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We show that every complete entire self-shrinking solution on complex Euclidean space

to the Kähler–Ricci flow must be generated from a quadratic potential.

1 Introduction

In this note, we prove the following result.

Theorem 1.1. Suppose that u is an entire smooth pluri-subharmonic solution on C
m to

the complex Monge–Ampère equation

ln det(uαβ̄) = 1
2 x · Du− u. (1)

Assume that the corresponding Kähler metric g = (uαβ̄) is complete. Then, u is

quadratic. �
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2 G. Drugan et al.

Any solution to (1) leads to a self-shrinking solution v(x, t) = −tu(x/
√−t) to a

parabolic complex Monge–Ampère equation

vt = ln det(vαβ̄)

in C
m × (−∞, 0), where zα = xα + √−1xm+α. Note that the above equation of v is the

potential equation of the Kähler–Ricci flow ∂tgαβ̄ = −Rαβ̄ . In fact, the corresponding met-

ric (uαβ̄) is a shrinking Kähler–Ricci (non-gradient) soliton.

Assuming a certain inverse quadratic decay of the metric—a specific complete-

ness assumption—Theorem 1.1 has been proved in [2]. Similar rigidity results for self-

shrinking solutions to Lagrangian mean curvature flows were obtained in [2, 7, 8].

The idea of our argument, as in [2], is still to force the phase ln det(uαβ̄) in

Equation (1) to attain its global maximum at a finite point. As this phase satisfies an

elliptic equation without the zeroth order terms (see (3)), the strong maximum principle

implies the constancy of the phase. Consequently, the homogeneity of the self-similar

terms on the right-hand side of Equation (1) leads to the quadratic conclusion for the

solution.

However, the difficulty of the above argument lies in the first step: Here, we can-

not construct a barrier as in [2], which requires the specific inverse quadratic decay of

the metric, to show the phase achieves its maximum at a finite point. The new obser-

vation is that the radial derivative of the phase, which is the negative of the scalar

curvature of the metric (4), is in fact non-positive; hence, the phase value at the origin is

its global maximum. The non-negativity of the scalar curvature is a result of Chen [3], as

the induced metric g(x, t) = (uαβ̄(x/
√−t)) is a complete ancient solution to the (Kähler–

)Ricci flow. Here, we provide a direct elliptic argument for the non-negativity of the

scalar curvature for the complete self-shrinking solutions (in Section 3, after necessary

preparation in Section 2, where a pointwise approach to Perelman’s upper bound of the

Laplacian of the distance [9] is also included). Heuristically, one sees the minimum of

the scalar curvature is non-negative from its inequality (6); it is definitely so if the mini-

mum is attained at a finite point. Note that a thorough study of the lower bound of scalar

curvatures of the gradient Ricci solitons is presented in [5, Chapter 27].

2 Preliminary Results

For the potential u of the Kähler metric g = (gαβ̄) = (uαβ̄) on C
m, we denote the phase

by Φ = ln det(uαβ̄). Then, the Ricci curvature is given by Rαβ̄ = − ∂2Φ
∂zα∂ z̄β . The “complex”
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Rigidity of Complete Entire Self-Shrinking Solutions 3

scalar curvature is R= gαβ̄ Rαβ̄ (R is one-half of the usual “real” scalar curvature). Let

ρ(x) denote the Riemannian distance from x to 0 in (Cm, g). For a solution u of (1), we

derive the following equations and inequalities for those geometric quantities.

2.1 Equation for phase Φ

Since u is a solution of (1), the phase satisfies the equation Φ = 1
2 x · Du− u. Taking two

derivatives,

− Rαβ̄ = ∂2Φ

∂zα∂ z̄β
= 1

2
x · Duαβ̄ . (2)

Differentiating Φ = ln det(uαβ̄),

DΦ = gαβ̄ Duαβ̄ .

Combining these equations, we obtain

gαβ̄ ∂2Φ

∂zα∂ z̄β
= 1

2
x · DΦ. (3)

In particular, we have the important relation

R= − 1
2 x · DΦ. (4)

2.2 Inequality for scalar curvature R

Differentiating R= − 1
2 x · DΦ twice and using Rαβ̄ = − ∂2Φ

∂zα∂ z̄β ,

∂2 R

∂zα∂ z̄β
= − ∂2Φ

∂zα∂ z̄β
− 1

2
x · D

∂2Φ

∂zα∂ z̄β
= Rαβ̄ + 1

2
x · DRαβ̄ . (5)

Also, differentiating R= gαβ̄ Rαβ̄ ,

DR= −gαγ̄ Duγ̄ δg
δβ̄ Rαβ̄ + gαβ̄ DRαβ̄ .

Hence, by (2),

1
2 x · DR= −gαγ̄ ( 1

2 x · Duγ̄ δ)g
δβ̄ Rαβ̄ + gαβ̄ 1

2 x · DRαβ̄

= gαγ̄ (Rγ̄ δ)g
δβ̄ Rαβ̄ + gαβ̄ 1

2 x · DRαβ̄ .
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4 G. Drugan et al.

Coupled with (5), we obtain

gαβ̄ ∂2 R

∂zα∂ z̄β
− 1

2
x · DR= R − gαγ̄ gδβ̄ Rαβ̄ Rγ̄ δ ≤ R − 1

m
R2,

or equivalently

gαβ̄ ∂2 R

∂zα∂ z̄β
≤ 1

2
x · DR + R − 1

m
R2. (6)

2.3 Inequality for distance ρ

Fix a point x ∈ C
m, and let ρ = ρ(x). We assume that x is not in the cut locus of 0. Since

(Cm, g) is complete, there is a (unique) unit speed minimizing geodesic χ : [0, ρ] → C
m

from 0 to x. We introduce a vector field X(τ ) along χ(τ) defined by X = χα ∂
∂zα + χβ̄ ∂

∂ z̄β ,

where we regard χ ∈ C
m as a tangent vector. Note that X(0) = 0 and X(ρ) = xi ∂

∂xi .

We proceed to compute the directional derivative x · Dρ(x) using the metric g:

x · Dρ(x) = 〈X(ρ),∇gρ〉g = 〈X(ρ), χ̇(ρ)〉

=
∫ρ

0

d

dτ
〈X(τ ), χ̇(τ )〉 dτ =

∫ρ

0
〈∇τ X(τ ), χ̇(τ )〉 dτ,

where the tangent vector χ̇ (τ ) = d
dτ

χ and for simplicity of notation we have dropped the

subscript g in the inner product 〈 , 〉g. To calculate the above integrand, we first compute

the covariant derivative of X along χ :

∇τ X = χ̇α ∂

∂zα
+ χ̇ β̄ ∂

∂ z̄β
+ χα∇χ̇

∂

∂zα
+ χβ̄∇χ̇

∂

∂ z̄β

= χ̇ + χαΓ μ
γαχ̇γ ∂

∂zμ
+ χβ̄Γ ν̄

δ̄β̄
χ̇ δ̄ ∂

∂ z̄ν
.

Then, using the identity Γ μ
γαgμβ̄ = uγαβ̄ (for a Kähler potential) and (2), we have

〈∇τ X, χ̇〉 = 1 + X · Duαβ̄ χ̇αχ̇ β̄ = 1 − 2Rαβ̄ χ̇αχ̇ β̄ .

Therefore, we have the formula

x · Dρ(x) = ρ(x) −
∫ρ

0
2Rαβ̄ χ̇αχ̇ β̄ dτ. (7)

We have the following estimate for the Laplacian of the distance function ρ.
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Rigidity of Complete Entire Self-Shrinking Solutions 5

Lemma 2.1. Suppose Ric ≤ K on Bg(0, ρ0) for ρ0 > 0. If ρ(x) > ρ0 and x is not in the cut

locus of 0, then

gαβ̄ ∂2ρ

∂zα∂ z̄β
(x) ≤

[
2m − 1

2ρ0
+ 1

3
Kρ0

]
+ 1

2
x · Dρ(x) − 1

2
ρ(x). (8)

�

Proof. The mean curvature H of the geodesic sphere ∂ Bg(0, ρ) with respect to the nor-

mal ∇gρ equals −1
2m−1Δgρ. As calculated in [1, p. 52], H satisfies the following differential

inequality:

Hρ ≥ H2 + 1

2m − 1
Ric(∇gρ,∇gρ).

Let H = −1
ρ

+ b. Since the Riemannian metric g is asymptotically Euclidean as ρ → 0, we

know b is bounded for small ρ (in fact O(ρ)). We then have a corresponding inequality

for b:
1

ρ2
+ bρ ≥ 1

ρ2
− 2

1

ρ
b + b2 + 1

2m − 1
Ric(∇gρ,∇gρ),

and consequently

(ρ2b)ρ ≥ ρ2b2 + ρ2

2m − 1
Ric(∇gρ,∇gρ) ≥ ρ2

2m − 1
Ric(∇gρ,∇gρ).

Integrating along χ(τ), we arrive at

b(χ(ρ0)) ≥ 1

ρ2
0

∫ρ0

0

τ 2

2m − 1
Ric(χ̇, χ̇) dτ.

Then, for ρ ≥ ρ0,

H(χ(ρ)) = H(χ(ρ0)) +
∫ρ

ρ0

Hρ dτ

≥ H(χ(ρ0)) +
∫ρ

ρ0

1

2m − 1
Ric(χ̇ , χ̇) dτ

≥ −1

ρ0
+ 1

ρ2
0

∫ρ0

0

τ 2

2m − 1
Ric(χ̇ , χ̇) dτ +

∫ρ

ρ0

1

2m − 1
Ric(χ̇, χ̇) dτ.

Substituting back Δgρ = −(2m − 1)H and recalling x = χ(ρ), we obtain

Δgρ ≤ 2m − 1

ρ0
−

∫ρ

0
Ric(χ̇ , χ̇) dτ +

∫ρ0

0

(
1 − τ 2

ρ2
0

)
Ric(χ̇, χ̇) dτ, (9)
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6 G. Drugan et al.

when ρ ≥ ρ0. In fact, this estimate was first derived in [9, Section 8] (by a second variation

argument).

Note that the Riemannian Laplacian Δg = 2gαβ̄ ∂2

∂zα∂ z̄β and Ric(χ̇ , χ̇) = 2Rαβ̄ χ̇αχ̇ β̄ .

Then, (8) follows from combining (7) with (9). �

To prove Theorem 1.1, we will also need an inequality for ρy(x) = distance from

x to y in (Cm, g). Following the previous argument and using (X − yi ∂
∂xi ) instead of X for

the vector field along χ, we have the following lemma.

Lemma 2.2. Suppose Ric ≤ K on Bg(y, ρ0). Fix A> ρ0, and let x ∈ Bg(y, A). If ρy(x) > ρ0

and x is not in the cut locus of y, then

gαβ̄ ∂2ρy

∂zα∂ z̄β
(x) ≤

[
2m − 1

2ρ0
+ 1

3
Kρ0

]
+ 1

2
x · Dρy(x) − 1

2
ρy(x) + C0 A|y|, (10)

where the constant C0 only depends on the “Euclidean” norms of Duαβ̄ and g−1 in

Bg(y, A). �

Proof. Arguing as above, let χ be the unit speed minimizing geodesic from y to x. Using

(X − yi ∂
∂xi ) for the vector field along χ (note that X(0) = yi ∂

∂xi ), we have

(x − y) · Dρy(x) = ρy(x) −
∫ρy(x)

0
2Rαβ̄ χ̇αχ̇ β̄ dτ −

∫ρy(x)

0
y · Duαβ̄ χ̇αχ̇ β̄ dτ.

The conclusion of the lemma follows, as above, from combining this equation

with (9). �

3 Proof of Theorem 1.1

First, we prove the scalar curvature R≥ 0 on complete (Cm, g). Choose a cutoff function

φ such that φ ≡ 1 on [0, 1], φ ≡ 0 on [2,∞), φ′ ≤ 0, |φ′| ≤ C1φ
1/2, and |φ′′ − 2(φ′)2/φ| ≤ C2φ

1/2.

For any small ρ0 > 0, K = K(ρ0) can be chosen so that Ric ≤ K on Bg(0, 2ρ0). Fix A> ρ0,

we derive an effective negative lower bound (11) for R on Bg(0, A). Set R̃= φ(ρ/A)R. If

R< 0 at some point in Bg(0, 2A), then R̃ achieves a negative minimum at some point

p∈ Bg(0, 2A), as Bg(0, 2A) is compact for each A> 0 by the completeness of (Cm, g). We

consider two cases.

 by guest on A
pril 14, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/
http://imrn.oxfordjournals.org/


Rigidity of Complete Entire Self-Shrinking Solutions 7

Case 1: p is not in the cut locus of 0. Then, ρ is smooth near p, and we have

Δg R̃=
(

φ′′

A2
+ φ′

A
Δgρ

)
R + φΔg R + 2〈∇φ,∇R〉,

where we have used |∇ρ| = 1. In order to have a linear differential inequality for R̃ with

smooth coefficients (even for the Lipschitz function ρ), we rewrite

〈∇φ,∇R〉 =
〈
∇φ,

∇ R̃

φ
− ∇φ

φ2
R̃

〉
=

〈
∇ R̃

R
,
∇ R̃

φ

〉
− |∇φ|2

φ2
R̃,

|∇ρ|=1= |∇ R̃|2
R̃

−
〈∇R

R
,∇ R̃

〉
− (φ′)2

A2φ
R,

R̃<0≤ −
〈∇R

R
,∇ R̃

〉
− (φ′)2

A2φ
R.

Using Δg = 2gαβ̄ ∂2

∂zα∂ z̄β , the inequalities (8) and (6) for ρ and R, and the inequalities for φ,

we obtain

gαβ̄ ∂2 R̃

∂zα∂ z̄β

φ′ R>0≤ 1

2A2

[
φ′′ − 2(φ′)2

φ

]
R + φ′ R

A

[(
2m − 1

2ρ0
+ 1

3
Kρ0

)
+ 1

2
x · Dρ(x)

]

+ φ

(
1

2
x · DR + R − 1

m
R2

)
−

〈∇R

R
,∇ R̃

〉

≤ C2

2A2
φ1/2|R| + C1

A

(
2m − 1

2ρ0
+ 1

3
Kρ0

)
φ1/2|R| − φR2

m

+ R̃ + 1

2
x · DR̃ −

〈∇R

R
,∇ R̃

〉

≤ C (m, ρ0)

A2
+ R̃ + b(x) · DR̃,

where b(x) is a smooth function and C (m, ρ0) is a constant that depends only on m, ρ0,

C1, and C2. Since R̃ achieves its minimum at p, we have R̃(p) ≥ −C (m,ρ0)

A2 and R≥ −C (m,ρ0)

A2

on Bg(0, A).

Case 2: p is in the cut locus of 0. Then, ρ is not smooth at p, and we argue

using Calabi’s trick [1, p. 53] of approximating ρ from above by smooth functions (cf. [4,

pp. 453–456]). For completeness, we include the argument here. Let χ be a unit speed

geodesic from 0 to p that minimizes length, and define ρε = ρχ(ε) + ε, where ρχ(ε) is the

distance to χ(ε). Then, ρε(p) = ρ(p) and ρε ≥ ρ near p. Since p is not in the cut locus of

χ(ε), we know that ρε is smooth near p. Let R̃ε = φ(ρε/A)R. Then, R̃ε is smooth near p.
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8 G. Drugan et al.

Furthermore, since φ is decreasing and R< 0 near p, the above properties of ρε show that

R̃ε(p) = R̃(p) and R̃ε ≥ R̃ near p. It follows that R̃ε has a local minimum at p. Arguing as

we did in Case 1, and using Lemma 2.2 to estimate ρε, we have

gαβ̄ ∂2 R̃ε

∂zα∂ z̄β
≤ C (m, ρ0)

A2
+ R̃ε + b(x) · DR̃ε + φ′ R

A
[C02A|χ(ε)|],

where b(x) is a smooth function, C (m, ρ0) is a constant that depends only on m, ρ0, C1,

and C2, and C0 is a constant depending on the “Euclidean” norms of Duαβ̄ and g−1 in

Bg(0, 2A). Note that we may choose C0 independent of (small) ε. At p, we have

R̃ε(p) ≥ −C (m, ρ0)

A2
− φ′ R

A
(p)[C02A|χ(ε)|].

Taking ε → 0, we arrive at the inequality R̃(p) ≥ −C (m,ρ0)

A2 , which shows R≥ −C (m,ρ0)

A2 on

Bg(0, A).

Combining Case 1 and Case 2, we have shown that

R≥ −C (m, ρ0)

A2
on Bg(0, A). (11)

Taking A→ ∞, we arrive at R≥ 0 on C
m.

Now, we finish the proof of Theorem 1.1. Since R≥ 0, it follows from the equation

R= −gαβ̄ ∂2Φ
∂zα∂ z̄β = − 1

2 x · DΦ that Φ achieves its global maximum at the origin. Applying

the strong maximum principle to Equation (3), we conclude that Φ is constant. Using
1
2 x · Du− u= Φ, we have

1
2 x · D[u+ Φ(0)] = u+ Φ(0).

Finally, it follows from Euler’s homogeneous function theorem that smooth u+
Φ(0) is a homogeneous order 2 polynomial.

Remark. In fact, one sees that the Lipschitz function R̃ (on the set where R̃< 0) is a

subsolution to

gαβ̄ ∂2 R̃

∂zα∂ z̄β
≤ C (m, ρ0)

A2
+ R̃ + b(x) · DR̃

in the viscosity sense by using the same trick of Calabi. It follows from the comparison

principle (cf. [6, p. 18]) that the same negative lower bounds for R̃ and hence R can be

derived. �
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