

Theorem 1.1. Let u be a smooth solution in Rn to (1.1) with |c| > π
2 (n − 2).

Then u is quadratic.

Fu [F] proved Theorem 1.1 in the two-dimensional case. Indeed (1.1) with c = π
2

in the 2-d case also has the Monge-Ampère form detD2u = 1, and Jörgens already
showed Theorem 1.1 in this special case earlier on (cf. [N]).

Other Bernstein-Liouville type results concerning (1.1) are in order. Borishenko
[B] showed that any convex solution with linear growth to (1.1) with c = kπ is
linear. The author [Y] proved that any convex solution to (1.1) must be quadratic.
For c = kπ in n = 3 case, (1.1) has another form

(1.2) �u = detD2u.
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It was proved in [BCGJ] that any strictly convex solution to (1.2) with quadratic
growth must be quadratic. Under the assumption that the Hessian is bounded and
λiλj ≥ −3

2 , it was also shown in [TW] that any global solution to (1.1) is quadratic.
The heuristic idea of the proof of Theorem 1.1 is to find a better graph represen-

tation of (x,∇u (x)) so that the Hessian of the new potential is bounded, and the
new potential function satisfies a convex uniformly elliptic equation. By Krylov-
Evan’s [K], [E] interior Hölder estimates on the Hessian, we draw the conclusion.

As there are nontrivial global harmonic solutions to (1.1) with c = 0 in the case
n = 2, we guess (1.1) with c = π

2 (n − 2) also has nontrivial global solutions in the
higher-dimensional case. Observe that in the case n = 3 and c = π

2 , (1.1) also takes
the interesting form λ1λ2 + λ2λ3 + λ3λ1 = 1.

2. Proof

Step 1. We first find a better graph representation of M through Lewy rotation
(cf. [N]) so that the Hessian of the potential function is bounded. By symmetry
we only consider the case c > π

2 (n − 2) . Let
∑n

i=1 θi = π
2 (n − 2) + δ, where θi =

arctan λi ∈
(
−π

2 , π
2

)
and δ ∈ (0, π) . Note that

(2.1) −π

2
+

(n − 1)
n

δ < θi −
δ

n
<

π

2
− δ

n
.

The first inequality follows from π
2 (n − 2) + δ < θi + π

2 (n − 1) . We rotate the
(x, y) ∈ Rn × Rn coordinate system to (x̄, ȳ) by δ

n , namely, x̄ = x cos δ
n + y sin δ

n ,

ȳ = −x sin δ
n + y cos δ

n . In terms of complex variables z = x +
√
−1y, that is, we

identify Rn ×Rn with Cn, the rotation takes the form z̄ = e−
√
−1δ/nz. Then M has

a new parametrization {
x̄ = x cos δ

n + ∇u (x) sin δ
n ,

ȳ = −x sin δ
n + ∇u (x) cos δ

n .

By (2.1), M = (x,∇u (x)) is still a graph over the whole x̄ space Rn. Further the
rotation belongs to U (n). Then M is also a special Lagrangian graph (x̄,∇ū (x̄)) ,
where ū is a smooth function [HL, p. 87, Proposition 2.17]. Let λ̄i be the eigenvalues
of D2ū. Then θ̄i = arctan λ̄i = θi − δ

n ∈
(
−π

2 + (n−1)
n δ, π

2 − δ
n

)
. That is,∣∣D2ū

∣∣ ≤ C (δ) .

Finally ū satisfies the equation

(2.2)
n∑

i=1

arctan λ̄i =
π

2
(n − 2) .

Step 2. We proceed with the following lemma, which is Lemma 8.1 in [CNS]
when n is even and c = π

2 (n − 2) .

Lemma 2.1. Let f (λ1, · · · , λn) =
∑n

i=1 arctan λi and let Γ = {λ|f (λ) = c} with
|c| ≥ π

2 (n − 2). Then Γ is convex.

Proof. We skip the case n = 1. By symmetry we just consider the case c ≥ 0. Set
c = π

2 (n − 2) + δ with δ ∈ [0, π). We may assume that θi = arctanλi ≥ 0 for
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i = 1, · · · , n − 1. The normal of Γ is ∇f =
(
cos2 θ1, · · · , cos2 θn

)
. Let

A � −1
2
D2f =

⎡
⎣ tan θ1 cos4 θ1

· · ·
tan θn cos4 θn

⎤
⎦ .

Take any tangent vector T = (t1, · · · , tn) ∈ TλΓ, that is,
n∑

i=1

ti cos2 θi = 0.

We show that A (T, T ) ≥ 0.
Case a) θn ≥ 0. Certainly it is true.
Case b) θn < 0. First we know that θi > 0 for i = 1, · · · , n − 1 and δ < π

2 . Next
we have

A (T, T ) =
n−1∑
i=1

tan θi cos4 θit
2
i + tan θn cos4 θnt2n.

Now we use the trick in [CNS, p. 299],

(−tn cos θn)2 =

(
n−1∑
i=1

ti cos2 θi

)2

≤
(

n−1∑
i=1

t2i cos4 θi tan θi

)(
n−1∑
i=1

cot θi

)
.

Then

tan θn cos4 θnt2n ≥
(

n−1∑
i=1

t2i cos4 θi tan θi

)(
n−1∑
i=1

cot θi

)
tan θn

and

A (T, T ) ≥
(

n−1∑
i=1

t2i cos4 θi tan θi

)[
1 +

(
n−1∑
i=1

cot θi

)
tan θn

]

=

(
n−1∑
i=1

t2i cos4 θi tan θi

)(
n∑

i=1

cot θi

)
tan θn.

Let αi = π
2 − θi. We have

π

2
< π − δ = α1 + · · · + αn < π,

0 < α1, · · · , αn−1 <
π

2
< αn,

and
n∑

i=1

cot θi =
n−1∑
i=1

tan αi + tan αn.

It follows that tan αn < 0 and

tan (α1 + · · · + αn−1) + tanαn

1 − tan (α1 + · · · + αn−1) tanαn
= tan (α1 + · · · + αn) < 0.
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Then tan (α1 + · · · + αn−1)+tanαn < 0. Note that α1+· · ·+αn−1 = π−δ−αn < π
2 ;

we have

tan (α1 + · · · + αn−1) ≥ tanα1 + tan (α2 + · · · + αn−1)
· · ·
≥ tanα1 + tan α2 + · · · + tanαn−1.

So
∑n

i=1 cot θi =
∑n

i=1 tanαi < 0 and A (T, T ) ≥ 0. Therefore Γ is convex (w.r.t.
the normal ∇f). �
Remark 1. The level set Γ is no longer convex or concave when |c| < π

2 (n − 2) .

Step 3. The final argument is standard. We now have global solution ū with
bounded Hessian on the convex level set Γ, more precisely a convex level set in
the symmetric matrix space (cf. [CNS, p. 276]). In another word, ū satisfies (2.2),
which is now uniformly elliptic. By Krylov-Evans theorem ([K],[E])

[
D2ū

]
Cβ(Br)

≤ C (n, δ)

∥∥D2ū
∥∥

L∞(B2r)

rβ
≤ C (n, δ)

rβ
,

where β = β (n, δ) ∈ (0, 1) . Let r go to +∞; we see that D2ū is a constant matrix.
Thus (x̄,∇ū) is a plane, and consequently u is quadratic.
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