GLOBAL SOLUTIONS TO SPECIAL LAGRANGIAN EQUATIONS

YU YUAN
(Communicated by Jon G. Wolfson)

Abstract

We show that any global solution to the special Lagrangian equations with the phase larger than a critical value must be quadratic.

1. Introduction

In this note, we show that any global solution u in \mathbb{R}^{n} to the special Lagrangian equation

$$
\begin{equation*}
\sum_{i=1}^{n} \arctan \lambda_{i}=c \tag{1.1}
\end{equation*}
$$

with phase $|c|>\frac{\pi}{2}(n-2)$ must be a quadratic polynomial, which states the λ_{i} 's are the eigenvalues of the Hessian $D^{2} u$. Recall the Bernstein theorem, where any global solution to the minimal surface equation $\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0$ in \mathbb{R}^{7} must be a linear function.

Equation (1.1) stems from the special Lagrangian geometry HL. The Lagrangian graph $(x, \nabla u(x)) \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called special when the phase or the argument of the complex number $\left(1+\sqrt{-1} \lambda_{1}\right) \cdots\left(1+\sqrt{-1} \lambda_{n}\right)$ is constant c, that is, u satisfies equation (1.1), and it is special if and only if $(x, \nabla u(x))$ is a minimal surface in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ [HL Theorem 2.3, Proposition 2.17]. To be precise, we state

Theorem 1.1. Let u be a smooth solution in \mathbb{R}^{n} to (1.1) with $|c|>\frac{\pi}{2}(n-2)$. Then u is quadratic.

Fu [F] proved Theorem 1.1 in the two-dimensional case. Indeed (1.1) with $c=\frac{\pi}{2}$ in the 2 -d case also has the Monge-Ampère form $\operatorname{det} D^{2} u=1$, and Jörgens already showed Theorem 1.1 in this special case earlier on (cf. [N]).

Other Bernstein-Liouville type results concerning (1.1) are in order. Borishenko [B] showed that any convex solution with linear growth to (1.1) with $c=k \pi$ is linear. The author [Y] proved that any convex solution to (1.1) must be quadratic. For $c=k \pi$ in $n=3$ case, (1.1) has another form

$$
\begin{equation*}
\triangle u=\operatorname{det} D^{2} u \tag{1.2}
\end{equation*}
$$

[^0]It was proved in BCGJ that any strictly convex solution to (1.2) with quadratic growth must be quadratic. Under the assumption that the Hessian is bounded and $\lambda_{i} \lambda_{j} \geq-\frac{3}{2}$, it was also shown in TW that any global solution to (1.1) is quadratic.

The heuristic idea of the proof of Theorem 1.1 is to find a better graph representation of $(x, \nabla u(x))$ so that the Hessian of the new potential is bounded, and the new potential function satisfies a convex uniformly elliptic equation. By KrylovEvan's [K, E interior Hölder estimates on the Hessian, we draw the conclusion.

As there are nontrivial global harmonic solutions to (1.1) with $c=0$ in the case $n=2$, we guess (1.1) with $c=\frac{\pi}{2}(n-2)$ also has nontrivial global solutions in the higher-dimensional case. Observe that in the case $n=3$ and $c=\frac{\pi}{2}$, (1.1) also takes the interesting form $\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{3} \lambda_{1}=1$.

2. Proof

Step 1. We first find a better graph representation of M through Lewy rotation (cf. [N]) so that the Hessian of the potential function is bounded. By symmetry we only consider the case $c>\frac{\pi}{2}(n-2)$. Let $\sum_{i=1}^{n} \theta_{i}=\frac{\pi}{2}(n-2)+\delta$, where $\theta_{i}=$ $\arctan \lambda_{i} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\delta \in(0, \pi)$. Note that

$$
\begin{equation*}
-\frac{\pi}{2}+\frac{(n-1)}{n} \delta<\theta_{i}-\frac{\delta}{n}<\frac{\pi}{2}-\frac{\delta}{n} \tag{2.1}
\end{equation*}
$$

The first inequality follows from $\frac{\pi}{2}(n-2)+\delta<\theta_{i}+\frac{\pi}{2}(n-1)$. We rotate the $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ coordinate system to (\bar{x}, \bar{y}) by $\frac{\delta}{n}$, namely, $\bar{x}=x \cos \frac{\delta}{n}+y \sin \frac{\delta}{n}$, $\bar{y}=-x \sin \frac{\delta}{n}+y \cos \frac{\delta}{n}$. In terms of complex variables $z=x+\sqrt{-1} y$, that is, we identify $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with \mathbb{C}^{n}, the rotation takes the form $\bar{z}=e^{-\sqrt{-1} \delta / n} z$. Then M has a new parametrization

$$
\left\{\begin{array}{l}
\bar{x}=x \cos \frac{\delta}{n}+\nabla u(x) \sin \frac{\delta}{n} \\
\bar{y}=-x \sin \frac{\delta}{n}+\nabla u(x) \cos \frac{\delta}{n}
\end{array}\right.
$$

By (2.1), $M=(x, \nabla u(x))$ is still a graph over the whole \bar{x} space \mathbb{R}^{n}. Further the rotation belongs to $U(n)$. Then M is also a special Lagrangian graph $(\bar{x}, \nabla \bar{u}(\bar{x}))$, where \bar{u} is a smooth function [HL, p. 87, Proposition 2.17]. Let $\bar{\lambda}_{i}$ be the eigenvalues of $D^{2} \bar{u}$. Then $\bar{\theta}_{i}=\arctan \bar{\lambda}_{i}=\theta_{i}-\frac{\delta}{n} \in\left(-\frac{\pi}{2}+\frac{(n-1)}{n} \delta, \frac{\pi}{2}-\frac{\delta}{n}\right)$. That is,

$$
\left|D^{2} \bar{u}\right| \leq C(\delta)
$$

Finally \bar{u} satisfies the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \arctan \bar{\lambda}_{i}=\frac{\pi}{2}(n-2) \tag{2.2}
\end{equation*}
$$

Step 2. We proceed with the following lemma, which is Lemma 8.1 in CNS when n is even and $c=\frac{\pi}{2}(n-2)$.
Lemma 2.1. Let $f\left(\lambda_{1}, \cdots, \lambda_{n}\right)=\sum_{i=1}^{n} \arctan \lambda_{i}$ and let $\Gamma=\{\lambda \mid f(\lambda)=c\}$ with $|c| \geq \frac{\pi}{2}(n-2)$. Then Γ is convex.

Proof. We skip the case $n=1$. By symmetry we just consider the case $c \geq 0$. Set $c=\frac{\pi}{2}(n-2)+\delta$ with $\delta \in[0, \pi)$. We may assume that $\theta_{i}=\arctan \lambda_{i} \geq 0$ for
$i=1, \cdots, n-1$. The normal of Γ is $\nabla f=\left(\cos ^{2} \theta_{1}, \cdots, \cos ^{2} \theta_{n}\right)$. Let

$$
A \triangleq-\frac{1}{2} D^{2} f=\left[\begin{array}{lll}
\tan \theta_{1} \cos ^{4} \theta_{1} & & \\
& \ldots & \\
& & \tan \theta_{n} \cos ^{4} \theta_{n}
\end{array}\right]
$$

Take any tangent vector $T=\left(t_{1}, \cdots, t_{n}\right) \in T_{\lambda} \Gamma$, that is,

$$
\sum_{i=1}^{n} t_{i} \cos ^{2} \theta_{i}=0
$$

We show that $A(T, T) \geq 0$.
Case a) $\theta_{n} \geq 0$. Certainly it is true.
Case b) $\theta_{n}<0$. First we know that $\theta_{i}>0$ for $i=1, \cdots, n-1$ and $\delta<\frac{\pi}{2}$. Next we have

$$
A(T, T)=\sum_{i=1}^{n-1} \tan \theta_{i} \cos ^{4} \theta_{i} t_{i}^{2}+\tan \theta_{n} \cos ^{4} \theta_{n} t_{n}^{2}
$$

Now we use the trick in [CNS, p. 299],

$$
\begin{aligned}
\left(-t_{n} \cos \theta_{n}\right)^{2} & =\left(\sum_{i=1}^{n-1} t_{i} \cos ^{2} \theta_{i}\right)^{2} \\
& \leq\left(\sum_{i=1}^{n-1} t_{i}^{2} \cos ^{4} \theta_{i} \tan \theta_{i}\right)\left(\sum_{i=1}^{n-1} \cot \theta_{i}\right)
\end{aligned}
$$

Then

$$
\tan \theta_{n} \cos ^{4} \theta_{n} t_{n}^{2} \geq\left(\sum_{i=1}^{n-1} t_{i}^{2} \cos ^{4} \theta_{i} \tan \theta_{i}\right)\left(\sum_{i=1}^{n-1} \cot \theta_{i}\right) \tan \theta_{n}
$$

and

$$
\begin{aligned}
A(T, T) & \geq\left(\sum_{i=1}^{n-1} t_{i}^{2} \cos ^{4} \theta_{i} \tan \theta_{i}\right)\left[1+\left(\sum_{i=1}^{n-1} \cot \theta_{i}\right) \tan \theta_{n}\right] \\
& =\left(\sum_{i=1}^{n-1} t_{i}^{2} \cos ^{4} \theta_{i} \tan \theta_{i}\right)\left(\sum_{i=1}^{n} \cot \theta_{i}\right) \tan \theta_{n}
\end{aligned}
$$

Let $\alpha_{i}=\frac{\pi}{2}-\theta_{i}$. We have

$$
\begin{aligned}
& \frac{\pi}{2}<\pi-\delta=\alpha_{1}+\cdots+\alpha_{n}<\pi \\
& 0<\alpha_{1}, \cdots, \alpha_{n-1}<\frac{\pi}{2}<\alpha_{n}
\end{aligned}
$$

and

$$
\sum_{i=1}^{n} \cot \theta_{i}=\sum_{i=1}^{n-1} \tan \alpha_{i}+\tan \alpha_{n}
$$

It follows that $\tan \alpha_{n}<0$ and

$$
\frac{\tan \left(\alpha_{1}+\cdots+\alpha_{n-1}\right)+\tan \alpha_{n}}{1-\tan \left(\alpha_{1}+\cdots+\alpha_{n-1}\right) \tan \alpha_{n}}=\tan \left(\alpha_{1}+\cdots+\alpha_{n}\right)<0
$$

Then $\tan \left(\alpha_{1}+\cdots+\alpha_{n-1}\right)+\tan \alpha_{n}<0$. Note that $\alpha_{1}+\cdots+\alpha_{n-1}=\pi-\delta-\alpha_{n}<\frac{\pi}{2}$; we have

$$
\begin{aligned}
\tan \left(\alpha_{1}+\cdots+\alpha_{n-1}\right) & \geq \tan \alpha_{1}+\tan \left(\alpha_{2}+\cdots+\alpha_{n-1}\right) \\
& \cdots \\
& \geq \tan \alpha_{1}+\tan \alpha_{2}+\cdots+\tan \alpha_{n-1} .
\end{aligned}
$$

So $\sum_{i=1}^{n} \cot \theta_{i}=\sum_{i=1}^{n} \tan \alpha_{i}<0$ and $A(T, T) \geq 0$. Therefore Γ is convex (w.r.t. the normal ∇f).
Remark 1. The level set Γ is no longer convex or concave when $|c|<\frac{\pi}{2}(n-2)$.
Step 3. The final argument is standard. We now have global solution \bar{u} with bounded Hessian on the convex level set Γ, more precisely a convex level set in the symmetric matrix space (cf. CNS, p. 276]). In another word, \bar{u} satisfies (2.2), which is now uniformly elliptic. By Krylov-Evans theorem ([K],[E])

$$
\left[D^{2} \bar{u}\right]_{C^{\beta}\left(B_{r}\right)} \leq C(n, \delta) \frac{\left\|D^{2} \bar{u}\right\|_{L^{\infty}\left(B_{2 r}\right)}}{r^{\beta}} \leq \frac{C(n, \delta)}{r^{\beta}}
$$

where $\beta=\beta(n, \delta) \in(0,1)$. Let r go to $+\infty$; we see that $D^{2} \bar{u}$ is a constant matrix. Thus $(\bar{x}, \nabla \bar{u})$ is a plane, and consequently u is quadratic.

References

[BCGJ] Bao, J.-G., Chen, J.-Y., Guan, B., and Ji, M., Liouville property and regularity of a Hessian quotient equation, Amer. J. Math. 125 (2003), 301-316. MR1963687(2004b:35079)
[B] Borisenko, A. A., On a Liouville-type theorem for the equation of special Lagrangian submanifolds, (Russian) Mat. Zametki 52 (1992), 22-25; English translation in Math. Notes 52 (1992), 1094-1096 (1993). MR 1201944 (93k:53055)
[CNS] Caffarelli, L. A., Nirenberg, L., and Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261-301. MR0806416 (87f:35098)
[E] Evans, L. C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333-363. MR0649348 (83g:35038)
[F] Fu, L., An analogue of Bernstein's theorem, Houston J. Math. 24 (1998), 415-419. MR1686614 (2000c:53006)
[HL] Harvey, R. and Lawson, H. B., Jr., Calibrated geometry, Acta Math. 148 (1982), 47-157. MR0666108(85i:53058)
[K] Krylov, N. V., Boundedly nonhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 487-523 in Russian; English translation in Math. USSR Izv. 20(1983), 459-492. MR0661144 (84a:35091)
[N] Nitsche, J. C. C., Elementary proof of Bernstein's theorem on minimal surfaces, Ann. of Math. 66 (1957), 543-544. MR0090833 (19:878f)
[TW] Tsui, M.-P. and Wang, M.-T., A Bernstein type result for special Lagrangian submanifolds, Math. Res. Lett. 9 (2002), 529-535. MR1928873 (2003k:53059)
[Y] Yuan, Y., A Bernstein problem for special Lagrangian equations, Invent. Math. 150 (2002), 117-125. MR 1930884 (2003k:53060)

Department of Mathematics, Box 354350, University of Washington, Seattle, WashINGTON 98195

E-mail address: yuan@math.washington.edu

[^0]: Received by the editors September 9, 2004 and, in revised form, November 29, 2004.
 2000 Mathematics Subject Classification. Primary 35J60.
 The author was partially supported by an NSF grant and a Sloan Research Fellowship. The author was a visiting fellow at the Australian National University while this work was done.

