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Abstract. We establish interior regularity for almost convex viscosity
solutions of the sigma-2 equation.

1. Introduction

In this paper, we establish regularity for almost convex viscosity solutions
of the σ2 equation

(1.1) F
(
D2u

)
= σ2(λ)− 1 =

∑
1≤i<j≤n

λiλj − 1 = 0,

where λ′is are the eigenvalues of the Hessian D
2u.

Fully nonlinear equation (1.1) is the quadratic analogue of the Laplace
equation σ1 = ∆u and the Monge-Ampère equation σn = detD2u. In di-
mension three, σ2 = 1 if and only if

∑3
i=1 arctanλi = ±π/2, which is the spe-

cial Lagrangian equation from calibrated geometry. The equation σ2(κ) = 1
prescribes the scalar curvature of a Euclidean hypersurface (x, u(x)) with
principal curvatures (κ1, · · · , κn) = κ. Complex σ2-type equations arise from
the Strominger system in string theory, and the σ2 function of the Schouten
tensor arises in conformal geometry.

Theorem 1.1. Let u be a semiconvex viscosity solution of σ2
(
D2u

)
= 1

with ∆u > 0 on B1 (0) ⊂ Rn with D2u ≥ (δ − K)I for some δ > 0 and
K = [n (n− 1) /2]−1/2 . Then u is analytic on B1(0) and has the effective
Hessian bound ∣∣D2u (0)

∣∣ ≤ C(n) exp

[
C(n) osc

B1(0)
u

]2
.

One quick consequence is that every entire almost convex (such as in
Theorem 1.1) viscosity solution of (1.1) is a quadratic function; the smooth
case was done in [CY]. Recall the classic rigidity results for the equations
4u = 1 and detD2u = 1 : every entire convex viscosity solution is quadratic.
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Our result shows that if a singular viscosity solution of (1.1) exists, then it
is not convex, or even almost convex.
The interior regularity for (1.1) in general dimensions is a longstanding

problem. Sixty years ago, Heinze [H] achieved a priori estimates and reg-
ularity for two dimensional Monge-Ampère type equations including (1.1)
with n = 2 by two dimensional techniques. More than ten years ago, a priori
estimates and regularity for (1.1) with n = 3 were obtained via the mini-
mal surface structure of equation (1.1) in the joint work with Warren [WY].
Along this “integral”way, Qiu [Q] has proved a priori Hessian estimates—
then regularity follows—for three dimensional (1.1) with C1,1 variable right
hand side, and even with left hand side λ replaced by the principal curva-
tures κ. Hessian estimates for convex smooth solutions of general quadratic
Hessian equations in general dimensions have been obtained via a point-
wise approach by Guan and Qiu [GQ]. Hessian estimates for almost convex
smooth solutions of (1.1) in general dimensions have been derived by a com-
pactness argument in [MSY], and recently for semiconvex smooth solutions
in [SY] using new mean value and Jacobi inequalities.
In contrast, there are Pogorelov-like singular convex viscosity solutions

of the symmetric Hessian equations σk (λ) = 1 with k ≥ 3 in dimension
n ≥ 3. Under a necessary strict k-convexity assumption on weak/viscosity
solutions of σk (λ) = 1, a priori Hessian estimates and then regularity were
obtained by Pogorelov [P] and Chou-Wang [CW], for k = n and 2 ≤ k < n
respectively, using Pogorelov’s pointwise technique. Lastly, we also mention
a priori gradient estimates by Trudinger [T] and a priori Hessian estimates
for solutions of σk as well as σk/σn equations in terms of certain integrals
of the Hessian by Urbas [U1, U2], Bao-Chen-Guan-Ji [BCGJ].
Extending the above a priori estimates to regularity statements about

viscosity solutions of (1.1) is more subtle. In dimensions two and three, one
can smoothly solve the Dirichlet problem on interior balls with smoothly
approximated boundary data; a limiting procedure combined with the a
priori estimates then yields the desired interior regularity for the viscosity
solution. However, for dimension n ≥ 4, a priori estimates are not known
for general solutions of (1.1). Because the smooth approximations may not
satisfy the convexity constraints, we cannot invoke the available a priori
estimates while taking the limit and deduce interior regularity.
We circumvent this diffi culty using the improved regularity properties of

the equation for the Legendre-Lewy transform ū(x̄) found in [CY]. By the
analytical definition of the transform valid for merely semiconvex functions,
we show that ū(x̄) is indeed a viscosity solution of a new concave and uni-
formly elliptic equation if u(x) is a viscosity solution of (1.1). It follows that
ū(x̄) is smooth. Then the boundedness of the original solution u(x) com-
bined with the constant rank of D2ū(x̄) in [CGM] implies u(x) is smooth,
and in turn, the a priori estimate in [SY] provides the explicit estimate in
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Theorem 1.1. A similar approach has lead to the interior regularity for con-
vex viscosity solutions of the special Lagrangian equation in our recent joint
work [CSY].
It is still unclear to us whether semiconvex viscosity solutions of (1.1)

are regular, if only D2u ≥ −KI for some large K > 0. Unlike in [CSY],
where one can only justify the rotated transform ū satisfying a phase de-
creased special Lagrangian equation for convex viscosity solutions u, here
the Legendre-Lewy transform ū is still a C1,1 viscosity solution of a new
uniformly elliptic equation, for any semiconvex viscosity solution. However,
as the new equation no longer has convex level set, for largeK, we are unable
to deduce smoothness for ū at this point. Without the smoothness of ū, we
are currently unable to obtain a C1,1 version of the constant rank theorem
to gain negative definiteness of the negative semidefinite Hessian D2ū ≤ 0,
for the C1,1 solution ū of a uniformly elliptic and inversely concave equation.
Otherwise, the interior regularity for such semiconvex viscosity solutions of
(1.1) would be justified.

2. Preliminaries

2.1. Smooth functions and solutions. It was shown in [CY] that smooth
semiconvex solutions u of (1.1) solve a better equation after the Legendre-
Lewy transform. First adding a large quadratic to produce uniformly convex
ũ(x) = u(x)+K

2 |x|
2, we reflect the “gradient”graph (x,Dũ(x)) ∈ Rn×Rn to

produce another “gradient”graph (−Dū(x̄), x̄) = (x,Dũ(x)) with potential
ū(x̄). This potential can be found using

−dū(x̄) = −Dū(x̄) · dx̄ = x · dx̄ = d(x · x̄)−Dũ(x) · dx = d(x · x̄− ũ(x)),

so up to a constant,

ū(x̄) = −(x · x̄− ũ(x)), x ∈ B1,

which is, in fact, negative the Legendre transform of striclty convex function
f(x) = ũ(x), formulated in extremal form as

f∗(y) = sup
x∈B1

[x · y − f(x)] .

Here, the subdifferential y ∈ ∂f(B1). If f is smooth, then y = Df(x) and the
analytic definition agrees with the geometric one. We finally add a minus
sign, and define the Legendre-Lewy transform of a semiconvex function u
with D2u ≥ (−K + δ)I by

(2.1) ū(x̄) = −ũ∗(x̄) = −
[
u(x) +

K

2
|x|2
]∗

(x̄)

for those x̄ ∈ ∂ũ(B1).
The Hessians are related by

D2ū(x̄) = −(D2ũ(x))−1 = −(D2u(x) +KI)−1,
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so semiconvexity D2u ≥ (−K + δ)I and uniform convexity D2ũ ≥ δI imply
ū ∈ C1,1 with

(2.2) −1

δ
I ≤ D2ū(x̄) < 0.

Indeed, the tangent planes of (x,Dũ(x)) are formed by (e,D2ũ · e) with
e ∈ Rn, so reflection implies that (−(D2ũ)−1e, e) form tangent planes for
(−Dũ∗(x̄), x̄). Consequently, equation (1.1) transforms to

(2.3) F̄ (D2ū) = σn
(
−λ̄
) [
σ2

(
− 1

λ̄
−K

)
− 1

]
= σn

(
−λ̄
)
F
(
D2u

)
= 0,

where λ̄′is are the eigenvalues of the Hessian D
2ū. It was shown in [CY, p.

661—663] that this equation, with an equivalent conformal factor

1√(
1 + λ21

)
· · · (1 + λ2n)

C(n,K,δ)
≈ σn

(
−λ̄
)
,

is uniformly elliptic for all K > 0, and has convex level set for K =

[n (n− 1) /2]−1/2 . Moreover, for smooth solutions, the constant rank the-
orem of [CGM] applies since the “inverse” equation of F̄ also has convex
level set:

{σ2(M)− 1 = 0} = {tr(M)−
√
|M |2 + 2 = 0}.

These favorable properties were used in [MSY] to find an a priori estimate
for smooth solutions.
The first challenge is to show that ū(x̄) is a viscosity solution of (2.3) if

u(x) is one for (1.1). The favorable regularity properties of (2.3) will then
imply ū(x̄) is a classical solution of (2.3), after which the constant rank
theorem will take over.

2.2. Convex functions and viscosity solutions. The Legendre-Lewy
transform ū in (2.1) still makes sense if u ∈ C0 is only semiconvex with
D2u ≥ (δ −K)I. Because ũ = u + K

2 |x|
2 is uniformly convex D2ũ ≥ δI, it

follows that the subdifferential map x 7→ ∂ũ(x) is “distance increasing”, and
we can show as in [CSY, Lemma 2.1] that Ω̄ = ∂ũ(B1) is an open connected
set.
Moreover, the Legendre transform is order reversing and respects con-

stants: f ≤ g → f∗ ≥ g∗ and (f + c)∗ = f∗ − c. This means the transform
respects uniform convergence: if f−ε ≤ g ≤ f+ε, then f∗+ε ≥ g ≥ f∗−ε. It
follows that the Legendre-Lewy transform (2.1) obeys these same properties,
except it is now order preserving: if u−ε ≤ v ≤ u+ε, then ū−ε ≤ v̄ ≤ ū+ε.
By smooth approximation, it follows from (2.2) and the respect for uni-

form convergence that concave ū is C1,1 from below with

−1

δ
I ≤ D2ū ≤ 0

Order preservation also implies preservation of the supersolution property.
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Proposition 2.1. Let u be a semiconvex viscosity supersolution of (1.1) on
B1(0) with D2u ≥ (δ −K)I. Then the Legendre-Lewy transform ū in (2.1)
is a corresponding viscosity supersolution of (2.3) on Ω̄ = ∂ũ(B1).

Proof. Let Q̄ be any quadratic function touching ū from below locally some-
where on the open set Ω̄, say the origin. Already D2Q̄ ≤ D2ū ≤ 0. By
subtracting ε |x̄|2 from Q̄, then taking the limit as ε goes to 0, we assume
D2Q̄ < 0. This guarantees the existence of its inverse transform, quadratic
function Q. From the order preservation of the Legendre-Lewy transform
(2.1), which is also valid for the inverse operation, we see that Q touches u
from below somewhere. Because u is a supersolution, F (D2Q) ≤ 0. Recall-
ing −D2Q̄ > 0, we conclude F̄ (D2Q̄) = σn(−D2Q̄)F (D2Q) ≤ 0. �
The concavity pertaining to (1.1) implies the preservation of subsolutions

under the Legendre-Lewy transform.

Proposition 2.2. Let u be a semiconvex viscosity subsolution of (1.1) on
B1.2(0) with D2u ≥ (δ−K)I. Then the Legendre-Lewy transform ū in (2.1)
is a corresponding viscosity subsolution of (2.3) on Ω̄ = ∂ũ(B1).

Proof. Step 1. For convenience, we extend the semiconvex u (x) to an entire
semiconvex function on Rn. Set the standard convolution uε (x) = u ∗ ρε (x)
with ρε (x) = ε−nρ (x/ε) and nonnegative ρ (x) = ρ (|x|) ∈ C∞0 (Rn) sat-
isfying

∫
Rn ρ (x) dx = 1. Given the C0 uniform continuity of u, we have

|uε (x)− u (x)| < o (1) for all small enough ε.
We claim that the smooth Legendre-Lewy transform ūε is defined at least

on Ω̄ for all small enough ε. We verify this by showing that for any ā ∈
∂ũ (a) with a ∈ B1 (0) , there exists b such that Dũε (b) = ā with ũε (x) =
K
2 |x|

2+uε (x) and |b− a| ≤ o (1) as ε goes to 0. Consequently, ∂ũ (B1 (0)) ⊂
Dũε (B1.1 (0)) for all small enough ε.
Now for any ā ∈ ∂ũ (a) , given the uniform convexity of ũε, D2ũε ≥ δI,

there exists b ∈ Rn such that Dũε (b) = ā. By subtracting linear function
ā ·x from both ũ and ũε, we assume 0 ∈ ∂ũ (a)∩∂ũε (b) . Then coupled with
the δ-convexity of ũ and ũε, we have

ũ (b)− ũ (a) ≥ δ

2
|b− a|2 and ũε (a)− ũε (b) ≥ δ

2
|a− b|2 .

For small enough ε, we always have

ũ (a)− ũε (a) ≥ − |o (1)| and ũε (b)− ũ (b) ≥ − |o (1)| .
Adding all the above four inequalities together, we get

|b− a|2 ≤ 2 |o (1)| /δ.
for small enough ε. Therefore, we have proved that ūε is defined on Ω̄ =
∂ũ (B1 (0)) ⊂ Dũε (B1.1 (0)) for all small enough ε.

Step 2. Note that the equivalent form
√
σ2 (λ) − 1 = 0 of equation

(1.1) is concave. By the well-known result in [CC, p. 56], the solid convex
average u∗ρε (instead of the hollow spherical one there) is still a subsolution
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of (1.1) in B1.1 (0) for small enough ε > 0. For smooth subsolutions uε,
the corresponding smooth Legendre-Lewy transform ūε is a subsolution of
(2.3) on Ω̄ from Step 1 and σn

(
−D2ūε

)
≥ 0. The viscosity solutions are

stable under C0 uniform convergence. Hence uniformly convergent limit
limε→0 ūε = ū is a viscosity subsolution of (2.3) on Ω̄. �

Remark : We shrank B1.2(0) to B1(0) in the conclusion of Proposition
2.2 for clarity of exposition. If we instead mollify on small balls centered
near the boundary, then straightforward modifications of the above yield
the result on all of ∂ũ[B1.2(0)], not just on ∂ũ[B1(0)].

3. Proof of Theorem 1.1

By Propositions 2.1 and 2.2, the Legendre-Lewy transform ū(x̄) is a vis-
cosity solution of transformed equation (2.3) on open and connected set

Ω̄ = ∂
(
u+ 1

2K |x|
2
)

(B1(0)) (we may assume u is defined on B1.2(0) by

scaling, 1.22u(x/1.2) ). Moreover,

−1

δ
I ≤ D2ū ≤ 0.

By [CY, p. 661—663], equation (2.3) withK = [n (n− 1) /2]−1/2 is uniformly
elliptic and has convex level set, so the Evans-Krylov theorem implies that
ū ∈ C2,α in Ω̄ (see [CC, Theorem 6.6]), hence smooth in Ω̄.
We now show D2ū < 0 on the open and connected set Ω̄, which then

implies that the original u satisfies D2u < +∞, and hence is smooth and
even analytic on B1 (0) . If not, then D2ū is not full rank somewhere. By
the constant rank theorem of the Hessian D2ū(x̄) in [CGM, Theorem 1.1],
D2ū is nowhere full rank (nowhere negative definite).
But we can arrange a “large”quadratic function Q = A

2 |x|
2 + t touching

u from above at an interior point of B1(0). By the order preservation of the
Legendre-Lewy transform, it follows that Q̄ = − 1

2(K+A) |x̄|
2 + t touches ū

from above somewhere. Since D2Q̄ < 0, it follows that D2ū < 0 somewhere
on Ω̄, and we obtain a contradiction.
We thus deduce u is smooth on B1, and even analytic [M, p. 203]. The

effective Hessian bound then follows from [SY].
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